
Jason Ostrander

Android UI
Fundamentals
Develop and Design

Jason Ostrander

Android UI
Fundamentals

Develop and Design

Android UI Fundamentals: Develop and Design
Jason Ostrander

Peachpit Press
1249 Eighth Street
Berkeley, CA 94710
510/524-2178
510/524-2221 (fax)

Find us on the Web at www.peachpit.com
To report errors, please send a note to errata@peachpit.com
Peachpit Press is a division of Pearson Education.
Copyright © 2012 by Jason Ostrander

Editor: Clifford Colby
Development editor: Robyn Thomas
Production editor: Myrna Vladic
Copyeditor: Scout Festa
Technical editor: Jason LeBrun
Cover design: Aren Howell Straiger
Interior design: Mimi Heft
Compositor: Danielle Foster
Indexer: Valerie Haynes Perry

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the
publisher. For information on getting permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability
The information in this book is distributed on an “As Is” basis without warranty. While every precaution has
been taken in the preparation of the book, neither the author nor Peachpit shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by
the instructions contained in this book or by the computer software and hardware products described in it.

Trademarks
Android is a trademark of Google Inc., registered in the United States and other countries. Many of the
designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and Peachpit was aware of a trademark claim, the designa-
tions appear as requested by the owner of the trademark. All other product names and services identified
throughout this book are used in editorial fashion only and for the benefit of such companies with no
intention of infringement of the trademark. No such use, or the use of any trade name, is intended to
convey endorsement or other affiliation with this book.

ISBN 13:	 978-0-321-81458-6
ISBN 10: 	 0-321-81458-4

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

www.peachpit.com

To my lovely wife, Susan,
who tirelessly supports me in all of my adventures.

iv  Android UI Fundamentals: Develop and Design

I could write an entire book thanking people for their help along the way. Instead,
I’ll have to settle for this short paragraph:

Thanks to Chris H. for pushing me to consider writing a book and giving me
endless encouragement and support. To Cliff C. for giving me the chance to write
this book. To Robyn T. for keeping me on schedule despite my best efforts. To
JBL for fixing my code and rocking a mean bass guitar. To Scout F. and Myrna V.
for working tirelessly when I was late getting chapters to them. To Lucas D. and
Rob S. for reading early chapters and giving me valuable feedback. To the entire
team at doubleTwist for their dedication to making great Android software. To
the Android team at Google for creating a great platform. To my family for their
continuing support despite my dropping off the face of the earth. To Peachpit for
giving me the opportunity to write this for you. And to you, the reader, for giving
me the chance to teach you in whatever small way I can.

Bio

Jason Ostrander is a web and mobile software developer working at Silicon Valley
startup doubleTwist, where he makes syncing media to Android phones simple.
Prior to that, he solved networking problems at energy management startup
Sentilla and defense company Northrop Grumman. Jason holds an MS in electrical
engineering from UCLA. He lives with his wife in San Francisco’s Mission District,
where he spends his time searching for the perfect chile relleno.

Acknowledgments

Contents  v

Introduction . viii

Welcome to Android . x

Part 1  Basic Android UI

Chapter 1	 Getting Started. . 2
Hello World . 4

Basic Structure of an Android App . 9

Android UI Basics . 14

Tools . 22

Wrapping Up . 32

Chapter 2	 Creating Your First Application . . 34
Creating an App . 36

Getting Started with Android Views . 37

Arranging Views . 41

Displaying a List . 52

Understanding Activities . 57

Preventing ANRs . 64

Finishing the TimeTracker App . 71

Wrapping Up . 73

Chapter 3	 Going Further. . 74
Supporting Multiple Screen Sizes .76

Handling Notifications . 84

Handling Events .92

Creating Menus . 96

Implementing the Time Tracker . 102

Wrapping Up . 107

Contents

vi  Android UI Fundamentals: Develop and Design

Part 2  The View Framework

Chapter 4	 Basic Views. . 110
Creating a Basic Form . 112

Displaying Images . 124

Creating Maps and Displaying Websites . 130

Wrapping Up . 136

Chapter 5	 Reusable UI. . 138
Abstracting Your Layouts . 140

Abstracting Styles and Themes . 148

Using Fragments . 153

Wrapping Up . 162

Chapter 6	 Navigation and Data Loading. . 164
Introducing the Action Bar . 166

Navigating Your App . 172

Loading Data into Views . 181

Wrapping Up . 186

Chapter 7	 Android Widgets. . 188
Creating a Basic Widget . 190

Creating a Collection Widget . 206

Wrapping Up . 211

Contents  vii

Part 3  Advanced UI Development

Chapter 8	 Handling Gestures . . 214
Listening to Touch Events . 216

Responding to Gestures . 224

Wrapping Up . 229

Chapter 9	 Animation. . 230
Creating Drawable Animations . 232

Creating View Animations . 235

Creating Property Animations . 246

Wrapping Up . 255

Chapter 10	 Creating Custom Views . . 256
Understanding How Android Draws Views . 258

Creating a Custom View . 259

Adding Custom Attributes to Your Custom Views267

Creating Compound Components . 274

Wrapping Up . 279

Chapter 11	 Creating Advanced Graphics. . 280
Using Canvas . 282

Using RenderScript . 289

Using OpenGL . 294

Wrapping Up . 301

Chapter 12	 Localization and Accessibility. . 302
Making Your App Available in Multiple Languages 304

Making Your App Accessible . 309

Wrapping Up . 315

Index . 316

viii  Android UI Fundamentals: Develop and Design

There is a revolution happening in the technology industry. Touchscreen interfaces,
combined with low-cost and ubiquitous smartphones, have created a perfect storm
for disruptive innovation. Android is at the forefront of this change, bringing a free
and open-source platform on which developers can create the next generation of
applications. With free development tools and an open market, anyone can develop
applications that reach a worldwide market. But why choose to develop for Android?

Android now runs on the majority of smartphones in the United States. And
it’s quickly expanding into new markets and device types. The last year has seen
the introduction of hundreds of Android-based tablets, including the hit Kindle
Fire. Google has ported Android to TVs with its Google TV platform, and many
manufacturers are beginning to ship TVs with Android built in. Boeing has selected
Android as the entertainment platform for its new Dreamliner jet. Ford is integrat-
ing Android into its in-dash SYNC entertainment system. And Android is quickly
gaining traction in the developing world, especially in Africa, where the need for
low-cost handsets is greatest.

Yet for all of the platform’s promise, the majority of Android applications still
lack the visual polish of their iOS counterparts. This book aims to address that
issue by providing developers with a solid foundation for building app UIs. It will
cover the basics of UI development on Android, teach best practices for creating
flexible layouts, and give you tips on how to optimize your UI for smooth, fluid
performance. I created this book in the hope that it will help developers to create
beautiful applications.

Who am I? I’ve been developing software professionally for almost ten years,
and I’ve focused on embedded and mobile software for the last five. In my day job,
I work for one of the top Android development companies and write code that
millions of people use every day.

Android development can be difficult at times, and the challenges of supporting
such a diversity of devices can be daunting. But with a good idea, a solid under-
standing of the framework, and a little persistence, anyone can create a great app
that is used by millions of people.

I hope you’ll enjoy reading this book as much as I enjoyed writing it for you.

Introduction

Introduction  ix

Who This Book Is For

This book is aimed at beginning Android developers who are interested in creating
great user interfaces. You are expected to know basic Java programming and XML
syntax. The focus of this book is on UI. While you don’t need to have experience
writing Android software, many basic Android concepts are only described in
passing. It will help you to have a rudimentary knowledge of Android development.

Who This Book Is Not For

This book is not a general introduction to programming for Android. While it is
intended for beginning Android developers, the focus is on user interface tools
and programming. In particular, this book will not cover basic Android concepts
such as intents, services, or content providers. Further, this book will not be an
introduction to the Java programming language or to XML. You should know how
to program and how to read XML.

