
Foreword

Composition, the organization of elemental operations into a nonobvious whole, is the
essence of imperative programming. The instruction set architecture (ISA) of a micro-
processor is a versatile composition interface, which programmers of software renderers
have used effectively and creatively in their quest for image realism. Early graphics
hardware increased rendering performance, but often at a high cost in composability,
and thus in programmability and application innovation. Hardware with microproces-
sor-like programmability did evolve (for example, the Ikonas Graphics System), but the
dominant form of graphics hardware acceleration has been organized around a fixed
sequence of rendering operations, often referred to as the graphics pipeline. Early inter-
faces to these systems—such as CORE and later, PHIGS—allowed programmers to
specify rendering results, but they were not designed for composition.

OpenGL, which I helped to evolve from its Silicon Graphics-defined predecessor IRIS
GL in the early 1990s, addressed the need for composability by specifying an architec-
ture (informally called the OpenGL Machine) that was accessed through an imperative
programmatic interface. Many features—for example, tightly specified semantics; table-
driven operations such as stencil and depth-buffer functions; texture mapping exposed
as a general 1D, 2D, and 3D lookup function; and required repeatability properties—
ensured that programmers could compose OpenGL operations with powerful and reli-
able results. Some of the useful techniques that OpenGL enabled include texture-based
volume rendering, shadow volumes using stencil buffers, and constructive solid geome-
try algorithms such as capping (the computation of surface planes at the intersections
of clipping planes and solid objects defined by polygons). Ultimately, Mark Peercy and
the coauthors of the SIGGRAPH 2000 paper “Interactive Multi-Pass Programmable
Shading” demonstrated that arbitrary RenderMan shaders could be accelerated through
the composition of OpenGL rendering operations.

During this decade, increases in the raw capability of integrated circuit technology
allowed the OpenGL architecture (and later, Direct3D) to be extended to expose an

Foreword xxvii

010_gems3_fm 7/5/2007 4:57 PM Page xxvii

ISA interface. These extensions appeared as programmable vertex and fragment shaders
within the graphics pipeline and now, with the introduction of CUDA, as a data-
 parallel ISA in near parity with that of the microprocessor. Although the cycle toward
complete microprocessor-like versatility is not complete, the tremendous power of
graphics hardware acceleration is more accessible than ever to programmers.

And what computational power it is! At this writing, the NVIDIA GeForce 8800 Ultra
performs over 400 billion floating-point operations per second—more than the most
powerful supercomputer available a decade ago, and five times more than today’s most
powerful microprocessor. The data-parallel programming model the Ultra supports
allows its computational power to be harnessed without concern for the number of
processors employed. This is critical, because while today’s Ultra already includes over
100 processors, tomorrow’s will include thousands, and then more. With no end in
sight to the annual compounding of integrated circuit density known as Moore’s Law,
massively parallel systems are clearly the future of computing, with graphics hardware
leading the way.

GPU Gems 3 is a collection of state-of-the-art GPU programming examples. It is about
putting data-parallel processing to work. The first four sections focus on graphics-
 specific applications of GPUs in the areas of geometry, lighting and shadows, rendering,
and image effects. Topics in the fifth and sixth sections broaden the scope by providing
concrete examples of nongraphical applications that can now be addressed with data-
parallel GPU technology. These applications are diverse, ranging from rigid-body simu-
lation to fluid flow simulation, from virus signature matching to encryption and
decryption, and from random number generation to computation of the Gaussian.

Where is this all leading? The cover art reminds us that the mind remains the most
capable parallel computing system of all. A long-term goal of computer science is to
achieve and, ultimately, to surpass the capabilities of the human mind. It’s exciting to
think that the computer graphics community, as we identify, address, and master the
challenges of massively parallel computing, is contributing to the realization of this
dream.

Kurt Akeley
Microsoft Research

Forewordxxviii

010_gems3_fm 7/5/2007 4:57 PM Page xxviii

xxixPreface

It has been only three years since the first GPU Gems book was introduced, and some
areas of real-time graphics have truly become ultrarealistic. Chapter 14, “Advanced
Techniques for Realistic Real-Time Skin Rendering,” illustrates this evolution beauti-
fully, describing a skin rendering technique that works so well that the data acquisition
and animation will become the most challenging problem in rendering human charac-
ters for the next couple of years.

All this progress has been fueled by a sustained rhythm of GPU innovation. These pro-
cessing units continue to become faster and more flexible in their use. Today’s GPUs
can process enormous amounts of data and are used not only for rendering 3D scenes,
but also for processing images or performing massively parallel computing, such as
financial statistics or terrain analysis for finding new oil fields.

Whether they are used for computing or graphics, GPUs need a software interface to
drive them, and we are in the midst of an important transition. The new generation of
APIs brings additional orthogonality and exposes new capabilities such as generating
geometry programmatically. On the computing side, the CUDA architecture lets devel-
opers use a C-like language to perform computing tasks rather than forcing the pro-
grammer to use the graphics pipeline. This architecture will allow developers without a
graphics background to tap into the immense potential of the GPU.

More than 200 chapters were submitted by the GPU programming community, cover-
ing a large spectrum of GPU usage ranging from pure 3D rendering to nongraphics
applications. Each of them went through a rigorous review process conducted both by
NVIDIA’s engineers and by external reviewers.

We were able to include 41 chapters, each of which went through another review, dur-
ing which feedback from the editors and peer reviewers often significantly improved
the content. Unfortunately, we could not include some excellent chapters, simply due
to the space restriction of the book. It was difficult to establish the final table of con-
tents, but we would like to thank everyone who sent a submission.

Preface

010_gems3_fm 7/5/2007 4:57 PM Page xxix

Preface

Intended Audience
For the graphics-related chapters, we expect the reader to be familiar with the funda-
mentals of computer graphics including graphics APIs such as DirectX and OpenGL,
as well as their associated high-level programming languages, namely HLSL, GLSL, or
Cg. Anyone working with interactive 3D applications will find in this book a wealth of
applicable techniques for today’s and tomorrow’s GPUs.

Readers interested in computing and CUDA will find it best to know parallel comput-
ing concepts. C programming knowledge is also expected.

Trying the Code Samples
GPU Gems 3 comes with a disc that includes samples, movies, and other demonstrations
of the techniques described in this book. You can also go to the book’s Web page to find
the latest updates and supplemental materials: developer.nvidia.com/gpugems3.

Acknowledgments
This book represents the dedication of many people—especially the numerous authors
who submitted their most recent work to the GPU community by contributing to this
book. Without a doubt, these inspirational and powerful chapters will help thousands
of developers push the envelope in their applications.

Our section editors—Cyril Zeller, Evan Hart, Ignacio Castaño Aguado, Kevin Bjorke,
Kevin Myers, and Nolan Goodnight—took on an invaluable role, providing authors
with feedback and guidance to make the chapters as good as they could be. Without
their expertise and contributions above and beyond their usual workload, this book
could not have been published.

Ensuring the clarity of GPU Gems 3 required numerous diagrams, illustrations, and
screen shots. A lot of diligence went into unifying the graphic style of about 500 fig-
ures, and we thank Michael Fornalski and Jim Reed for their wonderful work on these.
We are grateful to Huey Nguyen and his team for their support for many of our proj-
ects. We also thank Rory Loeb for his contribution to the amazing book cover design
and many other graphic elements of the book.

We would also like to thank Catherine Kilkenny and Teresa Saffaie for tremendous help
with copyediting as chapters were being worked on.

xxx

010_gems3_fm 7/5/2007 4:57 PM Page xxx

xxxiPreface

Randy Fernando, the editor of the previous GPU Gems books, shared his wealth of
experience acquired in producing those volumes.

We are grateful to Kurt Akeley for writing our insightful and forward-looking
foreword.

At Addison-Wesley, Peter Gordon, John Fuller, and Kim Boedigheimer managed this
project to completion before handing the marketing aspect to Curt Johnson. Christopher
Keane did fantastic work on the copyediting and typesetting.

The support from many executive staff members from NVIDIA was critical to this
endeavor: Tony Tamasi and Dan Vivoli continually value the creation of educational
material and provided the resources necessary to accomplish this project.

We are grateful to Jen-Hsun Huang for his continued support of the GPU Gems series
and for creating an environment that encourages innovation and teamwork.

We also thank everyone at NVIDIA for their support and for continually building the
technology that changes the way people think about computing.

Hubert Nguyen
NVIDIA Corporation

010_gems3_fm 7/5/2007 4:57 PM Page xxxi

Chapter 18

40918.1 Introduction

18.1 Introduction
The presence of geometric details on object surfaces dramatically changes the way light
interacts with these surfaces. Although synthesizing realistic pictures requires simulating
this interaction as faithfully as possible, explicitly modeling all the small details tends to
be impractical. To address these issues, an image-based technique called relief mapping
has recently been introduced for adding per-fragment details onto arbitrary polygonal
models (Policarpo et al. 2005). The technique has been further extended to render
correct silhouettes (Oliveira and Policarpo 2005) and to handle non-height-field surface
details (Policarpo and Oliveira 2006). In all its variations, the ray-height-field intersec-
tion is performed using a binary search, which refines the result produced by some
linear search procedure. While the binary search converges very fast, the linear search
(required to avoid missing large structures) is prone to aliasing, by possibly missing
some thin structures, as is evident in Figure 18-1a. Several space-leaping techniques
have since been proposed to accelerate the ray-height-field intersection and to minimize
the occurrence of aliasing (Donnelly 2005, Dummer 2006, Baboud and Décoret 2006).
Cone step mapping (CSM) (Dummer 2006) provides a clever solution to accelerate the
intersection calculation for the average case and avoids skipping height-field structures
by using some precomputed data (a cone map). However, because CSM uses a conser-
vative approach, the rays tend to stop before the actual surface, which introduces different

Relaxed Cone Stepping
for Relief Mapping
Fabio Policarpo
Perpetual Entertainment

Manuel M. Oliveira
Instituto de Informática—UFRGS

318_gems3_ch18 7/5/2007 8:34 PM Page 409

410

kinds of artifacts, highlighted in Figure 18-1b. Using an extension to CSM that consists
of employing four different radii for each fragment (in the directions north, south, east,
and west), one can just slightly reduce the occurrence of these artifacts. We call this
approach quad-directional cone step mapping (QDCSM). Its results are shown in Figure
18-1c, which also highlights the technique’s artifacts.

Chapter 18 Relaxed Cone Stepping for Relief Mapping

(a) Linear + binary search (b) Cone step mapping

(d) Relaxed cone stepping + binary search(c) Quad-directional cone step mapping

Figure 18-1. Comparison of Four Different Ray-Height-Field Intersection Techniques Used to Render
a Relief-Mapped Surface from a 256×256 Relief Texture
(a) Fifteen steps of linear search followed by six steps of binary search. Note the highlighted
aliasing artifacts due to the step size used for the linear search. (b) Fifteen steps of the cone step
mapping technique. Note the many artifacts caused by the fact that the technique is conservative
and many rays will never hit the surface. (c) Fifteen steps of the quad-directional cone step
mapping technique. The artifacts in (b) have been reduced but not eliminated. (d) Fifteen steps of
the relaxed cone stepping followed by six steps of binary search. Note that the artifacts have been
essentially eliminated.

318_gems3_ch18 7/5/2007 8:34 PM Page 410

In this chapter, we describe a new ray-height-field intersection strategy for per-fragment
displacement mapping that combines the strengths of both cone step mapping and
binary search. We call the new space-leaping algorithm relaxed cone stepping (RCS), as it
relaxes the restriction used to define the radii of the cones in CSM. The idea for the
ray-height-field intersection is to replace the linear search with an aggressive space-
leaping approach, which is immediately followed by a binary search. While CSM con-
servatively defines the radii of the cones in such a way that a ray never pierces the
surface, RCS allows the rays to pierce the surface at most once. This produces much
wider cones, accelerating convergence. Once we know a ray is inside the surface, we can
safely apply a binary search to refine the position of the intersection. The combination
of RCS and binary search produces renderings of significantly higher quality, as shown
in Figure 18-1d. Note that both the aliasing visible in Figure 18-1a and the distortions
noticeable in Figures 18-1b and 18-1c have been removed. As a space-leaping tech-
nique, RCS can be used with other strategies for refining ray-height-field intersections,
such as the one used by interval mapping (Risser et al. 2005).

18.2 A Brief Review of Relief Mapping
Relief mapping (Policarpo et al. 2005) simulates the appearance of geometric surface
details by shading individual fragments in accordance to some depth and surface nor-
mal information that is mapped onto polygonal models. A depth map1 (scaled to the
[0,1] range) represents geometric details assumed to be under the polygonal surface.
Depth and normal maps can be stored as a single RGBA texture (32-bit per texel)
called a relief texture (Oliveira et al. 2000). For better results, we recommend separating
the depth and normal components into two different textures. This way texture com-
pression will work better, because a specialized normal compression can be used inde-
pendent of the depth map compression, resulting in higher compression ratios and
fewer artifacts. It also provides better performance because during the relief-mapping
iterations, only the depth information is needed and a one-channel texture will be more
cache friendly (the normal information will be needed only at the end for lighting).
Figure 18-2 shows the normal and depth maps of a relief texture whose cross section is
shown in Figure 18-3. The mapping of relief details to a polygonal model is done in the
conventional way, by assigning a pair of texture coordinates to each vertex of the
model. During rendering, the depth map can be dynamically rescaled to achieve differ-
ent effects, and correct occlusion is achieved by properly updating the depth buffer.

18.2 A Brief Review of Relief Mapping 411

1. We use the term depth map instead of height map because the stored values represent depth measured
under a reference plane, as opposed to height (measured above it). The reader should not confuse the
expression “depth map” used here with shadow buffers.

318_gems3_ch18 7/5/2007 8:34 PM Page 411

412 Chapter 18 Relaxed Cone Stepping for Relief Mapping

Figure 18-2. Example of a Relief Texture
Left: The normal map is stored in the RGB channels of the texture. Right: The depth map is stored
in the alpha channel. Brighter pixels represent deeper geometry.

Light Source

D
ep

th
 R

an
g

e

Viewing Ray
Light Ray

0.0

0.0 1.0

1.0

(u,v) (k,l)

(s,f)
f

Figure 18-3. Relief Rendering
The viewing ray is transformed to the tangent space of fragment f and then intersected with the
relief at point P, with texture coordinates (k, l). Shading is performed using the normal and color
stored at the corresponding textures at (k, l). Self-shadowing is computed by checking if the light
ray hits P before any other surface point.

318_gems3_ch18 7/5/2007 8:34 PM Page 412

Relief rendering is performed entirely on the GPU and can be conceptually divided
into three steps. For each fragment f with texture coordinates (s, t), first transform the
view direction V to the tangent space of f. Then, find the intersection P of the trans-
formed viewing ray against the depth map. Let (k, l) be the texture coordinates of such
intersection point (see Figure 18-3). Finally, use the corresponding position of P, ex-
pressed in camera space, and the normal stored at (k, l) to shade f. Self-shadowing can
be applied by checking whether the light ray reaches P before reaching any other point
on the relief. Figure 18-3 illustrates the entire process. Proper occlusion among relief-
mapped and other scene objects is achieved simply by updating the z-buffer with the z
coordinate of P (expressed in camera space and after projection and division by w).
This updated z-buffer also supports the combined use of shadow mapping (Williams
1978) with relief-mapped surfaces.

In practice, finding the intersection point P can be entirely performed in 2D texture
space. Thus, let (u, v) be the 2D texture coordinates corresponding to the point where
the viewing ray reaches depth = 1.0 (Figure 18-3). We compute (u, v) based on (s, t),
on the transformed viewing direction and on the scaling factor applied to the depth
map. We then perform the search for P by sampling the depth map, stepping from (s, t)
to (u, v), and checking if the viewing ray has pierced the relief (that is, whether the
depth along the viewing ray is bigger than the stored depth) before reaching (u, v). If
we have found a place where the viewing ray is under the relief, the intersection P is
refined using a binary search.

Although the binary search quickly converges to the intersection point and takes advan-
tage of texture filtering, it could not be used in the beginning of the search process be-
cause it may miss some large structures. This situation is depicted in Figure 18-4a, where
the depth value stored at the texture coordinates halfway from (s, t) and (u, v) is bigger
than the depth value along the viewing ray at point 1, even though the ray has already
pierced the surface. In this case, the binary search would incorrectly converge to point
Q. To minimize such aliasing artifacts, Policarpo et al. (2005) used a linear search to
restrict the binary search space. This is illustrated in Figure 18-4b, where the use of small
steps leads to finding point 3 under the surface. Subsequently, points 2 and 3 are used as
input to find the desired intersection using a binary search refinement. The linear search
itself, however, is also prone to aliasing in the presence of thin structures, as can be seen
in Figure 18-1a. This has motivated some researchers to propose the use of additional
preprocessed data to avoid missing such thin structures (Donnelly 2005, Dummer 2006,
Baboud and Décoret 2006). The technique described in this chapter was inspired by the
cone step mapping work of Dummer, which is briefly described next.

18.2 A Brief Review of Relief Mapping 413

318_gems3_ch18 7/5/2007 8:34 PM Page 413

D
ep

th
 R

an
g

e

Viewing Ray

0.0

0.0 1.0

1.0

(u,v)

(s,f)

1

2

Q

P3

Figure 18-4. Binary Versus Linear Search
(a) A binary search may skip some large structures, missing the first ray-surface intersection (P)
and returning a wrong intersection (Q). The numbers inside the circles indicate the order in which
the points are visited along the viewing ray. (b) By using smaller steps, the linear search is less
prone to aliasing, but not immune to it.

(a)

(b)

318_gems3_ch18 7/5/2007 8:34 PM Page 414

18.3 Cone Step Mapping
Dummer’s algorithm for computing the intersection between a ray and a height field
avoids missing height-field details by using cone maps (Dummer 2006). A cone map
associates a circular cone to each texel of the depth texture. The angle of each cone is
the maximum angle that would not cause the cone to intersect the height field. This
situation is illustrated in Figure 18-5 for the case of three texels at coordinates (s, t),
(a, b), and (c, d), whose cones are shown in yellow, blue, and green, respectively.

Starting at fragment f, along the transformed viewing direction, the search for an inter-
section proceeds as follows: intersect the ray with the cone stored at (s, t), obtaining
point 1 with texture coordinates (a, b). Then advance the ray by intersecting it with the

18.3 Cone Step Mapping 415

Figure 18-5. Cone Step Mapping
At each pass of the iteration, the ray advances to its intersection with the cone centered at the
current texel.

318_gems3_ch18 7/5/2007 8:34 PM Page 415

416

cone stored at (a, b), thus obtaining point 2 at texture coordinates (c, d). Next, inter-
sect the ray with the cone stored at (c, d), obtaining point 3, and so on. In the case of
this simple example, point 3 coincides with the desired intersection. Although cone
step mapping is guaranteed never to miss the first intersection of a ray with a height
field, it may require too many steps to converge to the actual intersection. For perform-
ance reasons, however, one is often required to specify a maximum number of itera-
tions. As a result, the ray tends to stop before the actual intersection, implying that the
returned texture coordinates used to sample the normal and color maps are, in fact,
incorrect. Moreover, the 3D position of the returned intersection, P ′, in camera space,
is also incorrect. These errors present themselves as distortion artifacts in the rendered
images, as can be seen in Figures 18-1b and 18-1c.

18.4 Relaxed Cone Stepping
Cone step mapping, as proposed by Dummer, replaces both the linear and binary
search steps described in Policarpo et al. 2005 with a single search based on a cone
map. A better and more efficient ray-height-field intersection algorithm is achieved by
combining the strengths of both approaches: the space-leaping properties of cone step
mapping followed by the better accuracy of the binary search. Because the binary
search requires one input point to be under and another point to be over the relief sur-
face, we can relax the constraint that the cones in a cone map cannot pierce the surface.
In our new algorithm, instead, we force the cones to actually intersect the surface
whenever possible. The idea is to make the radius of each cone as large as possible,
observing the following constraint: As a viewing ray travels inside a cone, it cannot pierce
the relief more than once. We call the resulting space-leaping algorithm relaxed cone step-
ping. Figure 18-7a (in the next subsection) compares the radii of the cones used by the
conservative cone stepping (blue) and by relaxed cone stepping (green) for a given frag-
ment in a height field. Note that the radius used by RCS is considerably larger, making
the technique converge to the intersection using a smaller number of steps. The use of
wider relaxed cones eliminates the need for the linear search and, consequently, its asso-
ciated artifacts. As the ray pierces the surface once, it is safe to proceed with the fast and
more accurate binary search.

18.4.1 Computing Relaxed Cone Maps
As in CSM, our approach requires that we assign a cone to each texel of the depth map.
Each cone is represented by its width/height ratio (ratio w/h, in Figure 18-7c). Because
a cone ratio can be stored in a single texture channel, both a depth and a cone map can

Chapter 18 Relaxed Cone Stepping for Relief Mapping

318_gems3_ch18 7/5/2007 8:34 PM Page 416

be stored using a single luminance-alpha texture. Alternatively, the cone map could be
stored in the blue channel of a relief texture (with the first two components of the nor-
mal stored in the red and green channels only).

For each reference texel ti on a relaxed cone map, the angle of cone Ci centered at ti is set
so that no viewing ray can possibly hit the height field more than once while traveling
inside Ci. Figure 18-7b illustrates this situation for a set of viewing rays and a given cone
shown in green. Note that cone maps can also be used to accelerate the intersection of
shadow rays with the height field. Figure 18-6 illustrates the rendering of self-shadowing,
comparing the results obtained with three different approaches for rendering per-
 fragment displacement mapping: (a) relief mapping using linear search, (b) cone step
mapping, and (c) relief mapping using relaxed cone stepping. Note the shadow artifacts
resulting from the linear search (a) and from the early stop of CSM (b).

Relaxed cones allow rays to enter a relief surface but never leave it. We create relaxed
cone maps offline using an O(n2) algorithm described by the pseudocode shown in
Listing 18-1. The idea is, for each source texel ti, trace a ray through each destination
texel tj, such that this ray starts at (ti.texCoord.s, ti.texCoord.t, 0.0) and
points to (tj.texCoord.s, tj.texCoord.t, tj.depth). For each such ray, com-
pute its next (second) intersection with the height field and use this intersection point
to compute the cone ratio cone_ratio(i,j). Figure 18-7c illustrates the situation
for a given pair of (ti, tj) of source and destination texels. Ci’s final ratio is given by
the smallest of all cone ratios computed for ti, which is shown in Figure 18-7b. The
relaxed cone map is obtained after all texels have been processed as source texels.

18.4 Relaxed Cone Stepping 417

Figure 18-6. Rendering Self-Shadowing Using Different Approaches
(a) Relief mapping with linear search. Note the aliasing on the pyramid shadow. (b) Cone step
mapping using cone maps to check the intersection of shadow rays. Note the incorrect shadow
cast by the truncated cone on the bottom left. (c) Relief mapping with relaxed cone stepping.
Images a, b, and c were generated using the same number of steps shown in Figure 18-1. The
intersection with shadow rays used 15 steps/iterations for all images.

(a) (c)(b)

318_gems3_ch18 7/5/2007 8:34 PM Page 417

418

Listing 18-1. Pseudocode for Computing Relaxed Cone Maps

for each reference texel ti do
radius_cone_C(i) = 1;
source.xyz = (ti.texCoord.s, ti.texCoord.t, 0.0);
for each destination texel tj do
destination.xyz = (tj.texCoord.s, tj.texCoord.t, tj.depth);
ray.origin = destination;

Chapter 18 Relaxed Cone Stepping for Relief Mapping

Relaxed
Cone

Conservative
Cone

Viewing Rays

dst texel tj

w

hD
ep

th
 R

an
g

e

Second
Intersection src texel t i

0.0

1.0

Figure 18-7. Computing Relaxed Cone Maps
(a) Conservative (blue) and relaxed (green) cones for a given texel in the depth map. Notice how
the relaxed cone is much wider. (b) No viewing ray can pierce a relief surface more than once while
traveling inside a relaxed cone. (c) An intermediate step during computation of the cone ratio for
the relaxed cone shown in b.

(a)

(b)

(c)

318_gems3_ch18 7/5/2007 8:34 PM Page 418

Listing 18-1 (continued). Pseudocode for Computing Relaxed Cone Maps

ray.direction = destination – source;
(k,w) = text_cords_next_intersection(tj, ray, depth_map);
d = depth_stored_at(k,w);
if ((d – ti.depth) > 0.0) // dst has to be above the src
cone_ratio(i,j) = length(source.xy – destination.xy) /

(d – tj.depth);
if (radius_cone_C(i) > cone_ratio(i,j))
radius_cone_C(i) = cone_ratio(i,j);

Note that in the pseudocode shown in Listing 18-1, as well as in the actual code shown in
Listing 18-2, we have clamped the maximum cone ratio values to 1.0. This is done to store
the cone maps using integer textures. Although the use of floating-point textures would
allow us to represent larger cone ratios with possible gains in space leaping, in practice we
have observed that usually only a small subset of the texels in a cone map would be able to
take advantage of that. This is illustrated in the relaxed cone map shown in Figure 18-8c.
Only the saturated (white) texels would be candidates for having cone ratios bigger than 1.0.

Listing 18-2 presents a shader for generating relaxed cone maps. Figure 18-8 compares
three different kinds of cone maps for the depth map associated with the relief texture
shown in Figure 18-2. In Figure 18-8a, one sees a conventional cone map (Dummer
2006) stored using a single texture channel. In Figure 18-8b, we have a quad-directional
cone map, which stores cone ratios for the four major directions into separate texture
channels. Notice how different areas in the texture are assigned wider cones for different
directions. Red texels indicate cones that are wider to the right, while green ones are
wider to the left. Blue texels identify cones that are wider to the bottom, and black ones
are wider to the top. Figure 18-8c shows the corresponding relaxed cone map, also stored
using a single texture channel. Note that its texels are much brighter than the correspon-
ding ones in the conventional cone map in Figure 18-8a, revealing its wider cones.

Listing 18-2. A Preprocess Shader for Generating Relaxed Cone Maps

float4 depth2relaxedcone(
in float2 TexCoord : TEXCOORD0,
in Sampler2D ReliefSampler,
in float3 Offset) : COLOR

{
const int search_steps = 128;
float3 src = float3(TexCoord,0); // Source texel
float3 dst = src + Offset; // Destination texel
dst.z = tex2D(ReliefSampler,dst.xy).w; // Set dest. depth

18.4 Relaxed Cone Stepping 419

318_gems3_ch18 7/5/2007 8:35 PM Page 419

420

Listing 18-2 (continued). A Preprocess Shader for Generating Relaxed Cone Maps

float3 vec = dst – src; // Ray direction
vec /= vec.z; // Scale ray direction so that vec.z = 1.0
vec *= 1.0 - dst.z; // Scale again
float3 step_fwd = vec/search_steps; // Length of a forward step

// Search until a new point outside the surface
float3 ray_pos = dst + step_fwd;
for(int i=1; i<search_steps; i++)
{
float current_depth = tex2D(ReliefSampler, ray_pos.xy).w;
if (current_depth <= ray_pos.z)
ray_pos += step_fwd;

}

// Original texel depth
float src_texel_depth = tex2D(ReliefSampler,TexCoord).w;
// Compute the cone ratio
float cone_ratio = (ray_pos.z >= src_texel_depth) ? 1.0 :

length(ray_pos.xy - TexCoord) /
(src_texel_depth – ray_pos.z);

Chapter 18 Relaxed Cone Stepping for Relief Mapping

Figure 18-8. A Comparison of Different Kinds of Cone Maps Computed for the Depth Map Shown in
Figure 18-2
(a) A conventional cone map (Dummer 2006) (one channel). (b) A quad-directional cone map. The
cone ratio values for each of the major four directions are stored in the different channels of the
texture. (c) The corresponding relaxed cone map (one channel).

(a) (c)(b)

318_gems3_ch18 7/5/2007 8:35 PM Page 420

Listing 18-2 (continued). A Preprocess Shader for Generating Relaxed Cone Maps

// Check for minimum value with previous pass result
float best_ratio = tex2D(ResultSampler, TexCoord).x;
if (cone_ratio > best_ratio)
cone_ratio = best_ratio;

return float4(cone_ratio, cone_ratio, cone_ratio, cone_ratio);
}

18.4.2 Rendering with Relaxed Cone Maps
To shade a fragment, we step along the viewing ray as it travels through the depth tex-
ture, using the relaxed cone map for space leaping. We proceed along the ray until we
reach a point inside the relief surface. The process is similar to what we described in
Section 18.3 for conventional cone maps. Figure 18-9 illustrates how to find the inter-
section between a transformed viewing ray and a cone. First, we scale the vector repre-
senting the ray direction by dividing it by its z component (ray.direction.z), after which,
according to Figure 18-9, one can write

Likewise:

Solving Equations 1 and 2 for d gives the following:

From Equation 3, we compute the intersection point I as this:

I d= + ×ray_current_position scaled_ray.direction.xyz. (4)

d =
−()×current_texel.depth ray_current_depth cone_ratio

ray_rattio cone_ratio+
. (3)

m g

m d

= ×

= −() −(

cone_ratio

current_texel.depth ray_current_depth))×()cone_ratio
(2)

scaled_ray.direction.xyz
ray.direction.xyz

ray.direction.z
=

m == × () = ×d length dscaled_ray.direction.xy ray_ratio

(1)

18.4 Relaxed Cone Stepping 421

318_gems3_ch18 7/5/2007 8:35 PM Page 421

422

The code in Listing 18-3 shows the ray-intersection function for relaxed cone stepping.
For performance reasons, the first loop iterates through the relaxed cones for a fixed
number of steps. Note the use of the saturate() function when calculating the dis-
tance to move. This guarantees that we stop on the first visited texel for which the
viewing ray is under the relief surface. At the end of this process, we assume the ray has
pierced the surface once and then start the binary search for refining the coordinates of
the intersection point. Given such coordinates, we then shade the fragment as described
in Section 18.2.

Chapter 18 Relaxed Cone Stepping for Relief Mapping

Figure 18-9. Intersecting the Viewing Ray with a Cone
m is the distance, measured in 2D, between the current texel coordinates and the texel coordinates
of the intersection point. The difference between the depth at the current ray position and the
depth of the current texel is d + g.

