

Cocoa® Programming
Developer’s Handbook

This page intentionally left blank

Cocoa® Programming
Developer’s Handbook

David Chisnall

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Cocoa® Programming Developer’s Handbook
Copyright © 2010 Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system,
or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise,
without written permission from the publisher. No patent liability is assumed with respect to
the use of the information contained herein. Although every precaution has been taken in
the preparation of this book, the publisher and author assume no responsibility for errors
or omissions. Nor is any liability assumed for damages resulting from the use of the
information contained herein.

ISBN-13: 978-0-321-63963-9
ISBN-10: 0-321-63963-4

Library of Congress Cataloging-in-Publication Data

Chisnall, David.
Cocoa programming developer’s handbook / David Chisnall.

p. cm.
Includes index.
ISBN 978-0-321-63963-9 (pbk. : alk. paper) 1. Cocoa (Application development

environment) 2. Object-oriented programming (Computer science) 3. Application program
interfaces (Computer software) 4. Mac OS. I. Title.

QA76.64.C485 2010
005.26’8—dc22

2009042661

Printed in the United States on recycled paper at Edwards Brothers in Ann Arbor, Michigan.

First Printing December 2009

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Pearson cannot attest to the accuracy of this information.
Use of a term in this book should not be regarded as affecting the validity of any trademark
or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis. The
author and the publisher shall have neither liability nor responsibility to any person or entity
with respect to any loss or damages arising from the information contained in this book.

Bulk Sales
Pearson offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales. For more information, please contact us by phone or email:

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact the International Sales group:

International Sales
international@pearson.com

Editor-in-Chief
Mark L. Taub

Managing Editor
John Fuller

Full-Service
Production
Manager
Julie B. Nahil

Technical Reviewer
Gregory
Casamento

Book Designer
Gary Adair

Composition
David Chisnall

Contents

List of Figures xvii

List of Tables xxiii

Preface xxv

I Introducing Cocoa 1

1 Cocoa and Mac OS X 3
1.1 Understanding When to Use Cocoa 3

1.1.1 Carbon . 3
1.1.2 Java . 5
1.1.3 Cocoa . 5
1.1.4 UNIX APIs . 7
1.1.5 Other Choices . 8

1.2 Understanding Cocoa’s Role in Mac OS X 9
1.2.1 Cocoa . 9
1.2.2 Quartz . 11
1.2.3 Core Foundation . 13
1.2.4 Darwin . 14
1.2.5 XNU . 15

1.3 Overview . 16

2 Cocoa Language Options 17
2.1 Object Orientation . 17
2.2 Objective-C . 19

2.2.1 Objective-C Compiler Choices 20
2.2.2 Differences from Java and C++ 22
2.2.3 Objective-C 2.0 . 23

2.3 Ruby and Python . 24

v

vi Contents

2.4 Summary . 25

3 Using Apple’s Developer Tools 27
3.1 Obtaining Apple’s Developer Tools 28
3.2 Interface Builder . 28

3.2.1 Outlets and Actions . 30
3.2.2 Cocoa Bindings . 31
3.2.3 Drawing a Simple Application 34

3.3 XCode . 37
3.3.1 Creating a Simple Project 37
3.3.2 OpenStep Bundles . 39
3.3.3 Developer Examples . 41
3.3.4 Building Without XCode 42

3.4 Objective-C . 43
3.4.1 Why Learn Objective-C? 44
3.4.2 Additions to C . 44
3.4.3 Exceptions and Synchronization 52
3.4.4 Introspection . 55
3.4.5 Objective-C in C . 58
3.4.6 Objective-C 2.0 . 60
3.4.7 Blocks . 63
3.4.8 Objective-C++ . 66

3.5 Cocoa Conventions . 66
3.5.1 Naming . 66
3.5.2 Memory Management . 70
3.5.3 Constructors and Initializers 72

3.6 Summary . 74

II The Cocoa Frameworks 77

4 Foundation: The Objective-C Standard Library 79
4.1 General Concepts . 79

4.1.1 Mutability . 80
4.1.2 Class Clusters . 80

4.2 Core Foundation Types . 85
4.3 Basic Data Types . 85

4.3.1 Non-Object Types . 86
4.3.2 Strings . 87
4.3.3 Boxed Numbers and Values 88
4.3.4 Data . 90
4.3.5 Caches and Discardable Data 90

Contents vii

4.3.6 Dates and Time . 91
4.4 Collections . 93

4.4.1 Comparisons and Ordering 93
4.4.2 Primitive Collections . 96
4.4.3 Arrays . 97
4.4.4 Dictionaries . 98
4.4.5 Sets . 99

4.5 Enumeration . 100
4.5.1 Enumerating with Higher-Order Messaging 101
4.5.2 Enumerating with Blocks 104
4.5.3 Supporting Fast Enumeration 105

4.6 Property Lists . 111
4.6.1 Serialization . 112
4.6.2 User Defaults . 114

4.7 Interacting with the Filesystem 117
4.7.1 Bundles . 117
4.7.2 Workspace and File Management 120
4.7.3 Working with Paths . 122
4.7.4 File Access . 123

4.8 Notifications . 124
4.8.1 Requesting Notifications . 125
4.8.2 Sending Notifications . 126
4.8.3 Sending Asynchronous Notification 127
4.8.4 Distributed Notifications . 130

4.9 Summary . 132

5 Application Concepts 133
5.1 Run Loops . 133
5.2 Applications and Delegates . 140
5.3 The Responder Chain . 142

5.3.1 Event Delivery . 142
5.3.2 Targets and Actions . 146
5.3.3 Becoming First Responder 147

5.4 Run Loops in Applications . 147
5.5 Delegates and Notifications . 151
5.6 The View Hierarchy . 154

5.6.1 Windows . 154
5.6.2 Views . 155
5.6.3 Cells . 156

5.7 Summary . 157

6 Creating Graphical User Interfaces 159

viii Contents

6.1 Positioning Views . 159
6.2 Nested Views . 164

6.2.1 Clipped Views . 164
6.2.2 Scroll Views . 165
6.2.3 Tab Views . 166
6.2.4 Split Views . 167
6.2.5 Boxes . 169

6.3 Creating Views . 169
6.3.1 Buttons . 170
6.3.2 Text Views . 172
6.3.3 Data Views . 172
6.3.4 Menus . 181

6.4 Cocoa Bindings . 184
6.4.1 Key-Value Coding . 185
6.4.2 Key-Value Observing . 190
6.4.3 Exposing Bindings . 193
6.4.4 Generic Controllers . 194
6.4.5 Bindings and User Defaults 195
6.4.6 Using Bindings in Interface Builder 196

6.5 Summary . 202

7 Windows and Menus 203
7.1 Understanding Windows . 204

7.1.1 Types of Windows . 207
7.2 Creating Windows . 208
7.3 Creating Window Objects . 208

7.3.1 Displaying Windows . 210
7.3.2 Hiding Windows . 212
7.3.3 Understanding Window Controllers 214
7.3.4 Creating a Simple Window Factory 214
7.3.5 Saving a Window’s Position 218

7.4 Panels . 219
7.4.1 Displaying Standard Palettes 220

7.5 Sheets . 223
7.5.1 Creating Sheets . 223
7.5.2 Showing Standard Sheets 224

7.6 Alert Dialogs . 229
7.7 Menus . 232

7.7.1 The Structure of a Menu 232
7.7.2 Populating the Window Menu 234
7.7.3 Dock Menus . 235
7.7.4 Validating Menu Items . 236

Contents ix

7.7.5 Context Menus . 237
7.7.6 Pop-Up Menus . 241

7.8 Summary . 243

8 Text in Cocoa 245
8.1 Constructing and Deconstructing Strings 246
8.2 Annotating Strings . 248
8.3 Localization . 250

8.3.1 Localization Macros . 251
8.3.2 Strings Files . 252
8.3.3 Localizing Format Strings 253

8.4 Text Storage . 254
8.5 Understanding Fonts . 255

8.5.1 Converting Fonts . 257
8.5.2 Enumerating Fonts . 261

8.6 Displaying Text . 261
8.6.1 Primitive Drawing . 261
8.6.2 Layout Managers . 264
8.6.3 Attachments . 268
8.6.4 Text Views . 269
8.6.5 Text Cells . 270

8.7 Writing a Custom Text Container 275
8.8 Using Multiple Text Views . 279
8.9 Summary . 283

III Cocoa Documents 285

9 Creating Document-Driven Applications 287
9.1 The Cocoa Document Model . 288

9.1.1 File Types . 289
9.1.2 Document Objects . 292

9.2 Creating the Application Skeleton 293
9.3 Creating the Document . 295

9.3.1 Loading the Windows . 295
9.3.2 Building the Document Model 297
9.3.3 Loading and Saving Documents 297
9.3.4 Document Creation Events 301

9.4 Extending the Outliner . 301
9.4.1 Defining a Native File Format 302
9.4.2 Defining a Foreign File Format 304
9.4.3 Supporting Loading and Saving 307

x Contents

9.5 Supporting Undo . 312
9.5.1 Registering Undo Operations 314
9.5.2 Creating Undo Groups . 316
9.5.3 Performing Undo Operations 316
9.5.4 The Undo User Interface . 317

9.6 Adding Undo to the Outliner . 318
9.7 Summary . 328

10 Core Data 329
10.1 Introducing Data Modeling . 330
10.2 Understanding Managed Objects 331
10.3 Attribute Types . 332
10.4 Creating a Data Model . 334
10.5 Choosing a Persistent Store . 343

10.5.1 In-Memory Stores . 343
10.5.2 XML Stores . 343
10.5.3 Binary Stores . 344
10.5.4 SQLite Stores . 344
10.5.5 Custom Stores . 345

10.6 Storing Metadata . 345
10.7 Automatic Undo . 347
10.8 Core Data, Spotlight, and Time Machine 348
10.9 Summary . 349

IV Complex User Interfaces 351

11 Working with Structured Data 353
11.1 Data Sources and Delegates . 354
11.2 Tables . 354

11.2.1 Table View Drawing . 355
11.2.2 Using Sort Descriptors . 356
11.2.3 Customizing a Table View 358

11.3 Outline Views . 362
11.3.1 Extending the Outliner . 363

11.4 Browsers . 376
11.4.1 Browser Delegates . 376
11.4.2 Creating a Browser . 377

11.5 Collection Views . 380
11.5.1 Displaying Files in a Collection View 381

11.6 Customizing Views with New Cells 384
11.7 Creating Master-Detail Views 387

Contents xi

11.7.1 Inspectors as Detail Views 389
11.8 Summary . 393

12 Dynamic Views 395
12.1 Tabbed Views . 395
12.2 Inspecting the View Hierarchy 396
12.3 Modifying the View Hierarchy 398

12.3.1 Reparenting Views . 399
12.3.2 Rearranging Views . 403
12.3.3 Detachable Tabs . 407

12.4 Creating Dynamic Input Forms 412
12.4.1 Creating a Form with a Matrix 413
12.4.2 Creating a Form with a Custom View 418
12.4.3 Creating a Form with a Rule Editor 422

12.5 Full-Screen Applications . 426
12.6 Summary . 429

V Advanced Graphics 431

13 Custom Views 433
13.1 The Graphics Context . 434
13.2 Core Graphics . 435
13.3 AppKit Drawing . 438

13.3.1 Drawing Shapes . 439
13.3.2 Drawing with Cells . 443
13.3.3 Drawing Text . 453
13.3.4 Creating New Cells . 457
13.3.5 Drawing Bitmap Images . 463
13.3.6 Compositing Images . 468

13.4 Printing and Paginating Views 470
13.4.1 Print Info . 471
13.4.2 Creating Print Operations 472
13.4.3 Paginating a View . 475
13.4.4 Automatic Pagination . 481

13.5 Extending Interface Builder with Palettes 482
13.6 Summary . 491

14 Sound and Video 493
14.1 Beeping . 493
14.2 Playing Simple Sounds . 494
14.3 Understanding Cocoa Movie Objects 498

xii Contents

14.4 Adding Video . 502
14.5 Editing Media . 506
14.6 Low-Level Sound APIs . 507
14.7 Sound and Video Recording . 508
14.8 Supporting Speech . 512
14.9 Cocoa Speech Synthesis . 513
14.10 Conversing with Users . 514
14.11 Summary . 519

15 Advanced Visual Effects 521
15.1 Simple Animation . 521
15.2 Core Animation Overview . 523

15.2.1 Drawing in a Layer . 524
15.2.2 Setting a Layer’s Content 528

15.3 Understanding Animation Concepts 528
15.4 Adding Simple Animations . 531
15.5 Image Filters . 533
15.6 Defining Transitions . 540
15.7 Creating Complex Animations 543
15.8 3D Core Animation Transforms 544
15.9 OpenGL and Cocoa Views . 549
15.10 Quartz Composer . 552
15.11 Summary . 553

16 Supporting PDF and HTML 555
16.1 HTML in AppKit . 556
16.2 Advanced HTML Support . 557

16.2.1 WebKit Overview . 559
16.2.2 WebView Delegates . 561
16.2.3 Editing HTML . 562

16.3 Dynamic Interfaces with WebKit 565
16.4 PDF and Quartz . 572
16.5 Displaying PDFs . 574

16.5.1 Understanding PDF Annotations 578
16.5.2 Setting Document Metadata 581
16.5.3 Editing PDFs . 583

16.6 Summary . 588

VI User Interface Integration 589

17 Searching and Filtering 591

Contents xiii

17.1 Maintaining Document Indexes 592
17.1.1 Creating an Index . 592
17.1.2 Indexing Documents . 594
17.1.3 Searching an Index . 595

17.2 Displaying Search Boxes . 597
17.3 Searching for Documents . 599
17.4 Spotlight . 610

17.4.1 Monitoring Filesystem Events 611
17.4.2 Metadata Indexing . 611
17.4.3 Building a Metadata Import Plugin 613
17.4.4 Searching with Spotlight . 619
17.4.5 Spotlight Limitations . 622

17.5 Predicates . 623
17.5.1 The Predicate Language . 623
17.5.2 Creating Predicates Directly 625
17.5.3 Using Predicates . 627
17.5.4 Displaying a Predicate Editor 628

17.6 Quick Look . 632
17.6.1 Previewing Bundles . 633
17.6.2 Implementing Quick Look Plugins 634

17.7 Summary . 636

18 Contacts, Calendars, and Secrets 637
18.1 Address Book Overview . 637

18.1.1 General Concepts . 638
18.1.2 Collection Classes . 639

18.2 Getting Information About People 642
18.3 Searching the Address Book . 643
18.4 Populating the “Me” vCard . 645
18.5 Adding People to the Address Book 648
18.6 Storing Secrets . 649
18.7 Calendars . 659

18.7.1 Calendar Store Concepts 659
18.7.2 Accessing Events . 661
18.7.3 Creating Calendars . 665

18.8 Synchronizing Data . 666
18.8.1 Using Apple Schemas . 667

18.9 Summary . 673

19 Pasteboards 675
19.1 Pasteboard Overview . 675
19.2 Pasteboard Types . 677

xiv Contents

19.3 Filtered Types . 680
19.4 Property List Data . 681
19.5 Self-Encoding Objects . 682
19.6 Files and Pasteboards . 683
19.7 Copy and Paste . 684
19.8 Drag and Drop . 686

19.8.1 Drag Operations . 687
19.8.2 Drop Operations . 689
19.8.3 Implementing Drag and Drop in a Custom View 690

19.9 Drag and Drop with Data Views 697
19.10 Summary . 705

20 Services 707
20.1 Example Services . 707
20.2 An Evaluate Service . 709
20.3 Using Services . 714
20.4 Controlling the Services Menu 717
20.5 Filter Services . 718
20.6 Summary . 719

21 Adding Scripting 721
21.1 Scripting Overview . 721

21.1.1 The AppleScript Object Model 723
21.1.2 Scripting Vocabulary . 723

21.2 Making Objects Scriptable . 725
21.2.1 Understanding AppleScript Objects 725
21.2.2 Providing Object Specifiers 726
21.2.3 Providing a Scripting Definition 728
21.2.4 Handling Scripting Commands 733
21.2.5 Testing Scripting Support 737

21.3 Scripting from Cocoa . 740
21.4 Exposing Services to Automator 747
21.5 Other Scripting Technologies . 748

21.5.1 Distributed Objects . 748
21.5.2 F-Script . 749

21.6 Summary . 750

VII System Programming 751

22 Networking 753
22.1 Low-Level Socket Programming 753

Contents xv

22.2 Cocoa Streams . 759
22.3 URL Handling . 760

22.3.1 Creating URLs . 761
22.3.2 Loading URLs . 762
22.3.3 Extending the URL Loading System 764

22.4 Bonjour . 768
22.4.1 Multicast DNS . 768
22.4.2 DNS Service Discovery . 768
22.4.3 Browsing Services . 769
22.4.4 Advertising Services . 772

22.5 Distributed Objects . 773
22.5.1 Publishing Objects . 774
22.5.2 Getting Remote Objects . 776
22.5.3 A Simple Chat Program . 777

22.6 Summary . 785

23 Concurrency 787
23.1 Distributed Objects . 788
23.2 Threading . 789

23.2.1 Creating Threads . 790
23.2.2 Thread-Local Storage . 790
23.2.3 Synchronization . 791
23.2.4 Atomic Operations . 799
23.2.5 Futures and Forwarding . 803
23.2.6 Stress Testing Threads . 806

23.3 Child Processes . 807
23.3.1 Creating Child Processes 807
23.3.2 Communicating with Children 807
23.3.3 Sharing Memory . 809

23.4 Operation Queues . 813
23.5 Grand Central Dispatch . 819
23.6 OpenCL . 821
23.7 Summary . 822

VIII Appendixes 823

24 Portable Cocoa 825
24.1 NeXT and Sun . 825
24.2 Mobile OS X on the iPhone . 826
24.3 OpenStep and GNU . 826
24.4 GNUstep . 827

xvi Contents

24.4.1 GORM . 829
24.4.2 Building with GNUstep . 830
24.4.3 Étoilé . 832

24.5 QuantumSTEP . 833
24.6 Cocotron . 834
24.7 GNUstepWeb and SOPE . 834

25 Advanced Tricks 837
25.1 The Preprocessor . 838

25.1.1 Initializers . 838
25.1.2 For Each . 838
25.1.3 Objective-C Constants . 840
25.1.4 Simple Templates . 841
25.1.5 Friendly Debug Output . 842

25.2 Control Structures . 843
25.2.1 NSDictionary Abuse . 843
25.2.2 Key-Value Coding . 844
25.2.3 Trampolines . 846
25.2.4 State Machines . 849

25.3 Clean Code . 851
25.3.1 Toll-Free Bridging . 851
25.3.2 Multiple Inheritance . 853

25.4 Optimization . 855
25.4.1 Instance Method Pointers 855
25.4.2 Subverting Dynamic Dispatch 857
25.4.3 Objects on the Stack . 859
25.4.4 Object Pools . 864
25.4.5 Inline Functions . 865
25.4.6 Avoid Objects . 867

25.5 Cross-Platform Cocoa . 869
25.6 The Runtime System . 872

25.6.1 Understanding Object Implementation 873
25.6.2 Enumerating All Subclasses 876
25.6.3 Adding Methods to a Class 879

Index 885

List of Figures

1.1 An overview of the major components of OS X. 9

3.1 Interface Builder with a new application project. 29
3.2 The outlet and action inspector in Interface Builder. 32
3.3 Views palette in Interface Builder. 35
3.4 Connecting an action. 36
3.5 Running a simple UI. 36
3.6 Creating a new project with XCode. 38
3.7 Creating a new file in XCode. 39
3.8 The XCode main window. 40