How You Will Learn

Throughout this book, you’ll learn by creating an actual app, a simple time
tracker. Each chapter includes detailed examples of real Android code that you
will compile and run. All code for the book can be found at the book’s website:
www.peachpit.com/androiduifundamentals.

What You Will Learn

You’ll learn how to create user interfaces for Android applications. From the most
basic concepts, like activities and views, all the way to advanced graphics using
RenderScript, this book covers everything you will use to build the user interface
of your apps.

A Note About Android Versions

This book was written to Android version 4 APIs and best practices, but it is com-
patible back to Android version 2.2. When relevant, notes and tips are included to
indicate when an API is deprecated or no longer appropriate. The Android com-
patibility library, a package of classes that back-port several newer features, will
be used throughout the book.

www.peachpit.com/androiduifundamentals

x  Android UI Fundamentals: Develop and Design

Welcome to Android

Throughout this book, you’ll be writing your code using the Eclipse integrated develop-

ment environment (IDE). You’ll need to install the Android software development kit

(SDK), along with the Android Developer Tools (ADT) plugin. This setup includes several

other utilities to help you develop and test your application. Aside from the SDK, none of

these tools are required, but they will make your application development easier.

The Tools

The following tools are used throughout this book to build, test, and analyze your
applications.

Android SDK

The Android SDK is
required to build and
deploy Android applica-
tions. The SDK contains
the tools you’ll use to test
and debug your applica-
tion. It also contains
tools for creating flexible
layouts. You can download
the Android SDK at http://
developer.android.com/.

Eclipse

Eclipse is the recom-
mended IDE for Android
development and is the
only IDE officially sup-
ported by Google. Google
publishes a plugin called
Android Developer Tools
that integrates with
Eclipse and provides
features like a drag-and-
drop interface builder. You
are not required to use
Eclipse, as the Android
SDK fully supports com-
mand-line development.
Throughout this book,
however, it is assumed
you are using Eclipse. You
can download Eclipse at
www.eclipse.org.

www.eclipse.org
http://developer.android.com/
http://developer.android.com/

Welcome to Android  xi

Android SDK
Manager

The Android SDK Manager
is used to download and
install the Android SDK.
You will also use the SDK
Manager to install add-on
features like sample code,
third-party emulators,
and the compatibility
library. The Android SDK
Manager can also be
used to create and launch
emulated Android devices,
called Android Virtual
Devices. The Android SDK
Manager can be found in
the SDK tools/ directory
as android.

Hierarchy Viewer

This tool displays a
graphical representation
of your layout hierarchy
and can help you debug
layout performance
issues by spotting overly
complex layouts. It’s also
a good tool for under-
standing how Android
layout works. You can
find this tool in the
SDK tools/ directory as
hierarchyviewer.

DDMS

The Dalvik Debug Monitor
Server (DDMS) is used
to debug application
performance issues. It
provides Java heap usage,
running thread counts,
and object allocation
tracking. You also use it
to take screen shots. The
DDMS tool is built into
Eclipse through the ADT
or can be run standalone
from the tools/ directory
of the SDK.

This page intentionally left blank

4

Basic Views

111

The most basic element of Android user interfaces is

the View class. A view represents an area of the screen.

Buttons, lists, webpages, and even empty spaces are rep-

resented by views. Android contains a rich array of pre-built

View classes that provide much of the functionality you will need.

When the built-in views aren’t enough, it’s possible to create spe-

cial views that are just right for your application. In this chapter,

you will learn about the basic view types you can use to build your

layout, discover how to load and display images, and explore the

more advanced views available in Android: MapView and WebView.

The TimeTracker app looks pretty good so far, but it’s time to add more than just
a list of times. In this chapter, you’ll add some text entry forms and split the app
into multiple activities. When you’re finished, you’ll have something that looks
like Figure 4.1. This section will cover the basic widgets you see in the image, as
well as how to arrange them.

TextView and EditText

The most basic view available on Android is the TextView, which allocates an area of
the screen to display text. You will use this view a lot in your layouts. An EditText is
a TextView that is configured to allow the user to edit the text inside it (Figure 4.2).
Tapping an EditText will display a cursor and the device software keyboard, allowing
the user to enter new text or edit the existing text. The TextView has optional attri-
butes such as size, font, and color that allow you to change the appearance of the text.

Figure 4.1  The TimeTracker
app will have task detail and
task edit screens.

Creating a Basic Form

112  Chapter 4  Basic Views

Creating the TextView
To create the new UI for the TimeTracker app, you’ll need to create two new layouts:
task_detail.xml and edit_task.xml. They will look very similar, but edit_task.xml
will use EditText instead of TextView. Here is the XML for task_detail.xml:

<LinearLayout

	 android:layout_width=”match_parent”

	 android:layout_height=”match_parent”

	 android:orientation=”vertical” >

	 <TextView

		 android:id=”@+id/counter”

		 android:layout_width=”fill_parent”

		 android:layout_height=”wrap_content”

Figure 4.2  A TextView and
an EditText

Creating a Basic Form  113

		 android:gravity=”center”

		 android:padding=”10dp”

		 android:text=”@string/sample_time”

		 android:textAppearance=”?android:attr/textAppearanceLarge”

		 android:textSize=”50sp” >

	 </TextView>

	 <Button

		 android:id=”@+id/start_stop”

		 android:layout_width=”match_parent”

		 android:layout_height=”wrap_content”

		 android:layout_marginBottom=”30dp”

		 android:text=”@string/start” />

	 <TextView

		 android:id=”@+id/task_name”

		 android:layout_width=”match_parent”

		 android:layout_height=”wrap_content”

		 android:layout_marginBottom=”20dp”

		 android:text=”@string/task_name”

		 android:textSize=”20dp” >

	 </TextView>

	 <TextView

		 android:id=”@+id/task_date”

		 android:layout_width=”match_parent”

		 android:layout_height=”wrap_content”

		 android:layout_marginBottom=”20dp”

		 android:text=”@string/date_select”

		 android:textSize=”20dp” />

114  Chapter 4  Basic Views

	 <TextView

		 android:id=”@+id/task_desc”

		 android:layout_width=”match_parent”

		 android:layout_height=”0dp”

		 android:layout_marginBottom=”20dp”

		 android:layout_weight=”1”

		 android:text=”@string/description”

		 android:textSize=”20dp” />

</LinearLayout>

This XML layout keeps the counter and the Start/Stop button from Chapter 2, but
the task list is replaced with the new task detail fields. Note the use of layout_weight
on the description to fill the entire display.

Simplifying text entry
In addition to general text entry, you will probably want your users to enter textual
data in a particular format. Data such as email addresses, phone numbers, and
passwords are particularly common on a mobile device. With a hardware keyboard,
the user just enters data normally, but because Android devices have a software
keyboard, the keys can be changed to make entry of certain data types easier. For
example, if you have a field that accepts only numerical data, the keyboard will
display just the number pad.

Note:  In addition to changing the input, Android supports changing
the entire software input editor, or IME. The typical IME is a software
keyboard, but Android also supports IMEs like voice input, handwriting
recognition, or even Palm OS-inspired graffiti. While this is not some-
thing you control with your app, you can give hints about the actions
that should be taken when inputting data into forms; those hints will
then be used to select the appropriate IME.

Creating a Basic Form  115

The inputType attribute of your EditText class is a simple bit mask that defines
the type of data you expect the user to enter. The system can then display an appro-
priate keyboard type. You can combine EditText flags (attributes) so that the system
creates a targeted input keyboard. For example, the following EditText attributes
will make the keyboard a number pad for easy entry of phone numbers (Figure 4.3):

<EditText

	 android:layout_width=”match_parent”

	 android:layout_height=”wrap_content”

	 android:inputType=”phone” />

Along with changing the keyboard, you can use inputType to change the behavior
of the EditText; for example, use flags like textCapSentences and textAutoCorrect
to add capitalization and autocorrection to what the user types. In addition to con-
figuring the input options, you can use an IME option to set the text for the Enter
button, which appears in the lower-right corner of the stock Android keyboard: Use
the imeOptions attribute to select actionGo, actionSearch, actionSend, actionNext,

Figure 4.3  The keyboard
displayed when the inputType
of an EditText is set to phone

116  Chapter 4  Basic Views

or actionDone to give the user a visual indication of what action will be taken when
they are finished entering text.

