

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and the publisher was aware of a trademark claim, the designations have been
printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for errors
or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained
herein.

The publisher offers excellent discounts on this book when ordered in quantity for
bulk purchases or special sales, which may include electronic versions and/or custom
covers and content particular to your business, training goals, marketing focus, and
branding interests. For more information, please contact

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Event-driven architecture : how SOA enables the real-time enterprise /
Hugh Taylor ... [et al.].

p. cm.

Includes bibliographical references.

ISBN-13: 978-0-321-32211-1 (pbk. : alk. paper)

ISBN-10: 0-321-32211-8 (pbk. : alk. paper) 1. Service-oriented architecture
(Computer science) 2. Discrete-time systems. 3. Business--Data processing.
4. Business enterprises--Computer networks. I. Taylor, Hugh.

TK5105.5828.E94 2009

004.6'82--dc22

2008055032

Copyright © 2009 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior to
any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise.
For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

ISBN-13: 978-0-321-32211-1
ISBN-10: 0-321-32211-8

Text printed in the United States on recycled paper at RR Donnelley in
Crawfordsville, Indiana.
First printing March 2009

Editor-in-Chief
Mark Taub

Acquisitions Editor
Greg Doench

Development Editor
Michael Thurston

Managing Editor
Kristy Hart

Project Editor
Betsy Harris

Copy Editor
Karen Annett

Indexer
Ken Johnson

Proofreader
Debbie Williams

Technical Reviewers
Cliff Berg
Kevin Davis
David Kane

Publishing
Coordinator
Michelle Housley

Cover Designer
Chuti Prasertsith

Senior Compositor
Gloria Schurick

Foreword

It’s been 15 years since the dawn of the Web, and we are still absorbing
the lessons it teaches us about decentralization, loose coupling, stan-
dards, and resource representation. Even when technology seems to
move quickly, it can take a long time to understand, appreciate, and
apply the core principles it embodies.

The roots of event-driven architecture run even deeper. Twenty-five
years ago, the graphical user interface forever changed how we think
about applications. Suddenly, the event loop became a central organiz-
ing principle. Programs listened to events, processed them, and
responded to them—sometimes by firing new events. There was no
other way to effectively support fickle and unpredictable users who are
liable to do anything whenever they want.

Enterprise software systems, of course, serve whole populations of
fickle and unpredictable users. Some are customers, some are suppliers,
and some are business partners. Here too, effective software has to listen
well and respond intelligently.

It sounds simple, and conceptually it is. But while the stream of
events produced by a GUI application is defined by the operating sys-
tem, and is well understood by the programmer, an enterprise applica-
tion lives in a connected world. Just as the resource-oriented Web
architect has to learn how to design stateless resources, so must the
event-oriented enterprise architect learn how to design stateless events.

But if EDA presents new challenges, it also emerges in an era of new
opportunity. The tools and techniques of service-oriented architecture
are becoming more mature, more interoperable, and more manageable.

With a strong SOA skeleton in place, EDA can weave the enter-
prise’s nervous system. This book explains why event-driven architecture
yields smart and resilient enterprise software, and shows you how to start
“thinking EDA.”

—Jon Udell

Preface

About This Book

As professionals in the enterprise architecture field, we have observed
the recent and spectacular rise of the concept of service-oriented archi-
tecture (SOA) with excitement tempered by concern. The new stan-
dards-based architectural paradigm promises great advances in
interoperability among previously incompatible software applications.
In turn, it has the potential to deliver gains in agility and IT cost control.
Perhaps most exciting, though, is the potential for SOA to make possible
the realization of event-driven architecture (EDA), an approach to
enterprise architecture that yields a high level of agility by increasing
systems’ awareness and intelligent responses to relevant events.

At the same time, it became clear to us that the steps required to
design and deploy an EDA, or an SOA, its master set of architectural
characteristics, were far from obvious. Even going beyond the fact that
the technology and standards are immature and, thus, challenging, the
practice of uniting software with an overarching standards-based
approach that extends outside the enterprise is a new field, lacking in
many of the guiding principles of infrastructure, governance, and best
practices that hold together most traditional forms of architecture and
development.

For better or worse, some software vendors are now bringing what
they call EDA suites to market. However, the commercial offerings in
EDA tend to be quite narrowly defined and vendor-centric. As such,
they are inadequate on their own to offer much in the way of instruction
on the overall best practices required for EDA.

We perceive a need among architects for a book that combines both
the theory of EDA—the grand vision that led to its formation and the

essential nature of the paradigm—with a practical look at building an
EDA over an SOA implementation in the real world. This book is nei-
ther all theory nor all practice. It is a blend, with the idea that true suc-
cess with EDA depends on a good understanding of both aspects of the
paradigm.

To understand how this book is set up and what it contains, we
thought it would make sense first to take a quick look at the definition,
history, and context of EDA and SOA. These two related architectural
styles are not as new as they seem, though recent developments in stan-
dards have led to breakthroughs in their potential realization.

Inside This Book: The Path to EDA

Even for a lot of experienced architects and developers, the implicit con-
nection between EDA and SOA has not been intuitively obvious. A lot of
IT pros react to SOA with a sentiment akin to, “That’s really cool. Now
what?” These questions are completely legitimate. Imagine someone
handing you a violin and declaring, “Oh, good, now I get to hear
Mozart.” That person is making several assumptions, including that you
know what the violin is, how to play it, and how to play Mozart in partic-
ular. In many IT situations, it is not always evident how loose coupling
and a service orientation will take you to an EDA. If your boss drops a
Visual Studio 2008 pack on your desk and says, “Now you will deliver an
EDA,” you might not necessarily know how to get from here to there.
That is the purpose of this book.

Much of this book is dedicated to helping you understand where the
rubber meets the road in turning the vision of EDA into a reality. In so
doing, we delve into detail on the subject of SOA, providing the essential
building blocks of the most versatile and effective EDAs. We address
one of the great unanswered questions posed in the wake of SOA’s high-
profile arrival on the IT scene: How do you actually get to the achieve-
ment of business goals that EDA enables using the actual technologies
that make up SOA? The leap from Web services and SOA to the fulfill-
ment of EDA, and its attendant agility and IT cost savings, requires
some serious discipline.

Preface xiii

Part I—The Theory of EDA

This book consists of two parts. Part I, “The Theory of EDA,” covers the
theoretical aspects of EDA. The path to EDA, which we guide you
through in this book, starts with an understanding of what EDA is. Part I
begins with a thorough theoretical definition of EDA. We cover the core
components of EDA, such as event consumers and producers, message
backbones, Web service transport, and so on. We also describe the basic
patterns of EDA, including simple event processing, event stream pro-
cessing, and complex event processing.

From this definition, we then explore the current context of EDA,
which is the jungle of interoperability challenges that we all face in large
enterprises. Having thus set up the situation that we face—we want
EDA (or at least, we should consider it)—we see how difficult it can be
to attain. Enter SOA, and its open interoperability, which paves the way
for the realization of EDA.

In addition to defining EDA, we explore the SOA-EDA connection
in depth. In our view, any serious attempt to develop an EDA today will
rely on the use of SOA technology as it is emerging in the marketplace.
The EDA of tomorrow will run on Web services and enterprise service
buses. The EDA components—the event producers, consumers, and
processors—will all be Web services. We will flesh out this vision of EDA.

The conclusion of Part I consists of examples of EDAs and how they
might function. We explore examples of how businesses and other
organizations might ideally use EDA to further their objectives. This set
of examples provides a transition to Part II, “EDA in Practice,” of the
book, which moves you into the reality of EDA and how it might be
approached in an actual enterprise setting.

Part II—EDA in Practice

Part II begins with Chapter 6, “Thinking EDA.” This chapter explores
ways to identify the ideal use of an EDA, or a partial EDA in realizing a
set of business objectives. Chapters 7 and beyond present a set of case
studies of EDA. Some of these case studies are based on real companies.
Others are partially hypothetical, but based on real-life experiences we
have had in the world of enterprise architecture.

In each case study, we describe the organizations involved as well as
the technological and business challenges and objectives that they have.
We look at the ways in which the business and technological situation
would benefit from an EDA approach. We look at the practical issues

xiv Preface

that arise in its design and implementation. Our goal is to include, where
relevant, some organization and non-IT issues, such as project manage-
ment and communication. Of course, we get into depth on the technolo-
gies required to birth the EDA.

Throughout the case studies, we look at a number of related topics
in the field of enterprise architecture that have relevance for learning
about EDA. These include SOA infrastructure, governance, and secu-
rity. Wherever possible, we try to point out business issues that are rele-
vant, but perhaps not apparent to the technology reader, as well as
technology issues that might not be noticed by the business reader.

One of our other goals is to instill in you a good sense of when to use
an EDA approach and when not to, for the paradigm is not a panacea for
all IT and business problems. This issue reminds of the story of a man
who once approached a famous surgeon and said, “You make more
money in a week than I make in a year. I don’t think it’s fair. Is what you
do so special?” The surgeon replied, “Surgery itself isn’t that compli-
cated. I could probably teach you to do it in a few weeks. What takes the
training and skill is knowing when not to operate, and what to do when
something goes wrong. Learning those two things can take years.”

So it is with EDA. Developing a Web service is not hard for an expe-
rienced developer. Knowing how to use the functions of an SOA to cre-
ate an EDA, though, is another matter. And, like the surgeon, you would
be well served by understanding when to use and not use the EDA
approach. If you take away nothing else from this book, consider that
there are many cases where an EDA is not the optimal solution to a busi-
ness issue.

Who Should Read This Book, and How They
Should Read It

If you’re holding this book in your hand, you are probably involved with
information technology. If you are not in technology, we really admire
your desire to be a broadly informed citizen. We have written this book
in fairly deep, but not excessively detailed, technical language.

This is not a book that is awash in code or extensive jargon. We have
made the choice to skip the deep, deep techie language because of the
likely blend of readers that we expect to find. The subject of EDA can be
of interest to the work of a vast audience. EDA itself is an area that is

Preface xv

inherently interdisciplinary. EDA naturally throws together developers,
line-of-business people, IT managers, security specialists, architects, and
network operations people. There is probably a whole EDA book for
each of those disciplines. Luckily for us, someone else will write them.
We want to present the topic in a unified approach that a multiplicity of
readers can absorb.

Our other guess is that you probably work at a large organization or
with an entity that interfaces with large organizations. Whether you work
at a corporation, public sector organization, or educational institution,
the issues for EDA are the same. We come from the corporate world, so
we have a tendency to talk about “business value” a lot. If you can’t relate
to this, we are sorry, but for stylistic reasons we need to use just one mea-
sure of efficiency, and in our world, that measure is usually dollars. So,
when we talk about “business value,” we mean the economy of effort
required to produce a result. It’s a concept that can translate into any
organizational agenda.

xvi Preface

Introduction

Event-Driven Architecture: A Working Definition

Event-driven architecture (EDA) falls into the maddening category of a
technology paradigm that is half understood by many people who claim
to know everything about it. Although we recognize that we, too, might
not know absolutely everything there is to know about EDA, we believe
that it is necessary to set out a working definition of EDA that we can
adhere to throughout this book. Getting to an effective working defini-
tion of EDA is challenging because EDA must be described at a suffi-
ciently high level that is comprehensible to nontechnologists, but at the
same time not so high level as to sound vague or irrelevant.

