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Foreword

The array of tools for collecting, storing, and gaining insight from data is huge and 
getting bigger every day. For people entering the field, that means digging through 
hundreds of Web sites and dozens of books to get the basics of working with data at 
scale. That’s why this book is a great addition to the Addison-Wesley Data & Analytics 
series; it provides a broad overview of tools, techniques, and helpful tips for building 
large data analysis systems.

Michael is the perfect author to provide this introduction to Big Data analytics. He 
worked on the Cloud Platform Developer Relations team at Google, helping develop-
ers with BigQuery, Google’s hosted platform for analyzing terabytes of data quickly. 
He brings his breadth of experience to this book, providing practical guidance for 
anyone looking to start working with Big Data or anyone looking for additional tips, 
tricks, and tools.

The introductory chapters start with guidelines for success with Big Data systems 
and introductions to NoSQL, distributed computing, and the CAP theorem. An intro-
duction to analytics at scale using Hadoop and Hive is followed by coverage of real-
time analytics with BigQuery. More advanced topics include MapReduce pipelines, 
Pig and Cascading, and machine learning with Mahout. Finally, you’ll see examples 
of how to blend Python and R into a working Big Data tool chain. Throughout all 
of this material are examples that help you work with and learn the tools. All of this 
combines to create a perfect book to read for picking up a broad understanding of Big 
Data analytics.

—Paul Dix, Series Editor
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Preface

Did you notice? We’ve recently crossed a threshold beyond which mobile technology 
and social media are generating datasets larger than humans can comprehend. Large-
scale data analysis has suddenly become magic.

The growing fields of distributed and cloud computing are rapidly evolving to 
analyze and process this data. An incredible rate of technological change has turned 
commonly accepted ideas about how to approach data challenges upside down, forcing 
companies interested in keeping pace to evaluate a daunting collection of sometimes 
contradictory technologies.

Relational databases, long the drivers of business-intelligence applications, are 
now being joined by radical NoSQL open-source upstarts, and features from both are 
appearing in new, hybrid database solutions. The advantages of Web-based computing 
are driving the progress of massive-scale data storage from bespoke data centers toward 
scalable infrastructure as a service. Of course, projects based on the open-source 
Hadoop ecosystem are providing regular developers access to data technology that has 
previously been only available to cloud-computing giants such as Amazon and Google.

The aggregate result of this technological innovation is often referred to as Big 
Data. Much has been made about the meaning of this term. Is Big Data a new trend, 
or is it an application of ideas that have been around a long time? Does Big Data liter-
ally mean lots of data, or does it refer to the process of approaching the value of data in 
a new way? George Dyson, the historian of science, summed up the phenomena well 
when he said that Big Data exists “when the cost of throwing away data is more than 
the machine cost.” In other words, we have Big Data when the value of the data itself 
exceeds that of the computing power needed to collect and process it.

Although the amazing success of some companies and open-source projects asso-
ciated with the Big Data movement is very real, many have found it challenging to 
navigate the bewildering amount of new data solutions and service providers. More 
often than not, I’ve observed that the processes of building solutions to address data 
challenges can be generalized into the same set of common use cases that appear over 
and over.

Finding efficient solutions to data challenges means dealing with trade-offs. Some 
technologies that are optimized for a specific data use case are not the best choice for 
others. Some database software is built to optimize speed of analysis over f lexibility, 
whereas the philosophy of others favors consistency over performance. This book will 
help you understand when to use one technology over another through practical use 
cases and real success stories.
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Who This Book Is For
There are few problems that cannot be solved with unlimited money and resources. 
Organizations with massive resources, for better or for worse, can build their own 
bespoke systems to collect or analyze any amount of data. This book is not written 
for those who have unlimited time, an army of dedicated engineers, and an infinite 
budget.

This book is for everyone else—those who are looking for solutions to data chal-
lenges and who are limited by resource constraints. One of the themes of the Big Data 
trend is that anyone can access tools that only a few years ago were available exclu-
sively to a handful of large corporations. The reality, however, is that many of these 
tools are innovative, rapidly evolving, and don’t always fit together seamlessly. The 
goal of this book is to demonstrate how to build systems that put all the parts together 
in effective ways. We will look at strategies to solve data problems in ways that are 
affordable, accessible, and by all means practical.

Open-source software has driven the accessibility of technology in countless ways, 
and this has also been true in the field of Big Data. However, the technologies and 
solutions presented in this book are not always the open-source choice. Sometimes, 
accessibility comes from the ability of computation to be accessed as a service.

Nonetheless, many cloud-based services are built upon open-source tools, and in 
fact, many could not exist without them. Due to the great economies of scale made 
possible by the increasing availability of utility-computing platforms, users can pay for 
supercomputing power on demand, much in the same way that people pay for central-
ized water and power.