Now you can create the content of the edit_task.xml layout. Create the file,
and add the following XML:

<LinearLayout

	 android:layout_width=”match_parent”

	 android:layout_height=”match_parent”

	 android:orientation=”vertical” >

	 <EditText

		 android:id=”@+id/task_name”

		 android:layout_width=”match_parent”

		 android:layout_height=”wrap_content”

		 android:hint=”@string/task_name”

		 android:layout_margin=”10dp”

		 android:textSize=”24dp” >

	 </EditText>

	 <EditText

		 android:id=”@+id/description”

		 android:layout_width=”match_parent”

		 android:layout_height=”0dp”

		 android:layout_weight=”1”

		 android:layout_margin=”10dp”

		 android:hint=”@string/description”

		 android:gravity=”top|left” />

	 <DatePicker

		 android:id=”@+id/datePicker1”

		 android:layout_width=”wrap_content”

		 android:layout_height=”wrap_content”

Creating a Basic Form  117

		 android:layout_gravity=”center_horizontal”

		 android:calendarViewShown=”false”

		 android:layout_margin=”10dp” />

</LinearLayout>

Here you’re using the android:hint attribute rather than android:text. This
displays the desired preset text but removes it as soon as the user starts typing a
value into the field. This edit_task.xml layout also uses the DatePicker view to
make date entry easier.

Buttons

You’ve already used buttons to build the current TimeTracker UI. Buttons are simply
TextViews that have a special background image—this background is actually an
XML file that lists the images that should be used for the different button states
(normal, hovered, focused, and pressed). This type of XML resource is called a state
list resource, and you’ll learn more about creating it later in this chapter.

1.	 Add a Finished button to the edit_task.xml layout:

<Button

	 android:id=”@+id/finished”

	 android:layout_width=”match_parent”

	 android:layout_height=”wrap_content”

	 android:text=”@string/finished” >

</Button>

2.	 Add an Edit button to the task_list.xml layout:

<Button

	 android:id=”@+id/edit”

	 android:layout_width=”match_parent”

	 android:layout_height=”wrap_content”

	 android:text=”@string/edit” >

</Button>

118  Chapter 4  Basic Views

Boolean Buttons

Buttons are convenient for indicating on/off states. Android has a number of views,
including toggle buttons, checkboxes, and radio buttons, that subclass the Button
class and present a toggle between a true value and a false value. In addition,
Android 4.0 introduced an option called the switch. Figure 4.4 shows all these
options for the 4.0 release of Android.

Spinners

A spinner looks like a button and displays a list of choices when pressed. Figure 4.5
shows an example of a spinner choice list. The options presented by a spinner
can be specified using the XML android:entries attribute, or you can use a data
adapter to load entries programmatically (you’ll learn more about loading entries
into views via data adapters in Chapter 6).

Figure 4.4  Boolean buttons
on Android 4.0

Figure 4.5  A spinner on
Android 4.0

Creating a Basic Form  119

Managing Settings

Often, you will want to give users the ability to change the general options
of your app through settings screens. It’s not necessary to create a form,
because Android includes a set of classes designed to create settings screens.
The basic class is the Preference, and there are several different preference
forms, mimicking the standard UI form widgets. The user’s preferences will
be saved to a key-value store that is local to your app.

Prior to Android 3.0 (Honeycomb), you would use a PreferenceActivity class
for displaying application preferences. Honeycomb and later releases use the
new PreferenceFragment class to handle settings preferences. However, this
class is not available in the compatibility library, so you will need to continue
using the PreferenceActivity class for applications that are designed to run
on Android 2.3 and earlier.

ScrollView

Adding entry fields to a form is simple, but what happens if you cannot fit all the
views on one screen? In these cases, it’s often useful to allow scrolling in order to
fit more elements in a single activity. To achieve this effect, you need to wrap your
views in a ScrollView container. A ScrollView allows you to create a view that is
larger than the physical screen on a device and scroll it to reveal the full contents.
ScrollView is actually a subclass of FrameLayout, but it adds the ability to scroll
its content. You typically place another layout container inside the ScrollView to
arrange the child views.

Tip:  You should never use a ListView inside a ScrollView.
The behavior will be erratic and unpleasant to the user. If you

find yourself wanting to use both, consider redesigning your app to use
one or the other.

120  Chapter 4  Basic Views

Since you want the user to enter an arbitrary amount of description text in
the time tracker, you’ll want to use a ScrollView so they can see it all. Wrap the
existing LinearLayout contents in a ScrollView:

<ScrollView xmlns:android=”http://schemas.android.com/apk/res/android”

	 android:layout_width=”match_parent”

	 android:layout_height=”match_parent”

	 android:fillViewport=”true” >

	 <LinearLayout>

	 <!-- Rest of code here -->

	 </LinearLayout>

</ScrollView>

This code should be self-explanatory by now. The ScrollView simply wraps
the LinearLayout, which contains the text and buttons you have already created.
Notice the android:fillViewPort attribute? This prevents some odd behavior,
which you’ll learn about next.

The fillViewPort attribute
A common issue you may experience with ScrollView is its interaction with child
views that are smaller than the display. When the child view is larger than the
display, the ScrollView behaves as expected, allowing you to scroll to see the full
view. However, when the child view is smaller than the display, the ScrollView
will automatically shrink itself to match the size of its content. The proper way to
handle this is to use the fillViewPort attribute, which will cause the child views
of a ScrollView to expand to the size of the display, if necessary; if they are already
larger than the display, nothing happens. A simple example will demonstrate.

Creating a Basic Form  121

A frequent task is displaying a block of text with a button at the bottom (such
as in a license agreement to which a user must agree). Figure 4.6 shows the desired
result: a long block of text that scrolls to reveal a button. When the text is smaller
than a single screen, the naive implementation of ScrollView results in Figure 4.7—
the button should still be pinned to the bottom of the screen but is instead directly
below the text. The ScrollView only takes up as much space as its content. To fix
this, set the fillViewPort attribute to true. Here is the code to correctly imple-
ment scrolling for any size of text, resulting in Figure 4.8.

<?xml version=”1.0” encoding=”utf-8”?>

<ScrollView xmlns:android=”http://schemas.android.com/apk/res/android”

	 android:layout_width=”fill_parent”

	 android:layout_height=”fill_parent”

	 android:fillViewport=”true” >

	 <LinearLayout

		 android:layout_width=”fill_parent”

		 android:layout_height=”wrap_content”

Figure 4.6  The desired
ScrollView result, with a long
block of text scrolling to reveal
a button

122  Chapter 4  Basic Views

		 android:orientation=”vertical” >

		 <TextView

			 android:layout_width=”fill_parent”

			 android:layout_height=”0dp”

			 android:layout_weight=”1.0”

			 android:text=”@string/hello” />

		 <Button

			 android:layout_width=”match_parent”

			 android:layout_height=”wrap_content”

			 android:text=”Button” />

	 </LinearLayout>

</ScrollView>

Try using ScrollView with and without the fillViewPort attribute to see how
its behavior changes.

Figure 4.7  The ScrollView
result if the fillViewPort
attribute is not set to true

Figure 4.8  Because the
android:fillViewPort attri-
bute was used, the button is
now correctly pinned to the
bottom of the screen.

Creating a Basic Form  123

Android phones feature large, high-resolution displays that are perfect for displaying
images in your application. Images are an important way of conveying information
to your users without explicitly stating it. Typically, images are displayed using the
built-in image view. This view takes care of the loading and optimizing of the image,
freeing you to focus on app-specific details like the layout and content. Unless you
need special optimizations for your application, you should take advantage of the
built-in image view whenever possible.

