
Preface

It Just Makes Sense

Over the past ten years, Extensible Markup Language (XML) has become
more widely used than ever before as a means of transferring data between
applications and even between organizations. XML provides a standard
protocol with which these applications and organizations can communi-
cate. Using XML Schema, a company can define a standard structure for its
data that can then be used across multiple departments and organizations.
This structured data enables developers to easily create applications that
can communicate with each other without much effort.

In addition, most organizations use forms in one way or another, whether
to enter a purchase request, submit expense report information, or track
weekly status. If you look at a typical form, you will notice that the form itself
is structured unlike a typical freeform document created in an application
such as Microsoft Office Word 2007. In these freeform documents you can
type anything you like in any way that you choose. Although a form may
contain sections that allow you to enter freeform text such as comments, most
of your typical forms are highly structured. Fields in the form usually require
you to enter specific types of data such as sales numbers or costs. Since XML
defines a structured data format (which can contain some unstructured
elements) and forms are highly structured with bits of freeform data, it makes
sense to tie together forms and XML data. Once a user has filled out a

lv

34629 00 i-lxvi r6 bl 1/25/07 8:26 AM Page lv

form that is connected to XML data, the data can easily be incorporated into
back-end processes that understand the structure of the XML data for that
form. So, this fits one of the main purposes of XML—tying together multiple
processes using a standard protocol.

Since building forms based on XML just makes sense, many software
developers want to create forms-based applications to collect data and
store it as XML. However, until a few years ago, this was a tedious and
time-consuming process. Developers had to use tools such as Microsoft
Visual C++, C#, or Visual Basic .NET and write sometimes a tremendous
amount of code to create a forms application. Often, forms applications
share similar functionality, such as spell checking, calculations, and data
validation. In order to share this functionality across multiple forms appli-
cations, software developers needed to create code libraries in order to
reuse their code. This worked fine when sharing the code within the same
department or company. However, developers across multiple companies
were likely going to duplicate the same work unless, of course, companies
purchased these libraries from a third-party vendor.

Developing forms applications in this way is not something that typical
information workers can do. Usually this type of coding is reserved for
advanced software developers. Another disadvantage of this approach is that
different forms applications usually have different user interfaces. Each time
a user fills out a form, he or she may need to learn a different set of commands
and menu items. This learning curve costs the company time and money.

About five years ago, Microsoft recognized the need for a common tool to
build forms based on XML technologies. Existing XML-based tools required a
thorough understanding of XML, so most information workers had trouble
understanding how to use them. Also, most information workers do not
know how to write code and, therefore, could not easily use development
tools such as Microsoft Visual Studio. Therefore, it just made sense to create a
tool that developers and information workers could use to create forms based
on XML and that users could use to fill out those forms. That tool is InfoPath.
(In Chapter 1, we’ll tell you exactly what InfoPath is all about and introduce
you to the extensive feature set included in this application.)

Looking at the wealth of features included in InfoPath, especially those
added in InfoPath 2007, it also just made sense to create this book. This book
is titled Designing Forms for Microsoft Office InfoPath and Forms Services 2007

Prefacelvi

34629 00 i-lxvi r6 bl 1/25/07 8:26 AM Page lvi

for a reason. It’s all about designing forms using InfoPath 2007, as we’re
sure you have figured out by now. This book will teach you everything you
need to know about creating forms using InfoPath 2007 and probably a few
things you never thought you needed to know.

Who Should Read This Book

Whether you are an information worker who has created only a few forms
in Word or a software developer who is familiar with more advanced cod-
ing concepts, if your intention is to learn how to design InfoPath forms,
this book is for you. This book will talk about not only the basics of design-
ing forms but also such advanced concepts as writing managed code for
InfoPath. As long as you have an understanding of basic form concepts
and a desire to learn, you are in the right place. If you want to learn every-
thing you can about InfoPath 2007, you have found the right book.

