
xlix

Introduction

In late 2004, I was consulting at one of the big American auto makers, alongside a good
friend of mine, Aslak Hellesoy.1 It was a challenging assignment, chock full of difficult polit-
ical situations, technical frustration, and crushing deadlines. Not your ordinary deadlines
either; they were the type of deadline where the client would get fined a million dollars a day
if we were late. The pressure was on!

In a moment of questionable judgment, the team agreed to base our continuous inte-
gration system on a pet project of Aslak’s named DamageControl. It was a Ruby-based ver-
sion of the venerable CruiseControl server produced by our employer, ThoughtWorks.

The problem was that DamageControl wasn’t quite what you’d call a finished product.
And like many other Ruby-related things, it just didn’t work very well on Windows. Yet for
some reason I can’t quite remember today, we had to deploy it on an old Windows 2000 serv-
er that also hosted the StarTeam source repository (yikes!).

Aslak needed help—over the course of several weeks we pair-programmed extensively on
both the application code of DamageControl and C-based internals of the Win32 process
libraries for Ruby. At the time I had eight years of serious enterprise Java programming expe-
rience under my belt and a deep love of the brilliant IntelliJ IDE. I really cannot convey how
much I hated Ruby at that point in my career.

So what changed? Well, for starters I eventually made it out of that stressful assignment
alive, and took on a relatively easy assignment overseas out of the London office of
ThoughtWorks. Within a month or so, Ruby caught my attention again, this time via con-
siderable blogsphere excitement about an up-and-coming web framework named Ruby on
Rails. I decided to give Ruby another chance. Perhaps it wasn’t so bad after all? I quickly built
an innovative social networking system for internal use at ThoughtWorks.

That first Rails experience, over the course of a few weeks in February 2005, was life-
altering. All of the best practices I had learned over the years about building web apps had
been distilled into a single framework, written in some of the most elegant and concise code

00_5619_fm.qxd 10/25/07 4:05 PM Page xlix

that I had ever seen in my life. My interest in Java died a sudden death (although it took me
almost another year to stop using IntelliJ). I began avidly blogging about Ruby and Rails and
evangelizing it heavily both inside and out of ThoughtWorks. The rest, as they say, is histo-
ry.

As I write this in 2007, the Rails business I pioneered at ThoughtWorks accounts for
almost half of their global revenue, and they’ve established a large product division churning
out Ruby-based commercial software. Among them is CruiseControl.rb, which I suspect is
what Aslak wanted to build all along—it has the honor of being the official continuous inte-
gration server of the Ruby on Rails core team.

Ruby and Rails
Why do experienced enterprise folks like me fall in love with Ruby and Rails? Given a set of
requirements to fulfill, the complexity of solutions created using Java and Microsoft technol-
ogy is simply unacceptable. Excess complexity overwhelms individual understanding of the
project and dramatically increases communications overhead for the team. The emphasis on
following design patterns, as well as the obsession with performance, wears down the pure joy
of application development with those platforms.

There’s no peer pressure to do anything in the Rails community. DHH (David
Heinemeier Hansson) picked a language that made him happy. Rails was born from code
that he felt was beautiful. That kind of set the tone for the Rails community. So much
about Rails is subjective. People either “get it” or they don’t. But there’s no malice from
those who do towards those who don’t, just gentle encouragement.
—Pat Maddox

Ruby is beautiful. Coding in Ruby is beautiful. Everyone I’ve known who makes the
move into Ruby says they are happier than before. For this reason more than any other, Ruby
and Rails are shaking up the status quo, especially in enterprise computing. Prior to getting
involved with Rails, I was accustomed to working on projects based on fuzzy requirements
bearing no relation to real-world needs. I was tired of mind-boggling arrays of competing
frameworks to choose from and integrate, and I was tired of ugly code.