ImageView and Resources

The simplest way to display an image is to declare an ImageView in your layout file
and set its source to a resource in your project. Image resources are placed in the
/res/drawable folders. This example will display an image named “icon”:

<ImageView

	 android:id=”@+id/image”

	 android:layout_width=”match_parent”

	 android:layout_height=”match_parent”

	 android:scaleType=”center”

	 android:src=”@drawable/icon” />

Displaying Images

124  Chapter 4  Basic Views

The ImageView handles all the loading and scaling of the image for you. Note
the scaleType attribute? This defines how the images will be scaled to fit in your
layout. In the example, using scale type center, the image will be displayed at its
native resolution and centered in the view, regardless of how much space the view
consumes. Other scaling options fit the image to the dimensions of the image view
or scale the image based on the width and height of the device. Table 4.1 lists the
scale type options and how they alter the image.

Table 4.1  ImageView Scale Types

Scale Type Description

center Displays the image centered in the view with no scaling.

centerCrop Scales the image such that both the x and y dimensions are greater
than or equal to the view, while maintaining the image aspect
ratio; crops any part of the image that exceeds the size of the view;
centers the image in the view.

centerInside Scales the image to fit inside the view, while maintaining the
image aspect ratio. If the image is already smaller than the view,
then this is the same as center.

fitCenter Scales the image to fit inside the view, while maintaining the
image aspect ratio. At least one axis will exactly match the view,
and the result is centered inside the view.

fitStart Same as fitCenter but aligned to the top left of the view.

fitEnd Same as fitCenter but aligned to the bottom right of the view.

fitXY Scales the x and y dimensions to exactly match the view size; does
not maintain the image aspect ratio.

matrix Scales the image using a supplied Matrix class. The matrix can be
supplied using the setImageMatrix method. A Matrix class can be
used to apply transformations such as rotations to an image.

Tip:  The fitXY scale type allows you to set the exact size of the
image in your layout. However, be mindful of potential distortions
of the image due to scaling. If you’re creating a photo-viewing application,
you will probably want to use the center or fitCenter scale types.

Displaying Images  125

Figure 4.9  Examples of
android:scaleType attribute.
Top row (l-r) center,
centerCrop, centerInside.
Bottom row (l-r): fitCenter,
fitStart, fitEnd, fitXY.

Figure 4.9 shows examples of the scale types. Using the correct scale type is
important if you want to properly display images.

126  Chapter 4  Basic Views

Bitmaps

Images used in your application are stored in the /res/drawable folders. These fold-
ers follow the device-configuration naming scheme to provide different images for
different devices. Typically, you will create four different versions of each image and
place them in the following folders: drawable-ldpi, drawable-mdpi, drawable-hdpi,
and drawable-xhdpi. These represent the increasing resolutions of each device,
and appropriately sized images should be placed in each. Use the same filename
for each of the different versions, and then when you specify the drawable name,
the Android resources manager will choose the image from the appropriate folder.

It’s not always necessary to create an image for a particular resolution; Android
will display whatever image is the best match. In general, Android will prefer scal-
ing an image down in size so that images are always crisp and not blurred. By
default, you should create hdpi-resolution images. However, you should strive to
create resources for all resolutions to prevent unnecessary hardware scaling, which
slows down the drawing of your UI. Once your image resources are placed in the
res/drawable folders, you can reference them the same way you reference your
layout files: via the R.java file.

Including images in the res/drawable folders is a simple way of adding images
to your app. However, it’s also possible to create images at runtime and add them
to your layout. For example, you may want to download an image from the Inter-
net and display it to the user. To do this, you create a Bitmap object to encapsulate
the image, and then load it into your UI. The Bitmap class is simply an object that
references a bitmap image. You can use a BitmapFactory to create a bitmap image
from any source: a resource in your app, a file, or even an arbitrary InputStream.
A bitmap can then be loaded into an image view by calling setImageBitmap. Here
is an example:

Bitmap bitmap = Bitmap.createBitmap(100, 100, Bitmap.Config.ARGB_8888);

ImageView iv = (ImageView) findViewById(R.id.image);

iv.setImageBitmap(bitmap);

Note:  Image resources in your project should be in one of three
formats: PNG (preferred), JPEG (acceptable), and GIF (discouraged).
Of course, 9-patch images are also accepted.

Displaying Images  127

Drawables

Not all graphics need to be images—Android also lets you create graphics by using
XML or writing custom drawing code. You’ll learn more about creating custom
graphics using Canvas and other classes in Chapter 11. To create graphics using
XML, you use the Drawable class. A drawable represents something that can be
drawn on the screen. This can be an image, an XML resource, or a custom class.
The Drawable class is the general abstraction for representing all of these in your UI.

The Android framework makes extensive use of drawables for all the built-in
UI views. One of the most common is the Button class, which uses an XML file to
define the possible states a button can have. Here is an example XML file for Button:

<?xml version=”1.0” encoding=”utf-8”?>

<selector xmlns:android=”http://schemas.android.com/apk/res/android”>

	 <item android:state_pressed=”true”

		 android:drawable=”@drawable/button_pressed” />

	 <item android:state_focused=”true”

		 android:drawable=”@drawable/button_focused” />

	 <item android:state_hovered=”true”

		 android:drawable=”@drawable/button_hovered” />

	 <item android:drawable=”@drawable/button_normal” />

</selector>

This is called a StateListDrawable. It defines a set of drawables associated with
different states. In this example, there are four possible states the button can be in:
normal, hovered, focused, and pressed. Each item in the StateListDrawable defines
a drawable that will be displayed when the button is in the specified state. In this
case, the android:drawable attribute references an actual image drawable. The
StateListDrawable does not select the best matching item, but rather selects
the first item that meets the criteria for the current state. It performs this search
from top to bottom, so the order in which you place each item is important. Using
different drawables for button states provides feedback to the user when they are
interacting with the UI.

128  Chapter 4  Basic Views

There are more options than just defining states for a drawable. There are
formats that create simple transformations of an existing bitmap or add padding
and dithering to an image. You can combine several bitmaps to create a composite
image. Or you can use XML to actually draw a shape using the ShapeDrawable class.
You can add gradients, shadows, and rounded corners. The full range of XML draw-
able options is outside the scope of this book, but you should familiarize yourself
with the available options. If you find yourself contemplating creating custom
graphics to achieve the effects you want, consider using a drawable resource that
may already be available.

In addition to displaying images using drawables and bitmaps, you have the
option to create custom graphics using classes like Canvas, SurfaceView, and
TextureView. You’ll learn more about this in Chapter 11.

Note:  Drawing images into a view uses the system’s standard drawing
process. In Android versions earlier than 3.0, this process is not fully
hardware accelerated. Be aware that graphics-intensive applications
using this process will not perform well on older versions of Android.

Displaying Images  129

Creating Maps and
Displaying Websites

The typical Android device ships with a built-in GPS receiver and an always-on
network connection. This provides tremendous opportunities for developers to
leverage these features and create compelling location-aware applications. Android
devices include access to Google’s mapping technology, which you can use to add
full-fledged navigation to your app. And the built-in Webkit browser gives you the
power to create your own web-browsing applications. The next sections cover the
basics of using these advanced views.

MapView

Unlike other views and classes in Android, maps are not part of the core library.
They are provided by Google and are available to any application running on an
Android-compatible device. Notably, this does not include devices that do not
conform to the Android Compatibility Definition, such as the Kindle Fire. You will
be unable to use Google Maps on those devices. However, most devices meet the
Android specifications and support Google Maps integration.

You can set up your project to use maps as follows:

1.	 Visit the Google APIs site (http://code.google.com/android/add-ons/
google-apis/), and register for a map key. Map views are provided as part of
the com.google.android.maps package, and you will need to register for a
Google Maps API key in order to use this package.