318_gems3_ch18 7/5/2007 8:35 PM Page 422

Listing 18-3. Ray Intersect with Relaxed Cone

// Ray intersect depth map using relaxed cone stepping.
// Depth value stored in alpha channel (black at object surface)
// and relaxed cone ratio stored in blue channel.
void ray_intersect_relaxedcone(
sampler2D relief_map, // Relaxed cone map
inout float3 ray_pos, // Ray position
inout float3 ray_dir) // Ray direction

{
const int cone_steps = 15;
const int binary_steps = 6;

ray_dir /= ray_dir.z; // Scale ray_dir

float ray_ratio = length(ray_dir.xy);

float3 pos = ray_pos;
for(int i=0; i<cone_steps; i++)
{
float4 tex = tex2D(relief_map, pos.xy);
float cone_ratio = tex.z;
float height = saturate(tex.w – pos.z);
float d = cone_ratio*height/(ray_ratio + cone_ratio);
pos += ray_dir * d;

}
// Binary search initial range and initial position
float3 bs_range = 0.5 * ray_dir * pos.z;
float3 bs_position = ray_pos + bs_range;

for(int i=0; i<binary_steps; i++)
{
float4 tex = tex2D(relief_map, bs_position.xy);
bs_range *= 0.5;
if (bs_position.z < tex.w) // If outside
bs_position += bs_range; // Move forward

else
bs_position -= bs_range; // Move backward

}
}

18.4 Relaxed Cone Stepping 423

318_gems3_ch18 7/5/2007 8:35 PM Page 423

424

Let f be the fragment to be shaded and let K be the point where the viewing ray has
stopped (that is, just before performing the binary search), as illustrated in Figure 18-10.
If too few steps were used, the ray may have stopped before reaching the surface. Thus, to
avoid skipping even thin height-field structures (see the example shown in Figure 18-4a),
we use K as the end point for the binary search. In this case, if the ray has not pierced the
surface, the search will converge to point K.

Let (m, n) be the texture coordinates associated to K and let dK be the depth value
stored at (m, n) (see Figure 18-10). The binary search will then look for an intersection
along the line segment ranging from points H to K, which corresponds to texture coor-
dinates ((s + m)/2, (t + n)/2) to (m, n), where (s, t) are the texture coordinates of frag-
ment f (Figure 18-10). Along this segment, the depth of the viewing ray varies linearly
from (dK/2) to dK. Note that, instead, one could use (m, n) and (q, r) (the texture coor-
dinates of point J, the previously visited point along the ray) as the limits for starting
the binary search refinement. However, because we are using a fixed number of itera-
tions for stepping over the relaxed cone map, saving (q, r) would require a conditional
statement in the code. According to our experience, this tends to increase the number
of registers used in the fragment shader. The graphics hardware has a fixed number of
registers and it runs as many threads as it can fit in its register pool. The fewer registers
we use, the more threads we will have running at the same time. The latency imposed
by the large number of dependent texture reads in relief mapping is hidden when mul-
tiple threads are running simultaneously. More-complex code in the loops will increase

Chapter 18 Relaxed Cone Stepping for Relief Mapping

(m,n) (s,f)

2 2

Viewing Ray

(q,r) s+m t+n

K
J

H

D
ep

th
 R

an
g

e

0.0

1.0

((,

f

Figure 18-10. The Viewing Ray Through Fragment f, with Texture Coordinates (s, t)
H is the point halfway between f and K, the point where the ray stopped. J is the last visited point
along the viewing ray before reaching K.

318_gems3_ch18 7/5/2007 8:35 PM Page 424

the number of registers used and thus reduce the number of parallel threads, exposing
the latency from the dependent texture reads and reducing the frame rate considerably.
So, to keep the shader code shorter, we start the binary search using H and K as limits.
Note that after only two iterations of the binary search, one can expect to have reached
a search range no bigger than the one defined by the points J and K.

It should be clear that the use of relaxed cone maps could still potentially lead to some
distortion artifacts similar to the ones produced by regular (conservative) cone maps
(Figure 18-1b). In practice, they tend to be significantly less pronounced for the same
number of steps, due to the use of wider cones. According to our experience, the use of
15 relaxed cone steps seems to be sufficient to avoid such artifacts in typical height
fields.

18.5 Conclusion
The combined use of relaxed cone stepping and binary search for computing ray-
height-field intersection significantly reduces the occurrence of artifacts in images gen-
erated with per-fragment displacement mapping. The wider cones lead to more-efficient
space leaping, whereas the binary search accounts for more accuracy. If too few cone
stepping iterations are used, the final image might present artifacts similar to the ones
found in cone step mapping (Dummer 2006). In practice, however, our technique
tends to produce significantly better results for the same number of iterations or texture
accesses. This is an advantage, especially for the new generations of GPUs, because
although both texture sampling and computation performance have been consistently
improved, computation performance is scaling faster than bandwidth.

Relaxed cone stepping integrates itself with relief mapping in a very natural way, pre-
serving all of its original features. Figure 18-11 illustrates the use of RCS in renderings
involving depth scaling (Figures 18-11b and 18-11d) and changes in tiling factors
 (Figures 18-11c and 18-11d). Note that these effects are obtained by appropriately
adjusting the directions of the viewing rays (Policarpo et al. 2005) and, therefore, not
affecting the cone ratios.

Mipmapping can be safely applied to color and normal maps. Unfortunately, conven-
tional mipmapping should not be applied to cone maps, because the filtered values
would lead to incorrect intersections. Instead, one should compute the mipmaps manu-
ally, by conservatively taking the minimum value for each group of pixels. Alternatively,
one can sample the cone maps using a nearest-neighbors strategy. In this case, when an

18.5 Conclusion 425

318_gems3_ch18 7/5/2007 8:35 PM Page 425

426

object is seen from a distance, the properly sampled color texture tends to hide the
aliasing artifacts resulting from the sampling of a high-resolution cone map. Thus, in
practice, the only drawback of not applying mipmapping to the cone map is the per-
formance penalty for not taking advantage of sampling smaller textures.

18.5.1 Further Reading
Relief texture mapping was introduced in Oliveira et al. 2000 using a two-pass
approach consisting of a prewarp followed by conventional texture mapping. The pre-
warp, based on the depth map, was implemented on the CPU and the resulting texture
sent to the graphics hardware for the final mapping. With the introduction of fragment

Chapter 18 Relaxed Cone Stepping for Relief Mapping

Figure 18-11. Images Showing Changes in Apparent Depth and Tiling Factors
The same relaxed cone map is used for all variations.

(a) (b)

(c) (d)

318_gems3_ch18 7/5/2007 8:35 PM Page 426

processors, Policarpo et al. (2005) generalized the technique for arbitrary polygonal
models and showed how to efficiently implement it on a GPU. This was achieved by
performing the ray-height-field intersection in 2D texture space. Oliveira and Policarpo
(2005) also described how to render curved silhouettes by fitting a quadric surface at
each vertex of the model. Later, they showed how to render relief details in preexisting
applications using a minimally invasive approach (Policarpo and Oliveira 2006a). They
have also generalized the technique to map non-height-field structures onto polygonal
models and introduced a new class of impostors (Policarpo and Oliveira 2006b). More
recently, Oliveira and Brauwers (2007) have shown how to use a 2D texture approach
to intersect rays against depth maps generated under perspective projection and how to
use these results to render real-time refractions of distant environments through de-
forming objects.

18.6 References
Baboud, Lionel, and Xavier Décoret. 2006. “Rendering Geometry with Relief

Textures.” In Proceedings of Graphics Interface 2006.

Donnelly, William. 2005. “Per-Pixel Displacement Mapping with Distance Functions.”
In GPU Gems 2, edited by Matt Pharr, pp. 123–136. Addison-Wesley.

Dummer, Jonathan. 2006. “Cone Step Mapping: An Iterative Ray-Heightfield Intersec-
tion Algorithm.” Available online at http://www.lonesock.net/files/
ConeStepMapping.pdf.

Oliveira, Manuel M., Gary Bishop, and David McAllister. 2000. “Relief Texture Map-
ping.” In Proceedings of SIGGRAPH 2000, pp. 359–368.

Oliveira, Manuel M., and Fabio Policarpo. 2005. “An Efficient Representation for Sur-
face Details.” UFRGS Technical Report RP-351. Available online at
http://www.inf.ufrgs.br/~oliveira/pubs_files/Oliveira_Policarpo_RP-351_Jan_2005.pdf.

Oliveira, Manuel M., and Maicon Brauwers. 2007. “Real-Time Refraction Through
Deformable Objects.” In Proceedings of the 2007 Symposium on Interactive 3D Graph-
ics and Games, pp. 89–96.

Policarpo, Fabio, Manuel M. Oliveira, and João Comba. 2005. “Real-Time Relief Map-
ping on Arbitrary Polygonal Surfaces.” In Proceedings of the 2005 Symposium on In-
teractive 3D Graphics and Games, pp. 155–162.

18.6 References 427

318_gems3_ch18 7/5/2007 8:35 PM Page 427

428

Policarpo, Fabio, and Manuel M. Oliveira. 2006a. “Rendering Surface Details in
Games with Relief Mapping Using a Minimally Invasive Approach.” In SHADER
X4: Advance Rendering Techniques, edited by Wolfgang Engel, pp. 109–119. Charles
River Media, Inc.

Policarpo, Fabio, and Manuel M. Oliveira. 2006b. “Relief Mapping of Non-Height-
Field Surface Details.” In Proceedings of the 2006 Symposium on Interactive 3D
Graphics and Games, pp. 55–62.

Risser, Eric, Musawir Shah, and Sumanta Pattanaik. 2005. “Interval Mapping.” Univer-
sity of Central Florida Technical Report. Available online at
http://graphics.cs.ucf.edu/IntervalMapping/images/IntervalMapping.pdf.

Williams, Lance. 1978. “Casting Curved Shadows on Curved Surfaces.” In Computer
Graphics (Proceedings of SIGGRAPH 1978) 12(3), pp. 270–274.

Chapter 18 Relaxed Cone Stepping for Relief Mapping

318_gems3_ch18 7/5/2007 8:35 PM Page 428

Chapter 30

30.1 Introduction 633

30.1 Introduction
Physically based animation of fluids such as smoke, water, and fire provides some of the
most stunning visuals in computer graphics, but it has historically been the domain of
high-quality offline rendering due to great computational cost. In this chapter we show
not only how these effects can be simulated and rendered in real time, as Figure 30-1
demonstrates, but also how they can be seamlessly integrated into real-time applica-
tions. Physically based effects have already changed the way interactive environments
are designed. But fluids open the doors to an even larger world of design possibilities.

In the past, artists have relied on particle systems to emulate 3D fluid effects in real-time
applications. Although particle systems can produce attractive results, they cannot match
the realistic appearance and behavior of fluid simulation. Real time fluids remain a chal-
lenge not only because they are more expensive to simulate, but also because the volumet-
ric data produced by simulation does not fit easily into the standard rasterization-based
rendering paradigm.

Real-Time Simulation and
Rendering of 3D Fluids
Keenan Crane
University of Illinois at Urbana-Champaign

Ignacio Llamas
NVIDIA Corporation

Sarah Tariq
NVIDIA Corporation

530_gems3_ch30 7/5/2007 9:05 PM Page 633

634

In this chapter we give a detailed description of the technology used for the real-time
fluid effects in the NVIDIA GeForce 8 Series launch demo “Smoke in a Box” and dis-
cuss its integration into the upcoming game Hellgate: London.

The chapter consists of two parts:

● Section 30.2 covers simulation, including smoke, water, fire, and interaction with
solid obstacles, as well as performance and memory considerations.

● Section 30.3 discusses how to render fluid phenomena and how to seamlessly inte-
grate fluid rendering into an existing rasterization-based framework.

30.2 Simulation

30.2.1 Background
Throughout this section we assume a working knowledge of general-purpose GPU
(GPGPU) methods—that is, applications of the GPU to problems other than conven-
tional raster graphics. In particular, we encourage the reader to look at Harris’s chapter
on 2D fluid simulation in GPU Gems (Harris 2004). As mentioned in that chapter,
implementing and debugging a 3D fluid solver is no simple task (even in a traditional
programming environment), and a solid understanding of the underlying mathematics

Chapter 30 Real-Time Simulation and Rendering of 3D Fluids

Figure 30-1. Water Simulated and Rendered in Real Time on the GPU

530_gems3_ch30 7/5/2007 9:05 PM Page 634

and physics can be of great help. Bridson et al. 2006 provides an excellent resource in
this respect.

Fortunately, a deep understanding of partial differential equations (PDEs) is not re-
quired to get some basic intuition about the concepts presented in this chapter. All
PDEs presented will have the form

which says that the rate at which some quantity x is changing is given by some function
f, which may itself depend on x and t. The reader may find it easier to think about this
relationship in the discrete setting of forward Euler integration:

In other words, the value of x at the next time step equals the current value of x plus
the current rate of change f (xn, t n) times the duration of the time step Δt. (Note that
superscripts are used to index the time step and do not imply exponentiation.) Be
warned, however, that the forward Euler scheme is not a good choice numerically—we
are suggesting it only as a way to think about the equations.

30.2.2 Equations of Fluid Motion
The motion of a fluid is often expressed in terms of its local velocity u as a function of
position and time. In computer animation, fluid is commonly modeled as inviscid (that
is, more like water than oil) and incompressible (meaning that volume does not change
over time). Given these assumptions, the velocity can be described by the momentum
equation:

subject to the incompressibility constraint:

where p is the pressure, ρ is the mass density, f represents any external forces (such as
gravity), and ∇ is the differential operator:

∂
∂

∂
∂

∂
∂

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥x y z

T

.

x x f x t tn n n n+ = + ()1 , .Δ

∂
∂

= ()
t

x f x t, ,

∇ ⋅ =u 0,

∂
∂

= − ⋅ ∇() − ∇ +
u

u u f
t

p
1

ρ
,

30.2 Simulation 635

530_gems3_ch30 7/5/2007 9:05 PM Page 635

636

To define the equations of motion in a particular context, it is also necessary to specify
boundary conditions (that is, how the fluid behaves near solid obstacles or other fluids).

The basic task of a fluid solver is to compute a numerical approximation of u. This
velocity field can then be used to animate visual phenomena such as smoke particles or
a liquid surface.

30.2.3 Solving for Velocity
The popular “stable fluids” method for computing velocity was introduced in Stam 1999,
and a GPU implementation of this method for 2D fluids was presented in Harris 2004.
In this section we briefly describe how to solve for velocity but refer the reader to the cited
works for details.

In order to numerically solve the momentum equation, we must discretize our domain
(that is, the region of space through which the fluid flows) into computational
elements. We choose an Eulerian discretization, meaning that computational elements
are fixed in space throughout the simulation—only the values stored on these elements
change. In particular, we subdivide a rectilinear volume into a regular grid of cubical
cells. Each grid cell stores both scalar quantities (such as pressure, temperature, and so
on) and vector quantities (such as velocity). This scheme makes implementation on the
GPU simple, because there is a straightforward mapping between grid cells and voxels
in a 3D texture. Lagrangian schemes (that is, schemes where the computational ele-
ments are not fixed in space) such as smoothed-particle hydrodynamics (Müller et al.
2003) are also popular for fluid animation, but their irregular structure makes them
difficult to implement efficiently on the GPU.

Because we discretize space, we must also discretize derivatives in our equations: finite
differences numerically approximate derivatives by taking linear combinations of values
defined on the grid. As in Harris 2004, we store all quantities at cell centers for peda-
gogical simplicity, though a staggered MAC-style grid yields more-robust finite differ-
ences and can make it easier to define boundary conditions. (See Harlow and Welch
1965 for details.)

In a GPU implementation, cell attributes (velocity, pressure, and so on) are stored in
several 3D textures. At each simulation step, we update these values by running compu-
tational kernels over the grid. A kernel is implemented as a pixel shader that executes on
every cell in the grid and writes the results to an output texture. However, because

Chapter 30 Real-Time Simulation and Rendering of 3D Fluids

530_gems3_ch30 7/5/2007 9:05 PM Page 636

GPUs are designed to render into 2D buffers, we must run kernels once for each slice
of a 3D volume.

To execute a kernel on a particular grid slice, we rasterize a single quad whose dimen-
sions equal the width and height of the volume. In Direct3D 10 we can directly render
into a 3D texture by specifying one of its slices as a render target. Placing the slice index
in a variable bound to the SV_RenderTargetArrayIndex semantic specifies the
slice to which a primitive coming out of the geometry shader is rasterized. (See Blythe
2006 for details.) By iterating over slice indices, we can execute a kernel over the entire
grid.

Rather than solve the momentum equation all at once, we split it into a set of simpler
operations that can be computed in succession: advection, application of external
forces, and pressure projection. Implementation of the corresponding kernels is detailed
in Harris 2004, but several examples from our Direct3D 10 framework are given in
Listing 30-1. Of particular interest is the routine PS_ADVECT_VEL: this kernel imple-
ments semi-Lagrangian advection, which is used as a building block for more accurate
advection in the next section.

Listing 30-1. Simulation Kernels

struct GS_OUTPUT_FLUIDSIM
{
// Index of the current grid cell (i,j,k in [0,gridSize] range)
float3 cellIndex : TEXCOORD0;

// Texture coordinates (x,y,z in [0,1] range) for the
// current grid cell and its immediate neighbors
float3 CENTERCELL : TEXCOORD1;
float3 LEFTCELL : TEXCOORD2;
float3 RIGHTCELL : TEXCOORD3;
float3 BOTTOMCELL : TEXCOORD4;
float3 TOPCELL : TEXCOORD5;
float3 DOWNCELL : TEXCOORD6;
float3 UPCELL : TEXCOORD7;
float4 pos : SV_Position; // 2D slice vertex in

// homogeneous clip space
uint RTIndex : SV_RenderTargetArrayIndex; // Specifies

// destination slice
};

30.2 Simulation 637

530_gems3_ch30 7/5/2007 9:05 PM Page 637

638

Listing 30-1 (continued). Simulation Kernels

float3 cellIndex2TexCoord(float3 index)
{
// Convert a value in the range [0,gridSize] to one in the range [0,1].
return float3(index.x / textureWidth,

index.y / textureHeight,
(index.z+0.5) / textureDepth);

}

float4 PS_ADVECT_VEL(GS_OUTPUT_FLUIDSIM in,
Texture3D velocity) : SV_Target

{
float3 pos = in.cellIndex;
float3 cellVelocity = velocity.Sample(samPointClamp,

in.CENTERCELL).xyz;

pos -= timeStep * cellVelocity;
pos = cellIndex2TexCoord(pos);

return velocity.Sample(samLinear, pos);
}

float PS_DIVERGENCE(GS_OUTPUT_FLUIDSIM in,
Texture3D velocity) : SV_Target

{
// Get velocity values from neighboring cells.
float4 fieldL = velocity.Sample(samPointClamp, in.LEFTCELL);
float4 fieldR = velocity.Sample(samPointClamp, in.RIGHTCELL);
float4 fieldB = velocity.Sample(samPointClamp, in.BOTTOMCELL);
float4 fieldT = velocity.Sample(samPointClamp, in.TOPCELL);
float4 fieldD = velocity.Sample(samPointClamp, in.DOWNCELL);
float4 fieldU = velocity.Sample(samPointClamp, in.UPCELL);

// Compute the velocity’s divergence using central differences.
float divergence = 0.5 * ((fieldR.x - fieldL.x)+

(fieldT.y - fieldB.y)+
(fieldU.z - fieldD.z));

return divergence;
}

Chapter 30 Real-Time Simulation and Rendering of 3D Fluids

530_gems3_ch30 7/5/2007 9:05 PM Page 638

Listing 30-1 (continued). Simulation Kernels

float PS_JACOBI(GS_OUTPUT_FLUIDSIM in,
Texture3D pressure,
Texture3D divergence) : SV_Target

{
// Get the divergence at the current cell.
float dC = divergence.Sample(samPointClamp, in.CENTERCELL);

// Get pressure values from neighboring cells.
float pL = pressure.Sample(samPointClamp, in.LEFTCELL);
float pR = pressure.Sample(samPointClamp, in.RIGHTCELL);
float pB = pressure.Sample(samPointClamp, in.BOTTOMCELL);
float pT = pressure.Sample(samPointClamp, in.TOPCELL);
float pD = pressure.Sample(samPointClamp, in.DOWNCELL);
float pU = pressure.Sample(samPointClamp, in.UPCELL);

// Compute the new pressure value for the center cell.
return(pL + pR + pB + pT + pU + pD - dC) / 6.0;

}

float4 PS_PROJECT(GS_OUTPUT_FLUIDSIM in,
Texture3D pressure,
Texture3D velocity): SV_Target

{
// Compute the gradient of pressure at the current cell by
// taking central differences of neighboring pressure values.
float pL = pressure.Sample(samPointClamp, in.LEFTCELL);
float pR = pressure.Sample(samPointClamp, in.RIGHTCELL);
float pB = pressure.Sample(samPointClamp, in.BOTTOMCELL);
float pT = pressure.Sample(samPointClamp, in.TOPCELL);
float pD = pressure.Sample(samPointClamp, in.DOWNCELL);
float pU = pressure.Sample(samPointClamp, in.UPCELL);
float3 gradP = 0.5*float3(pR - pL, pT - pB, pU - pD);

// Project the velocity onto its divergence-free component by
// subtracting the gradient of pressure.
float3 vOld = velocity.Sample(samPointClamp, in.texcoords);
float3 vNew = vOld - gradP;

return float4(vNew, 0);
}

30.2 Simulation 639

530_gems3_ch30 7/5/2007 9:05 PM Page 639

640

Improving Detail
The semi-Lagrangian advection scheme used by Stam is useful for animation because it
is unconditionally stable, meaning that large time steps will not cause the simulation to
“blow up.” However, it can introduce unwanted numerical smoothing, making water
look viscous or causing smoke to lose detail. To achieve higher-order accuracy, we use a
MacCormack scheme that performs two intermediate semi-Lagrangian advection steps.
Given a quantity φ and an advection scheme A (for example, the one implemented by
PS_ADVECT_VEL), higher-order accuracy is obtained using the following sequence of
operations (from Selle et al. 2007):

Here, φn is the quantity to be advected, and are intermediate quantities, and
φn+1 is the final advected quantity. The superscript on AR indicates that advection is
reversed (that is, time is run backward) for that step.

Unlike the standard semi-Lagrangian scheme, this MacCormack scheme is not uncon-
ditionally stable. Therefore, a limiter is applied to the resulting value φn+1, ensuring that
it falls within the range of values contributing to the initial semi-Lagrangian advection.
In our GPU solver, this means we must locate the eight nodes closest to the sample
point, access the corresponding texels exactly at their centers (to avoid getting interpo-
lated values), and clamp the final value to fall within the minimum and maximum
values found on these nodes, as shown in Figure 30-2.

Once the intermediate semi-Lagrangian steps have been computed, the pixel shader in
Listing 30-2 completes advection using the MacCormack scheme.

Listing 30-2. MacCormack Advection Scheme

float4 PS_ADVECT_MACCORMACK(GS_OUTPUT_FLUIDSIM in,
float timestep) : SV_Target

{
// Trace back along the initial characteristic – we’ll use
// values near this semi-Lagrangian “particle” to clamp our
// final advected value.
float3 cellVelocity = velocity.Sample(samPointClamp,

in.CENTERCELL).xyz;

φ̂nφ̂n+1

ˆ

ˆ ˆ

ˆ ˆ .

φ φ

φ φ

φ φ φ φ

n n

n R n

n n n n

A

A

+

+

+ +

= ()

= ()

= + −()

1

1

1 1 1

2

Chapter 30 Real-Time Simulation and Rendering of 3D Fluids

530_gems3_ch30 7/5/2007 9:05 PM Page 640

Listing 30-2 (continued). MacCormack Advection Scheme

float3 npos = in.cellIndex – timestep * cellVelocity;

// Find the cell corner closest to the “particle” and compute the
// texture coordinate corresponding to that location.
npos = floor(npos + float3(0.5f, 0.5f, 0.5f));
npos = cellIndex2TexCoord(npos);

// Get the values of nodes that contribute to the interpolated value.

// Texel centers will be a half-texel away from the cell corner.
float3 ht = float3(0.5f / textureWidth,

0.5f / textureHeight,
0.5f / textureDepth);

float4 nodeValues[8];
nodeValues[0] = phi_n.Sample(samPointClamp, npos +

float3(-ht.x, -ht.y, -ht.z));
nodeValues[1] = phi_n.Sample(samPointClamp, npos +

float3(-ht.x, -ht.y, ht.z));
nodeValues[2] = phi_n.Sample(samPointClamp, npos +

float3(-ht.x, ht.y, -ht.z));
nodeValues[3] = phi_n.Sample(samPointClamp, npos +

float3(-ht.x, ht.y, ht.z));

30.2 Simulation 641

Figure 30-2. Limiter Applied to a MacCormack Advection Scheme in 2D
The result of the advection (blue) is clamped to the range of values from nodes (green) used to get
the interpolated value at the advected “particle” (red) in the initial semi-Lagrangian step.

530_gems3_ch30 7/5/2007 9:05 PM Page 641

642

Listing 30-2 (continued). MacCormack Advection Scheme

nodeValues[4] = phi_n.Sample(samPointClamp, npos +
float3(ht.x, -ht.y, -ht.z));

nodeValues[5] = phi_n.Sample(samPointClamp, npos +
float3(ht.x, -ht.y, ht.z));

nodeValues[6] = phi_n.Sample(samPointClamp, npos +
float3(ht.x, ht.y, -ht.z));

nodeValues[7] = phi_n.Sample(samPointClamp, npos +
float3(ht.x, ht.y, ht.z));

// Determine a valid range for the result.
float4 phiMin = min(min(min(min(min(min(min(

nodeValues[0], nodeValues [1]), nodeValues [2]), nodeValues [3]),
nodeValues[4]), nodeValues [5]), nodeValues [6]), nodeValues [7]);

float4 phiMax = max(max(max(max(max(max(max(
nodeValues[0], nodeValues [1]), nodeValues [2]), nodeValues [3]),
nodeValues[4]), nodeValues [5]), nodeValues [6]), nodeValues [7]);

// Perform final advection, combining values from intermediate
// advection steps.
float4 r = phi_n_1_hat.Sample(samLinear, nposTC) +

0.5 * (phi_n.Sample(samPointClamp, in.CENTERCELL) -
phi_n_hat.Sample(samPointClamp, in.CENTERCELL));

// Clamp result to the desired range.
r = max(min(r, phiMax), phiMin);

return r;
}

On the GPU, higher-order schemes are often a better way to get improved visual detail
than simply increasing the grid resolution, because math is cheap compared to band-
width. Figure 30-3 compares a higher-order scheme on a low-resolution grid with a
lower-order scheme on a high-resolution grid.

30.2.4 Solid-Fluid Interaction
One of the benefits of using real-time simulation (versus precomputed animation) is
that fluid can interact with the environment. Figure 30-4 shows an example on one
such scene. In this section we discuss two simple ways to allow the environment to act
on the fluid.

Chapter 30 Real-Time Simulation and Rendering of 3D Fluids

530_gems3_ch30 7/5/2007 9:05 PM Page 642

A basic way to influence the velocity field is through the application of external forces.
To get the gross effect of an obstacle pushing fluid around, we can approximate the
obstacle with a basic shape such as a box or a ball and add the obstacle’s average velocity
to that region of the velocity field. Simple shapes like these can be described with an
implicit equation of the form f (x, y, z) ≤ 0 that can be easily evaluated by a pixel shader
at each grid cell.

Although we could explicitly add velocity to approximate simple motion, there are
situations in which more detail is required. In Hellgate: London, for example, we
wanted smoke to seep out through cracks in the ground. Adding a simple upward ve-
locity and smoke density in the shape of a crack resulted in uninteresting motion. In-
stead, we used the crack shape, shown inset in Figure 30-5, to define solid obstacles for
smoke to collide and interact with. Similarly, we wanted to achieve more-precise inter-
actions between smoke and an animated gargoyle, as shown in Figure 30-4. To do so,
we needed to be able to affect the fluid motion with dynamic obstacles (see the details
later in this section), which required a volumetric representation of the obstacle’s inte-
rior and of the velocity at its boundary (which we also explain later in this section).

30.2 Simulation 643

Figure 30-3. Bigger Is Not Always Better!
Left: MacCormack advection scheme (applied to both velocity and smoke density) on a 128×64×64
grid. Right: Semi-Lagrangian advection scheme on a 256×128×128 grid.

Figure 30-4. An Animated Gargoyle Pushes Smoke Around by Flapping Its Wings

530_gems3_ch30 7/5/2007 9:05 PM Page 643

644

Dynamic Obstacles
So far we have assumed that a fluid occupies the entire rectilinear region defined by the
simulation grid. However, in most applications, the fluid domain (that is, the region of
the grid actually occupied by fluid) is much more interesting. Various methods for
handling static boundaries on the GPU are discussed in Harris et al. 2003,
Liu et al. 2004, Wu et al. 2004, and Li et al. 2005.

The fluid domain may change over time to adapt to dynamic obstacles in the environ-
ment, and in the case of liquids, such as water, the domain is constantly changing as the
liquid sloshes around (more in Section 30.2.7). In this section we describe the scheme
used for handling dynamic obstacles in Hellgate: London. For further discussion of dy-
namic obstacles, see Bridson et al. 2006 and Foster and Fedkiw 2001.

To deal with complex domains, we must consider the fluid’s behavior at the domain
boundary. In our discretized fluid, the domain boundary consists of the faces between
cells that contain fluid and cells that do not—that is, the face between a fluid cell and a
solid cell is part of the boundary, but the solid cell itself is not. A simple example of a
domain boundary is a static barrier placed around the perimeter of the simulation grid
to prevent fluid from “escaping” (without it, the fluid appears as though it is simply
flowing out into space).

Chapter 30 Real-Time Simulation and Rendering of 3D Fluids

Figure 30-5. Smoke Rises from a Crack in the Ground in the Game Hellgate: London
Inset: A slice from the obstacle texture that was used to block the smoke; white texels indicate an
obstacle, and black texels indicate open space.