In contrast, Ruby is a beautiful, dynamic, high-level language. Ruby code is easier to read
and write because it more closely maps to the problem domains we tackle, in a style that is
closer to human language. The enhanced readability yields many benefits, both short-term
and long-term, as code moves into production and must be understood by maintenance pro-
grammers.

l Introduction

00_5619_fm.qxd 10/25/07 4:05 PM Page l

My experience has shown me that programs written in Ruby have fewer lines of code
than comparable programs in Java and C#. Smaller codebases are easier to maintain and
long-term maintenance is widely cited as the biggest cost of successful software projects.
Smaller codebases are also faster to debug when things go wrong, even without fancy debug-
ging tools.

The Rise of Rails and Mainstream Acceptance
In ways similar to the Agile movement that helped birth it, Rails is all about catering to our
needs as application developers—not as software engineers, and certainly not as computer sci-
entists. By aggressively attacking unneeded complexity, Rails shines brightest in the people-
oriented aspects of development that really matter to the ultimate success of our projects. We
have fun when we’re programming in Rails, and that makes us want to succeed!

The tools and technical infrastructure provided by Rails are comprehensive, encouraging
us to focus on delivering business value. Ruby’s Principle of Least Surprise is embodied in the
simple and elegant design of the Rails. Best of all, Rails is completely free open-source soft-
ware, which means that when all else fails, browsing the source code can yield answers to even
the most difficult of problems.

David has occasionally mentioned that he is not particularly excited about Rails reaching
mainstream acceptance, because the competitive edge enjoyed by early adopters would be
diminished. Those early adopters have primarily been individuals and small groups of web
designers and programmers, with legions of them coming out of the PHP world.

Enterprise Adoption
Call me an idealist if you like, but I believe that even enterprise developers at large and con-
servative corporations will act to become more effective and innovative at their jobs if they
are given the tools and encouragement to do so. That’s why it seems like they’re jumping on
the Rails bandwagon in ever-greater numbers with every year that passes.

Perhaps enterprise developers will ultimately be the most vocal and enthusiastic adopters
of Ruby and Rails, because right now they are the ones who as a group stand to lose the most
from the status quo. They’re consistently the targets of mass layoffs and misguided outsourc-
ing efforts, based on assumptions such as “specification is more important than implementa-
tion” and “implementation should be mechanical and trivial.”

Introduction li

00_5619_fm.qxd 10/25/07 4:05 PM Page li

Is specification actually more important than the implementation? Not for most projects.
Is implementation of all but the simplest projects trivial? Of course not! There are significant
underlying reasons for the difficulties of software development, especially in enterprise envi-
ronments:2

• Hard-to-understand legacy systems.

• Highly complex business domains such as investment banking.

• Stakeholders and business analysts who don’t actually know what they want.

• Managers resistant to productivity because it shrinks their yearly budgets.

• End users who actively sabotage your project.

• Politics! Sticking your head out means worrying that it’ll get chopped off.

As a consultant to Fortune 1000 companies, I lived and breathed those situations on an
everyday basis for almost 10 years, eventually stumbling upon a powerful concept. There is a
viable alternative to playing it safe, an alternative so powerful that it transcends politics and
is guaranteed to bring you acclaim and open new doors of opportunity.

That alternative is being exceptional! It starts with productivity. I’m talking about becom-
ing so obviously effective at your job that nobody will ever be able to scapegoat you, to the
extent that it would be political suicide to try. I’m talking about cultivating practices that
make your results stand out so brilliantly that they bring tears of joy to even the most cyni-
cal and hardened stakeholders of your projects. I mean regularly having time to polish your
applications to a state of wonderfulness that consistently breeds passionate end users.

By simply being exceptional, you can be that individual (or team) that keeps clients
happy and paying their invoices on time, or that survives layoffs year after year, because the
decision-makers say: “Oh, there’s no way we can afford to lose them.”

Let me pause for a second. I wouldn’t blame you for regarding my words with skepticism,
but none of what I’m saying is idle hype. I’m describing my own life since moving to Ruby
on Rails. This book is intended to help you make Ruby on Rails your secret (or not-so-secret)
weapon for thriving in the treacherous world of software development.