An event-driven architecture is one that has the ability to detect
events and react intelligently to them. For our purposes—and we dis-
cuss this in great detail later on—an event is a change in state that merits
attention from systems. Brenda Michelson, a technology analyst, writes,
“In an event-driven architecture, a notable thing happens inside or out-
side your business, which disseminates immediately to all interested par-
ties (human or automated). The interested parties evaluate the event,
and optionally take action.”1

One of the simplest examples of an event-driven system is actually
from the noncomputer world. It is known as a thermostat. The thermo-
stat is a mechanical device that turns the heat on or off based on its pro-
grammed reaction to an event, which is a change in temperature. The
shift in temperature is the event, the “change in state” that triggers the
reaction of the thermostat, which, in turn, affects the action of the
heater.

We can see another simple example in the evolution of the automo-
bile. Cars are becoming increasingly intelligent by reacting intelligently
to their surroundings. If rain hits the windshield, the automobile recog-
nizes the rain event and automatically turns on the windshield wipers,

1

turns on the headlights, and adjusts the front windshield defroster. All of
these things were formerly the driver’s responsibility, but now the car’s
internal system uses its intelligence to react. An EDA is an architecture
that acts in the same way: It detects events and reacts to them in an intel-
ligent way. To be able to detect events and react to them intelligently, an
EDA must have certain capabilities, including the ability to detect
events, transmit messages among its components that an event has
occurred, process the reaction to the event, and initiate the reaction to
the event if that is called for. In generic architectural terms, these capa-
bilities translate into the concepts of event producers, event consumers,
messaging backbones, and event processors. These go by many different
names in practice, and this is one of the great hurdles to getting a feel for
what an EDA is at its core.

Many examples of EDAs occur in the realm of information systems,
though most of the ones currently deployed are limited in scope. For
example, if your credit card is simultaneously used in two separate geo-
graphical locations, those two events can be “heard” by the credit card
processing systems and examined for a potential fraud pattern. The
credit card fraud detection EDA is set up to listen for events that indi-
cate potential fraud and respond—or not respond—depending on a set
of rules that are programmed into the event processors. If the charge
occurring out of state is at a mail order merchant where you have
shopped before, the system might not deem the event pattern to be a
fraud. If the second charge is for a high-dollar value at a merchant where
you have not shopped before, the EDA might trigger a response that
places a warning or “watch” status on your credit card account. Or, the
activity might prompt a person to call you and find out if you have lost
your card.

Or, imagine that an FAA air traffic control application needs to know
the probability of rain in a certain location. At the same time, the Air
Force needs the same data, as does NASA. Assuming that the weather
data is collected and available on a server somewhere, it is possible to
tightly couple that server, and the software running on it, with the FAA,
Air Force, and NASA’s respective systems. Although this type of
approach is frequently used, it is far easier to arrange for the weather
application to publish the weather data and enable the subscribers (the
FAA et al.) to get the data they need and use it however they need to use
it. The weather status event of the weather application publishes the
weather data so that the data subscribers can use it to drive the architec-
ture. This is an event-driven architecture.

2 Introduction

In this EDA, the FAA, Air Force, and NASA are integrated with the
weather system by virtue of the fact that there is no specific coupling
between the applications. Of course, they exchange data, but the appli-
cations are completely separate and have no inherent knowledge of one
another. The developers do not need to know each other, and there is no
need to coordinate. However, for it to work, they do need standards. To
effectively disseminate and process events, the publisher and the sub-
scriber might agree to use a commonly understood message format and
a compatible transport mechanism.

One commonly used technology that is analogous to EDA is the
Web itself. When you use a browser, you are initiating an integrated ses-
sion with a remote system of which you have no specific knowledge. In
all probability, you have no idea who programmed it, what language it’s
written in, where it is, and so on. Yet, your browser can pull whatever
information it is permitted to get and show it to you in a format that you
can understand. The event of requesting the uniform resource locator
(URL) triggers the action that results in the display of the Hypertext
Markup Language (HTML) content in your browser window. As we
develop our explanation of EDA, though, you will see that the Web is a
very simple EDA.

An EDA consists of applications that are programmed to publish,
subscribe, or take other actions upon events triggered by applications
with which they share no formal coupling. For this reason, EDA has
been likened to a “nervous system” for the enterprise.

The Enterprise Nervous System

Where would the IT industry be without metaphors? Even the idea of
using the word architecture to describe how Byzantine networks of
hardware, software, and data are configured shows how reliant we are on
abstraction to achieve an understanding of what we are trying to accom-
plish in enterprise IT. In the spirit of metaphors, then, we shall borrow a
concept from human physiology, the central nervous system, to further
our understanding of EDA.

If your cat steps on your toe, how do you know it? How do you know
it’s a cat, and not a lion? You might want to pet the cat, but shoot the lion.
When the cat’s paw presses against your toe, the nerve cells in your toe
fire off a signal to your brain saying, “Hey, someone stepped on my toe.”
Also, they send a message that says something like, “It doesn’t hurt that
much” and “It was probably a cat.” Or, if you saw the cat, the signals from

Event-Driven Architecture: A Working Definition 3

your optic nerve are synthesized with those from your toe, each invoking
your mental data store of animals and likely toe steppers, and you should
know pretty quickly that it was, indeed, a cat that stepped on your toe.
Your central nervous system is a massively complex set of sensory recep-
tors, wires, and integration points, known as synapses. The nervous sys-
tem is critical to your functioning and survival in the world. Just imagine
if your central nervous system didn’t work well and you confused the cat
with the lion. As Figure I.1 shows, you might shoot your cat and pet the
lion, which would then eat you.

4 Introduction

Perception:
Cat stepped on toe.

Reaction:
Pet the cat.

Event:
Cat steps on toe.

Perception:
Lion stepped on toe.

Reaction:
Shoot the cat.

Event:
Cat steps on toe.

Perception:
Cat stepped on toe.

Reaction:
Pet the lion.

Event:
Lion steps on toe.

Figure I.1 The human nervous system as a metaphor for the enterprise. When the
cat steps on your toe, do you recognize it as a cat, or mistake it for a lion?

Our enterprises have their own nervous systems, too. Our Web sites,
enterprise resource planning (ERP) systems, customer relationship
management (CRM) systems, databases, and network infrastructures,
for example, all work to feed the corporate equivalent of sensory infor-
mation to the corporate “brain.” The corporate brain, in turn, assesses
the input and reacts. Of course, the corporate brain might contain a few
actual brains as well, in the form of employees, but their sensory input is
determined by the enterprise nervous system. For example, if there is an
increase in cash withdrawals at a bank, the banking systems, acting like
nerve sensors in our toe, fire off withdrawal data to the corporate brain.
The neurons in the corporate brain then route the data to its destination,
which could be an automated bank cash reserve management system,
the executive management team of the bank, or a combination. As our

brain assesses and reacts to the cat stepping on our toe, the corporate
brain of the bank must assess the input of the withdrawal spike and react.

If our enterprises were living beings, most of them would need some
pretty intensive neurological care. Unlike a well-functioning person,
whose nervous system can learn how to react to different stimuli and
determine the best way to handle a given situation based on sensory
input and mental processing, the typical enterprise has a nervous system
that is hardwired to react in a specific set of ways that might not be ideal
for every situation. In the cat-on-toe situation, most of our enterprises
would probably expect the worst and then shoot in the general direction
of the cat. Or, perhaps a more realistic version of the metaphor—the
enterprise wouldn’t even know that anything had stepped on its toe, or
that it even had a toe. It would be completely unaware most likely
because it was never given the ability to be aware.

Like the person whose knee-jerk reaction is to shoot the cat regard-
less of what is going on, most of our enterprises have a nervous system
that is not well set up to receive the data equivalent of sensory input,
process it, know what it is, and react in an appropriate way. Event-driven
architecture is an approach to IT that gives the enterprise the ability to
improve its nervous system and have a level of adaptability and aware-
ness that it needs. This is what we typically hear described as agility: the
ability to react intelligently to stimuli and also continually reshape the
reaction as circumstances change.

Data is powerful, if you can see it and know what to do with it. To
paraphrase Levitt and Dubner and their great book, Freakonomics, an
EDA provides potential adaptation data that exists in streams that we
can’t possibly see on our own. Levitt and Dubner characterize the Inter-
net as a “gigantic horseshoe magnet waved over an endless sea of
haystacks, plucking the needle out of each one.” Similarly, an EDA—the
nervous system—gives us a way to acquire data and to make the data we
have meaningful. For example, if we knew that every day we experience
what it feels like to have a lion stepping on our toe, followed by no nega-
tive reaction, we might learn to ignore it as unimportant—or begin to
assume that it’s not a lion. That’s fine, until a lion does step on our toe…

Building an EDA to instill good functioning to the enterprise nerv-
ous system involves getting the various sensors, message pathways, and
reacting logic processors to work together. In broad terms, this is known
as interoperation, and it is the heart of the new EDA discussion going on
today.

Event-Driven Architecture: A Working Definition 5

The “New” Era of Interoperability Dawns

Reading about EDA as a “new” idea might give you a sense of déjà vu. As
we saw with the familiar credit card fraud example, EDA is not a new
concept. However, the current crop of EDAs uses proprietary standards
for communication, and although they work well, they are, in effect,
tightly coupled EDAs that can only share information among systems
that use a compatible standard. For instance, it is possible to set up a
fairly effective EDA if all systems are built on the same platform. Ven-
dors have long provided high-performance pub/sub engines for compat-
ible systems. The only problem is, as we know, not everyone is on the
same platform, despite the dramatic sales efforts of some of Silicon Val-
ley’s best and brightest minds. The good news is that many platform ven-
dors have released new service-based EDA products, which do not rely
on tight coupling.

The quest for a well-functioning enterprise nervous system has been
the catalyst for the development of EDA for many years. Why, then, is
EDA receiving such renewed and intense interest today? The reason has
to do with the explosion in interoperability and the standardization of
data across multiple enterprises, which changes the game of EDA.

Ultimately, the existence of an EDA is dependent on interoperabil-
ity among systems. You can’t have awareness and reaction to events if the
systems cannot communicate with one another. Existing EDA setups are
invariably tightly constrained and narrow in their functionality because it
has been so difficult, or costly, to achieve the level of interoperation of
EDA components needed for any kind of dynamic or complex EDA
functionality. That is now changing. Today, with the advent of open stan-
dards and the breakthroughs in system interoperability from service-
oriented architectures (SOAs), it is now possible to establish EDAs that
are far more intelligent, dynamic, and far-reaching than ever before.

To put the interoperability evolution in context, we will share a lunch
conversation we had recently with a man who had been responsible for
designing and implementing the basic underpinnings of the worldwide
airline reservation and automated teller machine infrastructures. In the
last few years, he has been involved in other pursuits, so he was eager to
learn about SOA and EDA, the new tech trends that he had been hear-
ing so much about in the industry media.

When we explained how the related concepts of SOA and EDA
allowed, for the first time ever, truly open interoperation among hetero-
geneous software applications, regardless of operating system, network

6 Introduction

protocol, or programming language, he gave us a perplexed look. “That’s
new?” he asked with a slight smirk. “That idea has been around since
1961.”

