
CHAPTER 3
Routing

I dreamed a thousand new paths. . . I woke and walked my old one.
—Chinese proverb

The routing system in Rails is the system that examines the URL of an incoming
request and determines what action should be taken by the application. And it does a
good bit more than that. Rails routing can be a bit of a tough nut to crack. But it turns
out that most of the toughness resides in a small number of concepts. After you’ve got
a handle on those, the rest falls into place nicely.

This chapter will introduce you to the principal techniques for defining and
manipulating routes. The next chapter will build on this knowledge to explore the
facilities Rails offers in support of writing applications that comply with the principles
of Representational State Transfer (REST). As you’ll see, those facilities can be of
tremendous use to you even if you’re not planning to scale the heights of REST theo-
rization.

Many of the examples in these two chapters are based on a small auction applica-
tion. The examples are kept simple enough that they should be comprehensible on
their own. The basic idea is that there are auctions; each auction involves auctioning
off an item; there are users; and users submit bids. That’s most of it.

The triggering of a controller action is the main event in the life cycle of a con-
nection to a Rails application. So it makes sense that the process by which Rails deter-
mines which controller and which action to execute must be very important. That
process is embodied in the routing system.

03_5619_ch03.qxd 10/25/07 10:32 AM Page 57

The routing system maps URLs to actions. It does this by applying rules—rules
that you specify, using Ruby commands, in the configuration file config/
routes.rb. If you don’t override the file’s default rules, you’ll get some reasonable
behavior. But it doesn’t take much work to write some custom rules and reap the ben-
efits of the flexibility of the routing system.

Moreover, the routing system actually does two things: It maps requests to
actions, and it writes URLs for you for use as arguments to methods like link_to,
redirect_to, and form_tag. The routing system knows how to turn a visitor’s
request URL into a controller/action sequence. It also knows how to manufacture
URL strings based on your specifications.

When you do this:

<%= link_to “Items”, :controller => “items”, :action => “list” %>

the routing system provides the following URL to the link_to helper:

http://localhost:3000/items/list

The routing system is thus a powerful, two-way routing complex. It recognizes
URLs, routing them appropriately; and it generates URLs, using the routing rules as a
template or blueprint for the generated string. We’ll keep an eye on both of these
important purposes of the routing system as we proceed.

The Two Purposes of Routing
Recognizing URLs is useful because it’s how your application decides what it’s sup-
posed to do when a particular request comes in:

http://localhost:3000/myrecipes/apples What do we do now?!

Generating URLs is useful because it allows you to use relatively high-level syn-
tax in your view templates and controllers when you need to insert a URL—so you
don’t have to do this:

My Apple Recipes

Not much fun having to type this out by hand!

58 3. Routing

03_5619_ch03.qxd 10/25/07 10:32 AM Page 58

The routing system deals with both of these issues: how to interpret (recognize) a
request URL and how to write (generate) a URL. It performs both of these functions
based on rules that you provide. The rules are inserted into the file config/
routes.rb, using a special syntax. (Actually it’s just Ruby program code, but it uses
special methods and parameters.)

Each rule—or, to use the more common term, simply each route—includes a pattern
string, which will be used both as a template for matching URLs and as a blueprint
for writing them. The pattern string contains a mixture of static substrings, forward
slashes (it’s mimicking URL syntax), and wildcard positional parameters that serve as
“receptors” for corresponding values in a URL, for purposes of both recognition and
generation.

A route can also include one or more bound parameters, in form of key/value
pairs in a hash. The fate of these key/value pairs depends on what the key is. A cou-
ple of keys (:controller and :action) are “magic,” and determine what’s actually
going to happen. Other keys (:blah, :whatever, etc.) get stashed for future refer-
ence.

Putting some flesh on the bones of this description, here’s a sample route, related
to the preceding examples:

map.connect ‘myrecipes/:ingredient’,

:controller => “recipes”,

:action => “show”

In this example, you can see:

• A static string (myrecipes)

• A wildcard URL component (:ingredient)

• Bound parameters (:controller => “recipes”, :action => “show”)

Routes have a pretty rich syntax—this one isn’t by any means the most complex
(nor the most simple)—because they have to do so much. A single route, like the one
in this example, has to provide enough information both to match an existing URL
and to manufacture a new one. The route syntax is engineered to address both of these
processes.

It’s actually not hard to grasp, if you take each type of field in turn. We’ll do a run-
through using the “ingredient” route. Don’t worry if it doesn’t all sink in the first time

The Two Purposes of Routing 59

03_5619_ch03.qxd 10/25/07 10:32 AM Page 59

through. We’ll be unpacking and expanding on the techniques and details throughout
the chapter.

As we go through the route anatomy, we’ll look at the role of each part in both
URL recognition and URL generation. Keep in mind that this is just an introducto-
ry example. You can do lots of different things with routes, but examining this exam-
ple will give you a good start in seeing how it all works.

Bound Parameters
If we’re speaking about route recognition, the bound parameters—key/value pairs in
the hash of options at the end of the route’s argument list—determine what’s going to
happen if and when this route matches an incoming URL. Let’s say someone requests
this URL from their web browser:

http://localhost:3000/myrecipes/apples

This URL will match the ingredient route. The result will be that the show action
of the recipes controller will be executed. To see why, look at the route again:

map.connect ‘myrecipes/:ingredient’,

:controller => “recipes”,

:action => “show”

The :controller and :action keys are bound: This route, when matched by
a URL, will always take the visitor to exactly that controller and that action. You’ll see
techniques for matching controller and action based on wildcard matching shortly. In
this example, though, there’s no wildcard involved. The controller and action are hard-
coded.

Now, when you’re generating a URL for use in your code, you provide values for
all the necessary bound parameters. That way, the routing system can do enough
match-ups to find the route you want. (In fact, Rails will complain by raising an
exception if you don’t supply enough values to satisfy a route.)