How This Book Is Organized

This book contains two parts. Part I is all about designing forms in InfoPath.
No prior coding experience is required to understand the concepts, so both
information workers and developers can use Part I to learn the basics of
InfoPath form design. Many chapters build on previous chapters and
become slightly more advanced as you progress. For example, in Chapter 4
we discuss advanced controls and customization, but by Chapter 6 we
show how to pull external data, such as from a Web service, into your
forms. By the time you finish reading Part I, you should know everything
you need to know to design an InfoPath form for the InfoPath client appli-
cation or for the browser without having to write any code.

Part II is about advanced form design. In this part of the book we talk
about using more advanced form design techniques, including how to
write code for InfoPath. These chapters are geared mainly toward software
developers who have some basic coding experience. However, if you are an
information worker and you have completed Part I of this book, the second
part may interest you as well. In Part II, we talk about such topics as the
InfoPath object model (Chapter 15), advanced topics regarding InfoPath
Forms Services (Chapter 17), and ways to host InfoPath (Chapter 18).

Preface lvii

34629 00 i-lxvi r6 bl 1/25/07 8:26 AM Page lvii

Conventions Used in This Book

We use a few typographical conventions throughout this book. Bold text
indicates key topics or terms. The names of features shown in the user
interface, such as menu items, appear in italic text.

Information that pertains to InfoPath Forms Services is clearly displayed
as features in the text. These tips will let you know when certain InfoPath
features work differently in browser forms or don’t work at all.

Samples

Almost every chapter in this book has one or more samples, which you can
download from the Addison-Wesley Web site for this book. Sometimes the
samples are InfoPath form templates (.xsn) files, which is the case through-
out Part I. In order to use these form templates, you first need to open them
in InfoPath design mode and resave them to a local folder. (This will make
more sense after you start reading Part I.) Trying to open the form template
in order to fill it out without first saving it will result in an error.

Some samples include form (.xml) files in addition to form templates.
To open the forms, first open InfoPath, and then open the XML file using
the standard Open dialog (i.e., click on the On My Computer link from the
Getting Started dialog.) The first time you open one of the sample forms, the
dialog shown in Figure P.1 will be displayed. This dialog allows you to
choose the form template associated with the form you are trying to open.
The text of the chapter indicates the correct form template to use. After you

Prefacelviii

Figure P.1 Open With Form Template dialog

34629 00 i-lxvi r6 bl 1/25/07 8:26 AM Page lviii

choose the form template, click the checkbox Always use this form template
for this file. After the form is opened, immediately save it. This will prevent
you from having to choose the form template each time you open the form.

Some sample form templates define one or more data connections. For
these samples to work properly, the external data source must exist. To see
if a form template depends on a data connection, go to the Data Connections
menu item under the Tools menu while in design mode. Since there are
many types of data connections, we’ll describe how to set up each one to
successfully preview the form.

• XML document: If the XML (.xml) file exists within the form template
(under the Resource Files menu item on the Tools menu), there is
nothing you need to do. If the XML file is external to the form
template, you will need to click the Modify button on the Data
Connections dialog to point to your copy of the XML file. You can
find the file within the samples for a given chapter.

• Database: A database connection depends on a SQL Server or Access
database. If the sample uses a SQL Server database, you must have
SQL Server installed and have administrative rights to the SQL
Server instance. For an Access database, the chapter will include an
Access database (.mdb) file. For either case, click the Modify button
on the Data Connections dialog to update the data connection to point
to your database to restore the connection.

• Web service: To use a Web service, you must have Internet Informa-
tion Services (IIS) 6.0 or higher installed on your computer. The
ASP.NET 2.0 ISAPI Web extension must be enabled, and ASP.NET
should be configured to render .aspx pages. Copy the Web service
code from the sample and paste it into a new ASP.NET Web service
project in Visual Studio 2005. If you don’t have Visual Studio, you
can still create the Web service by creating a text file with extension
.aspx within an IIS virtual directory. Check to see if the Web service
code requires read or write access to specific directories; you can
grant access to those directories or simply update the code to use
directories of your choice. Before using the Web service with
InfoPath, try navigating to the Web service by using a Web browser
on the local machine. Once the Web service works outside of

Preface lix

34629 00 i-lxvi r6 bl 1/25/07 8:26 AM Page lix

InfoPath, you can click the Modify button in the Data Connections
dialog to change the Web service connection from the sample
to point to your own Web service.