4.1 The flow of notifications in a Cocoa program. 130

5.1 Default objects in an application nib. 144
5.2 A window containing nested views. 145
5.3 The view hierarchy for the window in Figure 5.2. 145
5.4 Example message flow in a Cocoa application. 150
5.5 Connecting outlets and actions in Interface Builder. 151
5.6 Setting a delegate in Interface Builder. 152

6.1 Coordinate systems in Cocoa. 160
6.2 The view size inspector in Interface Builder. 162
6.3 Resizing a window containing three buttons and a text view. 163
6.4 Autosizing rules for the views in Figure 6.3. 164
6.5 A tab view in recent versions of OS X. 167
6.6 Resizing a window containing a split view. 168
6.7 Buttons available in Interface Builder. 170
6.8 Configuring button attributes in Interface Builder. 171
6.9 The Outliner Window. 179
6.10 The Outliner document nib window. 180
6.11 Running the simple outliner. 181

xvii

xviii List of Figures

6.12 NeXT-style menus were vertical. 182
6.13 An OS X menu in Interface Builder. 183
6.14 The target and action for the standard copy menu item. 184
6.15 Bindings Outliner nib contents. 197
6.16 Bindings inspectors for the outline view. 199
6.17 The properties of the tree controller. 200
6.18 Running the new version of the Outliner. 202

7.1 The window server process on OS X 10.5. 205
7.2 The list of windows currently attached to the window server. 206
7.3 A simple window factory. 216
7.4 A window with a transparent background. 218
7.5 Displaying the standard palettes. 222
7.6 Configuring a panel in Interface Builder. 225
7.7 Displaying a custom sheet. 227
7.8 Displaying open panels. 227
7.9 An alert panel from TextEdit. 231
7.10 The dock menu for Apple’s X11 application. 236
7.11 Displaying a context menu for a custom view. 238
7.12 Displaying a pop-up menu in response to a click. 243

8.1 A simple text rendering pipeline. 246
8.2 The relationship between text storage and layout managers. 255
8.3 The Font menu in Interface Builder. 258
8.4 Modifying font properties. 260
8.5 Hello World in Cocoa. 263
8.6 An example ligature. 265
8.7 Automatic hyphenation in Cocoa. 267
8.8 The click text example. 270
8.9 A wheel of text in a custom layout manager. 278
8.10 The text system arrangement. 280
8.11 Running the multi-text example. 282

9.1 Multiple outliner documents. 288
9.2 The UTI hierarchy for an application bundle. 291
9.3 A new document-driven application project. 293
9.4 A new info property list for a document-driven application. 295
9.5 Binding the view to the new model. 308
9.6 Setting the document types. 309
9.7 The save dialog from the new outliner. 312
9.8 The new version of the outliner. 313

List of Figures xix

9.9 The undo menu items in TextEdit. 317
9.10 The new undo menu items. 327
9.11 An unsaved outliner document. 327
9.12 Trying to close an unsaved outline. 328

10.1 The data model for the payroll example. 334
10.2 The document nib for the payroll example. 337
10.3 Attributes of the payroll tree controller. 338
10.4 Running the payroll example. 339

11.1 The relationships between objects in a table view. 356
11.2 Displaying an irregular table layout. 359
11.3 The columns inspector for the multicolumn outliner. 368
11.4 The multicolumn outliner. 375
11.5 A simple filesystem browser. 379
11.6 Objects in the nib file for the collection view. 382
11.7 A file browser with an icon view. 382
11.8 Displaying two cells in a single column. 386
11.9 A simple inspector. 392

12.1 Inspecting the view hierarchy. 397
12.2 Before and after reparenting button views into a panel. 402
12.3 Reparenting the buttons back into the window. 404
12.4 Moving views into a scroll view. 406
12.5 A window containing two tabs. 410
12.6 Detaching both tabs from the view. 411
12.7 A simple form in a matrix. 417
12.8 A form constructed from views in a nib file. 422
12.9 Creating a form with the rule editor. 426

13.1 Scribbling on a window with Core Graphics. 436
13.2 A bezier curve drawn by a bezier path. 443
13.3 A simple graphical equalizer. 450
13.4 Drawing text along a curve. 455
13.5 Drawing text in a circle. 458
13.6 Text drawn in an ellipse by a cell. 461
13.7 Text antialiasing in OS X. 464
13.8 A saved image and the view that created it. 467
13.9 Compositing the OS X logo over the Mona Lisa. 470
13.10 The print panel accessory view. 475
13.11 The custom print panel. 480

xx List of Figures

13.12 The output from printing, shown in Preview. 481
13.13 Creating an IB plugin in XCode. 483
13.14 The inspectors for the circle view. 488
13.15 Creating a circle view in Interface Builder. 490

14.1 A simple sound player. 497
14.2 Playing a movie file. 505
14.3 Playing a sound file in the movie player. 505
14.4 Recording video with QTKit. 511
14.5 The speech feedback window. 518

15.1 A circle of text drawn by Core Animation. 527
15.2 Setting Core Animation properties in Interface Builder. 536
15.3 Before and after images of the blurred button. 538
15.4 Deforming a view with Core Animation and Core Image. 539
15.5 A Core Animation transition effect. 542
15.6 Rotating a button around the y axis. 545
15.7 Rotating a button around its center. 548
15.8 A triangle drawn using OpenGL. 550
15.9 The Quartz Composer application. 553

16.1 The Apple web page as an attributed string. 558
16.2 A very simple web browser using WebKit. 560
16.3 Editing an HTML document. 564
16.4 Resizing a form rendered with WebKit. 571
16.5 Submitting the form. 572
16.6 A simple PDF-viewing application. 577
16.7 Displaying PDF annotations. 581
16.8 Adding an image to a PDF. 586
16.9 Opening the watermarked PDF in Preview. 587

17.1 A search field showing a recent searches menu. 598
17.2 Defining a search menu template in Interface Builder. 598
17.3 Searching the UNIX manual. 610
17.4 Declaring a UTI for the outline file format. 614
17.5 A simple outline document to index. 618
17.6 Finding the outline with Spotlight. 619
17.7 Running simple searches with Spotlight. 621
17.8 Configuring a predicate row template in Interface Builder. 630
17.9 Creating predicates with the predicate editor. 632

List of Figures xxi

18.1 The OS X Address Book. 638
18.2 Linking the Address Book framework. 644
18.3 Displaying avatars in a table view. 646
18.4 A simple keychain-using application. 658
18.5 Requesting access to a keychain item. 658
18.6 Accessing the keychain. 659
18.7 Creating a meeting in iCal. 664
18.8 Displaying meetings from the calendar. 664
18.9 Syncing with the notes published by Mail. 673

19.1 Dragging a text circle to TextEdit. 695
19.2 Dropping rich text on the circle view. 698
19.3 A simple table view supporting drag and drop. 703

20.1 An example services menu. 708
20.2 The Evaluate service info property list. 711
20.3 The Evaluate service in the Services menu. 714
20.4 Using the evaluate service from TextEdit. 715

21.1 The scripting suites supported by iTunes. 724
21.2 The ScriptTable example’s scripting dictionary. 731
21.3 Populating the table from a script. 739
21.4 Displaying a dialog from the table. 741
21.5 Controlling another application via the scripting bridge. 745

22.1 The Bonjour browser looking for iTunes shares. 771
22.2 Running the simple chat program. 784

24.1 GORM, the GNUstep Interface Builder. 829
24.2 GNUstep Project Center. 831

25.1 The CPU sampler in Instruments. 856

This page intentionally left blank

List of Tables

3.1 Objective-C type encodings. 57

4.1 The data types that can be stored in OpenStep (NeXT) and XML
(Apple) property lists. 112

23.1 The behavior of read/write locks. 797

xxiii

This page intentionally left blank

Preface

This book aims to serve as a guide to the Cocoa APIs found on Mac OS X. The
core frameworks are described in detail, as are many of the other components used
to build rich applications.

These APIs are huge. In most Cocoa programs, you include the Cocoa.h
header, which imports the two core frameworks that make up Cocoa. This header,
when preprocessed, including all of the headers that it references, is well over
100,000 lines long. If you printed the preprocessed header out, you would get
something over twice as long as this book, and you would still only have the core
APIs, and not any of the more advanced parts discussed in later parts of this
book.

This book aims to provide a guided tour, indicating features of interest to help
visitors find their way around this enormous family of APIs. As with many travel
books, this aims to include the same ‘must-see’ destinations that everyone will
visit as well as some of the more interesting but often-overlooked parts.

Deep familiarity with something like Cocoa only comes from years of practice
using the classes that are included as part of the frameworks. This book pro-
vides an introduction, but you will only become an expert OS X developer if you
take the information contained in these pages and apply it, developing your own
applications.

Who Should Read This Book

This book is aimed at people wanting to learn how to develop applications using
the rich Cocoa APIs on OS X. It is not aimed at people wanting to learn iPhone
development. The iPhone SDK is designed to be easy to learn for seasoned Mac
programmers, and shares a lot of core concepts and frameworks with the desktop
APIs, but it is a separate system. Reading this book will make it easy for you
to learn iPhone development later and care has been taken to point out places

xxv

xxvi Preface

where the desktop and mobile APIs diverge; however, this book does not cover
the iPhone APIs directly.

If you want to learn how to develop rich applications for Mac OS X then this
book will help you. This includes coverage of the core APIs that have remained
largely unchanged since the early 1990s on NeXT workstations up to the latest
additions for integration with an internetworked environment and handling rich
multimedia content.

This book assumes some general knowledge of programming. The first chapters
include an introduction to the Objective-C, which should be sufficient for readers
already familiar with languages like C or Java. This section is not intended as a
general introduction to programming concepts.

Overview and Organization

This book is divided into seven parts. Each covers part of the Cocoa APIs.
Introducing Cocoa covers the background of Cocoa, how it fits into OS X,

and where it came from. This part introduces and describes the Objective-C
language and provides the reader with an overview of the tools used to create
Cocoa applications.

In The Cocoa Frameworks you will be introduced to the Foundation and Appli-
cation Kit frameworks that form the core of the Cocoa APIs. Foundation provides
low-level, core functions, while the Application Kit is layered on top and provides
the features needed to build rich applications. This part introduces both, giving
an overview of how they fit together and how to begin creating applications using
them. You will see the basic concepts that underlie the Cocoa application model,
including how events are delivered and how the drawing model works. By the end
of this part you will understand how to create simple applications using Cocoa.

Cocoa Documents covers developing document-driven applications with Cocoa.
A document driven application is one that creates identical windows representing
some persistent model, typically a file. Cocoa includes a lot of code to support
this kind of application. You will also be introduced in this part to the Core Data
framework, which handles automatic persistence for documents.

Part IV, Complex User Interfaces goes deeper into the Application Kit. You
will learn about the more advanced view objects that interact with your program
via a data source and will learn how to provide data dynamically to them. You
will also see how to create new view objects.

The next part, Advanced Graphics, builds on top of this knowledge by exploring
some of the more complex graphical capabilities of Cocoa. This includes the Core
Animation framework, found on both desktop and iPhone OS X, which enables
you to create intricate animated effects with only a small amount of code. This

Preface xxvii

part will also take a small diversion from the visual into the audio world and
discuss how to provide audible feedback to your user interface. This includes
using the speech recognition and synthesis APIs on OS X. By the end of this part,
you should be able to write complex multimedia Cocoa applications.

User Interface Integration focusses on the parts of OS X that make an appli-
cation feel like a part of the environment, rather than an isolated program. This
includes integration with the systemwide search facilities as well as the various
shared data stores, such as the address book and calendar.

The final part, System Programming, covers the low-level features of Cocoa, in-
cluding network programming and concurrency. This ranges from creating sockets
to fetching data from a remote URL, and explores the distributed objects system
in the Foundation framework.

This book is not intended as a replacement for Apple’s excellent documenta-
tion. Every class in Cocoa has an accompanying reference available both online
and in the XCode environment. Many also include guides covering how a small set
of classes relate to each other. This comes to a total of several tens of thousands
of pages of material.

You will not find detailed descriptions of every method in a class in this book.
If you want to learn exactly what a class can do, look it up in the Apple documen-
tation. Instead, you will find descriptions of the most important and commonly
used features of classes and how they relate together. The Apple documentation,
while thorough, can be overwhelming. Reading this book will help you find the
subset that you need to solve a particular problem.

The example programs provided by Apple are similarly different to the ones
provided by this book. Each of the examples included with this book is intended
to demonstrate a single aspect of the Cocoa API. In contrast, the Apple examples
tend to be complete applications demonstrating a complete API. The TextEdit
application included with OS X is one such example. This is a full-featured rich
text editor, and is several thousand lines of code. If you want to see a detailed
example of how all of the parts of the Cocoa document support and text system
fit together, it is an invaluable resource, but trying to understand the whole of the
code can be very difficult if you are not already quite familiar with Cocoa.

Typographical Conventions

This book uses a number of different typefaces and other visual hints to describe
different types of material.

Filenames, such as /bin/sh, are all shown in this font. This is also used for
commands that you might type into a terminal.

Variable or function names, such as example(), used in text will be typeset

xxviii Preface

like this. Objective-C message names will be prefixed with a plus sign if they
are indented to be sent to classes or a minus if they are sent to instances, for
example, +alloc and -init.

This book contains two kinds of code listing. Short listings appear like this:

eg = example_function(arg1);

This kind of listing is intended to highlight a simple point and may contain
shorthand or depend on variables or functions that are not given. You should not
expect to be able to copy these listings into a source file and compile them; they
are intended to aid understanding.

Longer listings will have line numbers down the left, and a gray background, as
shown in Listing 1. In all listings, bold is used to indicate keywords, and italicized
text represents strings and comments.

Listing 1: An example listing [from: example/hello.c]

1 #include <stdio.h>
2
3 int main(void)
4 {
5 /* Print hello world */
6 printf("Hello World!\n");
7 return 0;
8 }

Listings that are taken from external files will retain the line numbers of the
original file, allowing the referenced section to be found easily by the reader. The
captions contain the original source in square brackets. Those beginning with
example/ are from the example sources that accompany this book. You should be
able to compile and run any of these on a modern OS X system.

Output from command-line interaction is shown in the following way:

$ gcc hello.c
$./a.out
Hello World!

A $ prompt indicates commands that can be run as any user, while a # is used
to indicate that root access is likely to be required. Most of the time, example
programs are intended to be compiled using XCode. A few single-file examples
are intended to be compiled from the terminal.

Chapter 4

Foundation: The Objective-C

Standard Library

The “core” Objective-C language only defines two classes: Object and Protocol.
It is rare to use Objective-C without an implementation of OpenStep Foundation,
whether it’s GNUstep, Cocoa, libfoundation, or Cocotron. The Portable Object
Compiler provides its own set of core objects, but it is not widely used.

The OpenStep Foundation is the closest thing that Objective-C has to a stan-
dard library, the equivalent of the C standard library or C++’s STL. Of course
since Objective-C is a pure superset of C, the C standard library can also be
used. The original idea was to do exactly this, and use Objective-C for building
components from C software.

Foundation was only introduced with OpenStep to hide the differences between
NeXTSTEP’s Mach-based operating system and Solaris, and to make it easier to
write endian-independent code. Most of Foundation is endian-independent, which
was a huge benefit when Apple moved from the big-endian PowerPC to the little-
endian x86 architecture.

4.1 General Concepts

Although the Foundation framework is very large, it is quite easy to learn. A lot
of the classes share common design principles. When you understand these shared
concepts, you can learn how to use each of the individual classes quickly.

79

80 Chapter 4. Foundation: The Objective-C Standard Library

4.1.1 Mutability

Objective-C does not have a concept of constant objects. This is not quite true;
the const keyword from C still exists, but it only applies to direct access to instance
variables. Methods cannot be marked as mutators and so any messages sent to an
object may modify it, irrespective of whether the object pointer is const-qualified.

In many cases, however, it is useful to have mutable and immutable versions
of objects. This is often done in object-oriented systems by having mutable and
immutable classes. Strings are a common example. If you create an Objective-C
string literal @"like this" then you are creating a constant string. The compiler
will put this string in the constants section of the binary—attempting to modify
it will cause a segmentation fault. Having to create a new string and copy can
make a program very slow, however. This is one of the reasons Java code has a
reputation for being slow; Java’s String class is immutable, and since it is declared
final you can’t use Cocoa’s solution to the problem, a mutable subclass.

The NSString object is an immutable string. It has a subclass, NSMutableString.
Because the mutable version is a subclass, it can be used anywhere that the
immutable version can. It implements all of the same methods.

The distinction between mutable and immutable objects is most apparent in
the implementation of the -copy method. When you send a -copy message to an
immutable object, you often get the same object back (but with the retain count
incremented). Because you cannot modify either “copy” they can never become
different from each other.

This ability is one of the reasons why Objective-C programs are often faster
than C++, in spite of microbenchmarks showing the opposite. In a C++ program,
the equivalent with std::string objects would result in a real copy. A C++ string
might be copied half a dozen times, whereas a Cocoa string will only have its
reference count incremented and decremented.

4.1.2 Class Clusters

Although NSString is the class for immutable strings, your string literal will not
really be an NSString. Instead, it will be an NSConstantString or similar. This
class is a private subclass of NSString, used for a specific purpose.

This is very common in Cocoa. There might be half a dozen or so different
implementations of common classes, such as NSDictionary, all optimized for dif-
ferent uses. When you initialize one, you will get back a specific subclass, rather
than the abstract superclass.

There are two ways in which this can be done. The first is to return a differ-
ent subclass from each constructor or initializer. The second is to use the same
instance variable layout and use a trick known as isa-swizzling. The isa pointer,

4.1. General Concepts 81

the pointer to the object’s class, is just another instance variable. In keeping with
the “no magic” philosophy of Objective-C, there is nothing special about it. You
can assign a new value to it if you wish. As long as both the new and old classes
have the same layout in memory, everything will keep working. (If they don’t, you
will get some difficult-to-debug memory corruption.)

Class clusters make subclassing slightly difficult. Typically, each of the hidden
classes in a cluster implements only a small number of primitive methods. In
NSString these are -characterAtIndex: and -length. All of the others are imple-
mented in the superclass in terms of these. If you want to create a new NSString

subclass, you must implement these methods yourself. It is common to do this by
having a concrete instance as an instance variable and delegating to it, although
you can implement the primitive methods yourself.

Of course, there is nothing stopping you from implementing more than just
these two primitive methods. You may be able to implement more efficient versions
of some of them.

More isa-swizzling

The isa-swizzling trick is useful in a lot of cases, not just class clusters. It can
be used for debugging use-after-free memory problems, by having the -dealloc

method simply change the class to one that throws an exception if it receives
any messages. You can also use it to implement state machines, where each
state is in a separate subclass of a common class. To enter a new state, simply
change the isa pointer to that pointer’s class.

You can implement class clusters of your own very easily. Typically, you will
have a set of different initializers in the public class, and each of these will return
an instance of a different subclass. To demonstrate this, we will define a simple
class encapsulating a pair of values. Listing 4.1 shows this interface. Note that no
instance variables are declared here.

In the implementation file, we define two concrete subclasses of the Pair class,
one for storing integers and one for floating point values. These are shown in
Listing 4.2. Neither of these defines any new methods. Since these interfaces are
private, there would be no point in adding new methods since no one would know
to call them. They do, however, define the structure. Class clusters implemented
like this allow entirely different data layouts for different implementations.

The implementation of the public class, shown in Listing 4.3, is very simple.
Most of the methods just return simple default values, since they should not be
called. A more robust implementation might throw an exception.

The important thing to note is the [self release] line in both initializers.