Delivering Results
My contributors and I draw on our collective experience and industry knowledge to show you
how to deliver practical results using Ruby on Rails on your projects, giving you the ammu-
nition needed to justify your choice of technology and even defeat objections that will

lii Introduction

00_5619_fm.qxd 10/25/07 4:05 PM Page lii

undoubtedly come your way. Since we know there are never any silver bullets, we’ll also warn
you about situations where choosing Rails would be a mistake.

Along the way, we’ll analyze each of the components of Rails in depth and discuss how
to extend them when the need arises. Ruby is an extremely flexible language, which means
there are myriad ways to customize the behavior of Rails yourself. As you will learn, the Ruby
way is all about giving you the freedom to find the optimal solution to the problem at hand.

As a reference work, this book functions as a guide to the Rails API and the wealth of
Ruby idioms, design approaches, libraries, and plugins useful to the Ruby on Rails enterprise
developer.

About Opinionated Software
Before going on, I should mention that part of what makes Rails exceptional is that it is opin-
ionated software, written by opinionated programmers. Likewise, this is an opinionated
book, written by opinionated writers.

Here are some of the opinions about development that influence this book. You don’t
have to agree with all of them—just be aware of their influence:

• Developer motivation and productivity trump all other factors for project success.

• The best way to keep motivated and productive is to focus on delivering business value.

• Performance means “executing as fast as possible, on a given set of resources.”

• Scalability means “executing as fast as needed, on as many resources as needed.”

• Performance is irrelevant if you can’t scale.

• If you can scale cheaply, milking every ounce of performance from your processors
should never be your first priority.

• Linking scalability to choice of development tools is a pervasive mistake in the industry
and most software does not have extreme scalability requirements.

• Performance is related to choice of language and tools because higher-level languages are
easier to write and understand. There is wide consensus that the performance problems
in most applications are caused by poorly written application code.

• Convention over configuration is a better way to write software. Huge XML configura-
tion files must be eliminated!

• Code portability, the ability to take code and run it on a different hardware platform, is
not particularly important.

Introduction liii

00_5619_fm.qxd 10/25/07 4:05 PM Page liii

• It’s better to solve a problem well even if the solution only runs on one platform.
Portability is irrelevant if your project fails.

• Database portability, the ability to run the same code on different relational database sys-
tems is rarely important and is almost never achieved.

• Presentation is very important, even for small projects. If your application looks bad,
everyone will assume it is written badly.

• Allowing technology to dictate the approach to solving a business problem is usually a
bad idea; however, that advice shouldn’t be used as an excuse to stick with inferior tech-
nology.

• The benefits of generalized application components are dubious. Individual projects usu-
ally have very particular business needs and wildly different infrastructure requirements,
making parameterized reuse very difficult to achieve in practice.

Phew, that’s a lot of opinions. But don’t worry, The Rails Way is primarily a reference
work, and this list is the only one of its kind in the book. Speaking of which….

About This Book
This book is not a tutorial or basic introduction to Ruby or Rails. It is meant as a day-to-day
reference for the full-time Rails developer. At times we delve deep into the Rails codebase to
illustrate why Rails behaves the way that it does, and present snippets of actual Rails code.
The more confident reader might be able to get started in Rails using just this book, exten-
sive online resources, and his wits, but there are other publications that are more introducto-
ry in nature and might be a wee bit more appropriate for beginners.

I am a fulltime Rails application developer and so is every contributor to this book. We
do not spend our days writing books or training other people, although that is certainly some-
thing that we enjoy doing on the side.

I started writing this book mostly for myself, because I hate having to use online docu-
mentation, especially API docs, which need to be consulted over and over again. Since the
API documentation is liberally licensed (just like the rest of Rails), there are a few sections of
the book that reproduce parts of the API documentation. In practically all cases, the API doc-
umentation has been expanded and/or corrected, supplemented with additional examples
and commentary drawn from practical experience.

liv Introduction

00_5619_fm.qxd 10/25/07 4:05 PM Page liv

Hopefully you are like me—I really like books that I can keep next to my keyboard, scrib-
ble notes in, and fill with bookmarks and dog-ears. When I’m coding, I want to be able to
quickly refer to both API documentation, in-depth explanations, and relevant examples.