And, of course, he was right. The idea of open interoperability has
been in the air for decades. Just like the automobiles have been around
since the late 1800s. Even today, we still use a combustion engine to
drive the wheels, so the essence hasn’t changed much. However, never
before have cars been so reactive to our needs and their surroundings.

The same evolution is true for the software and the circumstances
that we find ourselves in now, in 2009. Over the last eight years, from
2001 to 2009, we have seen an unprecedented shift in the IT industry
toward the use of open standards for the purpose of integrating diverse
software applications. Also, more and more companies are exposing
their data in a standardized fashion further expanding the circle of
opportunity.

This all started back in 2001…. An unusually broad group of major
IT companies, including IBM, Oracle, Microsoft, BEA, and others,
agreed to conform to a specific set of Extensible Markup Language
(XML) standards for interoperation between software applications.
These standards, known collectively as the Web Services protocol, pro-
vide a technological basis for any application in the world to exchange
data or procedure calls with any other application, regardless of location,
network, operating system, or programming language.

Specifically, the major standards that were ratified included Simple
Object Access Protocol (SOAP), which is the message formatting stan-
dard, Web Services Description Language (WSDL), which sets out a
standard document format with which to describe a Web service, and
Universal Description, Discovery, and Integration (UDDI), a Web serv-
ices registry application programming interface (API), that are available
for use in a particular domain.

Thus, Web services are software-based interfaces that are univer-
sally understandable, self-describing, and universally discoverable. As
our colleague Jnan Dash, the legendary lead engineer of the Oracle
Database, puts it, the combination of the Internet and Web services
makes possible a kind of “universal dial tone” for all applications. (The
Internet is the dial tone and Web services give you the ability to “dial.”)
With Web services, it is entirely possible for an application written in C
to interoperate with a J2EE application without the need for any propri-
etary middleware. As a whole, the large-scale development and integra-
tion of Web services is a key step toward developing a service-oriented

The “New” Era of Interoperability Dawns 7

architecture (SOA). SOA represents a model in which functionality is
decomposed into small, distinct units (services—for example, Web serv-
ices), which can be distributed over a network and can be combined
together and reused to create business applications. These services com-
municate with each other by passing data from one service to another or
by coordinating an activity between two or more services.2 The industry
vision that is fueling the SOA trend is that one day virtually any applica-
tion needed in your enterprise (whether it is inside your firewall or not)
will be available as a Web service and will be freely interoperable with
other applications, enabling the decomposition of application function-
ality into small units that can interoperate or be orchestrated in compos-
ite applications. This vision is idealized, and it is likely that a full-blown
SOA of this type will never actually come into existence. However, many
are approaching the paradigm in steps.

Many enterprises have begun to introduce service-orientation in
their architectures, selectively exposing capabilities through Web serv-
ices in configurations that suit specific business needs and selectively
service enabling core legacy systems. This is a remarkable achievement
for an industry that was very much in the doghouse after the Y2K panic
and dot.com fiascos of 2001. The most striking thing about SOA, beyond
the fact that Web services standards were adopted simultaneously by
many large IT vendors, is the fact that it actually works. SOA is very
much the technological trend of the moment, and it is everywhere. You
see SOA as a prominent feature set in products from Microsoft, Oracle,
IBM, SAP, and so on. Virtually every major technology company has
announced an SOA strategy or even shifted their entire market focus to
being service-oriented. A sure sign that SOA had reached prime time
was when Accenture announced that it was going to spend $450 million
on an SOA consulting initiative for its global clients.

SOA removes much, if not all, of the proprietary middleware and
network compatibility blockages that inhibit rapid changes in application
integration. As a result, they can loosen the coupling between applica-
tions. Given how important agility is, tight coupling is rightly held out as
the enemy of agility. Loose coupling is the enabler of agility and SOA
delivers loose coupling. Changes become simpler, faster, and cheaper.
As integration agility becomes reality, so does EDA and its increased
awareness. Therefore, SOA delivers the necessary agility required for an
EDA. However, achieving this goal of EDA through loose coupling
without destroying a range of security, governance, and performance

8 Introduction

standards requires a great deal of planning and work. And, as we start to
see, the path from where we are now, to SOA and then EDA, is not
always clear.

The ETA for Your EDA

This is not a cookbook, but it can put you on track for finding the right
use for EDA in your organization and getting it started. At the very least,
our intent is to familiarize you with this exciting new technological para-
digm—and you will need this familiarity if you are a professional work-
ing in technology today. EDA and SOA are appearing in a myriad of
commercial IT offerings and technological media articles. You need to
know about EDA.

How you approach EDA is up to you, and if your career has been
like ours, you might agree that rushing is seldom a good idea, especially
when a new technology is involved. Our goal is to inform and stimulate
your thinking on the subject. Whatever the ETA is for your EDA, only
you will know the right way to proceed. Our wish is to give you the
knowledge and insight you need to make it a success.

Endnotes

1. Michelson, Brenda. “Event Driven Architecture Overview.”
Paper published by Patricia Seybold Group (2/2/2006).

2. Wikipedia, http://en.wikipedia.org/wiki/Service-oriented_
architecture.

Endnotes 9

http://en.wikipedia.org/wiki/Service-oriented_architecture
http://en.wikipedia.org/wiki/Service-oriented_architecture

C H A P T E R 3

Characteristics of EDA

Firing Up the Corporate Neurons

Getting to a complete understanding of event-driven architecture
(EDA) takes us on a step-by-step process of learning. First, we discussed
the enterprise nervous system and the way EDAs are formed by con-
necting event listeners with event consumers and event processors, and
so on. Then, to explain how these EDA components will likely be real-
ized in today’s enterprise architecture, we learned about Web services
and service-oriented architecture (SOA). To get the full picture, though,
we now need to get into depth on the characteristics and qualities of
EDA components.

If the EDA components are like the neurons in the enterprise nerv-
ous system, then we need to understand how their “synapses” and neural
message pathways work if we want to form a complete picture of EDA.
We need to know how they actually can or should work together to real-
ize the desired functionality of an EDA. In this context, we go more
deeply into the concept of loose coupling and also explore in depth the
ways that an EDA needs to handle messaging between its components.
With the key concepts defined, we then lay out a thorough definition of
EDA, using an idealized EDA as an example.

Revisiting the Enterprise Nervous System

Returning to our cat scenario, if your cat steps on your toe, how do you
know it? How do you know it’s a cat, and not a lion? You might want to
pet the cat, but shoot the lion. And, perhaps most important, how can
you be sure that your body and mind learn how to distinguish between

63

the cat and the lion in the first place? How do you keep learning to
process sensory experiences? The world is constantly changing, so our
nervous systems, and our EDAs, must be flexible, adaptable, and fast
learners. We want our EDAs to be as sensitive, responsive, and teach-
able as our own nervous systems. To get there, we need to endow our
EDA components with nervous system–like capabilities.

When the cat’s paw presses against your toe, the nerve cells in your
toe fire off a signal to your brain saying, “Hey, something stepped on my
toe.” In this way, the neurons in your toe are like event producers. The
neural pathways that the messages follow as they travel up your spine to
the brain are like the messaging backbone of the EDA. Your brain is at
once an event listener and an event processor. If you pet the cat, your
hand and the nerves that tell your hand to move are event reactors. Fig-
ure 3.1 compares the EDA with your nervous system.

64 Chapter 3 Characteristics of EDA

The Brain:
Event Listener

Perception:
Cat stepped on toe.

Reaction:
Pet the cat.

Event:
Cat steps on toe.

The Brain:
Event Processor

The Hand:
Event Reaction

Toe Neuron:
Event Producer

Spinal Cord:
Message Backbone

Figure 3.1 The human nervous system compared with an EDA.

The nervous system analogy is helpful for getting the idea of EDA
on a number of levels. In addition to being a useful model of the EDA
components in terms that we can understand (and perhaps, more impor-
tant, that you can use to explain to other less-sophisticated people), we
can learn a lot about how an EDA works by understanding how the
nerves and brain communicate and share information. As a first step in
mapping from nervous system to EDA in terms of its characteristics, we

look at event-driven programming, a technology that is comparable to an
EDA and quite familiar, as well as informative.

Event-Driven Programming: EDA’s Kissing Cousin

We all use a close cousin of EDA on a daily basis, one whose simplicity
can help us gain a better understanding of EDA, perhaps without even
realizing it. It’s called event-driven programming (EDP) and it’s common
in most runtime platforms. It’s also found in CPU architectures, operat-
ing systems, GUI interfaces, and network monitoring. EDP consists of
event dispatchers and event handlers (sometimes called event listeners).
Event handlers are snippets of code that are only interested in receiving
particular events in the system. The event handler subscribes to a partic-
ular event by registering itself with the dispatcher. The event dispatcher
keeps track of all registered listeners then, when the event occurs, notifies
each listener through a system call passing the event data.

For example, you might have a piece of code that executes if the user
moves the mouse. Let’s call this a mouse event listener. As shown in Fig-
ure 3.2, the mouse event listener registers itself with the dispatcher—in
this case, the operating system. The operating system records a callback
reference to the mouse event listener. Every time the user moves the
mouse, the dispatcher invokes each listener passing the mouse move-
ment event. The mouse movement event signals a change in the mouse
or cursor position, hence a change in the system’s state. Other examples
of event-driven programming can be found in computer hardware inter-
rupts, software operating system interrupts, and other user interface
events, such as mouse movements, key clicks, text entry, and so on.

Revisiting the Enterprise Nervous System 65

ClickNo Click

Function

Mouse Event
Listener

ClickNo Click

Function

Mouse Event
Listener

No Click

Figure 3.2 The PC’s instruction to listen for mouse clicks is an example of event-
driven programming (EDP), a close cousin of EDA. When the mouse is clicked, the
mouse click event listener in the PC’s operating system is triggered, which, in turn,
activates whatever function is meant to be invoked by the mouse click. When the
mouse is not clicked, the event listener waits.

Wikipedia describes event-driven programming as, “Unlike tradi-
tional programs, which follow their own control flow pattern, only some-
times changing course at branch points, the control flow of event-driven
programs [is] largely driven by external events.”1 The definition points
out that there is no central controller of the flow of data, which is coun-
terintuitive to the way most of us were taught to program.

The reason we bring this up is to emphasize a key distinction
between EDP and conventional software: a lack of a central controller.
This distinction is critical to understanding how EDA works. When you
first enter the programming world, you’re taught how to write a “Hello
World” program. You might learn that a program has a main method
body from which flow control is transferred to other methods. The main
method is treated like a controller (see Figure 3.3).

66 Chapter 3 Characteristics of EDA

EndStart

Main Method: Step 1 Main Method: Step 2Input ActionState2

ActionState1

Figure 3.3 In a conventional programming design, a controller method controls the
flow of data and process steps.

In contrast, in event-driven programming, there are no central con-
trollers dictating the sequence flow. As shown in Figure 3.4, each com-
ponent listening for events acts independently from the others and often
has no idea of its coexistence. When an event occurs, the event data is
relayed to each event listener. The event listener is then free to react to
that information however it chooses, perhaps activating a process specif-
ically intended for that particular event trigger. The event information is
relayed asynchronously to the event listeners so multiple listeners react
to the event data at the same time, increasing performance but also cre-
ating an unpredictable order of execution.