530_gems3_ch30 7/5/2007 9:05 PM Page 644

To support domain boundaries that change due to the presence of dynamic obstacles,
we need to modify some of our simulation steps. In our implementation, obstacles are
represented using an inside-outside voxelization. In addition, we keep a voxelized repre-
sentation of the obstacle’s velocity in solid cells adjacent to the domain boundary. This
information is stored in a pair of 3D textures that are updated whenever an obstacle
moves or deforms (we cover this later in this section).

At solid-fluid boundaries, we want to impose a free-slip boundary condition, which says
that the velocities of the fluid and the solid are the same in the direction normal to the
boundary:

In other words, the fluid cannot flow into or out of a solid, but it is allowed to flow
freely along its surface.

The free-slip boundary condition also affects the way we solve for pressure, because the
gradient of pressure is used in determining the final velocity. A detailed discussion of
pressure projection can be found in Bridson et al. 2006, but ultimately we just need to
make sure that the pressure values we compute satisfy the following:

where Δt is the size of the time step, Δx is the cell spacing, pi, j,k is the pressure value in
cell (i, j, k), di, j,k is the discrete velocity divergence computed for that cell, and Fi, j,k is
the set of indices of cells adjacent to cell (i, j, k) that contain fluid. (This equation is
simply a discrete form of the pressure-Poisson system ∇2p = ∇ ⋅ w in Harris 2004 that
respects solid boundaries.) It is also important that at solid-fluid boundaries, di, j,k is
computed using obstacle velocities.

In practice there’s a very simple trick for making sure all this happens: any time we
sample pressure from a neighboring cell (for example, in the pressure solve and pressure
projection steps), we check whether the neighbor contains a solid obstacle, as shown in
Figure 30-6. If it does, we use the pressure value from the center cell in place of the
neighbor’s pressure value. In other words, we nullify the solid cell’s contribution to the
preceding equation.

We can apply a similar trick for velocity values: whenever we sample a neighboring cell
(for example, when computing the velocity’s divergence), we first check to see if it con-
tains a solid. If so, we look up the obstacle’s velocity from our voxelization and use it in
place of the value stored in the fluid’s velocity field.

u n u n⋅ = ⋅ solid .

Δ
Δ

t

x
F p p di j k i j k

F
i j k

i j k
ρ 2 , , , , , ,

, ,

,−
⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
= −

∈
∑ n

n

30.2 Simulation 645

530_gems3_ch30 7/5/2007 9:05 PM Page 645

646

Because we cannot always solve the pressure-Poisson system to convergence, we explic-
itly enforce the free-slip boundary condition immediately following pressure projection.
We must also correct the result of the pressure projection step for fluid cells next to the
domain boundary. To do so, we compute the obstacle’s velocity component in the di-
rection normal to the boundary. This value replaces the corresponding component of
our fluid velocity at the center cell, as shown in Figure 30-7. Because solid-fluid bound-
aries are aligned with voxel faces, computing the projection of the velocity onto the
surface normal is simply a matter of selecting the appropriate component.

If two opposing faces of a fluid cell are solid-fluid boundaries, we could average the
velocity values from both sides. However, simply selecting one of the two faces gener-
ally gives acceptable results.

Chapter 30 Real-Time Simulation and Rendering of 3D Fluids

-1

-1

-1-1 4
-1

-12

Solid
Fluid

Figure 30-6. Accounting for Obstacles in the Computation of the Discrete Laplacian of Pressure
Left: A stencil used to compute the discrete Laplacian of pressure in 2D. Right: This stencil changes
near solid-fluid boundaries. Checking for solid neighbors and replacing their pressure values with
the central pressure value results in the same behavior.

v

u
(Before)

v

u
(After)

Figure 30-7. Enforcing the Free-Slip Boundary Condition After Pressure Projection
To enforce free-slip behavior at the boundary between a fluid cell (red) and a solid cell (black), we
modify the velocity of the fluid cell in the normal (u) direction so that it equals the obstacle’s
velocity in the normal direction. We retain the fluid velocity in the tangential (v) direction.

530_gems3_ch30 7/5/2007 9:05 PM Page 646

Finally, it is important to realize that when very large time steps are used, quantities can
“leak” through boundaries during advection. For this reason we add an additional con-
straint to the advection steps to ensure that we never advect any quantity into the inte-
rior of an obstacle, guaranteeing that the value of advected quantities (for example,
smoke density) is always zero inside solid obstacles (see the PS_ADVECT_OBSTACLE
routine in Listing 30-3). In Listing 30-3, we show the simulation kernels modified to
take boundary conditions into account.

Listing 30-3. Modified Simulation Kernels to Account for Boundary Conditions

bool IsSolidCell(float3 cellTexCoords)
{
return obstacles.Sample(samPointClamp, cellTexCoords).r > 0.9;

}

float PS_JACOBI_OBSTACLE(GS_OUTPUT_FLUIDSIM in,
Texture3D pressure,
Texture3D divergence) : SV_Target

{
// Get the divergence and pressure at the current cell.
float dC = divergence.Sample(samPointClamp, in.CENTERCELL);
float pC = pressure.Sample(samPointClamp, in.CENTERCELL);

// Get the pressure values from neighboring cells.
float pL = pressure.Sample(samPointClamp, in.LEFTCELL);
float pR = pressure.Sample(samPointClamp, in.RIGHTCELL);
float pB = pressure.Sample(samPointClamp, in.BOTTOMCELL);
float pT = pressure.Sample(samPointClamp, in.TOPCELL);
float pD = pressure.Sample(samPointClamp, in.DOWNCELL);
float pU = pressure.Sample(samPointClamp, in.UPCELL);

// Make sure that the pressure in solid cells is effectively ignored.
if(IsSolidCell(in.LEFTCELL)) pL = pC;
if(IsSolidCell(in.RIGHTCELL)) pR = pC;
if(IsSolidCell(in.BOTTOMCELL)) pB = pC;
if(IsSolidCell(in.TOPCELL)) pT = pC;
if(IsSolidCell(in.DOWNCELL)) pD = pC;
if(IsSolidCell(in.UPCELL)) pU = pC;

// Compute the new pressure value.
return(pL + pR + pB + pT + pU + pD - dC) /6.0;

}

30.2 Simulation 647

530_gems3_ch30 7/5/2007 9:05 PM Page 647

648

Listing 30-3 (continued). Modified Simulation Kernels to Account for Boundary Conditions

float4 GetObstacleVelocity(float3 cellTexCoords)
{
return obstaclevelocity.Sample(samPointClamp, cellTexCoords);

}

float PS_DIVERGENCE_OBSTACLE(GS_OUTPUT_FLUIDSIM in,
Texture3D velocity) : SV_Target

{
// Get velocity values from neighboring cells.
float4 fieldL = velocity.Sample(samPointClamp, in.LEFTCELL);
float4 fieldR = velocity.Sample(samPointClamp, in.RIGHTCELL);
float4 fieldB = velocity.Sample(samPointClamp, in.BOTTOMCELL);
float4 fieldT = velocity.Sample(samPointClamp, in.TOPCELL);
float4 fieldD = velocity.Sample(samPointClamp, in.DOWNCELL);
float4 fieldU = velocity.Sample(samPointClamp, in.UPCELL);

// Use obstacle velocities for any solid cells.
if(IsBoundaryCell(in.LEFTCELL))
fieldL = GetObstacleVelocity(in.LEFTCELL);

if(IsBoundaryCell(in.RIGHTCELL))
fieldR = GetObstacleVelocity(in.RIGHTCELL);

if(IsBoundaryCell(in.BOTTOMCELL))
fieldB = GetObstacleVelocity(in.BOTTOMCELL);

if(IsBoundaryCell(in.TOPCELL))
fieldT = GetObstacleVelocity(in.TOPCELL);

if(IsBoundaryCell(in.DOWNCELL))
fieldD = GetObstacleVelocity(in.DOWNCELL);

if(IsBoundaryCell(in.UPCELL))
fieldU = GetObstacleVelocity(in.UPCELL);

// Compute the velocity’s divergence using central differences.
float divergence = 0.5 * ((fieldR.x - fieldL.x) +

(fieldT.y - fieldB.y) +
(fieldU.z - fieldD.z));

return divergence;
}

Chapter 30 Real-Time Simulation and Rendering of 3D Fluids

530_gems3_ch30 7/5/2007 9:05 PM Page 648

Listing 30-3 (continued). Modified Simulation Kernels to Account for Boundary Conditions

float4 PS_PROJECT_OBSTACLE(GS_OUTPUT_FLUIDSIM in,
Texture3D pressure,
Texture3D velocity): SV_Target

{
// If the cell is solid, simply use the corresponding
// obstacle velocity.
if(IsBoundaryCell(in.CENTERCELL))
{
return GetObstacleVelocity(in.CENTERCELL);

}

// Get pressure values for the current cell and its neighbors.
float pC = pressure.Sample(samPointClamp, in.CENTERCELL);
float pL = pressure.Sample(samPointClamp, in.LEFTCELL);
float pR = pressure.Sample(samPointClamp, in.RIGHTCELL);
float pB = pressure.Sample(samPointClamp, in.BOTTOMCELL);
float pT = pressure.Sample(samPointClamp, in.TOPCELL);
float pD = pressure.Sample(samPointClamp, in.DOWNCELL);
float pU = pressure.Sample(samPointClamp, in.UPCELL);

// Get obstacle velocities in neighboring solid cells.
// (Note that these values are meaningless if a neighbor
// is not solid.)
float3 vL = GetObstacleVelocity(in.LEFTCELL);
float3 vR = GetObstacleVelocity(in.RIGHTCELL);
float3 vB = GetObstacleVelocity(in.BOTTOMCELL);
float3 vT = GetObstacleVelocity(in.TOPCELL);
float3 vD = GetObstacleVelocity(in.DOWNCELL);
float3 vU = GetObstacleVelocity(in.UPCELL);

float3 obstV = float3(0,0,0);
float3 vMask = float3(1,1,1);

// If an adjacent cell is solid, ignore its pressure
// and use its velocity.
if(IsBoundaryCell(in.LEFTCELL)) {
pL = pC; obstV.x = vL.x; vMask.x = 0; }

if(IsBoundaryCell(in.RIGHTCELL)) {
pR = pC; obstV.x = vR.x; vMask.x = 0; }

30.2 Simulation 649

530_gems3_ch30 7/5/2007 9:05 PM Page 649

650

Listing 30-3 (continued). Modified Simulation Kernels to Account for Boundary Conditions

if(IsBoundaryCell(in.BOTTOMCELL)) {
pB = pC; obstV.y = vB.y; vMask.y = 0; }

if(IsBoundaryCell(in.TOPCELL)) {
pT = pC; obstV.y = vT.y; vMask.y = 0; }

if(IsBoundaryCell(in.DOWNCELL)) {
pD = pC; obstV.z = vD.z; vMask.z = 0; }

if(IsBoundaryCell(in.UPCELL)) {
pU = pC; obstV.z = vU.z; vMask.z = 0; }

// Compute the gradient of pressure at the current cell by
// taking central differences of neighboring pressure values.
float gradP = 0.5*float3(pR - pL, pT - pB, pU - pD);

// Project the velocity onto its divergence-free component by
// subtracting the gradient of pressure.
float3 vOld = velocity.Sample(samPointClamp, in.texcoords);
float3 vNew = vOld - gradP;

// Explicitly enforce the free-slip boundary condition by
// replacing the appropriate components of the new velocity with
// obstacle velocities.
vNew = (vMask * vNew) + obstV;

return vNew;
}

bool IsNonEmptyCell(float3 cellTexCoords)
{
return obstacles.Sample(samPointClamp, cellTexCoords, 0).r > 0.0);

}

float4 PS_ADVECT_OBSTACLE(GS_OUTPUT_FLUIDSIM in,
Texture3D velocity,
Texture3D color) : SV_Target

{
if(IsNonEmptyCell(in.CENTERCELL))
{
return 0;

}

Chapter 30 Real-Time Simulation and Rendering of 3D Fluids

530_gems3_ch30 7/5/2007 9:05 PM Page 650

Listing 30-3 (continued). Modified Simulation Kernels to Account for Boundary Conditions

float3 cellVelocity = velocity.Sample(samPointClamp,
in.CENTERCELL).xyz;

float3 pos = in.cellIndex – timeStep*cellVelocity;

float3 npos = float3(pos.x / textureWidth,
pos.y / textureHeight,
(pos.z+0.5) / textureDepth);

return color.Sample(samLinear, npos);
}

Voxelization
To handle boundary conditions for dynamic solids, we need a quick way of determining
whether a given cell contains a solid obstacle. We also need to know the solid’s velocity
for cells next to obstacle boundaries. To do this, we voxelize solid obstacles into an “in-
side-outside” texture and an “obstacle velocity” texture, as shown in Figure 30-8, using
two different voxelization routines.

30.2 Simulation 651

Inside – Outside Texture

Velocity Texture

Figure 30-8. Solid Obstacles Are Voxelized into an Inside-Outside Texture and an Obstacle Velocity
Texture

530_gems3_ch30 7/5/2007 9:05 PM Page 651

652

Inside-Outside Voxelization
Our approach to obtain an inside-outside voxelization is inspired by the stencil shadow
volumes algorithm. The idea is simple: We render the input triangle mesh once into
each slice of the destination 3D texture using an orthogonal projection. The far clip
plane is set at infinity, and the near plane matches the depth of the current slice, as
shown in Figure 30-9. When drawing geometry, we use a stencil buffer (of the same
dimensions as the slice) that is initialized to zero. We set the stencil operations to incre-
ment for back faces and decrement for front faces (with wrapping in both cases). The
result is that any voxel inside the mesh receives a nonzero stencil value. We then do a
final pass that copies stencil values into the obstacle texture.1

As a result, we are able to distinguish among three types of cells: interior (nonzero sten-
cil value), exterior (zero stencil), and interior but next to the boundary (these cells are
tagged by the velocity voxelization algorithm, described next). Note that because this
method depends on having one back face for every front face, it is best suited to water-
tight closed meshes.

Velocity Voxelization
The second voxelization algorithm computes an obstacle’s velocity at each grid cell that
contains part of the obstacle’s boundary. First, however, we need to know the obstacle’s
velocity at each vertex. A simple way to compute per-vertex velocities is to store vertex
positions pn−1 and pn from the previous and current frames, respectively, in a vertex
buffer. The instantaneous velocity vi of vertex i can be approximated with the forward
difference

in a vertex shader.

Next, we must compute interpolated obstacle velocities for any grid cell containing a
piece of a surface mesh. As with the inside-outside voxelization, the mesh is rendered
once for each slice of the grid. This time, however, we must determine the intersection
of each triangle with the current slice.

The intersection between a slice and a triangle is a segment, a triangle, a point, or empty.
If the intersection is a segment, we draw a “thickened” version of the segment into the

v
p p

i
i
n

i
n

t
=

−
Δ

+1

Chapter 30 Real-Time Simulation and Rendering of 3D Fluids

1. We can also implement this algorithm to work directly on the final texture instead of using an interme-
diate stencil buffer. To do so, we can use additive blending. Additionally, if the interior is defined using the
even-odd rule (instead of the nonzero rule we use), one can also use OpenGL’s glLogicOp.

530_gems3_ch30 7/5/2007 9:05 PM Page 652

slice using a quad. This quad consists of the two end points of the original segment and
two additional points offset from these end points, as shown in Figure 30-10. The offset
distance w is equal to the diagonal length of one texel in a slice of the 3D texture, and
the offset direction is the projection of the triangle’s normal onto the slice. Using linear
interpolation, we determine velocity values at each end point and assign them to the
corresponding vertices of the quad. When the quad is drawn, these values get interpo-
lated across the grid cells as desired.

These quads can be generated using a geometry shader that operates on mesh triangles,
producing four vertices if the intersection is a segment and zero vertices otherwise.
Because geometry shaders cannot output quads, we must instead use a two-triangle

30.2 Simulation 653

Render model N times with orthographic camera,
each time with a different near plane.

Near Plane

2DArray of N Stencil Buffers

Figure 30-9. Inside-Outside Voxelization of a Mesh

530_gems3_ch30 7/5/2007 9:05 PM Page 653

654

strip. To compute the triangle-slice intersection, we intersect each triangle edge with the
slice. If exactly two edge-slice intersections are found, the corresponding intersection
points are used as end points for our segment. Velocity values at these points are com-
puted via interpolation along the appropriate triangle edges. The geometry shader
GS_GEN_BOUNDARY_VELOCITY in Listing 30-4 gives an implementation of this algo-
rithm. Figure 30-12 shows a few slices of a voxel volume resulting from the voxelization
of the model in Figure 30-11.

Listing 30-4. Geometry Shader for Velocity Voxelization

// GS_GEN_BOUNDARY_VELOCITY:
// Takes as input:
// - one triangle (3 vertices),
// - the sliceIdx,
// - the sliceZ;
// and outputs:
// - 2 triangles, if intersection of input triangle with slice
// is a segment
// - 0 triangles, otherwise
// The 2 triangles form a 1-voxel wide quadrilateral along the
// segment.

Chapter 30 Real-Time Simulation and Rendering of 3D Fluids

w

e2

e1

e'1

e'2

Nproj

N

Figure 30-10. A Triangle Intersects a Slice at a Segment with End Points e1 and e2.
These end points are offset a distance w in the direction of the projected normal Nproj to get the
other two vertices of the quad, e1′ and e2′.

530_gems3_ch30 7/5/2007 9:05 PM Page 654

30.2 Simulation 655

Figure 30-11. Simplified Geometry Can Be Used to Speed Up Voxelization

Figure 30-12. Slices of the 3D Textures Resulting from Applying Our Voxelization Algorithms to the
Model in Figure 30-11.
The blue channel shows the result of the inside-outside voxelization (bright blue for cells next to
the boundary and dark blue for other cells inside). The red and green channels are used to
visualize two of the three components of the velocity.

530_gems3_ch30 7/5/2007 9:05 PM Page 655

656

Listing 30-4 (continued). Geometry Shader for Velocity Voxelization

[maxvertexcount (4)]
void GS_GEN_BOUNDARY_VELOCITY(
triangle VsGenVelOutput input[3],
inout TriangleStream<GsGenVelOutput> triStream)

{
GsGenVelOutput output;
output.RTIndex = sliceIdx;

float minZ = min(min(input[0].Pos.z, input[1].Pos.z), input[2].Pos.z);
float maxZ = max(max(input[0].Pos.z, input[1].Pos.z), input[2].Pos.z);
if((sliceZ < minZ) || (sliceZ > maxZ))
// This triangle doesn't intersect the slice.
return;

GsGenVelIntVtx intersections[2];
for(int i=0; i<2; i++)
{
intersections[i].Pos = 0;
intersections[i].Velocity = 0;

}

int idx = 0;
if(idx < 2)
GetEdgePlaneIntersection(input[0], input[1], sliceZ,

intersections, idx);
if(idx < 2)
GetEdgePlaneIntersection(input[1], input[2], sliceZ,

intersections, idx);
if(idx < 2)
GetEdgePlaneIntersection(input[2], input[0], sliceZ,

intersections, idx);

if(idx < 2)
return;

float sqrtOf2 = 1.414; // The diagonal of a pixel
float2 normal = sqrtOf2 * normalize(
cross((input[1].Pos - input[0].Pos),

(input[2].Pos - input[0].Pos)).xy);

Chapter 30 Real-Time Simulation and Rendering of 3D Fluids

530_gems3_ch30 7/5/2007 9:05 PM Page 656

Listing 30-4 (continued). Geometry Shader for Velocity Voxelization

for(int i=0; i<2; i++)
{
output.Pos = float4(intersections[i].Pos, 0, 1);
output.Velocity = intersections[i].Velocity;
triStream.Append(output);

output.Pos = float4((intersections[i].Pos +
(normal*projSpacePixDim)), 0, 1);

output.Velocity = intersections[i].Velocity;
triStream.Append(output);

}
triStream.RestartStrip();

}

void GetEdgePlaneIntersection(
VsGenVelOutput vA,
VsGenVelOutput vB,
float sliceZ,
inout GsGenVelIntVtx intersections[2],
inout int idx)

{
float t = (sliceZ - vA.Pos.z) / (vB.Pos.z - vA.Pos.z);
if((t < 0) || (t > 1))
// Line-plane intersection is not within the edge's end points
// (A and B)
return;

intersections[idx].Pos = lerp(vA.Pos, vB.Pos, t).xy;
intersections[idx].Velocity = lerp(vA.Velocity, vB.Velocity, t);
idx++;

}

Optimizing Voxelization
Although voxelization requires a large number of draw calls, it can be made more effi-
cient using stream output (see Blythe 2006). Stream output allows an entire buffer of
transformed vertices to be cached when voxelizing deforming meshes such as skinned
characters, rather than recomputing these transformations for each slice.

30.2 Simulation 657

530_gems3_ch30 7/5/2007 9:05 PM Page 657

658

Additionally, instancing can be used to draw all slices in a single draw call, rather than
making a separate call for each slice. In this case, the instance ID can be used to specify
the target slice.

Due to the relative coarseness of the simulation grid used, it is a good idea to use a low
level of detail mesh for each obstacle, as shown in Figure 30-11. Using simplified mod-
els allowed us to voxelize obstacles at every frame with little performance cost.

Finally, if an obstacle is transformed by a simple analytic transformation (versus a com-
plex skinning operation, for example), voxelization can be precomputed and the inverse
of the transformation can be applied whenever accessing the 3D textures. A simple ex-
ample is a mesh undergoing rigid translation and rotation: texture coordinates used to
access the inside-outside and obstacle velocity textures can be multiplied by the inverse
of the corresponding transformation matrix to get the appropriate values.

30.2.5 Smoke
Although the velocity field describes the fluid’s motion, it does not look much like a
fluid when visualized directly. To get interesting visual effects, we must keep track of
additional quantities that are pushed around by the fluid. For instance, we can keep
track of density and temperature to obtain the appearance of smoke (Fedkiw et al.
2001). For each additional quantity φ, we must allocate an additional texture with the
same dimensions as our grid. The evolution of values in this texture is governed by the
same advection equation used for velocity:

In other words, we can use the same MacCormack advection routine we used to evolve
the velocity.

To achieve the particular effect seen in Figure 30-4, for example, we inject a three-
 dimensional Gaussian “splat” into a color texture each frame to provide a source of
“smoke.” These color values have no real physical significance, but they create attractive
swirling patterns as they are advected throughout the volume by the fluid velocity.

To get a more physically plausible appearance, we must make sure that hot smoke rises
and cool smoke falls. To do so, we need to keep track of the fluid temperature T (which
again is advected by u). Unlike color, temperature values have an influence on the dy-
namics of the fluid. This influence is described by the buoyant force:

∂
∂

= − ⋅ ∇()
φ

φ
t

u .

Chapter 30 Real-Time Simulation and Rendering of 3D Fluids

530_gems3_ch30 7/5/2007 9:05 PM Page 658

where P is pressure, m is the molar mass of the gas, g is the acceleration due to gravity,
and R is the universal gas constant. In practice, all of these physical constants can be
treated as a single value and can be tweaked to achieve the desired visual appearance.
The value T0 is the ambient or “room” temperature, and T represents the temperature
values being advected through the flow. z is the normalized upward-direction vector.
The buoyant force should be thought of as an “external” force and should be added to
the velocity field immediately following velocity advection.

30.2.6 Fire
Fire is not very different from smoke except that we must store an additional quantity,
called the reaction coordinate, that keeps track of the time elapsed since gas was ignited.
A reaction coordinate of one indicates that the gas was just ignited, and a coordinate of
less than zero indicates that the fuel has been completely exhausted. The evolution of
these values is described by the following equation (from Nguyen et al. 2002):

In other words, the reaction coordinate is advected through the flow and decremented
by a constant amount (k) at each time step. In practice, this integration is performed by
passing a value for k to the advection routine (PS_ADVECT_MACCORMACK), which is
added to the result of the advection. (This value should be nonzero only when advect-
ing the reaction coordinate.) Reaction coordinates do not have an effect on the dynam-
ics of the fluid but are later used for rendering (see Section 30.3).

Figure 30-14 (in Section 30.2.10) demonstrates one possible fire effect: a ball of fuel is
continuously generated near the bottom of the volume by setting the reaction coordi-
nate in a spherical region to one. For a more advanced treatment of flames, see Nguyen
et al. 2002.

30.2.7 Water
Water is modeled differently from the fluid phenomena discussed thus far. With fire or
smoke, we are interested in visualizing a density defined throughout the entire volume,
but with water the visually interesting part is the interface between air and liquid.

∂
∂

= − ⋅ ∇() −
t
Y u Y k.

f zbuoyancy
Pmg

R T T
= −

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

1 1

0

,

30.2 Simulation 659

530_gems3_ch30 7/5/2007 9:05 PM Page 659

660

Therefore, we need some way of representing this interface and tracking how it deforms
as it is pushed around by the fluid velocity.

The level set method (Sethian 1999) is a popular representation of a liquid surface and is
particularly well suited to a GPU implementation because it requires only a scalar value
at each grid cell. In a level set, each cell records the shortest signed distance φ from the
cell center to the water surface. Cells in the grid are classified according to the value of
φ: if φ < 0, the cell contains water; otherwise, it contains air. Wherever φ equals zero is
exactly where the water meets the air (the zero set). Because advection will not preserve
the distance field property of a level set, it is common to periodically reinitialize the
level set. Reinitialization ensures that each cell does indeed store the shortest distance to
the zero set. However, this property isn’t needed to simply define the surface, and for
real-time animation, it is possible to get decent results without reinitialization.
Figure 30-1, at the beginning of this chapter, shows the quality of the results.

Just as with color, temperature, and other attributes, the level set is advected by the fluid,
but it also affects the simulation dynamics. In fact, the level set defines the fluid domain:
in simple models of water and air, we assume that the air has a negligible effect on the
liquid and do not perform simulation wherever φ ≥ 0. In practice, this means we set the
pressure outside of the liquid to zero before solving for pressure and modify the pressure
only in liquid cells. It also means that we do not apply external forces such as gravity
outside of the liquid. To make sure that only fluid cells are processed, we check the value
of the level set texture in the relevant shaders and mask computations at a cell if the
value of φ is above some threshold. Two alternatives that may be more efficient are to use
z-cull to eliminate cells (if the GPU does not support dynamic flow control) (Sander et
al. 2004) and to use a sparse data structure (Lefohn et al. 2004).

30.2.8 Performance Considerations
One major factor in writing an efficient solver is bandwidth. For each frame of anima-
tion, the solver runs a large number of arithmetically simple kernels, in between which
data must be transferred to and from texture memory. Although most of these kernels
exhibit good locality, bandwidth is still a major issue: using 32-bit floating-point tex-
tures to store quantities yields roughly half the performance of 16-bit textures. Surpris-
ingly, there is little visually discernible degradation that results from using 16-bit
storage, as is shown in Figure 30-13. Note that arithmetic operations are still performed

Chapter 30 Real-Time Simulation and Rendering of 3D Fluids

530_gems3_ch30 7/5/2007 9:05 PM Page 660

in 32-bit floating point, meaning that results are periodically truncated as they are writ-
ten to the destination textures.

In some cases it is tempting to store multiple cell attributes in a single texture in order
to reduce memory usage or for convenience, but doing so is not always optimal in
terms of memory bandwidth. For instance, suppose we packed both inside-outside and
velocity information about an obstacle into a single RGBA texture. Iteratively solving
the pressure-Poisson equation requires that we load inside-outside values numerous
times each frame, but meanwhile the obstacle’s velocity would go unused. Because
packing these two textures together requires four times as many bytes transferred from
memory as well as cache space, it may be wise to keep the obstacle’s inside-outside in-
formation in its own scalar texture.

30.2.9 Storage
Table 30-1 gives some of the storage requirements needed for simulating and rendering
fluids, which amounts to 41 bytes per cell for simulation and 20 bytes per pixel for
rendering. However, most of this storage is required only temporarily while simulating
or rendering, and hence it can be shared among multiple fluid simulations. In Hellgate:
London, we stored the exclusive textures (the third column of the table) with each in-
stance of smoke, but we created global versions of the rest of the textures (the last col-
umn of the table), which were shared by all the smoke simulations.

30.2 Simulation 661

Figure 30-13. Smoke Simulated Using 16-Bit (Top Row) and 32-Bit (Bottom Row) Floating-Point
Textures for Storage
Note that although some fine-scale detail differs between the two sequences, the overall motion is
consistent.

530_gems3_ch30 7/5/2007 9:05 PM Page 661

662

30.2.10 Numerical Issues
Because real-time applications are so demanding, we have chosen the simplest numeri-
cal schemes that still give acceptable visual results. Note, however, that for high-quality
animation, more accurate alternatives are preferable.

One of the most expensive parts of the simulation is solving the pressure-Poisson system,
∇2p = ∇ ⋅ u*. We use the Jacobi method to solve this system because it is easy to imple-
ment efficiently on the GPU. However, several other suitable solvers have been imple-
mented on the GPU, including the Conjugate Gradient method (Bolz et al. 2003) and
the Multigrid method (Goodnight et al. 2003). Cyclic reduction is a particularly inter-
esting option because it is direct and can take advantage of banded systems (Kass et al.
2006). When picking an iterative solver, it may be worth considering not only the over-
all rate of convergence but also the convergence rate of different spatial frequencies in the
residual (Briggs et al. 2000). Because there may not be enough time to reach conver-
gence in a real-time application, the distribution of frequencies will have some impact
on the appearance of the solution.

Ideally we would like to solve the pressure-Poisson system exactly in order to satisfy the
incompressibility constraint and preserve fluid volume. For fluids like smoke and fire,
however, a change in volume does not always produce objectionable visual artifacts.
Hence we can adjust the number of iterations when solving this system according to
available resources. Figure 30-14 compares the appearance of a flame using different
numbers of Jacobi iterations. Seen in motion, spinning vortices tend to “flatten out” a
bit more when using only a small number of iterations, but the overall appearance is
very similar.