• SharePoint library or list: The prerequisite to using samples with a
SharePoint library or list connection is a Microsoft Office SharePoint
server. If you have a SharePoint server, ensure you have at least
reader rights if the connection is only reading data. Likewise, if the
sample form template submits to a SharePoint library, you must have
contributor or higher privilege. Ensure the library or list upon which
the form template depends actually exists on the server. To use your
library or list, edit the connection to point to your server and select
the appropriate library or list.

In Part II of this book, most of the samples include code. Those samples
that require you to perform special actions (or actions in a specific order) to
build the samples include ReadMe.txt files that explain what you need to do.

For sample form templates that include form code, you must do the fol-
lowing. First, find the sample form template (.xsn) and archive (.zip) files
with the same name. Extract the archive to a location on your computer by
right-clicking on the .zip file and selecting Extract All. Next, open the form
template in design mode as you would for samples without form code.
Select the Microsoft Visual Studio Tools for Applications (VSTA) menu item
under Tools and then Programming. If InfoPath cannot find the VSTA project,
the dialog shown in Figure P.2 appears. Click the Browse button to navigate
to the Visual C# Project (.csproj) file within the extracted folder. Once the

Prefacelx

Figure P.2 Dialog shown when InfoPath cannot find the Visual C# project
with the form code

34629 00 i-lxvi r6 bl 1/25/07 8:26 AM Page lx

Microsoft Visual Studio Tools for Applications window appears, hit F5 to fill
out the form while previewing it. The debugger will be automatically
attached, so any breakpoints or unhandled exceptions halt form execution.

Some samples in Part II require references to the interop assemblies for
InfoPath. In order to set a reference to the correct interop assemblies, open
the Add Reference dialog in Visual Studio and browse to the install location
for Microsoft Office 2007. (This is usually C:\Program Files\Microsoft
Office\Office12.) Then, locate the ipeditor.dll file and select it. This will
include the Microsoft.Office.Interop.InfoPath interop assembly that you
need as well as a few assemblies that aren’t needed. In order to be able to
install the samples, you will need to remove the references to the ADODB,
MSHTML, and MSXML2 assemblies. Some samples use the Microsoft.
Office.Interop.InfoPath.Xml assembly. You can also locate this assembly in
the install location for Office 2007.

Some code snippets that you see within chapters may differ from the code
in the sample. Due to space constraints, brevity in code may have resulted in
reformatting or removal of comments or error-handling code that are not
required to understand the sample. Regardless, the functionality of the code
itself remains unaffected. Note that the code included with the sample form
templates is not considered production quality. The code samples, not to
mention the form templates themselves, have not been subjected to the rigor-
ous testing you would expect from a company such as Microsoft.

Acknowledgments

The process of writing a book is never a one-person job (or two-person job,
in this case). There are always many different people involved in the
writing of a book, from the publisher to the reviewers to the product team
whose product we are writing about. Therefore, we extend heartfelt thanks
to the following people.

First, we want to thank the entire InfoPath product team. Without the
InfoPath team and the wonderful application that is InfoPath, this book
wouldn’t exist. Next, we thank our editor, Joan Murray, who has guided us
throughout the 15 months it took to make this project a reality. Also, the fol-
lowing people from Addison-Wesley played a key role in the process: Kim
Boedigheimer, Curt Johnson, Eric Garulay, and Jessica D’Amico. We also

Preface lxi

34629 00 i-lxvi r6 bl 1/25/07 8:26 AM Page lxi

thank our copyeditor, Chrysta Meadowbrooke, who did an outstanding job;
our project manager, Kathy Glidden; and our project editor, Tyrrell Albaugh.