Book Structure
I attempted to give the material a natural structure while meeting the goal of being the best-
possible Rails reference book. To that end, careful attention has been given to presenting
holistic explanations of each subsystem of Rails, including detailed API information where
appropriate. Every chapter is slightly different in scope, and I suspect that Rails is now too
big a topic to cover the whole thing in depth in just one book.

Believe me, it has not been easy coming up with a structure that makes perfect sense for
everyone. Particularly, I have noted surprise in some readers when they notice that
ActiveRecord is not covered first. Rails is foremost a web framework and at least to me, the
controller and routing implementation is the most unique, powerful, and effective feature,
with ActiveRecord following a close second.

Therefore, the flow of the book is as follows:

• The Rails environment, initialization, configuration, and logging

• The Rails dispatcher, controllers, rendering, and routing

• REST, Resources, and Rails

• ActiveRecord basics, associations, validation, and advanced techniques

• ActionView templating, caching, and helpers

• Ajax, Prototype, and Scriptaculous JavaScript libraries, and RJS

• Session management, login, and authentication

• XML and ActiveResource

• Background processing and ActionMailer

• Testing and specs (including coverage of RSpec on Rails and Selenium)

• Installing, managing, and writing your own plugins

• Rails production deployment, configurations, and Capistrano

Introduction lv

00_5619_fm.qxd 10/25/07 4:05 PM Page lv

Sample Code and Listings
The domains chosen for the code samples should be familiar to almost all professional devel-
opers. They include time and expense tracking, regional data management, and blogging
applications. I don’t spend pages explaining the subtler nuances of the business logic for the
samples or justify design decisions that don’t have a direct relationship to the topic at hand.
Following in the footsteps of my series colleague Hal Fulton and The Ruby Way, most of the
snippets are not full code listings—only the relevant code is shown. Ellipses (…) denote parts
of the code that have been eliminated for clarity.

Whenever a code listing is large and significant, and I suspect that you might want to use
it verbatim in your own code, I supply a listing heading. There are not too many of those.
The whole set of code listings will not add up to a complete working system, nor are there
30 pages of sample application code in an appendix. The code listings should serve as inspi-
ration for your production-ready work, but keep in mind that it often lacks touches neces-
sary in real-world work. For example, examples of controller code are often missing pagina-
tion and access control logic, because it would detract from the point being expressed.

Plugins
Whenever you find yourself writing code that feels like plumbing, by which I mean com-
pletely unrelated to the business domain of your application, you’re probably doing too much
work. I hope that you have this book at your side when you encounter that feeling. There is
almost always some new part of the Rails API or a third-party plugin for doing exactly what
you are trying to do.

As a matter of fact, part of what sets this book apart is that I never hesitate in calling out
the availability of third-party plugins, and I even document the ones that I feel are most cru-
cial for effective Rails work. In cases where a plugin is better than the built-in Rails func-
tionality, we don’t cover the built-in Rails functionality (pagination is an example).

An average developer might see his productivity double with Rails, but I’ve seen serious
Rails developers achieve gains that are much, much higher. That’s because we follow the Don’t
Repeat Yourself (DRY) principle religiously, of which Don’t Reinvent The Wheel (DRTW) is
a close corollary. Reimplementing something when an existing implementation is good
enough is an unnecessary waste of time that nevertheless can be very tempting, since it’s such
a joy to program in Ruby.

Ruby on Rails is actually a vast ecosystem of core code, official plugins, and third-party
plugins. That ecosystem has been exploding rapidly and provides all the raw technology you
need to build even the most complicated enterprise-class web applications. My goal is to

lvi Introduction

00_5619_fm.qxd 10/25/07 4:05 PM Page lvi

equip you with enough knowledge that you’ll be able to avoid continuously reinventing the
wheel.

Recommended Reading and Resources
Readers may find it useful to read this book while referring to some of the excellent reference
titles listed in this section.