The parameters are usually bundled in a hash. For example, to generate a URL
from the ingredient route, you’d do something like this:

<%= link_to “Recipe for apples”,

:controller => “recipes”,

:action => “show”,

:ingredient => “apples” %>

60 3. Routing

03_5619_ch03.qxd 10/25/07 10:32 AM Page 60

The values “recipes” and “show” for :controller and :action will match
the ingredient route, which contains the same values for the same parameters. That
means that the pattern string in that route will serve as the template—the blueprint—
for the generated URL.

The use of a hash to specify URL components is common to all the methods that
produce URLs (link_to, redirect_to, form_for, etc.). Underneath, these meth-
ods are making their own calls to url_for, a lower-level URL generation method that
we’ll talk about more a little further on.

We’ve left :ingredient hanging. It’s a wildcard component of the pattern string.

Wildcard Components (“Receptors”)
The symbol :ingredient inside the quoted pattern in the route is a wildcard param-
eter (or variable). You can think of it as a receptor: Its job is to be latched onto by a
value. Which value latches onto which wildcard is determined positionally, lining the
URL up with the pattern string:

http://localhost:3000/myrecipes/apples Someone connects to this URL...

‘myrecipes/:ingredient’ which matches this pattern string

The :ingredient receptor, in this example, receives the value apples from the
URL. What that means for you is that the value params[:ingredient]will be set to
the string “apples”. You can access that value inside your recipes/show action.
When you generate a URL, you have to supply values that will attach to the recep-
tors—the wildcard symbols inside the pattern string. You do this using key => value
syntax. That’s the meaning of the last line in the preceding example:

<%= link_to “My Apple Recipes”,

:controller => “recipes”,

:action => “show”,

:ingredient => “apples” %>

In this call to link_to, we’ve provided values for three parameters. Two of them
are going to match hard-coded, bound parameters in the route; the third, :ingredient,
will be assigned to the slot in the URL corresponding to the :ingredient slot in the
pattern string.

Wildcard Components (“Receptors”) 61

03_5619_ch03.qxd 10/25/07 10:32 AM Page 61

But they’re all just hash key/value pairs. The call to link_to doesn’t “know”
whether it’s supplying hard-coded or wildcard values. It just knows (or hopes!) that
these three values, tied to these three keys, will suffice to pinpoint a route—and there-
fore a pattern string, and therefore a blueprint for a URL.

Static Strings
Our sample route contains a static string inside the pattern string: recipes.

map.connect ‘myrecipes/:ingredient’,

:controller => “recipes”,

:action => “show”

This string anchors the recognition process. When the routing system sees a URL
that starts /recipes, it will match that to the static string in the ingredient route. Any
URL that does not contain the static string recipes in the leftmost slot will not
match this route.

As for URL generation, static strings in the route simply get placed, positionally,
in the URL that the routing system generates. Thus the link_to example we’ve been
considering

<%= link_to “My Apple Recipes”,

:controller => “recipes”,

:action => “show”,

:ingredient => “apples” %>

will generate the following HTML:

My Apple Recipes

The string myrecipes did not appear in the link_to call. The parameters of the
link_to call triggered a match to the ingredients route. The URL generator then
used that route’s pattern string as the blueprint for the URL it generated. The pattern
string stipulates the substring myrecipes.

URL recognition and URL generation, then, are the two jobs of the routing sys-
tem. It’s a bit like the address book stored in a cell phone. When you select “Gavin”
from your contact list, the phone looks up the phone number. And when Gavin calls
you, the phone figures out from the number provided by caller ID that the caller is

62 3. Routing

03_5619_ch03.qxd 10/25/07 10:32 AM Page 62

Gavin; that is, it recognizes the number and maps it to the value “Gavin”, which is
displayed on the phone’s screen.

Rails routing is a bit more complex than cell phone address book mapping,
because there are variables involved. It’s not just a one-to-one mapping. But the basic
idea is the same: recognize what comes in as requests, and generate what goes into the
code as HTML.

We’re going to turn next to the routing rules themselves. As we go, you should
keep the dual purpose of recognition/generation in mind. There are two principles
that are particularly useful to remember:

• The same rule governs both recognition and generation. The whole system is set
up so that you don’t have to write rules twice. You write each rule once, and the
logic flows through it in both directions.

• The URLs that are generated by the routing system (via link_to and friends)
only make sense to the routing system. The path recipes/apples, which the sys-
tem generates, contains not a shred of a clue as to what’s supposed to happen—
except insofar as it maps to a routing rule. The routing rule then provides the nec-
essary information to trigger a controller action. Someone looking at the URL
without knowing the rules won’t know what the URL means.

You’ll see how these play out in detail as we proceed.

The routes.rb File
Routes are defined in the file config/routes.rb, as shown (with some extra com-
ments) in Listing 3.1. This file is created when you first create your Rails application.
It comes with a few routes already written and in most cases you’ll want to change
and/or add to the routes defined in it.

Listing 3.1 The Default routes.rb File

ActionController::Routing::Routes.draw do |map|
The priority is based upon order of creation
First created gets highest priority.

Sample of regular route:
map.connect ‘products/:id’, :controller => ‘catalog’,

:action => ‘view’

The routes.rb File 63

03_5619_ch03.qxd 10/25/07 10:32 AM Page 63

Keep in mind you can assign values other than
:controller and :action

Sample of named route:
map.purchase ‘products/:id/purchase’, :controller => ‘catalog’,

:action => ‘purchase’
This route can be invoked with purchase_url(:id => product.id)

You can have the root of your site routed by hooking up ‘’
-- just remember to delete public/index.html.
map.connect ‘’, :controller => “welcome”

Allow downloading Web Service WSDL as a file with an extension

instead of a file named ‘wsdl’
map.connect ‘:controller/service.wsdl’, :action => ‘wsdl’

Install the default route as the lowest priority.
map.connect ‘:controller/:action/:id.:format’
map.connect ‘:controller/:action/:id’

end

The whole thing consists of a single call to the method ActionController:
:Routing::Routes.draw. That method takes a block, and everything from the sec-
ond line of the file to the second-to-last line is body of that block.