82 Chapter 4. Foundation: The Objective-C Standard Library

Listing 4.1: The public interface to the pair class. [from: examples/ClassCluster/Pair.h]

3 @interface Pair : NSObject {}
4 - (Pair*) initWithFloat:(float)a float:(float)b;
5 - (Pair*) initWithInt:(int)a int:(int)b;
6 - (float) firstFloat;
7 - (float) secondFloat;
8 - (int) firstInt;
9 - (int) secondInt;

10 @end

Listing 4.2: The private interfaces to the concrete pair classes. [from: examples/Class-

Cluster/Pair.m]

3 @interface IntPair : Pair {
4 int first;
5 int second;
6 }
7 @end

8 @interface FloatPair : Pair {
9 float first;

10 float second;
11 }
12 @end

Listing 4.3: The implementation of the public pair class. [from: examples/ClassCluster/-

Pair.m]

14 @implementation Pair
15 - (Pair*) initWithFloat: (float)a float: (float)b
16 {
17 [self release];
18 return [[FloatPair alloc] initWithFloat: a float: b];
19 }
20 - (Pair*) initWithInt: (int)a int: (int)b
21 {
22 [self release];
23 return [[IntPair alloc] initWithInt: a int: b];
24 }
25 - (float) firstFloat { return 0; }
26 - (float) secondFloat { return 0; }
27 - (int) firstInt { return 0; }
28 - (int) secondInt { return 0; }
29 @end

4.1. General Concepts 83

Typically, an object will be created by first sending +alloc to the Pair class and
then sending the result the initialization message. The object returned from +alloc

is not required, and so is released here and a new object returned instead.
Listing 4.4 shows the implementations of the private pair classes. Each of

these only implements a single constructor, the one relevant to its data type.
The accessor methods then either return instance variables or casts of instance
variables, allowing both kinds of pair to return ints or floats. One method from
NSObject is implemented by both, -description, which provides a human-readable
description of the object. Note that neither of these call the designated initializer
in the superclass; this is quite bad style, but was done to simplify the example.

Listing 4.4: The implementation of the private pair classes. [from: examples/ClassClus-

ter/Pair.m]

31 @implementation IntPair
32 - (Pair*) initWithInt: (int)a int: (int)b
33 {
34 first = a;
35 second = b;
36 return self;
37 }
38 - (NSString*) description
39 {
40 return [NSString stringWithFormat: @"(%d, %d)",
41 first, second];
42 }
43 - (float) firstFloat { return (float)first; }
44 - (float) secondFloat { return (float)second; }
45 - (int) firstInt { return first; }
46 - (int) secondInt { return second; }
47 @end

48 @implementation FloatPair
49 - (Pair*) initWithFloat: (float)a float: (float)b
50 {
51 first = a;
52 second = b;
53 return self;
54 }
55 - (NSString*) description
56 {
57 return [NSString stringWithFormat: @"(%f, %f)",
58 (double)first, (double)second];
59 }
60 - (float) firstFloat { return first; }

84 Chapter 4. Foundation: The Objective-C Standard Library

61 - (float) secondFloat { return second; }
62 - (int) firstInt { return (int)first; }
63 - (int) secondInt { return (int)second; }
64 @end

Users of the pair class now don’t have to be aware of either of the private
classes. A simple test program that creates one of each can demonstrate this.
Listing 4.5 shows a short program that just creates two pair objects and logs
them. The format string provided to NSLog will cause the -description method in
each to be called.

Listing 4.5: Demonstrating the pair classes. [from: examples/ClassCluster/test.m]

1 #import "Pair.h"
2
3 int main(void)
4 {
5 [NSAutoreleasePool new];
6 Pair *floats = [[Pair alloc] initWithFloat:0.5 float:12.42];
7 Pair *ints= [[Pair alloc] initWithInt:1984 int:2001];
8 NSLog(@"Two floats: %@", floats);
9 NSLog(@"Two ints: %@", ints);

10 return 0;
11 }

Running this program gives the following output:

2009-01-14 14:27:55.091 a.out[80326:10b] Two floats: (0.500000, 12.420000)
2009-01-14 14:27:55.093 a.out[80326:10b] Two ints: (1984, 2001)

A more full implementation of this cluster would have named constructors,
such as +pairWithInt:int:, which would avoid the need to allocate and then free
an instance of the Pair object. The alternate way of avoiding this, as mentioned
earlier, is to use isa-swizzling. The Pair class might have two instance variables
that were unions of an int and a float. Implemented in this way, the initializers
would look like this:

- (Pair*) initWithFloat: (float)a float: (float)b
{

isa = [FloatPair class];
return [self initWithFloat: a float: b];

}

This first line in this implementation sets the class pointer to the subclass,
and the second calls the method again. Because the class pointer has changed,
the second call will invoke the subclass implementation of this method. Each
subclass would then refer to the correct field in the union.

4.3. Basic Data Types 85

4.2 Core Foundation Types

The Core Foundation (CF) library contains a set of C opaque types that have
a similar interface to a number of Cocoa Foundation objects. This similarity is
not accidental. The aim of Core Foundation was to produce a rich common set
of fundamental types that both Cocoa and Carbon applications could use. This
is no longer important, since Carbon did not make the 64-bit switch, but Core
Foundation is still used in a lot of low-level parts of OS X, such as Launchd.

Although C does not have a notion of inheritance on types, Core Foundation
types are built into a hierarchy. At the root is CFType, which implements basic
memory management for CF types. Just as Cocoa objects are reference counted
with -retain and -release messages, Core Foundation types are reference counted
by calling the CFRetain() and CFRelease() functions with them as an argument.

Many of the Core Foundation types use the toll-free bridging mechanism to
interoperate with their Cocoa equivalents. The first field in any CF structure is an
isa pointer, just as with an Objective-C object. Unlike Cocoa objects, however,
this value is always between 0 and 216, a region of memory where no Objective-
C classes will be. When you send a message to a CF object, the message send
function will use a special case for class pointers in this range.

Similarly, when you call a Core Foundation function with a Cocoa object, it
will test that the isa pointer is greater than 0xFFFF and, if it is, then call the
Objective-C runtime functions for method dispatch, bouncing the call back to
Objective-C. This allows you to use the Core Foundation types and Cocoa objects
interchangeably.

A lot of the Cocoa Foundation objects have Core Foundation analogues. The
most common is probably CFString, the equivalent of Cocoa’s NSString. In fact,
both NSString and NSMutableString are class clusters on Cocoa, meaning that their
instances may not really be versions of that class. Under the hood, all three types
are implemented by the NSCFString type. This is true for a lot of class clusters in
Cocoa.

4.3 Basic Data Types

Foundation provides a number of data types, some as primitive C types, and some
as object types. Some of these represent some kind of structured data, such as a
string or a date, while others are collections of arbitrary types.

Any nontrivial Cocoa program is likely to make heavy use of some of these. All
of them provide a rich set of methods for manipulating them, and so you should
take care to check the documentation carefully before implementing new features
for them.

86 Chapter 4. Foundation: The Objective-C Standard Library

4.3.1 Non-Object Types

OpenStep was originally designed to work on very slow computers by today’s stan-
dards. One of the big improvements in performance over Smalltalk came from the
judicious use of non-object types. The most obvious of these are the various prim-
itive integer and floating point types. There are also a small number of structures,
such as NSRange, which are used throughout the Foundation frameworks.

There are several reasons why these are not objects. The first is their size.
Most of these structures are pairs of values. A range is a start and a length, for
example. Adding on four bytes for an isa pointer and four bytes for a reference
count would double their size. By making them structures, they can be passed by
value in registers, which makes calling methods (and functions) that use or return
them faster. Finally, they are rarely aliased. When you set a range or a point or
rectangle somewhere, you want to set a copy.

The most common structures used in Cocoa are

• NSRange, a pair of positive integers representing an offset and length in a
sequence. These are most commonly used with NSStrings for defining sub-
strings, but can be used with arrays and other similar data structures.

• NSPoint, which contains two floating-point values representing x and y coor-
dinates.

• NSSize, which is structurally equivalent to NSPoint. The difference between
NSSize and NSPoint is that the values for a size should never be negative.
As a structure it is unable to enforce this constraint; however, assigning a
negative value to either field may cause exceptions or subtle failures.

• NSRect, an aggregate of an NSPoint and an NSSize that allows a rectangle to
be defined in 2D space.

Note that the last three of these are all most commonly used for drawing
functions in AppKit, even though they are defined in Foundation.

CGFloat, NSUInteger, and Friends

Prior to 10.5, most of these structures used int, float, and similar types.
With 10.5, Apple redefined a lot of types and functions to use the CGFloat and
NSUInteger types. The new NSUInteger and NSInteger types are identical to
C99’s uintptr_t and intptr_t respectively. They are provided for compatibility
with code using C89 or older dialects. CGFloat is defined as a float on 32-bit
platforms and a double on 64-bit.

4.3. Basic Data Types 87

Foundation also includes a number of other primitive data types, includ-
ing a large number of enumerated types. Common examples of these in-
clude NSComparisonResult, which defines NSOrderedAscending, NSOrderedSame, and
NSOrderedDescending, and is used to define how two objects should be ordered.
If you sort a collection of Cocoa objects, the order will be defined by calling a
function or a method that returns one of these three values on pairs of objects in
the collection.

4.3.2 Strings

One of the most commonly used classes in Foundation is NSString. Technically
speaking, this means subclasses of NSString, since it is a class cluster and is never
directly used.

Each concrete subclass of NSString must override at least two of the methods
defined by this class: -length and -characterAtIndex:. The first of these returns
the length of the string, and the second returns a unicode (32-bit) character at a
specified index. Note that the internal format of the string may be in any format.
The class cluster design allows 8-, 16-, and 32-bit strings to all be stored internally
when a given string does not include any characters from outside the set that can
be expressed with these. The programmer can be largely oblivious to this and use
these strings interchangeably: The NSString subclass will transparently handle
any conversion required.

Although these are the only methods that need to be overridden, most of the
methods in NSString will call getCharacters:range:, which writes a substring into a
buffer provided by the caller. Subclasses that implement this directly, rather than
using the superclass implementation that repeatedly calls -characterAtIndex:, will
be much faster.

Note that this method name begins with the get prefix. This is a common
Cocoa idiom for methods that return a value into space provided by the caller.
Contrast this with the length method, which does not have the get prefix, and
just returns the length.

Although it is possible to create your own subclass of NSString, it is generally
a better option to compose objects without subclassing. An example of this in
the Foundation framework is NSAttributedString. This responds to -stringValue

messages to return the string for which it stores attributes, but cannot be used
directly in place of a string. We will look at this class in a lot more detail in
Chapter 8.

NSString has one public subclass (which is also a class cluster), for representing
strings that can be modified: NSMutableString. This adds methods for modifying
characters. Only seven new methods are added by this class, with six being defined
in terms of the one primitive method: replaceCharactersInRange:withString:.

88 Chapter 4. Foundation: The Objective-C Standard Library

The NSString class has a huge number of methods, and 10.5 added a lot more.
A lot of these are to do with path handling. One of the problems that OS X
developers encountered a lot in the early days was the fact that MacOS and
OPENSTEP had different ways of representing paths. MacOS used a multi-routed
file hierarchy, with one file for each disk, with path components separated by
colons. OPENSTEP used a UNIX-style file hierarchy, with a single root and path
components separated by slashes. Mac OS X applications often had to deal with
both.

Fortunately, this was a problem that NeXT had already encountered. Open-
Step applications were able to run on Solaris, OPENSTEP, and Windows. Win-
dows file paths were similar in structure to classic MacOS paths. NSString has
a set of methods for adding and deleting path components and splitting paths
apart in a way that is independent of the underlying filesystem representation. It
is good practice to use these, rather than manually constructing paths.

Recent versions of OS X have begun to move away from using file paths entirely,
with a lot of methods now using URLs in the file:// namespace instead of file paths.
There are fewer methods on NSString for dealing with these; however, the NSURL

class provides a lot more.

4.3.3 Boxed Numbers and Values

The advantage of using primitive types is speed. The disadvantage is that they
don’t integrate well with collections that expect objects. There are three classes
that are provided for working around these. Each of them boxes a specific kind
of primitive value.

Boxing

Boxing is a term used to describe wrapping a primitive value in an object.
High-level languages like Lisp and Smalltalk perform auto-boxing, and so you
can interact with primitive values as if they were objects. Objective-C requires
manual boxing.

The most general boxing class is NSValue, which can contain any primitive type.
This is most commonly used for encapsulating the Foundation struct types, such
as NSRange and storing them in collections. This class has a subclass (actually, a
class cluster), NSNumber, which is used to store single numerical values. Any value
from a char to a long long stored in one of these, and it will correctly cast the
result if any of the -somethingValue family of methods is called. For example, you
can create an NSNumber from a primitive unsigned int like this:

4.3. Basic Data Types 89

[NSNumber numberWithUnsignedInt: myInt];

It could then be stored in a collection, retrieved, passed to another method,
and then turned into a 64-bit value like this:

[aNumber longLongValue];

Be careful when doing this, however. If you do the reverse operation—create
an NSNumber with a 64-bit value and then retrieve a 32-bit or smaller value—then
there will be silent truncation of the result.

Decimal Arithmetic

In addition to the standard binary types inherited from C, and their boxed equiv-
alents, Foundation defines an NSDecimal structure and a NSDecimalNumber boxed
equivalent. These can be used for performing decimal floating point arithmetic.
Some decimal numbers, such as 0.1, cannot be represented as finite binary values.
This is problematic for financial applications, where a fixed number of decimal
digits of precision is required. The NSDecimal type can be used to accomplish this.

There is one remaining boxed value, which is often overlooked. NSNull is a
singleton—only one instance of it ever exists—representing a boxed version of
NULL.

The Many Types of Zero

In C, NULL is defined as (void*)0; a pointer value of zero. Because the void*
type can be silently cast to any pointer, the NULL value can be used for any
pointer. Objective-C adds two new types of zero; nil and Nil, meaning (id)0

and (Class)0 respectively. In addition, there is the boxed version, NSNull and
zero values boxed in NSValue and NSNumber objects. This means that there are
a lot of different ways of expressing zero in Cocoa, depending on the use.

Unlike many of the other classes in Foundation, there is no NSMutableNumber

or NSMutableDecimalNumber. If you need to modify a boxed value, you need to
first unbox it, then perform primitive operations on it, and then box it again.
This makes sense, since operations on primitive values are typically a lot faster
than message sends. In a language like Smalltalk or Lisp, the compiler would try
to transparently turn the object into a primitive value and do this for you, but
Objective-C compilers are not (yet) clever enough to do so.

90 Chapter 4. Foundation: The Objective-C Standard Library

4.3.4 Data

In C, arbitrary data is typically represented in the same way as strings; by char*s.
In Cocoa, using string objects would not work, since they perform character set
conversion. The NSData class exists to encapsulate raw data. You can think of it
as a boxed version of void*, although it also stores a length, preventing pointer
arithmetic bugs from overwriting random memory locations.

You can get a pointer to the object’s data by sending it a -bytes message. It
may seem that this will be more efficient; however, this is not always the case. In
some cases, the underlying representation may be a set of non-contiguous memory
regions, or data in a file that has not been read into memory. When you call -bytes
the object is required to ensure that all of the data is in a contiguous memory
region, which may be an expensive operation. Subsequent operation on the data
will, in the absence of swapping, be very fast.

You can use NSData and its mutable subclass, NSMutableData, for doing simple
file I/O operations. Data objects can be initialized using the contents of a file,
either using file reading operations or using mmap(). Using a memory-mapped
NSData object is often a very convenient way of doing random access on a file. On
32-bit platforms you can exhaust your address space fairly quickly doing this, but
on 64-bit systems you have a lot of spare address space for memory mapped files.

One big advantage of accessing files in this way is that it is very VM-friendly.
If you read the contents of a file into memory and then the system is low on RAM,
then it has to write out your copy to the swap file, even if you haven’t modified it.
If you use a NSData object created with dataWithContentsOfMappedFile: or similar,
then it will simply evict the pages from memory and read them back from the
original file when needed.

Since NSData objects can be initialized from URLs, they provide a very simple
means of accessing the system’s URL loading services. OS X has code for loading
data from a wide variety of URL types, including files, HTTP, and FTP.

4.3.5 Caches and Discardable Data

Memory conservation is an important problem for a lot of modern applications.
In recent years, the price of memory has fallen considerably, and so it becomes
increasingly tempting to use some of it to store results from calculations or data
received over the network. This suddenly becomes a problem when you want to
port your code to a device that has a small amount of memory, like the iPhone,
or when everyone is doing it.

With OS X 10.6, Apple introduced the NSDiscardableContent protocol. This
defines a transactional API for working with objects. Before you use an object
that implements this protocol, you should send it a -beginContentAccess message.

4.3. Basic Data Types 91

If this returns YES, then you can use the object as you would and then send an
-endContentAccess message when you are finished. Other code may send the object
a -discardContentIfPossible message, and if this message is received outside of a
transaction, then the receiver will discard its contents.

This is easiest to understand with a concrete implementation, such as that
provided by a new subclass of NSMutableData called NSPurgeableData. This
behaves in exactly the same way as NSMutableData, but also implements the
NSDiscardableContent protocol. When it receives a -discardContentIfPossible

message, it will free the data that it encapsulates unless it is currently being
accessed.

You may want to combine objects that uses the NSDiscardableContent pro-
tocol with existing code. The -autoContentAccessingProxy method, declared
on NSObject, lets you do this safely. This returns a proxy object that calls
-beginContentAccess on the receiver when it is created, and -endContentAccess

when it is destroyed, passing all other messages on to the original object. This
prevents the contents of the object from being freed as long as the proxy exists.

This is useful for storing cached data, for example, images rendered from other
data in the application, that can be regenerated if required. The object remains
valid, but its contents do not. This means that you can use it as a form of zeroing
weak reference in non-garbage-collected environments. It is more flexible than a
weak reference, however, because it provides fine-grained control over when it can
be freed.

Most commonly, you will use objects that implement this protocol in con-
junction with NSCache. This class is conceptually similar to a dictionary but is
designed for storing discardable content. When you add an object to a cache, you
use the -setObject:forKey:cost: method. The third argument defines the cost
of keeping this object in the cache. When the total cost exceeds the limit set
by -setTotalCostLimit:, the cache will attempt to discard the contents of some
objects (and, optionally, the objects themselves) to reduce the cost.

Most commonly the cost is memory. When using NSPurgeableData instances,
you would use the size as the limit. You might also use caches to limit the number
of objects holding some other scarce resource, such as file handles, or even some
remote resources hosted on a server somewhere.

4.3.6 Dates and Time

Time on POSIX systems is stored in time_t values. In a traditional UNIX system,
this was a 32-bit signed value counting seconds since the UNIX epoch (the start
of 1970). This means that there will be a new version of the Y2K bug some time
in 2038, when this value overflows. On OS X, the time_t is a long, meaning that
it is 32 bit on 32-bit systems and 64 bit on 64-bit systems. If people are still using

92 Chapter 4. Foundation: The Objective-C Standard Library

OS X in three hundred trillion years, when this overflows, then they probably will
have had enough time to port their software to some other system.

Since the implementation of time_t is implementation-dependent, it was not
a good fit for Cocoa. On some platforms it is an integer, on others a floating
point value. Cocoa defines a NSTimeInterval type, which is a double. As a floating
point value, the accuracy of an NSTimeInterval depends on the size of the value. A
double has a 53-bit mantissa and a 10-bit exponent. If the least significant bit of
the mantissa is a millisecond, then the value can store 9×1012 seconds, or around
285,427 years. If you use a range of under around a hundred thousand years, it
will store half milliseconds, and so on. For any value that could be stored in a
32-bit time_t, the value will be accurate to under a microsecond, which is usually
more accurate than is needed. The time slicing quantum for most UNIX-like
systems is around 10ms, meaning that you are very unlikely to get timer events
more accurately than every few tens of milliseconds.