Next, from the InfoPath team, we thank our Development Manager,
Paul Lorimer, for coordinating the InfoPath review process and for provid-
ing general support and guidance. Thanks to our Test Manager, Brad
Thompson, and our managers Laurent Mollicone (development) and
Rodrigo Lode (test) for their support throughout this project. To Jean Paoli,
whose vision made InfoPath a reality, we extend our gratitude.

We thank our reviewers on the InfoPath team: Dragos Barac, Andrew
Begun, Ned Friend, Jun Jin, Nathaniel Stott, Mike Palmer, Balbir Singh,
and Willson Raj David. Thanks for ensuring that the technical content was
accurate. We also thank our external reviewers (those who are not mem-
bers of the InfoPath team): Pedro Serrano, Joe Kunk, and Susan Ramlet.

In addition, many other people helped us along the way, whether with
technical information or advice on what topics would be most useful to
readers.

• Dragos Barac helped us with user roles, workflow, and hosting. We
extend a special thank you to Dragos, who went out of his way on
many occasions to help us. In fact, he reviewed most of our chapters
and provided extremely valuable feedback. Dragos, we thank you very
much for the contribution you have made to the success of this book.

• Eilen Hao helped us understand workflows in Microsoft Office
SharePoint Server.

• We extend our thanks to the following people for their help with
InfoPath hosting: Petru Moldovanu, David Airapetyan, Yael Peled,
DeVere Dyett, Gary Hsu, Balbir Singh, and Alnur Ali.

• Nathaniel Stott gave us his help with InfoPath e-mail forms.

• For providing us with information about workflow, we thank Ned
Friend, Noah Edelstein, and Michael Dalton.

• For helping us with COM and managed add-ins, we thank Petru
Moldovanu, Frank Mueller, and David Vierzba.

• We thank Mike Palmer, Andrew Begun, Silviu Ifrim, Eric Korn, and
Nima Mirzad for their help with the InfoPath object model.

• Jeff Bienvenu and Aparna Suripeddi shared their knowledge of
Information Rights Management.

Prefacelxii

34629 00 i-lxvi r6 bl 1/25/07 8:26 AM Page lxii

• Mary Smith provided pointers to the Office Customization Tool.

• Without Travis Rhodes and Nick Dallett, we couldn’t have included
topics on the data connection library, centrally managed connection
library, and Universal Data Connection (UDC) files.

• Natalie Eason helped set up and convey all sorts of information on
Visual Studio Tools for Office (VSTO).

• The InfoPath XML Schema guru, Phyllis Lai, offered her insight on
data source intricacies.

Hagen would like to thank Scott for his mentorship throughout writing
this book. He is not only a role model but also a great personal friend. I
could not have asked for a better coauthor as well as coworker. Scott, thank
you for all you have taught me in authorship.

Scott would like to thank Hagen for his dedication and persistence
throughout the long and difficult process of completing this project. Your
hard-working attitude and easygoing nature make you a joy to work with.
We started this project as close personal friends and made it through all the
tough times unscathed.

Last, but certainly not least, we’d like to thank our families. Scott thanks
his wife, Andrea, and his two sons, Sean and Bradley, for being so support-
ive during the 15 months it took to write this book. Without you three, life
would have been much more difficult during this time. Hagen thanks his
girlfriend, Jaime, for being by his side throughout one of the biggest
undertakings of his life. Hagen also thanks his parents, Christine and Stu-
art, for their constant encouragement and support, especially his dad for
being his biggest fan and the first to preorder this book!

Feedback

After you read this book, we would love to hear what you think about it—
both positive and negative. This will help us improve future revisions. Also,
feel free to send us any questions you may have. We would be happy to help.
To contact us, simply send us an e-mail at DesigningIPForms@hotmail.com.
If you have a question, either Scott or Hagen will reply as quickly as pos-
sible. We hope that you enjoy the book and that it makes the process of
designing InfoPath form templates much easier.

Preface lxiii

34629 00 i-lxvi r6 bl 1/25/07 8:26 AM Page lxiii

