

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was aware
of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to
your business, training goals, marketing focus, and branding interests. For more information, please
contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data
Alexandrescu, Andrei.

The D Programming Language / Andrei Alexandrescu.
p.—cm.

Includes bibliographical references and index.
ISBN 978-0-321-63536-5 (pbk. : alk. paper) 1. D (Computer program language) I. Title.
QA76.73.D138A44 2010
005.13’3—dc22

2010009924

Copyright © 2010 Pearson Education

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN 13: 978-0-321-63536-5
ISBN 10: 000-0-321-63536-1
Text printed in the United States on recycled paper at Courier in Stoughton, Massachusetts.
First printing, May 2010

Contents

Foreword by Walter Bright xv

Foreword by Scott Meyers xix

Preface xxiii
Intended Audience . xxiv
Organization of the Book . xxiv
A Brief History . xxv
Acknowledgments . xxvi

1 “D”iving In 1
1.1 Numbers and Expressions . 3
1.2 Statements . 5
1.3 Function Basics . 6
1.4 Arrays and Associative Arrays . 7

1.4.1 Building a Vocabulary . 7
1.4.2 Array Slicing. Type-Generic Functions. Unit Tests 10
1.4.3 Counting Frequencies. Lambda Functions 12

1.5 Basic Data Structures . 14
1.6 Interfaces and Classes . 20

1.6.1 More Statistics. Inheritance . 23
1.7 Values versus References . 25
1.8 Summary . 27

2 Basic Types. Expressions 29
2.1 Symbols . 30

2.1.1 Special Symbols . 31
2.2 Literals . 32

2.2.1 Boolean Literals . 32
2.2.2 Integral Literals . 32
2.2.3 Floating-Point Literals . 33
2.2.4 Character Literals . 34
2.2.5 String Literals . 35

v

vi Contents

2.2.6 Array and Associative Array Literals 39
2.2.7 Function Literals . 40

2.3 Operators . 42
2.3.1 Lvalues and Rvalues . 42
2.3.2 Implicit Numeric Conversions . 42
2.3.3 Typing of Numeric Operators . 45
2.3.4 Primary Expressions . 46
2.3.5 Postfix Expressions . 49
2.3.6 Unary Expressions . 51
2.3.7 The Power Expression . 54
2.3.8 Multiplicative Expressions . 54
2.3.9 Additive Expressions . 55
2.3.10 Shift Expressions . 55
2.3.11 in Expressions . 56
2.3.12 Comparison Operators . 56
2.3.13 Bitwise OR, XOR, AND . 58
2.3.14 Logical AND . 59
2.3.15 Logical OR . 59
2.3.16 The Conditional Operator . 59
2.3.17 Assignment Operators . 60
2.3.18 The Comma Operator . 60

2.4 Summary and Quick Reference . 61

3 Statements 65
3.1 The Expression Statement . 65
3.2 The Compound Statement . 66
3.3 The if Statement . 67
3.4 The static if Statement . 68
3.5 The switch Statement . 71
3.6 The final switch Statement . 72
3.7 Looping Statements . 73

3.7.1 The while Statement . 73
3.7.2 The do-while Statement . 73
3.7.3 The for Statement . 74
3.7.4 The foreach Statement . 74
3.7.5 foreach on Arrays . 75
3.7.6 The continue and break Statements 78

3.8 The goto Statement . 78
3.9 The with Statement . 80
3.10 The return Statement . 81
3.11 The throw and try Statements . 81
3.12 The mixin Statement . 82

Contents vii

3.13 The scope Statement . 84
3.14 The synchronized Statement . 88
3.15 The asm Statement . 89
3.16 Summary and Quick Reference . 89

4 Arrays, Associative Arrays, and Strings 93
4.1 Dynamic Arrays . 93

4.1.1 Length . 95
4.1.2 Bounds Checking . 95
4.1.3 Slicing . 97
4.1.4 Copying . 98
4.1.5 Comparing for Equality . 100
4.1.6 Concatenating . 100
4.1.7 Array-wise Expressions . 100
4.1.8 Shrinking . 102
4.1.9 Expanding . 103
4.1.10 Assigning to .length . 106

4.2 Fixed-Size Arrays . 107
4.2.1 Length . 108
4.2.2 Bounds Checking . 108
4.2.3 Slicing . 109
4.2.4 Copying and Implicit Conversion 109
4.2.5 Comparing for Equality . 110
4.2.6 Concatenating . 111
4.2.7 Array-wise Operations . 111

4.3 Multidimensional Arrays . 111
4.4 Associative Arrays . 114

4.4.1 Length . 114
4.4.2 Reading and Writing Slots . 115
4.4.3 Copying . 115
4.4.4 Comparing for Equality . 116
4.4.5 Removing Elements . 116
4.4.6 Iterating . 116
4.4.7 User-Defined Types as Keys . 117

4.5 Strings . 118
4.5.1 Code Points . 118
4.5.2 Encodings . 119
4.5.3 Character Types . 120
4.5.4 Arrays of Characters + Benefits = Strings 121

4.6 Arrays’ Maverick Cousin: The Pointer . 124
4.7 Summary and Quick Reference . 126

viii Contents

5 Data and Functions. Functional Style 131
5.1 Writing and unittesting a Simple Function 131
5.2 Passing Conventions and Storage Classes 134

5.2.1 ref Parameters and Returns . 135
5.2.2 in Parameters . 135
5.2.3 out Parameters . 136
5.2.4 static Data . 137

5.3 Type Parameters . 138
5.4 Signature Constraints . 140
5.5 Overloading . 142

5.5.1 Partial Ordering of Functions . 144
5.5.2 Cross-Module Overloading . 146

5.6 Higher-Order Functions. Function Literals 148
5.6.1 Function Literals versus Delegate Literals 150

5.7 Nested Functions . 150
5.8 Closures . 152

5.8.1 OK, This Works. Wait, It Shouldn’t. Oh, It Does! 154
5.9 Beyond Arrays. Ranges. Pseudo Members 154

5.9.1 Pseudo Members and the @property Attribute 156
5.9.2 reduce—Just Not ad Absurdum . 157

5.10 Variadic Functions . 159
5.10.1 Homogeneous Variadic Functions 159
5.10.2 Heterogeneous Variadic Functions 160

5.11 Function Attributes . 165
5.11.1 Pure Functions . 165
5.11.2 The nothrow Function Attribute 168

5.12 Compile-Time Evaluation . 169

6 Classes. Object-Oriented Style 175
6.1 Classes . 175
6.2 Object Names Are References . 177
6.3 It’s an Object’s Life . 181

6.3.1 Constructors . 181
6.3.2 Forwarding Constructors . 183
6.3.3 Construction Sequence . 184
6.3.4 Destruction and Deallocation . 186
6.3.5 Tear-Down Sequence . 187
6.3.6 Static Constructors and Destructors 188

6.4 Methods and Inheritance . 190
6.4.1 A Terminological Smörgåsbord . 191
6.4.2 Inheritance Is Subtyping. Static and Dynamic Type 192
6.4.3 Overriding Is Only Voluntary . 193

Contents ix

6.4.4 Calling Overridden Methods . 194
6.4.5 Covariant Return Types . 195

6.5 Class-Level Encapsulation with static Members 196
6.6 Curbing Extensibility with final Methods 197

6.6.1 final Classes . 199
6.7 Encapsulation . 199

6.7.1 private . 200
6.7.2 package . 200
6.7.3 protected . 200
6.7.4 public . 201
6.7.5 export . 201
6.7.6 How Much Encapsulation? . 201

6.8 One Root to Rule Them All . 203
6.8.1 string toString() . 205
6.8.2 size_t toHash() . 205
6.8.3 bool opEquals(Object rhs) . 205
6.8.4 int opCmp(Object rhs) . 209
6.8.5 static Object factory(string className) 210

6.9 Interfaces . 212
6.9.1 The Non-Virtual Interface (NVI) Idiom 213
6.9.2 protected Primitives . 216
6.9.3 Selective Implementation . 217

6.10 Abstract Classes . 218
6.11 Nested Classes . 222

6.11.1 Classes Nested in Functions . 223
6.11.2 static Nested Classes . 225
6.11.3 Anonymous Classes . 226

6.12 Multiple Inheritance . 226
6.13 Multiple Subtyping . 230

6.13.1 Overriding Methods in Multiple Subtyping Scenarios 231
6.14 Parameterized Classes and Interfaces . 233

6.14.1 Heterogeneous Translation, Again 235
6.15 Summary . 237

7 Other User-Defined Types 239
7.1 structs . 240

7.1.1 Copy Semantics . 241
7.1.2 Passing struct Objects to Functions 242
7.1.3 Life Cycle of a struct Object . 243
7.1.4 Static Constructors and Destructors 254
7.1.5 Methods . 255
7.1.6 static Members . 260

x Contents

7.1.7 Access Specifiers . 261
7.1.8 Nesting structs and classes . 261
7.1.9 Nesting structs inside Functions 262
7.1.10 Subtyping with structs. The @disable Attribute 263
7.1.11 Field Layout. Alignment . 266

7.2 unions . 270
7.3 Enumerated Values . 272

7.3.1 Enumerated Types . 274
7.3.2 enum Properties . 275

7.4 alias . 276
7.5 Parameterized Scopes with template . 278

7.5.1 Eponymous templates . 281
7.6 Injecting Code with mixin templates . 282

7.6.1 Symbol Lookup inside a mixin . 284
7.7 Summary and Reference . 285

8 Type Qualifiers 287
8.1 The immutable Qualifier . 288

8.1.1 Transitivity . 289
8.2 Composing with immutable . 291
8.3 immutable Parameters and Methods . 292
8.4 immutable Constructors . 293
8.5 Conversions involving immutable . 295
8.6 The const Qualifier . 297
8.7 Interaction between const and immutable 298
8.8 Propagating a Qualifier from Parameter to Result 299
8.9 Summary . 300

9 Error Handling 301
9.1 throwing and catching . 301
9.2 Types . 302
9.3 finally clauses . 306
9.4 nothrow Functions and the Special Nature of Throwable 307
9.5 Collateral Exceptions . 307
9.6 Stack Unwinding and Exception-Safe Code 309
9.7 Uncaught Exceptions . 312

10 Contract Programming 313
10.1 Contracts . 314
10.2 Assertions . 316
10.3 Preconditions . 317
10.4 Postconditions . 319

Contents xi

10.5 Invariants . 321
10.6 Skipping Contract Checks. Release Builds 324

10.6.1 enforce Is Not (Quite) assert . 325
10.6.2 assert(false) . 326

10.7 Contracts: Not for Scrubbing Input . 327
10.8 Contracts and Inheritance . 329

10.8.1 Inheritance and in Contracts . 330
10.8.2 Inheritance and out Contracts . 332
10.8.3 Inheritance and invariant Contracts 334

10.9 Contracts in Interfaces . 334

11 Scaling Up 337
11.1 Packages and Modules . 337

11.1.1 import Declarations . 338
11.1.2 Module Searching Roots . 340
11.1.3 Name Lookup . 341
11.1.4 public import Declarations . 344
11.1.5 static import Declarations . 345
11.1.6 Selective imports . 346
11.1.7 Renaming in imports . 347
11.1.8 The module Declaration . 348
11.1.9 Module Summaries . 349

11.2 Safety . 353
11.2.1 Defined and Undefined Behavior 354
11.2.2 The @safe, @trusted, and @system Attributes 355

11.3 Module Constructors and Destructors . 356
11.3.1 Execution Order within a Module 357
11.3.2 Execution Order across Modules 358

11.4 Documentation Comments . 358
11.5 Interfacing with C and C++ . 359
11.6 deprecated . 359
11.7 version Declarations . 360
11.8 debug Declarations . 361
11.9 D’s Standard Library . 361

12 Operator Overloading 365
12.1 Overloading Operators . 366
12.2 Overloading Unary Operators . 367

12.2.1 Using mixin to Consolidate Operator Definitions 368
12.2.2 Postincrement and Postdecrement 369
12.2.3 Overloading the cast Operator . 369
12.2.4 Overloading Ternary Operator Tests and if Tests 370

xii Contents

12.3 Overloading Binary Operators . 371
12.3.1 Operator Overloading2 . 373
12.3.2 Commutativity . 373

12.4 Overloading Comparison Operators . 375
12.5 Overloading Assignment Operators . 376
12.6 Overloading Indexing Operators . 377
12.7 Overloading Slicing Operators . 379
12.8 The $ Operator . 379
12.9 Overloading foreach . 380

12.9.1 foreach with Iteration Primitives 380
12.9.2 foreach with Internal Iteration . 381

12.10 Defining Overloaded Operators in Classes 383
12.11 And Now for Something Completely Different: opDispatch 384

12.11.1 Dynamic Dispatch with opDispatch 386
12.12 Summary and Quick Reference . 388

13 Concurrency 391
13.1 Concurrentgate . 392
13.2 A Brief History of Data Sharing . 394
13.3 Look, Ma, No (Default) Sharing . 397
13.4 Starting a Thread . 399

13.4.1 immutable Sharing . 400
13.5 Exchanging Messages between Threads 401
13.6 Pattern Matching with receive . 403

13.6.1 First Match . 405
13.6.2 Matching Any Message . 405

13.7 File Copying—with a Twist . 406
13.8 Thread Termination . 407
13.9 Out-of-Band Communication . 409
13.10 Mailbox Crowding . 410
13.11 The shared Type Qualifier . 411

13.11.1 The Plot Thickens: shared Is Transitive 412
13.12 Operations with shared Data and Their Effects 413

13.12.1 Sequential Consistency of shared Data 414
13.13 Lock-Based Synchronization with synchronized classes 414
13.14 Field Typing in synchronized classes . 419

13.14.1 Temporary Protection == No Escape 419
13.14.2 Local Protection == Tail Sharing . 420
13.14.3 Forcing Identical Mutexes . 422
13.14.4 The Unthinkable: casting Away shared 423

13.15 Deadlocks and the synchronized Statement 424
13.16 Lock-Free Coding with shared classes . 426

Contents xiii

13.16.1 shared classes . 427
13.16.2 A Couple of Lock-Free Structures 427

13.17 Summary . 431

Bibliography 433

Index 439

This page intentionally left blank

Foreword

by Walter Bright

There’s a line in a science fiction novel I read long ago that says a scientist would fear-
lessly peer into the gates of hell if he thought it would further knowledge in his field.
In one sentence, it captures the essence of what it means to be a scientist. This joy in
discovery, this need to know, is readily apparent in the videos and writings of physicist
Richard Feynman, and his enthusiasm is infectious and enthralling.

Although I am not a scientist, I understand their motivation. Mine is that of an en-
gineer—the joy of creation, of building something out of nothing. One of my favorite
books is a chronicle of the step-by-step process the Wright brothers went through to
solve the problems of flight one by one, The Wright Brothers as Engineers by Wald, and
how they poured all that knowledge into creating a flying machine.

My early interests were summed up in the opening pages of Rocket Manual for Am-
ateurs by Brinley with the phrase “thrilled and fascinated by things that burn and ex-
plode,” later matured into wanting to build things that went faster and higher.

But building powerful machines is an expensive proposition. And then I discovered
computers. The marvelous and seductive thing about computers is the ease with which
things can be built. You don’t need a billion-dollar fab plant, a machine shop, or even a
screwdriver. With just an inexpensive computer, you can create worlds.

So I started creating imaginary worlds on the computer. The first was the game Em-
pire, Wargame of the Century. The computers of the day were too underpowered to run
it properly, so I became interested in how to optimize the performance of programs.
This led to studying the compilers that generated the code and naturally to the hubris
of “I can write a better compiler than that.” Enamored with C, I gravitated toward im-
plementing a C compiler. That wasn’t too hard, taking a couple of years part-time. Then
I discovered Bjarne Stroustrup’s C++ language, and I thought that I could add those ex-
tensions to the C compiler in a couple of months (!).

Over a decade later, I was still working on it. In the process of implementing it, I be-
came very familiar with every detail of the language. Supporting a large user base meant
a lot of experience in how other people perceived the language, what worked, and what
didn’t. I’m not able to use something without thinking of ways to improve the design.
In 1999, I decided to put this into practice. It started out as the Mars programming lan-

xv

xvi Foreword by Walter Bright

guage, but my colleagues called it D first as a joke, but the name caught on and the D
programming language was born.

D is ten years old as of this writing and has produced its second major incarnation,
sometimes called D2. In that time D has expanded from one man toiling over a key-
board to a worldwide community of developers working on all facets of the language
and supporting an ecosystem of libraries and tools.

The language itself (which is the focus of this book) has grown from modest begin-
nings to a very powerful language adept at solving programming problems from many
angles. To the best of my knowledge, D offers an unprecedentedly adroit integration
of several powerful programming paradigms: imperative, object-oriented, functional,
and meta.

At first blush, it would appear that such a language could not be simple. And indeed,
D is not a simple language. But I’d argue that is the wrong way to view a language. A
more useful view is, what do programming solutions in that language look like? Are D
programs complicated and obtuse, or simple and elegant?

A colleague of mine who has extensive experience in a corporate environment ob-
served that an IDE (Integrated Development Environment) was an essential tool for pro-
gramming because with one click a hundred lines of boilerplate code could be gener-
ated. An IDE is not as essential a tool for D, because instead of relying on wizard-based
boilerplate generation, D obviates the boilerplate itself by using introspection and gen-
erational capabilities. The programmer doesn’t have to see that boilerplate. The inher-
ent complexity of the program is taken care of by the language, rather than an IDE.

For example, suppose one wanted to do OOP (object-oriented programming) using
a simpler language that has no particular support for the paradigm. It can be done, but
it’s just awful and rarely worthwhile. But when a more complex language supports OOP
directly, then writing OOP programs becomes simple and elegant. The language is more
complicated, but the user code is simpler. This is worthwhile progress.

The ability to write user code for a wide variety of tasks in a simple and elegant man-
ner pretty much requires a language that supports multiple programming paradigms.
Properly written code should just look beautiful on the page, and beautiful code oddly
enough tends to be correct code. I’m not sure why that relationship holds, but it tends
to be true. It’s the same way an airplane that looks good tends to fly well, too. Therefore,
language features that enable algorithms to be expressed in a beautiful way are probably
good things.

Simplicity and elegance in writing code, however, are not the only metrics that char-
acterize a good programming language. These days, programs are rapidly increasing in
size with no conceivable end in sight. With such size, it becomes less and less practi-
cal to rely on convention and programming expertise to ensure the code is correct, and
more and more worthwhile to rely on machine-checkable guarantees. To that end, D
sports a variety of strategies that the programmer can employ to make such guarantees.
These include contracts, memory safety, various function attributes, immutability, hi-
jack protection, scope guards, purity, unit tests, and thread data isolation.

Foreword by Walter Bright xvii

No, we haven’t overlooked performance! Despite many predictions that perfor-
mance is no longer relevant, despite computers running a thousand times faster than
when I wrote my first compiler, there never seems to be any shortage of demand for
faster programs. D is a systems programming language. What does that mean? In one
sense, it means that one can write an operating system in D, as well as device drivers and
application code. In a more technical sense, it means that D programs have access to all
the capabilities of the machine. This means you can use pointers, do pointer aliasing
and pointer arithmetic, bypass the type system, and even write code directly in assem-
bly language. There is nothing completely sealed off from a D programmer’s access. For
example, the implementation of D’s garbage collector is entirely written in D.

But wait! How can that be? How can a language offer both soundness guarantees and
arbitrary pointer manipulation? The answer is that the kinds of guarantees are based on
the language constructs used. For example, function attributes and type constructors
can be used to state guarantees enforcible at compile time. Contracts and invariants
specify guarantees to be enforced at runtime.

Most of D’s features have appeared in other languages in one form or another. Any
particular one doesn’t make the case for a language. But the combination is more
than the sum of the parts, and D’s combination makes for a satisfying language that
has elegant and straightforward means to solve an unusually wide variety of program-
ming problems.