We’ll explore the available strategies for making the best choices to keep costs low 
while retaining scalability.

Why Now?
It is still amazing to me that building a piece of software that can reach everyone on the 
planet is not technically impossible but is instead limited mostly by economic inequity 
and language barriers. Web applications such as Facebook, Google Search, Yahoo! Mail, 
and China’s Qzone can potentially reach hundreds of millions, if not billions, of active 
users. The scale of the Web (and the tools that come with it) is just one aspect of why 
the Big Data field is growing so dramatically. Let’s look at some of the other trends that 
are contributing to interest in this field.

The Maturity of Open-Source Big Data
In 2004, Google released a famous paper detailing a distributed computing framework 
called MapReduce. The MapReduce framework was a key piece of technology that 
Google used to break humongous data processing problems into smaller chunks. Not 
too long after, another Google research paper was released that described BigTable, 
Google’s internal, distributed database technology.
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Since then, a number of open-source technologies have appeared that implement 
or were inspired by the technologies described in these original Google papers. At 
the same time, in response to the inherent limits and challenges of using relational- 
database models with distributed computing systems, new database paradigms had 
become more and more acceptable. Some of these eschewed the core features of rela-
tional databases completely, jettisoning components like standardized schemas, guaran-
teed consistency, and even SQL itself.

The Rise of Web Applications
Data is being generated faster and faster as more and more people take to the Web. 
With the growth in Web users comes a growth in Web applications.

Web-based software is often built using application programming interfaces, or 
APIs, that connect disparate services across a network. For example, many applications 
incorporate the ability to allow users to identify themselves using information from 
their Twitter accounts or to display geographic information visually via Google Maps. 
Each API might provide a specific type of log information that is useful for data-
driven decision making.

Another aspect contributing to the current data f lood is the ever-increasing amount 
of user-created content and social-networking usage. The Internet provides a friction-
less capability for many users to publish content at almost no cost. Although there is a 
considerable amount of noise to work through, understanding how to collect and ana-
lyze the avalanche of social-networking data available can be useful from a marketing 
and advertising perspective.

It’s possible to help drive business decisions using the aggregate information col-
lected from these various Web services. For example, imagine merging sales insights 
with geographic data; does it look like 30% of your unique users who buy a particular 
product are coming from France and sharing their purchase information on Facebook? 
Perhaps data like this will help make the business case to dedicate resources to target-
ing French customers on social-networking sites.

Mobile Devices
Another reason that scalable data technology is hotter than ever is the amazing explo-
sion of mobile-communication devices around the world. Although this trend primar-
ily relates to the individual use of feature phones and smartphones, it’s probably more 
accurate to as think of this trend as centered on a user’s identity and device indepen-
dence. If you both use a regular computer and have a smartphone, it’s likely that you 
have the ability to access the same personal data from either device. This data is likely 
to be stored somewhere in a data center managed by a provider of infrastructure as a 
service. Similarly, the smart TV that I own allows me to view tweets from the Twitter 
users I follow as a screen saver when the device is idle. These are examples of ubiqui-
tous computing: the ability to access resources based on your identity from arbitrary 
devices connected to the network.
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Along with the accelerating use of mobile devices, there are many trends in which 
consumer mobile devices are being used for business purposes. We are currently at an 
early stage of ubiquitous computing, in which the device a person is using is just a tool 
for accessing their personal data over the network. Businesses and governments are 
starting to recognize key advantages for using 100% cloud-based business-productivity 
software, which can improve employee mobility and increase work efficiencies.

In summary, millions of users every day find new ways to access networked appli-
cations via an ever-growing number of devices. There is great value in this data for 
driving business decisions, as long as it is possible to collect it, process it, and analyze it.

The Internet of . . . Everything
In the future, anything powered by electricity might be connected to the Internet, 
and there will be lots of data passed from users to devices, to servers, and back. This 
concept is often referred to as the Internet of Things. If you thought that the billions of 
people using the Internet today generate a lot of data, just wait until all of our cars, 
watches, light bulbs, and toasters are online, as well.

It’s still not clear if the market is ready for Wi-Fi-enabled toasters, but there’s a 
growing amount of work by both companies and hobbyists in exploring the Internet 
of Things using low-cost commodity hardware. One can imagine network-connected 
appliances that users interact with entirely via interfaces on their smartphones or 
 tablets. This type of technology is already appearing in televisions, and perhaps this 
trend will finally be the end of the unforgivable control panels found on all microwave 
ovens.

Like the mobile and Web application trends detailed previously, the privacy and 
policy implications of an Internet of Things will need to be heavily scrutinized; who 
gets to see how and where you used that new Wi-Fi-enabled electric toothbrush? On 
the other hand, the aggregate information collected from such devices could also be 
used to make markets more efficient, detect potential failures in equipment, and alert 
users to information that could save them time and money.