Inside the block, you have access to a variable called map. It’s an instance of the
class ActionController::Routing::RouteSet::Mapper. Through it you config-
ure the Rails routing system: You define routing rules by calling methods on your
mapper object. In the default routes.rb file you see several calls to map.connect.
Each such call (at least, those that aren’t commented out) creates a new route by reg-
istering it with the routing system.

The routing system has to find a pattern match for a URL it’s trying to recognize,
or a parameters match for a URL it’s trying to generate. It does this by going through
the rules—the routes—in the order in which they’re defined; that is, the order in
which they appear in routes.rb. If a given route fails to match, the matching rou-
tine falls through to the next one. As soon as any route succeeds in providing the nec-
essary match, the search ends.

64 3. Routing

03_5619_ch03.qxd 10/25/07 10:32 AM Page 64

Courtenay Says…

Routing is probably one of the most complex parts of
Rails. In fact, for much of Rails’ history, only one person
could make any changes to the source, due to its labryn-
thine implementation. So, don’t worry too much if you
don’t grasp it immediately. Most of us still don’t.

That being said, the routes.rb syntax is pretty straight-
forward if you follow the rules. You’ll likely spend less
than 5 minutes setting up routes for a vanilla Rails project.

The Default Route
If you look at the very bottom of routes.rb you’ll see the default route:

map.connect ‘:controller/:action/:id’

The default route is in a sense the end of the journey; it defines what happens
when nothing else happens. However, it’s also a good place to start. If you understand
the default route, you’ll be able to apply that understanding to the more intricate
examples as they arise.

The default route consists of just a pattern string, containing three wildcard
“receptors.” Two of the receptors are :controller and :action. That means that
this route determines what it’s going to do based entirely on wildcards; there are no
bound parameters, no hard-coded controller or action.

Here’s a sample scenario. A request comes in with the URL:

http://localhost:3000/auctions/show/1

Let’s say it doesn’t match any other pattern. It hits the last route in the file—the
default route. There’s definitely a congruency, a match. We’ve got a route with three
receptors, and a URL with three values, and therefore three positional matches:

:controller/:action/:id

auctions / show / 1

We end up, then, with the auctions controller, the show action, and “1” for the
id value (to be stored in params[:id]). The dispatcher now knows what to do.

The routes.rb File 65

03_5619_ch03.qxd 10/25/07 10:32 AM Page 65

The behavior of the default route illustrates some of the specific default behaviors
of the routing system. The default action for any request, for example, is index. And,
given a wildcard like :id in the pattern string, the routing system prefers to find a
value for it, but will go ahead and assign it nil rather than give up and conclude that
there’s no match.

Table 3.1 shows some examples of URLs and how they will map to this rule, and
with what results.

Table 3.1 Default Route Examples

URL Result Value of id

Controller Action

/auctions/show/3 auctions show 3

/auctions/index auctions index nil

/auctions auctions index (default) nil

/auctions/show auctions show nil—probably an error!

The nil in the last case is probably an error because a show action with no id is
usually not what you’d want!

Spotlight on the :id Field
Note that the treatment of the :id field in the URL is not magic; it’s just treated as a
value with a name. If you wanted to, you could change the rule so that :id was
:blah—but then you’d have to remember to do this in your controller action:

@auction = Auction.find(params[:blah])

The name :id is simply a convention. It reflects the commonness of the case in
which a given action needs access to a particular database record. The main business
of the router is to determine the controller and action that will be executed. The id
field is a bit of an extra; it’s an opportunity for actions to hand a data field off to each
other.

66 3. Routing

03_5619_ch03.qxd 10/25/07 10:32 AM Page 66

The id field ends up in the params hash, which is automatically available to your
controller actions. In the common, classic case, you’d use the value provided to dig a
record out of the database:

class ItemsController < ApplicationController

def show

@item = Item.find(params[:id])

end

end

Default Route Generation
In addition to providing the basis for recognizing URLs, and triggering the correct
behavior, the default route also plays a role in URL generation. Here’s a link_to call
that will use the default route to generate a URL:

<%= link_to item.description,

:controller => “item”,

:action => “show”,

:id => item.id %>

This code presupposes a local variable called item, containing (we assume) an
Item object. The idea is to create a hyperlink to the show action for the item con-
troller, and to include the id of this particular item. The hyperlink, in other words,
will look something like this:

A signed picture of Houdini

This URL gets created courtesy of the route-generation mechanism. Look again
at the default route:

map.connect ‘:controller/:action/:id’

In our link_to call, we’ve provided values for all three of the fields in the pat-
tern. All that the routing system has to do is plug in those values and insert the result
into the URL:

item/show/3

The routes.rb File 67

03_5619_ch03.qxd 10/25/07 10:32 AM Page 67

When someone clicks on the link, that URL will be recognized—courtesy of the
other half of the routing system, the recognition facility—and the correct controller
and action will be executed, with params[:id] set to 3.

The generation of the URL, in this example, uses wildcard logic: We’ve supplied
three symbols, :controller, :action, and :id, in our pattern string, and those
symbols will be replaced, in the generated URL, by whatever values we supply.
Contrast this with our earlier example:

map.connect ‘recipes/:ingredient’,

:controller => “recipes”,

:action => “show”

To get the URL generator to choose this route, you have to specify “recipes” and
“show” for :controller and :action when you request a URL for link_to. In the
default route—and, indeed, any route that has symbols embedded in its pattern—you
still have to match, but you can use any value.