Andrei Alexandrescu is famous for his unconventional programming ideas becom-
ing the new mainstream (see his seminal book Modern C++ Design). Andrei joined the D
programming language design team in 2006. He’s brought with him a sound theoretical
grounding in programming, coupled with an endless stream of innovative solutions to
programming design problems. Much of the shape of D2 is due to his contributions, and
in many ways this book has co-evolved with D. One thing you’ll happily discover in his
writing about D is the why of the design choices, rather than just a dry recitation of facts.
Knowing why a language is the way it is makes it much easier and faster to understand
and get up to speed.

Andrei goes on to illustrate the whys by using D to solve many fundamental pro-
gramming problems. Thus he shows not only how D works, but why it works, and how
to use it.

I hope you’ll have as much fun programming in D as I’ve had working to bring it to
life. A palpable excitement about the language seeps out of the pages of Andrei’s book. I
think you’ll find it exciting!

Walter Bright
January 2010

This page intentionally left blank

Foreword

by Scott Meyers

By any measure, C++ has been a tremendous success, but even its most ardent propo-
nents won’t deny that it’s a complicated beast. This complexity influenced the design of
C++’s most widely used successors, Java and C#. Both strove to avoid C++’s complexity—
to provide most of its functionality in an easier-to-use package.

Complexity reduction took two basic forms. One was elimination of “complicated”
language features. C++’s need for manual memory management, for example, was ob-
viated by garbage collection. Templates were deemed to fail the cost/benefit test, so
the initial versions of these languages chose to exclude anything akin to C++’s support
for generics.

The other form of complexity reduction involved replacing “complicated” C++ fea-
tures with similar, but less demanding, constructs. C++’s multiple inheritance morphed
into single inheritance augmented with interfaces. Current versions of Java and C# sup-
port templatesque generics, but they’re simpler than C++’s templates.

These successor languages aspired to far more than simply doing what C++ did with
reduced complexity. Both defined virtual machines, added support for runtime reflec-
tion, and provided extensive libraries that allow many programmers to shift their fo-
cus from creating new code to gluing existing components together. The result can be
thought of as C-based “productivity languages.” If you want to quickly create software
that more or less corresponds to combinations of existing components—and much soft-
ware falls into this category—Java and C# are better choices than C++.

But C++ isn’t a productivity language; it’s a systems programming language. It was
designed to rival C in its ability to communicate with hardware (e.g., in drivers and em-
bedded systems), to work with C-based libraries and data structures without adaptation
(e.g., in legacy systems), to squeeze the last drop of performance out of the hardware it
runs on. It’s not really an irony that the performance-critical components of the virtual
machines beneath Java and C# are written in C++. The high-performance implementa-
tion of virtual machines is a job for a systems language, not a productivity language.

D aims to be C++’s successor in the realm of systems programming. Like Java and
C#, D aims to avoid the complexity of C++, and to this end it uses some of the same

xix

xx Foreword by Scott Meyers

techniques. Garbage collection is in, manual memory management is out.1 Single in-
heritance and interfaces are in, multiple inheritance is out. But then D starts down a
path of its own.

It begins by identifying functional holes in C++ and filling them. Current C++ offers
no Unicode support, and its nascent successor version (C++0x) provides only a limited
amount. D handles Unicode from the get-go. Neither current C++ nor C++0x offers sup-
port for modules, Contract Programming, unit testing, or “safe” subsets (where memory
errors are impossible). D offers all these things, and it does so without sacrificing the
ability to generate high-quality native code.

Where C++ is both powerful and complicated, D aims to be at least as powerful but
less complicated. Template metaprogrammers in C++ have demonstrated that compile-
time computation is an important technology, but they’ve had to jump through hoops
of syntactic fire to practice it. D offers similar capabilities, but without the lexical pain.
If you know how to write a function in current C++, you know nothing about how to
write the corresponding C++ function that’s evaluated during compilation. If you know
how to write a function in D, however, you know exactly how to write its compile-time
variant, because the code is the same.

One of the most interesting places where D parts ways with its C++-derived siblings
is in its approach to thread-based concurrency. Recognizing that improperly synchro-
nized access to shared data (data races) is a pit that’s both easy to fall into and hard to
climb out of, D turns convention on its head: by default, data isn’t shared across threads.
As D’s designers point out, given the deep cache hierarchies of modern hardware, mem-
ory often isn’t truly shared across cores or processors anyway, so why default to offering
developers an abstraction that’s not only an illusion, it’s an illusion known to facilitate
the introduction of difficult-to-debug errors?

All these things and more make D a noteworthy point in the C heritage design space,
and that is reason enough to read this book. The fact that the author is Andrei Alexan-
drescu makes the case even stronger. As codesigner of D and an implementer of sub-
stantial portions of its library, Andrei knows D like almost no one else. Naturally, he
can describe the D programming language, but he can also explain why D is the way it
is. Features present in the language are there for a reason, and would-be features that
are missing are absent for a reason, too. Andrei is in a unique position to illuminate
such reasoning.

This illumination comes through in a uniquely engaging style. In the midst of what
might seem to be a needless digression (but is actually a waystation en route to a desti-
nation he needs you to reach), Andrei offers reassurance: “I know you are asking your-
self what this has to do with compile-time evaluation. It does. Please bear with me.”
Regarding the unintuitive nature of linker diagnostics, Andrei observes, “If you forget
about --main, don’t worry; the linker will fluently and baroquely remind you of that

1. Actually, it’s optional. As befits a systems programming language, if you really want to perform manual
memory management, D will let you.

Foreword by Scott Meyers xxi

in its native language, encrypted Klingon.” Even references to other publications get the
Alexandrescu touch. You’re not simply referred to Wadler’s “Proofs are programs,” you’re
referred to “Wadler’s fascinating monograph ‘Proofs are programs.’” Friedl’s “Mastering
regular expressions” isn’t just recommended, it’s “warmly recommended.”

A book about a programming language is filled with sample code, of course, and the
code samples also demonstrate that Andrei is anything but a pedestrian author. Here’s
his prototype for a search function:

bool find(int[] haystack, int needle);

This is a book by a skilled author describing an interesting programming language.
I’m sure you’ll find the read rewarding.

Scott Meyers
January 2010

This page intentionally left blank

Preface

Programming language design seeks power in simplicity and, when successful, begets
beauty.

Choosing the trade-offs among contradictory requirements is a difficult task that
requires good taste from the language designer as much as mastery of theoretical
principles and of practical implementation matters. Programming language design is
software-engineering-complete.

D is a language that attempts to consistently do the right thing within the constraints
it chose: system-level access to computing resources, high performance, and syntactic
similarity with C-derived languages. In trying to do the right thing, D sometimes stays
with tradition and does what other languages do, and other times it breaks tradition
with a fresh, innovative solution. On occasion that meant revisiting the very constraints
that D ostensibly embraced. For example, large program fragments or indeed entire
programs can be written in a well-defined memory-safe subset of D, which entails giving
away a small amount of system-level access for a large gain in program debuggability.

You may be interested in D if the following values are important to you:

• Performance. D is a systems programming language. It has a memory model that,
although highly structured, is compatible with C’s and can call into and be called
from C functions without any intervening translation.

• Expressiveness. D is not a small, minimalistic language, but it does have a high
power-to-weight ratio. You can define eloquent, self-explanatory designs in D that
model intricate realities accurately.

• “Torque.” Any backyard hot-rodder would tell you that power isn’t everything; its
availability is. Some languages are most powerful for small programs, whereas
other languages justify their syntactic overhead only past a certain size. D helps
you get work done in short scripts and large programs alike, and it isn’t unusual
for a large program to grow organically from a simple single-file script.

• Concurrency. D’s approach to concurrency is a definite departure from the lan-
guages it resembles, mirroring the departure of modern hardware designs from
the architectures of yesteryear. D breaks away from the curse of implicit memory
sharing (though it allows statically checked explicit sharing) and fosters mostly
independent threads that communicate with one another via messages.

xxiii

xxiv Preface

• Generic code. Generic code that manipulates other code has been pioneered by
the powerful Lisp macros and continued by C++ templates, Java generics, and
similar features in various other languages. D offers extremely powerful generic
and generational mechanisms.

• Eclecticism. D recognizes that different programming paradigms are advanta-
geous for different design challenges and fosters a highly integrated federation
of styles instead of One True Approach.

• “These are my principles. If you don’t like them, I’ve got others.” D tries to ob-
serve solid principles of language design. At times, these run into considerations
of implementation difficulty, usability difficulties, and above all human nature
that doesn’t always find blind consistency sensible and intuitive. In such cases, all
languages must make judgment calls that are ultimately subjective and are about
balance, flexibility, and good taste more than anything else. In my opinion, at
least, D compares very favorably with other languages that inevitably have had to
make similar decisions.

Intended Audience

This book assumes you’re a programmer, meaning that you know how to accomplish
typical programming tasks in a language of your choice. Knowledge of any language in
particular is not assumed or particularly recommended. If you know one of the Algol-
derived languages (C, C++, Java, or C#), you will enjoy a slight advantage because the
syntax will feel familiar from the get-go and the risk of finding false friends (similar syn-
tax with different semantics) is minimal. (In particular, if you paste a piece of C code
into a D file, it either compiles with the same semantics or doesn’t compile at all.)

A book introducing a language would be boring and incomplete without providing
insight into the motivation behind various features, and without explaining the most
productive ways to use those features to accomplish concrete tasks. This book discusses
the rationale behind all non-obvious features and often explains why apparently better
design alternatives weren’t chosen. Certain design choices may disproportionately ag-
gravate the implementation effort, interact poorly with other features that have stronger
reasons to stay put, have hidden liabilities that are invisible in short and simple exam-
ples, or simply aren’t powerful enough to pull their own weight. Above all, language de-
signers are as fallible as any other human, so it’s very possible that good design choices
exist that simply haven’t been seen.

Organization of the Book

The first chapter is a brisk walk through the major parts of the language. At that point,
not all details are thoroughly explored, but you can get a good feel for the language and
build expertise to write small programs in it. Chapters 2 and 3 are the obligatory refer-
ence chapters for expressions and statements, respectively. I tried to combine the re-

Preface xxv

quired uniform thoroughness with providing highlights of the “deltas,” differences from
traditional languages. With luck, you’ll find these chapters easy to read sequentially and
also handy to return to for reference. The tables at the end of these chapters are “cheat
sheets”—quick refreshers expressed in terse, intuitive terms.

Chapter 4 describes built-in arrays, associative arrays, and strings. Arrays can be
thought of as pointers with a safety switch and are instrumental in D’s approach to mem-
ory safety and in your enjoyment of the language. Strings are arrays of UTF-encoded
Unicode characters. Unicode support throughout the language and the standard library
makes string handling correct and effective.

After reading the first four chapters, you can use the abstractions provided by the
language to write short script-style programs. Subsequent chapters introduce abstrac-
tion building blocks. Chapter 5 describes functions in an integrated manner that in-
cludes compile-time parameterized functions (template functions) and functions eval-
uated during compilation. Such concepts would normally be confined to an advanced
chapter, but D makes them simple enough to justfy early introduction.

Chapter 6 discusses object-oriented design with classes. Again, compile-time pa-
rameterized classes are presented in an integrated, organic manner. Chapter 7 in-
troduces additional types, notably struct, which is instrumental in building high-
efficiency abstractions, often in concert with classes.

The following four chapters describe features that are relatively separate and spe-
cialized. Chapter 8 deals with type qualifiers. Qualifiers provide strong guarantees that
are very handy in single-threaded and multithreaded applications alike. Chapter 9 cov-
ers the exception model. Chapter 10 introduces D’s powerful facilities for Contract Pro-
gramming and is intentionally separate from Chapter 9 in an attempt to dispel the com-
mon misconception that error handling and Contract Programming are practically the
same topic; they aren’t, and Chapter 10 explains why.

Chapter 11 gives information and advice for building large programs out of compo-
nents and also gives a brief tour through D’s standard library. Chapter 12 covers operator
overloading, without which a host of abstractions such as complex numbers would be
severely affected. Finally, Chapter 13 discusses D’s original approach to concurrency.

A Brief History

Cheesy as it sounds, D is a work of love. Walter Bright, a C and C++ compiler writer,
decided one day in the 1990s that he didn’t want to continue his career maintaining his
compilers, so he set out to define a language as he thought “it should be done.” Many
of us dream at some point or another of defining the Right Language; luckily, Walter al-
ready had a significant portion of the infrastructure handy—a back-end code generator,
a linker, and most of all extensive experience with building language processors. The
latter skill offered Walter an interesting perspective. Through some mysterious law of
nature, poor language feature design reflects itself, in a Dorian Gray-esque manner, in

xxvi Preface

convoluted compiler implementation. In designing his new language, Walter attempted
systematically to eliminate such disfluencies.

The then-nascent language was similar to C++ in spirit so the community called it
simply D, in spite of Walter’s initial attempt to dub it Mars. Let’s call that language D1
for reasons that will become apparent soon. Walter worked on D1 for years and through
sheer passion and perseverance amassed a growing crowd of followers. By 2006 D1 had
grown into a strong language that could technically compete head to head with much
more established languages such as C++ and Java. However, by that time it had become
clear that D1 would not become mainstream because it did not have enough compelling
features to make up for the backing that other languages had. At that time Walter de-
cided to make a daring gambit: he decided that D1 would be the mythical throwaway
first version, put D1 in maintenance mode, and embarked on a revamped design for
the second iteration of the language that had the discretion to break backward com-
patibility. Current D1 users continued to benefit from bug fixes, but D1 would not add
new features; D2 would become the flagship language definition, which I’ll henceforth
call D.

The gambit paid off. The first design iteration provided insights into things to do
and things to avoid. Also, there was no rush to advertise the new language—newcomers
could work with the stable, actively maintained D1. Since compatibility and deadline
pressures were not major issues, there was time to analyze design alternatives carefully
and to make the right decisions through and through. To further help the design effort,
Walter also enlisted the help of collaborators such as Bartosz Milewski and me. Impor-
tant features pertaining to D’s approach to immutability, generic programming, concur-
rency, functional programming, safety, and much more were decided in long, animated
meetings among the three of us at a coffee shop in Kirkland, WA.

In time, D firmly outgrew its “better C++” moniker and became a powerful multi-
purpose language that could gainfully steal work from system-level, enterprise, and
scripting languages alike. There was one problem left—all of this growth and inno-
vation has happened in obscurity; little has been documented about the way D ap-
proaches programming.

The book you’re now reading attempts to fill that void. I hope you will enjoy reading
it as much as I enjoyed writing it.

Acknowledgments

D has a long list of contributors that I can’t hope to produce in its entirety. Of these, the
participants in the Usenet newsgroup digitalmars.D stand out. The newsgroup has
acted as a sounding board for the designs we brought up for scrutiny and also generated
many ideas and improvements.

Walter has benefited from community help with defining the reference implemen-
tation dmd, and two contributors stand out: Sean Kelly and Don Clugston. Sean has
rewritten and improved the core runtime library (including the garbage collector) and

Preface xxvii

has also authored most of D’s concurrency library implementation. He’s very good at
what he does, which sadly means that bugs in your concurrent code are more likely
to be yours than his. Don is an expert in math in general and floating point numerics
issues in particular. He has enormously helped D’s numeric primitives to be some of
the best around and has pushed D’s generational abilities to their limit. As soon as the
source code for the reference compiler was made available, Don couldn’t resist adding
to it, becoming the second-largest dmd contributor. Both Sean and Don initiated and
carried through proposals that improved D’s definition. Last but not least, they are awe-
some hackers all around and very enjoyable to interact with in person and online. I don’t
know where the language would be without them.

For this book, I’d like to warmly thank my reviewers for the generosity with which
they carried out a difficult and thankless job. Without them this book would not be what
it now is (so if you don’t like it, take solace—just imagine how much worse it could have
been). So allow me to extend my thanks to Alejandro Aragón, Bill Baxter, Kevin Bealer,
Travis Boucher, Mike Casinghino, Àlvaro Castro Castilla, Richard Chang, Don Clugston,
Stephan Dilly, Karim Filali, Michel Fortin, David B. Held, Michiel Helvensteijn, Bernard
Helyer, Jason House, Sam Hu, Thomas Hume, Graham St. Jack, Robert Jacques, Chris-
tian Kamm, Daniel Keep, Mark Kegel, Sean Kelly, Max Khesin, Simen Kjaeraas, Cody
Koeninger, Denis Koroskin, Lars Kyllingstad, Igor Lesik, Eugene Letuchy, Pelle Månsson,
Miura Masahiro, Tim Matthews, Scott Meyers, Bartosz Milewski, Fawzi Mohamed, Ellery
Newcomer, Eric Niebler, Mike Parker, Derek Parnell, Jeremie Pelletier, Pablo Ripolles,
Brad Roberts, Michael Rynn, Foy Savas, Christof Schardt, Steve Schveighoffer, Benjamin
Shropshire, David Simcha, Tomasz Stachowiak, Robert Stewart, Knut Erik Teigen, Cris-
tian Vlăsceanu, and Leor Zolman.

Andrei Alexandrescu
Sunday, May 2, 2010

This page intentionally left blank

Chapter

13
Concurrency

Convergence of various factors in the hardware industry has led to qualitative changes
in the way we are able to access computing resources, which in turn prompts profound
changes in the ways we approach computing and in the language abstractions we use.
Concurrency is now virtually everywhere, and it is software’s responsibility to tap into it.

Although the software industry as a whole does not yet have ultimate responses to
the challenges brought about by the concurrency revolution, D’s youth allowed its cre-
ators to make informed decisions regarding concurrency without being tied down by ob-
soleted past choices or large legacy code bases. A major break with the mold of concur-
rent imperative languages is that D does not foster sharing of data between threads; by
default, concurrent threads are virtually isolated by language mechanisms. Data shar-
ing is allowed but only in limited, controlled ways that offer the compiler the ability to
provide strong global guarantees.

At the same time, D remains at heart a systems programming language, so it does
allow you to use a variety of low-level, maverick approaches to concurrency. (Some of
these mechanisms are not, however, allowed in safe programs.)

In brief, here’s how D’s concurrency offering is layered:

• The flagship approach to concurrency is to use isolated threads or processes that
communicate via messages. This paradigm, known as message passing, leads to
safe and modular programs that are easy to understand and maintain. A variety
of languages and libraries have used message passing successfully. Historically
message passing has been slower than approaches based on memory sharing—
which explains why it was not unanimously adopted—but that trend has recently
undergone a definite and lasting reversal. Concurrent D programs are encouraged

391

392 Chapter 13. Concurrency

to use message passing, a paradigm that benefits from extensive infrastructure
support.

• D also provides support for old-style synchronization based on critical sections
protected by mutexes and event variables. This approach to concurrency has re-
cently come under heavy criticism because of its failure to scale well to today’s
and tomorrow’s highly parallel architectures. D imposes strict control over data
sharing, which in turn curbs lock-based programming styles. Such restrictions
may seem quite harsh at first, but they cure lock-based code of its worst enemy:
low-level data races. Data sharing remains, however, the most efficient means to
pass large quantities of data across threads, so it should not be neglected.

• In the tradition of system-level languages, D programs not marked as @safe may
use casts to obtain hot, bubbly, unchecked data sharing. The correctness of such
programs becomes largely your responsibility.

• If that level of control is insufficient for you, you can use asm statements for ulti-
mate control of your machine’s resources. To go any lower-level than that, you’d
need a miniature soldering iron and a very, very steady hand.

Before getting into the thick of these topics, let’s take a brief detour in order to gain a
better understanding of the hardware developments that have shaken our world.

13.1 Concurrentgate

When it comes to concurrency, we are living in the proverbial interesting times more
than ever before. Interesting times come in the form of a mix of good and bad news that
contributes to a complex landscape of trade-offs, forces, and trends.

The good news is that density of integration is still increasing by Moore’s law; with
what we know and what we can reasonably project right now, that trend will continue for
at least one more decade after the time of this writing. Increased miniaturization begets
increased computing power density because more transistors can be put to work to-
gether per area unit. Since components are closer together, connections are also shorter,
which means faster local interconnectivity. It’s an efficiency bonanza.