Chapter 30 Real-Time Simulation and Rendering of 3D Fluids

Table 30-1. Storage Needed for Simulating and Rendering Fluids

Total Space Exclusive Textures Shared Textures
Fluid Simulation 32 bytes per cell 12 bytes per cell

1×RGBA16 (velocity)

2×R16 (pressure and density)

20 bytes per cell

2×RGBA16 (temporary)

2×R16 (temporary)

Voxelization 9 bytes per cell — 9 bytes per cell

1×RGBA16 (velocity)

1×R8 (inside-outside)

Rendering 20 bytes per pixel — 20 bytes per pixel of off-screen render target

1×RGBA32 (ray data)

1×R32 (scene depth)

530_gems3_ch30 7/5/2007 9:05 PM Page 662

For a more thorough discussion of GPGPU performance issues, see Pharr 2005.

For liquids, on the other hand, a change of volume is immediately apparent: fluid appears
to either pour out from nowhere or disappear entirely! Even something as simple as water
sitting in a tank can potentially be problematic if too few iterations are used to solve for
pressure: because information does not travel from the tank floor to the water surface,
pressure from the floor cannot counteract the force of gravity. As a result, the water slowly
sinks through the bottom of the tank, as shown in Figure 30-15.

30.2 Simulation 663

Figure 30-14. Fire Simulation Using 20 Jacobi Iterations (Top Row) and 1,000 Jacobi Iterations
(Bottom Row) for the Pressure Solve

530_gems3_ch30 7/5/2007 9:05 PM Page 663

664

Unfortunately, in a real-time application, it is not always possible to solve for p exactly
(regardless of the particular solver used) because computation time is constrained by the
target frame rate and the resource requirements of other concurrent processes. In simple
situations where we know that the liquid should tend toward a static equilibrium, we
can force the correct behavior by manipulating the level set in the following way:

Here φ∞ is a level set whose zero set tells us what the surface should look like if we let
the liquid settle for a long period of time. For example, the equilibrium level set for a
tank of water would be simply φ∞ (x, y, z) = y − h, where y is the vertical distance from
the bottom of the tank and h is the desired height of the water. See Figure 30-16.

The function A is the advection operator, and the parameter β ∈ [0, 1] controls the
amount of damping applied to the solution we get from advection. Larger values of β
permit fewer solver iterations but also decrease the liveliness of the fluid. Note that this
damping is applied only in regions of the domain where φ∞ is negative—this keeps
splashes evolving outside of the domain of the equilibrium solution lively, though it can
result in temporary volume gain.

Ultimately, however, this kind of nonphysical manipulation of the level set is a hack,
and its use should be considered judiciously. Consider an environment in which the
player scoops up water with a bowl and then sets the bowl down at an arbitrary loca-
tion on a table: we do not know beforehand what the equilibrium level set should look
like and hence cannot prevent water from sinking through the bottom of the bowl.

φ
φ φ

β φ βφ φ
i j k
n

n

i j k i j k

n

i j k i j k i j

A

A
, ,

, , , ,

, , , , , ,

+

∞

∞
=

() ≥

−() () +
1

0

1 kk
∞ <

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

0

Chapter 30 Real-Time Simulation and Rendering of 3D Fluids

Gravity

Pressure

Figure 30-15. Uncorrected Water Simulation
Pressure pushing up from the bottom of the tank may not be able to counteract the force of gravity
on the liquid’s surface when using a small number of Jacobi iterations to solve for pressure.

530_gems3_ch30 7/5/2007 9:05 PM Page 664

30.3 Rendering 665

30.3 Rendering

30.3.1 Volume Rendering
The result of our simulation is a collection of values stored in a 3D texture. However,
there is no mechanism in Direct3D or OpenGL for displaying this texture directly.
Therefore we render the fluid using a ray-marching pixel shader. Our approach is very
similar to the one described in Scharsach 2005.

The placement of the fluid in the scene is determined by six quads, which represent the
faces of the simulation volume. These quads are drawn into a deferred shading buffer to
determine where and how rays should be cast. We then render the fluid by marching
rays through the volume and accumulating densities from the 3D texture, as shown in
Figure 30-17.

Volume Ray Casting
In order to cast a ray, we need to know where it enters the volume, in which direction it is
traveling, and how many samples to take. One way to get these values is to perform sev-
eral ray-plane intersections in the ray-marching shader. However, precomputing these
values and storing them in a texture makes it easier to perform proper compositing and

Figure 30-16. Combining Level Sets to Counter a Low Convergence Rate
To preserve fluid volume even under extreme performance constraints, the results of level set
advection are combined with a known equilibrium level setφ∞.

530_gems3_ch30 7/5/2007 9:05 PM Page 665

666

clipping (more on this later in this section), which is the approach we use here. As a pre-
pass, we generate a screen-size texture, called the RayData texture, which encodes, for
every pixel that is to be rendered, the entry point of the ray in texture space, and the
depth through the volume that the ray traverses. To get the depth through the volume, we
draw first the back faces of the volume with a shader that outputs the distance from the
eye to the fragment’s position (in view space) into the alpha channel. We then run a simi-
lar shader on the front faces but enable subtractive blending using Equation 1. Further-
more, to get the entry point of the ray, we also output into the RGB channel the
texture-space coordinates of each fragment generated for the front faces.

To render the volume, we draw a full-screen quad with a ray-marching shader. This
shader looks up into the RayData texture to find the pixels that we need to ray-cast
through, and the ray entry point and marching distance through the volume for those
pixels. The number of samples that the ray-marching shader uses is proportional to the
marching distance (we use a step size equal to half a voxel). The ray direction is given
by the vector from the eye to the entry point (both in texture space). At each step along
the ray, we sample values from the texture containing the simulated values and blend
them front to back according to Equation 2. By blending from front to back, we can
terminate ray casting early if the color saturates (we exit if FinalColor.a > 0.99). For a
more physically based rendering model, see Fedkiw et al. 2001.

OutputColor rgb SourceColor rgb

OutputColor a DestinationCo

. .

.

=

= llor a SourceColor a. .−
(1)

Chapter 30 Real-Time Simulation and Rendering of 3D Fluids

Render Front Faces
of Box

Composite into
SceneRaycast into the

3D Density Texture

Figure 30-17. A Conceptual Overview of Ray Casting

530_gems3_ch30 7/5/2007 9:05 PM Page 666

Compositing
There are two problems with the ray-marching algorithm described so far. First, rays
continue to march through the volume even if they encounter other scene geometry.
See the right side of Figure 30-18 for an illustration. Second, rays are traced even for
parts of the volume that are completely occluded, as the left side of Figure 30-18 shows.
However, we can modify our computation of volume depth such that we march
through only relevant parts of the grid.

Previously we used the distance to the back faces of the volume to determine where ray
marching should terminate. To handle obstacles that intersect the volume, we instead
use the minimum of the back-face distance and the scene distance (that is, the distance
between the eye and the closest obstacle in the scene). The scene distance can be calcu-
lated by reading the scene depth and reverse projecting it back to view space to find the
distance from the eye to the scene. If the depth buffer cannot be read as a texture in a
pixel shader, as is the case in Direct3D 10 when using multisample antialiasing, this
distance can be computed in the main scene rendering pass using multiple render tar-
gets; this is the approach we use.

To deal with cases in which the scene geometry completely occludes part of the volume,
we compare the front-facing fragments’ distance to the scene distance. If the front-face
distance is greater than the scene distance (that is, the fragment is occluded), we output

FinalColor rgb SampleColor rgb SampleColor a FinalColor. . .+= × × −1 ..

. . .

a

FinalColor a SampleColor a FinalColor a

()

+= × −()1
(2)

30.3 Rendering 667

Scene

Scene

Figure 30-18. Rays Are Clipped According to Scene Depth to Account for Occlusion

530_gems3_ch30 7/5/2007 9:05 PM Page 667

668

a large negative value in the red channel. This way, the final texture-space position
computed for the corresponding texel in the RayData texture will be outside the vol-
ume, and hence no samples will be taken along the corresponding ray.

Clipping
We also need to modify our ray-marching algorithm to handle the cases in which the
camera is located inside the fluid volume and the camera’s near plane clips parts of the
front faces of the volume, as shown in Figure 30-19.

In regions where the front faces were clipped, we have no information about where rays
enter the volume, and we have incorrect values for the volume depth.

To deal with these regions, we mark the pixels where the back faces of the volume have
been rendered but not the front faces. This marking is done by writing a negative color
value into the green channel when rendering the back faces of the fluid volume to the
RayData texture. Note that the RayData texture is cleared to zero before either front or
back faces are rendered to it. Because we do not use the RGB values of the destination
color when rendering the front faces with alpha blending (Equation 1), the pixels for
which the green channel contains a negative color after rendering the front faces are
those where the back faces of the fluid volume were rendered but not the front (due to

Chapter 30 Real-Time Simulation and Rendering of 3D Fluids

Near Plane of Camera

Fluid Volume
Inside Scene

Part of Fluid Volume
Clipped by Near Plane

Figure 30-19. Part of the Fluid Volume May Be Clipped by the Near Plane
In areas where the front faces of the fluid volume get clipped by the near plane of the camera, we
have incorrect information for ray marching.

530_gems3_ch30 7/5/2007 9:05 PM Page 668

clipping). In the ray-casting shader, we explicitly initialize the position of these marked
pixels to the appropriate texture-space position of the corresponding point on the near
plane. We also correct the depth value read from the RayData texture by subtracting
from it the distance from the eye to the corresponding point on the near plane.

Filtering
The ray-marching algorithm presented so far has several visible artifacts. One such
artifact is banding, which results from using an integral number of equally spaced sam-
ples. This artifact is especially visible when the scene inside the fluid volume has rapidly
changing depth values, as illustrated in Figure 30-20.

To suppress it, we take one more sample than necessary and weigh its contribution to
the final color by d/sampleWidth, as shown in Figure 30-21. In the figure, d is the dif-
ference between the scene distance at the fragment and the total distance traveled by
the ray at the last sample, and sampleWidth is the typical step size along the ray.

Banding, however, usually remains present to some degree and can become even more
obvious with high-frequency variations in either the volume density or the mapping
between density and color (known as the transfer function). This well-known problem is
addressed in Hadwiger 2004 and Sigg and Hadwiger 2005. Common solutions include
increasing the sampling frequency, jittering the samples along the ray direction, or
using higher-order filters when sampling the volume. It is usually a good idea to com-
bine several of these techniques to find a good performance-to-quality trade-off. In
Hellgate: London, we used trilinear jittered sampling at a frequency of twice per voxel.

30.3 Rendering 669

Figure 30-20. Dealing with Banding
Using scene depth can cause banding artifacts (left), which can be solved using weighted
sampling (right).

530_gems3_ch30 7/5/2007 9:05 PM Page 669

670

Off-Screen Ray Marching
If the resolution of the simulation grid is low compared to screen resolution, there is
little visual benefit in ray casting at high resolution. Instead, we draw the fluid into a
smaller off-screen render target and then composite the result into the final image. This
approach works well except in areas of the image where there are sharp depth disconti-
nuities in scene geometry, as shown in Figure 30-22, and where the camera clips the
fluid volume.

This issue is discussed in depth by Iain Cantlay in Chapter 23 of this book, “High-
Speed, Off-Screen Particles.” In Hellgate: London, we use a similar approach to the one
presented there: we draw most of the smoke at a low resolution but render pixels in
problematic areas at screen resolution. We find these areas by running an edge-

Chapter 30 Real-Time Simulation and Rendering of 3D Fluids

d

sampleWidth

Figure 30-21. Reducing Banding by Taking an Additional Weighted Sample
Taking an additional weighted sample can help reduce banding artifacts such as those seen in
Figure 30-20.

Figure 30-22. Fixing Artifacts Introduced by Low-Resolution Off-Screen Rendering
Left: Ray marching at a low resolution and upsampling can cause artifacts near sharp silhouettes.
Center: Detecting these features and rendering the corresponding fragments at higher resolution.
Right: The resulting artifact-free image.

530_gems3_ch30 7/5/2007 9:05 PM Page 670

detection filter on the RayData texture computed earlier in this section. Specifically, we
run a Sobel edge-detection filter on the texture’s alpha channel (to find edges of obsta-
cles intersecting the volume), red channel (to find edges of obstacles occluding the
volume), and green channel (to find the edges where the near plane of the camera clips
the volume).

Fire
Rendering fire is similar to rendering smoke except that instead of blending values as we
march, we accumulate values that are determined by the reaction coordinate Y rather than
the smoke density (see Section 30.2.6). In particular, we use an artist-defined 1D texture
that maps reaction coordinates to colors in a way that gives the appearance of fire. A more
physically based discussion of fire rendering can be found in Nguyen et al. 2002.

The fire volume can also be used as a light source if desired. The simplest approach is to
sample the volume at several locations and treat each sample as a point light source.
The reaction coordinate and the 1D color texture can be used to determine the inten-
sity and color of the light. However, this approach can lead to severe flickering if not
enough point samples are used, and it may not capture the overall behavior of the light.
A different approach is to downsample the texture of reaction coordinates to an ex-
tremely low resolution and then use every voxel as a light source. The latter approach
will be less prone to flickering, but it won’t capture any high-frequency lighting effects
(such as local lighting due to sparks).

30.3.2 Rendering Liquids
To render a liquid surface, we also march through a volume, but this time we look at
values from the level set φ. Instead of integrating values as we march, we look for the
first place along the ray where φ = 0. Once this point is found, we shade it just as we
would shade any other surface fragment, using ∇φ at that point to approximate the
shading normal. For water, it is particularly important that we do not see artifacts of
the grid resolution, so we use tricubic interpolation to filter these values. Figure 30-1 at
the beginning of the chapter demonstrates the rendered results. See Sigg and Hadwiger
2005 and Hadwiger et al. 2005 for details on how to quickly intersect and filter volume
isosurface data such as a level set on the GPU.

Refraction
For fluids like water, there are several ways to make the surface appear as though it re-
fracts the objects behind it. Ray tracing is one possibility, but casting rays is expensive,

30.3 Rendering 671

530_gems3_ch30 7/5/2007 9:05 PM Page 671

672

and there may be no way to find ray intersections with other scene geometry. Instead, we
use an approximation that gives the impression of refraction but is fast and simple to
implement.

First, we render the objects behind the fluid volume into a background texture.

Next, we determine the nearest ray intersection with the water surface at every pixel by
marching through the volume. This produces a pair of textures containing hit locations
and shading normals; the alpha value in the texture containing hit locations is set to
zero if there was no ray-surface intersection at a pixel, and set to one otherwise. We
then shade the hit points with a refraction shader that uses the background texture.
Finally, foreground objects are added to create the final image.

The appearance of refraction is achieved by looking up a pixel in the background image
near the point being shaded and taking its value as the refracted color. This refracted
color is then used in the shading equation as usual. More precisely, this background
pixel is accessed at a texture coordinate t that is equal to the location p of the pixel
being shaded offset by a vector proportional to the projection of the surface normal N
onto the image plane. In other words, if Ph and Pv are an orthonormal basis for the
image plane oriented with the viewport, then

where β > 0 is a scalar parameter that controls the severity of the effect. The vectors Pv

and Ph are defined by

where z is up and V is the view direction.

The effect of applying this transformation to the texture coordinates is that a convex
region of the surface will magnify the image behind it, a concave region will shrink the
image, and flat (with respect to the viewer) regions will allow rays to pass straight
through.

30.4 Conclusion
In this chapter, we hope to have demonstrated that physically based fluid animation is a
valuable tool for creating interactive environments, and to have provided some of the

P
z z V V
z z V V

P P V

v

h v

=
− ⋅()
− ⋅()

= × ,

t p N P N P= − ⋅ ⋅()β h v, ,

Chapter 30 Real-Time Simulation and Rendering of 3D Fluids

530_gems3_ch30 7/5/2007 9:05 PM Page 672

basic building blocks needed to start developing a practical implementation. However,
this is by no means the end of the line: we have omitted discussion of a large number of
possible directions for fluid animation, including melting (Carlson et al. 2002), visco -
elastic fluids (Goktekin et al. 2004), and multiphase flows (Lossasso et al. 2006). We
have also omitted discussion of a number of interesting data structures and algorithms,
such as sparse level sets (Lefohn et al. 2004), which may significantly improve simulation
performance; or mesh-based surface extraction (Ziegler et al. 2006), which may permit
more efficient rendering of liquids.

30.5 References
Blythe, David. 2006. “The Direct3D 10 System.” In ACM Transactions on Graphics

(Proceedings of SIGGRAPH 2006) 25(3), pp. 724–734.

Bolz, J., I. Farmer, E. Grinspun, and P. Schröder. 2003. “Sparse Matrix Solvers on the
GPU: Conjugate Gradients and Multigrid.” In ACM Transactions on Graphics (Pro-
ceedings of SIGGRAPH 2003) 22(3), pp. 917–924.

Bridson R., R. Fedkiw, and M. Muller-Fischer. 2006. “Fluid Simulation.” SIGGRAPH
2006 Course Notes. In ACM SIGGRAPH 2006 Courses.

Briggs, William L., Van Emden Henson, and Steve F. McCormick. 2000. A Multigrid
Tutorial. Society for Industrial and Applied Mathematics.

Carlson, M., P. Mucha, R. Van Horn, and G. Turk. 2002. “Melting and Flowing.” In
Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer
Animation.

Fang, S., and H. Chen. 2000. “Hardware Accelerated Voxelization.” Computers and
Graphics 24(3), pp. 433–442.

Fedkiw, R., J. Stam, and H. W. Jensen. 2001. “Visual Simulation of Smoke.” In Pro-
ceedings of SIGGRAPH 2001, pp. 15–22.

Foster, N., and R. Fedkiw. 2001. “Practical Animation of Liquids.” In Proceedings of
SIGGRAPH 2001.

Goktekin, T. G., A.W. Bargteil, and J. F. O’Brien. 2004. “A Method for Animating
Viscoelastic Fluids.” In ACM Transactions on Graphics (Proceedings of SIGGRAPH
2004) 23(3).

Goodnight, N., C. Woolley, G. Lewin, D. Luebke, and G. Humphreys. 2003. “A
Multigrid Solver for Boundary Value Problems Using Programmable Graphics Hard-
ware.” In Proceedings of the SIGGRAPH/Eurographics Workshop on Graphics Hardware
2003, pp. 102–111.

30.5 References 673

530_gems3_ch30 7/5/2007 9:05 PM Page 673

674

Hadwiger, M. 2004. “High-Quality Visualization and Filtering of Textures and Seg-
mented Volume Data on Consumer Graphics Hardware.” Ph.D. Thesis.

Hadwiger, M., C. Sigg, H. Scharsach, K. Buhler, and M. Gross. 2005. “Real-time Ray-
casting and Advanced Shading of Discrete Isosurfaces.” In Proceedings of Eurographics
2005.

Harlow, F., and J. Welch. 1965. “Numerical Calculation of Time-Dependent Viscous
Incompressible Flow of Fluid with Free Surface.” Physics of Fluids 8, pp. 2182–2189.

Harris, Mark J. 2004. “Fast Fluid Dynamics Simulation on the GPU.” In GPU Gems,
edited by Randima Fernando, pp. 637–665. Addison-Wesley.

Harris, Mark, William Baxter, Thorsten Scheuermann, and Anselmo Lastra. 2003.
“Simulation of Cloud Dynamics on Graphics Hardware.” In Proceedings of the
SIGGRAPH/Eurographics Workshop on Graphics Hardware 2003, pp. 92–101.

Kass, Michael, Aaron Lefohn, and John Owens. 2006. “Interactive Depth of Field
Using Simulated Diffusion on a GPU.” Technical report. Pixar Animation Studios.
Available online at http://graphics.pixar.com/DepthOfField/paper.pdf.

Krüger, Jens, and Rüdiger Westermann. 2003. “Linear Algebra Operators for GPU
Implementation of Numerical Algorithms.” In ACM Transactions on Graphics (Pro-
ceedings of SIGGRAPH 2003) 22(3), pp. 908–916.

Lefohn, A. E., J. M. Kniss, C. D. Hansen, and R. T. Whitaker. 2004. “A Streaming
Narrow-Band Algorithm: Interactive Deformation and Visualization of Level Sets.”
IEEE Transactions on Visualization and Computer Graphics 10(2).

Li, Wei, Zhe Fan, Xiaoming Wei, and Arie Kaufman. 2005. “Flow Simulation with
Complex Boundaries.” In GPU Gems 2, edited by Matt Pharr, pp. 747–764.
 Addison-Wesley.

Liu, Y., X. Liu, and E. Wu. 2004. “Real-Time 3D Fluid Simulation on GPU with
Complex Obstacles.” Computer Graphics and Applications.

Lossasso, F., T. Shinar, A. Selle, and R. Fedkiw. 2006. “Multiple Interacting Liquids.”
In ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH 2006) 25(3).

Müller, Matthias, David Charypar, and Markus Gross. 2003. “Particle-Based Fluid
Simulation for Interactive Applications.” In Proceedings of the 2003 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 154–159.

Nguyen, D., R. Fedkiw, and H. W. Jensen. 2002. “Physically Based Modeling and
Animation of Fire.” In ACM Transactions on Graphics (Proceedings of SIGGRAPH
2002) 21(3).

Chapter 30 Real-Time Simulation and Rendering of 3D Fluids

530_gems3_ch30 7/5/2007 9:05 PM Page 674

Pharr, Matt, ed. 2005. “Part IV: General-Purpose Computation on GPUs: A Primer.”
In GPU Gems 2. Addison-Wesley.

Sander, P. V., N. Tatarchuk, and J. Mitchell. 2004. “Explicit Early-Z Culling for Effi-
cient Fluid Flow Simulation and Rendering.” ATI Technical Report.

Scharsach, H. 2005. “Advanced GPU Raycasting.” In Proceedings of CESCG 2005.

Selle, A., R. Fedkiw, B. Kim, Y. Liu, and J. Rossignac. 2007. “An Unconditionally Sta-
ble MacCormack Method.” Journal of Scientific Computing (in review). Available
online at http://graphics.stanford.edu/~fedkiw/papers/stanford2006-09.pdf.

Sethian, J. A. 1999. Level Set Methods and Fast Marching Methods: Evolving Interfaces in
Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science.
Cambridge University Press.

Sigg, Christian, and Markus Hadwiger. 2005. “Fast Third-Order Texture Filtering.” In
GPU Gems 2, edited by Matt Pharr, pp. 307–329. Addison-Wesley.

Stam, Jos. 1999. “Stable Fluids.” In Proceedings of SIGGRAPH 99, pp. 121–128.

Wu, E., Y. Liu, and X. Liu. 2004. “An Improved Study of Real-Time Fluid Simulation
on GPU.” In Computer Animation and Virtual Worlds 15(3–4), pp. 139–146.

Ziegler, G., A. Trevs, C. Theobalt, and H.-P. Seidel. 2006. “GPU PointList Generation
using HistoPyramids.” In Proceedings of Vision Modeling & Visualization 2006.

30.5 References 675

530_gems3_ch30 7/5/2007 9:05 PM Page 675

Chapter 38

38.1 Introduction 831

38.1 Introduction
The main goal of earth exploration is to provide the oil and gas industry with knowledge
of the earth’s subsurface structure to detect where oil can be found and recovered. To do
so, large-scale seismic surveys of the earth are performed, and the data recorded undergoes
complex iterative processing to extract a geological model of the earth. The data is then
interpreted by experts to help decide where to build oil recovery infrastructure.

The state-of-the-art algorithms used in seismic data processing are evolving rapidly, and
the need for computing power increases dramatically every year. For this reason,
 CGGVeritas has always pioneered new high-performance computing (HPC) technolo-
gies, and in this work we explore GPUs and NVIDIA’s CUDA programming model to
accelerate our industrial applications.

The algorithm we selected to test CUDA technology is one of the most resource-inten-
sive of our seismic processing applications, usually requiring around a week of processing
time on a latest-generation CPU cluster with 2,000 nodes. To be economically sound at
its full capability for our industry, this algorithm must be an order of magnitude faster.
At present, only GPUs can provide such a performance breakthrough.

Imaging Earth’s
Subsurface Using CUDA
Bernard Deschizeaux
CGGVeritas

Jean-Yves Blanc
CGGVeritas

638_gems3_ch38 7/5/2007 9:44 PM Page 831

832

After much analysis and testing, we were able to develop a fully parallel prototype using
GPU hardware to speed up part of our processing pipeline by more than a factor of ten.
In this chapter, we present the algorithms and methodology used to implement this
seismic imaging application on a GPU using CUDA. It should be noted that this work
is not an academic benchmark of the CUDA technology—it is a feasibility study for
the industrial use of GPU hardware in clusters.

38.2 Seismic Data
A seismic survey is performed by sending compression waves into the ground and record-
ing the reflected waves to determine the subsurface structure of the earth. In the case of a
marine survey, like the one shown in Figure 38-1, a ship tows about ten cables equipped
with recording systems called hydrophones that are positioned 25 meters apart. Also at-
tached to the ship is an air gun used as the source of the compression waves.

To acquire seismic data, the ship fires the air gun every 50 meters, and the resulting
compression waves propagate through the water to the sea floor and beyond into the
subsurface of the earth. When a wave encounters a change of velocity or density in the

Chapter 38 Imaging Earth’s Subsurface Using CUDA

6
–1

2
ca

b
le

s
30

0
–

50
0m

Ship

Air Gun
Source

6–9km
300+ Hydrophones D

ep
th

Sea

Acquisition Cable

Earth

Figure 38-1. Marine Seismic Data Acquisition
A vessel fires an air gun to generate a compression wave that propagates down to the earth and
generates reflection waves recorded by hydrophones attached to cables behind the ship.

638_gems3_ch38 7/5/2007 9:44 PM Page 832

earth media, it splits in two, one part being reflected back to the surface while the other
is refracted, propagating further into the earth (see Figure 38-1). Therefore, each layer of
the subsurface produces a reflection of the wave that is recorded by the hydrophones.
Because sound waves propagate through water at about 2,500 m/s and through the earth
at 3,000 to 5,000 m/s, recording reflection waves for about four seconds after the shot
provides information on the earth down to a depth of about 10 to 20 km.

A typical marine survey covers a few hundred square kilometers, which represents a few
million shots and several terabytes of recorded data. Processing this amount of data for
many studies in parallel is the core business of CGGVeritas processing centers through-
out the world. Due to its very low initial signal-to-noise ratio and the large data size,
seismic data processing is extremely demanding in terms of processing power. As illus-
trated by the image in Figure 38-2, CGGVeritas computing facilities consist of PC
clusters of several thousand nodes, providing more than 300 teraflops of computing
power and petabytes of disk space.

To support increasing survey sizes and processing complexity, our computing power needs
to grow by more than a factor of two every year (see the graph in Figure 38-2). Further-
more, heat limitations have forced CPU manufacturers to limit future clock frequencies
to around 4 GHz. Increasing the size of clusters in data centers can be realistic for only a
short period of time, and this problem enforces the need for new technologies. Therefore,

38.2 Seismic Data 833

2001 2002 2003 2004 2005 2006

140

120

100

80

60

40

20

0

T
fl

o
p

s

Figure 38-2. Computing Capability Is a Critical Aspect of Our Domain
Our growing trend presented here, color coded according to each different hardware, shows that
whenever the technology was available (before 2005), our growth more than doubled every year.
The dashed curve gives a reference for exponential growth. As CPU clock frequencies reach a limit,
we start to fall below this curve, and only the use of new hardware like GPUs allows us to maintain
necessary computing power.

638_gems3_ch38 7/5/2007 9:44 PM Page 833

834

we believe mastering new computing technologies such as general-purpose computing on
GPUs is critically important for the future of seismic data processing.

38.3 Seismic Processing
The goal of seismic processing is to convert terabytes of survey data into a 3D volume
description of the earth’s subsurface structure. A typical data set contains billions of
vectors of a few thousand values each, where each vector represents the information
recorded by a detector at a specific location and specific wave shot.

The first step in seismic data processing is to correctly position all survey data within a
global geographic reference frame. In a marine survey, for instance, we need to take into
account the tidal and local streams that shift the acquisition cables from their theoretical
straight-line position, and we also need to include any movement of the ship’s position.
All of the data vectors must be positioned inside a 100 km2 region at a resolution of
1 meter. Many different positioning systems, both relative and global, are used during
data acquisition, and all such position information is included in this processing step.

After correcting the global position for all data elements, the next step is to apply signal
processing algorithms to normalize the signal over the entire survey and to increase the
signal-to-noise ratio. Here we correct for any variation in hydrophone sensitivity that
can lead to nonhomogeneous response between different parts of the acquisition cables.
Band-limited deconvolution algorithms are used to verify the known impulse response
of the overall acquisition process. Various filtering and artifact removal steps are also
performed during this phase. The main goal of this step is to produce data that coher-
ently represents the physics of the wave reflection for a standard, constant source.

The last and the most important and time-consuming step is designed to correct for
the effects of changing subsurface media velocity on the wave propagation through the
earth. Unlike other echoing systems such as radar, our system has no information about
the propagation velocity of the media through which the compression waves travel.
Moreover, the media are not homogeneous, causing the waves to travel in curves rather
than straight lines, as shown in Figure 38-3a. Therefore, the rather simple task for radar
of converting the time of the echo arrival into the distance of the reflection is, in the
seismic domain, an extremely complex, inverse problem. To further complicate the

Chapter 38 Imaging Earth’s Subsurface Using CUDA

638_gems3_ch38 7/5/2007 9:44 PM Page 834

process, more than one reflection occurs after a wave shot, so the recorded signal can in
fact be a superposition of many different reflections coming from different places.

Because the velocity field is initially unknown, we generally start by assuming a rather
simple velocity model. Then the migration process gives us a better image of the earth’s
subsurface that allows us to refine the velocity field. This iterative process finally con-
verges toward our best approximation to the exact earth reflectivity model.

At the end of the processing, the 3D volume of data is far cleaner and easier to under-
stand. Some attributes can be extracted to help geologists interpret the results. Typically
the impedance of the media is one of those attributes, as well as the wave velocity, the
density, and the anisotropy. Figure 38-4 gives an overview of what the data looks like
before and after the processing sequence. Also shown is an attribute map representing
the wave velocity at a particular depth of the seismic survey. Different rock types have
different velocities, so velocity is a good indicator to look for specific rocks such as
sand. In the particular case of Figure 38-4c, low velocities (in blue) are characteristic of
sand, here from an old riverbed. As a rock, sand is very porous and is typically a good
location to prospect for oil.