A Journey toward Ubiquitous Computing
Bringing together all of the sources of information mentioned previously may provide 
as many opportunities as red herrings, but there’s an important story to recognize 
here. Just as the distributed-computing technology that runs the Internet has made 
personal communications more accessible, trends in Big Data technology have made 
the process of looking for answers to formerly impossible questions more accessible.

More importantly, advances in user experience mean that we are approaching a 
world in which technology for asking questions about the data we generate—on a 
once unimaginable scale—is becoming more invisible, economical, and accessible.
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How This Book Is Organized
Dealing with massive amounts of data requires using a collection of specialized tech-
nologies, each with their own trade-offs and challenges. This book is organized in 
parts that describe data challenges and successful solutions in the context of common 
use cases. Part I, “Directives in the Big Data Era,” contains Chapter 1, “Four Rules 
for Data Success.” This chapter describes why Big Data is such a big deal and why the 
promise of new technologies can produce as many problems as opportunities. The 
chapter introduces common themes found throughout the book, such as focusing on 
building applications that scale, building tools for collaboration instead of silos, wor-
rying about the use case before the technology, and avoiding building infrastructure 
unless absolutely necessary.

Part II, “Collecting and Sharing a Lot of Data,” describes use cases relevant to col-
lecting and sharing large amounts of data. Chapter 2, “Hosting and Sharing Terabytes 
of Raw Data,” describes how to deal with the seemingly simple challenge of hosting 
and sharing large amounts of files. Choosing the correct data format is very important, 
and this chapter covers some of the considerations necessary to make good decisions 
about how data is shared. It also covers the types of infrastructure necessary to host a 
large amount of data economically. The chapter concludes by discussing data serializa-
tion formats used for moving data from one place to another.

Chapter 3, “Building a NoSQL-Based Web App to Collect Crowd-Sourced Data,” 
is an introduction to the field of scalable database technology. This chapter discusses 
the history of both relational and nonrelational databases and when to choose one type 
over the other. We will also introduce the popular Redis database and look at strate-
gies for sharding a Redis installation over multiple machines.

Scalable data analytics requires use and knowledge of multiple technologies, and 
this often results in data being siloed into multiple, incompatible locations. Chapter 4, 
“Strategies for Dealing with Data Silos,” details the reasons for the existence of data 
silos and strategies for overcoming the problems associated with them. The chapter 
also takes a look at why data silos can be beneficial.

Once information is collected, stored, and shared, we want to gain insight about 
our data. Part III, “Asking Questions about Your Data,” covers use cases and technol-
ogy involved with asking questions about large datasets. Running queries over massive 
data can often require a distributed solution. Chapter 5, “Using Hadoop, Hive, and 
Shark to Ask Questions about Large Datasets,” introduces popular scalable tools for 
running queries over ever-increasing datasets. The chapter focuses on Apache Hive, 
a tool that converts SQL-like queries into MapReduce jobs that can be run using 
Hadoop.

Sometimes querying data requires iteration. Analytical databases are a class of 
software optimized for asking questions about datasets and retrieving the results very 
quickly. Chapter 6, “Building a Data Dashboard with Google BigQuery,” describes 
the use cases for analytical databases and how to use them as a complement for 
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batch-processing tools such as Hadoop. It introduces Google BigQuery, a fully man-
aged analytical database that uses an SQL-like syntax. The chapter will demonstrate 
how to use the BigQuery API as the engine behind a Web-based data dashboard.

Data visualization is a rich field with a very deep history. Chapter 7, “Visualization 
Strategies for Exploring Large Datasets,” introduces the benefits and potential pitfalls 
of using visualization tools with large datasets. The chapter covers strategies for visual-
ization challenges when data sizes grow especially large and practical tools for creating 
visualizations using popular data analysis technology.

A common theme when working with scalable data technologies is that different 
types of software tools are optimized for different use cases. In light of this, a common 
use case is to transform large amounts of data from one format, or shape, to another. 
Part IV, “Building Data Pipelines,” covers ways to implement pipelines and workf lows 
for facilitating data transformation. Chapter 8, “Putting It Together: MapReduce Data 
Pipelines,” introduces the concept of using the Hadoop MapReduce framework for 
processing large amounts of data. The chapter describes creating practical and accessi-
ble MapReduce applications using the Hadoop Streaming API and scripting languages 
such as Python.

When data processing tasks become very complicated, we need to use workf low 
tools to further automate transformation tasks. Chapter 9, “Building Data Transforma-
tion Workf lows with Pig and Cascading,” introduces two technologies for expressing 
very complex MapReduce tasks. Apache Pig is a workf low-description language that 
makes it easy to define complex, multistep MapReduce jobs. The chapter also intro-
duces Cascading, an elegant Java library useful for building complex data-workf low 
applications with Hadoop.