Modifying the Default Route
A good way to get a feel for the routing system is by changing things and seeing what
happens. We’ll do this with the default route. You’ll probably want to change it back…
but changing it will show you something about how routing works.

Specifically, swap :controller and :action in the pattern string:

Install the default route as the lowest priority.

map.connect ‘:action/:controller/:id’

You’ve now set the default route to have actions first. That means that where pre-
viously you might have connected to http://localhost:3000/auctions/show/3, you’ll
now need to connect to http://localhost:3000/show/auctions/3. And when you gen-
erate a URL from this route, it will come out in the /show/auctions/3 order.

It’s not particularly logical; the original default (the default default) route is bet-
ter. But it shows you a bit of what’s going on, specifically with the magic symbols
:controller and :action. Try a few more changes, and see what effect they have.
(And then put it back the way it was!)

68 3. Routing

03_5619_ch03.qxd 10/25/07 10:32 AM Page 68

The Ante-Default Route and respond_to
The route just before the default route (thus the “ante-default” route) looks like this:

map.connect ‘:controller/:action/:id.:format’

The .:format at the end matches a literal dot and a wildcard “format” value after
the id field. That means it will match, for example, a URL like this:

http://localhost:3000/recipe/show/3.xml

Here, params[:format] will be set to xml. The :format field is special; it has
an effect inside the controller action. That effect is related to a method called
respond_to.

The respond_to method allows you to write your action so that it will return
different results, depending on the requested format. Here’s a show action for the
items controller that offers either HTML or XML:

def show

@item = Item.find(params[:id])

respond_to do |format|

format.html

format.xml { render :xml => @item.to_xml }

end

end

The respond_to block in this example has two clauses. The HTML clause just
consists of format.html. A request for HTML will be handled by the usual render-
ing of the RHTML view template. The XML clause includes a code block; if XML is
requested, the block will be executed and the result of its execution will be returned
to the client.

Here’s a command-line illustration, using wget (slightly edited to reduce line
noise):

$ wget http://localhost:3000/items/show/3.xml -O -

Resolving localhost... 127.0.0.1, ::1

Connecting to localhost|127.0.0.1|:3000... connected.

HTTP request sent, awaiting response... 200 OK

Length: 295 [application/xml]

<item>

The Ante-Default Route and respond_to 69

03_5619_ch03.qxd 10/25/07 10:32 AM Page 69

<created-at type=”datetime”>2007-02-16T04:33:00-05:00</created-at>

<description>Violin treatise</description>

<id type=”integer”>3</id>

<maker>Leopold Mozart</maker>

<medium>paper</medium>

<modified-at type=”datetime”></modified-at>

<year type=”integer”>1744</year>

</item>

The .xml on the end of the URL results in respond_to choosing the “xml”
branch, and the returned document is an XML representation of the item.

respond_to and the HTTP-Accept Header
You can also trigger a branching on respond_to by setting the HTTP-Accept head-
er in the request. When you do this, there’s no need to add the .:format part of the
URL.

Here’s a wget example that does not use .xml but does set the Accept header:

wget http://localhost:3000/items/show/3 -O - —header=”Accept:

text/xml”

Resolving localhost... 127.0.0.1, ::1

Connecting to localhost|127.0.0.1|:3000... connected.

HTTP request sent, awaiting response...

200 OK

Length: 295 [application/xml]

<item>

<created-at type=”datetime”>2007-02-16T04:33:00-05:00</created-at>

<description>Violin treatise</description>

<id type=”integer”>3</id>

<maker>Leopold Mozart</maker>

<medium>paper</medium>

<modified-at type=”datetime”></modified-at>

<year type=”integer”>1744</year>

</item>

The result is exactly the same as in the previous example.

70 3. Routing

03_5619_ch03.qxd 10/25/07 10:32 AM Page 70

The Empty Route
Except for learning-by-doing exercises, you’re usually safe leaving the default route
alone. But there’s another route in routes.rb that plays something of a default role
and you will probably want to change it: the empty route.

A few lines up from the default route (refer to Listing 3.1) you’ll see this:

You can have the root of your site routed by hooking up ‘’

-- just remember to delete public/index.html.

map.connect ‘’, :controller => “welcome”

What you’re seeing here is the empty route—that is, a rule specifying what should
happen when someone connects to

http://localhost:3000 Note the lack of “/anything” at the end!

The empty route is sort of the opposite of the default route. Instead of saying, “I
need any three values, and I’ll use them as controller, action, and id,” the empty route
says, “I don’t want any values; I want nothing, and I already know what controller and
action I’m going to trigger!”

In a newly generated routes.rb file, the empty route is commented out, because
there’s no universal or reasonable default for it. You need to decide what this “noth-
ing” URL should do for each application you write.

Here are some examples of fairly common empty route rules:

map.connect ‘’, :controller => “main”, :action => “welcome”

map.connect ‘’, :controller => “top”, :action => “login”

map.connect ‘’, :controller => “main”

That last one will connect to main/index—index being the default action when
there’s none specified.

Note that Rails 2.0 introduces a mapper method named root which becomes the
proper way to define the empty route for a Rails application, like this:

map.root :controller => “homepage”

Defining the empty route gives people something to look at when they connect
to your site with nothing but the domain name.

The Empty Route 71

03_5619_ch03.qxd 10/25/07 10:32 AM Page 71

Writing Custom Routes
The default route is a very general one. Its purpose is to catch all routes that haven’t
matched already. Now we’re going to look at that already part: the routes defined ear-
lier in the routes.rb file, routes that match more narrowly than the general one at
the bottom of the file.