Unfortunately, there are a number of sentences starting with “unfortunately” that
curb the enthusiasm around increased computational density. For one, connectivity is
not only local—it forms a hierarchy [16]: closely connected components form units that
must connect to other units, forming larger units. In turn, the larger units also connect
to other larger units, forming even larger functional blocks, and so on. Connectivity-
wise, such larger blocks remain “far away” from each other. Worse, increased com-
plexity of each block increases the complexity of connectivity between blocks, which
is achieved by reducing the thickness of wires and the distance between them. That
means an increase of resistance, capacity, and crosstalk. Resistance and capacity worsen
propagation speed in the wire. Crosstalk is the propensity of the signal in one wire to

13.1. Concurrentgate 393

propagate to a nearby wire by (in this case) electromagnetic field. At high frequencies,
a wire is just an antenna and crosstalk becomes so unbearable that serial communica-
tion increasingly replaces parallel communication (a somewhat counterintuitive phe-
nomenon visible at all scales—USB replaced the parallel port, SATA replaced PATA as
the disk data connector, and serial buses are replacing parallel buses in memory sub-
systems, all because of crosstalk. Where are the days when parallel was fast and serial
was slow?).

Also, the speed gap between processing elements and memory is also increasing.
Whereas memory density has been increasing at predictably the same rate as general
integration density, its access speed is increasingly lagging behind computation speed
for a variety of physical, technological, and market-related reasons [22]. It is unclear
at this time how the speed gap could be significantly reduced, and it is only growing.
Hundreds of cycles may separate the processor from a word in memory; only a few years
ago, you could buy “zero wait states” memory chips accessible in one clock cycle.

The existence of a spectrum of memory architectures that navigate different trade-
offs among density, price, and speed, has caused an increased sophistication of mem-
ory hierarchies; accessing one memory word has become a detective investigation that
involves questioning several cache levels, starting with precious on-chip static RAM
and going possibly all the way to mass storage. Conversely, a given datum could be
found replicated in a number of places throughout the cache hierarchy, which in turn
influences programming models. We can’t afford anymore to think of memory as a
big, monolithic chunk comfortably shared by all processors in a system: caches fos-
ter local memory traffic and make shared data an illusion that is increasingly difficult
to maintain [37].

In related, late-breaking news, the speed of light has obstinately decided to stay con-
stant (immutable if you wish) at about 300,000,000 meters per second. The speed of
light in silicon oxide (relevant to signal propagation inside today’s chips) is about half
that, and the speed we can achieve today for transmitting actual data is significantly be-
low that theoretical limit. That spells more trouble for global interconnectivity at high
frequencies. If we wanted to build a 10GHz chip, under ideal conditions it would take
three cycles just to transport a bit across a 4.5-centimeter-wide chip while essentially
performing no computation.

In brief, we are converging toward processors of very high density and huge compu-
tational power that are, however, becoming increasingly isolated and difficult to reach
and use because of limits dictated by interconnectivity, signal propagation speed, and
memory access speed.

The computing industry is naturally flowing around these barriers. One phe-
nomenon has been the implosion of the size and energy required for a given compu-
tational power; today’s addictive portable digital assistants could not have been fab-
ricated at the same size and capabilities with technology only five years old. Today’s
trends, however, don’t help traditional computers that want to achieve increased com-
putational power at about the same size. For those, chip makers decided to give up the

394 Chapter 13. Concurrency

battle for faster clock rates and instead decided to offer computing power packaged in
already known ways: several identical central processing unit (CPUs) connected to each
other and to memory via buses. Thus, in a matter of a few short years, the responsi-
bility for making computers faster has largely shifted from the hardware crowd to the
software crowd. More CPUs may seem like an advantageous proposition, but for reg-
ular desktop computer workloads it becomes tenuous to gainfully employ more than
around eight processors. Future trends project an exponential expansion of the number
of available CPUs well into the dozens, hundreds, and thousands. To speed up one given
program, a lot of hard programming work is needed to put those CPUs to good use.

The computing industry has always had moves and shakes caused by various tech-
nological and human factors, but this time around we seem to be at the end of the rope.
Since only a short time ago, taking a vacation is not an option for increasing the speed
of your program. It’s a scandal. It’s an outrage. It’s Concurrentgate.

13.2 A Brief History of Data Sharing

One aspect of the shift happening in computing is the suddenness with which process-
ing and concurrency models are changing today, particularly in comparison and con-
trast to the pace of development of programming languages and paradigms. It takes
years and decades for programming languages and their associated styles to become
imprinted into a community’s lore, whereas changes in concurrency matters turned a
definite exponential elbow starting around the beginning of the 2000s.

For example, our yesteryear understanding of general concurrency1 was centered
around time sharing, which in turn originated with the mainframes of the 1960s. Back
then, CPU time was so expensive, it made sense to share the CPU across multiple pro-
grams controlled from multiple consoles so as to increase overall utilization. A process
was and is defined as the state and the resources of a running program. To implement
time sharing, the CPU uses a timer interrupt in conjunction with a software scheduler.
Upon each timer interrupt, the scheduler decides which process gets CPU time for the
next time quantum, thus giving the illusion that several processes are running simulta-
neously, when in fact they all use the same CPU.

To prevent buggy processes from stomping over one another and over operating sys-
tem code, hardware memory protection has been introduced. In today’s systems, mem-
ory protection is combined with memory virtualization to ensure robust process iso-
lation: each process thinks it “owns” the machine’s memory, whereas in fact a transla-
tion layer from logical addresses (as the process sees memory) to physical addresses (as
the machine accesses memory) intermediates all interaction of processes with memory
and isolates processes from one another. The good news is that runaway processes can
harm only themselves, but not other processes or the operating system kernel. The less

1. The following discussion focuses on general concurrency and does not discuss vector operation paral-
lelization and other specialized parallel kernels.

13.2. A Brief History of Data Sharing 395

good news is that upon each task switching, a potentially expensive swapping of address
translation paraphernalia also has to occur, not to mention that every just-switched-to
process wakes up with cache amnesia as the global shared cache was most likely used
by other processes. And that’s how threads were born.

A thread is a process without associated address translation information—a bare ex-
ecution context: processor state plus stack. Several threads share the address space of a
process, which means that threads are relatively cheap to start and switch among, and
also that they can easily and cheaply share data with each other. Sharing memory across
threads running against one CPU is as straightforward as possible—one thread writes,
another reads. With time sharing, the order in which data is written by one thread is
naturally the same as the order in which those writes are seen by others. Maintaining
higher-level data invariants is ensured by using interlocking mechanisms such as critical
sections protected by synchronization primitives (such as semaphores and mutexes).
Through the late twentieth century, a large body of knowledge, folklore, and anecdotes
has grown around what could be called “classic” multithreaded programming, charac-
terized by shared address space, simple rules for memory effect visibility, and mutex-
driven synchronization. Other models of concurrency existed, but classic multithread-
ing was the most used on mainstream hardware.

Today’s mainstream imperative languages such as C, C++, Java, or C# have been de-
veloped during the classic multithreading age—the good old days of simple memory ar-
chitectures, straightforward data sharing, and well-understood interlocking primitives.
Naturally, languages modeled the realities of that hardware by accommodating threads
that all share the same memory. After all, the very definition of multithreading entails
that all threads share the same address space, unlike operating system processes. In ad-
dition, message-passing APIs (such as the MPI specification [29]) have been available in
library form, initially for high-end hardware such as (super)computer clusters.

During the same historical period, the then-nascent functional languages adopted
a principled position based on mathematical purity: we’re not interested in modeling
hardware, they said, but we’d like to model math. And math for the most part does not
have mutation and is time-invariant, which makes it an ideal candidate for paralleliza-
tion. (Imagine the moment when those first mathematicians-turned-programmers
heard about concurrency—they must have slapped their foreheads: “Wait a minute!. . . ”)
It was well noted in functional programming circles that such a computational model
does inherently favor out-of-order, concurrent execution, but that potential was more
of a latent energy than a realized goal until recent times.

Finally, Erlang was developed starting in the late 1980s as a domain-specific embed-
ded language for telephony applications. The domain required tens of thousands of
simultaneous programs running on the same machine and strongly favored a message-
passing, “fire-and-forget” communication style. Although mainstream hardware and
operating systems were not optimized for such workloads, Erlang initially ran on spe-
cialized hardware. The result was a language that originally combined an impure func-

396 Chapter 13. Concurrency

tional style with heavy concurrency abilities and a staunch message-passing, no-sharing
approach to communication.

Fast-forward to the 2010s. Today, even run-of-the-mill machines have more than
one processor, and the decade’s main challenge is to stick ever more CPUs on a chip.
This has had a number of consequences, the most important being the demise of seam-
less shared memory.

One time-shared CPU has one memory subsystem attached to it—with buffers, sev-
eral levels of caches, the works. No matter how the CPU is time-shared, reads and writes
go through the same pipeline; as such, a coherent view of memory is maintained across
all threads. In contrast, multiple interconnected CPUs cannot afford to share the cache
subsystem: such a cache would need multiport access (expensive and poorly scalable)
and would be difficult to place in the proximity of all CPUs simultaneously. Therefore,
today’s CPUs, almost without exception, come with their own dedicated cache memory.
The hardware and protocols connecting the CPU + cache combos together are a crucial
factor influencing multiprocessor system performance.

The existence of multiple caches makes data sharing across threads devilishly dif-
ficult. Now reads and writes in different threads may hit different caches, so sharing
data from one thread to another is not straightforward anymore and, in fact, becomes a
message passing of sorts:2 for any such sharing, a sort of handshake must occur among
cache subsystems to ensure that shared data makes it from the latest writer to the reader
and also to the main memory.

As if things weren’t interesting enough already, cache synchronization protocols add
one more twist to the plot: they manipulate data in blocks, not individual word reads
and word writes. This means that communicating processors “forget” the exact order in
which data was written, leading to paradoxical behavior that apparently defies causality
and common sense: one thread writes x and then y and for a while another thread sees
the new y but only the old x. Such causality violations are extremely difficult to integrate
within the general model of classic multithreading, which is imbued with the intuition
of time slicing and with a simple memory model. Even the most expert programmers
in classic multithreading find it unbelievably difficult to adapt their programming styles
and patterns to the new memory architectures.

To illustrate the rapid changes in today’s concurrency world and also the heavy in-
fluence of data sharing on languages’ approach to concurrency, consider the following
piece of advice given in the 2001 edition of the excellent book Effective Java [8, Item 51,
page 204]:

When multiple threads are runnable, the thread scheduler determines which
threads get to run and for how long. . . . The best way to write a robust, responsive,
portable multithreaded application is to ensure that there are few runnable threads
at any given time.

2. This is ironic because shared memory has been faster than message passing in the classic multithreading
days.

13.3. Look, Ma, No (Default) Sharing 397

One startling detail for today’s observer is that single-processor, time-sliced thread-
ing is not only addressed by the quote above, but actually assumed without being stated.
Naturally, the book’s 2008 edition3 [9] changes the advice to “ensure that the average
number of runnable threads is not significantly greater than the number of processors.”
Interestingly, even that advice, although it looks reasonable, makes a couple of unstated
assumptions: one, that there will be high data contention between threads, which in
turn causes degradation of performance due to interlocking overheads; and two, that
the number of processors does not vary dramatically across machines that may exe-
cute the program. As such, the advice is contrary to that given, repeatedly and in the
strongest terms, in the Programming Erlang book [5, Chapter 20, page 363]:

Use Lots of Processes This is important—we have to keep the CPUs busy. All
the CPUs must be busy all the time. The easiest way to achieve this is to have lots
of processes.4 When I say lots of processes, I mean lots in relation to the number
of CPUs. If we have lots of processes, then we won’t need to worry about keeping
the CPUs busy.

Which recommendation is correct? As usual, it all depends. The first recommenda-
tion works well on 2001-vintage hardware; the second works well in scenarios of inten-
sive data sharing and consequently high contention; and the third works best in low-
contention, high-CPU-count scenarios.

Because of the increasing difficulty of sharing memory, today’s trends make data
sharing tenuous and favor functional and message-passing approaches. Not inciden-
tally, recent years have witnessed an increased interest in Erlang and other functional
languages for concurrent applications.

13.3 Look, Ma, No (Default) Sharing

In the wake of the recent hardware and software developments, D chose to make a rad-
ical departure from other imperative languages: yes, D does support threads, but they
do not share any mutable data by default—they are isolated from each other. Isolation
is not achieved via hardware as in the case of processes, and it is not achieved through
runtime checks; it is a natural consequence of the way D’s type system is designed.

Such a decision is inspired by functional languages, which also strive to disallow all
mutation and consequently mutable sharing. There are two differences. First, D pro-
grams can still use mutation freely—it’s just that mutable data is not unwittingly acces-
sible to other threads. Second, no sharing is a default choice, not the only one. To define
data as being shared across threads, you must qualify its type with shared. Consider, for
example, two simple module-scope definitions:

3. Even the topic title was changed from “Threads” to “Concurrency” to reflect the fact that threads are but
one concurrency model.

4. Erlang processes are distinct from OS processes.

398 Chapter 13. Concurrency

int perThread;
shared int perProcess;

In most languages, the first definition (or its syntactic equivalent) would introduce
a global variable used by all threads; however, in D, perThread has a separate copy for
each thread. The second declaration allocates only one int that is shared across all
threads, so in a way it is closer (but not identical) to a traditional global variable.

The variable perThread is stored using an operating system facility known as thread-
local storage (TLS). The access speed of TLS-allocated data is dependent upon the com-
piler implementation and the underlying operating system. Generally it is negligibly
slower than accessing a regular global variable in a C program, for example. In the rare
cases when that may be a concern, you may want to load the global into a stack variable
in access-intensive loops.

This setup has two important advantages. First, default-share languages must care-
fully synchronize access around global data; that is not necessary for perThread because
it is private to each thread. Second, the shared qualifier means that the type system and
the human user are both in the know that perProcess is accessed by multiple threads
simultaneously. In particular, the type system will actively guard the use of shared data
and disallow uses that are obviously mistaken. This turns the traditional setup on its
head: under a default-share regime, the programmer must keep track manually of which
data is shared and which isn’t, and indeed most concurrency-related bugs are caused
by undue or unprotected sharing. Under the explicit shared regime, the programmer
knows for sure that data not marked as shared is never indeed visible to more than one
thread. (To ensure that guarantee, shared values undergo additional checks that we’ll
get to soon.)

Using shared data remains an advanced topic because although low-level coherence
is automatically ensured by the type system, high-level invariants may not be. To pro-
vide safe, simple, and efficient communication between threads, the preferred method
is to use a paradigm known as message passing. Memory-isolated threads communi-
cate by sending each other asynchronous messages, which consist simply of D values
packaged together.

Isolated workers communicating via simple channels are a very robust, time-proven
approach to concurrency. Erlang has done that for years, as have applications based on
the Message Passing Interface (MPI) specification [29].

To add acclaim to remedy,5 good programming practice even in default-share multi-
threaded languages actually enshrines that threads ought to be isolated. Herb Sutter, a
world-class expert in concurrency, writes in an article eloquently entitled “Use threads
correctly = isolation + asynchronous messages” [54]:

5. That must be an antonym for the phrase “to add insult to injury.”

13.4. Starting a Thread 399

Threads are a low-level tool for expressing asynchronous work. “Uplevel” them by
applying discipline: strive to make their data private, and have them communicate
and synchronize using asynchronous messages. Each thread that needs to get infor-
mation from other threads or from people should have a message queue, whether
a simple FIFO queue or a priority queue, and organize its work around an event-
driven message pump mainline; replacing spaghetti with event-driven logic is a
great way to improve the clarity and determinism of your code.

If there is one thing that decades of computing have taught us, it must be that
discipline-oriented programming does not scale. It is reassuring, then, to reckon that
the quote above pretty much summarizes quite accurately the following few sections,
save for the discipline part.

13.4 Starting a Thread

To start a thread, use the spawn function like this:

import std.concurrency, std.stdio;

void main() {

auto low = 0, high = 100;
spawn(&fun, low, high);

foreach (i; low .. high) {
writeln("Main thread: ", i);

}

}

void fun(int low, int high) {

foreach (i; low .. high) {
writeln("Secondary thread: ", i);

}

}

The spawn function takes the address of a function &fun and a number of arguments
‹a1›, ‹a2›, . . . , ‹an›. The number of arguments n and their types must match fun’s sig-
nature, that is, the call fun(‹a1›, ‹a2›, ..., ‹an›) must be correct. This check is done at
compile time. spawn creates a new execution thread, which will issue the call fun(‹a1›,
‹a2›, ..., ‹an›) and then terminate. Of course, spawn does not wait for the thread to
terminate—it returns as soon as the thread is created and the arguments are passed to
it (in this case, two integers).

The program above outputs a total of 200 lines to the standard output. The inter-
leaving of lines depends on a variety of factors; it’s possible that you would see 100 lines

400 Chapter 13. Concurrency

from the main thread followed by 100 lines from the secondary thread, the exact op-
posite, or some seemingly random interleaving. There will never be, however, a mix of
two messages on the same line. This is because writeln is defined to make each call
atomic with regard to its output stream. Also, the order of lines emitted by each thread
will be respected.

Even if the execution of main may end before the execution of fun in the secondary
thread, the program patiently waits for all threads to finish before exiting. This is be-
cause the runtime support library follows a little protocol for program termination,
which we’ll discuss later; for now, let’s just note that other threads don’t suddenly die
just because main returns.

As promised by the isolation guarantee, the newly created thread shares nothing
with the caller thread. Well, almost nothing: the global file handle stdout is de facto
shared across the two threads. But there is no cheating: if you look at the std.stdio
module’s implementation, you will see that stdout is defined as a global shared vari-
able. Everything is properly accounted for in the type system.

13.4.1 immutable Sharing

What kind of functions can you call via spawn? The no-sharing stance imposes certain
restrictions—you may use only by-value parameters for the thread starter function (fun
in the example above). Any pass by reference, either explicit (by use of a ref parameter)
or implicit (e.g., by use of an array) should be verboten. With that in mind, let’s take a
look at the following rewrite of the example:

import std.concurrency, std.stdio;

void main() {

auto low = 0, high = 100;
auto message = "Yeah, hi #";

spawn(&fun, message, low, high);
foreach (i; low .. high) {

writeln("Main thread: ", message, i);

}
}

void fun(string text, int low, int high) {
foreach (i; low .. high) {

writeln("Secondary thread: ", text, i);
}

}

The rewritten example is similar to the original, but it prints an additional string.
That string is created in the main thread and passed without copying into the secondary

13.5. Exchanging Messages between Threads 401

thread. Effectively, the contents of message are shared between the two threads. This
violates the aforementioned principle that all data sharing must be explicitly marked
through the use of the shared keyword. Yet the example compiles and runs. What is
happening?

Chapter 8 explains that immutable provides a strong guarantee: an immutable value
is guaranteed never to change throughout its lifetime. The same chapter explains (§ 8.2
on page 291) that the type string is actually an alias for immutable(char)[]. Finally,
we know that all contention is caused by sharing of writable data—as long as nobody
changes it, you can share data freely as everybody will see the exact same thing. The
type system and the entire threading infrastructure acknowledge that fact by allowing
all immutable data to be freely sharable across threads. In particular, string values can
be shared because their characters can’t be changed. In fact, a large part of the motiva-
tion behind introducing immutable into the language was the help it brings with sharing
structured data across threads.

13.5 Exchanging Messages between Threads

Threads that print messages with arbitrary interleavings are hardly interesting. Let’s
modify the example to ensure that threads work in tandem to print messages as follows:

Main thread: 0
Secondary thread: 0
Main thread: 1
Secondary thread: 1
...
Main thread: 999
Secondary thread: 999

To achieve that, we need to define a little protocol between the two threads: the
main thread should send the message “Print this number” to the secondary thread, and
the secondary thread must answer back, “Done printing.” There is hardly any concur-
rency going on, but the example serves well the purpose of explaining pure communi-
cation. In real applications, threads should spend most of their time doing useful work
and spend relatively little time communicating with each other.