When data sizes grow very large, we depend on computers to provide informa-
tion that is useful to humans. It’s very useful to be able to use machines to classify, 
recommend, and predict incoming information based on existing data models. Part V, 
“Machine Learning for Large Datasets,” contains Chapter 10, “Building a Data Clas-
sification System with Mahout,” which introduces the field of machine learning. The 
chapter will also demonstrate the common machine-learning task of text classification 
using software from the popular Apache Mahout machine-learning library.

Interpreting the quality and meaning of data is one of the goals of statistics. Part VI, 
“Statistical Analysis for Massive Datasets,” introduces common tools and use cases for 
statistical analysis of large-scale data. The programming language R is the most popu-
lar open-source language for expressing statistical analysis tasks. Chapter 11, “Using 
R with Large Datasets,” covers an increasingly common use case: effectively working 
with large data sets with R. The chapter covers R libraries that are useful when data 
sizes grow larger than available system memory. The chapter also covers the use of R 
as an interface to existing Hadoop installations.

Although R is very popular, there are advantages to using general-purpose lan-
guages for solving data analysis challenges. Chapter 12, “Building Analytics Work-
f lows Using Python and Pandas,” introduces the increasingly popular Python analytics 
stack. The chapter covers the use of the Pandas library for working with time-series 
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data and the iPython notebook, an enhanced scripting environment with sharing and 
collaborative features.

Not all data challenges are purely technical. Part VII, “Looking Ahead,” covers 
practical strategies for dealing with organizational uncertainty in the face of data- 
analytics innovations. Chapter 13, “When to Build, When to Buy, When to Out-
source,” covers strategies for making purchasing decisions in the face of the highly 
innovative field of data analytics. The chapter also takes a look at the pros and cons 
of building data solutions with open-source technologies.

Finally, Chapter 14, “The Future: Trends in Data Technology,” takes a look at 
current trends in scalable data technologies, including some of the motivating factors 
driving innovation. The chapter will also take a deep look at the evolving role of the 
so-called Data Scientist and the convergence of various data technologies.
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1
Four Rules for Data Success

The first rule of any technology used in a business is that automation 
applied to an efficient operation will magnify the efficiency. 

The second is that automation applied to an inefficient 
operation will magnify the inefficiency.

—Bill Gates

The software that you use creates and processes data, and this data can provide value 
in a variety of ways. Insights gleaned from this data can be used to streamline deci-
sion making. Statistical analysis may help to drive research or inform policy. Real-time 
analysis can be used to identify inefficiencies in product development. In some cases, 
analytics created from the data, or even the data itself, can be offered as a product.

Studies have shown that organizations that use rigorous data analysis (when they 
do so effectively) to drive decision making can be more productive than those that do 
not.1 What separates the successful organizations from the ones that don’t have a data-
driven plan?

Database technology is a fast-moving field filled with innovations. This chapter will 
describe the current state of the field, and provide the basic guidelines that inform the 
use cases featured throughout the rest of this book.

When Data Became a BIG Deal
Computers fundamentally provide the ability to define logical operations that act 
upon stored data, and digital data management has always been a cornerstone of digital 
computing. However, the volume of digital data available has never been greater than 
at the very moment you finish this sentence. And in the time it takes you to read this 
sentence, terabytes of data (and possibly quite a lot more) have just been generated by 
computer systems around the world. If data has always been a central part of comput-
ing, what makes Big Data such a big deal now? The answer: accessibility.

1. Brynjolfsson, Erik, Lorin Hitt, and Heekyung Kim. “Strength in Numbers: How Does 
Data-Driven Decisionmaking Affect Firm Performance?” (2011).
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The story of data accessibility could start with the IT version of the Cambrian 
explosion: in other words, the incredible rise of the personal computer. With the launch 
of products like the Apple II and, later, the Windows platform, millions of users gained 
the ability to process and analyze data (not a lot of data, by today’s standards) quickly 
and affordably. In the world of business, spreadsheet tools such as VisiCalc for the Apple 
II and Lotus 1-2-3 for Windows PCs were the so-called killer apps that helped drive 
sales of personal computers as tools to address business and research data needs. Hard 
drive costs dropped, processor speeds increased, and there was no end to the amount 
of applications available for data processing, including software such as Mathematica, 
SPSS, Microsoft Access and Excel, and thousands more.

However, there’s an inherent limitation to the amount of data that can be processed 
using a personal computer; these systems are limited by their amount of storage and 
memory and by the ability of their processors to process the data. Nevertheless, the 
personal computer made it possible to collect, analyze, and process as much data as 
could fit in whatever storage the humble hardware could support. Large data systems, 
such as those used in airline reservation systems or those used to process government 
census data, were left to the worlds of the mainframe and the supercomputer.