2.	 Using the Android SDK Manager, download the Google APIs version of the
Android SDK that you intend to support. You can use this SDK to create a
new AVD image that supports MapView. Make sure you select a Google APIs
target for your image.

Tip:  Make sure you properly declare your permissions in the
application manifest file. If you want to use location features in your

application, you will need to request the location permissions in your app.

130  Chapter 4  Basic Views

http://code.google.com/android/add-ons/google-apis/
http://code.google.com/android/add-ons/google-apis/

3.	 Declare that your application requires the external Google Maps library
to run by adding this to your manifest under the <application> element:

<uses-library android:name=”com.google.android.maps” />

4.	 Google Maps requires a network connection, so you need to add the
android.permission.INTERNET permission to your manifest:

<uses-permission android:name=”android.permission.INTERNET” />

With those tweaks, you can use maps in your application. You add a map view
to your layout like you would add any other view:

<com.google.android.maps.MapView

	 android:id=”@+id/mapview”

	 android:layout_width=”fill_parent”

	 android:layout_height=”fill_parent”

	 android:apiKey=”Your Maps API Key”

	 android:clickable=”true” />

Note that the element name highlighted in the code is the full package name—
anytime you use a custom view that is not part of the core Android library, you need
to specify the full package name. You will need to declare the ID of the MapView as
mapview. Also, there are two new attributes here. The first is the apiKey attribute,
which is where you will place the Google Maps API key you get from Google. This
enables you to use Google’s mapping service. The second new attribute is the
clickable setting. Setting this to true allows the user to tap and scroll on the
MapView in your UI; setting it to false will prevent all interaction with the map.

Creating Maps and Displaying Websites  131

To actually use a map view in your layout, your activity will need to extend
MapActivity, which handles all the setup of the map view, and override the
isRouteDisplayed method, which is required by the Google Maps license agree-
ment and should return a Boolean that indicates whether there is active routing
information displayed on the map (Figure 4.10).

Figure 4.10  A MapView
example.

Note:  Because your activity must extend MapActivity, you cannot use
fragments from the compatibility library and use a map view at the

same time. For Android 3.0 and above, the fragment framework is built
in to the Activity class, so this is not an issue.

132  Chapter 4  Basic Views

WebView

Android includes a Webkit-based HTML rendering engine backed by the V8 JavaScript
interpreter. You can use these technologies in your own application by using the
WebView class. A web view renders HTML from web URLs, files stored on the device,
or arbitrary strings you create in your app. Android’s WebView includes standard
browser features like history, plugins, zooming controls, and JavaScript support. You
can also enable advanced gestures like pinch to zoom, providing easy navigation on
touchscreen devices.

Like the map view, the web view can be added to your application with a simple
XML element:

<WebView

	 android:id=”@+id/webview”

	 android:layout_width=”match_parent”

	 android:layout_height=”match_parent” />

You will need to enable the INTERNET permission in your manifest for your
web view to access online webpages. The web view does all downloading and
rendering of webpages, and you won’t need to extend any special activities or use
a special ID. With a web view in your UI, loading a webpage is as simple as adding
the following code:

WebView webView = (WebView) findViewById(R.id.webview);

webView.loadUrl(“http://www.google.com”);

With that, you can display any webpage to the user in your custom UI layout.
Note that the supplied content highlighted in the example is an actual webpage
URL. It’s also possible to load an arbitrary string containing HTML for display.

The web view defaults don’t include JavaScript or Flash support. To enable that,
you’ll need to use a WebSettings object:

WebSettings webSettings = webView.getSettings();

webSettings.setJavaScriptEnabled(true);

webSettings.setPluginState(WebSettings.PluginState.ON);

Creating Maps and Displaying Websites  133

This enables JavaScript and plugins—including Flash, if it’s installed—in the
web view. Adding zoom controls and pinch-to-zoom functionality is also simple:

webSettings.setSupportZoom(true);

webSettings.setBuiltInZoomControls(true);

The first line indicates that the web view will support zooming its contents. The
second line uses the web view’s built-in zoom controls for performing the zoom
(this includes the tap-to-zoom and pinch-to-zoom functionality).

Finally, you will likely want to override the loading of new URLs in your web
view. If you don’t do so, when the user taps on a new URL in the web view, the
default browser will open to load the new link. To force the load to occur in your
web view, add the following code:

webView.setWebViewClient(new WebViewClient() {

	 @Override

	 public boolean shouldOverrideUrlLoading(WebView view, String url) {

		 view.loadUrl(url);

		 return true;

	 }

});

134  Chapter 4  Basic Views

Here the URL loading behavior is overridden, and the new URL is loaded in the
existing web view. Returning true will discontinue the propagation of the event
up the view hierarchy and prevent the browser from opening. Figure 4.11 shows
the screen of this activity.

The web view allows you to present any HTML content to the user and pro-
vides an easy way to load pages from the Internet. You should take advantage of it
whenever your application needs to display HTML content.

Figure 4.11  The web view
displaying Google’s homepage

Creating Maps and Displaying Websites  135

Wrapping Up

This chapter introduced the basic building blocks used to build a form on Android.
You used these to refactor the TimeTracker app into a series of activities for display-
ing and entering tasks. You still need to save the data and display it, which we’ll
cover later in the book. In this chapter, you learned that

JJ Android provides a set of simple input widgets that you can use to build forms.

JJ Use the proper android:scaleType attribute when displaying an image
using ImageView.

JJ With the Drawable class, you can create complex image types using only XML.

JJ Adding a map to your application is as simple as extending MapActivity
and adding the map view to your layout.

JJ Android’s Webkit-based WebView class allows you to display any HTML content.

136  Chapter 4  Basic Views

This page intentionally left blank

Index

@ symbol, using with resources, 17

A
accelerated rendering

disabling, 252
enabling, 252

accessibility
content description, 312–313
contentDescription attribute, 314
events, 313–314
focus, 309–312
guidelines, 314
navigation, 309–312
nextFocus attributes, 311–312
screen reader, 314
testing, 314
tips, 314
views, 314

action bar, 166. See also menus
action items, 166–167
action views, 169–170
ActionProvider class, 170–171
buttons, 167
overflow menu, 169
ShareActionProvider class, 171
split, 168

action bar navigation, tabbed
interface, 172–173

ActionBarSherlock library, 169
ActionBar.TabListener interface, 173
activities

in back stack, 62
callbacks, 59
configuration changes, 63
creating, 58
creating and destroying, 19
declaring, 57
declaring intents, 57
findViewByID method, 60
grouping into tasks, 61–63
life cycle, 58–60
manifest entry, 57
as objects, 19
onCreate method, 58
onPause method, 58
overriding OnCreate method, 60
Paused state, 58

popping off stack, 61
Resumed state, 58
Running state, 58
saving current states of, 62
setContentView, 60
states, 58
Stopped state, 58
XML layout file, 60

Activity class, 17–19
callback structure, 18
R.java file, 18–19
setting views, 18

Adapter class
using, 182–183
ViewHolder pattern, 182–184

adapters, optimizing, 182–184
AdapterViewFlipper collection

view, 206
alert dialog, 89
AlertDialog.Builder class, 90
Android API versions, declaring in

manifest, 12
Android apps

compatibility, 11
folder structure, 9
resources, 12–13
responsiveness, 27

Android Asset Studio, 31
Android Device Chooser, 6–7
Android emulator, 6, 8, 26
Android manifest