38.3 Seismic Processing 835

Figure 38-3. Ray Tracing for a Single Reflector (Bottom) Through the Earth, Modeled by a Velocity
Field Display in Color
(a) We can clearly see how velocity variations bend the rays even for a rather smooth velocity
model. (b) In some cases, the velocity changes are extremely complex and nonhomogeneous, and
the wave propagation is extremely difficult to model, especially because we would need to
compute billions of rays.

638_gems3_ch38 7/5/2007 9:44 PM Page 835

836

38.3.1 Wave Propagation
For a perfect theoretical seismic data set, the recorded signal rx of the wave propagation
from a specific source Si recorded by a hydrophone Gj after a reflection of amplitude Rx

at the 3D location x(x, y, z) can be expressed as follows:

where Ws is the source signal, Pix is the operator that propagates the wave from the
source position i to the reflection position x through the velocity field V, and Pxj is the
operator that propagates the reflected wave from x to the recorder position j.

To model the complete seismic recording by one receiver, we need to integrate the
Equation 1 for all possible reflection positions—that is, integrate on the whole 3D
volume of x values:

S P RC x P Wj xj
V

ix
V

s= () ⋅ ()()⎡⎣ ⎤⎦∫ earth

x

, (2)

r P R P Wx xj
V

x ix
V

s= ⋅ ()(), (1)

Chapter 38 Imaging Earth’s Subsurface Using CUDA

Figure 38-4. A Seismic Processing Example
(a) Raw data recorded during a land survey in Germany showing the poor signal-to-noise ratio and
the lack of calibration. (b) A vertical section of about 10 km wide and 5 km deep in the final 3D
result shows the layered structure of the earth. (c) This map represents an attribute extracted at a
particular depth from a final seismic data set. This attribute is used to distinguish between sand
and shale rocks (blue versus green) around a winding shape, which is the remaining channel
imprint of a 70-million-year-old river buried under 10 km of earth.

638_gems3_ch38 7/5/2007 9:44 PM Page 836

where Sj is the seismic recording at position j and RCearth is the reflectivity model of the
earth we are looking for. The complexity should be apparent now, because each of the
hundreds of millions of data vectors may include information from the whole earth
area in a way that depends on the velocity field. Note that in practice the velocity is
around a few kilometers per second. Thus if we record wave reflection for a few sec-
onds, only the earth approximately 10 km around the receiver position will contribute
to the signal.

It is not realistic to use a brute-force approach to solve this inverse problem, but it can
be simplified if we use the property of the propagation operator: Pij(Pji(a)) = I. That is,
propagation from source to reflection point and back to the source position should give
the initial result (that is, there should be no dissipation). From Equation 1 we can see
that

And if we consider all the possible contributions to a specific record—that is, summing
up all contributions for all x locations—we can write this:

Hence, the recorded seismic signal Sj , taken as a source and propagated through the
earth at all possible x locations, is equal to the earth reflectivity model convolved by the
initial source shot propagated to any possible reflection position in the earth. It is then
clear that if we correlate both sides of this equation by

and sum up information from all receivers for each source, we may extract the earth
reflectivity model:

where ∗ is the correlation operator, and using

Hence, if we propagate the source wave through the earth to all reachable positions x,
and correlate the result with the recorded data back-propagated to the same x location,

P Pix
V

ix
VW Ws

x

s

x

()⎡⎣ ⎤⎦ ∗ ()⎡⎣ ⎤⎦ =∫ ∫ 1.

Pix
V Ws

x

()⎡⎣ ⎤⎦∫

Pjx
V S RC W RC Wj earth s

x

earth s

x

() = () ()⎡⎣ ⎤⎦ = ⊗ ()⎡⎣ ⎤⎦∫ ∫
x

ix
V

ix
Vx P P. ∫∫ . (4)

P r P P R .P W R .P Wjx
V

x jx
V

xj
V

x ix
V

s x ix
V

s()= ()()() = (). (3)

RC W Searth s j

xjxs

= () ∗ ()
⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥

∫∑∫∑ P Pix
V

jx
V ,

38.3 Seismic Processing 837

638_gems3_ch38 7/5/2007 9:44 PM Page 837

838

we only have to sum up results for all sources and all receivers to obtain the earth reflec-
tivity model. Note that in practice we need to take into account the dispersive effect of
the propagation, as well as the fact that the data is band limited. Also, because the ve-
locity field is initially unknown, we need to start with an initial guess (based on expert
knowledge of the area) to compute a first reflection model and then refine our velocity
field by interpreting the results in terms of the geological structure. (See Yilmaz 2001
and Sherifs 1984 for more information.)

38.3.2 Seismic Migration Using the SRMIP Algorithm
In the case of the CGGVeritas algorithm, called SRMIP, that we want to develop using
CUDA, the wave propagation is performed using a finite-difference algorithm applied
in the frequency domain.

As presented earlier, the seismic data is composed of a succession of wave shots. Each
wave shot is recorded as a 3D volume (x, y, t) where x and y represent the receiver loca-
tion and t the recording time. This data is transformed into frequency planes by apply-
ing a Fast Fourier Transform on the time axis. For each frequency plane, we want to
propagate the source wave (called the downgoing wave) and the seismic data (called the
upgoing wave) from the surface (depth = 0) to the maximum depth we want to image.
The propagation (also called downward extrapolation) is carried out from one depth to
the next by applying spatial convolution using finite-length filters.

The SRMIP algorithm relies on a method to take advantage of the circular symmetry of
the wave propagator filter: the radial response of the filter is expanded as a polynomial
in the Laplacian, which is approximated by the sum of two 1D filters (approximating
the second derivative k 2

x and k 2
y):

and approximate the exact extrapolation operator:

by a polynomial G(L):

where w is the frequency considered, v the velocity, and L the Laplacian.

G L b n Ln

n

n N

() = ()
=

=

∑ w v
0

,

G L i z
L0

2

2

1

2
() =

−

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟
exp Δ

w

v

L d n n xk d n n ykx x
n

n N

y y
n

n N
Lx Ly

= () () + () ()
=

=

=

=

∑ ∑cos cosΔ Δ
0 0

Chapter 38 Imaging Earth’s Subsurface Using CUDA

638_gems3_ch38 7/5/2007 9:44 PM Page 838

Because we want to extrapolate the wave in an iterative way for all depth values starting
from the surface, the choice of the filter parameterization is critical for the stability of
the results. To optimize the coefficients of the polynomials, we use the L∞ norm, be-
cause the stability condition is expressed more easily in this norm. In our SRMIP algo-
rithm, we use an expression of the extrapolator using Chebyshev polynomials (see
Soubaras 1996 and Hall 1991 for details):

where Tn(x), the Chebyshev polynomial of degree n, is defined by Tn(x) = cos(n arccos x)
and can be recursively computed using the formula:

The degree of the polynomial expansion (that is, the parameter N) is about 15, which
means that to propagate the wave from one depth to the next we need to apply a
Chebyshev polynomial of Laplacian filter 15 times, recursively.

The pseudocode given in Listing 38-1 shows the implementation of the extrapolator to
propagate the wave from one depth to the next. For obvious efficiency reasons, the
iterative calculation of the Chebyshev polynomial is computed directly and applied to
every point of the input wave grid, saving an operation in the internal loop.

The SRMIP algorithm has a high degree of parallelism. This is because the basic opera-
tion is a simple 1D convolution with a constant short filter (approximating the second
derivative). The fact that the Chebyshev recursion is not intrinsically parallel is not in
this case a problem, because the parallelism is achieved across independent grid ele-
ments. Note that for a parallel implementation, some potential improvements that
decrease the number of operations at the cost of a more complex data structure—such
as making the degree of the polynomials or the length of the second derivative filters
vary with the frequency—are not automatically advantageous.

Figure 38-5 gives an example of results obtained by applying the SRMIP algorithm to
seismic data. Beyond the general quality improvement, we can see that the results are
particularly improved where the earth structure is complex. For instance, the salt body in
the top of the earth section has a very high velocity compared to the other surrounding
rocks. Therefore, before migration, all data below the salt is not properly focused and
appears almost random. After migration, as the propagation within different velocity
media has been properly handled, the earth structure below the salt appears.

T x xT x T xn n n() = () − ()− −2 1 2 .

G L t n T Lc n
n

n N

() = () ()
=

=

∑ w / ,
0

38.3 Seismic Processing 839

638_gems3_ch38 7/5/2007 9:44 PM Page 839

840

Listing 38-1. Pseudocode of the Extrapolator

The input Wave grid is convolved recursively with two 1D Laplacian filters to produce the
propagated Wave1 grid at the next depth.

T(x,y) = Wave(x,y);
TT(x,y)=Laplacian⊗Wave(x,y);
Wave1(x,y) = aw/v(1,x,y)*T(x,y) + aw/v(2,x,y)*TT(x,y);
for (n = 2; n < NMAX; n++)
{
// Compute the Chebyshev polynomial TTT
// using the two previous stored values TT and T.
TTT(x,y)=2*Laplacian⊗TT(x,y)–T(x,y);

// Add the contribution of the iteration to the results.
Wave1(x,y) += aw/v(n,x,y)*TTT(x,y);

// Store Chebyshev results for next iteration.
T(x,y) = TT(x,y);
TT(x,y)= TTT(x,y);

};

Chapter 38 Imaging Earth’s Subsurface Using CUDA

50km 50km

D
ep

th
 ~

10
km

Salt BodySalt Body
Salt BodySalt Body

Salt Body

FaultFault FaultFaultFault

Before Migration

Salt Body

Fault

After Migration

(a) (b)

Figure 38-5. The Impact of the Migration Algorithm on a Data Set
(a) The high-velocity salt body blurs the image below. (b) After migration, information below the
salt is correctly focused and reveals the earth’s structure.

638_gems3_ch38 7/5/2007 9:44 PM Page 840

38.4 The GPU Implementation
Selecting algorithms for GPU implementation can be difficult, especially without expe-
rience in GPU programming. In our seismic processing sequence, there are several im-
portant considerations. For example, the algorithms we port to the GPU are part of an
industrial application already running in parallel on a large cluster. Therefore, our goal
is an application running on the same kind of cluster but with graphics cards installed
in every node. Furthermore, a significant part of the application that deals with all
cluster parallelization and efficient data management cannot be changed to accommo-
date the GPU programming model.

The pseudocode in Listing 38-2 illustrates another consideration. Clearly, the overall
benefit of GPU acceleration is limited by the percentage of total execution time attrib-
uted to each computational kernel. This code shows the general structure of the
SRMIP program that runs independently on every node of the cluster. Each instance of
the program (one per processor core) processes a group of seismic shots in sequence and
produces a contribution to the final image. Profiling the program with standard param-
eters shows that 65 percent of the CPU time is consumed in the wave propagation,
while all the interpolation routines used 20 percent, and the final correlation and sum-
mation use 5 percent. The interpolation step has been added to reduce processing time
for the wave propagation. Therefore, it is possible that this step could be removed, de-
pending on how much we accelerate the wave propagation.

Listing 38-2. Pseudocode of the Algorithm Showing the Main Loops and Steps of the Process

// uwave = upward wave; dwave = downward wave
// Frequency loop ~ 1000 iterations
for (freq = 0; freq < freq_max; freq++)
{
Read_frequency_plane(uwave,dwave,nx,ny);

// Depth loop ~ 1000 iterations
for (z = 0; z < depth_max; z = z+dz)
{
Read_velocity_scalar_field(velocity,nx,ny,z);

// Propagate uwave and dwave from z to z+dz
// by applying N time (N~15) Laplacian operator.
for (i=0; i < N ; i++)
{
convolution(uwave,velocity,nx,ny,z,dz);
convolution(dwave,velocity,nx,ny,z,dz);

}

38.4 The GPU Implementation 841

638_gems3_ch38 7/5/2007 9:44 PM Page 841

842

Listing 38-2 (continued). Pseudocode of the Algorithm Showing the Main Loops and Steps of the
Process

// Interpolate uwave and dwave between z and z +dz.
interpolate_wave_over_dz(uwave,velocity,nx,ny,z,z+zd);
interpolate_wave_over_dz(dwave,velocity,nx,ny,z,z+zd);

for (zz = z; zz < Z+dz; z++)
{
// Interpolate uwave and dwave on output grid.
Interpolat_xy(uwave,nx,nx,zz,fnx,fny,final_uwave);
Interpolat_xy(dwave,nx,nx,zz,fnx,fny,final_dwave);

// Convolve the two waves and sum results.
sum_udwave(final_uwave,final_dwave,fnx,fny,zz,result);

}
}

}

In addition to focusing GPU implementation efforts on the most time-consuming
parts of our application, it is equally if not more important to consider the amount of
parallelism inherent in our algorithms. Indeed, the CUDA programming model is
designed to let users exploit the massive data-parallel processing power of the GPU, so
to achieve high performance, we have to choose algorithms with significant data paral-
lelism. In the case of the SRMIP algorithm, the typical grid size we need to process is
400×400 elements, which is determined by the spatial extent of the wave propagation.
The data grids correspond to 25 m spacing within a 100 km2 region, which results in
parallelism of roughly 160,000 independent operations. This is more than enough to
make efficient use of modern GPUs.

38.4.1 GPU/CPU Communication
A potential problem for GPU-based seismic processing is the cost of GPU/CPU com-
munication. Looking at the general trend of hardware evolution, we predict the GPU
will roughly double in performance every year. However, for data transfer between the
CPU and GPU (currently using PCIe), the increase in performance is far less impres-
sive. We can expect the PCIe bandwidth to increase by 2× every two or three years at
best. Therefore, if we want to design implementations that scale with future GPU per-
formance, we have to avoid potential communication bottlenecks.

Chapter 38 Imaging Earth’s Subsurface Using CUDA

638_gems3_ch38 7/5/2007 9:44 PM Page 842

By analyzing the data flow of our code and taking into account the large memory avail-
able on NVIDIA Quadro FX 5600 hardware (1.5 GB), we were able to develop a com-
munication schema where almost all the relevant data is stored on the GPU. As shown
in Listing 38-3, frequency planes are sent one by one to the GPU, which then com-
putes the two waves to be propagated for all depths and interpolates the results in the x,
y, and z directions. Only the final result after summing all contribution will have to be
sent back to the CPU.

Listing 38-3. Pseudocode Showing the Proposed Communication Scheme

// Frequency loop ~ 1000 iterations
for (freq=0; freq < freq_max; freq++)
{
Read_frequency_plan(uwave,dwave,nx,ny);

// Send frequency plan (~2 x 1.3 MB).
Send_freqplan_to_GPU(uwave,dwave,nx,ny);
// Depth loop ~ 1000 iterations
for (z=0; z < depth_max; z=z+dz){
Read_velocity_field(velocity,nx,ny,z);
// Send velocity field (~0.6 MB).
Send_Velocity_to_GPU(velocity,nx,ny);
for (i=0; i < N ; i++)
{
convolution(uwave…); //(on the GPU)
convolution(dwave…); //(on the GPU)

}
interpolate_wave_over_dz(uwave…); //(on the GPU)
interpolate_wave_over_dz(dwave…); //(on the GPU)
for (zz = z; zz < Z+dz; z++)
{
// Interpolate uwave and dwave on output grid.
Interpolat_xy(uwave…); //(on the GPU)
Interpolat_xy(dwave…); //(on the GPU)
// Convolve the two waves and sum results.
sum_udwave(uwave,dwave…); //(on the GPU)

}
}

}
// Get back results (~1.3 GB)
Receive_image_result(result,nx,ny,nz);

38.4 The GPU Implementation 843

638_gems3_ch38 7/5/2007 9:44 PM Page 843

844

According to our profiling, the CPU time to compute one depth value is about 30 ms,
and the total time of the depth loop is about half a minute. Taking that into account, we
can easily compute the throughput needed by our communication scheme and check
that we are within PCIe bandwidth limits. Even the velocity transfer (in the inner loop)
is around 20 MB/s, which is far below the communication bottleneck even if the GPU
implementation is an order of magnitude more efficient than the CPU version.

The 1.5 GB of memory on the NVIDIA Quadro FX 5600 is of great advantage here.
Considering that standard cluster nodes have only a few gigabytes of memory to be
shared between two to four processor cores, most of the data set handled in memory by
one core on the CPU should fit in the GPU memory.

38.4.2 The CUDA Implementation
NVIDIA’s CUDA technology provides a flexible programming environment that allows
us to address each of the considerations outlined in the last section. After analyzing our
core algorithm and the global framework of the GPU, we split our 12 most compute-
intensive CPU routines into four separate kernels to be implemented using CUDA.
The four kernels more or less correspond to the four routines shown in the pseudocode
in Listing 38-3.

All four target algorithms perform local computations on a grid by applying a small oper-
ator to every grid element. We divide the computational grid into 2D tiles that map
nicely to CUDA’s grid of thread blocks. Each kernel loads a tile of grid data from global
memory and caches the data in shared memory for further processing. The main advan-
tage of shared memory is its extremely high bandwidth compared to global GPU mem-
ory. For three of the kernels, we load the data directly from GPU memory using standard
arrays. For the wave propagation algorithm, we use CUDA’s texture extensions as a read
path to GPU memory. By using texture, we take advantage of hardware caching and au-
tomatic boundary handling, which is otherwise difficult and costly to implement in the
kernel code. Because the convolution kernel is applied recursively, storing an extra copy of
the outputs back into a texture was necessary between iterations.

The GPU code for our algorithms is quite straightforward, because CUDA is a C-based
language. However, the G80 architecture has several performance constraints that make
optimization somewhat complicated. For example, G80 has 8,000 32-bit registers per
multiprocessor, which limits the register count for each kernel. For example, if a kernel
executes on 256 threads running in parallel, each thread can use only 32 registers before
reaching the limit. In many cases, it is necessary to optimize around this problem in

Chapter 38 Imaging Earth’s Subsurface Using CUDA

638_gems3_ch38 7/5/2007 9:44 PM Page 844

one of two ways. First, we can simply reduce the kernel complexity (that is, the code
size) to decrease register pressure and complete the algorithm using multiple passes.
The second, and many times more successful, approach is to adjust the number of
threads in a thread block. In this case, the range of useful thread counts is limited not
only by the available registers but also by the fact that we need enough threads to hide
memory latency (for example, global loads).

Our experience implementing kernels in CUDA is that the most efficient thread con-
figuration partitions threads differently for the load phase and the processing phase.
The load phase is usually constrained by the need to access the device memory in a
coalesced way, which requires a specific mapping between threads and data elements.
During processing, however, we try to organize the workload in such a way that threads
do as much processing as possible—at least around 30 operations per byte of data
loaded.

38.4.3 The Wave Propagation Kernel
As previously mentioned, our processing time is dominated by the wave propagation
operator. Practically, the wave at a given depth is extrapolated to the next depth using
the iterative process described in Section 38.3.2 and Listing 38-1. The iteration loop
executes on the CPU; the GPU kernel is mainly in charge of the convolution of the
wave grid by the Laplacian filter. In addition, at each iteration, the velocity field at each
grid position is used to index into a lookup table and scale the input wave by the poly-
nomial coefficients.

Figure 38-6 provides a graphic illustration of how we partition CUDA threads for data
loading and convolution with the cross-shaped filter kernel. For loading, warps for a
thread block are distributed across a 2D tile region of the computational grid. We use a
tile size of 48×32 elements and thread block dimensions of 48×8, so threads with the
same y component spread out such that each thread reads four complex frequency coef-
ficients in a vertical column. The data covered by each tile represents a portion of the
actual frequency plane as well as a support region (that is, the boundary elements) de-
termined by the cross-filter radius. After storing the tile in shared memory, we synchro-
nize all threads in the block and move to the processing phase. The radius of the
convolution filter is four elements, so the output tile is 40×24. Therefore, we redistrib-
ute the thread warps so that each thread computes filtered results for three elements.
This approach allows us to use all threads in the block for loading and most threads for
processing. The less efficient alternative would be to disable more threads before pro-
cessing, so that each thread outputs four elements.

38.4 The GPU Implementation 845

638_gems3_ch38 7/5/2007 9:44 PM Page 845

846

In addition to giving us an efficient mapping between threads and elements for the load
and processing phases, the 48×32 tile size fits nicely within certain resource constraints in
the GPU. For example, the G80 architecture has 16 KB of shared memory per multi -
processor. Our tile size (for complex data) takes about 12 KB, so this configuration uses a
majority of the shared memory for filtering. A slightly smaller tile size that still uses more
than half the available shared memory is less efficient because it prevents multiple thread
blocks from running in parallel. Another advantage of this tile size involves coalescing
constraints for global memory. In general, it is easier to reason about alignment require-
ments for fast memory access if the thread block width is a multiple of the SIMD width
of the GPU, which for G80 is 16 threads. Finally, it is important to have enough threads
in the machine to hide memory latencies, and a 48×8 thread block gives 384 threads,
which, in our experience, is plenty of parallelism for G80.

Listing 38-4 shows CUDA C code for the wave propagation kernel used in our SRMIP
algorithm. The structure of the code reflects the thread configuration discussed previ-
ously. See the comments for a description of the constant terms used in the code. As
explained previously, for this kernel we load the input data using CUDA’s 2D texture
extension. We also read the lookup table through 2D texture, because we need to get
efficient, almost random, access to the polynomial coefficients. The cross-shaped filter
is stored in CUDA’s constant memory.

Chapter 38 Imaging Earth’s Subsurface Using CUDA

(a) (b)

Warp Warp

Data Processed per Thread Blocks:
40x24 Complex Values

Data Loaded per Thread Block:
48x32 Complex Values

Figure 38-6. Two Thread Organization Strategies for the Convolution Kernel
For data loading, 48×8 thread blocks load 48×32 tiles of complex values. This means each thread
loads four values in a column from global memory and writes them to shared memory. For the
processing phase, the output tile is 40×24 elements (disregarding the filter support region). In
this case, each thread performs a convolution for three output elements in a column.

638_gems3_ch38 7/5/2007 9:44 PM Page 846

Listing 38-4. CUDA C Code for Our Convolution-Based Wave Propagation Algorithm

__global__ void Convo(float2 *odata1, float2 *odata2,
int id, int nx, int ny)

{
// TW is the logical tile width (40 elements).
// TH is the logical tile height (24 elements).
// RW is the tile width including the filter support region.
// IT is the number of input elements per thread (4).
// OT is the number of output elements per thread (3).
// FR is the convolution filter radius (4 elements).

// Compute local and global thread locations.
int ltidx = threadIdx.x;
int ltidy = threadIdx.y * IT;
int gtidx = blockIdx.x * TW + ltidx - FR;
int gtidy = blockIdx.y * TH + ltidy - FR;
int tltid = ltidy * RW + ltidx;

float2 term;
int i;
// Each thread reads 4 input values from global memory.
// The loop is for clarity and should be unrolled for efficiency.
for (i = 0; i < 4; i++) {
term = texfetch(itexref, gtidx, gtidy + i);
smem[tltid] = term.x;
smem[tltid + IO] = term.y;
tltid += RW;

}

__syncthreads();

// Each thread compute results for 3 output values.
if (ltidx < TW) {
int rtlt = (threadIdx.y * OT + FR) * RW + (ltidx + FR);
int itlt = rtlt + IO;
int gthx = blockIdx.x * TW + ltidx;
int gthy = blockIdx.y * TH + threadIdx.y * OT;
int rind = gthy * nx + gthx;
int index;
float vel, floorvel, residus;
float2 term0, term1, temp, temp2;

38.4 The GPU Implementation 847

638_gems3_ch38 7/5/2007 9:44 PM Page 847

848

Listing 38-4 (continued). CUDA C Code for Our Convolution-Based Wave Propagation Algorithm

// Compute one element for 3 consecutive lines.
if (gthx < nx) {
// The loop is for clarity and should be unrolled for efficiency.
for (i = 0; i < 3; i++) {
if (gthy < ny) {
temp = texfetch(otexref, gthx , gthy);
temp.x = (smem[rtlt- 4] + smem[rtlt+ 4])*coeff_X[4] +

(smem[rtlt- 3] + smem[rtlt+ 3])*coeff_X[3] +
(smem[rtlt- 2] + smem[rtlt+ 2])*coeff_X[2] +
(smem[rtlt- 1] + smem[rtlt+ 1])*coeff_X[1] +
(smem[rtlt-4*RW] + smem[rtlt+4*RW])*coeff_Y[4] +
(smem[rtlt-3*RW] + smem[rtlt+3*RW])*coeff_Y[3] +
(smem[rtlt-2*RW] + smem[rtlt+2*RW])*coeff_Y[2] +
(smem[rtlt- RW] + smem[rtlt+ RW])*coeff_Y[1] +
smem[rtlt]*(coeff_X[0]+coeff_Y[0]) - temp.x;

temp.y = (smem[itlt- 4] + smem[itlt+ 4])*coeff_X[4] +
(smem[itlt- 3] + smem[itlt+ 3])*coeff_X[3] +
(smem[itlt- 2] + smem[itlt+ 2])*coeff_X[2] +
(smem[itlt- 1] + smem[itlt+ 1])*coeff_X[1] +
(smem[itlt-4*RW] + smem[itlt+4*RW])*coeff_Y[4] +
(smem[itlt-3*RW] + smem[itlt+3*RW])*coeff_Y[3] +
(smem[itlt-2*RW] + smem[itlt+2*RW])*coeff_Y[2] +
(smem[itlt- RW] + smem[itlt+ RW])*coeff_Y[1] +
smem[itlt]*(coeff_X[0]+coeff_Y[0]) - temp.y;

vel = texfetch(vtexref, gthx, gthy);
floorvel = floorf(vel);
index = floorvel;
term0 = texfetch(ltexref, index, id);
term1 = texfetch(ltexref, index + 1, id);
residus = vel - floorvel;
term0.x = term0.x + residus*(term1.x - term0.x);
term0.y = term0.y + residus*(term1.y - term0.y);
temp2 = texfetch(olktexref, gthx, gthy);
temp2.x += term0.x*temp.x - term0.y*temp.y;
temp2.y += term0.x*temp.y + term0.y*temp.x;
odata1[rind] = temp2;
odata2[rind] = temp;

}
rtlt += RW; itlt += RW;
gthy++; rind += nx;

}
}

}
}

Chapter 38 Imaging Earth’s Subsurface Using CUDA

638_gems3_ch38 7/5/2007 9:44 PM Page 848

38.5 Performance
Because of its strategic importance, our wave migration system uses highly optimized
CPU code, especially on Intel platforms. Therefore, our GPU-to-CPU performance
comparison uses a solid reference on the CPU. However, it should be noted that, be-
cause CPU performance for this algorithm does not scale linearly with the number of
cores (mainly because of memory access bottlenecks), we compare our GPU kernel to a
latest-generation CPU with only one core enabled.

Using a synthetic data set with typical input parameters, our CUDA kernels achieve
performance ranging from 8× to 15× over the optimized CPU code. In addition, the
kernels perform equally well on real seismic data sets, where the CUDA code is fully
integrated into our industrial processing sequence. However, it is important to note
that we have not tested the GPU implementation with the full range of input parame-
ters used with the CPU version. The main reason is that the GPU code is designed for
a specific problem size and thread configuration, while the CPU can more easily adapt
to different kinds of user parameters and data characteristics. Even still, the GPU per-
formance is a significant improvement by any measure.

Including all the kernels in the industrial parallel application is an ongoing process, and
many issues still remain to be solved. The algorithm is so time-consuming that even
with a speedup of 15×, a few graphics cards will not meet our processing needs. A clus-
ter solution is mandatory, and on the hardware side, the question of how to design a
cluster including GPUs is still open. What speedup the overall application will finally
achieve and for what hardware price is our main strategic concern for the future.

38.6 Conclusion
With NVIDIA’s CUDA technology, we now have access to a powerful data-parallel
programming model and language for exploring scientific computing on the GPU.
Once mastered, the flexibility of CUDA can be a real advantage when considering the
huge variability of algorithm behavior and data size within the scientific domain. Most
important, the CUDA implementation of our most expensive seismic algorithm is
more than an order of magnitude faster than its CPU version.

In the long term, CPUs are expected to continue to follow Moore’s Law due to the rise
of multicore architectures, while GPUs should be able to roughly double in floating-
point performance twice a year. Another attractive aspect of GPUs is their fast memory,
which outperforms the regular DDR or FBDIMM memory typically used by CPUs.

38.6 Conclusion 849

638_gems3_ch38 7/5/2007 9:44 PM Page 849

850

This proved to be very important for all of our algorithms, because they are already
memory limited on the normal cluster solution. The main drawback with GPUs is the
transfer speed through PCIe, and bus performance is not expected to increase as rapidly
as GPU performance.

There are several factors to consider before building a GPU-based seismic processing
cluster. First, it is simply not practical to deploy a large-scale cluster built with racked
workstations, because it is neither dense enough nor cost-effective. At this point, two
paths can be explored: (1) Classical 1U servers with PCIe slots and a companion external
package (such as NVIDIA’s Quadro Plex) containing the GPUs or (2) a form factor that
includes one or more GPUs on the motherboard. Second, because GPUs need CPUs for
control, it’s important to choose CPUs for each node that are powerful enough to manage
the GPU without becoming a bottleneck. Also, there is the issue of whether PCIe band-
width is enough to drive one or more GPUs per cluster node. Finally, given the scale and
processing time of our algorithms, fault-tolerant hardware is critical in order to recover
from failures and avoid wasting days of processing time. Future generations of GPUs will
need this feature to be viable for inclusion in our processing centers.

Although there are many open questions about how graphics processors can be used in
a large-scale cluster, our work in this chapter shows that GPUs definitively have the
potential to disrupt the current seismic processing ecosystem.

38.7 References
Hall, D. 1991. “3-D Depth Migration via McClellan Transforms.” Geophysics 36,

pp. 99–114.

Sherifs, R. E., ed. 1984. Encyclopedic Dictionary of Exploration Geophysics. Society of
Exploration Geophysicists.