First off, in order for two threads to communicate, they need to know how to address
each other. A program may have many threads chattering away, so an identification
means is necessary. To address a thread, you must get a grip on its thread id, nicknamed
henceforth as “tid,” which is returned by spawn. (The name of a tid’s type is actually
Tid.) In turn, the secondary thread also needs a tid to send the response back. That’s
easy to do by having the sender specify its own Tid the same way you’d write the sender’s
address on a snail mail envelope. Here’s what the code looks like:

import std.concurrency, std.stdio;

402 Chapter 13. Concurrency

void main() {
auto low = 0, high = 100;

auto tid = spawn(&writer);

foreach (i; low .. high) {
writeln("Main thread: ", i);

tid.send(thisTid, i);
enforce(receiveOnly!Tid() == tid);

}

}

void writer() {

for (;;) {
auto msg = receiveOnly!(Tid, int)();

writeln("Secondary thread: ", msg[1]);
msg[0].send(thisTid);

}

}

This time around writer takes no more arguments because it receives the informa-
tion it needs in the form of messages. The main thread saves the Tid returned by spawn
and then uses it in the call to the send method. The call sends two pieces of data to the
other thread: the current thread’s Tid, accessed via the global property thisTid, and
the integer to be printed. After throwing that data over the fence to the other thread,
the main thread waits for acknowledgment in the form of a call to receiveOnly. The
send and receiveOnly functions work in tandem: one call to send in one thread is met
by a call to receiveOnly in the other. The “only” in receiveOnly is present because
receiveOnly accepts only specific types—for example, in the call receiveOnly!bool(),
the caller accepts only a message consisting of a bool value; if another thread sends
anything else, receiveOnly throws a MessageMismatch exception.

Let’s leave main rummaging around the foreach loop and focus on writer’s imple-
mentation, which implements the other side of the mini-protocol. writer spends time
in a loop starting with the receipt of a message that must consist of a Tid and an int.
That’s what the call receiveOnly!(Tid, int)() ensures; again, if the main thread sent
a message with some different number or types of arguments, receiveOnly would fail
by throwing an exception. As written, the receiveOnly call in writer matches perfectly
the call tid.send(thisTid, i) made from main.

The type of msg is Tuple!(Tid, int). Generally, messages with multiple arguments
are packed in Tuple objects with one member per argument. If, however, the message
consists only of one value, there’s no redundant packing in a Tuple. For example, re-
ceiveOnly!int() returns an int, not a Tuple!int.

13.6. Pattern Matching with receive 403

Continuing with writer, the next line performs the actual printing. Recall that for
the tuple msg, msg[0] accesses the first member (i.e., the Tid) and msg[1] accesses the
second member (the int). Finally, writer acknowledges that it finished writing to the
console by simply sending its own Tid back to the sender—a sort of a blank letter that
only confirms the originating address. “Yes, I got your message,” the empty letter im-
plies, “and acted upon it. Your turn.” The main thread waits for that confirmation before
continuing its work, and the loop goes on.

Sending back the Tid of the secondary thread is superfluous in this case; any
dummy value, such as an int or a bool, would have sufficed. But in the general case
there are many threads sending messages to one another, so self-identification be-
comes important.

13.6 Pattern Matching with receive

Most useful communication protocols are more complex than the one we defined above,
and receiveOnly is quite limited. For example, it is quite difficult to implement with
receiveOnly an action such as “receive an int or a string.”

A more powerful primitive is receive, which matches and dispatches messages
based on their type. A typical call to receive looks like this:

receive(
(string s) { writeln("Got a string with value ", s); },

(int x) { writeln("Got an int with value ", x); }

);

The call above matches any of the following send calls:

send(tid, "hello");
send(tid, 5);

send(tid, ’a’);
send(tid, 42u);

The first send call matches a string and is therefore dispatched to the first function
literal in receive, and the other three match an int and are passed to the second func-
tion literal. By the way, the handler functions don’t need to be literals—some or all of
them may be addresses of named functions:

void handleString(string s) { ... }

receive(
&handleString,

(int x) { writeln("Got an int with value ", x); }

);

404 Chapter 13. Concurrency

Matching is not exact; instead, it follows normal overloading rules, by which char

and uint are implicitly convertible to int. Conversely, the following calls will not be
matched:

send(tid, "hello"w); // UTF-16 string (§ 4.5 on page 118)
send(tid, 5L); // long

send(tid, 42.0); // double

When receive sees a message of an unexpected type, it doesn’t throw an excep-
tion (as receiveOnly does). The message-passing subsystem simply saves the non-
matching messages in a queue, colloquially known as the thread’s mailbox. receive

waits patiently for the arrival of a message of a matching type in the mailbox. This makes
receive and the protocols implemented on top of it more flexible, but also more sus-
ceptible to blocking and mailbox crowding. One communication misunderstanding is
enough for a thread’s mailbox to accumulate messages of the wrong type while receive
is waiting for a message type that never arrives.

The send/receive combo handles multiple arguments easily by using Tuple as an
intermediary. For example:

receive(
(long x, double y) { ... },

(int x) { ... }

);

matches the same messages as

receive(
(Tuple!(long, double) tp) { ... },

(int x) { ... }

);

A call like send(tid, 5, 6.3) matches the first function literal in both examples
above.

To allow a thread to take contingency action in case messages are delayed, receive
has a variant receiveTimeout that expires after a specified time. The expiration is sig-
naled by receiveTimeout returning false:

auto gotMessage = receiveTimeout(

1000, // Time in milliseconds

(string s) { writeln("Got a string with value ", s); },
(int x) { writeln("Got an int with value ", x); }

);

if (!gotMessage) {
stderr.writeln("Timed out after one second.");

}

13.6. Pattern Matching with receive 405

13.6.1 First Match

Consider the following example:

receive(
(long x) { ... },

(string x) { ... },
(int x) { ... }

);

This call will not compile: receive rejects the call because the third handler could
never be reached. Any int sent down the pipe stops at the first handler.

In receive, the order of arguments dictates how matches are attempted. This is
similar, for example, to how catch clauses are evaluated in a try statement but is un-
like object-oriented function dispatch. Reasonable people may disagree on the relative
qualities of first match and best match; suffice it to say that first match seems to serve
this particular form of receive quite well.

The compile-time enforcement performed by receive is simple: for any message
types ‹Msg1› and ‹Msg2› with ‹Msg2›’s handler coming after ‹Msg1›’s in the receive

call, receive makes sure that ‹Msg2› is not convertible to ‹Msg1›. If it is, that means
‹Msg1› will match messages of type ‹Msg2› so compilation of the call is refused. In the
example above, the check fails when ‹Msg1› is long and ‹Msg2› is int.

13.6.2 Matching Any Message

What if you wanted to make sure you’re looking at any and all messages in a mailbox—
for example, to make sure it doesn’t get filled with junk mail?

The answer is simple—just accept the type Variant in the last position of receive,
like this:

receive(
(long x) { ... },

(string x) { ... },

(double x, double y) { ... },
...

(Variant any) { ... }

);

The Variant type defined in module std.variant is a dynamic type able to hold
exactly one value of any other type. receive recognizes Variant as a generic holder
for any message type, and as such a call to receive that has a handler for Variant will
always return as soon as at least one message is in the queue.

Planting a Variant handler at the bottom of the message handling food chain is a
good method to make sure that stray messages aren’t left in your mailbox.

406 Chapter 13. Concurrency

13.7 File Copying—with a Twist

Let’s write a short program that copies files—a popular way to get acquainted with a
language’s file system interface. Ah, the joy of K&R’s classic getchar/putchar exam-
ple [34, Chapter 1, page 15]. Of course, the system-provided programs that copy files use
buffered reads and writes and many other optimizations to accelerate transfer speed, so
it would be difficult to write a competitive program, but concurrency may give an edge.

The usual approach to file copying goes like this:

1. Read data from the source file into a buffer.
2. If nothing was read, done.
3. Write the buffer into the target file.
4. Repeat from step 1.

Adding appropriate error handling completes a useful (if unoriginal) program. If you
select a large enough buffer and both the source and destination files reside on the same
disk, the performance of the algorithm is near optimal.

Nowadays a variety of physical devices count as file repositories, such as hard drives,
thumb drives, optical disks, connected smart phones, and remotely connected network
services. These devices have various latency and speed profiles and connect to the com-
puter via different hardware and software interfaces. Such interfaces could and should
be put to work in parallel, not one at a time as the “read buffer/write buffer” algo-
rithm above prescribes. Ideally, both the source and the target device should be kept
as busy as possible, something we could effect with two threads following the producer-
consumer protocol:

1. Spawn one secondary thread that listens to messages containing memory buffers
and writes them to the target file in a loop.

2. Read data from the source file in a newly allocated buffer.
3. If nothing was read, done.
4. Send a message containing the read buffer to the secondary thread.
5. Repeat from step 2.

In the new setup, one thread keeps the source busy and the other keeps the target
busy. Depending on the nature of the source and target, significant acceleration could
be obtained. If the device speeds are comparable and relatively slow compared to the
bandwidth of the memory bus, the speed of copying could theoretically be doubled.
Let’s write a simple producer-consumer program that copies stdin to stdout:

import std.algorithm, std.concurrency, std.stdio;

void main() {

13.8. Thread Termination 407

enum bufferSize = 1024 * 100;

auto tid = spawn(&fileWriter);
// Read loop

foreach (immutable(ubyte)[] buffer; stdin.byChunk(bufferSize)) {

send(tid, buffer);
}

}

void fileWriter() {

// Write loop
for (;;) {

auto buffer = receiveOnly!(immutable(ubyte)[])();

tgt.write(buffer);
}

}

The program above transfers data from the main thread to the secondary thread
through immutable sharing: the messages passed have the type immutable(ubyte)[],
that is, arrays of immutable unsigned bytes. Those buffers are acquired in the foreach

loop by reading input in chunks of type immutable(ubyte)[], each of size bufferSize.
At each pass through the loop, one new buffer is allocated, read into, and bound to
buffer. The foreach control part does most of the hard work; all the body has to do
is send off the buffer to the secondary thread. As discussed, passing data around is pos-
sible because of immutable; if you replaced immutable(ubyte)[] with ubyte[], the call
to send would not compile.

13.8 Thread Termination

There’s something unusual about the examples given so far, in particular writer defined
on page 402 and fileWriter defined on the facing page: both functions contain an infi-
nite loop. In fact, a closer look at the file copy example reveals that main and fileWriter
understand each other well regarding copying things around but never discuss applica-
tion termination; in other words, main does not ever tell fileWriter, “We’re done; let’s
finish and go home.”

Termination of multithreaded applications has always been tricky. Threads are easy
to start, but once started they are difficult to finish; the application shutdown event is
asynchronous and may catch a thread in the middle of an arbitrary operation. Low-
level threading APIs do offer a means to forcefully terminate threads, but invariably with
the cautionary note that such a function is a blunt tool that should be replaced with a
higher-level shutdown protocol.

D offers a simple and robust thread termination protocol. Each thread has an owner
thread; by default the owner is the thread that initiated the spawn. You can change the

408 Chapter 13. Concurrency

current thread’s owner dynamically by calling setOwner(tid). Each thread has exactly
one owner but a given thread may own multiple threads.

The most important manifestation of the owner/owned relationship is that when the
owner thread terminates, the calls to receive in the owned thread will throw the Own-
erTerminated exception. The exception is thrown only if receive has no more match-
ing messages and must wait for a new message; as long as receive has something to
fetch from the mailbox, it will not throw. In other words, when the owner thread termi-
nates, the owned threads’ calls to receive (or receiveOnly for that matter) will throw
OwnerTerminated if and only if they would otherwise block waiting for a new message.
The ownership relation is not necessarily unidirectional. In fact, two threads may even
own each other; in that case, whichever thread finishes will notify the other.

With thread ownership in mind, let’s take a fresh look at the file copy program on
page 406. At any given moment, there are a number of messages in flight between the
main thread and the secondary thread. The faster the reads are relative to writes, the
more buffers will wait in the writer thread’s mailbox waiting to be processed. When
main returns, it will cause the call to receive to throw an exception, but not before all
of the pending messages are handled. Right after the mailbox of the writer is cleared
(and the last drop of data is written to the target file), the next call to receive throws.
The writer thread exits with the OwnerTerminated exception, which is recognized by the
runtime system, which simply ignores it. The operating system closes stdin and stdout

as it always does, and the copy operation succeeds.
It may appear there is a race between the moment the last message is sent from

main and the moment main returns (causing receive to throw). What if the exception
“makes it” before the last message—or worse, before the last few messages? In fact there
is no race because causality is always respected in the posting thread: the last message is
posted onto the secondary thread’s queue before the OwnerTerminated exception makes
its way (in fact, propagating the exception is done via the same queue as regular mes-
sages). However, a race would exist if main exits while a different, third thread is posting
messages onto fileWriter’s queue.

A similar reasoning shows that our previous simple example that writes 200 mes-
sages in lockstep is also correct: main exits after mailing (in the nick of time) the last
message to the secondary thread. The secondary thread first exhausts the queue and
then ends with the OwnerTerminated exception.

If you find throwing an exception too harsh a mechanism for handling a thread’s exit,
you can always handle OwnerTerminated explicitly:

// Ends without an exception

void fileWriter() {
// Write loop

for (bool running = true; running;) {
receive(

(immutable(ubyte)[] buffer) { tgt.write(buffer); },

13.9. Out-of-Band Communication 409

(OwnerTerminated) { running = false; }

);
}

stderr.writeln("Normally terminated.");

}

In this case, fileWriter returns peacefully when main exits and everyone’s happy.
But what happens in the case when the secondary thread—the writer—throws an excep-
tion? The call to the write function may fail if there’s a problem writing data to tgt. In
that case, the call to send from the primary thread will fail by throwing an OwnedFailed
exception, which is exactly what should happen. By the way, if an owned thread exits
normally (as opposed to throwing an exception), subsequent calls to send to that thread
also fail, just with a different exception type: OwnedTerminated.

The file copy program is more robust than its simplicity may suggest. However, it
should be said that relying on the default termination protocol works smoothly when the
relationships between threads are simple and well understood. When there are many
participating threads and the ownership graph is complex, it is best to establish explicit
“end-of-communication” protocols throughout. In the file copy example, a simple idea
would be to send by convention a buffer of size zero to signal the writer that the read-
ing thread has finished successfully. Then the writer acknowledges termination to the
reader, which finally can exit. Such an explicit protocol scales well to cases when there
are multiple threads processing the data stream between the reader and the writer.

13.9 Out-of-Band Communication

Consider that you’re using the presumably smart file-copying program we just defined
to copy a large file from a fast local store to a slow network drive. Midway through the
copy, there’s a read error—the file is corrupt. That causes read and subsequently main
to throw an exception while there are many buffers in flight that haven’t yet been writ-
ten. More generally, we saw that if the owner terminates normally, any blocking call
to receive from its owned threads will throw. What happens if the owner exits with
an exception?

If a thread terminates by means of an exception, that indicates a serious issue that
must be signaled with relative urgency to the owned threads. Indeed this is carried out
via an out-of-band message.

Recall that receive cares only about matching messages and lets all others accu-
mulate in the queue. There is one amendment to that behavior. A thread may initi-
ate an out-of-band message by calling prioritySend instead of send. The two func-
tions accept the same parameters but exhibit different behaviors that actually manifest
themselves on the receiving side. Passing a message of type T with prioritySend causes
receive in the receiving thread to act as follows:

410 Chapter 13. Concurrency

• If the call to receive handles type T, then the priority message will be the next
message handled, even though it arrived later than other regular (non-priority)
messages. Priority messages are always pushed to the beginning of the queue, so
the latest priority message sent is always the first fetched by receive (even if other
priority messages are already waiting).

• If the call to receive does not handle type T (i.e., would leave the message waiting
in the mailbox) and if T inherits Exception, receive throws the message directly.

• If the call to receive does not handle type T and T does not inherit Exception,
receive throws an exception of type PriorityMessageException!T. That excep-
tion holds a copy of the message sent in the form of a member called message.

If a thread exits via an exception, the exception OwnerFailed propagates to all of its
owned threads by means of prioritySend. In the file copy program, main throwing also
causes fileWriter to throw as soon as it calls receive, and the entire process termi-
nates by printing an error message and returning a nonzero exit code. Unlike the normal
termination case, there may be buffers in flight that have been read but not yet written.

13.10 Mailbox Crowding

The producer-consumer file copy program works quite well but has an important short-
coming. Consider copying a large file between two devices of different speeds, for ex-
ample, copying a legally acquired movie file from an internal drive (fast) to a network
drive (possibly considerably slower). In that case, the producer (the main thread) issues
buffers at considerable speed, much faster than the speed with which the consumer is
able to unload them in the target file. The difference in the two speeds causes a net accu-
mulation of buffers, which may cause the program to consume a lot of memory without
achieving a boost in efficiency.

To avoid mailbox crowding, the concurrency API allows setting the maximum size of
a thread’s message queue, and also setting the action to take in case the maximum size
has been reached. The signatures of relevance here are

// Inside std.concurrency
void setMaxMailboxSize(Tid tid, size_t messages,

bool(Tid) onCrowdingDoThis);

The call setMaxMailboxSize(tid, messages, onCrowdingDoThis) directs the con-
currency API to call onCrowdingDoThis(tid) whenever a new message is to be passed
but the queue already contains messages entries. If onCrowdingDoThis(tid) returns
false or throws an exception, the new message is ignored. Otherwise, the size of the
thread’s queue is checked again, and if it is less than messages, the new message is
posted to thread tid. Otherwise, the entire loop is resumed.

13.11. The shared Type Qualifier 411

The call occurs in the caller thread, not the callee. In other words, the thread that
initiates sending a message is also responsible for taking contingency action in case the
maximum mailbox size of the recipient has been reached. It seems reasonable to ask
why the call should not occur in the callee; that would, however, scale the wrong way in
heavily threaded programs because threads with full mailboxes may become crippled
by many calls from other threads attempting to send messages.

There are a few prepackaged actions to perform when the mailbox is full: block the
caller until the queue becomes smaller, throw an exception, or ignore the new message.
Such predefined actions are conveniently packaged as follows:

// Inside std.concurrency
enum OnCrowding { block, throwException, ignore }

void setMaxMailboxSize(Tid tid, size_t messages, OnCrowding doThis);

In our case, it’s best to simply block the reader thread once the mailbox becomes too
large, which we can effect by inserting the call

setMaxMailboxSize(tid, 1024, OnCrowding.block);

right after the call to spawn.
The following sections describe approaches to inter-thread communication that

are alternative or complementary to message passing. Message passing is the recom-
mended method of inter-thread communication; it is easy to understand, fast, well be-
haved, reliable, and scalable. You should descend to lower-level communication mech-
anisms only in special circumstances—and don’t forget, “special” is not always as special
as it seems.

13.11 The shared Type Qualifier

We already got acquainted with shared in § 13.3 on page 397. To the type system, shared
indicates that several threads have access to a piece of data. The compiler acknowledges
that reality by restricting operations on shared data and by generating special code for
the accepted operations.

The global definition

shared uint threadsCount;

introduces a value of type shared(uint), which corresponds to a global unsigned int in
a C program. Such a variable is visible to all threads in the system. The annotation helps
the compiler a great deal: the language “knows” that threadsCount is freely accessible
from multiple threads and forbids naïve access to it. For example:

void bumpThreadsCount() {
++threadsCount; // Error!

412 Chapter 13. Concurrency

// Cannot increment a shared int!

}

What’s happening? Down at machine level, ++threadsCount is not an atomic op-
eration; it’s a read-modify-write operation: threadsCount is loaded into a register, the
register value is incremented, and then threadsCount is written back to memory. For
the whole operation to be correct, these three steps need to be performed as an indivis-
ible unit. The correct way to increment a shared integer is to use whatever specialized
atomic increment primitives the processor offers, which are portably packaged in the
std.concurrency module:

import std.concurrency;

shared uint threadsCount;

void bumpThreadsCount() {

// std.concurrency defines
// atomicOp(string op)(ref shared uint, int)

atomicOp!"+="(threadsCount, 1); // Fine

}

Because all shared data is accounted for and protected under the aegis of the lan-
guage, passing shared data via send and receive is allowed.