Figure 3.4 In event-driven programming (EDP), event listeners receive state change
data (events) and pass them along to event dispatchers, which then activate
processes that depend on the nature of the triggering events.

As shown in Figure 3.4, the listeners execute concurrently. This is
quite different from the typical program that controls the flow of data. In
a typical program, the controller method calls out to each subcompo-
nent, passes relevant data, waits for control to return, then continues to
the next one—a very predictable behavior. Of course, the controller
method could take an asynchronous approach, but the point is that one
has a predefined flow of data whereas the other does not.

When waiting for events, event listeners are typically in a quiescent
state, though occasionally you’ll see a simulated event-driven model
where event listeners cyclically poll for information. They sleep for a
predefined period then awaken to poll the system for new events. The
sleep time is usually so small that the process is near real time.

Similar to EDP-based systems, EDA relies on dynamic binding of
components through message-driven communication. This provides the
loose coupling and asynchrony foundation for EDA. EDA components
connect to a common transport medium and subscribe to interested
event types. Most EDA components also publish events—meaning they
are typically publishers and subscribers, depending on context. The
biggest difference between EDA and EDP is that EDP event listeners
are colocated and interested in low system-level events like mouse clicks,
whereas EDA event consumers are likely to be distributed and interested
in high-level business actions such as “purchase order fulfilled.”

Revisiting the Enterprise Nervous System 67

Process A

Event Action Action

Action

Action

Event

Action Action

Event

Action

Process B

Process C

Action

Action ActionState1

Message
Backbone

Event
Listener

Event
Listener

Event
Listener

More on Loose Coupling

Let’s go deeper on loose coupling, a core enabling characteristic of
EDA. You can’t have EDA without loose coupling. So, as far as we EDA
believers are concerned, the looser the better. However, getting to an
effective and workable definition of loose coupling can prove challeng-
ing. If you ask nine developers to define loose coupling, you’ll likely get
nine different answers. The term is loosely used, loosely defined, and
loosely understood. The reason is that the meaning of loose coupling is
context sensitive. For EDA purposes, loose coupling is the measure-
ment of two fundamentals:

■ Preconception
■ Maintainability (Changeability)

Preconception: The amount of knowledge, prejudice, or fixed
idea that a piece of software has about another piece of software

Preconception is a quality of software that reflects the amount of
knowledge, prejudice, or fixed idea that one piece of code has about
another piece of code. The more preconception that an application (or a
piece of an application) has in relation to another application with which
it must interoperate, the tighter the coupling between the two. The less
preconception, the looser the coupling. We’ve all seen tight coupling
that stems from high levels of preconceptions. Think of systems where
every configuration attribute and every piece of mutable text is hard-
coded in the system. It can take days just to correct a simple spelling
mistake. During design, these systems all made a single, yet enormous,
configuration preconception—they assumed that the configuration
would be set at compile time and never need to be changed. You will
never get to the flexibility of configuration that you need to build an
EDA with this kind of tight coupling.

Ultimately, to move toward EDA and SOA, you should strive for
software that makes as few presumptions as possible. To use a common,
real-world example of tight coupling, consider a point-of-sale (POS) pro-
gram calling a credit card debit (CCD) program and passing it a credit
card (CC) number. As shown in Figure 3.5, the POS program has a pre-
conceived notion that it will always be calling the CCD program and
always be passing it a CC number, hence the two systems are now tightly
coupled.

68 Chapter 3 Characteristics of EDA

Maintainability: The level of rework required by all participants
when one integrated component changes

Revisiting the Enterprise Nervous System 69

Card Number/ID

POS System

Cashier isAuthentic

Validate

Figure 3.5 In this classic example of tight coupling, a POS system sends a credit
card number to a CCD program and requests a validation, which is indicated by a
returned value of isAuthentic. The two systems are so tightly bound together they
can almost be viewed as one single system.

Maintainability, the other EDA-enabling component of loose cou-
pling, refers to the level of rework required by all participants when one
integrated component changes. When a piece of software changes, how
much change does that introduce to other dependent software pieces?
Best practices dictate that we should strive for software that embraces
and facilitates change, not software that resists it. As a rule, the looser
the coupling between components or systems, the easier it is to make
software changes without impacting related components or systems.

Consider the hard-coded POS system described previously. A sim-
ple configuration change requires a source code change, compilation,
regression testing, scheduled system downtime, downtime notifications,
promotion to production, and the like. A system that resists change is
considered a tightly coupled system.

Now let’s suppose we begin to alleviate our headaches by removing
some of the system’s preconceived ideas. As a start, let’s assume we make
the following two changes:

■ First, we remove the hard-coded instructions from our system
code, and instead let behavior be driven by accessing values
stored in a configuration file (presumably read into memory at
instantiation).

■ Second, we enable our system to be dynamically reconfigured
(meaning our system would have a mechanism for reloading new
versions of the configuration file while still active).

In this case, making a simple change to our configuration file, such as
indicating that an entry in coupon format is a valid form of payment or
even correcting a spelling mistake, only requires a regression test and a
signal sent to the production system to reload its configuration. The sys-
tem is maintainable—we updated the system while it stayed in produc-
tion, and we did so without compiling a lick of code.

We have also successfully decreased the coupling between our sys-
tem and its configuration. The system is now loosely coupled with
respect to this context but it might still be tightly coupled in other areas.
We have only increased its loosely coupled index. We have increased its
changeability and decreased its preconception with respect to configura-
tion, but how does it interact with other modules or components? It
might be tightly coupled with other software.

70 Chapter 3 Characteristics of EDA

What Your CFO Is Thinking

Imagine that you are the owner of this tightly coupled POS system, and your
CFO tells you that, as of some very rapidly approaching date, she expects the
POS systems to accept coupons as a form of payment in addition to credit
cards. Unlike the credit cards, which have a 16-digit identifying number and a
matching expiration date, the coupons have a 10-character identifier com-
posed of letters and numbers. When you tell your CFO that it might take you
three months to make this change, she is not going to be too interested in
the issues of maintainability and preconception involved in the POS soft-
ware, but you know that these two tight coupling demons are to blame. The
coupons might actually provide you with a good pretext to start discussing an
EDA/SOA approach to POS. You can tell the CFO that you can make future
coupon transitions faster if you loosen up the coupling in the POS systems.

This is where the meaning of loose coupling is context sensitive. We
can say the system is loosely coupled if that statement is made within the
context of the configuration file. We can also say it is not loosely coupled
if the statement is made referring to its integration techniques.

This example oversimplifies the situation because hard-coded sys-
tems are often very difficult to modify into configuration-driven systems,
and even harder to modify to dynamically configuration-driven systems,
but the points are valid. We did decrease the tight coupling and ease our
headache. Moreover, we can see that significant rework time would have
been saved had the system designers taken this approach from the
beginning.

To illustrate our point, we have just used an example where we
increased the degree of loose coupling of the system by loosely coupling
configuration attributes. However, the term is typically used to reference
integration constraints. Two or more systems are tightly coupled when their
integration is difficult to change because of each system’s preconceptions.

Our previous point-of-sale (POS) scenario is an example of two
tightly coupled systems. Changes in either system are very likely to
necessitate changes in the other. At the extreme (though not uncom-
mon) end of this spectrum, the overall design might be so tightly inte-
grated that the two systems might be considered one atomic unit.

The POS system has preconceived notions about how to interact
with the CCD system. For example, the POS system calls a specific
method in the CCD system, named validate, passing it the CC num-
ber. Now suppose the CCD system changes the method name to
isAuthentic. This might happen if a third party purchased the CCD
system, for example.

What we want to do is isolate those changes so that we do not have to
change our POS system with every vendor’s whim. To loosen up the
architecture, let’s exercise a design pattern called the adapter pattern.
We will add an intermediate (adapter) component between the POS and
CCD systems. The sole purpose of this component is to isolate the pre-
conceived knowledge of the CCD system. This allows the vendor to
make changes without adversely affecting the POS system.

Now vendor changes in the CCD system are isolated and can be
bridged using the intermediate component. As the diagram in Figure 3.6
illustrates, the vendor can change the method name and only the
adapter component needs to change.

Revisiting the Enterprise Nervous System 71

Figure 3.6 The insertion of an adapter between the POS and CCD systems loosens
the coupling. Changes to the CCD system are isolated and can be bridged using the
adapter.

This reduces the POS system’s preconception about the CCD giving
the systems greater changeability. In essence, we now have greater busi-
ness flexibility because we now have the freedom to switch vendors if we
choose. We can swap out the Credit Card Debit (CCD) product for
another just by changing the adapter component.

The true benefits of the design shown in Figure 3.6 are radically evi-
dent when we talk about multicomponent integration, which is shown in
Figure 3.7. Here, the benefits are multiplied by each participating com-
ponent. This is also where the return on investment shows through
reuse. Understand that the up-front time spent on building the adapter
is now saving more money with each use. The more you use it, the more
you’ll save.

72 Chapter 3 Characteristics of EDA

Card Number/ID

POS System

Cashier isAuthentic

Validate

isAuthentic

Adapter

Figure 3.7 Use of adapters in multicomponent integration.

The argument can be made that we have now only shifted the tight
coupling to our adapter, which is true, though we have added a layer of
abstraction that does, in fact, increase maintainability of the system.
We’ll demonstrate how to fully decouple these systems when we talk
about event-driven architecture later in this chapter.

Revisiting the Enterprise Nervous System 73

ERP

User

Cashier

CRM

Partners

CICS Apps

ERP

User

Cashier

CRM

Partners

CICS Apps

Adapters

Adapters

There will always be a degree of coupling. Even fully decoupled com-
ponents have some degree of coupling. The desire is to remove as much
as possible but it is naïve to think the systems will ever be truly decou-
pled. For example, service components need data to do their job, and as
such will always be coupled to the required input data. Even a compo-
nent that returns a time stamp is tightly coupled with the system call used
to retrieve the current time. As we strive for loose coupling, we should
remember that the best we can achieve is a high “degree of looseness.”

More about Messages

Coupling, loose or tight, is all about messages. For all practical purposes,
it is only possible to have loose coupling and EDA, with a messaging
design that decouples the message sending and receiving parties and
allows for redirection if needed. To see why this is the case, let’s look at
two core aspects of messaging: harmonization and delivery. Harmoniza-
tion is how the components interact to ensure message delivery. Deliv-
ery is the messaging method used to transfer data.
Message harmonization is how the components interact to
ensure message delivery.

Harmonization can be synchronous or asynchronous. Synchronous
messaging is like a procedure call shown in Figure 3.8. The producer
communicates with the consumer and waits for a response before con-
tinuing. The consumer has to be present for the communication to com-
plete and all processing waits until the transfer of data concludes. For
example, most POS systems and ATMs sit in a waiting state until transac-
tion approval is granted. Then, they spring back into life and complete
the process that stalled as the procedure call was completed. Compara-
ble examples of synchronous messaging in real life include instant mes-
saging, phone conversations, and live business meetings.

74 Chapter 3 Characteristics of EDA

Figure 3.8 Example of synchronous messaging, a process where the requesting
entity waits for a response until resuming action.