As with other primitive values, Foundation defines both the basic primitive
type and a number of classes for interacting with them in a more friendly way.
These gain a little more precision by using the start of 2001 (the year OS X was
publicly released) as their reference date.

Date handling is much more complex than time handling. While an
NSTimeInterval can represent a time four hundred years ago easily, getting the
corresponding calendar date is much more complex. The Gregorian calendar was
introduced in 1582, but Britain didn’t switch over until 1752 and Russia didn’t
switch until 1918. The existence of leap years and leap seconds further complicates
matters, meaning that a NSTimeInterval may represent different dates in different
locales. And all of this is before you get into the matter of time zones.

The NSDate class is a fairly simple wrapper around a time interval from some
reference date (2001 by default, although the UNIX epoch and the current time-
stamp are other options). The NSCalendarDate subclass provides a version in the
Gregorian calendar, although its use is discouraged.

With 10.4, Apple introduced the NSCalendar class, which encapsulates a cal-
endar. A calendar is a mechanism from mapping between time intervals and
dates. Early calendars were simple means of mapping between fixed dates, such
as the summer and winter solstices, and seasons. Modern calendars map between
time intervals and more complex dates. Cocoa understands a number of different
calendars, including the Gregorian, Buddhist, Chinese, and Islamic calendars.

If you create an NSCalendar with +autoupdatingCurrentCalendar, then the cal-
endar will automatically update depending on the currently specified locale. This
means you should avoid caching values returned from the calendar, since they may
change at arbitrary points in the future.

A NSCalendar allows you to turn a NSDate into an NSDateComponents object. This
object is roughly equivalent to the POSIX struct tm. It allows the year, month,

4.4. Collections 93

day, day of the week, and so on to be extracted, based on the interpretation of an
NSDate in a specified calendar.

In general, you should always store dates in NSDate objects and only convert
them to a given calendar when you want to display them in the user interface.
This is one of the reasons why using NSCalendarDate is discouraged—as an NSDate

subclass it is very tempting to use it for long-term storage—the other being that
it is limited to the Gregorian calendar, making it unsuitable for use in Japan,
China, and much of the rest of the world outside the Americas and Europe.

4.4 Collections

A big part of any language’s standard library is providing collections, and Foun-
dation is no exception. It includes a small number of primitive collection types
defined as opaque C types and then uses these to build more complex Objective-C
types.

In contrast with the C++ standard template library, Cocoa collections are
heterogeneous and can contain any kind of object. All objects are referenced by
pointer, so the amount of space needed to store pointers to any two objects is
always the same: one word.

4.4.1 Comparisons and Ordering

For ordered collections, objects implement their own comparison. While almost
any object can be stored in an array, there are more strict requirements for those
that are to be stored in a set (which doesn’t allow duplicates) or used as keys in
a dictionary. Objects that are stored in this way must implement two methods:
-hash and -isEqual:. These have a complex relationship.

1. Any two objects that are equal must return YES to isEqual: when compared
in either order.

2. Any two objects that are equal must return the same value in response to
-hash.

3. The hash of any object must remain constant while it is stored in a collection.

The first of these is somewhat difficult to implement by itself. It means that
the following must always be true:

[a isEqual: b] == [b isEqual: a]

94 Chapter 4. Foundation: The Objective-C Standard Library

If this is ever not true, then some very strange and unexpected behavior may
occur. This may seem very easy to get right, but what happens when you compare
an object to its subclass or to an object of a different class? Some classes may allow
comparisons with other classes; for example, an object encapsulating a number
may decide it is equal to another object if they both return the same result to
intValue.

An example of when this can cause problems is in the use of objects as keys in
dictionaries. When you set a value for a given key in a dictionary, the dictionary
first checks if the key is already in the dictionary. If it is, then it replaces the value
for that key. If not, then it inserts a new value.

If [a isEqual: b] returns YES but [b isEqual: a] returns NO, then you will get
two different dictionaries depending on whether you set a value for the key a first
and then the value for the key b. In general, therefore, it is good practice to only
use one kind of object as keys in any given collection (most commonly NSStrings).

Listing 4.6 gives a simple example of this. This defines three new classes. The
first, A, is a simple superclass for both of the others, which returns a constant value
for the hash. It implements copyWithZone: in a simple way. Since this object is
immutable (it has no instance variables, therefore no state, therefore no mutable
state), instead of copying we just return the original object with its reference count
incremented. This is required since the dictionary will attempt to copy keys, to
ensure that they are not modified outside the collection (more on this later).

Listing 4.6: An invalid implementation of isEqual:[from: examples/isEqualFailure/dict.m]

1 #import <Foundation/Foundation.h>
2
3 @interface A : NSObject {}
4 @end

5 @interface B : A {}
6 @end

7 @interface C : A {}
8 @end

9 @implementation A
10 - (id) copyWithZone: (NSZone*)aZone { return [self retain]; }
11 - (NSString*)description { return [self className]; }
12 - (NSUInteger)hash { return 0; }
13 @end

14 @implementation B
15 - (BOOL) isEqual: (id)other { return YES; }
16 @end

17 @implementation C
18 - (BOOL) isEqual: (id)other { return NO; }
19 @end

20

4.4. Collections 95

21 int main(void)
22 {
23 id pool = [NSAutoreleasePool new];
24 NSObject *anObject = [NSObject new];
25 NSMutableDictionary *d1 = [NSMutableDictionary new];
26 [d1 setObject: anObject forKey: [B new]];
27 [d1 setObject: anObject forKey: [C new]];
28 NSMutableDictionary *d2 = [NSMutableDictionary new];
29 [d2 setObject: anObject forKey: [C new]];
30 [d2 setObject: anObject forKey: [B new]];
31 NSLog(@"d1: %@", d1);
32 NSLog(@"d2: %@", d2);
33 return 0;
34 }

The two subclasses, B and C, have similarly trivial implementations of the
-isEqual: method. One always returns YES; the other returns NO. In the main()

function, we create two mutable dictionaries and set two objects for them, one
with an instance of A and one with an instance of B as keys.

When we run the program, we get the following result:

$ gcc -framework Foundation dict.m &&./a.out
2009-01-07 16:54:15.735 a.out[28893:10b] d1: {

B = <NSObject: 0x1003270>;
}
2009-01-07 16:54:15.737 a.out[28893:10b] d2: {

B = <NSObject: 0x1003270>;
C = <NSObject: 0x1003270>;

}

The first dictionary only contains one object, the second one contains two.
This is a problem. In a more complex program, the keys may come from some
external source. You could spend a long time wondering why in some instances
you got a duplicate key and in others you got different ones.

Equality on objects of different classes makes the hash value even more tricky,
since both objects must have the same hash value if they are equal. This means
that both classes must use the same hash function, and if one has some state not
present in the other, then this cannot be used in calculating the hash. Alterna-
tively, both can return the same, constant, value for all objects. This is simple,
but if taken to its logical conclusion means all objects must return 0 for their hash,
which is far from ideal.

The third requirement is the hardest of all to satisfy in theory, but the easiest
in practice. An object has no way of knowing when it is in a collection. If you use

96 Chapter 4. Foundation: The Objective-C Standard Library

an object as a key in a dictionary, or insert it into a set, then modify it, then its
hash might change. If its hash doesn’t change, then it might now be breaking the
second condition.

In practice, you can avoid this by simply avoiding modifying objects while they
are in collections.

4.4.2 Primitive Collections

As mentioned earlier, Foundation provides some primitive collections as C opaque
types. As of 10.5, these gained an isa pointer and so can be used both via their
C and Objective-C interfaces. The biggest advantage of this is that they can be
stored in other collections without wrapping them in NSValue instances. Most
of the time, if you use these, you will want to use them via their C interfaces.
These are faster and provide access to more functionality. The object interfaces
are largely to support collections containing weak references in a garbage-collected
environment. If you are not using garbage collection, or wish to use the primitive
collections to store other types of value, then the C interfaces are more useful.

The simplest type of collection defined in Foundation, beyond the primitive C
types like arrays and structures, is NSHashTable. This is a simple hash table imple-
mentation. It stores a set of unique values identified by pointers. A hash table is
created using a NSHashTableCallBacks structure, which defines five functions used
for interacting with the objects in the collection:

• hash defines a function returning hash value for a given pointer.

• isEqual provides the comparison function, used for testing whether two
pointers point to equal values.

• retain is called on every pointer as it is inserted into the hash table.

• release is the inverse operation, called on objects that are removed.

• describe returns an NSString describing the object, largely for debugging
purposes.

All of these correspond to methods declared by NSObject, and you
can store these in a hash table by using the predefined set of callbacks
called NSObjectHashCallBacks or NSNonRetainedObjectHashCallBacks, depending on
whether you want the hash table to retain the objects when they are inserted.

The hash table model is extended slightly by NSMapTable. An NSMapTable is
effectively a hash table storing pairs and only using the first element for compar-
isons. These are defined by two sets of callbacks, one for the key and one for the
value.

4.4. Collections 97

Unlike other Cocoa collections, both of these can be used to store non-object
types, including integers that fit in a pointer, or pointers to C structures or arrays.

4.4.3 Arrays

Objective-C, as a pure superset of C, has access to standard C arrays, but since
these are just pointers to a blob of memory they are not very friendly to use.
OpenStep defined two kinds of arrays: mutable and immutable. The NSArray

class implements the immutable kind and its subclass NSMutableArray implements
the mutable version.

Unlike C arrays, these can only store Objective-C objects. If you need an array
of other objects, you can either use a C array directly or create a new Objective-C
class that contains an array of the required type.

NSArray is another example of a class cluster. The two primitive methods in
this case are -count and -objectAtIndex:. These have almost identical behavior
to their counterparts in NSString, although the latter returns objects instead of
unicode characters.

As with strings, immutable arrays can be more efficient in terms of storage
than their C counterparts. When you create an array from a range in another
array, for example, you may get an object back that only stores a pointer to the
original array and the range—a view on the original array—avoiding the need to
copy large numbers of elements.

Since Cocoa arrays are objects, they can do a lot of things that plain data
arrays in C can’t. The best example of this is the -makeObjectsPerformSelector:

method, which sends a selector to every single element in an array. You can use
this to write some very concise code.

With 10.5, Apple added NSPointerArray. This can store arbitrary pointers
(but not non-pointer types). Unlike NSArray, it can store NULL values and in the
presence of garbage collection can be configured to use weak references. In this
case, a NULL value will be used for any object that is destroyed while in the array.

Variadic Initializers

Most Cocoa collections have a variadic constructor and initializer. Examples
of this include +arrayWithObjects: and +dictionaryWithObjectsAndKeys:. These
take a variable number of arguments, terminated with nil and return a constant
array or dictionary with the named elements. These can be very useful for
quickly constructing collections where the number of elements is known at
compile time.

98 Chapter 4. Foundation: The Objective-C Standard Library

The Cocoa arrays are very flexible. They can be used as both stacks and
queues without modification since they allow insertion at both ends with a single
method. Using an array as a stack is very efficient. A stack is defined by three
operations: push, pop, and top. The first of these adds a new object to the top
of the stack. NSMutableArray’s -addObject: method does this. The pop operation
removes the last object to have been pushed onto the stack, which is exactly what
-removeLastObject does. The remaining operation, top, gets the object currently
on the top of the stack (at the end of the array) and is provided by NSArray’s
-lastObject method.

Using an array as a queue is less efficient. A queue has objects inserted at one
end and removed from the other. You can cheaply insert objects at the end of
the array, but inserting them at the front is very expensive. Similarly, you can
remove the object from the end of an array very efficiently, but removing the first
one is more expensive. The removeObjectAtIndex: method may not actually move
the objects in the array up one if you delete the first element, however. Since
NSMutableArray is a class cluster, certain implementations may be more efficient
for removing the first element, but there is no way to guarantee this.

4.4.4 Dictionaries

Dictionaries, sometimes called associative arrays are implemented by the
NSDictionary class. A dictionary is a mapping from objects to other objects,
a more friendly version of NSMapTable that only works for objects.

It is common to use strings as keys in dictionaries, since they meet all of the
requirements for a key. In a lot of Cocoa, keys for use in dictionaries are defined
as constant strings. Somewhere in a header file you will find something like:

extern NSString *kAKeyForSomeProperty;

Then in a private implementation file somewhere it will say

NSString *kAKeyForSomeProperty = @"kAKeyForSomeProperty";

This pattern is found all over Cocoa and in various third-party frameworks.
Often you can just use the literal value, rather than the key, but this will use a
bit more space in the binary and be slightly slower, so there isn’t any advantage
in doing so.

As you might expect, the mutable version of a dictionary is an
NSMutableDictionary, which adds -setObject:forKey: and -removeObjectForKey:

primitive methods, and a few convenience methods.
Dictionaries can often be used as a substitute for creating a new class. If all

you need is something storing some structured data, and not any methods on this
data, then dictionaries are quite cheap and are very quick to create. You can
create a dictionary in a single call, like this:

4.4. Collections 99

[NSDictionary dictionaryWithObjectsAndKeys:
image, @"image",
string, @"caption", nil];

This is a variadic constructor that takes a nil-terminated list of objects as
arguments and inserts each pair into the dictionary as object and key. You can
then access these by sending a -objectForKey: message to the resulting dictionary.

Cocoa uses this in quite a few places. Notifications store a dictionary, with a
specific set of keys defined for certain notification types. This makes it easy to
add additional data in the future.

4.4.5 Sets

Just as NSDictionary is an object built on top of the primitive NSMapTable, NSSet
is an object built on top of the primitive NSHashTable. As in mathematics, sets in
Cocoa are unordered collections of unique objects. Unlike an array, an object can
only be in a set once.

The rules for determining whether two objects are equal are very simple. Ob-
jects in a set are first split into buckets using their hash, or some bits of the their
hash for small sets. When a new object is inserted, the set first finds the cor-
rect bucket for its hash. It then tests it with every object in that bucket using
-isEqual:. If none of them match it, then the new object is inserted.

For a NSSet, this is only done when the set is initialized from an array or a list
of objects as arguments. NSMutableSet allows objects to be added to an existing
set and will perform this check every time. As you might imagine, this is very
slow (O(n)) if all of the objects have the same hash value.

In addition to basic sets, OpenStep provided NSCountedSet. This is a subclass
of NSMutableSet and so is also mutable. Unlike normal sets, counted sets (also
known as bags) allow objects to exist more than once in the collection. Like
sets, they are unordered. Another way of thinking of them is unordered arrays,
although an array allows distinct-but-equal objects to exist in the same collection,
while a counted set just keeps a count of objects.

With 10.3, NSIndexSet was also added. This is a set of integers that can be
used as indexes in an array or some other integer-indexed data structure. Inter-
nally, NSIndexSet stores a set of non-overlapping ranges, so if you are storing sets
containing contiguous ranges, then it can be very efficient.

NSIndexSet is not very useful by itself. It is made useful by NSArray methods
such as -objectsAtIndexes:, which returns an array containing just the specified
elements. Since the indexes are all within a certain range, operations on an NSArray

using an index set only require bounds checking once, rather than for every lookup,
which can make things faster.

100 Chapter 4. Foundation: The Objective-C Standard Library

4.5 Enumeration

The traditional way of performing enumeration on Foundation collections is via the
NSEnumerator. This is a very simple object that responds to a -nextObject message
and returns either the next object, or nil if there is no next object. To enumerate
a collection using an enumerator, you simply call a method like -objectEnumerator

on the collection and then loop sending -nextObject to the returned enumerator
until it returns nil.

With 10.5, Apple added a fast enumeration system. This uses a new for loop
construct, part of Objective-C 2.0, which handles collections.

A lot of the time, however, you don’t need to use enumeration directly at
all. You can use something like NSArray’s -makeObjectsPerformSelector: method.
Listing 4.7 shows an example of all three ways of sending a single message to all
objects in an array.

Listing 4.7: The three ways of sending a message to an object in Cocoa.[from:

examples/Enumeration/enum.m]

1 #import <Foundation/Foundation.h>
2
3 @interface NSString (printing)
4 - (void) print;
5 @end

6 @implementation NSString (printing)
7 - (void) print
8 {
9 fprintf(stderr, "%s\n", [self UTF8String]);

10 }
11 @end

12
13 int main(void)
14 {
15 [NSAutoreleasePool new];
16 NSArray* a =
17 [NSArray arrayWithObjects: @"this", @"is", @"an", @"array", nil];
18
19 NSLog(@"The Objective-C 1 way:");
20 NSEnumerator *e=[a objectEnumerator];
21 for (id obj=[e nextObject]; nil!=obj ; obj=[e nextObject])
22 {
23 [obj print];
24 }
25 NSLog(@"The Leopard way:");
26 for (id obj in a)

4.5. Enumeration 101

27 {
28 [obj print];
29 }
30 NSLog(@"The simplest way:");
31 [a makeObjectsPerformSelector: @selector(print)];
32 return 0;
33 }

Lines 20–24 show how to use an enumerator. This is quite complex and easy
to make typos in, so in Étoilé we hide this pattern in a FOREACH macro (which also
does some caching to speed things up slightly). A simpler version is shown in lines
26–29, using the fast enumeration pattern. This is both simpler code and faster,
which is quite a rare achievement. The final version, on line 31, is even simpler.
This is a single line. If you want to send more than one message, or messages with
more than one argument, then this mechanism is unavailable.

Running this code, we get

$ gcc -std=c99 -framework Foundation enum.m && ./a.out
2009-01-07 18:06:41.014 a.out[30527:10b] The Objective-C 1 way:
this
is
an
array
2009-01-07 18:06:41.020 a.out[30527:10b] The Leopard way:
this
is
an
array
2009-01-07 18:06:41.021 a.out[30527:10b] The simplest way:
this
is
an
array

4.5.1 Enumerating with Higher-Order Messaging

An additional way of performing enumeration, among other things, was proposed
by Marcel Weiher. The mechanism, called higher-order messaging (HOM) uses
the proxy capabilities of Objective-C. It adds methods like -map to the collection
classes. When these are called, they return a proxy object that bounces every
message sent to them to every object in the array.

Listing 4.8 shows a -map method added as a category on NSArray. This is taken
from the EtoileFoundation framework, with the Étoilé-specific macros removed.

102 Chapter 4. Foundation: The Objective-C Standard Library

This framework is available under a BSD license, and so you can use it in your
own projects if you wish.

Listing 4.8: A example of a map method implemented using higher-order mes-
saging. [from: examples/HOM/NSArray+map.m]

3 @interface NSArrayMapProxy : NSProxy {
4 NSArray * array;
5 }
6 - (id) initWithArray:(NSArray*)anArray;
7 @end

8
9 @implementation NSArrayMapProxy

10 - (id) initWithArray:(NSArray*)anArray
11 {
12 if (nil == (self = [self init])) { return nil; }
13 array = [anArray retain];
14 return self;
15 }
16 - (id) methodSignatureForSelector:(SEL)aSelector
17 {
18 for (object in array)
19 {
20 if([object respondsToSelector:aSelector])
21 {
22 return [object methodSignatureForSelector:aSelector];
23 }
24 }
25 return [super methodSignatureForSelector:aSelector];
26 }
27 - (void) forwardInvocation:(NSInvocation*)anInvocation
28 {
29 SEL selector = [anInvocation selector];
30 NSMutableArray * mappedArray =
31 [NSMutableArray arrayWithCapacity:[array count]];
32 for (object in array)
33 {
34 if([object respondsToSelector:selector])
35 {
36 [anInvocation invokeWithTarget:object];
37 id mapped;
38 [anInvocation getReturnValue:&mapped];
39 [mappedArray addObject:mapped];
40 }
41 }

4.5. Enumeration 103

42 [anInvocation setReturnValue:mappedArray];
43 }
44 - (void) dealloc
45 {
46 [array release];
47 [super dealloc];
48 }
49 @end

50
51 @implementation NSArray (AllElements)
52 - (id) map
53 {
54 return [[[NSArrayMapProxy alloc] initWithArray:self] autorelease];
55 }
56 @end

The -map method itself is relatively simple; it just creates an instance of the
proxy, associates it with the array, and returns it. You would use this category
like this:

[[array map] stringValue];

This would return an array containing the result of sending -stringValue to
every element in array. When you send the -stringValue message to the proxy,
the runtime calls the -methodSignatureForSelector: method. This is used to find
out the types of the method. This implementation simply calls the same method
on every object in the array until it finds one which returns a value.