You’ve already seen the major components that you can put into a route: static
strings, bound parameters (usually including :controller and often including
:action), and wildcard “receptors” that get their values either positionally from a
URL, or key-wise from a URL hash in your code.

When you write your routes, you have to think like the routing system.

• On the recognition side, that means your route has to have enough information
in it—either hard-coded or waiting to receive values from the URL—to decide
which controller and action to choose. (Or at least a controller; it can default to
index if that’s what you want.)

• On the generation side, your need to make sure that your hard-coded parameters
and wildcards, taken together, provide you with enough values to pinpoint a route
to use.

As long as these things are present—and as long as your routes are listed in order
of priority (“fall-through” order)—your routes should work as desired.

Using Static Strings
Keep in mind that there’s no necessary correspondence between the number of fields
in the pattern string, the number of bound parameters, and the fact that every con-
nection needs a controller and an action.

For example, you could write a route like this:

map.connect “:id”, :controller => “auctions”, :action => “show”

which would recognize a URL like this:

http://localhost:3000/8

The routing system would set params[:id] to 8 (based on the position of the
:id “receptor,” which matches the position of “8” in the URL), and it would execute

72 3. Routing

03_5619_ch03.qxd 10/25/07 10:32 AM Page 72

the show action of the auctions controller. Of course, this is a bit of a stingy route,
in terms of visual information. You might want to do something more like Listing 2.2,
which is a little richer semantically-speaking:

map.connect “auctions/:id”, :controller => “auctions”, :action => “show”

This version of the route would recognize this:

http://localhost:3000/auctions/8

In this route, “auctions” is a static string. It will be looked for in the URL, for
recognition purposes; and it will be inserted into the URL when you generate it with
the following code:

<%= link_to “Auction details”,

:controller => “auctions”,

:action => “show”,

:id => auction.id %>

Using Your Own “Receptors”
So far, we’ve used the two magic parameters, :controller and :action, and the
nonmagic but standard :id. It is also possible to use your own parameters, either
hard-coded or wildcard. Doing this can help you add some expressiveness and self-
documentation to your routes, as well as to your application code.

The main reason you’d want to use your own parameters is so that you can use
them as handles in your code. For example, you might want a controller action to look
like this:

def show

@auction = Auction.find(params[:id])

@user = User.find(params[:user_id])

end

Here we’ve got the symbol :user_id showing up, along with :id, as a key to the
params hash. That means it got there, somehow. In fact, it got there the same way as

Using Your Own “Receptors” 73

03_5619_ch03.qxd 10/25/07 10:32 AM Page 73

the :id parameter: It appears in the pattern for the route by which we got to the show
action in the first place.

Here’s that route:

map.connect ‘auctions/:user_id/:id’,

:controller => “auctions”,

:action => “show”

This route, when faced with a URL like this

/auctions/3/1

will cause the auctions/show action to run, and will set both :user_id and :id in
the params hash. (:user_id matches 3 positionally, and :id matches 1.)

On the URL generation side, all you have to do is include a :user_id key in your
URL specs:

<%= link_to “Auction”,

:controller => “auctions”,

:action => “show”,

:user_id => current_user.id,

:id => ts.id %>

The :user_id key in the hash will match the :user_id receptor in the route
pattern. The :id key will also match, and so will the :controller and :action
parameters. The result will be a URL based on the blueprint
‘auctions/:user_id/:id’.

You can actually arbitrarily add many specifiers to a URL hash in calls to link_to
and other similar methods. Any parameters you define that aren’t found in a routing
rule will be added to the URL as a query string. For example, if you add:

:some_other_thing => “blah”

to the hash in the link_to example above, you’ll end up with this as your URL:

http://localhost:3000/auctions/3/1?some_other_thing=blah

74 3. Routing

03_5619_ch03.qxd 10/25/07 10:32 AM Page 74

A Note on Route Order
Routes are consulted, both for recognition and for generation, in the order they are
defined in routes.rb. The search for a match ends when the first match is found,
which means that you have to watch out for false positives.

For example, let’s say you have these two routes in your routes.rb:

map.connect “users/help”, :controller => “users”

map.connect “:controller/help”, :controller => “main”

The logic here is that if someone connects to /users/help, there’s
a users/help action to help them. But if they connect to /any_other_
controller/help, they get the help action of the main controller. Yes, it’s tricky.

Now, consider what would happen if you reversed the order of these two routes:

map.connect “:controller/help”, :controller => “main”

map.connect “users/help”, :controller => “users”

If someone connects to /users/help, that first route is going to match—because
the more specific case, handling users differently, is defined later in the file.

It’s very similar to other kinds of matching operations, like case statements:

case string

when /./

puts “Matched any character!”

when /x/

puts “Matched ‘x’!”

end

The second when will never be reached, because the first one will match ‘x’. You
always want to go from the specific or special cases, to the general case:

case string

when /x/

puts “Matched ‘x’!”

when /./

puts “Matched any character!”

end

A Note on Route Order 75

03_5619_ch03.qxd 10/25/07 10:32 AM Page 75

These case examples use regular expressions—/x/ and so forth—to embody pat-
terns against which a string can be tested for a match. Regular expressions actually play
a role in the routing syntax too.

Using Regular Expressions in Routes
Sometimes you want not only to recognize a route, but to recognize it at a finer-
grained level than just what components or fields it has. You can do this through the
use of regular expressions.1

For example, you could route all “show” requests so that they went to an error
action if their id fields were non-numerical. You’d do this by creating two routes, one
that handled numerical ids, and a fall-through route that handled the rest:

map.connect ‘:controller/show/:id’,

:id => /\d+/, :action => “show”

map.connect ‘:controller/show/:id’,

:action => “alt_show”

If you want to do so, mainly for clarity, you can wrap your regular expression-
based constraints in a special hash parameter named :requirements, like this:

map.connect ‘:controller/show/:id’,

:action => “show”, :requirements => { :id => /\d+/ }

Regular expressions in routes can be useful, especially when you have routes that
differ from each other only with respect to the patterns of their components. But
they’re not a full-blown substitute for data-integrity checking. A URL that matches a
route with regular expressions is like a job candidate who’s passed a first interview. You
still want to make sure that the values you’re dealing with are usable and appropriate
for your application’s domain.