13.11.1 The Plot Thickens: shared Is Transitive

Chapter 8 explains why const and immutable must be transitive (aka deep or recursive):
following any indirections starting from an immutableobject must keep data immutable.
Otherwise, the immutable guarantee has the power of a comment in the code. You can’t
say something is immutable “up to a point” after which it changes its mind. You can,
however, say that data is mutable up to a point, where it becomes immutable through
and through. Stepping into immutability is veering down a one-way street. We’ve seen
that immutable facilitates a number of correct and pain-free idioms, including func-
tional style and sharing of data across threads. If immutability applied “up to a point,”
then so would program correctness.

The same exact reasoning goes for shared. In fact, with shared the necessity of tran-
sitivity becomes painfully obvious. Consider:

shared int* pInt;

which according to the qualifier syntax (§ 8.2 on page 291) is equivalent to

shared(int*) pInt;

13.12. Operations with shared Data and Their Effects 413

The correct meaning of pInt is “The pointer is shared and the data pointed to by the
pointer is also shared.” A shallow, non-transitive approach to sharing would make pInt
“a shared pointer to non-shared memory,” which would be great if it weren’t untenable.
It’s like saying, “I’ll share this wallet with everyone; just please remember that the money
in it ain’t shared.”6 Claiming the pointer is shared across threads but the pointed-to data
is not takes us back to the wonderful programming-by-honor-system paradigm that has
failed so successfully throughout history. It’s not the voluntary malicious uses, it’s the
honest mistakes that form the bulk of problems. Software is large, complex, and ever-
changing, traits that never go well with maintaining guarantees through convention.

There is, however, a notion of “unshared pointer to shared data” that does hold wa-
ter. Some thread holds a private pointer, and the pointer “looks” at shared data. That is
easily expressible syntactically as

shared(int)* pInt;

As an aside, if there exists a “Best Form-Follows-Function” award, then the notation
qualifier(type) should snatch it. It’s perfect. You can’t even syntactically create the
wrong pointer type, because it would look like this:

int shared(*) pInt;

which does not make sense even syntactically because (*) is not a type (granted, it is a
nice emoticon for a cyclops).

Transitivity of shared applies not only to pointers, but also to fields of struct and
class objects: fields of a shared object are automatically qualified as shared as well.
We’ll discuss in detail the ways in which shared interacts with classes and structs later
in this chapter.

13.12 Operations with shared Data and Their Effects

Working with shared data is peculiar because multiple threads may read and write it at
any moment. Therefore, the compiler makes sure that all operations preserve integrity
of data and also causality of operations.

Reads and writes of shared values are allowed and guaranteed to be atomic: nu-
meric types (save for real), pointers, arrays, function pointers, delegates, and class ref-
erences. struct types containing exactly one of the mentioned types are also readable
and writable atomically. Notably absent is real, which is the only platform-dependent
type with which the implementation has discretion regarding atomic sharing. On Intel
machines, real has 80 bits, which makes it difficult to assign atomically in 32-bit pro-
grams. Anyway, real is meant mostly for high-precision temporary results and not for
data interchange, so it makes little sense to want to share it anyway.

6. Incidentally, you can share a wallet with theft-protected money with the help of const by using the type
shared(const(Money)*).

414 Chapter 13. Concurrency

For all numeric types and function pointers, shared-qualified values are convertible
implicitly to and from unqualified values. Pointer conversions between shared(T*) and
shared(T)* are allowed in both directions. Primitives in std.concurrency allow you to
do arithmetic on shared numeric types.

13.12.1 Sequential Consistency of shared Data

With regard to the visibility of shared data operations across threads, D makes two guar-
antees:

• The order of reads and writes of shared data issued by one thread is the same as
the order specified by the source code.

• The global order of reads and writes of shared data is some interleaving of reads
and writes from multiple threads.

That seems to be a very reasonable set of assumptions—self-evident even. In fact,
the two guarantees fit time-sliced threads implemented on a uniprocessor system quite
well.

On multiprocessors, however, these guarantees are very restrictive. The problem
is that in order to ensure the guarantees, all writes must be instantly visible through-
out all threads. To effect that, shared accesses must be surrounded by special machine
code instructions called memory barriers, ensuring that the order of reads and writes
of shared data is the same as seen by all running threads. Such serialization is con-
siderably more expensive in the presence of elaborate cache hierarchies. Also, staunch
adherence to sequential consistency prevents reordering of operations, an important
source of compiler-level optimizations. Combined, the two restrictions lead to dramatic
slowdown—as much as one order of magnitude.

The good news is that such a speed loss occurs only with shared data, which tends to
be rare. In real programs, most data is not shared and therefore need not meet sequen-
tial consistency requirements. The compiler optimizes code using non-shared data to
the maximum, in full confidence that no other thread can ever access it, and only tiptoes
around shared data. A common and recommended programming style with shared

data is to copy shared values into thread-local working copies, work on the copies, and
then write the copies back into the shared values.

13.13 Lock-Based Synchronization with synchronized classes

A historically popular method of writing multithreaded programs is lock-based syn-
chronization. Under that discipline, access to shared data is protected by mutexes—
synchronization objects that serialize execution of portions of the code that temporarily

13.13. Lock-Based Synchronization with synchronized classes 415

break data coherence, or that might see such a temporary breakage. Such portions of
code are called critical sections.7

A lock-based program’s correctness is ensured by introducing ordered, serial access
to shared data. A thread that needs access to a piece of shared data must acquire (lock)
a mutex, operate on the data, and then release (unlock) that mutex. Only one thread
at a time may acquire a given mutex, which is how serialization is effected: when sev-
eral threads want to acquire the same mutex, one “wins” and the others wait nicely in
line. (The way the line is served—that is, thread priority—is important and may affect
applications and the operating system quite visibly.)

Arguably the “Hello, world!” of multithreaded programs is the bank account
example—an object accessible from multiple threads that must expose a safe inter-
face for depositing and withdrawing funds. The single-threaded baseline version looks
like this:

import std.contracts;

// Single-threaded bank account

class BankAccount {

private double _balance;
void deposit(double amount) {

_balance += amount;

}
void withdraw(double amount) {

enforce(_balance >= amount);
_balance -= amount;

}

@property double balance() {
return _balance;

}

}

In a free-threaded world, += and -= are a tad misleading because they “look” atomic
but are not—both are read-modify-write operations. Really _balance += amount is en-
coded as _balance = _balance + amount, which means the processor loads _balance

and _amount into its own operating memory (registers or an internal stack), adds them,
and deposits the result back into _balance.

Unprotected concurrent read-modify-write operations lead to incorrect behavior.
Say your account has _balance == 100.0 and one thread triggered by a check deposit
calls deposit(50). The call gets interrupted, right after having loaded 100.0 from mem-

7. A potential source of confusion is that Windows uses the term critical section for lightweight mutex ob-
jects that protect a critical section and mutex for heavier-weight mutexes that help inter-process communica-
tion.

416 Chapter 13. Concurrency

ory, by another thread calling withdraw(2.5). (That’s you at the corner coffee shop get-
ting a latte with your debit card.) Let’s say the coffee shop thread finishes the entire
call uninterrupted and updates _balance to 97.5, but that event happens unbeknownst
to the deposit thread, which has loaded 100 into a CPU register already and still thinks
that’s the right amount. The call deposit(50) computes a new balance of 150 and writes
that number back into _balance. That is a typical race condition. Congratulations—free
coffee for you (be warned, though; buggy book examples may be rigged in your favor,
but buggy production code isn’t). To introduce proper synchronization, many languages
offer a Mutex type that lock-based threaded programs use to protect access to balance:

// This is not D code
// Multithreaded bank account in a language with explicit mutexes

class BankAccount {

private double _balance;
private Mutex _guard;

void deposit(double amount) {
_guard.lock();
_balance += amount;
_guard.unlock();

}

void withdraw(double amount) {
_guard.lock();
try {

enforce(_balance >= amount);
_balance -= amount;

} finally {
_guard.unlock();

}

}

@property double balance() {
_guard.lock();

double result = _balance;
_guard.unlock();

return result;

}
}

All operations on _balance are now protected by acquiring _guard. It may seem
there is no need to protect balance with _guard because a double can be read atomi-
cally, but protection must be there for reasons hiding themselves under multiple layers
of Maya veils. In brief, because of today’s aggressive optimizing compilers and relaxed
memory models, all access to shared data must entail some odd secret handshake that

13.13. Lock-Based Synchronization with synchronized classes 417

has the writing thread, the reading thread, and the optimizing compiler as participants;
absolutely any bald read of shared data throws you into a world of pain (so it’s great
that D disallows such baldness by design). First and most obvious, the optimizing com-
piler, seeing no attempt at synchronization on your part, feels entitled to optimize ac-
cess to _balance by holding it in a processor register. Second, in all but the most trivial
examples, the compiler and the CPU feel entitled to freely reorder bald, unqualified ac-
cess to shared data because they consider themselves to be dealing with thread-local
data. (Why? Because that’s most often the case and yields the fastest code, and be-
sides, why hurt the plebes instead of the few and the virtuous?) This is one of the ways
in which modern multithreading defies intuition and confuses programmers versed in
classic multithreading. In brief, the balance property must be synchronized to make
sure the secret handshake takes place.

To guarantee proper unlocking of Mutex in the presence of exceptions and early re-
turns, languages with scoped object lifetime and destructors define an ancillary Lock

type to acquire the lock in its constructor and release it in the destructor. The ensuing
idiom is known as scoped locking [50] and its application to BankAccount looks like this:

// C++ version of an interlocked bank account using scoped locking

class BankAccount {
private:

double _balance;

Mutex _guard;
public:

void deposit(double amount) {
auto lock = Lock(_guard);
_balance += amount;

}
void withdraw(double amount) {

auto lock = Lock(_guard);

enforce(_balance >= amount);
_balance -= amount;

}
double balance() {

auto lock = Lock(_guard);

return _balance;
}

}

Lock simplifies code and improves its correctness by automating the pairing of lock-
ing and unlocking. Java, C#, and other languages simplify matters further by embed-
ding _guard as a hidden member and hoisting locking logic up to the signature of the
method. In Java, the example would look like this:

418 Chapter 13. Concurrency

// Java version of an interlocked bank account using
// automated scoped locking with the synchronized statement

class BankAccount {

private double _balance;
public synchronized void deposit(double amount) {

_balance += amount;

}
public synchronized void withdraw(double amount) {

enforce(_balance >= amount);
_balance -= amount;

}

public synchronized double balance() {
return _balance;

}

}

The corresponding C# code looks similar, though synchronized should be replaced
with [MethodImpl(MethodImplOptions.Synchronized)].

Well, you’ve just seen the good news: in the small, lock-based programming is easy
to understand and seems to work well. The bad news is that in the large, it is very diffi-
cult to pair locks with data appropriately, choose locking scope and granularity, and use
locks consistently across several objects (not paying attention to the latter issue leads
to threads waiting for each other in a deadlock). Such issues made lock-based coding
difficult enough in the good ole days of classic multithreading; modern multithread-
ing (with massive concurrency, relaxed memory models, and expensive data sharing)
has put lock-based programming under increasing attack [53]. Nevertheless, lock-based
synchronization is still useful in a variety of designs.

D offers limited mechanisms for lock-based synchronization. The limits are delib-
erate and have the advantage of ensuring strong guarantees. In the particular case of
BankAccount, the D version is very simple:

// D interlocked bank account using a synchronized class

synchronized class BankAccount {

private double _balance;
void deposit(double amount) {

_balance += amount;

}
void withdraw(double amount) {

enforce(_balance >= amount);
_balance -= amount;

}

double balance() {

13.14. Field Typing in synchronized classes 419

return _balance;

}
}

D hoists synchronized one level up to the entire class. This allows D’s BankAc-
count to provides stronger guarantees: even if you wanted to make a mistake, there
is no way to offer back-door unsynchronized access to _balance. If D allowed mixing
synchronized and unsynchronized methods in the same class, all bets would be off.
In fact, experience with method-level synchronized has shown that it’s best to either
define all or none as synchronized; dual-purpose classes are more trouble than they’re
worth.

The synchronized class-level attribute affects objects of type shared(BankAccount)
and automatically serializes calls to any method of the class. Also, protection checks get
stricter for synchronized classes. Recall that according to § 11.1 on page 337, normal
protection checks ordinarily do allow access to non-public members for all code within
a module. Not so for synchronized classes, which obey the following rules:

• No public data is allowed at all.
• Access to protected members is restricted to methods of the class and its de-

scendants.
• Access to private members is restricted to methods of the class.

13.14 Field Typing in synchronized classes

The transitivity rule for shared objects dictates that a shared class object propagates
the shared qualifier down to its fields. Clearly synchronized brings some additional
law and order to the table, which is reflected in relaxed typechecking of fields inside the
methods of synchronized classes. In order to provide strong guarantees, synchronized
affects semantic checking of fields in a slightly peculiar manner, which tracks the corre-
spondingly peculiar semantics of synchronized.

Synchronized methods’ protection against races is temporary and local. The tem-
porary aspect is caused by the fact that as soon as the method returns, fields are not
protected against races anymore. The local aspect concerns the fact that synchronized
ensures protection of data directly embedded inside the object, but not data indirectly
referred by the object (i.e., through class references, pointers, or arrays). Let’s look at
each in turn.

13.14.1 Temporary Protection == No Escape

Maybe not very intuitively, the temporary nature of synchronized entails the rule that
no address of a field can escape a synchronized address. If that happened, some other

420 Chapter 13. Concurrency

portion of the code could access some data beyond the temporary protection conferred
by method-level synchronization.

The compiler will reject any attempt to return a ref or a pointer to a field out of a
method, or to pass a field by ref or by pointer to some function. To illustrate why that
rule is sensible, consider the following example:

double * nyukNyuk; // N.B.: not shared

void sneaky(ref double r) { nyukNyuk = &r; }

synchronized class BankAccount {

private double _balance;
void fun() {

nyukNyuk = &_balance; // Error! (as there should be)
sneaky(_balance); // Error! (as there should be)

}

}

The first line of fun attempts to take the address of _balance and assign it to a global.
If that operation were to succeed, the type system’s guarantee would have failed—
henceforth, the program would have shared access to data through a non-shared value.
The assignment fails to typecheck. The second operation is a tad more subtle in that it
attempts to do the aliasing via a function call that takes a ref parameter. That also fails;
practically, passing a value by means of ref entails taking the address prior to the call.
Taking the address is forbidden, so the call fails.

13.14.2 Local Protection == Tail Sharing

The protection offered by synchronized is also local in the sense that it doesn’t neces-
sarily protect data beyond the direct fields of the object. As soon as indirection enters
into play, the guarantee that only one thread has access to data is lost. If you think
of data as consisting of a “head” (the part sitting in the physical memory occupied
by the BankAccount object) and possibly a “tail” (memory accessed indirectly), then a
synchronized class is able to protect the “head” of the data, whereas the “tail” remains
shared. In light of that reality, typing of fields of a synchronized class inside a method
goes as follows:

• All numeric types are not shared (they have no tail) so they can be manipulated
normally.

• Array fields declared with type T[] receive type shared(T)[]; that is, the head (the
slice limits) is not shared and the tail (the contents of the array) remains shared.

• Pointer fields declared with type T* receive type shared(T)*; that is, the head (the
pointer itself) is not shared and the tail (the pointed-to data) remains shared.

13.14. Field Typing in synchronized classes 421

• Class fields declared with type T receive type shared(T). Classes are automatically
by-reference, so they’re “all tail.”

These rules apply on top of the no-escape rule described in the previous section.
One direct consequence is that operations affecting direct fields of the object can be
freely reordered and optimized inside the method, as if sharing has been temporarily
suspended for them—which is exactly what synchronized does.

There are cases in which an object completely owns another. Consider, for example,
that the BankAccount stores all of its past transactions in a list of double:

// Not synchronized and generally thread-agnostic

class List(T) {

...
void append(T value) {

...
}

}

// Keeps a List of transactions

synchronized class BankAccount {

private double _balance;
private List!double _transactions;

void deposit(double amount) {
_balance += amount;
_transactions.append(amount);

}
void withdraw(double amount) {

enforce(_balance >= amount);
_balance -= amount;
_transactions.append(-amount);

}
double balance() {

return _balance;

}
}

The List class was not designed to be shared across threads so it does not use any
synchronization mechanism, but it is in fact never shared! All of its uses are entirely pri-
vate to the BankAccount object and completely protected inside synchronized meth-
ods. Assuming List does not do senseless shenanigans such as saving some internal
pointer into a global variable, the code should be good to go.

Unfortunately, it isn’t. Code like the above would not work in D because append is not
callable against a shared(List!double) object. One obvious reason for the compiler’s

422 Chapter 13. Concurrency

refusal is that the honor system doesn’t go well with compilers. List may be a well-
behaved class and all, but the compiler would have to have somewhat harder evidence
to know that there is no sneaky aliasing of shared data afoot. The compiler could, in
theory, go ahead and inspect List’s class definition, but in turn, Listmay be using some
other components found in other modules, and before you can say “interprocedural
analysis,” things are getting out of hand.

Interprocedural analysis is a technique used by compilers and program analyzers
to prove facts about a program by looking at more functions at once. Such analyses
are typically slow, scale poorly with program size, and are sworn enemies of separate
compilation. Although there exist systems that use interprocedural analysis, most of
today’s languages (including D) do all of their typechecking without requiring it.

An alternative solution to the owned subobject problem is to add new qualifiers
that describe ownership relationships such as “BankAccount owns its _transactions
member and therefore its mutex also serializes operations on _transactions.” With
the proper annotations in place, the compiler could verify that _transactions is en-
tirely encapsulated inside BankAccount and therefore can be safely used without wor-
rying about undue sharing. Systems and languages that do that have been pro-
posed [25, 2, 11, 6] but for the time being they are not mainstream. Such ownership
systems introduce significant complications in the language and its compiler. With lock-
based synchronization as a whole coming under attack, D shunned beefing up support
for an ailing programming technique. It is not impossible that the issue might be re-
visited later (ownership systems have been proposed for D [42]), but for the time being
certain lock-based designs must step outside the confines of the type system, as dis-
cussed next.

13.14.3 Forcing Identical Mutexes

D allows dynamically what the type system is unable to guarantee statically: an owner-
owned relationship in terms of locking. The following global primitive function is
accessible:

// Inside object.d
setSameMutex(shared Object ownee, shared Object owner);

A class object objmay call obj.setMutex(owner) to effectively throw away its asso-
ciated synchronization object and start using the same synchronization object as owner.
That way you can be sure that locking owner really locks obj, too. Let’s see how that
would work with the BankAccount and the List.

// Thread-aware

synchronized class List(T) {
...

void append(T value) {

13.14. Field Typing in synchronized classes 423

...

}
}

// Keeps a List of transactions
synchronized class BankAccount {

private double _balance;
private List!double _transactions;

this() {
// The account owns the list

setSameMutex(_transactions, this);

}
...

}

The way the scheme works requires that List (the owned object) be synchronized.
Subsequent operations on _transactions would lock the _transactions field per the
normal rules, but in fact they go ahead and acquire BankAccount object’s mutex directly.
That way the compiler is happy because it thinks every object is locked in separation.
Also, the program is happy because in fact only one mutex controls the BankAccount and
also the List subobject. Acquiring the mutex of _transactions is in reality acquiring
the already locked mutex of this. Fortunately, such a recursive acquisition of an already
owned, uncontested lock is relatively cheap, so the code is correct and not too locking-
intensive.

13.14.4 The Unthinkable: casting Away shared

Continuing the preceding example, if you are absolutely positive that the
_transactions list is completely private to the BankAccount object, you can cast
away shared and use it without any regard to threads like this:

// Not synchronized and generally thread-agnostic

class List(T) {

...
void append(T value) {

...

}
}

synchronized class BankAccount {

private double _balance;

private List!double _transactions;

424 Chapter 13. Concurrency

void deposit(double amount) {
_balance += amount;
(cast(List!double) _transactions).append(amount);

}

void withdraw(double amount) {
enforce(_balance >= amount);
_balance -= amount;
(cast(List!double) _transactions).append(-amount);

}

double balance() {
return _balance;

}

}

Now the code does compile and run. The only caveat is that now correctness of
the lock-based discipline in the program is ensured by you, not by the language’s type
system, so you’re not much better off than with languages that use default sharing. The
advantage you are still enjoying is that casts are localized and can be searched for and
carefully reviewed.