Next, the -forwardInvocation: method will be called. This has an encapsulated
message as the argument. The body of this method sends this message to every
object in the array and then adds the result to a new array.

Unlike the -makeObjectsPerformSelector:, messages sent to objects using
higher-order messaging can have an arbitrary number of arguments. Exactly the
same mechanism can be used to implement a variety of other high-level operations
on collections, such as folding or selecting.

Although the use of the forwarding mechanism makes this relatively slow,
compared with other enumeration mechanisms, the fact that it preserves high-level
information in the source code can make it attractive. It results in less duplicated
code and code that is easier to write. HOM is used a lot in modern Smalltalk
implementations, although the initial implementation was in Objective-C.

Higher-order messaging is not limited to enumeration. It is also used for a
wide number of other tasks, including sending messages between threads. We’ll
look more at how to use it for asynchronous messaging in Chapter 23.

104 Chapter 4. Foundation: The Objective-C Standard Library

4.5.2 Enumerating with Blocks

OS X 10.6 added blocks, which we looked at in the last chapter, to the C family
of languages. Blocks by themselves are quite useful, but their real power comes
from their integration with the rest of the Foundation framework. This integration
comes from a number of new methods, such as this one on NSArray:

- (void)enumerateObjectsUsingBlock:
(void (^)(id obj, NSUInteger idx, BOOL *stop))block;

The argument is a block taking three arguments: an object, the index at
which that object appears in the array, and a pointer to a boolean value to set if
enumeration should stop. We could rewrite the same enumeration example that
we used earlier with a block as:

[a enumerateObjectsUsingBlock:
^(id obj, NSUInteger idx, BOOL *stop) { [obj print]; }];

The requirement to put the types of the block arguments inline makes this quite
difficult to read, but you could split it up a bit by declaring the block separately
and then calling it. In this example, the block doesn’t refer to anything other than
its arguments, so using a block is equivalent to using a function pointer, with the
exception that a block can be declared inline.

The method shown above is a simplified version. The more complex variant
includes an options parameter that is an NSEnumerationOptions value. This is an
enumerated type that specifies whether the enumeration should proceed forward,
in reverse, or in parallel. If you specify NSEnumerationConcurrent, then the array
may spawn a new thread or use a thread from a pool to split the enumeration
across multiple processors. This is usually only a good idea for large arrays or
blocks that take a long time to execute.

Foundation defines two other kinds of blocks for use with collections: test blocks
and comparator blocks. A test block returns a BOOL, while a comparator is defined
by the NSComparator typedef:

typedef NSComparisonResult (^NSComparator)(id obj1, id obj2);

Comparator blocks are used everywhere that sorting might be performed. Both
mutable and immutable arrays can be sorted with comparators but so can sets
and dictionaries. This includes some quite complex methods, such as this one
from NSDictionary:

- (NSArray*)keysSortedByValueUsingComparator: (NSComparator)cmptr;

The argument to this method is a comparator block that defines the ordering
of two objects. This will be called with all of the values in the dictionary, and
the method will return an array containing all of the keys in the order that their

4.5. Enumeration 105

values are listed. This can then be used to visit the values in this order by sending
-valueForKey: messages to the dictionary.

Test blocks are used for filtering. Unlike comparators, they do not have a
specific type associated with them because each class defines the arguments that a
test block takes. For example, NSIndexSet test blocks take an NSUInteger argument,
while tests for NSDictionary take both the key and value as arguments.

Most collection classes, including those outside of Foundation, such as those
managed by the Core Data framework support NSPredicate as a means of filtering.
As of OS X 10.6, you can also create NSPredicate instances from test blocks. You
can also create NSSortDescriptor instances, which are heavily used in conjunction
with Cocoa bindings from comparator blocks and, using the -comparator method
turn an NSSortDescriptor object into a comparator block.

4.5.3 Supporting Fast Enumeration

From time to time, you will want to implement your own collection classes, and
want to use them with the new for...in loops. If your collection can create enu-
merators, then you can use the enumerator as the enumerator’s support for fast
enumeration, but this is slightly unwieldy and slow. Full support requires collec-
tions to conform to the NSFastEnumeration protocol and implement the following
method:

- (NSUInteger)countByEnumeratingWithState: (NSFastEnumerationState*)state
objects: (id*)stackbuf

count: (NSUInteger)len;

Understanding this method requires understanding the
NSFastEnumerationState structure. This is defined in the NSEnumerator.h
Foundation header, as shown in Listing 4.9.

Listing 4.9: The fast enumeration state structure. [from: NSEnumerator.h]

19 typedef struct {
20 unsigned long state;
21 id *itemsPtr;
22 unsigned long *mutationsPtr;
23 unsigned long extra[5];
24 } NSFastEnumerationState;

The first time this method is called, it should initialize the mutationsPtr field
of this structure. This must be a valid pointer to something at least as big as a
long. The caller will automatically cache the pointed-to value when the method is
first called and then compare this on every subsequent iteration through the loop.
If it has changed, then an exception will be thrown. In contrast, an NSEnumerator

has no way of knowing if the collection it is enumerating has changed.

106 Chapter 4. Foundation: The Objective-C Standard Library

The second argument is a pointer to a buffer allocated by the caller, and the
third is the size of this buffer. If the collection stores objects internally in a C array,
it can return a pointer to this directly by setting state->itemsPtr to the array and
returning the number of elements. Otherwise, it copies up to len elements into
stackbuf and returns the number it copies. The compiler currently sets len to
16, and so only a single message send is required for every 16 items enumerated.
In contrast, at least 32 will be required when using an enumerator (one to the
enumerator and one from the enumerator to the collection). It is easy to see why
Apple calls this the ‘fast enumeration’ system.

To see how you can support fast enumeration in your own collections, we
will create two new classes, as shown in Listing 4.10. These both conform to the
NSFastEnumeration protocol. One is mutable and the other immutable. Supporting
fast enumeration is done slightly differently for mutable and immutable objects.

Listing 4.10: Integer array interfaces. [from: examples/FastEnumeration/IntegerArray.h]

1 #import <Foundation/Foundation.h>
2
3 @interface IntegerArray : NSObject<NSFastEnumeration> {
4 NSUInteger count;
5 NSInteger *values;
6 }
7 - (id)initWithValues: (NSInteger*)array count: (NSUInteger)size;
8 - (NSInteger)integerAtIndex: (NSUInteger)index;
9 @end

10
11 @interface MutableIntegerArray : IntegerArray {
12 unsigned long version;
13 }
14 - (void)setInteger: (NSInteger)newValue atIndex: (NSUInteger)index;
15 @end

The most noticeable difference in the interface is that the mutable version has
a version instance variable. This is used to track whether the object has changed
during enumeration.

The immutable version is shown in Listing 4.11. The first two methods are
very simple; they just initialize the array and allow values to be accessed. The
array is a simple C buffer, created with malloc(). The -dealloc method frees the
buffer when the object is destroyed.

The fast enumeration implementation here returns a pointer to the instance
variable, on line 28. This code is written to support partial enumeration, where
the caller only requests some subset of the total collection. This is not currently
supported by the compiler, but, because this is just an Objective-C method, you
cannot guarantee that it will not be called directly by some code wanting just the

4.5. Enumeration 107

Listing 4.11: A simple immutable integer array supporting fast enumeration.
[from: examples/FastEnumeration/IntegerArray.m]

3 @implementation IntegerArray
4 - (id)initWithValues: (NSInteger*)array count: (NSUInteger)size
5 {
6 if (nil == (self = [self init])) { return nil; }
7 count = size;
8 NSInteger arraySize = size * sizeof(NSInteger);
9 values = malloc(arraySize);

10 memcpy(values, array, arraySize);
11 return self;
12 }
13 - (NSInteger)integerAtIndex: (NSUInteger)index
14 {
15 if (index >= count)
16 {
17 [NSException raise: NSRangeException
18 format: @"Invalid index"];
19 }
20 return values[index];
21 }
22 - (NSUInteger)countByEnumeratingWithState: (NSFastEnumerationState*)state
23 objects: (id*)stackbuf
24 count: (NSUInteger)len
25 {
26 NSUInteger n = count - state->state;
27 state->mutationsPtr = (unsigned long *)self;
28 state->itemsPtr = (id*)(values + state->state);
29 state->state += n;
30 return n;
31 }
32 - (void)dealloc
33 {
34 free(values);
35 [super dealloc];
36 }
37 @end

values after a certain element. The state field will be set to the first element that
the caller wants. In normal use, this will be either 0 or count. The items pointer
is set to the correct offset in the instance variable array using some simple pointer
arithmetic.

The state field is updated to equal the index of the last value and the array
is returned. Any for...in loop will call this method twice. After the first call the

108 Chapter 4. Foundation: The Objective-C Standard Library

state field will have been set to count. In the second call, the value of n will be
set to 0 and the loop will terminate.

Note that the mutations pointer is set to self. Dereferencing this will give the
isa pointer. This class does not support modifying the values, but some other
code may change the class of this object to a subclass that does. In this case,
the mutation pointer will change. This is very unlikely; for most cases the self

pointer is a convenient value because it is a pointer that is going to remain both
valid and constant for the duration of the loop.

The mutable case is a bit more complicated. This is shown in Listing 4.12.
This class adds a method, allowing values in the array to be set. Note that on line
42 the version is incremented. This is used to abort enumeration when the array
is modified.

The enumeration method in this class sets the mutation pointer to the address
of the version instance variable. The initial value of this is cached by the code
generated from the loop construct, and every loop iteration will be compared
against the current value to detect changes.

Listing 4.12: A simple mutable integer array supporting fast enumeration. [from:

examples/FastEnumeration/IntegerArray.m]

39 @implementation MutableIntegerArray
40 - (void)setInteger: (NSInteger)newValue atIndex: (NSUInteger)index
41 {
42 version++;
43 if (index >= count)
44 {
45 values = realloc(values, (index+1) * sizeof(NSInteger));
46 count = index + 1;
47 }
48 values[index] = newValue;
49 }
50 - (NSUInteger)countByEnumeratingWithState: (NSFastEnumerationState*)state
51 objects: (id*)stackbuf
52 count: (NSUInteger)len
53 {
54 NSInteger n;
55 state->mutationsPtr = &version;
56 n = MIN(len, count - state->state);
57 if (n >= 0)
58 {
59 memcpy(stackbuf, values + state->state, n * sizeof(NSInteger));
60 state->state += n;
61 }
62 else

4.5. Enumeration 109

63 {
64 n = 0;
65 }
66 state->itemsPtr = stackbuf;
67 return n;
68 }
69 @end

Because the mutable array’s internal array can be reallocated and become
invalid, we copy values out onto the stack buffer. This is not technically required;
the collection is not thread-safe anyway, and so the array cannot be accessed in a
way that would cause problems, but it’s done here as an example of how to use
the stack buffer.

The stack buffer has a fixed size. This is typically 16 entries. On line 56, we
find which is smaller out of the number of slots in the stack buffer and the number
of elements left to return. We then copy this many elements on line 59. The items
pointer is then set to the stack buffer’s address.

Using the stack buffer is entirely optional. Our immutable array didn’t use it,
while this one does. It is there simply as a convenient place to put elements if the
class doesn’t use an array internally.

To test these two classes, we use the simple program shown in Listing 4.13.
This creates two integer arrays, one mutable and one immutable, and iterates over
both of them using the fast enumeration for...in loop construct.

Listing 4.13: Testing the fast enumeration implementation. [from: examples/FastEnu-

meration/test.m]

1 #import "IntegerArray.h"
2
3 int main(void)
4 {
5 [NSAutoreleasePool new];
6 NSInteger cArray[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

15, 16, 17, 18, 19, 20};
7 IntegerArray *array = [[IntegerArray alloc] initWithValues: cArray
8 count: 20];
9 NSInteger total = 0;

10 for (id i in array)
11 {
12 total += (NSInteger)i;
13 }
14 printf("total: %d\n", (int)total);
15 MutableIntegerArray *mutablearray =
16 [[MutableIntegerArray alloc] initWithValues: cArray

110 Chapter 4. Foundation: The Objective-C Standard Library

17 count: 20];
18 [mutablearray setInteger: 21 atIndex: 20];
19 for (id i in mutablearray)
20 {
21 total += (NSInteger)i;
22 }
23 printf("total: %d\n", (int)total);
24 for (id i in mutablearray)
25 {
26 total += (NSInteger)i;
27 printf("value: %d\n", (int)(NSInteger)i);
28 [mutablearray setInteger: 22 atIndex: 21];
29 }
30 return 0;
31 }

Note that the type of the element in these loops has to be an id. This is only a
requirement of the type checker. The compiler does not insert any message sends
to the returned objects, so as long as they are the same size as an id they can be
returned.

On line 28, we modify the collection inside a loop. This is exactly the kind of
thing that the fast enumeration structure’s mutation pointer field is intended to
detect. If we have written the implementation correctly, then an exception will be
thrown. Running the program, we see that this does happen:

$ gcc -framework Foundation *.m && ./a.out
total: 210
total: 441
value: 1
2009-02-21 16:24:56.278 a.out[4506:10b] *** Terminating app
due to uncaught exception ’NSGenericException’, reason:
’*** Collection <MutableIntegerArray: 0x1004bb0> was mutated
while being enumerated.’

We didn’t have to do anything explicit here to raise the exception. Just modi-
fying the version instance variable did it. Note that the exception was raised after
the first loop iteration, even though the first 16 values were all returned at once.
This is why the mutation pointer is a pointer and not just a value. If it had been a
simple value that we had set to the value of the version ivar in each call, the loop
would not have been able to detect the mutation until the next call. Because it
is a pointer, it can be dereferenced and tested very cheaply at each loop iteration
and so the mutation is caught the first time the caller tries to load a value from
the array that has since changed.

4.6. Property Lists 111

Because we modified the version counter before making any changes to the
array, we guaranteed that the mutation will always be caught. If you add any
other mutation methods to the class, just remember to add version++ at the
start, and this will keep working.

4.6 Property Lists

Property lists (plists) are a feature of OPENSTEP and OS X that crop up in a
lot of places. The simplicity of the form and its utility have caused a number of
other systems to implement support for property lists.

The original NeXT property lists were a simple ASCII format with single
characters representing the borders of different types of collection. This had a few
limitations. It was difficult to extend, and relatively difficult to embed in other
formats. To address these problems, OS X added an XML format for property
lists. This can store a few more formats than the original format and, with proper
namespacing, can be embedded in any XML format.

Unfortunately, XML is a very verbose format. Parsing it is relatively expensive
and storing it requires a lot of space. To address this, Apple added a third format,
which is a proprietary (and undocumented) binary encoding. This encoding is very
fast to parse and very dense.

The NeXT format is largely deprecated on OS X, although a few command-
line tools (such as the defaults utility) still use it since it is the most human-
readable. The XML format is primarily used for interchange and the binary
format is used for local storage. Table 4.1 shows a comparison of the XML and
OpenStep property list formats. In particular, you will see how much more verbose
arrays and dictionaries are in the new XML format.

It is worth noting that GNUstep has extended the OpenStep format to al-
low NSValue and NSDate objects to be stored, making GNUstep OpenStep-style
property lists as expressive as XML ones, at the cost of interoperability.

The plutil tool can convert to the XML and binary formats. It can also con-
vert from the original NeXT format, but not to it. This is due to the fact that
this format is less expressive than the new versions—for example, it cannot store
NSDate objects—and so the tool cannot guarantee that property lists can be safely
converted. As well as converting, the -lint option to the tool causes it to check a
plist file and report errors. This is very useful if you ever need to edit a property
list by hand.

112 Chapter 4. Foundation: The Objective-C Standard Library

Type Cocoa Class NeXT XML
String NSString "a string" <string>a string

</string>

Boolean NSNumber N/A <true /> or <false />

Integer NSNumber 12 <integer>12</integer>

Floating Point NSNumber 12.42 <real>12.42</real>

Date NSDate N/A <date>2009-01-07T13:39Z

</date>

Binary data NSData <666f6f> <data>fooZm9v</data>

Arrays NSArray ("a") <array>

<string>a</string>

</array>

Dictionaries NSDictionary {"key" = <dict>

"value";} <key>

<string>key</string>

</key>

<value>

<string>value</string>

</value>

</dict>

Table 4.1: The data types that can be stored in OpenStep (NeXT) and XML
(Apple) property lists.

4.6.1 Serialization

The main use for property lists is to store collections of data in a format that can
be easily written out and read back in. Table 4.1 showed the Cocoa objects that
correspond to various elements in a property list, but because only a relatively
small set of general formats of data are supported, Cocoa is not the only system
that can handle plists.

The Core Foundation library also supports all of the data types, and so does
CFLite. This means that property lists can be used by simple C applications
without requiring all of Cocoa or even Core Foundation. There are other libraries
available for parsing property lists. NetBSD’s proplib is a BSD-licensed C library
for handling XML property lists without any Apple code.

This means that Cocoa can be used to create configuration or simple data files
in a format that is easy to parse and usable by non-Cocoa apps using a variety
of toolkits. A lot of core configuration information for OS X is stored in property
lists and accessed long before any Cocoa applications start.

4.6. Property Lists 113

The Cocoa collections can be written to property list files directly and read
from them with a single call. Listing 4.14 shows an example of this. The program
creates a simple array, writes it to a file, and reads it back into a new array.
Logging the two arrays shows that they are equivalent.

Listing 4.14: Storing an array in a property list. [from: examples/PropertyList/plist.m]

1 #import <Foundation/Foundation.h>
2
3 int main(void)
4 {
5 [NSAutoreleasePool new];
6 NSArray *a = [NSArray arrayWithObjects:@"this", @"is", @"an", @"array",

nil];
7 [a writeToFile:@"array.plist" atomically:NO];
8 NSArray *b = [NSArray arrayWithContentsOfFile:@"array.plist"];
9 NSLog(@"a: %@", a);

10 NSLog(@"b: %@", b);
11 return 0;
12 }

When we run this program, we can verify that it works correctly:

$ gcc -framework Foundation plist.m && ./a.out
2009-01-07 19:13:15.299 a.out[34155:10b] a: (

this,
is,
an,
array

)
2009-01-07 19:13:15.300 a.out[34155:10b] b: (

this,
is,
an,
array

)

Although this simple example just contains strings, the same code will work
on an array containing any of the types that can be stored in a property list.

This basic functionality is enough for a lot of uses, but for more advanced
cases the NSPropertyListSerialization class is helpful. This provides the ability
to validate property lists, and to load and store them from NSData objects in
memory, rather than from files. The plutil utility mentioned earlier is a very
simple wrapper around this class.