Soubaras, R. 1996. “Explicit 3-D Migration Using Equiripple Polynomial Expansion
and Laplacian Synthesis.” Geophysics 61, pp. 1386–1393.

Yilmaz, O. 2001. Seismic Data Analysis: Processing, Inversion, and Interpretation of Seis-
mic Data (Investigations in Geophysics, No. 10). Society of Exploration Geophysicists.

Chapter 38 Imaging Earth’s Subsurface Using CUDA

638_gems3_ch38 7/5/2007 9:44 PM Page 850

Index

A
A16B16G16R16F particle systems, 516
A8R8G8B8 particle systems, 516
AABB structure, 499
AABBs (axis-aligned bounding boxes)

shadow volumes, 252–253
transformation matrices, 210–211

absorption in skin rendering, 296–297, 306
acceleration

all-pairs N-body simulation, 680–681
min-max distance values, 393–394
normal maps, 493–495
parallel-split shadow maps

DirectX 9-level, 217–220
DirectX 10-level, 220–232

accumulation-buffer techniques, 583
acquiring depth in particle systems, 515–516
adaptive forward differencing, 882
adaptive mesh refinement, 93

ARPs, 95–98
introduction, 93–94
overview, 94–95
rendering, 98–100
results, 100–103

adaptive refinement patterns (ARPs), 95–98
AddRoundKey operation, 793, 796–797
advection

3D fluid effects, 637, 640–643, 646
smoke effects, 659

aerodynamics in wind animations, 108
AES (Advanced Encryption Standard) encryption

and decryption, 785
block-cipher operation modes, 799–801
CBC Mode, 801–802
future work, 802

implementation, 790–797
initialization stage, 793
input/output and state, 791–792
integer stream processing, 786–787
overview, 788–790
parallel processing, 799–802
performance, 797–799
rounds, 793–797

air/liquid interface in water effects, 659–660
aliasing and antialiasing

cinematic relighting, 196
edge detection for, 442
importance sampling, 466
level-of-detail system for, 50
normal maps, 508
parallel-split shadow maps, 206–209
reflections, 401
relief maps, 409–410
scan conversion artifacts, 743
shadow maps, 158, 163
silhouette edge, 86–91
SpeedTree rendering, 85
vector art, 556–558
volumetric light scattering, 278

all-pairs N-body simulation, 677–681
body-body force calculations, 681–682
thread blocks, 683–686
tiles, 681–685, 688–690

all-prefix-sums operation, 851–852
almost complementary LCP solutions, 732
alpha blending

deferred shading, 450–451
particle systems, 520–521
vegetation shading, 378

alpha channels
linearity, 539

Index 909

700_gems3_index 7/5/2007 6:42 PM Page 909

910

alpha channels (continued)
subsurface scattering, 339
texture seams, 331
vegetation animation, 374, 380

alpha to coverage
level-of-detail cross-fading, 85–86
silhouette edge antialiasing, 86–91
SpeedTree rendering, 85

ambient lighting in vegetation shading, 379–380
ambient occlusion, 257

caveats, 270
convergence, 270–271
distance attenuation, 271–272
future work, 273–274
high-frequency pinching artifacts, 261, 263–267
performance, 269
problems, 258–260
procedural terrains, 21–23, 37
results, 267–269
review, 257–258
smoothing discontinuities, 261–263
triangle attenuation, 272–273
tunable parameters, 271–273

amplitude of procedural terrain noise, 15–16
angle-weighted pseudonormals, 751–755
angles in cone step mapping, 415, 417
angular momentum, 613–614, 625
angular velocity, 614, 622
animated crowd rendering, 39

color variations, 50
conditional branching for weights, 45–47
constants-based instancing, 43–44
geometry variations, 48–49
goals, 39
instancing, 40–42
level-of-detail system, 49–50
performance, 50–51

animated textures, 352–353
compression, 356–358
decompression, 358–360
palette skinning, 44–45
practical considerations, 360–362
principal component analysis, 353–356, 360

animation
vegetation. See vegetation
wind. See wind animation

anisotropic filtering
minification artifacts, 158–159
percentage-closer filtering, 160
variance shadow maps, 162–164

anisotropy in skin rendering, 345
annotation in deferred shading, 430, 432
antialiasing. See aliasing and antialiasing
aperture in depth-of-field, 585
ApplyDepthOfField function, 602
approximations

far-field, 692
Fresnel, 301–303
light-bleeding reduction, 168–169
parallel planes, 180
polynomial forward differencing, 882
subsurface scattering, 351–352, 378

architectural limitations in normal maps, 498
ARP pools, 96
ARPs (adaptive refinement patterns), 95–98
arrays

cell ID. See cell ID arrays
parallel prefix sums (scans), 862
texture, 222

artifacts
ambient occlusion, 259–261

discontinuities, 261–263
pinches, 263–267

depth-of-field, 588
minification, 157–158
reflections and refractions, 400–401
scan conversion, 742–747
seismic data processing, 834
shadow, 417
volume rendering, 669–670

Asian options, 823–824
AsianBasket function, 823–824
asperity scattering, 345
asset price models, 825
astrophysical simulations, 680
asynchronous occlusion queries, 254
atom attribute pools, 132–133
attenuation

ambient occlusion, 271–273
texture-space diffusion, 334
volumetric light scattering, 278–279

audience rendering. See animated crowd rendering

Index

700_gems3_index 7/5/2007 6:42 PM Page 910

axis-aligned bounding boxes (AABBs)
shadow volumes, 252–253
transformation matrices, 210–211

B
B-splines, 544
back color in bidirectional lighting, 434–435
back-face distance in volume rendering, 667
baking normal maps. See normal maps
balanced trees, 855
banding in volume rendering, 669–670
bandwidth

3D fluid effects, 660–661
deferred shading, 451–452
seismic data processing, 844
volumetric light scattering, 279, 284

bank conflicts, 859–861
Barnes-Hut method (BH), 678, 692
base color

animated crowd rendering, 50
procedural terrains, 34

baskets in Asian options, 823–824
batch size in AES encryption, 798
Beckmann distribution texture, 302–304
Beer’s Law, 300
bendBranch function, 116
bending vegetation animation, 116, 373–374,

376–378
Bézier control points, 549–551
Bézier convex hulls

antialiasing, 557
overlapping triangles, 555

Bézier form in TrueType data, 544
Bézier patches, 100–101
BH (Barnes-Hut method), 678, 692
biasing in shadow maps, 160, 164–166
bidirectional lighting, 434–435
bidirectional reflectance distribution function

(BRDF)
factoring, 301
Fresnel reflectance, 300–301
importance sampling, 460, 462, 465
skin rendering, 295, 299–305
texture-space diffusion, 333–335

bidirectional surface-scattering reflectance distribu-
tion function (BSSRDF), 344

bidirectional transmittance distribution function
(BTDF), 344

bilinear filtering, 380
bilinear interpolation, 174
billboards, 482–483
binary bounding-volume hierarchy (BVH), 252–

254
binary searches

cone step mapping, 416, 425
relief mapping, 409–410, 413–415
true impostors, 484–486

binary trees, 855, 859
binomial trees, 822
BioSpec model, 344–345
bit depth, 445, 451, 515–516
bit masking, 445
bitwise operations

encryption and decryption, 785
polygon generation, 9
random number generators, 813

Black-Scholes pricing formula, 822
black values in gamma correction, 531
blend shapes

DirectX 10 features, 56
HLSL buffer templates, 60–66
introduction, 53–55
mathematics, 56
meshes, 56–57
performance, 66–67
samples, 66
stream-out, 56–60

blending
deferred shading, 450–451
frame-buffer, 199
particle systems, 520–521
vegetation shading, 378

Blinn-Phong modeling, 295
block ciphers, 788, 799–801
blockers with variance shadow maps, 172,

179
blocks

N-body simulation performance, 688–690
procedural terrains, 8, 12–13, 20–29, 35

bloom filters, 342

Index 911

700_gems3_index 7/5/2007 6:42 PM Page 911

912

blurring
depth-of-field. See depth-of-field (DoF)
Gaussian. See incremental Gaussian computation
subsurface scattering, 314
texture-space diffusion, 316–319
variance shadow maps, 178

bodies
deferred shading, 430
rigid. See rigid body simulation

body-body force calculations, 681–682
bodyBodyInteraction function, 682, 687
border color in parallel-split shadow maps, 217,

230
boundaries in 3D fluid effects, 636

dynamic obstacles, 644–651
voxelization, 651–658

boundary cages, 492–493
bounding boxes

LCP algorithms, 725
oriented, 749–750
shadow volumes, 252–253
transformation matrices, 210–211

bounding volumes
scan conversion, 744–745
sort and sweep, 698

BoundingBox class, 210
box lights, 435
Box-Muller transforms, 806, 815–816
BoxMuller function, 816
branch animation, 110–113
BRDF (bidirectional reflectance distribution func-

tion)
factoring, 301
Fresnel reflectance, 300–301
importance sampling, 460, 462, 465
skin rendering, 295, 299–305
texture-space diffusion, 333–335

Brent’s Theorem, 863
broad-phase collision detection, 697

algorithms, 697–698
performance, 719–721
rigid body, 624
sort and sweep, 698–699
spatial subdivision, 699–702

Brownian motion, 807
BSSRDF (bidirectional surface-scattering

reflectance distribution function), 344

BTDF (bidirectional transmittance distribution
function), 344

buffers
3D fluid effects, 652–653
adaptive mesh refinement, 96–97, 99
blend shapes, 56, 60–66
cinematic relighting, 196
deferred shading, 440–444, 453
extracting object positions from, 576–579
geometry shader unit, 897–898
incremental Gaussian computation, 888
linearity, 541
motion blur, 576–579
parallel prefix sums (scans), 854, 865, 869
parallel-split shadow maps, 221
particle systems, 523–524, 526
point-based metaball visualization, 146
procedural terrains, 9, 12, 27–28
radix sorts, 872
shadow volumes, 240, 242
sparse matrix multiplication, 199
tree rendering, 117
virus signature matching, 778–779

bump mapping
trees, 70
triplanar texturing, 30

buoyant force in smoke effects, 658–659
bus utilization in geometry shader unit, 906
BVH (binary bounding-volume hierarchy), 252–

254

C
calculate_forces function, 684–685
CalculateCropMatrix function, 211, 213–214
calculateGridCoordinate function, 625
calibrated monitors, 538
camera-aligned quads, 199
camera view in particle systems, 514
Carmack’s reverse, 242
Cartesian space in importance sampling, 465
cascaded shadow mapping (CSM), 81
cases in procedural terrains, 9–10
CBC (cipher-block chaining) mode, 800–802
CDF (cumulative distribution function), 462–464
cell ID arrays, 704, 707–708

constructing, 704–706

Index

700_gems3_index 7/5/2007 6:42 PM Page 912

cell ID arrays (continued)
reordering, 715–717
setup and tabulation, 708–713
sorting, 706–717
summation, 712–715

Cell structure, 499
cellIndex2TexCoord function, 638
cellular automata, 611
center of mass in rigid body simulation, 613–614,

621
central coefficients, 886
centroid function, 573
centroids

object detection by color, 567, 570–573
spatial subdivisions, 699

channels
deferred shading, 445
linearity, 539
subsurface scattering, 339
texture seams, 331
vegetation animation, 374, 380

CharacterAnimatedInstancedVS function,
46–47

characteristic polyhedrons, 742
characteristic scan conversion (CSC), 742, 744
Chebyshev approximation, 882
Chebyshev polynomials, 839
Chebyshev’s inequality

parallel-split shadow maps, 232
variance shadow maps, 162

ChebyshevUpperBound function, 163
chunks, radix sort, 871–874
CIColorMatrix filter, 572
cinematic relighting

algorithm overview, 184–185
compression, 189–191
direct illumination, 196
gather samples, 186–188
GPU-based relighting engine, 195–200
multiple bounces, 192–193
one-bounce indirect illumination, 188–189
overview, 183–184
performance, 200–201
sparse matrix data, 193–194
sparse matrix multiplication, 198–200
wavelet transforms, 197–198

cipher-block chaining (CBC) mode, 800–802
ciphertext, 788, 799–801

circle of confusion (CoC) in depth-of-field,
584–590, 594–595

clip function, 593
clipping

ambient occlusion, 264–265
silhouette, 69–71

fin extrusion, 71–72
height tracing, 72–76
level of detail, 76–77

volume rendering, 668–669
cloning, shader, 224–227
closed-form Black-Scholes pricing formula, 822
cloth simulation

rigid body simulation, 611
signed distance fields for, 741

clustering tiles, 683–685
coalesced memory access, 682
CoC (circle of confusion) in depth-of-field, 584–

590, 594–595
coefficient errors, 886–887
coherence based collision detection, 727
collision cell lists, 718–719
collision pairs, 733
collisions and collision detection

all-pairs N-body simulation, 680
broad-phase. See broad-phase collision detection
LCP for. See LCP (linear complementarity prob-

lem) algorithms
procedural terrains, 36
rigid body simulation, 615–618, 624–625
signed distance fields for, 741

color
alpha blending, 520
animated crowd rendering, 50
bidirectional lighting, 434–435
bidirectional reflectance distribution function,

303–304
cone step maps, 425
deferred shading, 452
diffusion profiles, 306
gamma correction, 531–540
geometry shader unit, 898
linearity, 541
object detection by, 563–564, 567–568

centroids, 570–573
compositing images, 573
masks, 568–570

parallel-split shadow maps, 217, 230

Index 913

700_gems3_index 7/5/2007 6:42 PM Page 913

914

color (continued)
particle systems, 518, 525
procedural terrains, 32, 34
rigid body simulation, 623–624
seismic data processing, 835
skin rendering, 344
smoke effects, 658
subsurface scattering, 314
texture-space diffusion, 317, 325–327
two-sided lighting, 82
volume rendering, 666–667
water effects, 660

__color data type, 568
column-based sparse matrix storage, 193
combined Tausworthe generators, 813
compaction in parallel prefix sums (scans), 866–

868
complementarity problem, 729
complementary pivot algorithm, 723
complementary slackness, 729–730
composePS function, 524
compositing techniques

depth-of-field, 583
object detection by color, 573
volume rendering, 667–668

compression
cinematic relighting, 189–191
deferred shading, 445
geometry shader unit, 898–899
principal component analysis, 352, 356–358

computational tiles, 681
computeIrradianceTexture function, 339–340
computeLighting function, 193
ComputeMoments function, 165
computeRhodtTex function, 333–334
computeStretchMap function, 322
conceptual tree structure, 107
conditional branching, 45–47
conditional probability, 464
cone_ratio function, 417
cone step mapping (CSM), 409–410

algorithm, 415–416
relaxed. See relaxed cone stepping (RCS)

CONFLICT_FREE_OFFSET macro, 859–860
conflicts

bank, 859–861
radix sort algorithm, 709

conjugate gradient method, 662

connectivity in rigid body simulation, 611–612
constant buffers

incremental Gaussian computation, 888
procedural terrains, 9

constant filter widths, 178
constants-based instancing, 43–44
constraining particles, 127

density fields, 131
hash construction and querying, 132–135
hash selection, 132
implicit surfaces, 128
velocity constraint equation, 128–131

contact points in LCP algorithms, 726–728
continuous collision detection, 726–727
convergence in ambient occlusion, 270–271
conversions

coordinates, 496–497
normals to tangent space, 506
scan. See scan conversion
uniform-to-Gaussian, 811–815

convex distance calculations, 731–732
Convo function, 847–848
convolution

seismic data processing, 845–846
skin rendering, 298
sum-of-Gaussians diffusion profiles, 319–320
texture-space diffusion, 316, 322–324

convolveU function, 323
Coord1Dto2D function, 497
CoordCubicToSpatial function, 497
coordinateMask function, 571
coordinates

angle-weighted pseudonormals, 753
centroid detection, 571
cone step maps, 424
fire effects, 659
importance sampling, 465
interpolating, 557
normal maps, 496–497
procedural terrains, 8–9, 12, 16–17
relief maps, 413
true impostors, 482–483
volume rendering, 671

CoordSpatialToCubicNorm function, 497
Core Image image-processing, 563–567
corners

detecting, 903–904
procedural terrains, 13

Index

700_gems3_index 7/5/2007 6:42 PM Page 914

correlation operators, 837
correlation structures, 823
counter blocks, 801
counter modes, 801–802
counters

radix, 708–717
shadow volumes, 240

coupled reflection models, 332–333
coupling in rigid body simulation, 629–630
covariance matrix, 355
CPU

adaptive refinement patterns, 99
cinematic relighting, 200
encryption, 799
instancing, 42

CreateAABB function, 210
createGather function, 186–187
crepuscular rays, 276–277, 283
crop matrix transformation

matrices, 210
parallel-split shadow maps, 227

cross-fading in alpha to coverage, 85–86
cross sections of tetrahedra, 750–751
cross-shaped filter kernels, 845–846
crowd rendering. See animated crowd rendering
Crysis. See vegetation
CSC (characteristic scan conversion), 742, 744
CSM (cascaded shadow mapping), 81
CSM (cone step mapping), 409–410

algorithm, 415–416
relaxed. See relaxed cone stepping (RCS)

CTR (counter) mode, 801
cube maps

parallel-split shadow maps, 230–232
point light shadow maps, 435
ray tracing layered distance maps, 392
reflections and refractions, 389, 398, 400

cubic splines, 546–552
CUDA programming model

broad-phase collision detection. See broad-phase
collision detection

LCP collision detection. See LCP (linear comple-
mentarity problem) algorithms

N-body simulation. See N-body simulation
parallel prefix sums (scans). See parallel prefix

sums (scans)
random numbers. See random numbers
subsurface imaging. See seismic data processing

cumulative distribution function (CDF), 462–464
curved surfaces in UV distortion, 321
curves in vector art

cubic, 547–548
loop, 553–554
quadratic, 555, 558–559
serpentine, 552

cusps, vector art, 554
cyclic reduction in 3D fluid effects, 662

D
D3D10_CPU_ACCESS_WRITE function, 62
D3D10_USAGE_DYNAMIC function, 62
D3DX effects, 430
damping

3D fluid effects, 664
collision reaction, 617
trunk animation, 109

data acquisition pipeline in Universal Capture,
350–352

data buffers in virus signature matching, 778–779
Data Encryption Standard (DES), 788
data loading in seismic data processing, 845
data patterns in virus signature matching, 773–775
data-scanning libraries, 774–775
Dawn character, 54–57
dawn light, 437
ddx function, 87
ddy function, 87
decay in volumetric light scattering, 278–279
decoding matrices from textures, 45
decompression in principal component analysis,

358–360
DecompressPcaColor function, 365–370
decryption. See AES (Advanced Encryption Stan-

dard) encryption and decryption
deep frame buffers, 196
deferred shading, 429

alpha-blended geometry, 450–451
background, 430–431
depth and normal buffers, 440–445
dynamic branching, 449–450
edge detection, 442–444
forward shading support, 431–434
introduction, 429–430
issues, 450–453

Index 915

700_gems3_index 7/5/2007 6:42 PM Page 915

916

deferred shading (continued)
lighting

costs, 431
future expansion, 439–440
globe mapping, 435
light accumulation buffers, 452
optimization, 448
prioritization, 432–434
shadow maps, 435–439

material properties, 445–447
memory bandwidth, 451–452
memory management, 453
optimizations, 448–450
performance, 454–457
precision, 447–448
stencil masking, 449
water and refraction, 440–442

deformable objects, 741
deformation for head geometry, 351
degenerate triangles, 251
degrees of bank conflicts, 859–860
DEM (discrete element method), 617
density

3D fluid effects, 635
smoke effects, 658
tessellated meshes, 259–260
volumetric light scattering, 278, 280

density fields for constraining particles, 131
density function for procedural terrains, 7–15
dependencies in Core Image image-processing, 566
depth

adaptive refinement patterns, 95–100
cone step mapping, 424
deferred shading, 440–445, 451
edge detection, 442
particle systems, 515–519
procedural terrains, 35
translucent shadow maps, 339
variance shadow maps, 172

depth bias in shadow mapping, 160–161
depth buffers

extracting object positions from, 576–579
parallel prefix sums (scans), 869
parallel-split shadow maps, 221
point-based visualization of metaballs, 146

depth clamping, 243
depth maps

cone step mapping, 419–420

reflections and refractions, 388
relief mapping, 411–413

depth-of-field (DoF), 583
blur approach, 589–592
circle of confusion radius, 594–595
depth information, 593
first-person weapon considerations, 594–595
limitations and future work, 603–605
overview, 585–586
parallel prefix sums (scans), 869–870
related work, 583–585
scatter-as-gather approach, 587–589
shader listing, 595–602
stochastic approach, 587–588
techniques, 584–585
variable-width blur, 593–594

depth peeling
reflections and refractions, 390
rigid body simulation, 615

depth-stencil view, 222–223
depth tags, 95, 98–99
depth tests

deferred shading, 448
particle systems, 514–515, 519–520

Depth_VS function, 171
depth2relaxedcone function, 419–420
derivatives in fluid effects, 636
DES (Data Encryption Standard), 788
destCoord function, 571
details. See also level-of-detail (LOD)

3D fluid effects, 640–642
ambient occlusion, 263–267
vegetation animation bending, 373–374, 376

deterministic number sequences, 466
dielectric Fresnel reflectance function, 300
diffuse light

deferred shading, 452
texture-space diffusion, 328

diffuse maps, 350
diffusion, texture-space. See texture-space diffusion
diffusion models, 297
diffusion profiles, 305–306

plotting, 312
rendering with, 306–307
shapes, 307–308
sum-of-Gaussians, 308–313, 319–320

digital image linearity problems, 529–530, 539–
540

Index

700_gems3_index 7/5/2007 6:42 PM Page 916

digital paintings gamma correction, 532
dipoles

diffusion profiles, 307–312
texture-space diffusion, 325

direct addressing of multiple textures, 497
direct illumination, 196
direct-to-indirect transfer algorithm, 184–185
direction

all-pairs N-body simulation force, 679
ray tracing layered distance maps, 391

directional lights
deferred shading, 432, 435
parallel-split shadow maps, 205

discontinuities
ambient occlusion, 261–263
depth-of-field, 589, 591

discrete collision detection, 726–727
discrete element method (DEM), 617
discrete Laplacian of pressure, 646
discretization in 3D fluid effects, 636
disks. See ambient occlusion
dispFunc function, 100
displacement

adaptive mesh refinement, 94–95
linearity, 539

displacement maps
adaptive mesh refinement, 101–102
trees, 70

dist function, 187
distance

LCP algorithms, 731–732
translucent shadow maps, 339, 341

distance attenuation
ambient occlusion, 271–272
bidirectional reflectance distribution function,

300
distance fields, signed. See signed distance fields
distance maps, 389–396
distance meshing, 742
distance to light depth metric, 170–171
distance to light plane metric, 170
distortion

importance sampling, 469–470
skin rendering, 298
texture-space diffusion, 320–322

DistributePrecision function, 176
divide-and-conquer gather method, 186–187
DL_GetDiffuse function, 447

DL_GetEdgeWeight function, 443–444
DL_PixelOutput structure, 446
DL_Reset function, 446–447
DL_SetDiffuse function, 447
DofDownPS function, 597–598
DofDownsample function, 598
DofDownVS function, 596–597
DofNearCoc function, 599
domains

3D fluid effects, 644–645
discretizing, 636

domains of definition, 566
double-buffers, 854, 865
double-precision floating-point numbers, 177
down-sweep phase in parallel prefix sums (scans),

856–857, 865–866
downgoing waves in seismic data processing, 838
downsampling in particle systems, 514, 517–519
downward extrapolations in seismic data process-

ing, 838
drag forces in trunk animation, 108–109
DrawIndexedInstanced function, 41, 227
DrawInstanced function, 13, 41
dual-paraboloid environment maps, 469–470
duckComposite function, 573
dusk light, 437
dynamic branching, 449–450
dynamic filter widths, 178
dynamic geometry in deferred shading, 439
dynamic objects and obstacles

3D fluid effects, 644–651
motion blur, 580

dynamic output with geometry shader unit, 893–
895

dynamic volume generation, 246–252

E
early z-rejection, 448
Earth surface imaging. See seismic data processing
ECB (electronic code book) mode, 799–801
edge detection

particle systems, 522–523
resolution-independent, 442–444
volume rendering, 671

edges
silhouette, 86–91, 242, 246–247

Index 917

700_gems3_index 7/5/2007 6:42 PM Page 917

918

edges (continued)
vegetation shading, 380

effects
deferred shading, 430–432
fluid. See 3D fluid effects

elastic modulus, 113
elasticity in trunk animation, 109
electronic code book (ECB) mode, 799–801
encapsulating multiple render target data, 446–

447
encrypt routine, 797
encryption. See AES (Advanced Encryption Stan-

dard) encryption and decryption
energy conservation in texture-space diffusion,

332–336
enumerate operation, 872
environment lighting

texture-space diffusion, 335
translucent shadow maps, 340–342

environment maps
importance sampling, 467–469
reflections and refractions, 389

error analysis and functions
diffusion profiles, 311
importance sampling, 470, 472
incremental Gaussian computation, 885–

887
Euler integration, 635
Eulerian discretization, 636
Eulerian fluid dynamics, 611
evalElement function, 189
even-numbered depth images in rigid body simula-

tion, 616
even-odd rule in 3D fluid effects, 652
exact-matches in virus signature matching, 775
exclusive scans, 852
exotic options, 822
exponential decay attenuation, 279
exponential distributions, 810
exposure in volumetric light scattering, 278, 280
extinction coefficient, 397
extracting object positions from depth buffers,

576–579
extrapolations in seismic data processing, 838–

840
extruded edges, 244–246
eye pixel requirements, 360
eye-space depth, 440

F
Face_VSIn structure, 59
faces

3D fluid effects, 644, 646, 652
animated textures, 353–356
blend shapes for, 55
markers, 350–352
realistic, 349–350
skin. See skin rendering

facial bone rigs, 351
far-field approximations, 692
fast DoF technique, 584
Fast Fourier Transforms, 838
fast multipole method (FMM), 678, 692
Fibonacci generators, 812
field-programmable gate arrays (FPGAs), 771
fill rate

deferred shading, 451
shadow volumes, 243

filters
bloom, 342
Core Image image-processing, 565
importance sampling, 467–468, 470
incremental Gaussian computation, 877
minification artifacts, 158–159
parallel prefix sums (scans), 867–868
parallel-split shadow maps, 232
percentage-closer filtering, 160
seismic data processing, 834, 838–839, 845–846
Sobel, 522, 671
variance shadow maps, 162–164, 178, 180
volume rendering, 669–670
volumetric light scattering, 279

fin extrusions, 71–72
finalSkinShader function, 329–331
financial issues, 821–822

Monte Carlo simulations, 807–808
options

Asian, 823–824
lookback, 824–827

findMaxFirstPassPS function, 902–903
FindNormalAtCell function, 503–506
finite-difference methods

3D fluid effects, 636
option prices, 822

fire
3D fluid effects, 659, 662–663

Index

700_gems3_index 7/5/2007 6:42 PM Page 918

fire (continued)
volume rendering, 671

first-person weapon depth-of-field considerations,
594–595

fitting diffusion profiles, 311–312
fixed-function pipelines, 251
fizzle level of detail, 85
flat 3D textures, 620–621
flat spots, 18–19
flattenGather function, 188
floating-point numbers and registers

deferred shading, 445
summed-area variance shadow maps, 177

floating-point textures
cone step mapping, 419
deferred shading, 436

flora, 451
fluid atoms, 124, 126–135
fluid surfaces

implicit, 128
velocity constraint equation, 128–131

fluids
3D. See 3D fluid effects
deferred shading, 440–442
point-based surface visualization, 126–127
rendering, 671–672
rigid body simulation, 627–629
storage requirements, 662

flying creatures, 36
FMM (fast multipole method), 678, 692
focus and focal length in depth-of-field, 585
fog in deferred shading, 452
folds in polygonal models, 746–747
foliage. See vegetation
forces

3D fluid effects, 635, 637, 643
all-pairs N-body simulation, 679–686
point-based visualization of metaballs, 127, 135–

140, 145
rigid body simulation, 613, 617–618, 625, 628–

629
smoke effects, 658–659
trunk animation, 108–109
wind animation, 106

form factors, disk, 258, 261, 264
forward differencing, 879–882
forward Euler integration, 635
forward-mapped z-buffer techniques, 583–584

forward shading, 430–434
FPGAs (field-programmable gate arrays), 771
frag_custom_ambient function, 383
frag_custom_end function, 383
frag_custom_per_light function, 383
fragment shader

cinematic relighting, 197–198
rigid body simulation, 625
sparse matrix multiplication, 199–200

frame buffers
cinematic relighting, 196
geometry shader unit, 897–898
sparse matrix multiplication, 199

frame rates
adaptive mesh refinement, 103
geometry shader unit, 906

free-slip boundary conditions, 645–646
frequency and frequency planes

procedural terrain noise, 15–16
seismic data processing, 838

Fresnel approximation, 301–303
Fresnel interaction

diffusion profiles, 307
reflections and refractions, 397–398
skin rendering, 295, 300–303

fresnelReflectance function, 301
fringe coefficients, 886
frustum-partitioning techniques, 172
ftransform function, 251
full forward shading, 431

G
GAMeR (generic adaptive mesh refinement) tech-

nique. See adaptive mesh refinement
gamma correction, 531–540
GARCH model, 825
gas industry. See seismic data processing
gather samples in cinematic relighting, 184, 186–

188
gathering z-buffer technique, 584
Gauss-Jordan-elimination pivoting operation, 732
Gauss-Seidel physics, 718–719
Gaussians and Gaussian distribution

depth-of-field, 590–591, 598
incremental. See incremental Gaussian computa-

tion

Index 919

700_gems3_index 7/5/2007 6:42 PM Page 919

920

Gaussians and Gaussian distribution (continued)
Monte Carlo methods, 807
random numbers, 806, 810–821
smoke effects, 658
stock prices, 822
summed-area variance shadow maps, 165
sums. See sum of Gaussians
texture-space diffusion, 326, 328
transforms, 815–816
Wallace Gaussian generator, 816–821

generateRandomNumbers_wallace function,
820–821

generic adaptive mesh refinement (GAMeR) tech-
nique. See adaptive mesh refinement

geology. See seismic data processing
geometry data for normal maps, 499
geometry shader unit

benefits, 892–893, 903–905
compression schemes, 898–899
corner detection, 903–904
dynamic output, 893–895
dynamic volume, 246–252
guidelines, 905–906
histograms, 895–897
Hough transform, 899–903
introduction, 891–892
parallel-split shadow maps, 220–221, 224–227
performance and limits, 905–906
procedural terrains, 7

geometry variations in animated crowd rendering,
48–49

get_words function, 777
GetCellAtPoint function, 500
GetCellMaxPoint function, 500
GetCellMinPoint function, 500
GetCorner function, 365
GetEdgePlaneIntersection function, 657
GetNormal function, 501
GetObstacleVelocity function, 648
GetSmallBlurSample function, 601
GetTriangleListIndex function, 501
GetVertex function, 501
Gilbert-Johnson-Keerthi distance algorithm, 727
GL_ARB_multisample extension, 85
GL_BLEND function, 897
gl_FragColor function, 878
gl_ModelViewMatrix function, 247
gl_Position function, 247

gl_PositionIn array, 247
GL_RGBA16F_ARB format, 85
GL_TRIANGLES_ADJACENCY_EXT mode, 247
glBeginTransformFeedbackNV function, 786
glBindBufferRangeNV function, 786
glClampColorARB function, 896
glEndTransformFeedbackNV function, 786
global illumination

cinematic relighting. See cinematic relighting
deferred shading, 435

global particle dispersion, 140–144
global positioning systems, 834
global shadow maps, 437–439
globe maps, 435
glossy component in importance sampling, 463
glossy reflections

bidirectional reflectance distribution function,
300

importance sampling, 470
glReadPixels function, 894
glStencilOpSeparate function, 240
god rays, 276–277, 283
GPUImportanceSampling function, 471
gradients

antialiasing, 557
conjugate, 662
edge detection, 442
pressure, 645

granular material in rigid body simulation, 627–
628

GRAPE (Gravity Pipe) hardware, 692
gravitational force, 679
grids

3D fluid effects, 636–637, 658
all-pairs N-body simulation, 680–681
hashes, 132
normal maps, 494–495, 499
parallel prefix sums (scans), 869
parallel solution to LCP, 734
rigid body simulation, 615–617, 620–624, 628
signed distance fields, 741
spatial subdivisions, 699–700, 703–704
thread blocks, 685–686
water effects, 660

GS_GEN_BOUNDARY_VELOCITY function, 656–657
GS_OUT structure, 226
GS_OUTPUT_FLUIDSIM structure, 637
GS_RenderShadowMap function, 226, 228

Index

700_gems3_index 7/5/2007 6:42 PM Page 920

H
Haar wavelets, 185

2D transforms, 197
compression, 189
gather samples, 187

hair in deferred shading, 451
Hammersley sequence, 465
hand-painted 2D textures, 18
hard-edged shadows, 178
hardware gradients, 557
hardware texture filtering, 158
harmonics in importance sampling, 470
hash buckets, 132
hash function, 134
hash index tables, 132–133
hashes

constraining particles, 132–135
point-based visualization of metaballs, 145

heat diffusion, 585
height

cone step mapping, 417
silhouette clipping, 72–76
silhouette edge antialiasing, 87

hemispherical lighting, 432
Hessian polynomials, 551
hiding multiple render target data, 446–447
hierarchical grids, 700
hierarchical N-body simulation methods, 692–693
hierarchical occlusion culling technique, 252–254.