Enterprise vendors who dealt with enormous amounts of data developed relational 
database management systems (RDBMSs), such as those provided by Microsoft 
SQL Server or Oracle. With the rise of the Internet came a need for affordable and 
accessible database backends for Web applications. This need resulted in another wave 
of data accessibility and the popularity of powerful open-source relational databases, 
such as PostgreSQL and MySQL. WordPress, the most popular software for Web site 
content management, is written in PHP and uses a MySQL database by default. In 
2011, WordPress claimed that 22% of all new Web sites are built using WordPress.2

RDBMSs are based on a tried-and-true design in which each record of data is ide-
ally stored only once in a single place. This system works amazingly well as long as 
data always looks the same and stays within a dictated size limit.

Data and the Single Server
Thanks to the constantly dropping price of commodity hardware, it’s possible to build 
larger and beefier computers to analyze data and provide the database backend for Web 
applications. However, as we’ve just seen, there is a limit to the amount of processing 
power that can be built into a single machine before reaching thresholds of considerable 
cost. More importantly, a single-machine paradigm provides other limitations that start 
to appear when data volume increases, such as cases in which there is a need for high 
availability and performance under heavy load or in which timely analysis is required.

By the late 1990s, Internet startups were starting to build some of the amazing, 
unprecedented Web applications that are easily taken for granted today: software that 

2. http://wordpress.org/news/2011/08/state-of-the-word/

http://wordpress.org/news/2011/08/state-of-the-word/
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provides the ability to search the entire Internet, purchase any product from any seller 
anywhere in the world, or provide social networking services for anyone on the planet 
with access to the Internet. The massive scale of the World Wide Web, as well as the 
constantly accelerating growth of the number of total Internet users, presented an 
almost impossible task for software engineers: finding solutions that potentially could 
be scaled to the needs of every human being to collect, store, and process the world’s 
data.

Traditional data analysis software, such as spreadsheets and relational databases, as 
reliable and widespread as it had been, was generally designed to be used on a single 
machine. In order to build these systems to be able to scale to unprecedented size, 
computer scientists needed to build systems that could run on clusters of machines.

The Big Data Trade-Off
Because of the incredible task of dealing with the data needs of the World Wide 
Web and its users, Internet companies and research organizations realized that a new 
approach to collecting and analyzing data was necessary. Since off-the-shelf, commod-
ity computer hardware was getting cheaper every day, it made sense to think about 
distributing database software across many readily available servers built from com-
modity parts. Data processing and information retrieval could be farmed out to a col-
lection of smaller computers linked together over a network. This type of computing 
model is generally referred to as distributed computing. In many cases, deploying 
a large number of small, cheap servers in a distributed computing system can be more 
economically feasible than buying a custom built, single machine with the same com-
putation capabilities.

While the hardware model for tackling massive scale data problems was being 
developed, database software started to evolve as well. The relational database model, 
for all of its benefits, runs into limitations that make it challenging to deploy in a 
distributed computing network. First of all, sharding a relational database across mul-
tiple machines can often be a nontrivial exercise. Because of the need to coordinate 
between various machines in a cluster, maintaining a state of data consistency at any 
given moment can become tricky. Furthermore, most relational databases are designed 
to guarantee data consistency; in a distributed network, this type of design can create 
a problem.

Software designers began to make trade-offs to accommodate the advantages of 
using distributed networks to address the scale of the data coming from the Internet. 
Perhaps the overall rock-solid consistency of the relational database model was less 
important than making sure there was always a machine in the cluster available to pro-
cess a small bit of data. The system could always provide coordination eventually. Does 
the data actually have to be indexed? Why use a fixed schema at all? Maybe databases 
could simply store individual records, each with a different schema, and possibly with 
redundant data.
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This rethinking of the database for an era of cheap commodity hardware and the 
rise of Internet-connected applications has resulted in an explosion of design philoso-
phies for data processing software.

If you are working on providing solutions to your organization’s data challenges, 
the current era is the Era of the Big Data Trade-Off. Developers building new data-
driven applications are faced with all manner of design choices. Which database back-
end should be used: relational, key–value, or something else? Should my organization 
build it, or should we buy it? How much is this software solution worth to me? Once I 
collect all of this data, how will I analyze, share, and visualize it?

In practice, a successful data pipeline makes use of a number of different technolo-
gies optimized for particular use cases. For example, the relational database model is 
excellent for data that monitors transactions and focuses on data consistency. This is 
not to say that it is impossible for a relational database to be used in a distributed envi-
ronment, but once that threshold has been reached, it may be more efficient to use a 
database that is designed from the beginning to be used in distributed environments.

The use cases in this book will help illustrate common examples in order to help 
the reader identify and choose the technologies that best fit a particular use case. The 
revolution in data accessibility is just beginning. Although this book doesn’t aim to 
cover every available piece of data technology, it does aim to capture the broad use 
cases and help guide users toward good data strategies.