114 Chapter 4. Foundation: The Objective-C Standard Library

To create a property list with NSPropertyListSerialization, you would use this
method:

+ (NSData *)dataFromPropertyList: (id)plist
format: (NSPropertyListFormat)format

errorDescription: (NSString**)errorString;

The plist object is an object that will be turned into property list form.
The format can be either NSPropertyListXMLFormat_v1_0 for the XML format,
or NSPropertyListBinaryFormat_v1_0 for binary property lists. There is also
NSPropertyListOpenStepFormat defined by the NSPropertyListFormat enumeration,
but this is only valid for reading OpenStep property lists—OS X no longer has
the capability to write them. The final parameter is a pointer to a string that will
be used to return an error message.

This method is quite unusual in taking a pointer to a string as a parameter for
returning an error. This is due to its age. It was introduced with OS X 10.2. Prior
to this, exceptions were always used for returning errors and methods that could
soft-fail returned a BOOL. With 10.2.7 (or earlier versions with Safari installed),
Apple introduced the NSError class. A pointer to a pointer to an instance of this
class is often passed in as a final argument, and set to non-nil on return, but this
method was written just a few months too early to take advantage of it.

For deserializing property lists, the converse method is

+ (id)propertyListFromData: (NSData*)data
mutabilityOption: (NSPropertyListMutabilityOptions)opt

format: (NSPropertyListFormat*)format
errorDescription: (NSString**)errorString

Most of the parameters are the same here. The format is now an output param-
eter, which is set to the format of the property list, which is autodetected. The new
parameter, opt, defines whether deserialized objects should be mutable. Property
lists do not store mutability options—an NSString and an NSMutableString will
be stored in the same way—so you must specify this when deserializing. You can
define whether everything (NSPropertyListMutableContainersAndLeaves), only con-
tainers (NSPropertyListMutableContainers), or nothing (NSPropertyListImmutable)
should be mutable.

4.6.2 User Defaults

One of the problems on any system is how to store preferences for an application.
Numerous solutions have been suggested for this problem, from individual config-
uration files to a centralized registry. OS X picks a path somewhere in the middle.
Each application has a property list file containing a dictionary associated with it.

4.6. Property Lists 115

This is accessed via the NSUserDefaults class, which also handles notifying parts
of an application of changes to individual keys.

This combines most of the benefits of both approaches. You can treat user
defaults as a system-maintained database. The defaults command-line tool can
browse and modify the defaults for any application. Since they are just property
lists, you can also modify them outside of the defaults system and delete them for
unwanted applications.

To get a user defaults object for your application, you do

[NSUserDefaults standardUserDefaults];

This returns a singleton object. You can call this as many times as you want
from your application and still be using the same object. It maintains a copy of
the defaults in memory and periodically synchronizes it with the copy stored on
disk. Alternatively, you can explicitly synchronize it by sending a -synchronize

message.
The shared defaults object is similar to an NSMutableDictionary. It has a

setObject:forKey: and an objectForKey: method, which set and get objects, re-
spectively. There are also some convenience methods, like boolForKey: that fetches
the boxed value, unboxes it, and returns a BOOL.

Since user defaults supports key-value coding (KVC), you can also use the
standard KVC methods to access defaults. In particular, this includes the
valueForKeyPath: method. This is very useful when you have a set of attributes
stored in a dictionary in defaults. You can get at a nested key with a single call:

[[NSUserDefaults standardUserDefaults] valueForKeyPath: @"dict.key"];

As long as the user defaults system contains a dictionary called“dict” that con-
tains a key called “key,” this will return the corresponding value. You can use this
for even deeper-nested dictionaries using a longer key path. Unfortunately, using
the corresponding setValue:forKeyPath: method will cause a run-time exception.

Defaults and the Command Line

The user defaults system searches for values in a set of defaults domains. One
of the most often overlooked is NSArgumentDomain. This can be very useful as a
way of getting values from the command line. If you start a Cocoa application
from the command line, you can override user defaults settings by specifying
them on the command line in the form -default value. You can also use this
as a quick and easy way of defining command-line options for tools that use
the Foundation framework. To do this, you just need to pass the name of the
command-line option as the key when loading a value from defaults.

116 Chapter 4. Foundation: The Objective-C Standard Library

There are a few difficulties with mutable collections in defaults. This is not
directly supported, and so you must do it by creating a new copy of the collection
and inserting this back into defaults. This typically involves the following steps:

NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
NSMutableDictionary *d = [[defaults dictionaryForKey: aKey] mutableCopy];
// Some operations on d
[defaults setObject: d forKey: aKey];

This is somewhat clumsy, and so it is common to wrap it up in a method.
In particular, you should remember that categories allow you to add methods to
NSUserDefaults. If your application stores a dictionary of sounds, then you might
consider adding a -setSound:forAction: or similar method that sets an entry in
the sounds dictionary in defaults.

User defaults only supports storing objects that can be saved in property lists.
A notable exception to this is the NSColor object. Apple suggests adding a category
on NSUserDefaults for storing these, using the NSArchiver mechanism.

NSArchiver allows objects that support creating a serialized form of objects
that implement the NSCoding mechanism. If the object you want to store in de-
faults implements these, then NSArchiver can turn it into a NSData instance and
NSUnarchiver can restore it. This provides a mechanism for storing the object in
defaults, since the defaults system can handle NSData instances.

Often, a more lightweight approach is possible. Some objects, like NSURL

can easily be stored as strings. Listing 4.15 shows a simple category for stor-
ing URLs as strings in defaults. If your object already implements -stringValue

and -initWithString: methods, then you might find this mechanism simpler than
implementing NSCoding.

Listing 4.15: A category for storing URLs in defaults. [from: examples/URLDefaults/urlde-

faults.m]

3 @implementation NSUserDefaults (NSURL)
4 - (void) setURL: (NSURL*)aURL forKey: (NSString*)aKey
5 {
6 [self setObject: [aURL absoluteString] forKey: aKey];
7 }
8 - (NSURL*) URLForKey: (NSString*)aKey
9 {

10 return [NSURL URLWithString: [self stringForKey: aKey]];
11 }
12 @end

Either mechanism can be used for your own objects, depending on their com-
plexity.

4.7. Interacting with the Filesystem 117

4.7 Interacting with the Filesystem

Most nontrivial programs need to interact with the filesystem in some way. On
most UNIX-like systems, including OS X, the filesystem is the only persistent
storage facility provided. User defaults is just a high-level interface to a small part
of the filesystem, providing access to specific files via a dictionary-like interface.

How you want to interact with the filesystem depends a lot on the task at
hand. Cocoa provides a number of facilities exposing files as UNIX-style streams
of bytes, or as structured data of some kind. Which you should use depends on
your requirements.

4.7.1 Bundles

Bundles are a very important part of OS X. They were used on NeXT systems
and have gradually replaced resource forks from earlier versions of Mac OS. The
big advantage is not needing any special filesystem support.

Applications on OS X are bundles and can have other resources as well as the
code. On NeXT systems, application bundles were used to store different versions
of the executable for different platforms; you could have a single .app on an NFS
share and run it on OPENSTEP, Solaris, or any other platform that it supported.
This legacy is still found in OS X today. The binary is in the Contents/MacOS
directory inside the bundle. In theory, you could add binaries for other platforms,
although this is not currently supported by the Apple tools.

Prior to the release (and naming) of OS X, the in-development successor to
Classic MacOS was called Rhapsody. Three “boxes” were announced by Apple.
Two eventually became part of OS X. Blue box was the virtualized compatibility
layer for MacOS that was called Classic on early versions of OS X and is not
present on Intel Macs. The yellow box was the OpenStep environment that was
later rebranded Cocoa. The final box, the red box, never made it to a shipping
product and was a Windows environment for OS X similar to WINE. There was
also a planned Windows version of the yellow box, based on the OPENSTEP
Enterprise (OSE) product from NeXT, including Project Builder and Interface
Builder and allowing Cocoa applications to be developed for Windows.

It seems likely that Apple still maintains descendants of the Windows version
of the yellow box internally and uses them for porting applications like Safari to
Windows, although Apple does not use the bundle architecture for these appli-
cations. Although the red box was not shipped, it was seen as a possible future
product for long enough for OS X to retain the ability to run application bundles
with executables in entirely different formats.

OS X, like OPENSTEP, uses the Mach-O binary format, which supports differ-
ent format executables in the same binary files (sharing constants and data when

118 Chapter 4. Foundation: The Objective-C Standard Library

the endian is the same). This is more efficient than having independent binaries
for each version and allows Intel and PowerPC, 32-bit and 64-bit executables to
be included in the same file. NeXT called these fat binaries, while Apple opted
for the more politically correct universal binaries.

Because applications are bundles, every application has at least one bundle
that it will want to load resources from. In a very simple application this happens
automatically. The main nib for the application will be loaded when it starts and
connected to the application delegate and any other objects.

Other resources can be loaded from the application bundle with the NSBundle

class. In general, you will have one instance of this class for each bundle you want
to interact with. You can get the application bundle with

[NSBundle mainBundle];

Be careful when doing this. At some point in the future you may decide that
your class is very useful and that you want to reuse it. When you do this, you will
move it and a framework—another kind of bundle containing a loadable library,
headers, and resources—along with any resources it might want to load. When
you get the main bundle from your class, you will get the application bundle for
the application that linked against the framework, rather than the framework
bundle. If you are getting a bundle to load resources that are included with the
class then this is not what you want. Instead, you should use

[NSBundle bundleForClass: [self class]];

This is relatively slow, so it is best done in the +initialize method for the
class and cached in a file-static variable, like this:

static NSBundle *frameworkBundle;
+ (void) initialize
{

frameworkBundle = [[NSBundle bundleForClass: self] retain];
}

In real code, you would probably want to wrap this in a check to ensure that
it was only being called on the correct class, as shown in Chapter 3. Because
this is a class method, it only needs to pass self, rather than [self class] as
the parameter. You can also use +bundleWithIdentifier, which is generally faster.
This loads the bundle that has the identifier provided as the argument. The bundle
identifier is set in the bundle’s property list by the CFBundleIdentifier key.

4.7. Interacting with the Filesystem 119

Once you have a bundle, you can load resources from it. This is a two-step
process. The first is to find the path of the resource, using a method like this:

- (NSString*)pathForResource: (NSString*)name
ofType: (NSString*)extension

inDirectory: (NSString*)subpath
forLocalization: (NSString*)localizationName

There are two wrapper versions of this method where the last parameters are
filled in with default values. The simplest form just has the first two and finds
resources using the user’s preferred localization in the top-level resource directory
in the bundle.

If you want to load all of the resources of a specific type in a bundle, there is
a form that returns an array instead of a string:

- (NSArray*)pathsForResourcesOfType: (NSString*)extension
inDirectory: (NSString*)subpath

This, and the version that specifies a localization, finds all of the resources of a
specific type, for example, all of the png files in a theme directory in the Resources
directory in the bundle.

In addition to resources, you can load code from bundles, too. Listing 4.16
shows a simple framework loader. Because frameworks are just another kind of
bundle with a well-known layout, the standard bundle loading code can be used
to load them.

This example is taken from Étoilé’s LangaugeKit and is used to allow scripts
loaded and compiled by a running program to specify frameworks that they depend
upon, without requiring the program that loads them to link against every possible
framework that a script might want.

This example shows a number of Cocoa features. The first is the file manager,
which we will look at in the next section. This is used in line 24 to test whether
the framework exists at a given path. If it does, then NSBundle is used on lines 27
and 28 to load the code in the framework.

Listing 4.16: A simple framework loader. [from: examples/Loader/simpleLoader.m]

7 @implementation SimpleLoader
8 + (BOOL) loadFramework: (NSString*)framework
9 {

10 NSFileManager *fm = [NSFileManager defaultManager];
11 NSArray *dirs =
12 NSSearchPathForDirectoriesInDomains(
13 NSLibraryDirectory,
14 NSAllDomainsMask,
15 YES);

120 Chapter 4. Foundation: The Objective-C Standard Library

16 FOREACH(dirs, dir, NSString*)
17 {
18 NSString *f =
19 [[[dir stringByAppendingPathComponent: @"Frameworks"]
20 stringByAppendingPathComponent: framework]
21 stringByAppendingPathExtension: @"framework"];
22 // Check that the framework exists and is a directory.
23 BOOL isDir = NO;
24 if ([fm fileExistsAtPath: f isDirectory: &isDir]
25 && isDir)
26 {
27 NSBundle *bundle = [NSBundle bundleWithPath: f];
28 if ([bundle load])
29 {
30 NSLog(@"Loaded bundle %@", f);
31 return YES;
32 }
33 }
34 }
35 return NO;
36 }
37 @end

The function on line 11 is one of the most useful, and most overlooked, parts
of Cocoa, since it allows you to avoid hard-coding paths in a lot of instances. Line
19 shows some of NSString’s path manipulation code. This is used to assemble the
correct path by appending the Frameworks directory, then the framework name as
path components, and then the .framework extension. This could be done with
-stringWithFormat: for OS X, but doing it this way means that it will continue
to work if you try to move your code to a different platform with different path
formats.

4.7.2 Workspace and File Management

Cocoa provides two ways of interacting with the filesystem, NSFileManager and
NSWorkspace. The latter is part of AppKit and provides a higher-level interface.
The NSWorkspace class does file operations in the background and posts a no-
tification when they are done, while NSFileManager works synchronously. Both
classes are singletons; you will only ever have (at most) one instance for each in
an application.

We saw an example of one of the things you can do with a file manager in
Listing 4.16. This used the -fileExistsAtPath:isDirectory: method, to see if a

4.7. Interacting with the Filesystem 121

file existed. The second argument to this is a pointer to a BOOL, which is set to
YES if the file is found and is a directory.

Most other common file manipulation operations are supported by the file
manager, such as copying, moving, and linking files and directories. It can also
enumerate the contents of folders and compare files. Most of NSFileManager’s
functionality is exposed by a single method in NSWorkspace:

- (BOOL)performFileOperation: (NSString*)operation
source: (NSString*)source

destination: (NSString*)destination
files: (NSArray*)files

tag: (NSInteger)tag

This takes a source and destination directory as arguments and an array of
files. It performs move, copy, link, destroy, or recycle operations and sets the value
of the integer pointed to by tag to indicate whether the operation succeeded.

Most of NSWorkspace’s functionality deals with higher-level operations on files.
While NSFileManager is for dealing with files as UNIX-style streams of bytes,
NSWorkspace is for dealing with files as a user-level abstraction, representing docu-
ments or applications. Methods like openFile: are examples of this. This method
opens a specified file with the default application and is used to implement the
command-line open tool.

The low-level file manager methods are very easy to use. Listing 4.17 shows a
simple tool for copying a file. This uses the user defaults system to read command-
line arguments and then uses the file manager to copy the specified file.

Note that this example code does not check whether the input file exists or
that the output is a valid destination. The file manager will call a delegate method
in case of an error, but we did not set a handler on line 12, and so this will not
allow error checking either. Implementing the handler is not required, it simply
allows you to track the progress of the operation and to decide whether to proceed
in case of an error. The return value from this method is a boolean indicating
whether the copy succeeded. You can run this simple tool like this:

$ gcc -framework Foundation FileCopy.m -o FileCopy
$./FileCopy -in FileCopy -out CopyOfFileCopy
$ ls
CopyOfFileCopy FileCopy FileCopy.m

Note that the file manager automatically resolved relative paths. These
are treated as being relative to whatever the file manager returns from
-currentDirectoryPath. You can alter the working directory for a running pro-
gram by sending the file manager a -changeCurrentDirectoryPath: message. The
working directory is much more important for command-line tools than it is for

122 Chapter 4. Foundation: The Objective-C Standard Library

Listing 4.17: A simple tool for copying files. [from: examples/FileCopy/FileCopy.m]

1 #import <Foundation/Foundation.h>
2
3 int main(void)
4 {
5 [NSAutoreleasePool new];
6 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
7 NSString *source = [defaults stringForKey: @"in"];
8 NSString *destination = [defaults stringForKey: @"out"];
9 NSFileManager *fm = [NSFileManager defaultManager];

10 [fm copyPath: source
11 toPath: destination
12 handler: nil];
13 return 0;
14 }

graphical applications. A command-line tool inherits its current working direc-
tory from the shell. The concept of a current directory does not make sense for
an application invoked via the Finder or from the Dock.

Starting with 10.5, Apple began using the uniform type identifier (UTI) sys-
tem for identifying file types. A UTI is a hierarchical arrangement of types.
NSWorkspace is used to map between file extensions and UTIs.

4.7.3 Working with Paths

When working with filesystem paths, there are a number of helpful methods pro-
vided by NSString. These allow you to decompose paths into components and
create various individual components without worrying about the kind of path
that is represented.

On UNIX platforms, a tilde (˜) is commonly used as a shorthand for the user’s
home directory. You can get this explicitly by calling NSHomeDirectory() but often
users will enter strings containing this shorthand and expect it to work. If you
select Go to Folder in the Finder’s Go menu, then enter “˜/Documents” then it
will open a new window showing the Documents folder in your home directory.

The NSString class provides a convenient method for strings that may contain
a tilde. If you send the string a -stringByExpandingTildeInPath message, then
you will get back a new string containing the absolute path, without a tilde.
Although less useful, it is also possible to go the other way by sending a full path a
-stringByAbbreviatingWithTildeInPath message. If the path points to something

4.7. Interacting with the Filesystem 123

inside the user’s home directory, then it will be collapsed to only use a tilde
character for this part of the path.

When interacting with the filesystem, you very often need to decompose a path
into three parts: the file name, the file extension, and the path of the directory
containing the file. You can do all of these from NSString, like this:

NSString *fullPath = @"/tmp/folder/file.extension";
// ext = @"extension";
NSString *ext = [fullPath pathExtension];
// file = @"file";
NSString *file = [[fullPath lastPathComponent]

stringByDeletingPathExtension];
// dir = @"/tmp/folder";
NSString *dir = [fullPath stringByDeletingLastPathComponent];

There are also methods for constructing a path from individual parts, including
appending components and setting the extension. Before you start writing code
for parsing path strings yourself, make sure that NSString doesn’t already have
methods for doing what you need.

4.7.4 File Access

While NSFileManager lets you interact with the filesystem, and NSWorkspace lets
you open files in other applications, neither provides a means of accessing the
contents of files.

There is nothing stopping you from using the C library and POSIX functions
for doing this, but they are not very convenient. Cocoa includes a wrapper around
them in the form of the NSFileHandle class. This wraps a file handle as would be
returned by open(). Four singleton instances exist, representing the C standard
input, output and error streams, and a placeholder that discards all data written
to it. Additional file handles can be created for reading, writing, or updating,
with named constructors.

You can use the NSFileHandle class anywhere you have a C file handle using
this initializer:

- (id)initWithFileDescriptor: (int)fileDescriptor
closeOnDealloc: (BOOL)flag

The file descriptor is any C file descriptor, for example, the kind returned by
open() or socket(). Whether the resulting object supports reading or writing
depends on the underlying file descriptor. If you set flag to YES, then you can use
this as a simple way of tracking how many parts of your program are using the
file and ensuring that it is closed at the correct point. As long as you then only

124 Chapter 4. Foundation: The Objective-C Standard Library

use the file descriptor with the object, it will stay open as long as some parts of
your program are using it and close itself when it is no longer required.

If all you want to do is read data from a file, NSData objects can be created
from a file using this method:

+ (id)dataWithContentsOfFile: (NSString*)path
options: (NSUInteger)mask
error: (NSError**)errorPtr

This creates a new NSData object from the contents of the file pointed to by
path and sets the errorPtr to an NSError instance if it fails. The mask parameter
allows two options to be set: NSMappedRead and NSUncachedRead. The first uses
mmap() instead of file reading operations. As discussed earlier, this is a good idea
if you know that the file is not going to be modified, for example, for read-only
resources in an application bundle. If the system is low on memory, it can very
cheaply free mapped data and load it back from the original file, while data read
in will have to be written out to the swap file, even if they have not been modified.
The second option allows the data to bypass the operating system’s cache. If you
know that you are just going to read the data once and then discard it, then it
can improve performance. Otherwise it will use less RAM, but require more disk
accesses.