Default Parameters and the url_for Method
The URL generation techniques you’re likely to use—link_to, redirect_to, and
friends—are actually wrappers around a lower-level method called url_for. It’s
worth looking at url_for on its own terms, because you learn something about how

76 3. Routing

03_5619_ch03.qxd 10/25/07 10:32 AM Page 76

Rails generates URLs. (And you might want to call url_for on its own at some
point.)

The url_for method’s job is to generate a URL from your specifications, mar-
ried to the rules in the route it finds to be a match. This method abhors a vacuum: In
generating a URL, it likes to fill in as many fields as possible. To that end, if it can’t
find a value for a particular field from the information in the hash you’ve given it, it
looks for a value in the current request parameters.

In other words, in the face of missing values for URL segments, url_for defaults
to the current values for :controller, :action, and, where appropriate, other
parameters required by the route.

This means that you can economize on repeating information, if you’re staying
inside the same controller. For example, inside a show view for a template belonging
to the auctions controller, you could create a link to the edit action like this:

<%= link_to “Edit auction”, :action => “edit”, :id => @auction.id %>

Assuming that this view is only ever rendered by actions in the auctions controller,
the current controller at the time of the rendering will always be auctions. Because
there’s no :controller specified in the URL hash, the generator will fall back on
auctions, and based on the default route (:controller/:action/:id), it will come
up with this (for auction 5):

Edit auction

The same is true of the action. If you don’t supply an :action key, then the cur-
rent action will be interpolated. Keep in mind, though, that it’s pretty common for
one action to render a template that belongs to another. So it’s less likely that you’ll
want to let the URL generator fall back on the current action than on the current con-
troller.

What Happened to :id?
Note that in that last example, we defaulted on :controller but we had to provide
a value for :id. That’s because of the way defaults work in the url_for method.
What happens is that the route generator marches along the template segments, from
left to right—in the default case like this:

:controller/:action/:id

Default Parameters and the url_for Method 77

03_5619_ch03.qxd 10/25/07 10:32 AM Page 77

And it fills in the fields based on the parameters from the current request until it
hits one where you’ve provided a value:

:controller/:action/:id

default! provided!

When it hits one that you’ve provided, it checks to see whether what you’ve pro-
vided is the default it would have used anyway. Since we’re using a show template as
our example, and the link is to an edit action, we’re not using the default value for
:action.

Once it hits a non-default value, url_for stops using defaults entirely. It figures
that once you’ve branched away from the defaults, you want to keep branching. So the
nondefault field and all fields to its right cease to fall back on the current request for
default values.

That’s why there’s a specific value for :id, even though it may well be the same
as the params[:id] value left over from the previous request.

Pop quiz: What would happen if you switched the default route to this?

map.connect ‘:controller/:id/:action’

And then you did this in the show.rhtml template:

<%= link_to “Edit this auction”, :action => “edit” %>

Answer: Since :id is no longer to the right of :action, but to its left, the gen-
erator would happily fill in both :controller and :id from their values in the cur-
rent request. It would then use “edit” in the :action field, since we’ve hard-coded
that. There’s nothing to the right of :action, so at that point everything’s done.

So if this is the show view for auction 5, we’d get the same hyperlink as before—
almost. Since the default route changed, so would the ordering of the URL fields:

Edit this auction

There’s no advantage to actually doing this. The point, rather, is to get a feel for
how the routing system works by seeing what happens when you tweak it.

78 3. Routing

03_5619_ch03.qxd 10/25/07 10:32 AM Page 78

Using Literal URLs
You can, if you wish, hard-code your paths and URLs as string arguments to link_to,
redirect_to, and friends. For example, instead of this:

<%= link_to “Help”, :controller => “main”, :action => “help” %>

You can write this:

<%= link_to “Help”, “/main/help” %>

However, using a literal path or URL bypasses the routing system. If you write lit-
eral URLs, you’re on your own to maintain them. (You can of course use Ruby’s string
interpolation techniques to insert values, if that’s appropriate for what you’re doing,
but really stop and think about whether you are reinventing Rails functionality if you
go down that path.)

Route Globbing
In some situations, you might want to grab one or more components of a route with-
out having to match them one by one to specific positional parameters. For example,
your URLs might reflect a directory structure. If someone connects to

/files/list/base/books/fiction/dickens

you want the files/list action to have access to all four remaining fields. But some-
times there might be only three fields:

/files/list/base/books/fiction

or five:

/files/list/base/books/fiction/dickens/little_dorrit

So you need a route that will match (in this particular case) everything after the sec-
ond URI component.

You can do that with a route glob. You “glob” the route with an asterisk:

map.connect ‘files/list/*specs’

Route Globbing 79

03_5619_ch03.qxd 10/25/07 10:32 AM Page 79

Now, the files/list action will have access to an array of URI fields, accessi-
ble via params[:specs]:

def list

specs = params[:specs] # e.g, [“base”, “books”, “fiction”, “dickens”]

end

The glob has to come at the end of the pattern string in the route. You cannot do
this:

map.connect ‘files/list/*specs/dickens’ # Won’t work!

The glob sponges up all the remaining URI components, and its semantics there-
fore require that it be the last thing in the pattern string.