In contrast, asynchronous messaging does not block processing or
wait for a response. As Figure 3.9 illustrates, the message consumer in
an asynchronous messaging setup need not be present at the time of
transmit. This is the most common form of communication in distrib-
uted systems because of the inherent unreliability of the network. In
asynchronous messaging, messages are sent to a mediator that stores the
message for retrieval by the consumer. This allows for message delivery
whether the consumer is reachable or not. The producer can continue
processing and the consumer can connect at will and retrieve the await-
ing messages. Examples include e-mail (the consumer does not need to
be present to complete delivery), placing a telephone call and leaving a
voice mail message (versus a world without voice mail), and discussion
forums.

Revisiting the Enterprise Nervous System 75

Integrated Application

1 State: Active 3 State: Active2 State: Waiting

2 Processing Response

Request for Data Response

Integrated Application

1 State: Active 3 State: Active – Resumes
Activity Based on

Response to Request

2 State: Active with
Other Processes

2 Processing Response

Request for Data Response

Figure 3.9 Example of simple, point-to-point asynchronous messaging.

There are multiple ways to execute message delivery whether syn-
chronously or asynchronously. Synchronous messaging includes
request/reply applications like remote procedure calls and conversa-
tional messaging like many of the older modem protocols. Our focus
here is on asynchronous messaging. Asynchronous messaging comes in
two flavors: point-to-point or publish/subscribe.
Message delivery is the messaging method used to transfer data.

Point-to-point messaging, shown in Figure 3.9, is used when many-
to-one messaging is required (meaning one or more producers need to
relay messages to one consumer). This is orchestrated using a queue.
Messages from producers are stored in a queue. There can be multiple
consumers connected to the queue but only one consumer processes
each message. After the message is processed, it is removed from the
queue. If there are multiple consumers, they’re typically duplicates of the
same component and they process messages identically. This multiplicity
is to facilitate load balancing more than multidimensional processing.

Publish/subscribe messaging, shown in Figure 3.10, is used when
many applications need to receive the same message. This wide dissemi-
nation of event data makes it ideal for event-driven architectures. Mes-
sages from producers are stored in a repository called a topic. Table 3.1
summarizes the differences between the two modes of message flow.
Unlike point-to-point messaging, pub/sub messages remain in the topic
after processing until expiration or purging. Consumers subscribe to
the topic and specify their interest in currently stored messages. Inter-
ested consumers are sent the current topic contents followed by any new
messages. For others, communication begins with the arrival of a
new message.

Topics provide the advantage of exposing business events that can be
leveraged in an EDA. One consideration is the transaction complete
indeterminism, and we will soon explore ways to handle this.

76 Chapter 3 Characteristics of EDA

Figure 3.10 Example of publish/subscribe (pub/sub) asynchronous messaging
using a message queue.

Asynchronous messaging requires a message mediator, or adapter.
This can be achieved using a database, native language constructs like
Java Channels, or the most common provider of this functionality, mes-
sage-oriented-middleware (MOM). MOM software is a class of applica-
tions specifically for managing the reliable transport of messages. This
includes applications like IBM’s WebSphere MQ (formally MQSeries),
Microsoft Message Queuing (MSMQ), BEA’s Tuxedo, Tibco’s Ren-
dezvous, others based on Sun’s Java Messaging Specification (JMS), and
a multitude of others.

JMS is the most prominent vendor-agnostic standard for message-
oriented-middleware. Before its creation, messaging-based architec-
tures were locked in to a particular vendor. Now, most MOM
applications support the standard, making it the primary choice for
implementation teams concerned with vendor-agnostic portability.

Revisiting the Enterprise Nervous System 77

Publisher A

Subscriber Subscriber

Publisher B Publisher C

B
B
B

Message Queue
A, A, B, A, C, C, C, A, B, B, A

Table 3.1 Point-to-Point Versus Publish/Subscribe

78 Chapter 3 Characteristics of EDA

Point-to-Point Queues Publish/Subscribe Topics

Single consumer Multiple consumers

Preconceived consumer Anonymous consumers

Medium decoupling High decoupling

Messages are consumed Messages remain until purged or expiration

The Ideal EDA

Having taken our deep dive into the key characteristics of EDA, we can
now examine a workable, if idealistic definition of EDA. With the usual
caveat that no architecture will, in all likelihood, ever embody EDA in
100% of its functionality, we can define EDA as an enterprise architec-
ture that works in the following ways:

EDA: What It Is

■ An EDA is loosely coupled or entirely decoupled.
■ An EDA uses asynchronous messaging, typically pub/sub.
■ An EDA is granular at the event level.
■ EDAs have event listeners, event producers, event processors, and

event reactors—ideally based on Simple Object Access Protocol
(SOAP) Web services and compatible application components.

■ An EDA uses a commonly accessible messaging backbone, such
as an enterprise service bus (ESB) as well as adapters or interme-
diaries to transport messages.

■ An EDA does not rely on a central controller.

EDA: What It Does and What It Enables

■ An EDA enables agility in operational change management.
■ An EDA enables correlation of data for analytics and business

process modeling, management, and governance.

■ An EDA enables agility in realizing business analytics and dynam-
ically changing analytic models.

■ An EDA enables dynamic determinism—EDA enables the enter-
prise to react to events in accordance with a dynamically changing
set of business rules, for example, learning how to avoid shooting
the cat and petting the lion (in contrast to controller-based archi-
tectures that can be too rigid to be dynamic, for example, shooting
the cat, not being aware of the lion).

■ An EDA brings greater consciousness of events to the enterprise
nervous system.

Though we delve more deeply into the ways that SOAP Web serv-
ices enable EDA later in the book, we want to go through a basic expla-
nation at this point because our described use of Web services as event
producers might appear confusing to some readers. Much has been writ-
ten about Web services in recent years, and, indeed, many of you likely
already work with them. It might seem incorrect to characterize a Web
service as a “producer” of SOAP Extensible Markup Language (XML)
event state messages when Web services, to be accurate, actually
respond to invocation, perhaps sending off SOAP XML if instructed to
do so. This is, of course, correct. A SOAP Web service does not transmit
a SOAP message without being triggered to do so. Thus, when we talk
about Web services functioning as event producers, we are describing
Web services that are specifically programmed to send event data to the
message backbone. These event Web services could be triggered by
activities occurring inside an application or by other Web services. The
reason we suggest that event producers should be configured in this
way—as Web services that transmit event state data upon invocation—is
that there is a high level of utility in transmitting the event data in the
portable, universally readable SOAP XML format.

Figure 3.11 revisits our phone company example and shows a high-
level model of how its systems would function and interoperate in an
ideal EDA. Let’s make a few basic observations about how the com-
pany’s EDA works. With an EDA, in contrast with the traditional enter-
prise application integration (EAI) approach, the company’s three
system groups all send event data through adapters and message listen-
ers to a service bus, or equivalent EDA hub that manages a number of
pub/sub message queues for all systems that need that event data to
carry out their tasks.

The Ideal EDA 79

Figure 3.11 A high-level overview of an event-driven architecture at a phone
company. Each system group is loosely coupled with one another using standards-
based pub/sub asynchronous messaging.

As shown in Figure 3.12, using a dynamic determinism model, the
order management system can now listen for overages in minutes and
unpaid bills that occur in billing and line management system events and
respond to them according to the business rules. Thus, if “John Q”
exceeds his allowance of wireless minutes and fails to pay for the over-
age, the business rules contained in the order management system will
deny him the right to add new services to his account.

80 Chapter 3 Characteristics of EDA

Messaging
Backbone

Order Management
Event Producer

Line Management
Event Producer

Branch Outlets

Event Driven Applications
Event Processors

Call Center
Event

Billing System
Event Producer

Call Center
Event

Event
Accounting and Finance Department

Printer Server Farms
Event

Service Center Terminal
Event

Event

Pub/Sub

Pub/SubPub/Sub

Event Listeners

Messaging
Backbone

Order Management

Line Management

EDA App:
John Q cannot have new services
added until he pays his
minutes overage.

Event 2:
John Q’s exceeds his
minutes allowance.

Event 1:
John Q’s minutes overage
is not paid.

Billing System

Pub/Sub

Pub/SubPub/Sub

Figure 3.12 In the phone company EDA example, separate events in two systems—
an overage in wireless minutes and an unpaid balance in the billing system—are
correlated by an application that then denies the order management system the
ability to grant the customer a new service request.

The order management system does not have to have the kind of
preconception about the line management system that it needed to have
to provide this function under the EAI model. The two systems are
decoupled but still interoperating through the EDA. The billing system
is the event producer and the order management system is the event
consumer.

Figure 3.13 shows how event listeners detect the two separate
events—the unpaid overage charge and the overage in minutes itself.
The EDA-based application that authorizes or declines the new service
request subscribes to the event publishing done by the line management
and billing systems. The combination of events—unpaid balance and
overage of minutes—combines to change the state of John Q’s account.
The change in state is itself an event. John Q’s status goes from “eligible”
to “ineligible” for new services. If John Q requests new services, the
order management system looks to the EDA application to determine if
John Q’s status is eligible.

The Ideal EDA 81

Line Management Billing System

Order Management

Messaging Backbone

Event Message Stream
<Billing,JoeA,OveragePaid>
<Billing,RobB,OveragePaid>
<Billing,BillC,OveragePaid>
<Billing,JohnQ,OveragePaid>
<Line,TomA,Under>
<Line,DickB,Under>
<Line,HarryC,Under>
<Line,JohnQ,Under>
<Line,RonR,Under>
<Line,BillyJackJimBobC,Under>

Event Listener
(listening for “OverageUpaid”)

What is status of
John Q?

Approve new
service request?

Eligibility State Database

Event Listener
(listening for “Over”)

Decision

EDA App

Figure 3.13 The EDA-based application subscribes to event data that is published
and consumed by event listeners on separate systems. This gives the EDA-based
application the ability to have awareness of changes in state related to John Q
without tightly coupling any of the applications involved in the query.

EDA opens new worlds of possibility for IT’s ability to serve its busi-
ness purpose. Think of all the business events a system could leverage if
events were exposed—examples include events such as order processing
complete, inventory low, new critical order placed, payment received,
connection down, and so on. Today, it’s a struggle to expose the needed
events because they’re hidden away within legacy systems. It’s common
to resort to database triggers or polling to expose these critical actions,

but imagine the supportable agility if the systems exposed those actions
natively.

Exposing system actions is the root of most integration complexities.
“Upon completion of processing at System A, send result to system B,”
and so on. Most legacy systems were not designed with unanticipated
use in mind. They assumed they would be the only system needing the
information and thus didn’t expose key event data for easy access. If
you’re lucky, the system will provide an application programming inter-
face (API) to retrieve data, but rarely will it facilitate publishing an event
or provide any event retrieval mechanism. Because events are typically
not exposed, the first thing you have to do is create an algorithm to
determine an event occurred. Often, legacy system events have to be
interpreted by correlating multiple database fields (e.g., “If both of these
two fields change state, then the order has been shipped…”). Imagine
how much easier integration would be if such event actions were
natively exposed.

Event-driven architectures are driven by system extensibility (not
controllability) and are powered by business events. As shown in Figure
3.13, event handlers listen to low-level system events while EDA agents
respond to coarser-grained business events. Some agents might only
respond to aggregate business events, creating an even coarser system
response.