More importantly, this book attempts to create a framework for making good deci-
sions when faced with data challenges. At the heart of this are several key principles to 
keep in mind. Let’s explore these Four Rules for Data Success.

Build Solutions That Scale (Toward Infinity)
I’ve lost count of the number of people I’ve met that have told me about how they’ve 
started looking at new technology for data processing because their relational database 
has reached the limits of scale. A common pattern for Web application developers is 
to start developing a project using a single machine installation of a relational database 
for collecting, serving, and querying data. This is often the quickest way to develop 
an application, but it can cause trouble when the application becomes very popular 
or becomes overwhelmed with data and traffic to the point at which it is no longer 
acceptably performant.

There is nothing inherently wrong with attempting to scale up a relational database 
using a well-thought-out sharding strategy. Sometimes, choosing a particular technol-
ogy is a matter of cost or personnel; if your engineers are experts at sharding a MySQL 
database across a huge number of machines, then it may be cheaper overall to stick 
with MySQL than to rebuild using a database designed for distributed networks. The 
point is to be aware of the limitations of your current solution, understand when a 
scaling limit has been reached, and have a plan to grow in case of bottlenecks.

This lesson also applies to organizations that are faced with the challenge of hav-
ing data managed by different types of software that can’t easily communicate or share 
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with one another. These data silos can also hamper the ability of data solutions to 
scale. For example, it is practical for accountants to work with spreadsheets, the Web 
site development team to build their applications using relational databases, and finan-
cial to use a variety of statistics packages and visualization tools. In these situations, it 
can become difficult to ask questions about the data across the variety of software used 
throughout the company. For example, answering a question such as “how many of 
our online customers have found our product through our social media networks, and 
how much do we expect this number to increase if we improved our online advertis-
ing?” would require information from each of these silos.

Indeed, whenever you move from one database paradigm to another, there is an 
inherent, and often unknown, cost. A simple example might be the process of mov-
ing from a relational database to a key–value database. Already managed data must be 
migrated, software must be installed, and new engineering skills must be developed. 
Making smart choices at the beginning of the design process may mitigate these prob-
lems. In Chapter 3, “Building a NoSQL-Based Web App to Collect Crowd-Sourced 
Data,” we will discuss the process of using a NoSQL database to build an application 
that expects a high level of volume from users.

A common theme that you will find throughout this book is use cases that involve 
using a collection of technologies that deal with issues of scale. One technology may 
be useful for collecting, another for archiving, and yet another for high-speed analysis.

Build Systems That Can Share Data (On the Internet)
For public data to be useful, it must be accessible. The technological choices made 
during the design of systems to deliver this data depends completely on the intended 
audience. Consider the task of a government making public data more accessible to 
citizens. In order to make data as accessible as possible, data files should be hosted on 
a scalable system that can handle many users at once. Data formats should be chosen 
that are easily accessible by researchers and from which it is easy to generate reports. 
Perhaps an API should be created to enable developers to query data programmatically. 
And, of course, it is most advantageous to build a Web-based dashboard to enable ask-
ing questions about data without having to do any processing. In other words, making 
data truly accessible to a public audience takes more effort than simply uploading a 
collection of XML files to a privately run server. Unfortunately, this type of “solution” 
still happens more often than it should. Systems should be designed to share data with 
the intended audience.

This concept extends to the private sphere as well. In order for organizations to 
take advantage of the data they have, employees must be able to ask questions them-
selves. In the past, many organizations chose a data warehouse solution in an attempt 
to merge everything into a single, manageable space. Now, the concept of becoming a 
data-driven organization might include simply keeping data in whatever silo is the best 
fit for the use case and building tools that can glue different systems together. In this 
case, the focus is more on keeping data where it works best and finding ways to share 
and process it when the need arises.
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Build Solutions, Not Infrastructure
With apologies to true ethnographers everywhere, my observations of the natural 
world of the wild software developer have uncovered an amazing finding: Software 
developers usually hope to build cool software and don’t want to spend as much 
time installing hard drives or operating systems or worrying about that malfunction-
ing power supply in the server rack. Affordable technology for infrastructure as a 
 service (inevitably named using every available spin on the concept of “clouds”) has 
enabled developers to worry less about hardware and instead focus on building Web-
based applications on platforms that can scale to a large number of users on demand.

As soon as your business requirements involve purchasing, installing, and adminis-
tering physical hardware, I would recommend using this as a sign that you have hit a 
roadblock. Whatever business or project you are working on, my guess is that if you 
are interested in solving data challenges, your core competency is not necessarily in 
building hardware. There are a growing number of companies that specialize in pro-
viding infrastructure as a service—some by providing fully featured virtual servers run 
on hardware managed in huge data centers and accessed over the Internet.