Globbing Key-Value Pairs
Route globbing might provide the basis for a general mechanism for fielding queries
about items up for auction. Let’s say you devise a URI scheme that takes the follow-
ing form:

http://localhost:3000/items/field1/value1/field2/value2/...

Making requests in this way will return a list of all items whose fields match the
values, based on an unlimited set of pairs in the URL.

In other words, http://localhost:3000/items/year/1939/medium/wood
would generate a list of all wood items made in 1939.

The route that would accomplish this would be:

map.connect ‘items/*specs’, :controller => “items”, :action => “specify”

Of course, you’ll have to write a specify action like the one in Listing 3.2 to sup-
port this route.

80 3. Routing

03_5619_ch03.qxd 10/25/07 10:32 AM Page 80

Listing 3.2 The specify Action

def specify

@items = Item.find(:all, :conditions => Hash[params[:specs]])

if @items.any?

render :action => “index”

else

flash[:error] = “Can’t find items with those properties”

redirect_to :action => “index”

end
end

How about that square brackets class method on Hash, eh? It converts a one-
dimensional array of key/value pairs into a hash! Further proof that in-depth knowl-
edge of Ruby is a prerequisite for becoming an expert Rails developer.

Next stop: Named routes, a way to encapsulate your route logic in made-to-order
helper methods.

Named Routes
The topic of named routes almost deserves a chapter of its own. What you learn here
will feed directly into our examination of REST-related routing in Chapter 4.

The idea of naming a route is basically to make life easier on you, the program-
mer. There are no outwardly visible effects as far as the application is concerned. When
you name a route, a new method gets defined for use in your controllers and views;
the method is called name_url (with name being the name you gave the route), and
calling the method, with appropriate arguments, results in a URL being generated for
the route. In addition, a method called name_path also gets created; this method gen-
erates just the path part of the URL, without the protocol and host components.

Creating a Named Route
The way you name a route is by calling a method on your mapper object with the
name you want to use, instead of the usual connect:

map.help ‘help’,

:controller => “main”,

:action => “show_help”

Named Routes 81

03_5619_ch03.qxd 10/25/07 10:32 AM Page 81

In this example, you’ll get methods called help_url and help_path, which you
can use wherever Rails expects a URL or URL components:

<%= link_to “Help!”, help_path %>

And, of course, the usual recognition and generation rules are in effect. The pat-
tern string consists of just the static string component “help”. Therefore, the path
you’ll see in the hyperlink will be

/help

When someone clicks on the link, the show_help action of the main controller
will be invoked.

The Question of Using name_path Versus name_url
When you create a named route, you’re actually creating at least two route helper
methods. In the preceding example, those two methods are help_url and
help_path. The difference is that the _url method generates an entire URL, includ-
ing protocol and domain, whereas the _path method generates just the path part
(sometimes referred to as a relative path).

According to the HTTP spec, redirects should specify a URI, which can be inter-
preted (by some people) to mean a fully-qualified URL2. Therefore, if you want to be
pedantic about it, you probably should always use the _url version when you use a
named route as an argument to redirect_to in your controller code.

The redirect_to method seems to work perfectly with the relative paths gen-
erated by _path helpers, which makes arguments about the matter kind of pointless.
In fact, other than redirects, permalinks, and a handful of other edge cases, it’s the
Rails way to use _path instead of _url. It produces a shorter string and the user agent
(browser or otherwise) should be able to infer the fully qualified URL whenever it
needs to do so, based on the HTTP headers of the request, a base element in the doc-
ument, or the URL of the request.

As you read this book, and as you examine other code and other examples, the
main thing to remember is that help_url and help_path are basically doing the
same thing. I tend to use the _url style in general discussions about named route
techniques, but to use _path in examples that occur inside view templates (for exam-
ple, with link_to and form_for). It’s mostly a writing-style thing, based on the the-
ory that the URL version is more general and the path version more specialized. In

82 3. Routing

03_5619_ch03.qxd 10/25/07 10:32 AM Page 82

any case, it’s good to get used to seeing both and getting your brain to view them as
very closely connected.

Considerations
Named routes save you some effort when you need a URL generated. A named route
zeros in directly on the route you need, bypassing the matching process. That means
you don’t have to provide as much detail as you otherwise would. You have to provide
a value for any wildcard parameter in the route’s pattern string, but you don’t have to
go down the laundry list of hard-coded, bound parameters. The only reason for doing
that when you’re trying to generate a URL is to steer the routing system to the correct
route. But when you use a named route, the system already knows which rule you
want to apply, and there is a (slight) corresponding performance boost.

What to Name Your Routes
The best way to figure out what named routes you’ll need is to think top-down; that
is, think about what you want to write in your application code, and then create the
routes that will make it possible.

Take, for example, this call to link_to:

<%= link_to “Auction of #{h(auction.item.description)}”,

:controller => “auctions”,

:action => “show”,

:id => auction.id %>

The routing rule to match that path is this (generic type of route):

map.connect “auctions/:id”,

:controller => “auctions”,

:action => “show”

It seems a little heavy-handed to spell out all the routing parameters again, just so
that the routing system can figure out which route we want. And it sure would be nice
to shorten that link_to code. After all, the routing rule already specifies the con-
troller and action.

What to Name Your Routes 83

03_5619_ch03.qxd 10/25/07 10:32 AM Page 83

This is a good candidate for a named route. We can improve the situation by
introducing auction_path:

<%= link_to “Auction for #{h(auction.item.description)}”,

auction_path(:id => auction.id) %>

Giving the route a name is a shortcut; it takes us straight to that route, without a
long search and without having to provide a thick description of the route’s hard-
coded parameters.

Courtenay Says...

Remember to escape your item descriptions!

Links such as #{auction.item.description} should
always be wrapped in an h() method to prevent cross-site
scripting hacks (XSS). That is, unless you have some clever
way of validating your input.