EDAs are based on dynamic determinism. Dynamic determinism
relates to unanticipated use of applications and information assets.
Events might trigger other services that might be unknown to the event
publisher. Any component can subscribe to receive a particular event
unbeknown to the producer. Because of this dynamic processing, the
state of the transaction is managed by the events themselves, not by a
management mechanism.

EDA embraces these concepts, which facilitate flexibility and exten-
sibility, ultimately increasing a system’s ability to evolve. This is accom-
plished through calculated use of three concepts—loose coupling,
asynchrony, and stateless (modeless) service providers—though it does-
n’t come free. EDA brings inherently decentralized control and a degree
of indeterminism to the system.

One of the main benefits of EDA is that it facilitates unanticipated
use through its message-driven communication. It releases information
previously trapped within monolithic systems. When designing EDA
components, you should design for unanticipated use by producing

82 Chapter 3 Characteristics of EDA

events that can provide future value whether a consumer is waiting or
not. Your EDA components should be business-event-intuitive, publish-
ing actions that are valued at a business level.

Imagine an EDA billing component. After it has finished billing a
customer, it should announce the fact even if there is no current need.
What if all financial actions were being sent via events? Recognizing that
there was no immediate need for these events when the systems were
originally built, look at how beneficial it would be today. Imagine how
easy that would have made your company’s Sarbanes-Oxley compliance
efforts. Of course, it takes a degree of common sense in determining
what might be of value in the future, but it’s safe to say that most con-
crete business state changes will be valued. The caution to note here,
though, is that it is possible to create an event publishing overload that
overwhelms system and network capacity.

EDA components should also be as stateless as possible. The system
state should be carried in the event, not stored within a component vari-
able. In some situations, persistence is unavoidable, especially if the
component needs to aggregate, resequence, or monitor specific events.
However EDA components should do their job and pass on the data
then return to process or wait for the next event. This gives the system
ultrahigh reuse potential and flexibility. The flexibility of an EDA is lead-
ing to emerging concepts that leverage events at a business process level.

Consciousness

EDA brings consciousness to the enterprise nervous system. Without
event-driven architecture (EDA), enterprises operate as if they’re on life
support. They’re comatose (brain dead), meaning they are unaware of
their surroundings. They cannot independently act on conditions without
brokered instruction or the aid of human approval. Service-oriented
architectures (SOAs) define the enterprise nervous system, while EDA
brings awareness. With the right mix of smart processing and rules, EDA
enables the enterprise nervous system to consciously react to internal and
external conditions that affect the business within a real-time context.

Consciously reacting means the architecture acts on events inde-
pendently without being managed by a central controller. Underlying
components react to business events in a dynamic decoupled fashion.
This is in contrast to the central controller commonly seen in SOAs.

Imagine the analogy of our consciousness with a cluster of functional
components. Sections of consciousness process certain information, just

The Ideal EDA 83

like each component has an area of expertise. Components wait for per-
tinent information, process, and fire an output event. The output might
be destined to another component or to an external client. Our con-
sciousness works in the same manner, processing information and send-
ing output to either other synaptic nodes or externally, perhaps through
vocal communication. In both of these cases, the messages were not sent
to a central controller to decide where to route or what to do. The behav-
ior is inherent in the design.

This is in direct contradiction to the way we teach and learn to pro-
gram. Schools and universities teach us to start every project with a cen-
tral controller. In Java, this would be the main method, where the
sequence of control and the flow of information are controlled. This type
of system is tightly coupled with the controller and is difficult to make
distributed. Today’s architectures need to be looser coupled and more
agile than we’ve been taught.

Today’s systems need true dynamic processing. Systems are classi-
fied as dynamic or static, but, in reality, most systems are static; they have
a finite number of possible flows. If a system has a central controller, it’s
definitely static even if control branches are based on runtime informa-
tion. This makes testing easier because of the degree of predetermina-
tion but does not provide the agility of a dynamic system.

A central controller with a limited number of possibilities decreases
agility. When the system needs to change outside of those possibilities,
new rules and branches are added, increasing the tight coupling and
complicating the architecture. Over time, the branching rules become
so complex that it’s nearly impossible to manage and the system turns
legacy.
EDA is about removing the rigidity created by central control
and injecting real-time context into the business process.

We need to be clear about one thing here: When we talk about
removing central control, we are not suggesting that you can be effective
in an EDA by removing all control from the application. An uncon-
trolled application would quickly degenerate into chaos and lock itself
up in inaction, or in inappropriate action. Real-world autonomic systems
see this: Three moisture-ridden sensors in a B-2 bomber sent bad data to
the aircraft’s computer, causing it to fly itself into the ground. Another
example is the human body’s response to significant blood loss: If the
body loses a large volume of blood, the brain detects the fact that it’s not
getting enough oxygen (decreased blood) and automatically dilates the
vascular system and increases the heart rate. If the blood loss is due to an

84 Chapter 3 Characteristics of EDA

open wound, this serves only to lose blood faster! So when we talk about
EDA’s lack of reliance on central control, we mean that the control is dis-
tributed in the form of business rules—and distributed rules must be
configured to trigger appropriate actions. The event components con-
tain business rules that are implemented as each event component is
activated. The result is an application, or set of applications, that oper-
ates under control, but not with a central controller.

Event-driven architectures insert context into the process, which is
missing in the central controller model. This is where the potential for a
truly dynamic system emerges. Processing information has a contextual
element often only available outside of the central controller’s view.
Even if that contextual change is small, it can still have bearing on the
way data should flow.

One contextual stimulus is the Internet. The Internet has opened up
businesses to a new undressing. Business-to-business transactions,
blogs, outsourcing, trading partner networks, and user communities
have all cracked open the hard exterior of corporations. They provide an
easily accessible glimpse into a corporation’s inner workings that wasn’t
present before. This glimpse inside will only get larger with time making
the inner workings public knowledge and making media-spin-doctoring
of unethical practices more evident.

Don Tapscott in The Naked Corporation2 talks about how the Inter-
net will bring moral values to the forefront as unethical practices
become more difficult to cover and financial ramifications increase.
Businesses will be valued on their financial standing along with reputa-
tion, reliability, and integrity. This means businesses will have to change
their process flow based on external conditions such as worldly events
and do so efficiently.

Information is being aggregated in different ways. Business
processes are changing and being combined in real time with external
data such as current worldly events. Because of the increased exposure
through the Internet, questionable businesses practices are being
uncovered. Sometimes, these practices are unknown to the core busi-
ness, hence businesses want to react quickly to the publicity. Imagine a
news investigation that uncovers a major firm is outsourcing labor to a
company involved in child slavery. For example, company X is exposed
for buying from a cocoa farm in West Africa’s Ivory Coast that uses child
slavery. The business would immediately want to stop their business
transactions with that company and reroute them to a reputable supplier
before the damage becomes too great.

The Ideal EDA 85

For ethical reasons, eBay continually blocks auctions that attempt to
profit from horrific catastrophes like major hurricanes, a space shuttle
accident, or even a terrorist attack like 9-11. Imagine the public impres-
sion of eBay if this was not practiced and they profited from these
events.

Now imagine having a system that’s worldly aware enough to cir-
cumvent business processes if these cases should occur. Suppose this
system had an autonomous component that compares news metadata
with business process metadata and curtails the process at the first sign
of concern. The huge benefits definitely outweigh the calculated risks.
Simply rerouting a purchase order to another supplier with comparable
service levels definitely has a big upside. If the autonomous deduction
was correct, it might have saved the company millions in bad press while
maintaining their social responsibility. If it was wrong, then no real harm
was done because the alternate company will still deliver on time.

A similar scenario could support eBay’s ethics. An autonomous com-
ponent that compares news metadata with auction metadata could with-
hold auctions based on real-time news events. If correct, it could save
the company from public embarrassment. If wrong, little harm was done
other than to delay an auction start time.

EDA can provide this dynamic monitoring, curtailing, and self-heal-
ing. Event-driven architecture facilitates bringing these external con-
texts into the business process. The idea is that the separation between
concrete business process and day-to-day reality is blurring. Businesses
might be required to change their process based on unexpected external
events. This is much different from the days where an end-to-end busi-
ness process happened within a company’s boundary (and control).
Combining this need with the traditional business need for rapid change
means flexible architecture design is paramount. One way to ensure this
flexibility is through the SOA/EDA way—by reducing central control
and adding context to the business process.

BAM—A Related Concept

Business Activity Monitoring (BAM) is related to EDA, but different
enough that we discuss it in brief. Our goal is to help you differentiate
between BAM and EDA, as the two ideas are often used interchange-
ably in IT discussions. We do not think they are interchangeable.

86 Chapter 3 Characteristics of EDA

BAM is the idea that business decisions would be better and more
timely if they were based on timely information extracted through busi-
ness activities that are exposed near real time. Too often, decisions are
made based on warehoused data that is stale or misrepresented because
of the available gathering technique. Event-driven architectures make it
easier to tap into key business activities. BAM components monitor
these activities, aggregate the information, watch for anomalies, send
warnings, and represent the data graphically.

Historically, most of the activity in this area was achieved with in-
house built dashboards. Now we’re seeing more vendor products in the
space. BAM is most useful in situations where quick critical decisions are
important. Interesting applications of this concept include illustrating
Key Performance Indicators (KPI), watching for homeland security
anomalies, monitoring supply chain activities, and discovering business-
to-business (B2B) exchange patterns. Implementing a BAM solution
within your EDA is almost always a good idea.

Chapter Summary

■ In this chapter, we move forward with our metaphor of EDA as
the enterprise nervous system and match the EDA compo-
nents—event producers, listeners, processors, and reactors—to
their equivalent in the nervous system. Event producers and con-
sumers are likened to the sensory nerve endings that pick up and
relay information about our senses to our brain, which is like an
event processor. Reactions, such as physical movements, are like
the event reactors. For additional context and framework, we look
at event-driven programming, a core technology of most PCs, as a
comparable example of events, event listening, and event pro-
cessing on a lower level of functioning than an EDA.

■ To complete our understanding of how EDA works, we then carry
this enterprise nervous system idea further and take an in-depth
look at the characteristics of EDAs and their components. Again,
our focus is on the EDA of the future: an implicit, complex, and
dynamic EDA, one that can adapt easily to changes and continu-
ally expand its reach of event detection and event reaction.

Chapter Summary 87

■ EDA components must be loosely coupled to function dynami-
cally. Loose coupling requires that EDA components have low
levels of preconception about each other and maintainability. An
EDA works best if each component functions independently,
with little need to know about the other components it is commu-
nicating with, and few ramifications if one component is modified.

■ EDAs, unlike conventional applications, do not rely on central
controllers.

■ Events (state change notifications) are central to an EDA. An
event can take the form of a message and an EDA is a message-
based idea. To work, an EDA’s loosely coupled components must
be able to produce and consume messages. The messages could
be related to event listening, processing, or reactions. The more
easily the messages can flow across the EDA (which might span
multiple enterprises), the better the EDA will work.