13.15 Deadlocks and the synchronized Statement

If the bank account example is the “Hello, world!” of threaded programs, the bank ac-
count transfer example must be the corresponding (if grimmer) introduction to threads
that deadlock. The example goes like this: Assume you have two BankAccount objects,
say, checking and savings. The challenge is to define an atomic transfer of some money
from one account to another.

The naïve approach goes like this:

// Transfer version 1: non-atomic

void transfer(shared BankAccount source, shared BankAccount target,

double amount) {
source.withdraw(amount);

target.deposit(amount);

}

This version is not atomic, however; between the two calls there is a quantum of
time when money is missing from both accounts. If just at that time a thread executes
the inspectForAuditing function, things may get a little tense.

To make the transfer atomic, you need to acquire the hidden mutexes of the two
objects outside their methods, at the beginning of transfer. You can effect that with
the help of synchronized statements:

13.15. Deadlocks and the synchronized Statement 425

// Transfer version 2: PROBLEMATIC
void transfer(shared BankAccount source, shared BankAccount target,

double amount) {

synchronized (source) {
synchronized (target) {

source.withdraw(amount);

target.deposit(amount);
}

}
}

The synchronized statement acquires an object’s hidden mutex through the exe-
cution of the statement’s body. Any method call against that object benefits from an
already acquired lock.

The problem with the second version of transfer is that it’s prone to deadlock: if
two threads attempt to execute a transfer between the same accounts but in opposite
directions, the threads may block forever. A thread attempting to transfer money from
checking to savings locks checking exactly as another thread attempting to transfer
money from savings to checking manages to lock savings. At that point, each thread
holds a lock, and each thread needs the other thread’s lock. They will never work out
an understanding.

To really fix the problem, you need to use synchronized with two arguments:

// Transfer version 3: correct
void transfer(shared BankAccount source, shared BankAccount target,

double amount) {
synchronized (source, target) {

source.withdraw(amount);

target.deposit(amount);
}

}

Synchronizing on several objects in the same synchronized statement is different
from successively synchronizing on each. The generated code always acquires mutexes
in the same order in all threads, regardless of the syntactic order in which you specify
the objects. That way, deadlock is averted.

The actual order in the reference implementation is the increasing order of object
addresses. Any global ordering would work just as well.

Multi-argument synchronized is helpful but, unfortunately, not a panacea. General
deadlock may occur non-locally—one mutex is acquired in one function, then another
in a different function, and so on, until a deadlock cycle closes. But synchronized with

426 Chapter 13. Concurrency

multiple arguments raises awareness of the issue and fosters correct code with modular
mutex acquisition.

13.16 Lock-Free Coding with shared classes

The theory of lock-based synchronization was established in the 1960s. As early
as 1972 [23], researchers started making inroads toward avoiding the slow, ham-fisted
mutexes as much as possible in multithreaded programs. For example, some types were
assignable atomically so people reckoned there was no ostensible need to guard such
assignments with mutex acquisition. Also, some processors offered more advanced
lightweight interlocked instructions such as atomic increment or test-and-set. About
three decades later, in 1990, there was a definite beam of hope that some clever combi-
nation of atomic read-write registers could help avoid the tyranny of locks. At that point,
a seminal piece of work had the last word in a line of work and the first word in another.

Herlihy’s 1991 paper “Wait-free synchronization” [31] marked an absolutely power-
ful development in concurrent programming. Prior to that, it was unclear to hardware
and software developers alike what kind of synchronization primitives would be best to
work with. For example, a processor with atomic reads and writes for ints could intu-
itively be considered less powerful than one that also offers atomic +=. It may appear
that one that offers atomic *= is even better; generally, the more atomic primitives one
has at one’s disposal, the merrier.

Herlihy blew that theory out of the water and in particular has shown that certain
seemingly powerful synchronization primitives, such as test-and-set, fetch-and-add,
and even one global shared FIFO queue, are virtually useless. These impossibility re-
sults were proven clearly enough to instantly disabuse anyone of the illusion that such
mechanisms could provide the magic concurrency potion. Fortunately, Herlihy has also
proved universality results—certain synchronization primitives may theoretically syn-
chronize an infinite number of concurrent threads. Remarkably, the “good” primitives
are not more difficult to implement than the “bad” ones and don’t look particularly pow-
erful to the naked eye. Of the useful synchronization primitives, one known as compare-
and-swap has caught on and is implemented today by virtually all processors. Compare-
and-swap has the following semantics:

// This function executes atomically
bool cas(T)(shared(T) * here, shared(T) ifThis, shared(T) writeThis) {

if (*here == ifThis) {

*here = writeThis;
return true;

}

return false;
}

13.16. Lock-Free Coding with shared classes 427

In plain language, cas atomically compares a memory location with a given value,
and if the location is equal to that value, it stores a new value; otherwise, it does nothing.
The result of the operation tells whether the store took place. The entire cas operation is
atomic and must be provided as a primitive. The set of possible Ts is limited to integers
of the native word size of the host machine (i.e., 32 or 64 bits). An increasing number of
machines offer double-word compare-and-swap, sometimes dubbed cas2. That opera-
tion atomically manipulates 64-bit data on a 32-bit machine and 128-bit data on a 64-bit
machine. In view of the increasing support for cas2 on contemporary machines, D of-
fers double-word compare-and-swap under the same name (cas) as an overloaded in-
trinsic function. So in D you can cas values of types int, long, float, double, all arrays,
all pointers, and all class references.

13.16.1 shared classes

Following Herlihy’s universality proofs, many data structures and algorithms took off
around the nascent “cas-based programming.” Now, if a cas-based implementation is
possible for theoretically any synchronization problem, nobody has said it’s easy. Defin-
ing cas-based data structures and algorithms, and particularly proving that they work
correctly, is a difficult feat. Fortunately, once such an entity is defined and encapsulated,
it can be reused to the benefit of many [57].

To tap into cas-based lock-free goodness, use the shared attribute with a class or
struct definition:

shared struct LockFreeStruct {
...

}

shared class LockFreeClass {

...

}

The usual transitivity rules apply: shared propagates to the fields of the struct or
class, and methods offer no special protection. All you can count on are atomic assign-
ments, cas calls, the guarantee that the compiler and machine won’t do any reordering
of operations, and your unbridled confidence. But be warned—if coding were walk-
ing and message passing were jogging, lock-free programming would be no less than
the Olympics.

13.16.2 A Couple of Lock-Free Structures

As a warmup exercise, let’s implement a lock-free stack type. The basic idea is simple:
the stack is maintained as a singly linked list, and insertions as well as removals proceed
at the front of the list:

428 Chapter 13. Concurrency

shared struct Stack(T) {
private shared struct Node {

T _payload;

Node * _next;
}

private Node * _root;

void push(T value) {

auto n = new Node(value);
shared(Node)* oldRoot;

do {

oldRoot = _root;
n._next = oldRoot;

} while (!cas(&_root, oldRoot, n));

}

shared(T)* pop() {
typeof(return) result;

shared(Node)* oldRoot;

do {
oldRoot = _root;

if (!oldRoot) return null;

result = & oldRoot._payload;
} while (!cas(&_root, oldRoot, oldRoot._next));

return result;
}

}

Stack is a shared struct, and as a direct consequence pretty much everything inside
of it is also shared. The internal type Node has the classic payload-and-pointer structure,
and the Stack itself stores the root of the list.

The do/while loops in the two primitives may look a bit odd, but they are very com-
mon; slowly but surely, they dig a deep groove in the cortex of every cas-based program-
ming expert-to-be. The way push works is to first create a new Node that will store the
new value. Then, in a loop, _root is assigned the pointer to the new node, but only if in
the meantime no other thread has changed it! It’s quite possible that another thread has
also performed a stack operation, so push needs to make sure that the root assumed in
oldRoot has not changed while the new node was being primed.

The pop method does not return by value, but instead by pointer. This is because
pop may find the queue empty, which is not an exceptional condition (as it would be in
a single-threaded stack). For a shared stack, checking for an element, removing it, and

13.16. Lock-Free Coding with shared classes 429

returning it are one organic operation. Aside from the return aspect, pop is similar in the
implementation to push: _root is replaced with care such that no other thread changes
it while the payload is being fetched. At the end of the loop, the extracted value is off the
stack and can be safely returned to its caller.

If Stack didn’t seem that complicated, let’s look at actually exposing a richer singly
linked interface; after all, most of the infrastructure is built inside Stack already.

Unfortunately, for a list things are bound to become more difficult. How much more
difficult? Brutally more difficult. One fundamental problem is insertion and deletion
of nodes at arbitrary positions in the list. Say we have a list of int containing a node
with payload 5 followed by a node with payload 10, and we want to remove the 5 node.
No problem here—just do the cas magic to swing _root to point to the 10 node. The
problem is, if at the same time another thread inserts a new node right after the 5 node,
that node will be irretrievably lost: _root knows nothing about it.

Several solutions exist in the literature; none of them is trivially simple. The im-
plementation described below, first proposed by Harris [30] in the suggestively entitled
paper “A pragmatic implementation of non-blocking linked-lists,” has a hackish flavor
to it because it relies on setting the unused least significant bit of the _next pointer. The
idea is first to mark that pointer as “logically deleted” by setting its bit to zero, and then
to excise the node entirely in a second step:

shared struct SharedList(T) {

shared struct Node {
private T _payload;

private Node * _next;

@property shared(Node)* next() {

return clearlsb(_next);
}

bool removeAfter() {
shared(Node)* thisNext, afterNext;

// Step 1: set the lsb of _next for the node to delete
do {

thisNext = next;

if (!thisNext) return false;
afterNext = thisNext.next;

} while (!cas(&thisNext._next, afterNext, setlsb(afterNext)));

// Step 2: excise the node to delete
if (!cas(&_next, thisNext, afterNext)) {

afterNext = thisNext._next;
while (!haslsb(afterNext)) {

thisNext._next = thisNext._next.next;

430 Chapter 13. Concurrency

}
_next = afterNext;

}

}

void insertAfter(T value) {

auto newNode = new Node(value);
for (;;) {

// Attempt to find an insertion point

auto n = _next;
while (n && haslsb(n)) {

n = n._next;

}
// Found a possible insertion point, attempt insert

auto afterN = n._next;
newNode._next = afterN;

if (cas(&n._next, afterN, newNode)) {

break;
}

}

}
}

private Node * _root;

void pushFront(T value) {
... // Same as for Stack.push

}

shared(T)* popFront() {

... // Same as for Stack.pop
}

}

The implementation is tricky but can be understood if you keep in mind a couple
of invariants. First, it’s OK for logically deleted nodes (i.e., Node objects with the field
_next having its least significant bit set) to hang around for a little bit. Second, a node
is never inserted after a logically deleted node. That way, the list stays coherent even
though nodes may appear and disappear at any time.

The implementation of clearlsb, setlsb and haslsb is as barbaric as it gets; for
example:

13.17. Summary 431

T* setlsb(T)(T* p) {
return cast(T*) (cast(size_t) p | 1);

}

13.17 Summary

The implementation of setlsb, dirty and leaking some grease at the seams, is a fitting
finale for a chapter that has started with the simple beauty of message passing and has
gradually descended into the underworld of sharing.

D has an ample offering of threading amenities. For most applications on modern
machines, the preferred mechanism is defining protocols built around message passing.
Immutable sharing should be of great help there. You’d be well advised to use message
passing for defining robust, scalable concurrent applications.

If you need to do synchronization based on mutual exclusion, you can do so with
the help of synchronized classes. Be warned that support for lock-based programming
is limited compared to other languages, and for good reasons.

If you need simple sharing of data, you may want to use shared values. D guarantees
that operations on shared values are performed in the order specified in your code and
do not cause visibility paradoxes and low-level races.

Finally, if activities such as bungee jumping, crocodile taming, or walking on coals
seem sheer boredom to you, you’ll be glad that lock-free programming exists, and that
you can do it in D by using shared structs and classes.

Index

Non-alphabetical
!, 53
!in, 56
!is, 57
$, 11, 31, 95, 97, 379
&, 52, 58, 124, 371
&&, 59
&=, 60

*, 52, 54

*=, 60

*, 124, 367, 371
+, 53, 55
++, 50, 53, 367, 412
+=, 60, 415
+, 367, 371
,, 60
-, 53, 55
--, 50, 53, 367
--main (compiler switch), 133
-0 (minus zero), 58
-=, 60, 415
-I (compiler switch), 340
-J (compiler switch), 37
-, 367, 371
-debug (compiler switch), 361
-release (compiler switch), 47, 97, 325
-unittest (compiler switch), 133
-v (compiler switch), 341
-w (compiler flag), 359
.., 50
..., 159, 386
., 66
/, 54

/=, 60
/, 371
<<, 55
<<=, 60
<<, 371
<=, 58, 375
<, 58, 375
==, 205, 375
=, 60, 376
>=, 58, 375
>>>, 55
>>, 55
>>=, 60
>>>=, 60
>>>, 371
>>, 371
>, 58, 375
?:, 59
@property, 50, 156, 380
@safe, 96
@system, 96
@trusted, 96
[], 50, 98, 100, 377
#define, 2
#if, 69
%, 54, 60, 371
~this, 186
^, 58, 60, 371
^^, 54, 60
__FILE__, 361
__LINE__, 361
|, 58, 60
||, 59

439

440 Index

~, 22, 53, 55, 60, 100, 111, 121, 367
~=, 103, 104
1970s, 131

A
abstract character, 118
abstract class, 218, 219
abstract, 24, 218–221
abstraction

low-level versus high-level, 126
mechanism, 240

access protection, 203
access specifier, 199, 261

for structs, 261
accumulation, 410
accumulation function, 16, 157
adage, 337
adding method at runtime, 386, 387
addition, 55
additive expression, 55
address translation, 394, 395
address-of operator, 52, 124
aggregate contract, 331
aggregate function, 158
algebra, 165, 366, 373
algebraic type, 272
Algol, 6
algorithmic efficiency, 142
alias equality, 57
alias parameter, 148
alias this, 230, 263
alias, 149, 152, 240, 276–278, 347
aliasing, 121, 239
align, 268–269
alignment, 267
alignof, 269
allocation, 184

cost, 180
ambiguity, 80, 81, 147, 160
ambiguous-gender type, 15
ambush, 140
ancestor class, 191

angle brackets, 11
anonymous

unions and structs, 272
class, 226
function, see function literal

ANSI C, 315
antisymmetry, 144, 210
API, 329, 351
appending to array, 103
application logic, 328, 329
application shutdown, 407
approximate database search, 82
Aragón, Alejandro, xxvii
arbitrary behavior, 95
arithmetic operation, 373
array, 7, 386

allocating, 51
array-wise expression, 100, 101,

111
assigning to length, 106
bounds checking, 8, 95, 96, 98, 101,

108
during compilation, 108, 109

comparison, 100, 110
concatenation, 100, 111
contiguous, 112
conversion, 38, 109
copy semantics, 9
copying, 98, 101, 109
creation, 8, 93
dup, 110
duplicating, 94
dynamic, 93
empty, 95
expansion, 103, 104
filling, 101
fixed-size, 38, 107
global, 107
high-level, 126
indexing, 50, 108
initialization, 93, 107

with literal, 94

Index 441

iteration, 108
jagged, 112
length, 8, 95, 108

changing during iteration, 75
length, 95, 106
literal, 39, 107

and immutability, 39
element type, 40
length, 39

low-level, 126
multidimensional, 111, 136

columns, 113
null, 95
of arrays, 52, 111
overlapping, 101
pass by value, 110
passing convention, 132
ptr property, 125
quick reference, 126
reallocation, 103, 104, 106

in place, 104
representation, 98
resizing, 102, 103, 106
safety, 126
shape, 112, 113
sharing, 98
shrinking, 102, 103, 106
slice, 101, 102
slicing, 10, 50, 97, 98, 109
sparse, 378
static allocation, 107
statically sized, 9
stomping, 105
uninitialized, 107
updating during iteration, 76, 77

array literal
element type, 39

Artificial Intelligence, 131
ASCII, 118, 119, 124, 338
Asian writing systems, 119
asm, 89, 392
assembly language, 89

assert(false), 326
assert, 46, 47, 97, 316, 317, 325, 326
ASSERT_ALWAYS, 325
AssertError, 46, 316, 317
assertion, 287, 314, 316
assignment

left-hand and right-hand side of,
42

operator, 60
user-defined, see opAssign

precedence, 60
associative array, 7, 8, 12, 15, 114, 115

in, 56
null, 114
byKey, 117
byValue, 117
comparison, 116
copying, 115
dup, 115
getting keys, 13
indexing, 50
insertion, 8
iteration, 77, 116, 383
keys, 117
length, 114
literal, 40, 114
lookup, 8
membership test, 56, 115
order of elements, 77
quick reference, 126
reading and writing, 115
remove, 116
removing element, 116
type, 114
user-defined key type, 117
values, 117

associativity, 58
of assignment, 60

asynchronous message, 398
ATL, 152
atomic, 424, 426

access, 416

442 Index

increment, 426
operation, 412
primitive, 426
reads and writes, 413

attribute, 96, 156, 165
auto, 11, 93, 107, 153
automatic

conversions, 29
expansion, 164
memory management, 126

automaton, 33, 34
average, 20, 24
Average, 25
average, 159

B
back to the basics, 27
backslash, 34
bank account example, 415
base class, 191
Basic Multilingual Plane, 120
basic types, 29, 30
Baxter, Bill, xxvii
Bealer, Kevin, xxvii
binary code, 132
binary literal, 32
binary operator type, 45
binary resources, 37
binary search, 10
binary searching, 131
binary tree, 131
binding, 177, 242
binding contract, 314
bitfields, 47
bitwise

AND, 58
OR, 58
XOR, 58

bitwise complement, 53
blit, 247
block statement, 82
block structure, 6

block transfer, 247
body, 317, 320
boilerplate code, 369
BOM, see byte order mark
bool, 29, 32
Boucher, Travis, xxvii
bounds checking, 50, 51, 95, 96, 98, 101
braces, 66, 68, 82
break, 78

labeled, 80
breakage, 95
Brooks, Fred, 199
brute-force search, 142
build

non-release versus release, 96
release, 97

built-in type versus user-defined type,
365

byLine, 16
byte order mark, 337, 338
byte, 4, 29

C
C, 2, 4, 11, 14, 26, 29, 37, 42, 43, 50, 52,

58, 68, 103, 137, 139, 152, 188,
270, 272, 287, 299, 315, 317,
349, 351, 361, 395, 398

callbacks, 152
interfacing with, 359
tradition, 2

c (string literal suffix), 39, 123
C++, 2–4, 11, 15, 26, 29, 43, 50, 74, 86,

174, 180, 184, 198, 214, 226,
249, 272, 287, 299, 343, 349,
351, 395

interfacing with, 359
slicing, 26

C99, 30, 34
C#, 3, 11, 29, 198, 214, 226, 395, 417
cache, 393, 396

dedicated, 396
cache effects, 84

Index 443

cache hierarchy, 414
cache miss bonanza, 112
call stack, 154, 382
calling convention, 359
calling method dynamically, 386
Calvin, 147
Cambrian explosion, 118
capacity, 392
Cardelli, Luca, 354
cas loop, 428
cas-based programming, 427
cas, 426
cascading if-else, 68
case sensitive, 210
case, 71, 79
Casinghino, Mike, xxvii
cast, 23, 45, 53, 193, 328, 369, 423
Castilla, Àlvaro Castro, xxvii
casting, 23
catch site, 301
catch, 65, 81, 82, 302, 303, 305, 309, 317
causality, 396, 408, 413
chains of comparisons, 58
Chang, Richard, xxvii
char[], 16

versus string, 17
char, 29, 39, 120, 121
character literal, 34
character type for string, 37
chef d’oeuvre, 13
child class, 191
chmod, 2
class, 15, 21, 51, 175, 177, 181, 183,