Android API versions, 12
contents, 10
hardware features, 11
icons, 11
labels, 11
permissions, 11

android: prefix, using, 38
Android SDK, x
Android SDK Manager, xi
Android SDK Release 13, 4
Android Virtual Devices (AVDs), 26

creating, 6–7
emulated, 26
graphics stack, 26

AndroidManifest.xml item, 9
android:maxSDKVersion, 12
android:minSDKVersion, 12

android:targetSDKVersion, 12
animated ball

creating, 232–234
ImageView, 233
stop() and start(), 233

animateDigit function, creating,
243–244

animation sets
examples, 236–237
ordering property, 251

AnimationListener, using, 239
animations. See also

drawable animations;
property animations;
sliding animations;
view animations

clock-flipper, 240–245
counter.xml, 241–242
defining, 235–237
digit.xml layout, 240
fillAfter attribute, 239
hardware acceleration, 252
interpolators, 238
startAnimation method, 238
TextView, 238–240
three-button layout, 310–311
using, 238–239
view transparency, 236–237

AnimatorSet object
play method, 250
using with property animations,

249–250
ANRs (Application Not Responding)

background tasks, 66–70
occurrence of, 64
preventing, 64–70
StrictMode, 64–65

API level declaration
android:maxSDKVersion, 12
android:minSDKVersion, 12
android:targetSDKVersion, 12

app drawer
contents, 14–15
launcher for, 14

app launcher, using, 14
apps

compatibility, 11
folder structure, 9

316  Index

resources, 12–13
responsiveness, 27

AppWidgetProvider class, 197–200
onDeleted method, 197
onDisabled method, 197
onEnabled method, 197
onReceive method, 197
onUpdate method, 197, 201

AppWidgetProviderInfo XML file,
191–195, 209–210

autoAdvanceViewID, 194
configure, 194
icon, 194
initialLayout, 194
label, 194
minHeight, 194
minResizeHeight, 194
minResizeWidth, 194
minWidth, 194
previewImage, 194
resizeMode, 194
updatePeriodMillis, 194

assets/ folder, 9
AsyncTask class, 69–70. See also tasks
attributes

adding to custom views, 267–273
AttributeSet object, 271
crosses, 270
CrossView, 267, 269–270, 273
declaring, 267–269
enums, 269
flags, 269
namespace, 269
predefined values, 268
rotating canvas, 272
using in code, 271–273
ViewGroup, 269
in XML, 269–270

AttributeSet object, using, 271–273
AVDs (Android Virtual Devices), 26

creating, 6–7
emulated, 26
graphics stack, 26

B
Back button, 19, 61–62
back stack, 61–63 161

background tasks. See also
TimeTracker app

Activity.runonUIThread
method, 68

AsyncTask class, 69–70
Handler class, 66
handlers and message queues,

66–68
Looper class, 66
message queue, 68
resetTimer method, 68
sendEmptyMessage method, 67
stopTimer method, 68

ball, animating, 232–234
bitmaps, using, 127
Boolean buttons, creating, 119
build target, setting, 5
Button

adding below TextView, 25
using, 128
view object, 37

button states, 95
buttons

creating for TimeTracker app, 118
in linear layout, 42–43
in relative layout, 46

C
callbacks, receiving, 64
canvas

described, 22
drawing to SurfaceView, 282
implementing SurfaceView, 282
rotating, 272
TextureView class, 288

circles, making for ball, 232–234
click handling, avoiding anonymous

classes, 93
clock-flipping animation

animateDigit function, 243–244
creating, 240–245
setting time, 242
sliding animations, 244–245
triggering, 242

collection widget. See also views;
widgets

AdapterViewFlipper, 206

GridView, 206
layout, 206–207
ListView, 206–207
RemoveViewsFactory, 208–210
service, 208–210
StackView, 206

colors
placing in res/values folder, 13
transparent, 194

compound components
creating, 274–276
versus custom views, 274
optimizing layouts, 277–278
ToggleButton with EditText, 276

configuration changes, handling, 62
confirm dialog, creating, 90–91
confirmation dialog, creating, 93
constant values, placing, 13
context menus

creating, 100–101
long pressing, 94

counter.xml file, using with
animation, 241–242

CrossView
changing color of, 273
rotating, 273

CursorLoader example, 185
custom attributes

adding to custom views, 267–273
AttributeSet object, 271
crosses, 270
CrossView, 267, 269–270, 273
declaring, 267–269
enums, 269
flags, 269
namespace, 269
predefined values, 268
rotating canvas, 272
using in code, 271–273
ViewGroup, 269
in XML, 269–270

custom views. See also views
accessing resources, 263
activity for display of, 265
versus compound components, 274
creating, 259–260
CrossView, 265
custom attributes, 267–273

Index  317

custom views (continued)
drawLines method, 265
inner classes, 266
onDraw method, 263–266
onMeasure method, 260–262
Paint object, 263–266

D
data binding

SimpleAdapter, 181
SimpleCursorAdapter, 181

DDMS (Dalvik Debug Monitor
Server), xi, 29

debug mode, detecting, 65
debug signing key, detecting, 65
default.properties item, 9
density-independent pixels (dp), 38,

80–81
detail_item.xml layout, creating, 141
developer tools

downloading, 4
Draw 9-Patch, 30
graphical layout editor, 22–25
layoutopt, 30
Monkey, 31

device configuration
changes, 62
editor, 24

dialogs
confirm, 90–91
confirmation, 93
creating, 89
DialogFragment, 91
fragments, 91
pre-Android 3.0, 90

digit.xml layout, using with
animation, 240

dimension units
in (inches), 81
dip (density-independent pixel), 81
dp (density-independent pixel), 81
mm (millimeters), 81
pt (points), 81
px (pixels), 81
sp (scaled pixel), 81

dimensions, placing in res/values
folder, 13

dip (density-independent pixel), 81
disk I/O, detecting with StrictMode,

64–65
display, drawing, 258
dp (density-independent pixels), 38,

80–81
Draw 9-Patch tool, using, 30, 82
drawable animations. See also

animations
creating, 232–234
ImageView, 233
making visible, 232
stop() and start(), 233

drawables
Button class, 128
StateListDrawable, 128
using, 128–129

drawing display, 258
DrawingThread class, using with

SurfaceView, 284
drawLines method, using, 265
DummyTabFactory, using, 177

E
Eclipse IDE, x, 4, 9
edit_task.xml layout

adding button to, 118–119
creating, 117–118

EditText class
combining with ToggleButton, 276
flags, 116
inputType attribute, 116
using, 112–114

email client, opening, 14
emulator, 6, 8, 26
event callbacks, 92
event handling, 92

focus events, 95
key events, 95
long presses, 94
main thread, 92
onClickListener, 93
screen taps, 93

Example project
creating, 4
project structure, 9
running on phone, 8

F
fill parent, 38
fillAfter attribute, using with

animations, 239
focus events, triggering, 95
form widgets, availability of, 37.

See also widgets
forms

Boolean buttons, 119
buttons, 118
EditText, 112–113
fillViewPort attribute, 121–123
managing settings, 120
ScrollView container, 120–121
simplifying text entry, 115–118
spinners, 119
TextView, 112–115

fragments
adding, 160
adding to layouts, 154
adding to TimeTracker app, 156–159
back stack, 161
features, 153
modifying, 160
no-argument constructor, 156
onCreate activity callback, 155
onDestroy activity callback, 155
onPause activity callback, 155
onResume activity callback, 155
onStart activity callback, 155
onStop activity callback, 155
removing, 160
transactions, 159–160

FrameLayout container, using with
views, 41

functions, adding via action bar, 171

G
gen/ folder, 9
GestureDetector class

onTouchEvent method, 225
using, 225–226

gestures
customizing, 228
detecting thread violations,

225–226

318  Index

GestureDetector class, 225–226
pinch-to-zoom, 227–228
ScaleGestureDetector class,

226–228
getQuantityString method, using in

localization, 308
Google APIs website, 130
Google Maps, adding permission

for, 131
graphical layout editor, 22–25

Canvas, 22
Configuration drop-down menu, 22
Outline, 23
Package Explorer pane, 24
Palette, 23
tabs, 23

graphics
drawing, 296–300
projection matrix, 297–298
touch logic, 299–300
updateAngle() method, 298–299

gravity attribute, using with views,
39–40

GridLayout container
adding space, 50
margins and padding, 50
Spaces, 50–51
versus TableLayout, 50
using with views, 48–51