Despite new paradigms in the industry of infrastructure as a service, the mainframe 
business, such as that embodied by IBM, is still alive and well. Some companies pro-
vide sales or leases of in-house equipment and provide both administration via the 
Internet and physical maintenance when necessary.

This is not to say that there are no caveats to using cloud-based services. Just like 
everything featured in this book, there are trade-offs to building on virtualized infra-
structure, as well as critical privacy and compliance implications for users. However, 
it’s becoming clear that buying and building applications hosted “in the cloud” should 
be considered the rule, not the exception.

Focus on Unlocking Value from Your Data
When working with developers implementing a massive-scale data solution, I have 
noticed a common mistake: The solution architects will start with the technology first, 
then work their way backwards to the problem they are trying to solve. There is noth-
ing wrong with exploring various types of technology, but in terms of making invest-
ments in a particular strategy, always keep in mind the business question that your data 
solution is meant to answer.

This compulsion to focus on technology first is the driving motivation for people to 
completely disregard RDBMSs because of NoSQL database hype or to start worrying 
about collecting massive amounts of data even though the answer to a question can be 
found by statistical analysis of 10,000 data points.

Time and time again, I’ve observed that the key to unlocking value from data is to 
clearly articulate the business questions that you are trying to answer. Sometimes, the 
answer to a perplexing data question can be found with a sample of a small amount 
of data, using common desktop business productivity tools. Other times, the problem 
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is more political than technical; overcoming the inability of admins across different 
departments to break down data silos can be the true challenge.

Collecting massive amounts of data in itself doesn’t provide any magic value to your 
organization. The real value in data comes from understanding pain points in your 
business, asking practical questions, and using the answers and insights gleaned to sup-
port decision making.

Anatomy of a Big Data Pipeline
In practice, a data pipeline requires the coordination of a collection of different tech-
nologies for different parts of a data lifecycle.

Let’s explore a real-world example, a common use case tackling the challenge of 
collecting and analyzing data from a Web-based application that aggregates data from 
many users. In order for this type of application to handle data input from thousands 
or even millions of users at a time, it must be highly available. Whatever database is 
used, the primary design goal of the data collection layer is that it can handle input 
without becoming too slow or unresponsive. In this case, a key–value data store, 
examples of which include MongoDB, Redis, Amazon’s DynamoDB, and Google’s 
Google Cloud Datastore, might be the best solution.

Although this data is constantly streaming in and always being updated, it’s useful 
to have a cache, or a source of truth. This cache may be less performant, and per-
haps only needs to be updated at intervals, but it should provide consistent data when 
required. This layer could also be used to provide data snapshots in formats that pro-
vide interoperability with other data software or visualization systems. This caching 
layer might be f lat files in a scalable, cloud-based storage solution, or it could be a rela-
tional database backend. In some cases, developers have built the collection layer and 
the cache from the same software. In other cases, this layer can be made with a hybrid 
of relational and nonrelational database management systems.

Finally, in an application like this, it’s important to provide a mechanism to ask 
aggregate questions about the data. Software that provides quick, near-real-time analy-
sis of huge amounts of data is often designed very differently from databases that are 
designed to collect data from thousands of users over a network.

In between these different stages in the data pipeline is the possibility that data 
needs to be transformed. For example, data collected from a Web frontend may need 
to be converted into XML files in order to be interoperable with another piece of 
software. Or this data may need to be transformed into JSON or a data serialization 
format, such as Thrift, to make moving the data as efficient as possible. In large-scale 
data systems, transformations are often too slow to take place on a single machine. As 
in the case of scalable database software, transformations are often best implemented 
using distributed computing frameworks, such as Hadoop.

In the Era of Big Data Trade-Offs, building a system data lifecycle that can scale to 
massive amounts of data requires specialized software for different parts of the pipeline.
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The Ultimate Database
In an ideal world, we would never have to spend so much time unpacking and solving 
data challenges. An ideal data store would have all the features we need to build our 
applications. It would have the availability of a key–value or document-oriented data-
base, but would provide a relational model of storing data for the best possible consis-
tency. The database would be hosted as a service in the cloud so that no infrastructure 
would have to be purchased or managed. This system would be infinitely scalable and 
would work the same way if the amount of data under management consisted of one 
megabyte or 100 terabytes. In essence, this database solution would be the magical, 
infinitely scalable, always available database in the sky.

As of this publication, there is currently no such magic database in the sky—
although there are many efforts to commercialize cutting-edge database technology 
that combine many of the different data software paradigms we mentioned earlier in 
the chapter.

Some companies have attempted to create a similar product by providing each of 
the various steps in the data pipeline—from highly available data collection to trans-
formation to storage caching and analysis—behind a unified interface that hides some 
of these complexities.