188–190, 200, 212, 214, 219,
221–223, 225, 226, 229, 230,
234, 261, 269

anonymous, 226
layout, 359
operator overloading for, 383
parameterized, 233
reference semantics, 177

classic multithreading, 395, 396, 416,
418

clear, 187, 188, 254
clearlsb, 430
clock rate, 393
closure, 153, 154
closures, 7
cluct, 246
Clugston, Don, xxvii
coalescing, 15, 104
code bloating, 139
code for “doing” versus “being”, 131
code point, 122
code shape, 138
code unit, 122, 123
coding standards, 202
coercion, 43
Cohen, Tal, 207
collateral exception, 307
collection, 380
combinatory, 140
come hell or high water, 85
comic strip, 147
comma expression, 60
command line, 1

parameters, 22
command line arguments, 102
command prompt, 2
comments, 3
common type of two values, 60
compact code, 139
compare-and-swap, 426

double-word, 426
comparison

for equality, 56, 57, see opEquals
for non-equality, 57
for ordering, 58, see opCmp
non-associativity of, 58

compilation model, 139
compile-time

expression, 69
function evaluation, 69

444 Index

string manipulation, 47
compile-time constant, 108, 137, 188
compile-time enforcement, 405
compile-time evaluation, 171, 173

limitations, 174
compile-time function evaluation, 349,

388
compile-time introspection, 48
compile-time parameters, 383
compile-time selection, 69
compiler error messages, 141
compiler flags, 11
compiling programs, 2
complex number, 366
complexity, 139, 166

of connectivity, 392
compound statement, 66
compress, 157
computational density, 392
computational power, 393
computing industry, 393, 394
computing power density, 392
computing resources, 391
concatenation, 55, 100
concurrency, 391, 394

magic potion for, 426
model, 394

concurrent applications, 431
concurrent execution, 395
concurrent imperative language, 391
concurrent programming, 290
Concurrentgate, 392
condition, 316
conditional compilation, 69
conditional operator, 39, 59
configuration file, 341
conflict in function calls, 147
conjunction, 333, 334
connectivity hierarchy, 392
conservative, 179
consistency, 206
const, 136, 287, 297, 299

constant parameter, 136
constants

introducing, 4
constraint, 141
constructor, 24, 51, 181

forwarding, 183
overloading, 183

contention, 397
contiguity, 154
contiguous object, 230
contiguous portion of array, 97
contiguous storage, 132
continue, 78

labeled, 80
contract, 329
contract in interface, 334
contract programming, 313–336
contractual requirement, 316
control, 202
control character, 34
control flow, 83, 302
conversion

inefficiency, 374
shortest path rule, 46

convertible, 48
copy elision, 249, 251
copy-on-write, 122
copying files, 406
core dump, 47
core.gc, 52
core.memory, 187
core, 361
correctness, 424
counting words, see example
coupling, 180
cout, 4
covariant return type, 196
CPU, 393–397, 416
critical section, 392, 395, 414
cross-module overloading, 146
crosstalk, 392
curly braces, 5, 66

Index 445

custom float, 366
cyclops, 413
Cygwin, 2

D
d (string literal suffix), 39, 123
dangling reference, 180
Darwin awards, 155
data, 131

common format, 139
initializing, 137
integrity, 413
topology, 154
visibility, 137

data block, 396
data bus, 393
data contention, 397
data hiding, see information hiding
data race, 392, 408
data sharing, 392, 395–397, 418, 431

underworld of, 431
data structure, 14
database programs, 131
datum, 393
DBCS, see double-byte character set
dchar, 29, 39, 120, 121, 124
dead assignment elimination, 185
deadlock, 418, 424, 425

cycle, 425
deallocated object, 187
debug, 361
debugger, 47
decimal literal, 32
declaration, 2, 70
decoupling, 199
decrement, 50, 378
default constructor, 182
default initialization, 178
default initializer, 30
default sharing, 424
default value, 184
default-share language, 398

default, 71, 79
deferred typechecking, 139
delegate, 41, 150, 382, 387
delete operator, 187
delete, 188
density, 393
density of integration, 392
dependency, 199
deprecated, 359
dereference, 52
dereference operator, 124
derived, 191
descendant, 191
descendant class, 191
design consistency, 214
desktop computer, 393
destructor, 86, 186–188, 195, 417
detective investigation, 393
deterministic finite automaton, 33
DFA, 33
diamond hierarchy, 229
dictionary, 8
Dilly, Stephan, xxvii
disambiguation, 143
discriminated union, 272
disjunction, 331
dispatch overhead, 198
distributed computing, 82
division, 54

by zero, 54
division operation, 46
divisor, 171, 172
dmd, 340, 351, 352
do while, 73, 78
documentation, 316
documentation comments, 358
Domain-Specific Embedded Language,

47, 388
double-byte character set, 345
double, 29
doubly initialized object, 184
download hamlet.txt, 13

446 Index

dramatis personae, 14
DSEL, 47, see domain-specific embed-

ded language
dstring, 39, 121
dual-purpose class, 419
dup, 94, 110
duplicating array, 94
duplication, 180
dynamic array, 93
dynamic dispatch, 386
dynamic inheritance, 387
dynamic language, 384
dynamic memory allocation, 51
dynamic method, 385
dynamic polymorphism, 15, 26
dynamic scripting, 47
dynamic type, 192

E
eager copy, 122
ease of maintenance, 131
edit-run cycle, 2
effect, 135
effect for expressions, 66
effect visibility, 395
Effective Java, 207, 396
efficiency, 47, 56, 96, 104, 112, 198, 230,

392
Eiffel, 226, 314
electromagnetic field, 392
ellipsis, 159, 386
else, 67, 70
embedded language, 395
embedding binary resources, 37
emoticon, 413
empty array, 95
empty statement, 67
empty, 155, 157, 380
encapsulation, 199–203, 212
encryption, 82
endianness, 361
ENFORCE, 325

enforce, 217, 325, 326, 377
English, 119
entity, 177
enum, 240, 272–276

base type, 274, 275
init, 275
max, 275
min, 275

enumerated type, 72
eponymous, 281
equality, 56
equally specialized functions, 144
equational reasoning, 181
Erlang, 395, 397, 398
error

at call site versus in implementa-
tion, 141

handling, 88, 301, 313, 406
isolation, 131
message, 46, 140

Error, 302, 317, 319
escape rules for synchronized, 419
Euclid’s algorithm, 170
e, 118
evaluation order, 50
event variable, 392
event-driven logic, 398
example

bank account, 415
bump, 135
counting words, 12
find, 132
frequency counting, 12
heights in feet and centimeters, 3
makeHammingWeightsTable, 83
stats, 20
transmogrify, 146
triangular matrix, 111
underscoresToCamelCase, 385
vocabulary building program, 7

exception, 72, 82, 301, 357
uncaught, 312

Index 447

Exception, 302, 319, 326
exceptional path, 302
execution order, 357
exploit, 95
exponent, 34
exponential elbow, 394
exponential expansion, 393
exponential time, 166
export, 201–203, 261
expression

cast, 53
additive, 55
address-of, 52
bitwise

AND, 58
OR, 58
XOR, 58

bitwise complement, 53
comma, 60
comparison with screwdriver, 47
compile-time, 69
concatenation, 55, 100
division, 54
index, 11, 93
indexing, 50
logical

AND, 59
OR, 59

multiplicative, 54
negation, 53
new, 51
parenthesized, 46, 49
power, 54
primary, 49
quick reference, 61
remainder, 54
shift, 55
slice, 11
statement, 5
subtraction, 55
unary minus, 53
unary plus, 53

with no effect, 66
expression statement, 65
expressive power, 139
expressiveness, 230
extern, 359

F
factorization, 173
factory, 22
Factory design pattern, 211
factory, 210
false, 32
fat pointer, 132, 134
fetch-and-add, 426
Fibonacci, 166
field initialization, 184
FIFO, 398, 426
Filali, Karim, xxvii
file, 337
file attributes, 202
file copying, 406
file inclusion, 2
file suffix, 337, 348
final class, 199
final switch, 65, 72, 73, 78
final, 25, 197–199, 220, 240
finally, 65, 81, 82, 84, 306, 311
find, 17
fire-and-forget, 395
first match rule, 303, 405
first pass through a function, 137
float, 29
floating-point, 58
floating-point arithmetic, 366
floating-point literal, 33, 34
foldl, 157
for, 65, 74, 78
forcing identical mutexes for owned

objects, 422
foreach, 3, 9, 65, 74, 78, 94, 113, 116,

161, 380, 381
on arrays, 75

448 Index

with strings, 123
forehead slapping, 395
form follows function, 413
form follows structure, 6
formatted printing, 5
Fortin, Michel, xxvii
forwarding constructors, 183
fractal principles, 337
frame pointer, 150
french roast, 116
french vanilla, 116
frequency counting, see example
fresh symbol, 74
Friedl, J., 331
front, 155, 157, 380
function, 131, 149

address of, 152
array of, 152
frame, 150
higher-order, see higher-order

function
literal, 149
nested, see nested function
overloading, see overloading
pointer to, 152
signature, 315
trailing parens in call, 156
variadic, see variadic function

function call operator, 50
function literal, 14, 40, 50

environment, 41
syntax, 41
type deduction in, 41

function, 41, 150
functional blocks, 392
functional language, 395, 397
functional programming, 290, 395
functional purity, 165
functional style, 288
functions

arguments, 6, 13
defining, 6

parameters, 6
fundamental types, 29

G
garbage collection, 52, 77, 154, 178, 180,

186–188, 195, 269
garbage collection, dangling reference,

269
GC.free, 187, 188
generality, 140
generated symbol, 74
generic argument, 149
generic function, 11
generic function arguments, 13
generic parameter, 149
getchar, 406
global guarantee, 391
global namespace, 341
global order of reads and writes, 414
global ordering of objects, 425
global scope, 341
global symbol access, 66
global variable, 398
global versus local connectivity, 392
glorified macro, 139
golden ratio, 131
goto case, 79
goto default, 79
goto, 15, 78, 82

good use of, 79
graph, 180
greater than, 58
greatest common divisor, 170
grouping with static if, 69
guarantee through convention, 412
guesstimate, 203

H
hackish flavor, 429
halt instruction, 326
Hamlet, 12, 14

statistics, 19

Index 449

Hamming weight, 82
handshake, 396, 416
hard coding, 138
hard drive, 406
hardware crowd, 393
hardware developments, 392
hardware exception, 54
hardware industry, 391
hardware memory protection, 394
harmonic mean, 366
hashtable, 8, see associative array
haslsb, 430
haystack, 132, 141
head and tail of data, 420
header file, see module, summary
heap-allocated memory, 154
Held, David B., xxvii
Hello, world, 1

in Italian, 115
in Latin, 115

Helvensteijn, Michiel, xxvii
Helyer, Bernard, xxvii
Herlihy, Maurice, 426
hexadecimal literal, 32, 34
hexadecimal string literal, 36
hidden exit point, 302
hiding, 66, 67
high-level invariant, 398
higher-order function, 40, 148, 152, 153,

314
highly parallel architecture, 392
hijacking, 147, 215
HLT, 47, 326
Hobbes, 147
homogeneous versus heterogeneous

translation, 139–140, 235–236
honor system, 412, 421
House, Jason, xxvii
how to get free coffee, 415
Hu, Sam, xxvii
Hume, Thomas, xxvii

hurting the few and the virtuous
as opposed to hurting the plebes,

416

I
IDE, 1
IEEE 754, 4, 34
if, 6, 67
illusion of data sharing, 393
immutable sharing, 431
immutable, 4, 17, 37, 38, 83, 121, 123,

287, 288, 290, 400, 401, 407,
412

constructor, 293
conversions, 295
method, 292
with array types, 38

imperative language, 397
implicit conversion, 46, 48, 140
implicit numeric conversions, 42

rules, 43
import paths, 37
import, 2, 37, 84, 122, 146, 338–349,

351, 352
public, 344
static, 347
renaming, 347
repeated, 2
selective, 346, 347

impossibility results, 426
impure (for object-oriented languages),

181
in place modification, 378
in, 7, 8, 56, 115, 135, 317, 320, 331
include, 37
incompatible function arguments, 141
increment, 50, 378, 412
indentation style, 5, 6
index expression, 93
indexed access with lists, 155
indexing, 50
indirection, 112

450 Index

inefficiency, 139
infinite lifetime, 180
infinite loop, 407
infinite-precision number, 366
information, 199
information hiding, 199, 201, 337
inheritance, 24, 190, 191, 318, 329, 332
init, 7, 30, 51, 93, 106, 107, 120, 178,

181, 244, 251, 270
initialization, 30, 186

with void, 245
initialization order, 189
inject, 157
inorder traversal, 382
inout, 299
insertion and deletion in lock-free list,

429
int, 4, 29
integral literal, 32
integration density, 393
integrity, 125
Intel x86, 89
interconnectivity, 392, 393
interesting times, 392
interface, 199, 212–214

versus implementation, 212
interface, 21, 212, 214, 218, 227, 229
interleaving, 399
interlocked instructions, 426
interlocking, 395, 397
internal iteration, 381
internal logic, 324
interpreted language, 47
interpreter, 47
interpreting string, 47
interprocedural analysis, 421, 422
interval, 3
invariant, 314
invariant, 321, 334
inversion of control, 381
irreducible, 171
irreflexivity, 209, 210

is, 46, 100
expression, 48
for equality, 57

iteration, 3, 9, 100, 380
internal, 381
primitives, 380
state, 382

iteration index, 76
iterator

hierarchy, 157
Iterator pattern, 157

J
jack-of-all-trades, 386
Jacques, Robert, xxvii
jagged array, see array, jagged
Java, 3, 11, 29, 198, 214, 226, 272, 395,

417
java, 116
JavaScript, 386
junk mail, 405

K
K Desktop Environment, 329
K&R, 82, 406
K&R C, 315
Kamm, Christian, xxvii
Keep, Daniel, xxvii
Kegel, Mark, xxvii
Kelly, Sean, xxvii
Kernighan, Brian, 82, 315
keywords, 31
Khesin, Max, xxvii
kind, 49
Kjaeraas, Simen, xxvii
Klingon, 133
Koeninger, Cody, xxvii
Koroskin, Denis, xxvii
Kyllingstad, Lars, xxvii

Index 451

L
label, 78, 221
labeled break, 80
labeled continue, 80
lambda function, 14, 40, 369
lambda functions, 7
lamp genie, 53
language abstraction, 391
large-scale development, 288
large-scale modularity, 337
Latin-derived writing systems, 119
laundering types, 299
lazy evaluation, 326
least significant bit, 429
least significant byte, 43
left-to-right evaluation, 50
legally acquired movie, 410
length, 8, 51, 95
Lesik, Igor, xxvii
less specialized function, 144
less than, 58
let me explain, 126
Letuchy, Eugene, xxvii
lexical order, 189, 357
lexical scope, 66
lifetime, 252

finite versus infinite, 239
LIFO, 86
limit applicability of function, 141
limiting function signature, 142
linear algebra, 239
linear congruential generator, 169, 172

periodicity, 169
linear search, 131, 148, 154
linguistic ability, 143
linked list, 132
linker, 133
Linux, 89
Liskov Substitution Principle, 329
Lisp, 7, 14
list, 180

list format, 139
literal, 46, 365

array, 39
binary, 32
character, 34
floating-point, 33, 34
hexadecimal, 32, 34
hexadecimal string, 36
integral, 32
octal, 32
string, 35, 38, 84
string, 122
suffix, 32
suffix of literal strings, 39, 123
type, 32, 33, 37

literals, 4
local alias, 147
local environment, 154
local versus global connectivity, 392
lock, 425

tyranny of, 426
lock-based

discipline, 424
program, 415
programming, 392, 418, 431
synchronization, 414, 418, 422

lock-free, 427
stack, 427

locking-intensive, 423
logic bug, 325
logical address, 394
logical AND, 59
logical character, 122
logical OR, 47, 59
logically deleted pointer, 429
long-range coupling, 180
long, 4, 29
lowering, 74, 85, 87, 379

of operators, 366
lvalue, 42, 52, 80, 101, 102, 135, 257, 265

defined, 42
versus rvalue, 42

452 Index

M
Månsson, Pelle, xxvii
macro, 139
magic, 239, 379
mailbox, 404, 405, 410

crowding, 404, 410
main memory, 396
main, 1, 2, 102, 357

command line parameters, 22
return type of, 1

mainframe, 394
mainstream hardware, 395
maintainability, 193, 194
maintenance, 73
malloc, 52, 188
mangling, 359
mantissa, 34
manual memory management, 52
Masahiro, Miura, xxvii
masking, 66, 67, 81
massive concurrency, 418
math-fu, 144
math.h, 315
mathematical purity, 395
matrix, 239, 366
Matthews, Tim, xxvii
maximum, 20
maximum mailbox size, 410
Maya veils, 416
member access, 49
member initialization, 25
memcpy, 245
memory

architecture, 393
density, 393
hierarchy, 393
protection, 394
speed, 393
virtualization, 394

memory allocator, 104
overhead, 112

memory architecture, 395
memory barrier, 414
memory bus, 406
memory isolation, 398
memory recycling, 188
memory region, 51
memory safety, 126, 180, 188, 355
memory subsystem, 396
memory-unsafe feature, 125
message passing, 395–398, 431

versus memory sharing, 391
Message Passing Interface, 395, 398
message pump, 398
MessageMismatch, 402
method, 182, 190

not defined, 385
method invocation syntax, 156
metric, 202
Meyer, Bertrand, 175, 211, 314
Meyers, Scott, xxvii, 202
MFC, 152
Microsoft Windows API, 329
migration, 359
Milewski, Bartosz, xxvii, 246
miniaturization, 392
minimum, 20, 158
misaligned memory access, 267
mixin, 46, 47, 65, 82, 83, 282, 284, 386,

388
in operator definition, 368

mixin expression, 276
ML, 154
modern machine, 431
modern multithreading, 416, 418
Modula-3, 355
modular development, 337
modularity, 14, 23, 67, 84, 131, 199
module, 2

safe, 96
safety, 97
system, 96
trusted, 96

Index 453

module, 133, 337, 348, 349, 351
constructor, 356, 357
destructor, 357
initialization order, 358
looking up names in, 341
searching roots, 340, 351

modules
initialization order, 189

modulus, 54, 171
floating-point, 54

Mohamed, Fawzi, xxvii
monomorphic, 15
Moore’s law, 392
more specialized function, 144, 145
most significant byte, 43
move, 251
moving context, 146
moving sofa constant, 39
MPI, see Message Passing Interface
multidimensional array, see array, mul-

tidimensional
multiple inheritance, 226, 230
multiple subtyping, 230

overriding methods with, 231
multiplication, 54
multiplicative expression, 54
multiport memory access, 396
multiprocessor, 396, 414
multithreaded application, 396
multithreading, 395
mutable data, 397
mutation, 165, 167, 395
mutex, 392, 395, 414, 415, 423, 424

acquiring in the same order, 425
ham-fisted, 426
modular acquisition, 425

mutual exclusion, 431
mutually referential structures, 26
Mythical Man-Month, The, 199