Most Ruby programmers always have their copy of the “Pickaxe” book nearby,
Programming Ruby (ISBN: 0-9745140-5-5), because it is a good language reference. Readers
interested in really understanding all of the nuances of Ruby programming should acquire
The Ruby Way, Second Edition (ISBN: 0-6723288-4-4).

I highly recommend Peepcode Screencasts, in-depth video presentations on a variety of
Rails subjects by the inimitable Geoffrey Grosenbach, available at http://peepcode.com.

Regarding David Heinemeier Hansson a.k.a. DHH
I had the pleasure of establishing a friendship with David Heinemeier Hansson, creator of
Rails, in early 2005, before Rails hit the mainstream and he became an International Web 2.0
Superstar. My friendship with David is a big factor in why I’m writing this book today.
David’s opinions and public statements shape the Rails world, which means he gets quoted a
lot when we discuss the nature of Rails and how to use it effectively.

David has told me on a couple of occasions that he hates the “DHH” moniker that peo-
ple tend to use instead of his long and difficult-to-spell full name. For that reason, in this
book I try to always refer to him as “David” instead of the ever-tempting “DHH.” When you
encounter references to “David” without further qualification, I’m referring to the one-and-
only David Heinemeier Hansson.

Rails is by and large still a small community, and in some cases I reference core team
members and Rails celebrities by name. A perfect example is the prodigious core-team mem-
ber, Rick Olson, whose many useful plugins had me mentioning him over and over again
throughout the text.

Goals
As stated, I hope to make this your primary working reference for Ruby on Rails. I don’t real-
ly expect too many people to read it through end to end unless they’re expanding their basic
knowledge of the Rails framework. Whatever the case may be, over time I hope this book
gives you as an application developer/programmer greater confidence in making design and
implementation decisions while working on your day-to-day tasks. After spending time with

Introduction lvii

00_5619_fm.qxd 10/25/07 4:05 PM Page lvii

this book, your understanding of the fundamental concepts of Rails coupled with hands-on
experience should leave you feeling comfortable working on real-world Rails projects, with
real-world demands.

If you are in an architectural or development lead role, this book is not targeted to you,
but should make you feel more comfortable discussing the pros and cons of Ruby on Rails
adoption and ways to extend Rails to meet the particular needs of the project under your
direction.

Finally, if you are a development manager, you should find the practical perspective of
the book and our coverage of testing and tools especially interesting, and hopefully get some
insight into why your developers are so excited about Ruby and Rails.

Prerequisites
The reader is assumed to have the following knowledge:

• Basic Ruby syntax and language constructs such as blocks

• Solid grasp of object-oriented principles and design patterns

• Basic understanding of relational databases and SQL

• Familiarity with how Rails applications are laid out and function

• Basic understanding of network protocols such as HTTP and SMTP

• Basic understanding of XML documents and web services

• Familiarity with transactional concepts such as ACID properties

As noted in the section “Book Structure,” this book does not progress from easy materi-
al in the front to harder material in the back. Some chapters do start out with fundamental,
almost introductory material, and push on to more advanced coverage. There are definitely
sections of the text that experienced Rails developer will gloss over. However, I believe that
there is new knowledge and inspiration in every chapter, for all skill levels.

lviii Introduction

00_5619_fm.qxd 10/25/07 4:05 PM Page lviii

Required Technology
A late-model Apple MacBookPro with 4GB RAM, running OSX 10.4. Just kidding, of
course. Linux is pretty good for Rails development also. Microsoft Windows—well, let me
just put it this way—your mileage may vary. I’m being nice and diplomatic in saying that. We
specifically do not discuss Rails development on Microsoft platforms in this book.3 To my
knowledge, most working Rails professionals develop and deploy on non-Microsoft plat-
forms.

References

1. Aslak is a well-known guy in Java open-source circles, primarily for writing XDoclet.

2. I’m not saying startups are much easier, but they usually have less dramatic problems.

3. For that information, try the Softies on Rails blog at http://softiesonrails.com.

Introduction lix

00_5619_fm.qxd 10/25/07 4:05 PM Page lix