GridView collection view, 206

H
Handler class, using with background

tasks, 66
hardware acceleration, adding, 252
hardware buttons

alternative actions, 21
Back, 19
Home, 19
Menu, 20
Search, 21

hardware features, declaring in
manifest, 11

Hello World app
Android Device Chooser, 6–7
Android emulator, 6, 8

AVD (Android Virtual Device), 6–7
Build Target option, 5
creating, 4–8
drawable folders, 12
main.xml file, 16
package name, 5
properties, 5
running, 5
strings.xml file, 12

“Hello World!” text, displaying, 218
Hierarchy Viewer, xi

child LinearLayout, 28
DDMS Devices pane, 29
debugging nested LinearLayouts, 29
FrameLayout, 28
Layout View, 28
left sidebar, 28
LinearLayout, 28
PhoneWindow, 28
Tree Overview, 28
Tree View, 28
using, 27

Holo theme, using, 152
Home button, 19
home screen

app launcher icons, 14
grid layout, 196
options menu, 20
replacement of, 15
widgets, 14

I
icons

creating with Android Asset
Studio, 31

declaring in manifest, 11
quick-launch, 14

image resources, creating, 31. See also
resources

images
bitmaps, 127
center scale type, 125
centerCrop scale type, 125
centerInside scale type, 125
displaying, 124–129
drawables, 128–129

drawing into views, 129
fitCenter scale type, 125
fitEnd scale type, 125
fitStart scale type, 125
fitXY scale type, 125
ImageView and resources, 124–126
loading, 125
matrix scale type, 125
scaleType attribute, 126
scaling, 125

ImageView, for drawable
animations, 233

IME (input editor), changing, 115
in (inches), 81
inches (in), 81
<include> tag

in detail page, 141–143
examples, 140–141
layout attribute, 140
ls, 140–143

inflation, explained, 97
input editor (IME), changing, 115
Interpolator, ValueAnimator

class, 246
interpolators

accelerate, 238
bounce, 238
decelerate, 238
overshoot, 238
using with animations, 238

ISO 639-1 language codes, 304
ISO 3166-1-alpha-2 region code, 304

J
Java perspective, opening in Eclipse, 4

K
key events, 95

L
labels, declaring in manifest, 11
language-specific layouts,

providing, 306

Index  319

layout containers
FrameLayout, 41
GridLayout, 48–51
LinearLayout, 42–45
RelativeLayout, 45–47
TableLayout, 41–42
ViewGroups, 37

layout resource qualifiers, 77
layout_gravity attribute, using, 40
layout_margin attribute, using with

views, 39
layout_weight example, 43
LayoutInflater class, 97
layoutopt tool, using, 30
layouts

adding fragments to, 154
choosing dimensions for, 38
defaults, 52
flexibility, 83
<include> tag, 140–143
inflating, 56
life cycle, 154–159
margins and padding, 38
<merge> tag, 144–146
nesting, 144
optimizing, 30
TextView example, 154–155
three buttons, 310–311
views in, 17
ViewStub class, 146–147

LayoutTransition class, using, 254
LinearLayout container

orientation setting, 42
using with views, 42

LinearLayout container type, 16–17
debugging, 29
in Hierarchy Viewer, 28

list adapters, loading data into, 56
list navigation mode

data binding, 174
OnNavigationListener, 174
SpinnerAdapter, 174

list position, saving, 62
ListActivity, using, 52
ListAdapter

overriding getView method, 54
using, 54

lists
binding data to, 54–56
displaying, 52–56
row layout, 53–54
XML layout, 53–54

ListView
attributes, 53
collection view, 206–207
defining, 53
entries attribute, 54
using, 52

Loader helper class, using, 56
loaders

CursorLoader, 185
using, 184–185

localization
example, 305
formatting, 306–308
getQuantityString method, 308
ISO 639-1 language codes, 304
ISO 3166-1-alpha-2 region code, 304
language-specific layouts, 306
layouts, 308
MCC (mobile country codes), 305
MNC (mobile network codes), 305
overview, 304–306
plurals, 306–308
quantity strings, 308
resources, 304–306, 308
retrieving strings, 308
string substitution, 306–308
strings, 308
testing, 308
tips, 308
user-visible strings, 308

long presses, 94
Looper class, using with background

tasks, 66

M
main thread

avoiding blocking, 66
in event handling, 92
explained, 61

manifest entry, using for activities, 57
map key, registering for, 130
MapActivity, extending, 132

maps, adding to applications, 130–135
MapView, using, 130–132
margins and padding, 38
match_parent, 38
MCC (mobile country codes), 305
Menu button, 20, 96
MenuInflater class, 97
menus. See also action bar

assigning icons, 97
callbacks, 98–100
context, 94, 100–101
creating, 96
layout inflation, 97
layouts, 96–98
submenus, 97

<merge> tag
using, 144–146
using with ToggleButton, 278

millimeters (mm), 81
mm (millimeters), 81
MNC (mobile network codes), 305
Monkey tool, features of, 31
MotionEvent object

actions, 219–224
using, 219–224

N
navigation

accessibility, 309–312
action bar, 172–174
list mode, 174
TabWidget interface, 175–178
ViewPager behavior, 178
ViewPager class, 178–180

navigation mode, setting, 174
network I/O, detecting with

StrictMode, 64–65
nextFocus attributes, using for

accessibility, 311–312
notification tray, accessing, 15
Notification.Builder class, 88
notifications

creating, 86
dialogs, 89–91
NotificationManager, 87
options, 88
parameters, 86

320  Index

PendingIntent, 86–87
setLatestEventInfo method, 88
status bar, 85–88
toasts, 84–85

O
ObjectAnimator class, using with

property animations, 247–248
OnClickInterface, using with screen

taps, 93
OnClickListener interface, 71, 93
onDraw method, using with custom

views, 263–266
onMeasure method, using with

custom views, 260–262
onSaveInstanceState, using with

activities, 62
onTouchEvent method

GestureDetector class, 225
implementing, 216–219
updating, 221
using with SurfaceView, 287

OpenGL
1.0 standard, 294
activity, 295–296
drawing graphics, 296–300
example, 294–296
GLSurfaceView, 294
onDrawFrame, 295
onSurfaceChanged, 295
overview, 294

options menu functionality, 96
Outline, described, 23

P
Package Explorer pane, 24
package name, entering, 5
padding and margins, 38
padding attribute, using with views, 39
paging-style interface, using, 180
Paint object, using with custom

views, 263–266
Palette, described, 23
permissions, declaring in manifest, 11
phone dialer, opening, 14

pinch-to-zoom gesture,
implementing, 227–228

pixel density, variations, 80
pixels (px), 81
points (pt), 81
project structure

AndroidManifest.xml item, 9
assets/ item, 9
default.properties item, 9
gen/ folder, 9
res/ folder, 9
src/ folder, 9, 12–13

projection matrix, setting, 297–298
properties, setting, 5
property animations. See also

animations
AnimatorSet object, 249–250
LayoutTransition class, 254
ObjectAnimator class, 247–248
Property class, 249
ValueAnimator class, 246–248
ViewPropertyAnimator class, 253
in XML, 250–251

pt (points), 81
px (pixels), 81

R
RelativeLayout container, 45–47

child views, 46
using, 29
XMLAttributes, 47

RemoteViews class, using, 201–203
RemoveViewsFactory, using with

widgets, 208–209
RenderScript language, 289–293

buildTriangle() method, 293
downloading, 290
Java API, 291–293
RSSurfaceView class, 291
sample file, 289–291
syntax, 289–290
TriangleMeshBuilder, 293

res/ folder, 9, 12–13
res/layout folder, contents of, 12
resource qualifiers, 76–77

API version, 77
available height, 77

available width, 77
precedence, 78–79
screen orientation, 77
screen pixel density, 77
screen size, 77, 79
SmallestWidth, 77

resources. See also image resources
accessing at runtime, 263
referencing, 17

res/values/ folder, contents of, 13
R.java file, 18–19
rotating canvas, 272

S
scaled pixel (sp), 81
ScaleGestureDetector class, 226–228
scaling, using Draw 9-Patch tool for, 30
screen configuration, determining, 83
screen orientation, 77
screen pixel density, 77
screen sizes, 77, 79

Draw 9-Patch tool, 82–83
density-independent pixels (dp),

80–81, 83
resource qualifiers, 76–80

screen taps, 93
button-click actions, 93
confirmation dialog, 93
OnClickInterface, 93
onClickListener, 93

screenshots, taking, 29
ScrollView container

avoiding use of ListView in, 120
fillViewPort attribute, 121–123
using, 120–123
wrapping LinearLayout in, 121

Search button, 21
settings, managing, 120
ShareActionProvider class, 171
SimpleAdapter, using in data

binding, 181
SimpleCursorAdapter, using in data

binding, 181
sliding animations, creating, 244–245.