See also shadow volumes
hierarchical trees, 258
high dynamic range (HDR) images

deferred shading, 452
illumination, 459
linearity, 533
SpeedTree rendering, 85
sum-of-Gaussians diffusion profiles, 320

high-frequency pinching artifacts, 261
high-speed, off-screen particles. See particles and

particle systems
histograms, 895–897
histoGS function, 895–896
Hit function, 397
HLSL

blend shapes, 56, 60–66
quaternion library in, 115–116

home cells in spatial subdivisions, 704–706

homogeneous curve parameterization, 548
Hough maps, 906
Hough transform, 899–903
hybrid random number generators, 813–815
HybridTaus function, 814
hydrophones, 832–833, 836

I
IEC standard for gamma, 539
illumination. See lights and lighting
illumination integrals in importance sampling, 460
image quality in particle systems, 525–526
image synthesis in reflections and refractions, 388
imaging Earth subsurface. See seismic data

processing
implicit surfaces

defining, 128
visualization, 125

implicitization, 543
importance sampling

introduction, 459
mapping and distortion, 469–470
material functions, 462–465
mipmap filtered samples, 466–470
performance, 470–473
quasirandom low-discrepancy sequences, 465–

466
rendering formulation, 459–460

impostors, true, 481
algorithm and implementation details, 482–487
introduction, 481–482
performance, 487–489

inclusive scans, 852
incompressibility constraints, 635
incompressible fluids, 635
inconsistent meshes, 742
incremental Gaussian computation, 877

algorithm, 882–885
error analysis, 885–887
introduction and related work, 877–879
performance, 887–888
polynomial forward differencing, 879–882

independent bit depth in deferred shading, 451
index buffers

adaptive mesh refinement, 96–97, 99
deferred shading, 453

Index 921

700_gems3_index 7/5/2007 6:42 PM Page 921

922

index buffers (continued)
procedural terrains, 27–28

index of refraction
bidirectional reflectance distribution function,

300
reflections and refractions, 389, 397–399

indices
3D fluid effects, 645
hash, 132–133
normal maps, 497
particle collisions, 617
rigid body simulation, 619–620, 622–623, 626

indirect illumination, 188–189
inertia

branch animation, 112
rigid body simulation, 614
trunk animation, 109

initial vectors (IVs) in cipher-block chaining mode,
800

initialization of random number pools, 819–820
InitRNORM function, 827
input

AES encryption, 791–792
Mask from Color filter, 568

input images in linearity, 539–540
input textures in linearity, 533
inside-outside voxelization, 645, 652–653
InstanceDataElement structure, 44
instancing

3D fluid effects, 658
animated crowd rendering, 40–42
constants-based, 43–44
parallel-split shadow maps, 227–228

integer-processing features, 785
integers and integer textures

AES encryption processing, 786–787
cone step mapping, 419
summed-area variance shadow maps, 177

integration
animated crowd rendering, 51
Euler, 635

integration errors, 470, 472
integrators in all-pairs N-body simulation, 680
intelligent flying creatures, 36
interactive cinematic relighting. See cinematic

relighting

interference in procedural terrain noise, 15
intermediate color buffers, 541
interpacket scanning, 774
InterpolateDof function, 601
interpolation

3D fluid effects, 653
ambient occlusion artifacts, 259–260
bidirectional lighting, 434
polynomial forward differencing, 882
procedural terrains, 10
procedural texture coordinates, 557
variance shadow maps, 172, 174
water rendering, 671

intersections in layered distance maps, 392–393
interval mapping, 411
intrapacket scanning, 774
inverse monitor transformations, 538
inverse square roots in N-body simulation, 690
inversion method in random number generators,

810
inverted hash method, 133–134
inviscid fluids, 635
InWindow function, 365
irradiance texture

texture-space diffusion, 317–319, 326, 331–332,
335

translucent shadow maps, 339–340
IsNonEmptyCell function, 650
isotropic noise, 16
IsSolidCell function, 647
iterations

3D fluid effects, 662–663
in seismic data processing, 845

IVs (initial vectors) in cipher-block chaining mode,
800

J
Jacobi iterations, 662–663
Jacobi vs. Gauss-Seidel physics integration, 702
Jacobian determinants, 469
jitter sampling

deferred shading, 436, 438
volume rendering, 669

Index

700_gems3_index 7/5/2007 6:42 PM Page 922

K
k-means clustering, 187
Karush-Kuhn-Tucker (KKT) conditions, 730
keepImportantCoeffs function, 191
Kelemen/Szirmay-Kalos specular function, 302–

304
kernels

3D fluid effects, 636–637, 646–647, 660
Core Image image-processing, 564
implicit surfaces, 128
incremental Gaussian computation, 877
metaballs, 124
parallel prefix sums (scans), 873
parallel solution to LCP, 734
repulsion force equation, 136
seismic data processing, 845–848
sum-of-Gaussians diffusion profiles, 320

keys
encryption, 788–790
radix sorts, 871–873

KISS random number generators, 815
KKT (Karush-Kuhn-Tucker) conditions, 730
KS_Skin_Specular function, 302
KSTextureCompute function, 302

L
Lafortune BRDF, 465
lagged Fibonacci generators, 812
Lagrangian interpolation, 882
Lagrangian schemes for 3D fluid effects, 636
Lambertian emission, 192
Laplacian filters, 839
Law of Large Numbers, 805
layered distance maps, 387, 390–396
layers

particles, 513
skin, 296–297

LCGs (linear congruential generators), 812, 814–
815

LCGStep function, 814
LCP (linear complementarity problem) algorithms,

723
contact points, 726–728
convex distance calculation, 731–732
mathematical optimization, 728–730

parallel processing, 724
parallel solution, 732–737
performance, 738–739
physics pipeline, 724–726

leaf cells in N-body simulation, 692
LeafShadingBack function, 382
LeafShadingFront function, 382
leaking artifacts, 742–747
Leanne character, 353–362
leapfrog-Verlet integrators, 680
least-index rule, 735
leaves

detail bending, 374, 376
lighting, 81–84
self-shadowing, 77–81
shading, 378

Lemke’s algorithm, 723, 732
length function, 170
length of encryption keys, 790
lenses in depth-of-field, 585–586
lerping

color variations, 50
texture seams, 331
translucent shadow maps, 339–340
two-sided lighting, 82

level-of-detail (LOD)
alpha to coverage cross-fading, 85–86
animated crowd rendering, 39, 49–50
importance sampling, 468
instancing, 42
mipmaps, 534
procedural terrains, 35–36
silhouette clipping, 76–77
wind animations, 107–108

level sets
3D fluid effects, 664–665
water effects, 660

LFSR113 generators, 813
libraries, data-scanning, 774–775
lift in branch animation, 111
light bleeding, 166–169
light polarization, 305
light-seam reduction, 71–72
light shafts, 276–277, 283
light-space perspective shadow maps (LiSPSMs),

204
lights and lighting

ambient occlusion. See ambient occlusion

Index 923

700_gems3_index 7/5/2007 6:42 PM Page 923

924

lights and lighting (continued)
bidirectional, 434–435
box lights, 435
cinematic. See cinematic relighting
deferred shading. See deferred shading
diffusion profiles, 307–308
environment, 335, 340–342
leaves, 81–84
linearity, 530, 534–536
procedural terrains, 21–23, 37
reflectance. See bidirectional reflectance distribu-

tion function (BRDF)
reflections and refractions. See multiple specular

reflections and refractions
scattering. See volumetric light scattering
shadow maps. See shadows and shadow maps
shadow volumes. See shadow volumes
specular, 84
two-sided, 82–83
vegetation, 379–380

limited feature sets in deferred shading, 432
line-by-line approach for summed-area table gener-

ation, 175
line detection, 899–903
linear complementarity problem. See LCP (linear

complementarity problem) algorithms
linear congruential generators (LCGs), 812, 814–

815
linear depth metric in numeric stability, 170
linear interpolation

3D fluid effects, 653
ambient occlusion artifacts, 259
bidirectional lighting, 434

linear math, 534
linear momentum, 613, 625
linear programming, 728–729
linear searches

cone step mapping, 417
ray tracing layered distance maps, 392–393
relief mapping, 409, 413–415

linearity problems
correcting, 538–541
digital images, 529–530
illumination, 534–535
inputs, 530, 539–540
intermediate color buffers, 541
introduction, 529
mipmaps, 533–534

monitors, 531–533
nonlinear input textures, 533
outputs, 530, 540
symptoms, 533–537

linearized depth distribution, 233
linstep function, 169
lip contour, 351
liquids. See 3D fluid effects
LiSPSMs (light-space perspective shadow maps), 204
Load function, 45, 62
loadBoneMatrix function, 46
local illumination models, 388
local particle repulsion, 135–140
local shadow maps, 439
local streams in seismic data processing, 834
locality in geometry shader unit, 903–904
LOD. See level-of-detail (LOD)
log distributions, 810
log-normal random walks, 822–823
logarithmic split schemes, 207–209
logical operations

encryption and decryption, 785, 793, 800
random number generators, 813

lookback options, 824–827
LookbackDiff function, 826
lookup operations for signed distance fields, 756
lookup tables (LUTs)

color correction, 538–539
procedural terrains, 11–12
tessellated, 259–260

loop curves in vector art, 553–554
loop unrolling in N-body simulation, 687–688
low-discrepancy sampling series, 465–466
low-frequency noise, 32
low-polygon meshes, 492
low-quality meshes, 244–246
Lpics relighting engine, 196
LUTs (lookup tables)

color correction, 538–539
procedural terrains, 11–12
tessellated, 259–260

M
MacCormack advection

3D fluids, 640–643
smoke effects, 658

Index

700_gems3_index 7/5/2007 6:42 PM Page 924

macros, 790
MADs (multiply-add instructions), 686
magnification artifacts, 157
magnitude of force in all-pairs N-body simulation,

679
main bending in vegetation animation, 376–378
mainpos function, 144
mainvel function, 130–131, 134–135
manually controlled influences for procedural

terrains, 18–19
map function, 188
maps

cascaded shadow mapping, 81
cone step mapping, 409–410

algorithm, 415–416
relaxed. See relaxed cone stepping (RCS)

cube
parallel-split shadow maps, 230–232
point light shadow maps, 435
ray tracing layered distance maps, 392
reflections and refractions, 389, 398, 400

depth
multiple specular reflections and refractions,

388
relaxed cone step mapping, 419–420
relief mapping, 411–413

displacement, 70, 101–102
distance, 389–396
environment, 389, 469–470
global shadow, 437–439
normal. See normal maps
projective, 546
shadow. See shadows and shadow maps
texture seams, 331

marble texture generation, 34
marching cubes

metaballs, 124–125
procedural terrains, 7–12

margin data in procedural terrains, 22–23
marginal probability in importance sampling, 464
marine surveys, 832–833
markers, facial, 350–352
Mask from Color filter, 568
maskFromColor function, 568–570
masks

color, 623–624
motion blur, 580
object detection by color, 568–570

stencil, 449
mass density in 3D fluid effects, 635
masses

all-pairs N-body simulation, 680
trunk animation, 109

matching virus signatures. See virus signature
matching

material functions in importance sampling, 462–
465

material properties
deferred shading, 445–447
reflections and refractions, 389

material shaders, 430–431
mathematics

blend shapes, 56
LCP algorithm optimizations, 728–730

matrices
animated facial textures, 355–360
cinematic relighting, 185, 193–194, 198–200
decoding from textures, 45
multiplication, 198–200, 795
orthogonal, 817
P-matrices, 729–730
shadow maps, 224
transformation, 210–214
Walsh-Hadamard, 818–819

maximum of depth samples in particle systems, 519
mean vectors in animated facial textures, 355
Melody implementation, 508
memory

all-pairs N-body simulation, 682
deferred shading, 451–453
normal maps, 498
parallel prefix sums (scans), 856, 859–860, 866
parallel solution to LCP, 732–735
radix sort algorithm, 709, 711, 714–717, 871–

873
seismic data processing, 844–846
thread blocks, 683–684, 686
Wallace Gaussian random number generator,

820–821
merging radix sort chunks, 873–874
Mersenne twisters, 812–813
mesh topologies of folds, 746
meshes

3D fluid effects, 657–658
blend shapes, 56–57
boundary cages, 492

Index 925

700_gems3_index 7/5/2007 6:42 PM Page 925

926

meshes (continued)
disks, 259–260
normal maps, 498
refinement. See adaptive mesh refinement
rigid body simulation, 615–617
scan conversion, 742
shadow volumes for, 244–246
signed distance fields for, 741–742

metaballs. See point-based visualization of metaballs
midpoints in variance shadow map, 172
midtones in gamma correction, 531
Mie scattering properties, 277
min-max distance values, 393–394
minification artifacts, 157–158
mipmaps

cone step mapping, 425–426
importance sampling, 466–470
linearity, 533–534
normal maps, 508
particle systems, 526
percentage-closer filtering, 160
variance shadow maps, 162–163, 173

mix_columns_add_round_key routine, 795–
796

MixColumns operation, 795–796
mixed-resolution rendering, 522–524
model of daylight scattering, 277
modified translucent shadow maps, 336–340

multiple lights and environment lighting, 340–
342

skin rendering, 298
moments

summed-area variance shadow maps, 176
variance shadow maps, 162, 165

momentum
3D fluid effects, 635–637
rigid body simulation, 613–614, 625

monitors
calibrated, 538
linearity, 531–533

Monte Carlo estimators, 462
Monte Carlo methods

importance sampling, 470
simulations, 805–809

distributions, 810
stock prices, 808–809, 821–822

skin rendering, 344
Monte Carlo quadrature, 459, 461, 466

MonteCarloThread function, 827
morph targets. See blend shapes
motion

3D fluids equations, 635–636
facial animation graphs, 363
signed distance fields for, 741
tree. See wind animation

motion blur
additional work, 581
dynamic objects, 580
extracting object positions from depth buffers,

576–579
introduction, 575–576
masking off objects, 580
performing, 579–580

motion capture (mocap), 350
move trees, 363
MRGs (multiple recursive generators), 812
MRTs. See multiple render targets (MRTs)
MSAA (multisample antialiasing), 85, 171

particle systems, 515–516
variance shadow maps, 163
vector art, 556

multibody dynamics, 741
multibounce matrix, 185, 192–193
multilayer scattering, 296–298
multipass filters, 565
multipass normal map implementation, 507
multipass parallel-split shadow map method, 215–

217
multiplayer games, blend shapes for, 55
multiple bounces in cinematic relighting, 192–193
multiple components in summed-area variance

shadow maps, 176
multiple lights in translucent shadow maps, 340–

342
multiple recursive generators (MRGs), 812
multiple render targets (MRTs)

deferred shading, 431, 446–447, 452–453
parallel-split shadow maps, 221
particle systems, 515–516
reflections and refractions, 390

multiple shadow maps, 204
multiple specular reflections and refractions, 387

introduction, 388–389
ray tracing layered distance maps, 391–396
reflections and refractions, 396–400
results, 400–405

Index

700_gems3_index 7/5/2007 6:42 PM Page 926

multiple specular reflections and refractions
(continued)

secondary ray tracing, 389–396
multiple time-step scheme, 692
MultipleReflectionPS function, 399–400
multiplication

matrix, 198–200, 795
quaternions, 631

multiply-add instructions (MADs), 686
multipole expansion, 692
multipole theory

diffusion profiles, 307–309, 311
texture-space diffusion, 325
transmission profiles, 337

multisample antialiasing (MSAA), 85, 171
particle systems, 515–516
variance shadow maps, 163
vector art, 556

multiscale stretching, 322, 324
multiScattering function, 274

N
N-body simulation

all-pairs, 677–681
body-body force calculations, 681–682
thread blocks, 683–686
tiles, 681–685, 688–690

hierarchical methods, 692–693
performance, 686–687

analysis, 690–691
optimizations, 687–690

previous methods, 691–692
narrow phase collision detection

LCP, 725
rigid body simulation, 624

nearest neighbors in local particle repulsion, 137–
140

neighbor voxels in procedural terrains, 28
nested loops, 506–507
network processors, 772–773
neutral meshes in blend shapes, 57
node bounding boxes, 253
node visibility in hierarchical occlusion culling,

252–254
noise

importance sampling, 466

Monte Carlo quadrature, 461
procedural terrains, 14–16, 32
trunk animation, 109–110

nonlinearity. See linearity problems
nonuniform distributions, 810
nonzero rule, 652
normal buffers for deferred shading, 440–444
normal distributions, 810
normal maps, 491

acceleration structures, 493–495
antialiasing, 508
boundary cages, 492–493
cone step mapping, 425
indexing limitations, 497
limitations, 506–507
linearity, 539
memory and architectural limitations, 498
multipass implementation, 507
performance, 508–511
projection, 492
ray tracing, 496–497
relief mapping, 411–413
setup and preprocessing, 499–501
single-pass implementation, 501–507
texture-space diffusion, 328
traditional implementation, 492
uniform grids, 494–495

normal vectors for procedural terrains, 20, 32–33
normalizeColor function, 569
normals for reflections and refractions, 396–397
numerical issues

3D fluid effects, 662–665
variance shadow maps, 165, 169–171,

175–177
NV_depth_clamp extension, 243

O
OBBs (oriented bounding boxes), 749–750
object detection by color, 563–564, 567–568

centroids, 570–573
compositing images, 573
masks, 568–570

object IDs, 704
object-terrain interactions, 36
obstacles in 3D fluid effects, 644–651
occluder silhouettes, 243

Index 927

700_gems3_index 7/5/2007 6:42 PM Page 927

928

occlusion
ambient. See ambient occlusion
light bleeding, 167
relief mapping, 413
volumetric light scattering, 281–282

occlusion culling technique, 252–254
odd-numbered depth images in rigid body simula-

tion, 616
off-screen particles. See particles and particle sys-

tems
off-screen ray marching, 670–671
offsets in leaf self-shadowing, 79
oil industry. See seismic data processing
on-the-fly culling, 199
one-bounce indirect illumination, 188–189
one-tailed version of Chebyshev’s inequality, 162
1D textures in deferred shading, 442
opacity

pixel, 556–557
silhouette edge antialiasing, 87
vegetation shading, 380
volumetric light scattering, 277

openssl command, 799
optimizations

deferred shading, 448–450
LCP algorithms, 728–730
N-body simulation, 687–690
parallel prefix sums (scans), 862–865
parallel-split shadow maps, 232–233
shadow volumes, 243
voxelization, 657–658

options, 821–822
Asian, 823–824
lookback, 824–827

ordering radix sort algorithm, 715–717
oriented bounding boxes (OBBs), 749–750
origin-centered summed-area tables, 175
orthogonal matrices, 817
output

AES encryption, 791–792
linearity, 540

outputMaxPositionsGS function, 901–902
overflow in summed-area variance shadow maps,

177
overhead light, 205
overlapping parameterizations, 332

overlapping triangles in vector art, 555–556
oversampling parallel-split shadow maps, 208
oversaturation, 284
overshooting ray tracing layered distance maps,

391, 393–394

P
P-matrices, 729–730
PACK macro, 792
pack_state_out routine, 792, 797
packet data in virus signature matching, 774
padding for parallel prefix sums (scans), 860–862
paintings linearity, 539–540
palette skinning, 44–45
parallax occlusion mapping (POM), 70
parallel planes approximation, 180
parallel prefix sums (scans)

arrays for, 862
bank conflicts, 859–861
CUDA vs. OpenGL implementation, 865–866
introduction, 851–852
naive implementation, 853–855
performance, 862–865
previous work, 874–875
radix sorts, 871–874
sequential scan and work efficiency, 852–853
stream compaction, 866–868
summed-area tables, 868–871
work-efficient, 855–858

parallel processing
AES encryption, 799–802
implicit-surface visualization, 125
LCP algorithms, 724, 732–737
Monte Carlo simulation, 808–809
N-body simulation, 691
radix sort algorithm, 708
seismic data processing, 839

parallel spatial subdivision algorithm, 700–702
parallel-split shadow maps (PSSMs), 203

algorithm, 205
cube maps, 230–232
DirectX 9-level acceleration, 217–220
DirectX 10-level acceleration, 220–232
geometry shader cloning, 224–227

Index

700_gems3_index 7/5/2007 6:42 PM Page 928

parallel-split shadow maps (PSSMs) (continued)
instancing, 227–228
introduction, 203–205
multipass method, 215–217
optimizations, 232–233
performance, 216, 220–221, 233–237
synthesizing shadows, 214, 216–218, 228–229
transformation matrices, 209–214
view frustum, 206–209

parametric cubic plane curves, 547–548
partial differential equations (PDEs), 635
particle-mesh methods in N-body simulation, 678
particlePS function, 519–520
particles and particle systems, 513

3D fluid effects, 633
alpha blending, 520–521
constraining. See constraining particles
depth testing and soft particles, 519–520
downsampling depth, 517–519
edge detection, 522–523
image quality, 525–526
metaballs, 124–125

dispersion, 140–144
repulsion, 135–140

mixed-resolution rendering, 522–524
motivation, 513–514
off-screen rendering, 514–516
performance, 526–527
rigid body simulation, 615–617, 619–624, 626–

629
stencil buffers, 523–524

partitions of unity, 332
pass2main function, 139–140
passes in deferred shading, 430
pattern matching for viruses, 773–775
payoffs in Asian options, 823
PCA. See principal component analysis (PCA)
PcaDec function, 364–365
PcaDecompress16 function, 359–360
PCF. See percentage-closer filtering (PCF)
PDEs (partial differential equations), 635
PDF (probability density function), 461–463
penalty method for contact points, 727
penumbra size estimation, 180
per-leaf bending, 376
per light sources, 254

per-vertex differences, 56
percentage-closer filtering (PCF), 158

minification artifacts, 158
parallel-split shadow maps, 220–221, 232
soft shadows, 178–181
variance shadow maps, 159–161

performance
3D fluid effects, 660–661
AES encryption, 797–799
ambient occlusion, 269
animated crowd rendering, 50–51
blend shapes, 66–67
broad-phase collision detection, 719–721
cinematic relighting, 200–201
deferred shading, 454–457
geometry shader unit, 905–906
hashes, 133
importance sampling, 470–473
incremental Gaussian computation, 887–888
integration, 51
LCP algorithms, 738–739
N-body simulation, 686–687

analysis, 690–691
optimizations, 687–690

normal maps, 508–511
parallel prefix sums (scans), 862–865
parallel-split shadow maps, 216, 220–221, 233–

237
particle systems, 526–527
percentage-closer soft shadows, 180–181
point-based visualization of metaballs, 145
random number generators, 827–829
rigid body simulation, 626–627
seismic data processing, 849
shadow volumes, 243, 245–246, 252–254
signed distance fields, 756–759
summed-area variance shadow maps, 177–178
true impostors, 487–489
virus signature matching, 779–782
wind animations, 119–120

PerInstanceData structure, 44
period length in pseudorandom number generators,

811
permutations with Wallace Gaussian random

number generator, 817–820
perspective aliasing, 207

Index 929

700_gems3_index 7/5/2007 6:42 PM Page 929

930

perspective shadow maps (PSMs), 204
deferred shading, 437
shadow-map aliasing, 158

Peter Panning, 160–161
phantom cells, 704–706
phase shift value in branch animation, 112
PHBeckmann function, 302
phenomenological approach for wind animations,

106–113
Phong models

cinematic relighting, 196
importance sampling, 460, 462–464
skin rendering, 299
vegetation shading, 378

physics pipelines in LCP algorithms, 724–726
pi calculations, 806–807
pinching in ambient occlusion, 259, 261, 263–267
pinhole camera model, 586
pipelines

deferred shading, 432–434
fixed-function, 251
LCP algorithms, 724–726
parallel-split shadow maps, 215–216, 224–225,

228–229
Universal Capture, 350–352

pivot elements, 734–735
pixel shaders

instancing, 43
procedural terrains, 13
volumetric light scattering, 279–280

PixelInput structure, 596, 599
place vectors, 391
plaintext, 798, 800–801
planar cubic Bézier curves, 548
planar leaf cards, 79
planar projections, 29–31
plane tests in scan conversion, 743–744
plotting diffusion profiles, 312
Plummer point masses, 680
PN triangles, 100–101
point-based visualization of metaballs, 123

comparison of methods, 124–125
constraining particles, 127–135
global particle dispersion, 140–144
on GPUs, 126
local particle repulsion, 135–140
performance, 145
rendering, 146

point lights
deferred shading, 432, 435–436
distance to light depth metric for, 170–171

point sampling depth in particle systems, 517
points in reflections and refractions, 388
Poisson distributions

depth-of-field, 584, 587
procedural terrains, 21

polar method for Gaussian distributions, 815
polarization techniques, 345
polygons and polygonal models, 746–747

folds, 746–747
procedural terrains, 8–13, 20–21, 35

polynomial forward differencing, 879–882
POM (parallax occlusion mapping), 70
pools

attribute, 132–133
random number, 816–820
register, 424–425

positioning systems in seismic data processing, 834
positions

all-pairs N-body simulation, 680
rigid body simulation, 625–626

post-scatter texturing, 326–328
pow function, 22
practical split scheme, 206–208
pre-pass method in volumetric light scattering, 281
pre-scatter texturing, 326–328
precision

deferred shading, 447–448
summed-area tables, 175–177

precomputed radiance transfer (PRT) technique,
335–336

prefix sum operations
parallel prefix sums (scans). See parallel prefix

sums (scans)
radix sort algorithm, 708, 712, 714–716

preprocessing parallel-split shadow maps, 209
prescan function, 858
pressure

3D fluid effects, 635, 637, 645–646, 661–665
water effects, 660

pressure-Poisson system, 645–646, 661–662
price models

Monte Carlo simulations, 807–808, 821–822
options

Asian, 823–824
lookback, 824–827

Index

700_gems3_index 7/5/2007 6:42 PM Page 930

primary back buffers in deferred shading, 453
primary rays in reflections and refractions, 388
primed coordinate systems, 753
principal component analysis (PCA), 350

animated facial textures, 353–356
compression, 356–358
conclusion, 363–370
decompression, 358–360
practical considerations, 360–362
variable, 360

prism scans, 742–743
PRNGs (pseudorandom number generators), 810–

815
probability density function (PDF), 461–463
procedural animation

vegetation, 373–374
wind. See wind animation

procedural terrains
blocks, 8, 12–13, 20–29, 35
collisions, 36
customizing, 18–20
introduction, 7
level-of-detail, 35–36
lighting, 21–23, 37
marching cubes and density function, 7–