Summary
Solving large-scale data challenges ultimately boils down to building a scalable strategy 
for tackling well-defined, practical use cases. The best solutions combine technologies 
designed to tackle specific needs for each step in a data processing pipeline. Provid-
ing high availability along with the caching of large amounts of data as well as high- 
performance analysis tools may require coordination of several sets of technologies. 
Along with this, more complex pipelines may require data-transformation techniques 
and the use of specific formats designed for efficient sharing and interoperability.

The key to making the best data-strategy decisions is to keep our core data prin-
ciples in mind. Always understand your business needs and use cases before evaluating 
technology. When necessary, make sure that you have a plan to scale your data solu-
tion—either by deciding on a database that can handle massive growth of data or by 
having a plan for interoperability when the need for new software comes along. Make 
sure that you can retrieve and export data. Think about strategies for sharing data, 
whether internally or externally. Avoid the need to buy and manage new hardware. 
And above all else, always keep the questions you are trying to answer in mind before 
embarking on a software development project.

Now that we’ve established some of the ground rules for playing the game in the 
Era of the Big Data Trade-Off, let’s take a look at some winning game plans.
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Hadoop, 190–191
summary, 197–198
utility computing pattern, 189–190

Testing
MapReduce pipeline locally, 108–109
Python scripts locally, 171
Python tools for, 160

Text
Bayesian classifier for spam, 134
classifying with Apache Mahout, 137–139
working with, 20

Time series data, Pandas, 164–165
TIOBE Programming Community Index, 

159
Tools

evaluating what to build or buy, 75
Python, 160

TOP results, BigQuery, 74
Trade-offs

bias variance, in machine learning, 133
big data, 5–6
data analysis API, 75
IAAS storage model, 15–16

Transaction consistency, across systems, 70
Transformations

big data pipeline anatomy, 9
ETL process. See ETL (Extract, 

Transform and Load) process
file, 21
multistep MapReduce, 118–119
one-step MapReduce, 105–109
Pig workf low, 122
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Trendalyzer, 89
Tufte, Edward, 86, 89
Tuples

Pig, 120
in relational database model, 26

Turing Award, Edgar F. Dodd, 28
Twemproxy, 39–40
Twitter, 189–190
Twitter Streaming API statistics, 167–168
Twitter Tools module, Python, 167–168
2D charts with Python, 92

U
UDFs (user-defined functions), Hive, 60
Ultimate database, 10, 195–196
Unique keys, key–value stores, 32
Unix command line

building pipelines, 102–103
pipe paradigm, 123
text files, 20–21

Unlocking data
to get value, 8–9
as misleading metaphor, 118

Use cases
analytical databases, 69
batch processing with MapReduce, 73
big data pipelines, 9
BigQuery fast aggregate query results, 74
Cascading vs. Pig, 180
data warehousing, 58
different software projects addressing 

similar, 180
Hive, 60–62
machine learning, 131–132
MapReduce frameworks, 69
nonrelational database models, 69

UTC (Coordinated Universal Time), Pandas, 
165–167

UTF-8 standard, 20
UTF-16 standard, 20
Utility computing

adoption of technologies for, 189
Big Data and, 190
cloud-based trends, 192
sharing terabytes of raw data, 15–16
trend for convergence of cultures, 196–197

V
Value. See also Key–value data stores

automating predictive business, 131
focus on unlocking data, 8–9
MapReduce converting raw text files, 58

Vector data structure, in R, 148
VisiCalc, 4
Visualization for large datasets

building applications for data interactivity, 
90–96

with D3.js, for Web, 92–96
with Google Charts API, 81–82
human scale vs. machine scale, 89
interactivity, 89
masterpieces of historical visualizations, 

86–88
with matplotlib, 92
overview of, 85
with R and ggplot2, 90–92
summary, 96

VoltDB, 41

W
Wearable computers, 189
Web services

accessing, 76
BigQuery API as, 76
cloud-based trends, 192

Web-based dashboards, 7
Webmaster roles, in 1990s, 193
WordPress, data accessibility, 4
Workf lows

analytics. See Analytics workf lows
asking questions about data. See R
Cascading. See Cascading
Cascading vs. Pig, 128
large-scale, 118
multistep MapReduce transformations, 

118–119
overview of, 117
Pig. See Pig
summary, 128
using Python to build more complex, 

167–168
writing MapReduce, 58

Workhorse data types, Python lists, 160
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Write performance
Redis database excelling, 35–38
sharding across many Redis instances, 

38–41

X
XML (Extensible Markup Language) format

comparing JSON, CSV to, 18–19
data serialization formats, 22
sharing large numbers of files with, 18

Y
Yahoo! distributed systems of commodity 

hardware, 71
YAML format, configuring Twemproxy for 

Redis, 40
Yelp, creating mrjob, 110

Z
Zero-based, tuples as, 26
ZeroMQ library, iPython, 171
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