Specification: .NET Framework, Stopwatch

Executive Overview

Stopwatch class is a managed wrapper for Win32 QueryPerformanceCounter and QueryPerformanceFrequency APIs. It provides a simple API for high-precision and high-resolution measurements of elapsed time. The APIs are commonly used for performance testing, tuning, and instrumentation.

Contents

11
Requirements

12
API Specification

12.1
Scenarios

12.1.1
Measure Time Elapsed

22.1.2
Measure Time Elapsed (Simplified)

22.1.3
Reuse Stopwatch (VB)

22.1.4
Measure Cumulative Intervals

22.2
API Design

33
Functional Specification

1 Requirements

· Provide APIs to measure elapsed time with very high resolution and accuracy of QueryPerformanceCounter.

· Most operations should require one line of code. Time measurement functionality should not obscure the main flow of an application.

2 API Specification

2.1 Scenarios

2.1.1 Measure Time Elapsed

Stopwatch watch = new Stopwatch();

watch.Start();

Thread.Sleep(1000);

Console.WriteLine(watch.Elapsed);

2.1.2 Measure Time Elapsed (Simplified)

Stopwatch watch = Stopwatch.StartNew();

Thread.Sleep(1000);

Console.WriteLine(watch.Elapsed);

2.1.3 Reuse Stopwatch (VB)

Dim watch As Stopwatch = Stopwatch.StartNew()

Thread.Sleep(1000)

Console.WriteLine(watch.ElapsedMilliseconds)

watch.Reset()

watch.Start()

System.Threading.Thread.Sleep(2000)

Console.WriteLine(watch.Elapsed)

Issue: It would be nice to add Restart() that would just call Reset() followed by Start().

Resolution: Postponed to a future release for schedule reasons.

2.1.4 Measure Cumulative Intervals

The following sample measures how long it takes to process a list of orders. It excludes time needed to enumerate the order collection.

Stopwatch watch = new Stopwatch();

foreach(Order order in orders){

watch.Start();

order.Process();

watch.Stop();

}

Console.WriteLine(watch.Elapsed);

2.2 API Design

namespace System.Diagnostics {

public class Stopwatch {

 public Stopwatch();

 public static Stopwatch StartNew();

 public void Start();

 public void Stop();

 public void Reset();

 public bool IsRunning { get; }

 public TimeSpan Elapsed { get; }

 public long ElapsedMilliseconds { get; }

 public long ElapsedTicks
 { get; }

 public static long GetTimestamp();

 public static readonly long Frequency;

 public static readonly bool IsHighResolution;

}

}

3 Functional Specification

	public Stopwatch()

	Behavior
	Creates a new Stopwatch instance.

	Exceptions
	

	public static Stopwatch StartNew()

	Behavior
	Creates a new Stopwatch, calls Start on the instance, and returns the instance

	Exceptions
	

	Additional Samples
	Stopwatch stopwatch = Stopwatch.StartNew();

System.Threading.Thread.Sleep(milliseconds);

Console.WriteLine(stopWatch.Stop());

	public void Start()

	Behavior
	Starts accumulating time. If the Stopwatch is already started, the operation does nothing.

	Exceptions
	

	public void Stop()

	Behavior
	Stops accumulating time. If the Stopwatch is stopped, the operation does nothing.

	Exceptions
	

	public void Reset()

	Behavior
	Stops the stopwatch and resets the time accumulated.

	Exceptions
	

	public bool IsRunning { get; }

	Behavior
	Returns true if Stop() was not called after the last call to Start()

	Exceptions
	

	Additional Samples
	StopWatch watch = new StopWatch();

Console.WriteLine(watch.IsRunning); // prints false

Watch.Start();

Console.WriteLine(watch.IsRunning); // prints true

Watch.Stop();

Console.WriteLine(watch.IsRunning); // prints false

	public long ElapsedTicks
{ get; }

	Behavior
	Return time accumulated in ticks. Start starts accumulating the time. Stop halts accumulating the time. Note: The value may overflow.

	Exceptions
	

	Additional Samples
	StopWatch watch= StopWatch.StartNew();

System.Threading.Thead.Sleep(50);

Console.WriteLine(watch.ElapsedTicks); //prints 50*Frequency/1000

	public long ElapsedMilliseconds
{ get; }

	Behavior
	Return time accumulated in milliseconds. Start starts accumulating the time. Stop halts accumulating the time. The value is computed from ElapsedTicks and the Frequency and is rounded down to the nearest millisecond. Note: The value may overflow.

	Exceptions
	

	Additional Samples
	StopWatch watch= StopWatch.StartNew();

System.Threading.Thead.Sleep(50);

Console.WriteLine(watch.ElapsedMilliseconds); //prints 50

	public TimeSpan Elapsed { get; }

	Behavior
	Returns time accumulated. Start starts accumulating the time. Stop halts accumulating the time. The value is computed from ElapsedTicks and the Frequency and is rounded down to the nearest millisecond. Note: The value may overflow.

	Exceptions
	

	public static long GetTimestamp()

	Behavior
	Returns the current tick count.

	Exceptions
	

	public static readonly long Frequency;

	Behavior
	Returns counter frequency on the machine. In case when high performance counters are not supported, it returns TicksPerSecond (used by DateTime)

	Exceptions
	

	public static readonly bool IsHighResolution;

	Behavior
	Returns true if high performance counter is available on the system.

	Exceptions
	

[image: image1.png]

[image: image2.png]

[image: image3.png]

[image: image4.png]

[image: image5.png]

[image: image6.png]

PAGE
1
Appendix C - API Specification.doc