15
margin data, 22–23
overview, 12–13
polygons, 8–13, 20–21, 35
sampling tips, 16–17
texturing and shading, 29–34

procedural textures
antialiasing, 557
cubic splines, 551
quadratic splines, 545–546

product ciphers, 789
profiles

diffusion. See diffusion profiles
transmission, 337

projection
normal maps, 492
shadow map aliasing, 207, 209

projection matrix, 224
projection-warping techniques, 172
projective mapping, 546
projector lights, 196
propagator filters, 838–839
properties in deferred shading, 445–447

PRT (precomputed radiance transfer) technique,
335–336

PS_ADVECT_MACCORMACK function, 640–642, 659
PS_ADVECT_OBSTACLE function, 650–651
PS_ADVECT_VEL function, 637–638
PS_DIVERGENCE function, 638
PS_DIVERGENCE_OBSTACLE function, 648
PS_JACOBI function, 639
PS_JACOBI_OBSTACLE function, 647
PS_PROJECT function, 639
PS_PROJECT_OBSTACLE function, 649–650
PS_RenderShadows function, 219–220, 232
pseudonormals for signed distances, 751–755
pseudorandom numbers

generators, 810–815
importance sampling, 465–466

PSMs (perspective shadow maps), 204
deferred shading, 437
shadow-map aliasing, 158

psProgram function, 447
PSShadowMapFetch function, 79
PSSMs. See parallel-split shadow maps (PSSMs)

Q
QRNGs (quasirandom number generators), 809
quad-directional cone step mapping (QDCSM),

410, 419–420
quad vertices in sparse matrix multiplication, 199
quadratic curves, 555, 558–559
quadratic programming, 730
quadratic splines, 544–546
QuadraticPS function, 559
quasirandom low-discrepancy sequences, 465–466
quasirandom number generators (QRNGs), 809
quaternions

HLSL library, 115–116
rigid body simulation, 614–615, 619–621, 625–

626, 631
rotating, 114

R
radial blur, 277
radical inverse sequence, 465–466
radix counters, 708–717

Index 931

700_gems3_index 7/5/2007 6:42 PM Page 931

932

radix sort algorithm
cell ID arrays, 707–708

reordering, 715–717
setup and tabulation, 708–713
summation, 712–715

parallel prefix sums (scans), 871–874
rand function, 810
random numbers, 805–806

applications, 821–822
Asian options, 823–824
lookback options, 824–827

generators
Gaussian transforms, 815–816
introduction, 809–811
performance, 827–829
uniform-to-Gaussian conversion, 811–815
Wallace Gaussian, 816–821

importance sampling, 462–463
random walks, 822–823
rasterizers, 894
ray casting

procedural terrains, 22–23
volume rendering, 665–667
volumetric light scattering, 278–279

ray-height-field intersection techniques
cone step mapping, 416
relief mapping, 409–411

ray_intersect_relaxedcone function, 423
ray marching, 387

true impostors, 484–486
volume rendering, 665–667, 670–671

Ray structure, 500
ray tracing

depth-of-field, 583
metaballs, 124–125
normal maps, 492, 496–497
reflections and refractions, 388–389, 391–392

acceleration with min-max distance values,
393–394

linear searches, 392–393
secant searches, 394–396

seismic data processing, 834–835
ray traversing grids, 495
RayAABBIntersect function, 499
RayData texture, 666, 668–669, 671
Rayleigh scattering properties, 277
rays

cone step mapping, 417

crepuscular, 276–277, 283
view, 483–485

RayTriangleIntersect function, 499
RCS. See relaxed cone stepping (RCS)
reaction coordinates

fire effects, 659
volume rendering, 671

read-after-write conflicts in radix sort algorithm, 709
real-world terrain applications, 35–37
RealityServer platform, 239
RecombinePrecision function, 176
recursive doubling approach, 175
reduce phase in parallel prefix sums (scans), 856
ReduceLightBleeding function, 169
reference geometry data, 496
reference models, 492
reference points in reflections and refractions, 389
reflect operation, 398
reflectance

BRDF. See bidirectional reflectance distribution
function (BRDF)

importance sampling, 460
skin rendering, 294–296
surface, 295–297

reflections
multiple. See multiple specular reflections and

refractions
specular lighting, 84

reflectivity model, 837–838
refract operation, 398
refraction index, 300, 389, 397–399
refractions

deferred shading, 440–442
liquids rendering, 671–672
multiple. See multiple specular reflections and

refractions
regions of interest (ROIs), 566–567
register pools, 424–425
regular-expression signatures, 775, 782
reinitializing level sets, 660
relative position in rigid body simulation, 621–622
relative tangential velocity, 618
relaxed cone maps, 421–425
relaxed cone stepping (RCS), 416

computing, 416–421
introduction, 409–411
relaxed cone maps, 421–425
relief mapping, 411–415

Index

700_gems3_index 7/5/2007 6:42 PM Page 932

relief mapping
height maps, 72–76
review, 411–415
silhouette clipping, 70–71

relief textures, 411
relighting, cinematic. See cinematic relighting
render function, 99
render targets

deferred shading, 431, 446–447, 452–453
parallel-split shadow maps, 221
particle systems, 515–516
reflections and refractions, 390

rendering
3D fluid effects

liquids, 671–672
volume. See volume rendering

animated crowds. See animated crowd rendering
importance sampling, 459–460
linearity problems, 531–533
particle systems, 522–524
point-based visualization of metaballs, 146
with relaxed cone maps, 421–425
rigid body simulation, 626
shadow volumes, 242
skin. See skin rendering
storage requirements, 662

rendering at infinity, 243
rendering pipelines

deferred shading, 432–434
parallel-split shadow maps, 215–216, 224–225,

228–229
reordering radix sort algorithm, 715–717
repulsion forces, 127, 135–140, 145
resolution

deferred shading, 451, 453
rigid body simulation, 616
shadow maps, 233

resolution-independent edge detection, 442–444
resource views for parallel-split shadow maps, 222
retroreflective markers, 350–351
reverse-mapped z-buffer techniques, 583–584
rho_s term, 300, 304–305
rigid body simulation, 611–612

collision detection, 615–617, 624–625
collision reaction, 617–618, 624–625
coupling, 629–630
data structure, 618–621
fluids, 627–629

granular material, 627–628
grids, 615–617, 620–624, 628
introduction, 613
momenta, 613–614, 625
performance, 626–627
position and quaternion, 614–615, 619–621,

625–626, 631
rendering, 626
rotation, 613–615, 631
shape representation, 615–616
translation, 613

Rijndael algorithm, 788
ringing artifacts, 588
RNGs. See random numbers
ROIs (regions of interest), 566–567
root mean square error in importance sampling,

470, 472
ROT8 macro, 790
rotation in rigid body simulation, 613–615,

631
roughness

bidirectional reflectance distribution function,
300–304, 333

surface reflectance, 295
rounds, encryption, 789–790, 793–797
row-based sparse matrix storage, 193

S
S-box, 793
SampleCmpLevelZero function, 230
SampleLevel function, 228
sampler data type, 568
samplerCoord function, 569
samplers

Core Image image-processing, 564
normal maps, 499

samplerTransform function, 572
samples

blend shapes, 66
cinematic relighting, 184
gather, 184, 186–188
importance. See importance sampling
parallel-split shadow maps, 204, 230
procedural terrains, 16–17
summed-area variance shadow maps, 179
volumetric light scattering, 278–279, 284

Index 933

700_gems3_index 7/5/2007 6:42 PM Page 933

934

SATs (summed-area tables)
parallel prefix sums (scans), 868–871
shadow maps, 157, 163, 174–175

saturate function
distances, 422
procedural terrains, 22

SAVSMs. See summed-area variance shadow maps
(SAVSMs)

scalar functions and quantities
3D fluid effects, 636
metaballs, 124

scaled dual-paraboloid mapping, 469–470
scaleXY4 function, 571–572
scaling factors

implicit surfaces, 128
particle systems, 526
volumetric light scattering, 278

scan conversion
bounding volumes, 744–745
folds, 746–747
leaking artifacts, 742–747
overview, 742
plane tests, 743–744
tetrahedra, 747–755

scan function, 855
scans

linearity, 539–540
parallel prefix sums. See parallel prefix sums

(scans)
scatter-as-gather approach, 587–589
scatter writes, 866
scattering

diffusion profiles, 305–306
light. See volumetric light scattering
parallel prefix sums (scans), 867–868
skin rendering, 296–298, 305–313, 345
subsurface. See subsurface scattering

scattering z-buffer technique, 584
scene-dependent method, 210–212
scene distance in volume rendering, 667
scene-independent method, 210–211
Schlick Fresnel reflectance, 300–301
screen-aligned quads, 302
screen resolution in deferred shading, 451
screen-space derivatives, 322
screen-space occlusion methods, 281–282
sculpting, signed distance fields for, 741
seams, texture, 331–332

searches
cone step mapping, 416, 425
ray tracing layered distance maps, 392–396
reflections and refractions, 401
relief mapping, 409–410, 413–415
true impostors, 484–486

secant searches, 387
ray tracing layered distance maps, 394–396
reflections and refractions, 401

second depth rendering, 172
secondary ray tracing, 389–396
security. See virus signature matching
seed values for random number pools, 819–

820
seismic data processing

CUDA implementation, 844–845
data acquisition, 832–834
GPU/CPU communication, 842–844
implementation, 841–842
introduction, 831–832
overview, 834–836
performance, 849
SRMIP algorithm, 838–840
wave propagation, 836–838, 845–848

selected equation variables for LCP, 735–
737

self-occlusion, 70
self-shadowing

cone step maps, 417
leaves, 77–81
relief maps, 412–413
shadow maps, 160
variance shadow maps, 162

semi-Lagrangian advection, 637, 640, 643
sequencing performances in Universal Capture,

363
sequential scans, 852–853
serpentine curves, 552
Set function, 365
SetStreamSourceFrequency function, 40
shader resource view (SRV)

parallel-split shadow maps, 222
particle systems, 516

shading. See shadows and shadow maps
Shading_PS function, 171
shadow acne, 160, 251
shadow casters, 212, 439
shadow receivers, 212

Index

700_gems3_index 7/5/2007 6:42 PM Page 934

shadow volumes
geometry shaders, 246–252
introduction, 239
for low-quality meshes, 244–246
overview, 240
performance, 243, 245–246, 252–254
volume generation, 242–243
z-pass and z-fail, 240–242

ShadowContribution function, 163
shadowMapSampler function, 219
shadows and shadow maps, 76–78, 336. See also

lights and lighting
aliasing, 158, 163, 206–209
artifacts, 417
cascaded, 81
cinematic relighting, 196
cone step. See cone step mapping (CSM); relaxed

cone stepping (RCS)
filtering, 180
leaves, 77–81
parallel-split. See parallel-split shadow maps

(PSSMs)
perspective, 158, 204, 437
procedural terrains, 29–34
relief mapping, 412–413
vs. shadow volumes, 239
transformation matrices, 212
translucent, 298, 336–342
variance. See summed-area variance shadow

maps (SAVSMs); variance shadow maps
(VSMs)

vegetation, 378–382
shapes

blend. See blend shapes
diffusion profiles, 307–308
rigid body simulation, 615–616

shared memory
parallel prefix sums (scans), 856–860, 866
parallel solution to LCP, 732–735
radix sort algorithm, 709, 711, 714–717, 871–873
seismic data processing, 844–846
thread blocks, 683–684, 686
Wallace Gaussian random number generator,

820–821
sharp shadows, 196
shells for scan conversion, 749–750
ShiftRows operation, 794
Shishkovtsov’s edge detection method, 442

shortest signed distance, 660
signal processing in seismic data processing, 834
signature_match function, 778
signatures, virus. See virus signature matching
signed distance fields

future work, 759–760
introduction, 741
overview, 741–742
performance, 756–759
scan conversion. See scan conversion

signed distance function, 557–558
silhouette clipping, 69–71

fin extrusion, 71–72
height tracing, 72–76
level-of-detail, 76–77

silhouette edges
antialiasing, 86–91
shadow volumes, 242, 246–247

SimKernel function, 827
simulation levels of detail (SLODs), 107–108
sine waves in vegetation animation, 375–376
single-pass normal map implementation, 501–507
SingleReflectionPS function, 398
singular value decomposition (SVD), 355, 361
size, particle, 527
skin rendering, 293

appearance of skin, 293–294
conclusion, 342–343
future work, 343–345
overview, 297–298
scattering. See scattering
specular surface reflectance, 299–305
subsurface reflectance, 296–297
surface reflectance, 295–296

skin tone, gamma correction for, 535–536
skinned instancing, 42
slack variables, 729
slackness, complementary, 729–730
SLI interconnects, 903–905
SmallBlurPS function, 600
SmallBlurVS function, 600
smoke effects, 643–644, 658–659
smooth surfaces in importance sampling, 470
SmoothCurve function, 375
smoothed particle hydrodynamics (SPH)

metaballs, 124
particles, 628
repulsion forces, 127

Index 935

700_gems3_index 7/5/2007 6:42 PM Page 935

936

smoothing discontinuities, 261–263
smoothing kernels

implicit surfaces, 128
metaballs, 124
repulsion force equation, 136

smoothstep function, 169
SmoothTriangleWave function, 375
Sobel filters

edge detection, 522
volume rendering, 671

soft particles, 519–520
soft shadows, 172–173, 178
softening factor in all-pairs N-body simulation, 680
solid-fluid interaction, 642–644

dynamic obstacles, 644–651
voxelization, 651–658

sort and sweep algorithm, 698–699
sorting cell ID arrays, 706–717
sound. See seismic data processing
source waves in wave propagation, 837
space-leaping approach

cone step mapping, 416
relief mapping, 409, 411

sparse matrix data, 185, 193–194, 198–200
spatial coherency

normal maps, 495
spatial subdivisions, 699

spatial frequencies, 662
spatial subdivisions

broad-phase collision detection, 699–700
cell ID arrays, 704

constructing, 704–706
sorting, 706–717

collision cell lists, 718–719
initialization, 704
overview, 702–703
parallel, 700–702

spatially varying BRDF, 473
specular BRDF, 333
specular light, 84

deferred shading, 452
texture-space diffusion, 328

specular reflectance
bidirectional reflectance distribution function,

303–304
multiple. See multiple specular reflections and

refractions
skin rendering, 299–305

specular-space to tangent-space transformation,
465

SpecularReflectionVS function, 397
SpeedTree rendering, 69

alpha to coverage, 85–88
high dynamic range and antialiasing, 85
introduction, 69
leaf lighting, 81–84
shadows, 76–81
silhouette clipping, 69–76

SPH (smoothed particle hydrodynamics)
metaballs, 124
particles, 628
repulsion forces, 127

sphere maps, 389
spheres for repulsion forces, 139
spherical coordinates in importance sampling, 465
spherical harmonics in importance sampling, 470
splats in procedural terrains, 27–28
splines

cubic, 546–552
quadratic, 544–546

split operation, 871–872
split schemes. See parallel-split shadow maps

(PSSMs)
splitSamples function, 187
splitting precision in summed-area tables, 176
splitting transfer matrix, 192
spotlights

cinematic relighting, 196
deferred shading, 435
distance to light depth metric for, 170–171

spring coefficient, 617
sqrtf function, 681
square root operations in N-body simulation,

690
sRGB formats, 539–540
SRMIP algorithm, 838–840, 846
SSE (Streaming SIMD Extensions) instruction set,

690–691
stable fluids method, 636
stair-stepping artifacts, 401
star flares, 276–277, 283
state, AES encryption, 791–792
state_in routine, 792
state_out routine, 792
static boundaries in 3D fluid effects, 644
static geometry in deferred shading, 439

Index

700_gems3_index 7/5/2007 6:42 PM Page 936

statistical quality in pseudorandom number genera-
tors, 811

status sets in scan conversion, 748
stencil buffers

3D fluid effects, 652–653
particle systems, 523–524
shadow volumes, 240, 242

stencil methods
masking, 449
rigid body simulation, 623
volumetric light scattering, 282

stiffness coefficient, 109
stochastic processes, 805

depth-of-field, 587–588
Monte Carlo, 805, 807
wind animations, 107–109

stocks
Monte Carlo simulations, 807–808, 821–822
options

Asian, 823–824
lookback, 824–827

storing
3D fluid effects, 661–662
sparse matrix data, 193–194
summed-area variance shadow maps, 176

stream compaction, 866–868
stream-out feature

blend shapes, 56–60
queries, 12

stream output for voxelization, 657
Streaming SIMD Extensions (SSE) instruction set,

690–691
stretch texture

texture-space diffusion, 323–324
UV distortion, 321–322

striations in procedural terrains, 32
strike prices, 822=823
sub_bytes_shift_rows routine, 793–794
SubBytes operation, 793–794
subdivisions, spatial. See spatial subdivisions
substreams for random number generators,

811
subsurface imaging. See seismic data processing
subsurface reflectance, 296–297
subsurface scattering

bloom filters, 342
gamma correction, 536
skin rendering, 294, 351–352

texture-space diffusion. See texture-space diffu-
sion

theory, 305
translucent shadow maps, 336–342
vegetation shading, 378–379

sum of Gaussians
diffusion profiles, 308–313, 319–320
skin rendering, 298
texture-space diffusion, 325
translucent shadow maps, 339

summation
radix sort algorithm, 712–715
volumetric light scattering, 278–279

summed-area tables (SATs)
parallel prefix sums (scans), 868–871
shadow maps, 157, 163, 174–175

summed-area variance shadow maps (SAVSMs),
157, 174–175

introduction, 157–158
numeric stability, 175–177
percentage-closer filtering, 159–161
percentage-closer soft shadows, 178–181
performance, 177–178
related work, 158–159
summed-area table generation, 175

sunbeams, 276–277, 283
surface normals, 300
surface reflection

bidirectional reflectance distribution function,
304

cinematic relighting, 196
importance sampling, 470
skin rendering, 295–296, 299–305

surfaces
implicit, 125, 128
importance sampling, 470
metaballs, 124–125
particle dispersion, 140–143
procedural terrain color, 34
velocity constraint equation, 128–131

surveys in seismic data processing, 832–833
SV_InstanceID variable, 43
SV_RenderTargetArrayIndex semantic, 13,

637
SV_VertextID semantic, 62
SVD (singular value decomposition), 355,

361
symmetric keys, 788–789

Index 937

700_gems3_index 7/5/2007 6:42 PM Page 937

938

synchronization
N-body simulation, 684
parallel prefix sums (scans), 866
parallel solution to LCP, 735–736
radix sort algorithm, 711, 715

synthesizing shadows, 214, 216–218, 228–229
system variables, 43

T
Tabula Rasa, deferred shading. See deferred shading
tangent space transformations

from normals, 506
to world-space, 465

tangential velocity, 618
TausStep function, 813
Tausworthe generators, 813–814
Taylor series approximation, 882
temperature

smoke effects, 658–659
water effects, 660

temporal coherence
particle systems for, 125
shadow volumes, 254

terrains. See procedural terrains
tessellation

adaptive mesh refinement, 94–95
meshes, 259–260
trees, 70

tetrahedra
cross sections, 750–751
scan conversion, 747–755

tex2Dlod function, 468
tex2Doffset function, 601
texture arrays, 222
texture coordinates

cone step maps, 424
interpolating, 557
relief maps, 413
true impostors, 482–483

texture map linearity, 532
texture-space diffusion, 314–316

blurs, 316–319
color, 325–327
convolution shaders, 322–324

energy conservation, 332–336
final shader, 328–331
multiscale stretching, 322
post-scatter texturing, 326–328
pre-scatter texturing, 326–328
skin rendering, 298
specular and diffuse light, 328
stretch texture, 323–324
sum-of-Gaussians diffusion profile, 319–320
texture seams, 331–332
UV distortion, 320–322

texture2D function, 878
Texture2DArray arrays, 230
TextureCubes, 230–231
textures

3D fluid effects, 636, 660–661
animated. See animated textures
antialiasing, 557
Beckmann, 302–304
cubic splines, 551
decoding matrices from, 45
deferred shading, 453
encrypted, 799
liquids rendering, 672
minification artifacts, 158
normal maps, 494, 499
parallel-split shadow maps, 221–222, 232–233
procedural terrains, 29–34
quadratic splines, 545–546
RayData, 666, 668–669, 671
relief maps, 413
rigid body simulation, 618–621, 626
seams, 331–332
smoke effects, 658
sparse matrix multiplication, 199
volume rendering, 666, 668–669, 671
water effects, 660

thin lens equation, 585–586
32-bit floating-point (R32F) texture format, 216
threads and thread blocks

clustering tiles into, 683–685
grids, 685–686
parallel prefix sums (scans), 853, 859–863, 866,

869, 873
parallel solution to LCP, 734–736
radix sort algorithm, 708–717

Index

700_gems3_index 7/5/2007 6:42 PM Page 938

threads and thread blocks (continued)
seismic data processing, 845–846
tile calculations, 682–683
virus signature matching, 776, 778

3D digital differential analyzer (3D-DDA), 494–
495

3D fluid effects
background, 634–635
detail, 640–642
fire, 659, 662–663
fluid motion equations, 635–636
introduction, 633–634
numerical issues, 662–665
performance, 660–661
rendering. See volume rendering
smoke, 658–659
solid-fluid interaction, 642–644

dynamic obstacles, 644–651
voxelization, 651–658

storage requirements, 661–662
velocity, 635–639, 643, 645–646, 652
volume changes, 662–665
water, 659–660

thresholds for Mask from Color filter, 568
tidal streams in seismic data processing, 834
tile_calculation function, 683
tiles

all-pairs N-body simulation, 681–685, 688–690
normal map rendering, 507

time-step scheme in N-body simulation, 692
time-varying price volatility, 825
torque, 614, 618
Torrance/Sparrow BRFD model, 304, 345
total reflected light in importance sampling, 460
tPcaTex structure, 363
transfer functions in volume rendering, 669
transform feedback mode, 785–787
Transform function, 818–819
transformation matrices, 795

cinematic relighting, 185
parallel-split shadow maps, 209–214

TransformBlock function, 818–819
transforms

Box-Muller, 806, 815–816
linear, 530
wavelet, 185, 197–198

transition zone discontinuities, 261–262
translation in rigid body simulation, 613

translucent shadow maps (TSMs), 336–340
multiple lights and environment lighting, 340–

342
skin rendering, 298

transmission profiles, 337
transparency, depth-of-field, 604
trapezoidal shadow maps (TSMs), 158, 204, 437
traversal depth in ambient occlusion, 269
tree structures

disks, 258
shadow volumes, 252–254

trees
bending, 374
conceptual structure, 107
SpeedTree. See SpeedTree rendering
wind. See wind animation

triangle_marker_point structure, 25
triangle-slice intersections, 653–654
Triangle structure, 500
triangle waves in vegetation animation, 375
triangles

ambient occlusion, 272–273
cubic splines, 546–547
normal maps, 496
quadratic splines, 545

TriangleWave function, 375
triangulation in vector art, 555–556
tricubic interpolation, 671
trilinear filtering

minification artifacts, 158
variance shadow maps, 162–163

triplanar texturing, 29–30
TRNGs (true random number generators), 809
true impostors, 481

algorithm and implementation details, 482–487
introduction, 481–482
performance, 487–489

true random number generators (TRNGs), 809
TrueType data, 544
trunk

animating, 107–110
shading, 378

TSMs (translucent shadow maps), 336–340
multiple lights and environment lighting, 340–

342
skin rendering, 298

TSMs (trapezoidal shadow maps), 158, 204, 437
tunable parameters in ambient occlusion, 271–273

Index 939

700_gems3_index 7/5/2007 6:42 PM Page 939

940

turbulence
branch animation, 111
trunk animation, 109

two-sided lighting, 82–83
2D textures

procedural terrains, 18
relief mapping, 413

U
UcapWindow structure, 365
Uncanny Valley hypothesis, 350
undersampling artifacts, 400
undershooting in ray tracing layered distance maps,

391, 393–394
uniform distributions, 463
uniform grids

normal maps, 494–496
rigid body simulation, 628
spatial subdivisions, 699, 703–704

uniform PRNGs, 812–815
uniform split schemes, 207–209
uniform-to-Gaussian conversion generators, 811–

815
Universal Capture (UCap), 349

animated textures. See animated textures
conclusion, 363–370
data acquisition pipeline, 350–352
introduction, 349–350
sequencing performances, 363

UNPACK macro, 792
unpack_state_in routine, 792–793
unrolling loops in N-body simulation, 687–688
up-sweep phase in parallel prefix sums (scans), 856
upgoing waves in seismic data processing, 838
UVs and UV distortion

edge detection, 442
procedural terrains, 29
texture-space diffusion, 320–322
true impostors, 482–483

V
v2gConnector structure, 26
variable batch size in AES encryption, 798
variable-length output, 898–899

variable principal component analysis, 360
variable-width blur, 593–594
variance in animated facial textures, 352, 354
variance shadow maps (VSMs), 157, 161–162

biasing, 164–166
filtering, 162–164
implementation, 171–172
light bleeding, 166–169
numeric stability, 169–171
parallel-split shadow maps, 232
soft shadows, 172–173
summed-area. See summed-area variance shadow

maps (SAVSMs)
vector art

antialiasing, 556–558
code, 558–559
cubic splines, 546–552
cusps, 554
introduction, 543–544
loop curves, 553–554
quadratic curves, 555, 558–559
quadratic splines, 544–546
serpentine curves, 552
triangulation, 555–556

vectors
3D fluid effects, 636
wind animation, 106–107

vegetation
animation, 373

detail bending, 376
implementation, 374–375
procedural, 373–374
sine waves, 375–376
SpeedTree. See SpeedTree rendering
wind. See wind animation

shading, 378–379
ambient lighting, 379–380
edge smoothing, 380
implementation, 381–382

velocity
3D fluid effects, 635–639, 643, 645–646, 652
all-pairs N-body simulation, 680
rigid body simulation, 613–614, 617–618,

622
seismic data processing, 834–837
smoke effects, 658–659

velocity constraint equation, 128–131
velocity voxelization, 652–657

Index

700_gems3_index 7/5/2007 6:42 PM Page 940

vertex buffers
cinematic relighting, 196
deferred shading, 453
procedural terrains, 12, 27
tree rendering, 117

vertex shaders
blend shapes, 64–65
conditional branching, 46–47
instancing, 42
procedural terrains, 13
rigid body simulation, 622–623, 626
sparse matrix multiplication, 199–200

vertex textures in normal maps, 498
VertexID system value, 56
vertices

blend shapes, 56, 59
interpolation artifacts, 259
mesh refinement. See adaptive mesh refinement
procedural terrains, 9–10, 27
silhouette clipping, 73–74

video image processing, 563–564
video memory for deferred shading, 453
view frustum

object culling, 196
parallel-split shadow maps, 203, 206–209

view matrix, 224
view rays, 483–485
view samples in cinematic relighting, 184
view vectors, 300
virtual lenses, 585
virus signature matching

future work, 782–783
implementation, 775–779
introduction, 771–773
pattern matching, 773–775
performance, 779–782

visible leaf nodes in shadow volumes, 253
visibleQuad function, 266–267
vision algorithms, 898

corner detection, 903–904
Hough transform, 899–903

visualization of metaballs, 126–127
volume changes in 3D fluid effects, 662–665
volume generation for shadow volumes, 242–245
volume rendering, 665

clipping, 668–669
compositing, 667–668
filtering, 669–670

fire, 671
off-screen ray marching, 670–671
volume ray casting, 665–667

volumetric light scattering, 275
caveats, 282–283
crepuscular rays, 276–277
demo, 283
extensions, 284
introduction, 275–276
overview, 277–278
post-process pixel shader, 279–280
screen-space occlusion methods, 281–282
summary, 284
summation, 278–279

Voronoi regions, 744, 748
voxels

3D fluid effects, 651–658
collision detection, 617
optimizing, 657–658
procedural terrains, 8–13, 22, 28
storage requirements, 662

VS_IN structure, 227
VS_OUT structure, 227
VS_RenderShadowMap function, 227
VSFace function, 60
VSFaceBufferTemplate function, 65
VSMs. See variance shadow maps (VSMs)

W
Wallace Gaussian random number generator, 816–

821
Walsh-Hadamard matrices, 818–819
Ward’s anisotropic BRDF, 465
warps

coordinates, 16–17
parallel prefix sums (scans), 854, 859
parallel-split shadow maps, 233
seismic data processing, 845

water, 634
3D fluid effects, 659–660
deferred shading, 440–442
rendering, 671–672

wave propagation in seismic data processing, 836–
838, 845–848

wavelet lights, 194
wavelet transforms, 185, 197–198

Index 941

700_gems3_index 7/5/2007 6:42 PM Page 941

942

WaveletCoefficient structure, 191
wavelets for compression, 189–191
waveletTransform function, 190, 197
weapon depth-of-field considerations, 594–595
weight stream compression, 362
weighted averages in importance sampling, 462–

463
weighted minimums in ambient occlusion, 270
weighted sampling in volume rendering, 669–670
weights

conditional branching for, 45–47
volumetric light scattering, 278–279

white specular color, 303–304
white values in gamma correction, 531
width/height ratio in cone step mapping, 416
wind animation, 105

analysis and comparison, 118–119
GPU, 106
introduction, 105–106
performance, 119–120
phenomenological approach, 106–113
quaternion library, 115–116
simulation step, 113–115
tree rendering, 116–117
vegetation, 373–374

work efficiency in parallel prefix sums (scans), 852–
853, 855–858

working models for normal maps, 492
world distances in depth-of-field, 594
world matrix, 224
wraparound, overflow, 177
write-after-read conflicts in radix sort algorithm, 709

X
xNormal implementation, 508
XOR operations

AES encryption, 793, 800
random number generators, 813

Z
z-buffer

depth-of-field, 583–584
particle systems, 514–515
relief mapping, 413

z-pass and z-fail in shadow volumes, 240–242
z-planes in tetrahedron cross sections, 750
z-rejection in deferred shading, 448
z values in procedural terrains, 35
zero sets for water effects, 660
ziggurat method, 815

Index

700_gems3_index 7/5/2007 6:42 PM Page 942

	Foreword
	Preface
	Chapter 18: Relaxed Cone Stepping for Relief Mapping
	Chapter 30: Real-Time Simulation and Rendering of 3D Fluids
	Chapter 38: Imaging Earth’s Subsurface Using CUDA
	Index