The named route will be the same as the plain route—except that we replace
“connect” with the name we want to give the route:

map.auction “auctions/:id”,

:controller => “auctions”,

:action => “show”

In the view, we can now use the more compact version of link_to; and we’ll get (for
auction 3, say) this URL in the hyperlink:

http://localhost:3000/auctions/show/3

Argument Sugar
In fact, we can make the argument to auction_path even shorter. If you need to sup-
ply an id number as an argument to a named route, you can just supply the number,
without spelling out the :id key:

<%= link_to “Auction for #{h(auction.item.description)}”,

auction_path(auction.id) %>

84 3. Routing

03_5619_ch03.qxd 10/25/07 10:32 AM Page 84

And the syntactic sugar goes even further: You can just provide objects and Rails
will grab the id automatically.

<%= link_to “Auction for #{h(auction.item.description)}”,

auction_path(auction) %>

This principle extends to other wildcards in the pattern string of the named route.
For example, if you’ve got a route like this:

map.item ‘auction/:auction_id/item/:id’,

:controller => “items”,

:action => “show”

you’d be able to call it like this:

<%= link to item.description, item_path(@auction, item) %>

and you’d get something like this as your path (depending on the exact id numbers):

/auction/5/item/11

Here, we’re letting Rails infer the ids of both an auction object and an item object.
As long as you provide the arguments in the order in which their ids occur in the
route’s pattern string, the correct values will be dropped into place in the generated
path.

A Little More Sugar with Your Sugar?
Furthermore, it doesn’t have to be the id value that the route generator inserts into the
URL. You can override that value by defining a to_param method in your model.

Let’s say you want the description of an item to appear in the URL for the auc-
tion on that item. In the item.rb model file, you would override to_params; here,
we’ll override it so that it provides a “munged” (stripped of punctuation and joined
with hyphens) version of the description:

def to_param

description.gsub(/\s/, “-”).gsub([^\W-], ‘’).downcase

end

What to Name Your Routes 85

03_5619_ch03.qxd 10/25/07 10:32 AM Page 85

Subsequently, the method call item_path(@item) will produce something like
this:

/auction/3/item/cello-bow

Of course, if you’re putting things like “cello-bow” in a path field called :id, you
will need to make provisions to dig the object out again. Blog applications that use
this technique to create “slugs” for use in permanent links often have a separate data-
base column to store the “munged” version of the title that serves as part of the path.
That way, it’s possible to do something like

Item.find_by_munged_description(params[:id])

to unearth the right item. (And yes, you can call it something other than :id in the
route to make it clearer!)

Courtenay Says...

Why shouldn’t you use numeric IDs in your URLs?

First , your competitors can see just how many auctions
you create. Numeric consecutive IDs also allow people to
write automated spiders to steal your content. It’s a win-
dow into your database. And finally, words in URLs just
look better.

The Special Scope Method with_options
Sometimes you might want to create a bundle of named routes, all of which pertain
to the same controller. You can achieve this kind of batch creation of named routes via
the with_options mapping method.

Let’s say you’ve got the following named routes:

map.help ‘/help’, :controller => “main”, :action => “help”

map.contact ‘/contact’, :controller => “main”, :action => “contact”

map.about ‘/about’, :controller => “main”, :action => “about”

86 3. Routing

03_5619_ch03.qxd 10/25/07 10:32 AM Page 86

You can consolidate these three named routes like this:

map.with_options :controller => “main” do |main|

main.help ‘/help’, :action => “help”

main.contact ‘/contact’, :action => “contact”

main.about ‘/about’, :action => “about”

end

The three inner calls create named routes that are scoped—constrained—to use
“main” as the value for the :controller parameter, so you don’t have to write it
three times.

Note that those inner calls use main, not map, as their receiver. After the scope is
set, map calls upon the nested mapper object, main, to do the heavy lifting.

Courtenay Says...

The advanced Rails programmer, when benchmarking an
application under load, will notice that routing, route
recognition, and the url_for, link_to and related
helpers are often the slowest part of the request cycle.
(Note: This doesn’t become an issue until you are at least
into the thousands of pageviews per hour, so you can stop
prematurely optimizing now.)

Route recognition is slow because everything stops while a
route is calculated. The more routes you have, the slower
it will be. Some projects have hundreds of custom routes.

Generating URLs is slow because there are often many
occurances of link_to in a page, and it all adds up.

What does this mean for the developer? One of the first
things to do when your application starts creaking and
groaning under heavy loads (lucky you!) is to cache those
generated URLs or replace them with text. It’s only mil-
liseconds, but it all adds up.

The Special Scope Method with_options 87

03_5619_ch03.qxd 10/25/07 10:32 AM Page 87

Conclusion
The first half of the chapter helped you to fully understand generic routing based on
map.connect rules and how the routing system has two purposes:

• Recognizing incoming requests and mapping them to a corresponding controller
action, along with any additional variable receptors

• Recognizing URL parameters in methods such as link_to and matching them
up to a corresponding route so that proper HTML links can be generated

We built on our knowledge of generic routing by covering some advanced tech-
niques such as using regular expressions and globbing in our route definitions.

Finally, before moving on, you should make sure that you understand how named
routes work and why they make your life easier as a developer by allowing you to write
more concise view code. As you’ll see in the next chapter, when we start defining
batches of related named routes, we’re on the cusp of delving into REST.

References

1. For more on regular expressions in Ruby, see The Ruby Way by Hal Fulton, part of this series.

2. Zed Shaw, author of the Mongrel web server and expert in all matters HTTP-related, was not
able to give me a conclusive answer, which should tell you something. (About the looseness of
HTTP that is, not Zed.)

88 3. Routing

03_5619_ch03.qxd 10/25/07 10:32 AM Page 88