NSData can also be used to write data back to a file. For small file out-
put, using an NSMutableData to construct the file in memory and then using the
writeToFile:atomically: or writeToURL:atomically: methods to output it is very
simple. The second parameter to each of these is a BOOL, which, if set to YES,
will write the data first to a temporary file and then rename the temporary file,
ensuring on-disk consistency.

4.8 Notifications

Notifications are another example of loose coupling in Cocoa. They provide a
layer of indirection between events and event handlers. Rather than every object
keeping a list of objects that need to receive events, they go via the notification
center, embodied by the NSNotificationCenter class. Objects can request notifi-
cations with a specific name, from a specific object, or both. When the specified
object posts the named notification, the observer will receive a message with an
NSNotification object as an argument.

This mechanism makes it very easy to join parts of your application together
without explicitly hard-coding the connections. It is also a good example of the
layering of Foundation and AppKit. Foundation defines notifications, but AppKit
uses them heavily. A lot of view objects will post notifications when some user
interaction has occurred, as well as delivering the message to their delegate. This

4.8. Notifications 125

allows multiple objects to be notified when some part of the user interface changes,
with very little code.

By default, notifications are delivered synchronously. An object sends the
notification to the notification center, and the notification center passes it on
to all observers. Sometimes this is not the desired behavior. For asynchronous
delivery, the NSNotificationQueue class integrates with the run loop and allows
delivery of notifications to be deferred until the run loop is idle, or until the next
iteration of the run loop.

4.8.1 Requesting Notifications

There are, generally speaking, two things you can do with notifications: send them
and receive them. Receiving a notification is a two-step process. First, you tell
the notification center what you want to receive, and then you wait.

Listing 4.18 shows a simple class for receiving notifications. This implements
a single method, receiveNotification:, which takes a notification as an object.
This is a very simple method that logs the name of the notification and the value
associated with a key in the user info dictionary. The user info dictionary is what
makes notifications so flexible. Any notification sender can attach an arbitrary set
of key-value pairs to any notification. Because it is a dictionary, a receiver doesn’t
even need to know the specific keys; it has the option of enumerating every single
key and doing something with all of the items in the dictionary, or it can simply
ignore any keys it doesn’t know about.

When the object is created, the default notification center is told to deliver
notifications with the name “ExampleNotification” to its receiveNotification:

method, from any object. It is also possible to specify a specific object to receive
notifications from. In this case, you may leave the name: argument as nil and get
every notification sent by that object.

Listing 4.18: Notification receiver object. [from: examples/Noti↓cations/notify.m]

3 @interface Receiver : NSObject {}
4 - (void) receiveNotification: (NSNotification*)aNotification;
5 @end

6
7 @implementation Receiver
8 - (id) init
9 {

10 if (nil == (self = [super init]))
11 {
12 return nil;
13 }
14 // register to receive notifications

126 Chapter 4. Foundation: The Objective-C Standard Library

15 NSNotificationCenter *center =
16 [NSNotificationCenter defaultCenter];
17 [center addObserver: self

18 selector: @selector(receiveNotification:)
19 name: @"ExampleNotification"
20 object: nil];
21 return self;
22 }
23 - (void) receiveNotification: (NSNotification*)aNotification
24 {
25 printf("Received notification: %s\n",
26 [[aNotification name] UTF8String]);
27 printf("Received notification: %s\n",
28 [[[aNotification userInfo] objectForKey: @"message"] UTF8String]);
29 }
30 - (void) dealloc
31 {
32 NSNotificationCenter *center =
33 [NSNotificationCenter defaultCenter];
34 [center removeObserver: self];
35 [super dealloc];
36 }
37 @end

There is one remaining part of handling notifications that is very important.
You must remember to send the notification center a removeObserver: message
when your object is destroyed. For this reason, it is good practice to ensure
that the object that is registering as an observer in notifications is always self.
This makes it very easy to make sure you call removeObserver: at the right time;
just put the call in the -dealloc method. In a garbage-collected environment,
the notification center should keep weak references to observers, so they will be
automatically removed when no longer valid.

In this simple example, notifications are identified by literal strings. It is more
common when creating public notifications to use shared global objects, initialized
in one file and declared extern in a header.

4.8.2 Sending Notifications

The other half of the equation, sending messages, is even simpler. Listing 4.19
shows a simple object that sends a notification in response to a sendMessage: mes-
sage. The string argument is inserted into the user info dictionary and delivered
via a notification.

This is the companion of the Receiver class from the Listing 4.18. These two

4.8. Notifications 127

Listing 4.19: Sending a notification. [from: examples/Noti↓cations/notify.m]

39 @interface Sender : NSObject {}
40 - (void) sendMessage: (NSString*)aMessage;
41 @end

42 @implementation Sender
43 - (void) sendMessage: (NSString*)aMessage
44 {
45 NSNotificationCenter *center =
46 [NSNotificationCenter defaultCenter];
47
48 NSDictionary *message =
49 [NSDictionary dictionaryWithObject: aMessage
50 forKey: @"message"];
51 [center postNotificationName: @"ExampleNotification"
52 object: self

53 userInfo: message];
54 }
55 @end

56
57 int main(void)
58 {
59 [NSAutoreleasePool new];
60 // Set up the receiver
61 Receiver *receiver = [Receiver new];
62 // Send the notification
63 [[Sender new] sendMessage: @"A short message"];
64 return 0;
65 }

two classes communicate without either having a direct reference to the other.
The main() method creates an instance of each class and calls the sendMessage:

method on the sender. This posts a notification that is received by the receiver:

$ gcc -framework Foundation notify.m && ./a.out
Received notification: ExampleNotification
Message is: A short message

4.8.3 Sending Asynchronous Notification

Normally, sending a notification is a synchronous operation. You send a
-postNotification: message to the notification center, it iterates over all of the

128 Chapter 4. Foundation: The Objective-C Standard Library

objects that have registered to receive that notification, sends the notification to
them, and then returns.

Every thread has its own notification center, and it also has a notification
queue, an instance of NSNotificationQueue. This functions in a similar way to
the notification center, but defers delivery of notifications until a future run-loop
iteration.

Notification queues are particularly useful if you are generating a lot of the
same sort of notification in quick succession. Often, the observers do not need to
run immediately. Consider something like the spell checker in a text box. This
could send a notification every time the user types a character. The spell checker
could register for this notification, receive it, see if the typed word is valid, and
update the display. This has two drawbacks. First, a word will be checked several
times as it is typed, which is not always needed. Second, the spell checking will
interrupt the typing.

A better design would flag the text box as needing spell checking as soon as the
user typed something, but defer the actual checking until later. The notification
queue does two things that help here. First, it performs notification coalescing,
turning multiple identical notifications into a single one. This means that you can
send a notification for every key press, but the spell checker will only receive one.
The other useful feature is deferred delivery. When you post a notification via
a queue, you can decide whether it should be delivered now, soon, or when the
thread has nothing else to do. A typical program spends most of its time doing
nothing. The notification queue allows you to defer handling of notifications until
one of these times, for example, only running the spell checker when the user stops
typing. In practice, no user types fast enough to keep a modern CPU busy, but
this system applies equally to other data sources, such as the disk or network,
which can provide data fast enough to keep a processor busy for a while.

A notification queue is a front end to a notification center. You insert noti-
fications into the queue and it then sends them to the notification center, which
sends them to the observers. This combination means that objects listening for a
notification do not have to know whether the sender is using a notification queue
or sending notifications synchronously.

There are two ways of getting a pointer to a notification queue. The most
common way is to send a +defaultQueue message to the class. This will return the
notification queue connected to the thread’s default notification center. Notifica-
tions posted to this queue will be delivered in the thread that sent them.

Alternatively, you can explicitly create a queue for a given center. You can
have different queues, as shown in Figure 4.1. Each object can send notifications
to one or more notification queues, or to the notification center directly. The
notification queues will coalesce the notifications and then pass them on to the
notification center, which then distributes them to all of the registered observers.

4.8. Notifications 129

Having multiple notification queues allows you to control how notifications
are coalesced. You may want to have all notifications from every instance of a
particular class to be coalesced, but to be delivered separately from notifications
of the same kind delivered from other objects, you can create a new notification
queue for the class. You must attach the queue to a notification center when you
initialize it, by sending it an -initWithNotificationCenter: message.

You send a notification through a queue by sending it either this message or
one of the simpler forms that omits one or more argument:

- (void)enqueueNotification: (NSNotification*)notification
postingStyle: (NSPostingStyle)postingStyle
coalesceMask: (NSUInteger)coalesceMask

forModes: (NSArray*)modes;

The first argument is a notification. You have to create this yourself; there are
convenience methods for constructing them as there are on the notification center.
You will typically do this by sending a +notificationWithName:object:userInfo:

message to the notification class.
The second argument defines when the notification should be delivered. You

have three options here. If you specify NSPostNow, then the behavior is similar
sending the message directly to the notification center. The notification will be
posted synchronously, but it will first be coalesced. You can use this to flush a set
of notifications. If you have a set of operations that may all trigger a particular
kind of notification, then you can have them all send their notifications into a
queue and then send a notification with the posting style set to NSPostNow to
ensure that exactly one notification will be sent.

The other options defer posting of the notification until a future run-loop
iteration. If you specify NSPostASAP, then the notification will be posted as soon as
possible. This may not be at the start of the next run-loop iteration, because there
may be other notifications with the same priority already waiting for delivery, but
it will be soon. If the notification is not very important, then you can set the
posting style to NSPostWhenIdle. This will cause it to be delivered only when there
are no more pressing events waiting for the run loop’s attention.

Coalescing works best the longer notifications are allowed to stay in the queue.
If everything is posted with NSPostNow, then the queue never has a chance to
coalesce them. If everything is posted with NSPostWhenIdle, then notifications
may stay in the queue for a long time, and will have a lot more opportunities for
being combined.

The coalescing behavior is configured with the third argument. This is a mask
formed by combining flags specifying whether notifications should be coalesced if
they are from the same sender or of the same type. Most often you will specify
either both of these flags, or neither. Coalescing notifications from the same sender

130 Chapter 4. Foundation: The Objective-C Standard Library

Notification
Queue

Notification
Queue

Notification
Queue

Notification
Center

Object

Object

Object

Object

Object

Object

Object

Object

Object

Figure 4.1: The flow of notifications in a Cocoa program.

but with different types may cause some very strange behavior. You can coalesce
notifications of the same type from different senders, but this is generally not
recommended either.

The final argument specifies the run-loop modes in which the notification will
be delivered. You can use this to prevent notifications from being handled in
certain modes, or to define new modes for handling certain kinds of notification and
keep them queued until you explicitly tell the run loop to enter that mode. This
provides a fairly simple way of deferring notification delivery until you explicitly
decide you want to handle them.

Notification queues are very powerful, but rarely need to be used. They are
most commonly treated as an optimization technique. If you profile your code
and find that it is spending a lot of time handling duplicate notifications, then
consider adding a notification queue.

4.8.4 Distributed Notifications

Notifications aren’t solely subject to use in a single process. The
NSDistributedNotificationCenter class is a subclass of NSNotificationCenter built
using the distributed objects (DO) mechanism. This makes them the simplest form
of interprocess communication (IPC) to use on OS X.

Although less flexible than using DO directly, distributed notifications provide

4.8. Notifications 131

Notifications and Signals

If you come from a UNIX programming background, you may find notifications
quite similar, conceptually, to UNIX signals. When combined with notification
queues, they work in a similar way to signals sent using the POSIX realtime
extensions to signal support. They are delivered asynchronously, can be en-
queued, and carry something the size of a pointer as extra data with them.

a very simple way of communicating between different processes. In principle, dis-
tributed notifications could be integrated with Bonjour for sending notifications
across the local network segment. The -notificationCenterForType: constructor
hints at future possibilities for distributed notifications; however, it only supports
NSLocalNotificationCenterType on OS X. The GNUstep implementation also sup-
ports GSNetworkNotificationCenterType for delivering notifications over the net-
work using distributed objects, but there is currently no equivalent provided by
Apple.

Registering to receive a distributed notification is almost the same as register-
ing to receive a normal one. The main difference is the last parameter. Note the
different method prototypes for registering observers in a notification center and
a distributed notification center:

// NSNotificationCenter
- (void)addObserver: (id)notificationObserver

selector: (SEL)notificationSelector
name: (NSString*)notificationName

object: (id)notificationSender;
// NSDistributedNotificationCenter
- (void)addObserver: (id)notificationObserver

selector: (SEL)notificationSelector
name: (NSString*)notificationName

object: (NSString*)notificationSender;

The last argument is a pointer to the object from which you want to receive
the notifications. In a distributed notification center, senders are identified by
name, rather than pointer. The reason for this should be obvious: Distributed
notifications can come from other processes, and pointers are only valid in the
current process’s address space.

Sending distributed notifications has the same change. The same method can
be used, but the sender must be a string instead of an object. Typically, this is
the name of the application sending the notification.

132 Chapter 4. Foundation: The Objective-C Standard Library

There are also some restrictions placed on the user info dictionary when sending
distributed notifications. Because the notification is sent over DO, all of the
objects in the dictionary must conform to the NSCoding protocol, allowing them
to be serialized and deserialized in the remote process. Since the deserialization
can potentially be done in a large number of listening processes, it is a good idea
to keep notifications small.

4.9 Summary

In this chapter, we’ve gone through the most important aspects of the Foundation
framework. This framework covers the core functionality of the Cocoa develop-
ment environment and even provides a number of features that would typically
be thought of as part of the language, such as reference counting and message
forwarding.

We spent some time examining the core concepts of the Foundation library.
In subsequent chapters, you will see examples of all of the things we’ve discussed
here.

We looked at the collection classes provided by Foundation—sets, arrays, and
dictionaries—and how enumeration of these types works. We saw the basic value
types used to store non-object values in collections.

The most important aspects of the Foundation framework were covered in this
chapter. This should not be taken as an exhaustive reference. The framework
contains a large number of classes and functions. If you printed out just the class
references from the Foundation framework, you would end up with something
longer than this entire book, and many of the method descriptions would still be
single-line comments.

In-depth understanding of all of the details of the Foundation library is almost
impossible. The purpose of this chapter was to highlight the most important parts
to look at. Familiarity with the classes discussed in this chapter goes a long way
toward making a good Cocoa programmer.

Index

Étoilé, 314, 749

ABGroup class, 638
ABMultiValue class, 639
ABPeoplePickerView class, 642
ABPerson class, 638, 663
ABRecord class, 638, 639
ABSearchElement class, 644
actions, 30, 151
active browser delegate, 376
active window, 143
ADC, see Apple Developer Connection
affine transform, 161, 453
alert dialogs, 229
AMBundleAction class, 747
anchor point, 546
animation, 521
animator proxy, 532
annotation, 555
antialiasing, 463
Apache Lucene, 591
AppKit user bundles, 833
Apple Developer Connection, 28
Apple Newton, 381
Apple Public Source License, 15
Apple Type Services for Unicode Imag-

ing, 159
AppleScript, 721
application bundles, 117
Application Kit, 6
APSL, see Apple Public Source License
arrays, 97

ASSIGN() macro, 71
associative arrays, see dictionaries
atomic instructions, 799
ATSUI, see Apple Type Services for

Unicode Imaging
attributed strings, 248
attributes, 331
Audio HAL, 507
audio units, 507
Automator, 471, 747
autorelease pools, 71, 138
autozone, 61

bags, 99
BCD, see binary-coded decimal
Be Filesystem, 611
beeping, 493
Berkeley socket, 753
BFS, see Be Filesystem
bicubic interpolation, 464
bilinear interpolation, 464
Binary Coded Decimal, 89
binary-coded decimals, 501
Bindings, see Cocoa bindings
blocks, 64, 104, 820
Blue box, 117
Boehm garbage collector, 71
Bonjour, 131, 768
boxing, 88, 188, 435
branching undo, 313
browser views, 376–380
bundles, 40, 117, 299

885

886 Index

buttons, 170

C1X, 45
C89, 45
C99, 45
CAAnimationGroup class, 543
CABasicAnimation class, 530
Cairo Graphics, 827
CAKeyframeAnimation class, 530
CALayer class, 524
CalCalendar class, 665
CalCalendarItem class, 665
CalCalendarStore class, 659, 661
Calendar Store Framework, 637
calendars, 92, 659

creating, 665
events, 661
synchronizing, 666

CalEvent class, 665
CalTask class, 665
CAMediaTimingFunction class, 530
CAOpenGLLayer class, 552
capture session, 508
carbonization, 4
Cascading Style Sheets, 565
categories, 51
CATransition class, 539
CDSA, see Common Data Security Ar-

chitecture
cells, 156, 270, 355, 443, 525
CF, see Core Foundation
CFLite, 112
character sets, 245
Clang, 19, 27, 42
class, 18
class clusters, 74, 80, 87, 97, 190
class methods, 49
class posing, 74
Classic, 117
clip views, 164

Cocoa bindings, 30, 33, 105, 184, 336,
357, 390

Cocoa C structures, 86
Cocotron, 834
collection classes, 93, 189

address book, 639
collection views, 380
COM, see Component Object Model
command pattern, 726
Common Data Security Architecture,

649
comparator blocks, 104
Component Object Model, 613, 773
compositing, 463
compositing window server, 204
conjunctive normal form, 627
controllers, 28
controls, 152
coordinate system, 155
copy and paste, 684
Core Animation, 217, 433, 523
Core Animation actions, 539
Core Audio framework, 507
Core Data, 105, 293, 329, 626
Core Foundation, 13, 85, 112, 592
Core Graphics, 12, 160, 434, 435
Core Image, 533
Core MIDI framework, 508
Core Services framework, 619
Core Text, 160
Core Video, 502, 507
coroutines, 133
counted sets, 99
CoverFlow, 545
cross-application scripting, 721
CSS, see Cascading Style Sheets
cubic bezier curves, 441
curl, 761

data sources, 153, 172, 354
data-driven application, 591

Index 887

date, 91
De Morgan’s laws, 627
deadlocks, 788
declared properties, 187, 197
deep copy, 783
defaults command, 115
defaults domains, 115
delegates, 31, 58, 168, 354, 495
delegation pattern, 140, 151, 561, 854
demand paging, 344
descriptor, 722
descriptor lists, 723
designated initializer, 74
DGS, see Display GhostScript
dictionaries, 96, 98
discardable data, 90
disjunctive normal form, 627
dispatch queues, 820
dispatch sources, 820
Display GhostScript, 827
display link, 507
Display PDF, see Quartz
Display PostScript, 6, 11, 438
distributed notifications, 130
distributed objects, 9, 130, 314, 748,

773, 788
DNS Service Discovery, 768
DNS SRV records, 754
DNS-SD, see DNS Service Discovery
DO, see distributed objects,
Doctype definition, 728
Document Object Model, 560
document-driven applications, 287
DOM, see Document Object Model
domain-specific language, 623
DPS, see Display PostScript
drag and drop, 312, 686
drawing shapes, 439
DSL, see domain-specific language
DTD, see Doctype definition
dynamic views, 565

ELF, see Executable and Linking For-
mat

Encapsulated PostScript, 473
Enterprise Object Framework, 330
entity-relation, 331, 667
enumeration, 100
EOF, see Enterprise Object Framework
EPS, see Encapsulated PostScript
equality, 93
ER, see entity-relation
Erlang, 796
EtoileFoundation, 803
EtoileThread, 803
event-driven application, 134
Executable and Linking Format, 15