N
name hiding, 66, 67

name lookup, 176, 341
name resolution, 66
namespace, 23
naming convention, 385
NaN, see Not a Number
natural number, 53
needle, 132, 141
negation, 53
nested structs, 261
nested class, 51, 222

in function, 223
static, 225

nested function, 150
nested try/finally, 86
network drive, 410
network service, 406
new, 49, 51, 93, 94

considered harmful, 211
expression, 176
placement, 52

Newcomer, Ellery, xxvii
newline in string literal, 36
Niebler, Eric, xxvii
nomenclature, 191
non-associativity, 58
non-blocking linked-list, 429
non-equality, 57
non-local effect, 17
non-release build

versus release build, 96
Non-Virtual Interface, 213–215, 335
nonsensical argument, 141
nonzero, 378
nonzero bits in a byte, 82
nonzero value, 46
Not a Number, 54, 58, 181, 354
nothrow, 168, 315
null, 56, 114, 124, 178, 192, 206
numeric code, 366
numeric relation, 144
numeric types, 4

signed versus unsigned, 4

454 Index

NVI, see Non-Virtual Interface

O
object, 177

branding, 185
construction, 184
life cycle, 181
location in memory, 178
tear-down, 188
tear-down sequence, 187

object orientation, 20
object serialization, 211
object-oriented programming, 175, 181
object.di, 276
Object, 203, 341
object, 341
octal literal, 32
octonion, 366
offer more, 329
OnCrowding, 411
OOP, see object-oriented programming
opAdd, 368
opApply, 381, 382
opAssign, 256, 257, 376
opBinary, 366, 371, 383
opBinaryRight, 371, 373
opCast, 369
opCmp, 117, 209, 210, 256, 375
opDispatch, 384–386
opDollar, 379
Open-Closed Principle, 20, 211
opEquals, 205–209, 256, 258, 259, 375
operator, 366

assignment, 60
precedence, 60

binary
type of, 45

conditional, 39, 59
function call, 50
unary

type of, 45
versus function call, 366

operator overloading, 366
$, 379
address, 388
ambiguity error, 371
binary, 371

defined in terms of assignment,
377

comma, 388
commutativity, 373
comparison, 375
conversion, 370
foreach, 380, 381
identity test, 388
if, 370
in classes, 383
in-place, 376, 377
index, 377
logical conjunction, 388
logical disjunction, 388
lowering, 366
overloading, 373
postdecrement, 369
postincrement, 369
predecrement, 369
preincrement, 369
quick reference, 388
slicing, 379
ternary operator, 370, 388
typeid, 388
unary, 367

operators, 4, 42
opHash, 117
Ophelia, 14, 19
opIndex, 377, 378
opIndexAssign, 378
opIndexUnary, 378
opMul, 368
opOpAssign, 376
opSlice, 379
opSliceAssign, 379
opSliceOpAssign, 379
opSliceUnary, 379

Index 455

opSub, 368
optical disk, 406
optimization, 414
opUnary, 367
order of execution, 86
order of precedence, 42
order of top-level declarations, 146
ordering comparison, 58
organic operation, 428
orphaned method, 193
OSX, 2
out of order execution, 395
out-of-band message, 409
out-of-bounds access, 95
out, 7, 136, 319, 320, 332, 333
outer, 222, 232
overflow, 53
overflow bit, 373
overloading, 142, 143

cross-module, 146, 343
food chain, 143
rules, 145
too lax versus too tight, 143

override, 25, 191, 193, 194, 198, 220,
232

owned object, 423
owned subobject problem, 422
OwnedFailed, 409
owner thread, 407
owner-owned relationship, 422
OwnerFailed, 410
ownership graph, 409
ownership of objects, 421
OwnerTerminated, 408

P
package, 202
package, 200, 202, 203, 261, 337
padding, 267
palindrome, 102
parallel communication, 392
parallel execution, 165

parallel kernel, 394
parallelization, 395
parameter list, 138
parameter tuple, 161, 163
parameter type tuple, 161
parameterized class, 233
parameters

compile time vs. run time, 11
parent class, 191
parenthesized expression, 46, 49
Parker, Mike, xxvii
Parnas, David L., 200, 314
Parnell, Derek, xxvii
partial order, 145, 209
partial ordering, 144, 145

of functions, 144
Pascal, 4, 38
pass by reference, 400
pass by value, 110, 132
pass by value and reference, 6
pattern matching, 131

with receive, 403
peeling braces with static if, 69
Pelletier, Jeremie, xxvii
performance, 96
Perl

version 6, 58
Perlis, Alan, 297
persona, 15
PersonaData, 16–18
Phobos, 361
physical address, 394
physical character, 122
Pierce, Benjamin, 175
pipeline, 396
placement new, 52
platform dependencies, 360
pointer, 52, 56, 124, 412

arithmetic, 125
dereference, 52
indexing, 50
Russian roulette, 125

456 Index

slicing, 51
unchecked, 125

pointer to function or delegate, 50
Polish democracy, 40
Polonius, 15
polymorphism, 180, 181, 240
popFront, 155, 157, 380
portable digital assistant, 393
postblit constructor, see this(this)
postcondition, 314, 319, 332
postdecrement, 50, 378
postincrement, 50, 378
pow, 6
power operator, 54
power-to-weight ratio, 131
precondition, 314, 317
predecrement, 53, 378
predicate, 148, 316
preincrement, 53, 378
premature optimization, 198
primality, 173
primary exception, 308
primary expression, 46, 49
prime factors, 171
primitive expression, 31
printf, 4, 47, 287
priority message, 409
priority queue, 398
PriorityMessageException, 410
prioritySend, 409
private state, 166, 167
private, 137, 200–203, 214–217, 261,

323, 329
process, 394, 395, 397

isolation, 394
processor state, 395
producer-consumer protocol, 406
program correctness, 313
program name, 103
program state, 152
program termination, 400
programming discipline, 131

programming model, 393
programming paradigm, 175, 394
programming practices, 11
programming-by-honor-system, 412
proper subtype, 191
property access syntax, 156
protected memory, 37
protected, 200–203, 216, 217, 232, 323
pseudo method, 156
pseudo-member notation, 156
pseudorandom, 169
ptrdiff_t, 278
public, 201–203, 212, 216, 217, 232,

261, 323
pure functional languages, 26
pure object-oriented languages, 26
pure, 165, 167, 315
putchar, 406
Python, 2, 6, 58, 343

Q
Qt, 152
qualifier, see type qualifier

shared, 397
qualifying a function name, 147
qualifying member name, 195
quaternion, 366
Queen, 19
queue, 398, 404, 409
quick reference

expressions, 61
statements, 89

quote, 36
quote character, 34
quoted string literal, 35

R
race condition, 415
races, 431
RAII, see Resource Acquisition Is Initial-

ization
RAM, 393

Index 457

random number generator, 169
range, 132, 157, 380

input, 157
range violation, 115
RangeError, 50, 51
raw data definition, 36
rdmd, 2, 133
read-modify-write, 106, 412
read-modify-write operations, 415
read-only, 37
read, 328
readf, 23
readText, 328
real, 29, 413
rebinding, 178
receive. Tuple, 404
receive, 403–405, 408
receiveOnly, 402, 404
receiveTimeout, 404
recursive definition, 191
recursive function, 11
red-black tree, 131
reduce, 157, 158
reductio ad absurdum, 210
redundant inheritance paths, 227
ref, 6, 7, 9, 76, 94, 108, 110, 113, 135,

136, 156, 243, 381
and conversions, 76
giving access, 378

refactoring, 67
reference implementation, 351, 353,

356
reference semantics, 15, 26, 177, 180,

239, 242, 246
reference versus object, 177
referential structure, 180
reflexive, 144
reflexivity, 206, 209
regex, 15, 17
regular expression, 15, 331
relational algebra, 131
relative primality, 170

relaxed memory model, 416, 418
release mode, 326
reliability engineering, 313
relocatable objects, 249
remainder, 54
removing method at runtime, 386
renaming in import, see import, re-

naming
reordering, 414, 416
reordering of field access, 421
require less, 329
resistance, 392
Resource Acquisition Is Initialization,

310
resource disposal, 188
resource leak, 310
return, 81, 319
reusability, 139
reverse video, 124
reversed turtles, 190
rewriting

for overloaded operators, 366
rigidity, 139
Ripolles, Pablo, xxvii
Ritchie, Dennis, 82, 315
Roberts, Brad, xxvii
root, 204
run-of-the-mill machine, 396
runaway process, 394
runnable thread, 396
runtime check, 313
rvalue, 42, 101, 102, 135, 182, 249, 251,

257, 265, 266
rvalue versus lvalue, see lvalue versus

rvalue
Rynn, Michael, xxvii

S
safe interface, 96
safe module

versus system module, 96

458 Index

safety, 95, 96
memory, see memory safety
of casts, 53

SafeD, 126, 391
Sailor, 19
Savas, Foy, xxvii
scaffolding, 131
Scala, 230
scalability, 84, 86, 392, 431
Schardt, Christof, xxvii
scheduler, 394
Schveighoffer, Steve, xxvii
scope(exit), 84, 85
scope(failure), 87
scope(success), 86
scope, 65, 84, 86, 240, 312, 366
scoped lifetime, 252
scoped locking idiom, 417
scoped object lifetime, 417
scoping with static if, 69
screwdriver compared with expression,

47
script, 2, 8
scripting, 387
scrubbing input, 327
search engine, 131
searching, 131
selective implementation of methods,

217
self-referential types, 26
semantically equivalent code, 74
semantics

compiler awareness of, 365
semaphore, 395
seminal work, 426
send, 402–404
separate compilation, 422
separation of concerns, 337
sequence of statements, 66
sequential consistency, 414
serial communication, 392
serialization of access, 415

setlsb, 430, 431
setMaxMailboxSize, 410
setMutex, 422
setOwner, 407
Shakespeare, William, 13
shallow copy, 9, 246
shared address space, 395
shared class, 427
shared data, 413, 415, 416
shared memory, 396
shared resource, 180
shared struct, 427, 428
shared, 287, 397, 398, 400, 401, 411,

412, 414, 419, 420, 423, 431
sharing of data between threads, 391
shebang, 338
shebang notation, 2
shell, 1
shift expression, 55
shift happens, 55
short-circuit, 58, 331
short, 4, 29
Shropshire, Benjamin, xxvii
shutdown protocol, 407
signal propagation speed, 393
signals and slots, 152
signature, 138, 141, 315
signature constraint, 141, 143, 367
signed, 74
silicon oxide, 393
Simcha, David, xxvii
simplicity, 1
single statements, 5
single-processor, 397
singly linked list, 308
singly-linked list, 427

lock-free, 429
sitcom cliché, 22
size_t, 276
sizeof, 276
skip list, 131
slack space, 104

Index 459

slice, 381
slice of an array, 98
slicing, 11
slicing arrays, 50
smörgåsbord, 191
Smalltalk, 386
smart phone, 406
software crowd, 393
software engineering, 337
software industry, 391
something completely different, 384
sorting, 13
space-efficient storage, 378
sparse array, 378
spawn, 399, 402, 407
special symbols, 31
specialized hardware, 395
specialized versions of functions, 139
specification, 313, 314, 316
specification check, 328
speed gap between processor and

memory, 393
speed of light, 393
split, 17
splitter, 8
SQL, 47
sqrt, 315
squint, 140
St. Jack, Graham, xxvii
Stachowiak, Tomasz, xxvii
stack, 233, 395

lock-free, 427
stack overflow, 107
stack unwinding, 309
stack variable, 398
standard deviation, 158
standard error, 357
standard library, 361
startsWith, 15
statement

asm, 89
block, 82

break, 78
compound, 66
continue, 78
deltas from existing languages, 65
do while, 73
empty, 67, 73
expression, 65
for, 74
foreach, 74

on arrays, 75
goto, 78
if, 67
mixin, 82
quick reference, 89
return, 81
scope, 84
static if, 68
switch, 71
synchronized, 88
throw, 81
top level, see top-level statement
try, 81
while, 73
with, 80

static class constructor, 189
static class destructor, 189, 190
static else, 70
static if, 48, 65, 68, 278
static import, see import, static
static information, 196
static this(), 188
static type, 192
static versus dynamic, 387
static, 137, 151, 176, 182, 196, 252,

260, 263
obligatory joke about overuse of,

345
statically scoped symbol lookup, 139
statistical encoder, 120
std.algorithm, 15, 157, 158, 178, 251
std.bitmanip, 47
std.c.fenv, 58

460 Index

std.concurrency, 410, 412, 413
std.contracts, 325, 327
std.conv, 102, 161, 317
std.file, 328
std.random, 94, 174
std.range, 158
std.regex, 331
std.stdio, 2, 400
std.typecons, 163
std.utf, 122
std.variant, 386, 405
std, 361
stdout, 400
Stewart, Robert, xxvii
STL, 74, 157
stomping, 105
storage class, 6, 137
straw, 133
stream, 380
strict weak order, 209
stride, 122
string

character type of literal, 39
compiling into code, 83
concatenation, 22
fixed-size, 38
length of literal, 38
literal, 35
literal suffix, 39, 123
newline in literal, 36
quoted literal, 35
WYSIWYG literal, 35

string, 17, 37, 39, 118, 121, 122, 401
copying, 17
length, 38

stringof, 163
struct, 15, 17, 80, 240–247, 252–256,

258–263, 266, 267, 269
construction sequence, 245
constructor, 244
field layout, 267
forwarding constructor, 245

initialization, 17
methods, 255
vs. class, 26

subclass, 191
substitutability, 329
subtraction, 55
subtype, 191, 192

proper, 191
sum, 158
super, 194–195
super, 31
superclass, 191
supertype, 191
surgery on code, 20, 211
surprising behavior

of unary -, 53
surrogate pair, 124
Susie, 147
Sutter, Herb, 213, 398
swap, 178
swap, 178
switch, 65, 71, 78, 79
symbol, 30, 339–348

generated by compiler, 74
lookup

at module scope, 30
table, 2
visibility, 69, 80

symbol lookup, 337
symmetry, 206
synchronization, 415

for an infinite number of threads,
426

object, 414
primitive, 395, 426
wait-free, 426

synchronized class
field typing, 419
rules, 419

synchronized, 88, 418, 419, 424, 425,
431

Index 461

protection against races
local aspect, 419, 420
temporary aspect, 419

semantics, 419
tail sharing, 420
with multiple arguments, 425

syntactic sugar, 366
syntactically valid type, 48
system-fu, 2
system-level access, 96
system-level language, 89
system-level programmer, 96

T
table lookup, 83
tag-based switching, 72
tagged union, 272
tail call elimination, 12, 167
task switching, 394
tear-down, 187
Teigen, Knut Erik, xxvii
telephony application, 395
template, 279, 281, 282
tension between efficiency and static

verifiability, 186
tensor, 366
termination of multithreaded applica-

tion, 407
terminology, 191
ternary operator, 74
test-and-set, 426
test-driven, 133
testing, 133
text processing, 8
text, 317
textual inclusion, 84
theorem of structure, 6
this(), 240
this(this), 240, 245, 247, 249–251,

253, 273
rationale, 249

this, 31, 182, 196

thisTid, 402
Thompson, Ken, 119
thread, 137, 394, 395, 397

starting, 399
thread blocking, 425
thread id, see tid
thread isolation, 391, 397, 400
thread priority, 415
thread queue, 410
thread scheduler, 396
thread startup, 188
thread termination, 407
thread-local storage, 107, 398
threading amenities, 431
threading API, 407
throw, 81, 301, 302, 309
Throwable, 302, 307, 308
thumb drive, 406
tid, 401
Tid, 401, 402
tightest common type, 59
time invariance, 395
time quantum, 394
time sharing, 394, 396
time slicing, 397
time-sliced threads, 414
timer interrupt, 394
TLS, see thread-local storage
to, 16, 17, 83, 102, 161
toHash, 205
tolower, 17
top braces, 74
top level declaration, 339
top-level statements, 1
toString, 205
trailing else, 68
transactional creation of a file, 88
transactional semantics, 168
transcendental function, 366
transcoding, 124
transitive, 144

for shared, 412

462 Index

transitivity, 136, 206, 209, 210, 290
of equality with zero, 209
of sign, 209

transitivity rule, 427
transitory state, 152, 166, 167
translation, 139
tree, 180, 382
tree container, 261
tree iteration, 382
trie, 131
true, 32
truncation, 54
trusted module, 96
try, 65, 81, 82, 84, 303, 366
tuple, 163
Tuple, 163, 402
tuple, 163
two’s complement, 53
type

conciliation, 74
enumerated, 72
for operators, 45
of literal string, 37
self-referential, see self-referential

types
type constructor, 26
type deduction, 11, 14, 138, 140, 149
type erasure, 235
type inference, 4, 29, 39
type name syntax, 365
type parameter, 138, 140
type parameter, 10
type parameterization, 139
type parameters, 234
type qualifier, 38, 287

composition rules, 299
propagating to result, 299
syntax, 291

type system, 397, 424
type system integrity, 54
typeid, 32, 37
typeof, 37, 141, 163, 276

U
ubyte, 4, 29, 407
UCS-2, 120
uint, 4, 29
ulong, 4, 29
unary

minus, 53
plus, 53

unary operator, 367
unary operator type, 45
unbound, 179
unbounded amount of code, 202
unbridled confidence, 427
unchecked cast, 54
underscore, 30

in numeric literals, 32
undue aliasing, 180
unfortunately, 392
Unicode, 34, 118–122, 338

code point, 118, 119
code unit, 119
Consortium, 118
encoding, 118, 121
misconception about, 118
specific spelling, 118
variable-length encoding, 119

uniform, 94
uniformity, 139
uninitialized data, 107, 185
union, 240, 270–272
uniprocessor, 414
unit of compilation, 337
unittest, 11, 133, 138, 256, 361
universal characters, 30
universality results, 426, 427
Unix, 2, 340
unlocking, 417
unordered functions, 144
unprotected sharing, 398, 416
unqualified access to shared data, 416
unsafe constructs, 107, 110

Index 463

unsigned, 74
unsigned shift, 55
unsigned type, 53
unspecified value, 55
unstated assumption, 397
untrusted format strings, 5
untyped address, 152
untyped memory, 184
unwashed masses, 167
unwieldy code, 86
user input, 325, 329
ushort, 4, 29
UTF, 118, 121, 122, 124, 328, 333
UTF-8, 30, 36, 37, 118–121, 123, 338

backward iteration, 120
properties, 119
synchronization, 120

UTF-16, 30, 36, 118, 120, 123, 124, 338
criticism against, 120
high surrogate area, 120
low surrogate area, 120

UTF-32, 30, 36, 118, 120, 123, 338
UtfException, 328

V
value declaration, 74
value object, 177
value range propagation, 29, 43, 45
value semantics, 26, 178, 181, 242, 246
value type, 240
value versus reference, 15, 25
varargs, 315
variable-length encoding, 120
variadic function, 159

heterogeneous, 160
homogeneous, 159

variadic functions, 5
Variant, 386, 405
vector, 366
vector operation parallelization, 394
verboten, 400
VERIFY, 325

version control, 202
version, 360
virtual function dispatch, 72
virtual table, 229
Vlăsceanu, Cristian, xxvii
vocabulary, 8, 143
vocabulary building program, see ex-

ample
void, 29, 107

as initializer, 185, 245
Voltaire, 343
Voltemand, 20

W
w (string literal suffix), 39, 123
Wadler, Philip, 313
wait-free synchronization, 426
walkLength, 333
wchar, 29, 39, 120, 121
Wegner, Peter, 83
werewolf, 5
while, 73, 78
whitespace, 6, 8
Windows, 2, 89, 340, 356
with, 80
writefln, 4
writeln, 2, 4, 68, 81, 159

atomicity of, 399
wstring, 39, 121
WYSIWYG string literal, 35, 36

X
x86, 89

Y
Y2K, 202
yacc, 47
you’ve been warned, 97

Z
zero-based, 50
Zolman, Leor, xxvii

	Contents
	Foreword
	Foreword
	Preface
	Intended Audience
	Organization of the Book
	A Brief History
	Acknowledgments
	13 Concurrency
	13.1 Concurrentgate
	13.2 A Brief History of Data Sharing
	13.3 Look, Ma, No (Default) Sharing
	13.4 Starting a Thread
	13.4.1 Immutable Sharing

	13.5 Exchanging Messages between Threads
	13.6 Pattern Matching with receive
	13.6.1 First Match
	13.6.2 Matching Any Message

	13.7 File Copying-with a Twist
	13.8 Thread Termination
	13.9 Out-of-Band Communication
	13.10 Mailbox Crowding
	13.11 The shared Type Qualifier
	13.11.1 The Plot Thickens: shared Is Transitive

	13.12 Operations with shared Data and Their Effects
	13.12.1 Sequential Consistency of shared Data

	13.13 Lock-Based Synchronization with synchronized classes
	13.14 Field Typing in synchronized classes
	13.14.1 Temporary Protection == No Escape
	13.14.2 Local Protection == Tail Sharing
	13.14.3 Forcing Identical Mutexes
	13.14.4 The Unthinkable: casting Away shared

	13.15 Deadlocks and the synchronized Statement
	13.16 Lock-Free Coding with shared classes
	13.16.1 Shared classes
	13.16.2 A Couple of Lock-Free Structures

	13.17 Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