■ Asynchronous, or publish/subscribe (pub/sub) messaging, is one
of the best foundations for an EDA. As the EDA components
communicate with one another, they feed messages (events) into
an event bus. Event listeners receive the events, and then EDA
components process the event data as required by the EDA’s
designed purpose. Pub/sub is ideal for EDAs because it removes
a lot of message flow dependencies from individual components.
It is simpler, for example, to connect event listeners using
pub/sub than to tightly couple them together, where changes in
configuration are costly and slow to accomplish.

■ To achieve loose coupling and asynchronous messaging, an EDA
relies on message intermediaries. In some cases, these are known
as service buses.

■ The ideal EDA, therefore, is a loosely coupled, pub/sub-based
architecture, with low levels of preconception and high degrees of
maintainability among the components.

88 Chapter 3 Characteristics of EDA

Endnotes

1. Wikipedia. Event-Driven Programming. August 2004.
http://en.wikipedia.org/wiki/Event-driven_programming.

2. Tapscott, Don. The Naked Corporation. New York: Free Press, 2003.

Endnotes 89

http://en.wikipedia.org/wiki/Event-driven_programming

Index

A
accidental architectures, examples

of, 25
agents

auditing, 149
defining, 149
domain agents, 151
infrastructure agents, 151
message backbones, 151
simple agents, 150
typing, 150

aggregation agents, 151
agility, SOA-EDA development, 135
airline flight control EDA case study,

159-160
ATCSCC software, 161
FEDA

adding new users to, 168
auditing, 169
autonomic response, 168
bottleneck analytics, 170
bottleneck awareness, 169
bottleneck resolution

capacity, 169
carrying state in, 181-182
cost-effective integration, 171

customizable front-end
interfaces, 168

data transformation in, 171,
178-180

enabling technology factors in,
174-175

ESB federation in, 177
event web service life cycles,

191-195
extensibility, 171
extensible front-end

interfaces, 168
functional requirements, 168-170
high-level architecture, 172-174
local event processing, 171
minimal impact on existing

systems, 171
mitigation of risks in, 198-199,

203-204
organization in, 199-200
project life cycle, 201-203
project risks in, 197
real-time awareness, 168
reliability, 169
reporting, 169
security, 169

295

SOA governance in, 182-187,
190-196

success metrics, 204-205
system level communications, 169
system requirements, 171
“what-if” modeling, 169

ripple effect, 163-166
analysis (real-time), EDA and, 101
anti–money laundering SOA-EDA

case study, 209, 223-224
EDICTS

compatible development
practices, 253

defining reference architectures,
242-244

integrating with bank’s SOA, 251
joint planning with enterprise

architecture teams, 252-253
matching requirements with

internal controls, risk
mitigation and compliance,
246-248, 251

optimizing ownership, 234-242
SOA governance, 254-258

event clouds, 222
event listeners, 232
event producers, 222, 227, 231-232
IT aspects of, 216, 219-221
rules engines, 222
SOBA, 228, 231

application design
reducing central control in, 142

carrying state inside events,
147-148

controllers versus trusted
executors, 142-146

designing for unanticipated
use, 148

enabling autonomous
behavior, 148

unanticipated use, designing
for, 148

application integration
EAI, 29-30
middleware, 29-30

asynchronous messaging
coupling, 75
JMS, 77
message mediators, 77
MOM, 77
point-to-point messaging, 76-77
publish/subscribe messaging, 76-77

ATCSCC (Air Traffic Control System
Command Center) software, 161

auditing
anti–money laundering SOA-EDA

case study, 216, 219-221
FEDA, 169

augmenting agents, 150
autonomic response (FEDA), 168
autonomous behavior, enabling, 148

B
BAM (Business Activity

Monitoring), 86
banks, money laundering

auditing, 216, 219-221
prevention, 214-216, 219-221
risks of, 212-213

benefits of EDA, calculating, 153

296 Index

BI (business intelligence), ProdCo
EDA-PI integration case
study, 287

bottleneck analytics (FEDA), 170
bottleneck awareness (FEDA), 169
bottleneck resolution capacity

(FEDA), 169
BPM (business process modeling)

EDA and, 102
interoperability and, 31-34

buses, message backbones, 151
business extension as interoperability

driver, 28
business functional requirements as

interoperability driver, 28

C
case studies

airline flight control, 159-160
ATCSCC software, 161
FEDA, 167-187, 190-205
ripple effect, 163-166

anti–money laundering SOA-EDA
case study, 209, 223-224

compatible development
practices, 253

defining reference architectures,
242-244

event clouds, 222
event listeners, 232
event producers, 222, 227,

231-232
integrating with bank’s SOA, 251
IT aspects of, 216, 219-221

joint planning with enterprise
architecture teams, 252-253

matching requirements with
internal controls, risk
mitigation and compliance,
246-248, 251

optimizing ownership, 234-242
rules engines, 222
SOA governance, 254-258
SOBA, 228, 231

ProdCo EDA-PI integration case
study, 281

BI (business intelligence) in, 287
event processing in, 288
implementing, 292-293
integration requirements,

284-287
order fulfillment, 273-274
productivity tools in, 275-276
proposed EDA, 276-280
sales proposals, 273-274
target architecture for, 288,

291-292
central control, reducing in

application design
carrying state inside events, 147-148
controllers versus trusted executors,

142-146
designing for unanticipated use, 148
enabling autonomous behavior, 148

CEP (complex event processing), 22
closed loop SOA, anti–money

laundering SOA-EDA case
study, 258

code reusability, EDA and, 97-98
commercial EDA, gaps in, 156-157

Index 297

complex event agents, 151
complex event processing, 22
compliance

EDA and, 107-108
matching EDICTS requirements

with, 246-248, 251
consciousness (enterprise nervous

systems), EDA as, 83-86
content filtering, sample EDA suite,

154-156
content-based routing, sample EDA

suite, 154-156
context in EDA, 85
context sensitivity, loose coupling, 71
continuous auditing, anti–money

laundering SOA-EDA case study,
217-221

contracts (services), SOA-EDA
development, 124

controllers
New Order business process, role

in, 143-144
trusted executors versus, 142-146

cost savings, SOA-EDA
development, 134

costs of EDA, calculating, 153
coupling

asynchronous messaging, 75
defining, 60
loose coupling

asynchronous messaging, 75
component integration, 72-73
context sensitivity, 71
defining, 68
maintainability, 69
POS (point-of-sale) program

example, 68, 71

SOA development, 123
software preconception, 68
syncrhonous messaging, 74-76

SOA, loose coupling, 60-61
synchronous messaging, 74-76
tight coupling

asynchronous messaging, 75
synchronous messaging, 74-76

customizable front-end interfaces
(FEDA), 168

D
data access, uniform methods in

SOA-EDA development, 135
data enrichment, sample EDA

suite, 154
data integrity (lineage) in SOA-EDA

development, 135
data transformation, FEDA, 171,

178-180
datasheets, sample EDA suite, 154
dictionary of events, 150
domain agents, 151
dynamic determinism, EDA, 82
dynamic system processing, 84

E
EAI (enterprise application

integration), 29-30
eBay, ethics and, 86
EDA (event-driven architectures)

airline flight control case study,
159-160

ATCSCC software, 161

298 Index

FEDA, 167-187, 190-205
ripple effect, 163-166

anti–money laundering SOA-EDA
case study, 209, 223-224

compatible development
practices, 253

defining reference architectures,
242-244

event clouds, 222
event listeners, 232
event producers, 222, 227,

231-232
integrating with bank’s SOA, 251
IT aspects of, 216, 219-221
joint planning with enterprise

architecture teams, 252-253
matching requirements with

internal controls, risk
mitigation and compliance,
246-248, 251

optimizing ownership, 234-242
rules engines, 222
SOA governance, 254-258
SOBA, 228, 231

application design, reducing central
control in, 142-148

benefits of, 82
BPM (business process

modeling), 102
compliance, 107-108
context in, 85
cost and benefit calculation in, 153
defining, 1-3, 14-19, 35-36, 78
development of, 9, 23

application integration, 29-30
enterprise nervous systems, 3-5,

63-64

interoperability, 6-7, 24-34, 37
SOA, 8

dynamic determinism, 82
EDA-PI integration

potential benefits of, 267-272
ProdCo case study, 273-281,

284-288, 291-293
EDP and, 65-67
enterprise agility, 101
enterprise nervous systems, as

consciousness of, 83-86
event consumers, 17
event listeners, 17, 81
event processors, 17, 22
event producers, 16
event publishers, 16
event reactions, 18-19
events

defining, 14
detecting, 81
exposing, 81-82
system state in, 83

examples of, 1-2
explicit EDA, 21
functional agility, 101
functions of, 78
gaps in commercial EDA solutions,

156-157
governments and, 103-105
health-care services and, 106
implementing, 149
implicit EDA, 21
inadequate human link in, 262
IT and

code reusability, 97-98
security monitoring, 92, 95
service virtualization, 99

Index 299

software integration, 95-97
system monitoring, 92

loose coupling
component integration, 72-73
context sensitivity, 71
maintainability, 69
software preconception, 68

managing
agent typing, 150
event management, 149

messaging backbone, 19
network traffic and, 152
operational agility, 101
overview of, 15-16
paradigmatic EDA, assembling,

20-21
parallel paradigm of, 149
performance and, 152
real-time analytics, 101
reasons for not implementing, 152
sample EDA suite

content filtering, 154-156
content-based routing, 154-156
data enrichment, 154
datasheet for, 154
ESB, 156

service requests, 128
SOA

defining, 38-39
governing, 39-42
managing, 39, 42

SOA-EDA development
agility in, 135
business case scenarios, 136-137
business value of services, 124
cost savings, 134

data integrity (lineage) in, 135
enterprise services, 116
enterprise-level architecture

teams, 119
ESB, 113-114, 125-128
event service creation, 112
granularity of services, 123
long-term design strategies

for, 119
long-term development

strategies, 122
loose coupling, 123
maintenance costs, 135
management options, 130-132
ROI (return on investment),

134, 137
service brokers, 128-129
service contracts, 124
service design, 122
service networks, 115-118
steps of development, 120-121
TCO (total cost of

ownership), 134
uniform data access

methods in, 135
strategic agility, 101
system extensibility, 82
system state in, 83
web services, 58, 79

EDICTS (Event-Driven Internal
Controls Tracking System)

compatible development
practices, 253

designing for long-term success
defining reference architectures,

242-244

300 Index

integrating with bank’s SOA, 251
matching requirements with

internal controls, risk
mitigation and compliance,
246-248, 251

optimizing ownership, 234-242
joint planning with enterprise

architecture teams, 252-253
SOA governance, 254-258

EDP (event-driven programming), 65
defining, 66
event listeners in, 66-67
event publishers, 67
event subscribers, 67

endpoints (service), SOA-EDA
development, 115

enterprise agility, EDA and, 101
enterprise architecture teams,

anti–money laundering
SOA-EDA case study, 252-253

enterprise nervous systems, EDA
as consciousness of, 83-86
development of, 3-5, 63-64

enterprise services, 116
enterprise-level architecture teams,

SOA development, 119
ESB (enterprise service buses)

FEDA, 177
management fabrics, 126-128
sample EDA suite, 156
SOA-EDA development, 113-114,