See also animations
sp (scaled pixel), 81

Index  321

spinners, creating, 119
src/ folder, 9
StackView collection view, 206
startAnimation method, using, 238
state

re-creating for activities, 62
saving, 62

StateListDrawable, using, 128
status bar notifications, creating,

85–88
StrictMode

declaring, 64–65
detecting thread violations, 65
disabling, 65
enabling, 65
explained, 64

string substitution, using in
localization, 306–307

strings
placing in res/values folder, 13
referencing, 19
retrieving in localization, 308

strings.xml file, contents of, 12
styles. See also themes

adding to TimeTracker app,
150–152

attributes, 149
defaults, 149
defining, 148
inheriting, 150
<item> elements, 149
placing in res/values folder, 13
RedText, 148–149

styles.xml file, creating, 150
submenus, opening, 97
sub-views, displaying in linear

fashion, 17. See also views
SurfaceView

drawing to, 283–288
DrawingThread class, 284
implementing, 282–283
onTouchEvent method, 287
rotating triangle, 288
versus TextureView class, 288

system attributes, prefix for, 38

T
tab layout, implementing, 175–177
tabbed interface, creating, 172–173
table layout, example of, 41
TableLayout container

versus GridLayout, 50
using with views, 41–42

TableRow container, using with
views, 41

TabWidget interface, using, 175–178
task_detail.xml, opening, 142
TaskListFragment class, creating, 156
tasks. See also AsyncTask class

back stacks, 62
creating, 62
grouping activities into, 61–63
switching between, 62

text, zooming, 225–226
text entry, simplifying, 115–118
TextureView class versus

SurfaceView, 288
TextView, 17

animating, 238–239
in clock-flipping animation, 240
dragging onto layout, 25
using, 112–114
using with fragment, 154–155
visibility states, 240

themes, 152. See also styles
threads, running in background, 66
three-button layout, using for

accessibility, 310–311
time_row-xml layout file, creating,

53–54
TimeListAdapter class, creating, 54
timer, stopping and resetting,

102–107
timer_appwidget_info.xml file,

creating, 191
timer_widget.xml layout, creating,

194–195
TimerFragment, creating, 156–158
TimerWidgetProvider class, creating,

197–200
TimeTracker app. See also

background tasks
adapter, 183–184

AppWidgetProviderInfo XML file,
191–195

Boolean buttons, 118
button presses, 71–72
buttons, 118
clearing tasks to, 99–100
clock-flipping animation, 240–245
confirm dialog, 90–91
convenience methods, 67–68
creating, 36
detail page, 141–143
edit_task.xml layout, 117–118
EditText, 113–114
fragments, 156–159
implementing, 102–107
<include> tag, 141–143
IntentFilter method, 106
layout for list view, 53–54
linear layout, 44–45
manifest entry for activities, 57
notification code, 106
OnClickListener interface, 71
overriding onClick method, 71
Reset button, 72
simplifying text entry, 115–118
Start/Stop button, 71–72
styles, 150–152
TextView, 113–114
timer layout, 159
timer update, 106
timerStopped method, 105
TimerWidgetProvider class,

197–200
tracking time intervals, 66–67
updateTime method, 105
widget, 191

toast notification, creating, 84–85
ToggleButton

combining with EditText, 276
<merge> tag, 278
using Hierarchy Viewer with, 277

tools
downloading, 4
Draw 9-Patch, 30
graphical layout editor, 22–25
layoutopt, 30
Monkey, 31

322  Index

touch events
MotionEvent object, 219–224
multi-, 219–223
onDraw method, 222
onTouchEvent method, 216–219, 221

touch logic, implementing, 299–300
touchscreen device, including in

manifest, 11
TranslateAnimation example, 236
triangle, drawing, 296–297
TriangleMeshBuilder, using, 293
TypeEvaluator, ValueAnimator class, 246

U
UI thread

avoiding blocking, 66
in event handling, 92
explained, 61

updateAngle() method,
implementing, 298

UpdateWidgetTime method,
implementing, 202

V
ValueAnimator class

Interpolator, 246
TypeEvaluator, 246
using with property animations,

246–248
view animations. See also animations

alpha option, 235
examples, 236–237
rotate option, 235
scale option, 235
translate option, 235
TranslateAnimation, 236

View attributes
accessing, 37
form of, 38
layout_margin, 39
padding, 39
specifying, 37–38

view hierarchy, 41
View objects

Button, 37
hierarchy of, 37

view transparency, changing, 236–237
ViewGroup

layout containers, 37
using in custom attributes, 269

ViewHolder pattern, using, 182–184
View.Inflate method, 97
ViewPager class, using, 178–180
ViewPropertyAnimator class,

using, 253
views. See also collection widget;

custom views; sub-views;
XML view

Adapter class, 182–183
adding space around, 38
arrangement of, 37
data binding, 181
dragging and dropping, 22–25
drawing, 258
fill parent, 38
FrameLayout container, 41
gravity attribute, 39–40
GridLayout container, 48–51
height and width, 38
inflating, 97
in layouts, 17
LinearLayout container, 42
loaders, 184–185
loading data into, 181–185
match_parent, 38
RelativeLayout container, 45–47
remote, 201–203
setting for activities, 18
TableLayout container, 41–42
TableRow container, 41
TextView, 17
visibility states, 147
wrap_content, 38

ViewStub layout, using, 146–147
virtual devices, 26

creating, 6–7
emulated, 26
graphics stack, 26

visibility states
applying to drawable

animations, 232
View.GONE, 147
View.INVISIBLE, 147
View.VISIBLE, 147

W
websites

ActionBarSherlock library, 169
AppWidgetProviderInfo XML file,

191–195
displaying, 130–135
enabling plugins, 134
Google APIs, 130
overriding URLs, 134–135
RenderScript API, 290
widget template, 190

WebView class
Flash support, 133
INTERNET permission, 133
using, 133–134
WebSettings object, 133

Widget Preview application, 195
widget size, calculating, 196
widget_background.xml drawable, 194
widgets, 14. See also collection

widget; form widgets
app template, 190
AppWidgetProvider class, 197–200
configuration activity, 203–205
declaring, 191
described, 190
layout, 192, 194–195
RemoveViews class, 201–203
UpdateWidgetTime method, 202

wrap_content, 38

X
XML layout, 16–17

converting to View objects, 56
LinearLayout container type, 16–17
setting for activities, 60

XML layout file, landscape version, 77
XML view, switching to, 23. See also

views
xmlns:android attribute, 16

Z
zooming text, 225–226

Index  323

	Contents
	Introduction
	Welcome to Android
	CHAPTER 4 BASIC VIEWS
	Creating a Basic Form
	Displaying Images
	Creating Maps and Displaying Websites
	Wrapping Up

	Index