F-Script, 489, 749
façade pattern, 465
fast enumeration, 23, 105
fat binaries, 118
faulting, 332, 344
field editor, 270, 416
FIFO, see first-in first-out
File paths, 87
file paths, 122
file promises, 683
file’s owner, 30
filter services, 494, 680, 718
first responder, 143, 147
first-in first-out, 807
Fitts’ Law, 181
flipped views, 160, 161, 415
font, 255
font manager, 223
fonts, 256
foreign file formats, 345
forks, 39
format strings, 246, 623
forms, 412
Foundation Kit, 6
frameworks, 41

888 Index

fsevents, 611
full-screen windows, 426

garbage collection, 60, 495
GCC, see GNU Compiler Collection,
GCD, see Grand Central Dispatch
GDB, see GNU debugger
GDL2, see GNUstep Database Library

2
Get methods, 69, 87
getaddrinfo() function, 754
GetFileInfo tool, 40
GLSL, see OpenGL Shader Language,
glyphs, 245
GNU Compiler Collection, 19, 42, 827
GNU debugger, 37
GNU General Public License, 42
GNUstep, 6, 28, 71, 111, 131, 251, 296,

330, 349, 435, 749, 827
GnuStep, 827
GNUstep Database Library 2, 330
GNUstepWeb, 330
GORM, see Graphical Object Relation-

ship Modeller,
GPL, see GNU General Public License
Grand Central Dispatch, 819
Graphical Object Relationship Mod-

eller, 28, 829
graphics context, 273, 434
graphics port, 466
groupware, 659

half-precision floating point, 534
hash tables, 96
HFS+ attributes, 40
HIG, see Human Interface Guidelines
higher-order messaging, 101, 315, 328,

803, 846
HIGs, see Human Interface Guidelines
HOM, see higher-order messaging,

HTML, see Hypertext Markup Lan-
guage

editing, 562
Human Interface Guidelines, 8, 169
Hypertext Markup Language, 555

IBInspector class, 486
IBPlugin class, 488
iCal, 637
iCalendar, 660
identifier, 166
image unit, 535
images

animating, 521
compositing, 468
creating, 465
printing, 472
representing, 465

IMP, see instance method pointer
IMP caching, 59
implicit animation, 531
in-application scripting, 721
Info.plist file, 289, 294, 614
informal protocols, 51, 445
inheritance, 18
inspector, 388
instance method pointer, 59
instance methods, 49
instance variables, 48
Interface Builder, 27, 37, 143, 396

palettes, 482
Interface Builder Palette, 482
interprocess communication, 130, 148,

210, 746, 754, 807
introspection, 236
inverted index, 592
IOAudioDevice class, 507
IOAudioEngine class, 507
IOKit framework, 507
IPC, see interprocess communication,
iPhone, 194, 329, 434, 523

Index 889

IPv6, 754
isa-swizzling, 80, 191, 201, 849
iSync, 666
ivars, see instance variables

JIT, see just-in-time
just-in-time, 821

K&R C, 45
key equivalent, 233
key paths, 190
key window, 208
key-value coding, 31, 115, 185, 331, 357,

732
key-value observing, 33, 190, 608
Keychain, 637
Keychain Access, 649
keyframe animation, 529
KHTML, 559
known bugs, 322, 347, 477, 693, 718
Knuth-Liang hyphenation algorithm,

266
Knuth-Plass line-breaking algorithm,

266
KVC, see key-value coding, see key-

value coding,
KVO, see key-value observing,

LAN, see local-area network
Launch Services, 290
LayerKit, 433, 523
layout managers, 254, 264
lazy copying, 679
lazy evaluation, 744
Lesser General Public License, 834
LGPL, see Lesser General Public Li-

cense
libobjcX, 6, 827
Lieberman prototypes, 65
linear interpolation, 529
link-time optimization, 20

LLVM, see Low-Level Virtual Machine
local-area network, 753
localization, 167, 224, 250, 355
loose coupling, 31, 124, 136
Low-Level Virtual Machine, 19, 42
LS, see Launch Services
LTO, see link-time optimization
Lucene, 591

Mach ports, 147
Mach tasks, 789
Mach-O, 15, 117
main window, 154, 208
Make, 42
malloc history tool, 303
man pages, 599
managed object, 329
map tables, 96, 98
master-detail view, 339, 387
mdfind tool, 619
mdls tool, 611
mDNS, see multicast DNS
media timing function, 530
Memory mapped I/O, 90
menu bar, 181, 203
menus, 181, 232, 317
metaclass, 18, 48
metadata, 345, 611
methods, 45, 48
Microsoft Exchange, 660
MIDI, see Musical Instrument Digital

Interface
MIME, see Multipurpose Internet Mail

Extensions
mmap(), 90
Mocha, 5
modal dialog, 207
modal user interface, 218
model key path, 198
model-view-controller, 30, 142, 172,

194, 297, 354, 502, 560, 727

890 Index

Moore’s Law, 787
movie playback, 498
multi-server microkernel, 148
multicast DNS, 768
Multipurpose Internet Mail Extensions,

291
Musical Instrument Digital Interface,

508
mutable objects, 80
mutex, see mutual exclusion lock
mutual exclusion lock, 801
MVC, see model-view-controller,
mySTEP, 833

name server, 775
naming conventions, 66–70
nearest-neighbor interpolation, 464
NeWS, 11
nib files, 28
Nil, 89
nil, 89
notification center, 124
notification coalescing, 128
notifications, 124, 134, 151, 190, 392,

611
asynchronous, 127
distributed, 130
receiving, 125
sending, 126

NS-prefix, 6
NS DURING macro, 52
NS ENDHANDLER macro, 52
NS HANDLER macro, 52
NS RETURNVALUE macro, 52
NS VOIDRETURN macro, 53
NSActionCell class, 170
NSAffineTransform class, 161, 453, 461
NSAlert class, 149, 229
NSAppleScript class, 740
NSApplication class, 140, 224, 717, 725
NSArchiver class, 116

NSArray class, 74, 97, 104, 189, 628, 639
NSArrayController class, 336, 631
NSAttributedString class, 248, 262,

556, 609, 686
NSAutoreleasePool class, 71
NSBeep() function, 493
NSBezierPath class, 261, 273, 433, 439,

454, 528
NSBitmapImageRep class, 465, 528,

551
NSBlockOperation class, 819
NSBox class, 169
NSBrowser class, 173, 181, 353, 376, 704
NSBundle class, 41, 118, 251, 349, 807
NSButton class, 170, 214, 241
NSButtonCell class, 170
NSCache class, 91
NSCalendar class, 92
NSCell class, 156, 172, 270, 413, 460
NSCharacterSet class, 247
NSClassDescription class, 304, 305
NSClipView class, 165
NSCoder class, 298, 773
NSCoding protocol, 298, 485, 679
NSCollectionView class, 353, 380, 398,

543
NSCollectionViewItem class, 380
NSColor class, 273
NSColorPanel class, 220
NSColorWell class, 221
NSComboBox class, 153
NSComparator type, 104
NSComparisonPredicate class, 625
NSCompoundPredicate class, 625
NSCondition class, 794
NSConnection class, 774
NSControl class, 31, 152, 170, 444, 462
NSController class, 195
NSData class, 90, 585
NSDataLink class, 675
NSDate class, 416

Index 891

NSDateFormatter class, 416
NSDatePickerCell class, 416
NSDecimal structure, 89
NSDecimalNumber class, 89, 335, 501
NSDictionary class, 98, 104, 639
NSDistantObject class, 776
NSDistributedLock class, 594, 812
NSDistributedNotificationCenter class,

130, 133
NSDocument class, 143, 173, 288, 389
NSDocumentController class, 143, 289
NSEntityDescription class, 331
NSEnumerator class, 100
NSError class, 114, 500, 557, 711
NSEvent class, 142
NSException class, 52, 53
NSExpression class, 625
NSFileHandle class, 123, 300, 809
NSFileManager class, 120, 300
NSFileWrapper class, 299
NSFont class, 223, 256, 676
NSFontManager class, 223, 255
NSFontPanel class, 220
NSFormatter class, 416
NSGraphicsContext class, 439, 524
NSHashTable, 96
NSHTTPURLResponse class, 762
NSImage class, 292, 433, 444, 465, 572
NSImageCell class, 468, 642
NSImageRep class, 465
NSImageView class, 468, 584
NSIndexSet class, 105
NSIndexSpecifier class, 727
NSInvocation class, 313, 726
NSInvocationOperation class, 814
NSKeyedUnarchiver class, 299
NSLayoutManager class, 254
NSLevelIndicatorCell class, 444, 604
NSLock class, 792
NSMachPort class, 774
NSManagedObject class, 329, 331

NSMapTable, 96
NSMatrix class, 380, 412
NSMenu class, 183, 232, 718
NSMenuItem class, 183, 232
NSMenuItemCell class, 232
NSMessagePort class, 774
NSMetadataItem class, 620
NSMetadataQuery class, 619
NSMethodSignature class, 323
NSMovie class, 498
NSMovieView class, 498
NSMutableArray class, 97, 189, 271
NSMutableAttributedString class, 249
NSMutableData class, 90
NSMutableMultiValue class, 640
NSMutableString class, 246
NSNameSpecifier class, 727
NSNetService class, 770
NSNetServiceBrowser class, 769
NSNib class, 30, 422
NSNotification class, 124, 142
NSNotificationCenter class, 124, 134,

190
NSNotificationQueue class, 125, 128
NSNull class, 89, 414
NSNumber class, 88, 188, 416
NSNumberFormatter class, 416
NSObject class, 25, 33, 72, 185, 191, 303
NSObjectController class, 198
NSOpenGLContext class, 550
NSOpenGLLayer class, 552
NSOpenGLView class, 549
NSOpenPanel class, 150
NSOperation class, 813
NSOperationQueue class, 813
NSOutlineView class, 173, 347, 353,

362, 574, 704
NSPanel class, 154, 208, 220
NSParagraphStyle class, 268
NSPasteboard class, 676
NSPersistentDocument class, 335

892 Index

NSPersistentStore class, 343
NSPipe class, 808
NSPoint type, 86, 159
NSPopUpButton class, 241, 542
NSPopUpButtonCell class, 242
NSPort class, 148, 773
NSPortCoder class, 773
NSPortNameServer class, 775
NSPrediateEditor class, 422
NSPredicate class, 105, 338, 344, 623,

644, 661
NSPredicateView class, 628
NSPrintInfo class, 471
NSPrintOperation class, 472
NSPrintPanel class, 226, 473
NSPropertyListSerialization class, 113,

299, 308, 346, 681
NSProtocolChecker class, 776
NSProxy class, 24, 322, 773
NSPurgeableData class, 91
NSRange type, 86
NSRect type, 86
NSRecursiveLock class, 792
NSResponder class, 146, 149, 717
NSRuleEditor class, 412, 422, 628
NSRunLoop class, 147, 790
NSSavePanel class, 224
NSScanner class, 247
NSScreen class, 154, 428, 523
NSScriptClassDescription class, 728
NSScriptCommand class, 726
NSScriptObjectSpecifier class, 727
NSScroller class, 166
NSScrollView class, 165, 403
NSSearchField class, 597
NSSearchFieldCell class, 597
NSSecureTextField class, 172
NSSecureTextFieldCell class, 172
NSSet class, 628
NSSize type, 86
NSSocketPort class, 775

NSSortDescriptor class, 105
NSSound class, 494
NSSpeechRecognizer class, 514
NSSpeechSynthesizer class, 513
NSStream class, 759
NSString class, 87, 120, 136, 246
NSStringEncoding, 246
NSTableColumn class, 355
NSTableView class, 153, 173, 353, 354,

362, 642
NSTabView class, 166, 395
NSTabViewItem class, 166, 395
NSTask class, 600, 807
NSText class, 172, 416
NSTextAttachment class, 268
NSTextCell class, 269
NSTextContainer class, 266
NSTextField class, 172, 269, 597
NSTextFieldCell class, 462, 597
NSTextStorage class, 254, 292
NSTextView class, 172, 254, 269, 270,

416, 676
NSThread class, 790
NSTimer class, 150, 522
NSTreeController class, 185, 197, 318,

336, 347
NSTypeSetter class, 265
NSUndoManager class, 313, 328
NSURL class, 299, 761
NSURLConnection class, 762
NSURLDownload class, 764
NSURLRequest class, 762
NSUserDefaults class, 115, 138
NSUserDefaultsController class, 195
NSValue class, 88, 188
NSValueTransformer class, 195, 333,

335
NSView class, 147, 154, 155, 164, 165,

238, 395, 524, 572, 585, 827
NSViewController class, 418, 474

Index 893

NSWindow class, 143, 154, 208, 274,
427

NSWindowController class, 30, 155,
214, 288, 292, 295, 418, 474

NSWorkspace class, 120, 378, 556, 715
NULL, 89

Object class, 298
object orientation, 17
object placement character, 268
object specifier, 727
Object-Oriented Database, 332
object-relational mapping, 330
Objective-C, 43–74

categories, 51
classes, 47
declared properties, 62
exceptions, 52
garbage collection, 60
introspection, 55
isa pointer, 48, 85
message sending, 45
protocols, 50
reference counting, 70
runtime library, 58, 844–883
type encodings, 57, 188

Objective-C 2.0, 23
Objective-C type encoding, 56
OmniInspector framework, 398
OODB, see Object-Oriented Database
Opal, 828
Open Scripting Architecture, 722
OpenCL, 821
OpenGL, 549
OpenGL Shader Language, 535, 821
OPENSTEP, 388
OpenStep, 6, 140, 207, 347, 435
OPENSTEP Enterprise, 117, 826
OR mapping, see object-relational map-

ping
OSA, see Open Scripting Architecture

OSE, see OPENSTEP Enterprise,
outlets, 30, 151
outline views, 362–363
oversampling, 463

panels, 219
passive browser delegate, 376
passwords, 649
pasteboard, 675
pasteboard server, 675
PCL, see Printer Control Language
PDF, see Portable Document Format,
PDFAnnotation class, 578
PDFAnnotationText class, 579
PDFDocument class, 473, 573
PDFKit framework, 473, 573
PDFOutline class, 576
PDFPage class, 573
PDFThumbnailView class, 574
PDFView class, 573
PDO, see Portable Distributed Objects
personality function, 54
pipe, 754
plists, see property lists
plutil tool, 111
POC, see Portable Object Compiler
Portable Distributed Objects, 773
Portable Document Format, 12, 433,

555, 572
Portable Object Compiler, 19
Portable Operating System Interface, 7
POSIX, see Portable Operating System

Interface
POSIX threads, 790
PostScript, 471, 573
PostScript drawing model, 433
PostScript path, 433
predicate, 623
print dialogs, 473
Printer Control Language, 471
printing, 470

894 Index

producer-consumer relationship, 796
products, 38
Project Builder, 27
properties, 62
property lists, 111, 289, 681
Protocol class, 50
protocols, 48
pthreads, see POSIX threads
puff of smoke, 694

QCComposition class, 552
QCCompositionLayer class, 553
QCRenderer class, 552
QCView class, 552
QTCaptureConnection class, 512
QTCaptureDevice class, 508
QTCaptureView class, 509
QTCompressionOptions class, 512
QTKit framework, 498
QTMovieView class, 503
QTTrack class, 506
Quartz, 11, 160
Quartz 2D, 435
Quartz 2D Extreme, 12
Quartz Composer, 552
Quartz Debug, 12
Quartz Extreme, 12
Quartz GL, 12
queues, 98
Quick Look, 632
QuickDraw, 204, 463
QuickTime, 498

race conditions, 788
RAD, see Rapid Application Develop-

ment
Rapid Application Development, 6
raster images, 463
read/write lock, 796
red box, 117
redo stack, 313

reference counting, 70
reflection, 55
relations, 331
Remote Method Invocation, 774
Rendezvous, 768
responder chain, 141–143, 705
Rhapsody, 117
Rich Text Format, 250
RMI, see Remote Method Invocation
RTF, see Rich Text Format
run loop mode, 710
run loops, 133, 147
run-loop mode, 148
rwlock, see read/write lock

SBApplication class, 742
SBElementArray class, 743
SBObject class, 742
Scalable Vector Graphics, 563
schema, 667
screens, 154
Script Editor, 737
Scripting Bridge, 742
scripting definition, 725
scripting suites, 723
scroll views, 165, 403
sdef, see scripting definition
Search Kit framework, 591
search scopes, 620
searching, 591
SearchKit, 559
second-chance dispatch, 18
secrets, 649
selectors, 18, 45, 47
serialization, 328
servers, 14
services, 4
sets, 96, 99
shared memory, 90, 809
sheets, 223
Simula, 22

Index 895

Single UNIX Specification, 7
single-server microkernel, 148
singleton pattern, 222, 652, 659
singletons, 120
Smalltalk, 17, 43, 749
sort descriptors, 357
sorting, 93
speech, 512

recognition, 514
synthesis, 513

split views, 167
Spotlight, 348, 592
Spotlight import plugin, 613
SQLite, 344
stacks, 98
standard panels, 473
StepTalk, 749
strings files, 252
SUS, see Single UNIX Specification
SVG, see Scalable Vector Graphics
Sync Services, 666
synchronization, 238
system services, 513, 680, 707
system-wide address book, 637
system-wide spell checker, 707

tab views, 166, 395, 407
table views, 354–362
target-action pattern, 146, 151, 183
targets, 38
template predicates, 624
test blocks, 104
text

attributes, 248
drawing, 261, 453
encodings, 246, 763
layout, 254
storage, 254
translation, 250

text cells, 270
text containers, 275

text system, 172, 245
text views, 172, 269, 279
thread dictionary, 791
threads, 238
time, 91
Time Machine, 348
timers, 134
toll-free bridging, 13, 85, 851
tooltips, 361
tracing, 61
transaction, 546
transformable attributes, 333
truth database, 666
typefaces, 256

UIKit, 434
UIView class, 524
undo, 312, 329
undo groups, 316
undo stack, 313
Uniform Resource Locator, 760
Uniform Type Identifiers, 122, 290, 678
universal binaries, 118
UNIX philosophy, 722
URL, see Uniform Resource Locator

creating, 761
loading, 762

URL loading system, 760
URL schemes, 760
URLs, 88
user defaults, 114, 195, 219, 637
user info dictionary, 125
UTI, see Uniform Type Identifiers,

value transformers, 195, 274, 335
variadic methods, 97, 247
vCalendar, 660
vCards, 637
video editing, 506
view hierarchy, 154, 164, 395

inspecting, 396

896 Index

modifying, 398
views, 28, 152, 155

creating, 262, 433
dynamic, 565
paginating, 475

W3C, see World Wide Web Consortium
weak references, 60
WebCode, 559, 761
WebCoreEncodings class, 763
WebFrameView class, 559
WebKit, 66, 557, 761
WebView class, 559
WIMP, see window, icon, menu, point-

ing device
winding rule, 442
window controllers, 214
window server, 154, 204
window, icon, menu, pointing device,

203
windows, 154, 204

creating, 208
displaying, 210
hiding, 212

World Wide Web Consortium, 563

X Display PostScript, 825
X11, 7
XCode, 27, 37

data modeler, 334
Xcodebuild, 42
XDPS, see X Display PostScript
xib files, 28
XInclude, 729

yellow box, 117

Zeroconf, 768

	Contents
	List of Figures
	List of Tables
	Preface
	4 Foundation: The Objective-C Standard Library
	4.1 General Concepts
	4.2 Core Foundation Types
	4.3 Basic Data Types
	4.4 Collections
	4.5 Enumeration
	4.6 Property Lists
	4.7 Interacting with the Filesystem
	4.8 Notifications
	4.9 Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