125-128
ethics

eBay and, 86
Internet and, 85

event clouds, anti–money laundering
SOA-EDA case study, 222

event consumers, 17
event listeners, 17

anti–money laundering SOA-EDA
case study, 232

detecting events, 81
EDP, 66-67
security monitoring, 95

event processors, 17
CEP, 22
event stream processing, 22
ProdCo EDA-PI integration case

study, 288
simple event processing, 22

event producers, 16, 222, 227, 231-232
event publishers, 16, 67
event services, creating, 112
event stream processing, 22
event subscribers, EDP, 67
event-driven programming. See EDP
events

carrying state inside, 147-148
data enrichment, 154
defining, 1, 14
dictionary of, 150
EDA

detecting in, 81
exposing in, 81-82

event consumers, 17
event listeners, 17
event processors, 17, 22
event producers, 16
event publishers, 16
local event processing, FEDA, 171
managing, 149
reactions to, 18-19
system state in EDA, 83
web service life cycle in FEDA,

191-195

Index 301

executors (trusted), controllers versus,
142-146

explicit EDA (event-driven
architectures), 21

extensibility
EDA, 82
FEDA, 171

extensible front-end interfaces
(FEDA), 168

F
FAA (Federal Aviation

Administration), ATCSCC
software, 161

fabrics (management), services,
126-128

FEDA (flight event-driven
architecture), 167, 205

adding new users to, 168
auditing, 169
autonomic response, 168
bottleneck analytics, 170
bottleneck awareness, 169
bottleneck resolution capacity, 169
carrying state in, 181-182
cost-effective integration, 171
customizable front-end

interfaces, 168
data transformation in, 171, 178-180
enabling technology factors in,

174-175
ESB federation in, 177
event web service life cycles,

191-195
extensibility, 171

extensible front-end interfaces, 168
functional requirements, 168-170
high-level architecture, 172-174
local event processing, 171
minimal impact on existing

systems, 171
mitigation of risks, 198-199, 203-204
organization in, 199-200
project life cycle, 201-203
project risks, 197
real-time awareness, 168
reliability, 169
reporting, 169
security, 169
SOA governance in, 182-187,

190-196
success metrics, 204-205
system level communications, 169
system requirements, 171
“what-if” modeling, 169

filtering content, sample EDA suite,
154-156

front-end interfaces (FEDA), 168
functional agility, EDA and, 101

G–H
governing SOA, 39-42
governments, EDA and, 103, 105
granularity of services, SOA

development, 123

health-care services, EDA and, 106
implicit EDA (event-driven

architectures), 21

302 Index

I
infrastructure agents, 151
integration

EAI, 29-30
middleware, 29-30
money laundering process, 211

internal controls, matching EDICTS
requirements with, 246-251

Internet, ethics and, 85
interoperability

application integration, 29-30
BPM and, 31-34
defining, 26-27
drivers of

business extension, 28
business functional

requirements, 28
EDA development, 6-7, 24-34
long-term interoperability,

promoting, 37
promoting, 37

IT
anti–money laundering SOA-EDA

case study, 216, 219-221
EDA and

code reusability, 97-98
security monitoring, 92, 95
service virtualization, 99
software integration, 95-97
system monitoring, 92

J–L
JMS (Java Messaging Specification),

asynchronous messaging, 77

layering (money laundering
process), 211

local event processing, FEDA, 171
long-term interoperability,

promoting, 37
loose coupling

asynchronous messaging, 75
component integration, 72-73
context sensitivity, 71
defining, 68
maintainability, 69
POS (point-of-sale) program

example, 68, 71
SOA, 60-61, 123
software preconception, 68
synchronous messaging, 74-76

M
maintainability (loose coupling), 69
maintenance costs, SOA-EDA

development, 135
management fabrics, services, 126-128
managing

EDA
agent typing, 150
event management, 149

events, 149
SOA, 39, 42

message backbones, 19, 151
message mediators, 77
messages

asynchronous messages
coupling, 75
JMS, 77
message mediators, 77
MOM, 77

Index 303

point-to-point messages, 76-77
publish/subscribe messages, 76-77
synchronous messages, coupling,

74-76
messaging hubs, ESB

management fabrics, 126-128
SOA-EDA development, 113-114,

125-128
middleware, application integration,

29-30
MOM (message-oriented-

middleware), asynchronous
messaging, 77

money laundering
anti–money laundering SOA-EDA

case study, 209, 223-224
compatible development

practices, 253
defining reference architectures,

242-244
event clouds, 222
event listeners, 232
event producers, 222, 227,

231-232
integrating with bank’s SOA, 251
IT aspects of, 216, 219, 221
joint planning with enterprise

architecture teams, 252-253
matching requirements with

internal controls, risk
mitigation and compliance,
246-248, 251

optimizing ownership, 234-242
rules engines, 222
SOA governance, 254-258
SOBA, 228, 231

banks and
auditing, 216, 219-221
prevention, 214-216, 219-221
risks involved, 212-213

process of, 211
risks of, 212-213
scope of the problem, 212

monitor agents, 151

N–O
Naked Corporation, The, 85
network traffic, EDA and, 152
New Order business process,

controllers role in, 143-144

operational agility, EDA and, 101
order fullfillment, ProdCo EDA-PI

integration case study, 273-274

P
paradigmatic EDA (event-driven

architectures), assembling, 20-21
parallel paradigm of EDA

(event-driven architectures), 149
performance

EDA, 152
monitoring, anti–money laundering

SOA-EDA case study, 257-258
persistent agents, 150
PI (productivity infrastructure), 263

EDA-PI integration
potential benefits of, 267-272
ProdCo case study, 273-281,

284-288, 291-293

304 Index

importance of, 264
overview of, 264-266
potential of, 267
process workflow, 264-266

placement (money laundering
process), 211

point-to-point messaging, 76-77
policy metadata repository,

anti–money laundering
SOA-EDA case study, 257

POS (point-of-sale) programs, loose
coupling example, 68, 71

preconception, defining, 68
prevention agents, 151
processing events, FEDA, 171
ProdCo EDA-PI integration case

study, 281
BI (business intelligence) in, 287
event processing in, 288
implementing, 292-293
integration requirements, 284-287
order fulfillment, 273-274
productivity tools in, 275-276
proposed EDA, 276-280
sales proposals, 273-274
target architecture for, 288, 291-292

publish/subscribe messaging, 76-77

Q–R
reactions to events, 18-19
real-time analytics, EDA and, 101
real-time awareness (FEDA), 168
reference architectures, defining in

EDICTS, 242-244
registry, anti–money laundering

SOA-EDA case study, 256

reliability, FEDA, 169
reporting, FEDA, 169
reusing code, EDA and, 97-98
ripple effect (airline flight control),

163-166
risk mitigation, matching EDICTS

requirements with, 246-248, 251
ROI (return on investment), SOA

development, 134, 137
routing content, sample EDA suite,

154-156
rules engines, anti–money laundering

SOA-EDA case study, 222

S
sales proposals, ProdCo EDA-PI

integration case study, 273-274
security, FEDA, 169
security monitoring

EDA and, 92, 95
event listeners, 95

service brokers, 128-129
service endpoints, SOA-EDA

development, 115
service networks, SOA-EDA

development, 115-118
service-based integration, 50
service-orientation, defining, 49
services

business value of, SOA
development, 124

contracts, SOA development, 124
defining, 49
granularity of, SOA

development, 123
management fabrics, 126, 128

Index 305

requests in EDA, 128
SOA-EDA development,

creating, 122
virtualization, EDA and, 99
web services

event web service life cycles in
FEDA, 191-195

management options, 133
services versus, 51

simple agents, 150
simple event processing, 22
sleep state, event listeners in EDP, 67
SOA (service-oriented

architectures), 47
anti–money laundering SOA-EDA

case study, 209, 223-224
compatible development

practices, 253
defining reference architectures,

242-244
event clouds, 222
event listeners, 232
event producers, 222, 227,

231-232
integrating with bank’s SOA, 251
IT aspects of, 216, 219-221
joint planning with enterprise

architecture teams, 252-253
matching requirements with

internal controls, risk
mitigation and compliance,
246-248, 251

optimizing ownership, 234-242
rules engines, 222
SOA governance, 254-258
SOBA, 228, 231

benefits of, 48

building
agility in, 135
business case scenarios, 136-137
business value of services, 124
cost savings, 134
data integrity (lineage) in, 135
enterprise-level architecture

teams, 119
ESB (enterprise service buses),

125-128
granularity of services, 123
long-term development

strategies, 122
loose coupling, 123
maintenance costs, 135
management options, 130-132
ROI (return on investment),

134, 137
service brokers, 128-129
service contracts, 124
service design, 122
steps of development, 120-121
TCO (total cost of

ownership), 134
uniform data access

methods in, 135
defining, 38-39, 59
development of, 48
EDA creation, 8

enterprise services, 116
ESB (enterprise service buses),

113-114
event service creation, 112
service networks, 115-118

evolution of, 118
governing, 39-42, 182-187, 190-196
long-term design strategies for, 119

306 Index

loose coupling in, 60-61
managing, 39, 42
service-orientation, defining, 49
services

defining, 49
service-based integration, 50
web services versus, 51

web services
services versus, 51
SOAP, 52-54
UDDI, 58
WSDL, 55-57

SOAP (Simple Object Access Protocol)
intermediaries, anti–money

laundering SOA-EDA case
study, 256-258

web services, 52-54, 79, 112
SOBA (service-oriented business

applications), anti–money
laundering SOA-EDA case study,
228, 231

software integration, EDA and, 95-97
software preconception (loose

coupling), 68
specialty agents, 151
state, carrying in

events, 147-148
FEDA, 181-182

static system processing, 84
strategic agility, EDA and, 101
synchronous messaging, coupling,

74-76
system extensibility, EDA, 82
system level communication in

FEDA, 169
system monitoring, EDA and, 92
system state in EDA, 83

T
Tapscott, Don

ethics and the Internet, 85
Naked Corporation, The, 85

TCO (total cost of ownership), SOA
development, 134

tight coupling
asynchronous messaging, 75
synchronous messaging, 74-76

tightly coupled architectures, 31
traffic (network), EDA and, 152
transformation agents, 150
transforming data, FEDA, 171,

178-180
trusted executors versus controllers,

142-146

U–V
UDDI (Universal Description,

Discovery, and Integration),
58, 256

unanticipated use, designing for, 148

virtualization (services), EDA and, 99

W–Z
web services

EDA and, 58
enterprise services, 116
event services

creating, 112
life cycles in FEDA, 191-195

management options, 133

Index 307

message descriptions in WSDL, 125
service networks, SOA-EDA

development, 115-118
services versus, 51
SOAP, 52-54, 79
UDDI, 58
WSDL, 55-57

“what-if” modeling (FEDA), 169
WSDL (Web Services Description

Language), 55-57, 125

308 Index

	Foreword
	Preface
	Introduction
	Event-Driven Architecture: A Working Definition
	The “New” Era of Interoperability Dawns
	The ETA for Your EDA
	Endnotes

	Chapter 3 Characteristics of EDA
	Firing Up the Corporate Neurons
	Revisiting the Enterprise Nervous System
	The Ideal EDA
	BAM—A Related Concept
	Chapter Summary
	Endnotes

	Index
	A
	B
	C
	D
	E
	F
	G–H
	I
	J–L
	M
	N-O
	P
	Q–R
	S
	T
	U–V
	W–Z

