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Preface

In 1998 Dave had the privilege of attending a workshop in Generic Programming at Dagstuhl Castle in
Germany. Near the end of the workshop, a very enthusiastic Kristof Czarnecki and Ullrich Eisenecker
(of Generative Programming fame) passed out a few pages of C++ source code that they billed as
a complete Lisp implementation built out of C++ templates. At the time it appeared to Dave to be
nothing more than a curiosity, a charming but impractical hijacking of the template system to prove
that you can write programs that execute at compile time. He never suspected that one day he would
see a role for metaprogramming in most of his day-to-day programming jobs. In many ways, that
collection of templates was the precursor to the Boost Metaprogramming Library (MPL): It may have
been the first library designed to turn compile-time C++ from an ad hoc collection of “template tricks”
into an example of disciplined and readable software engineering. With the availability of tools to
write and understand metaprograms at a high level, we’ve since found that using these techniques is
not only practical, but easy, fun, and often astoundingly powerful.

Despite the existence of numerous real systems built with template metaprogramming and the
MPL, many people still consider metaprogramming to be other-worldly magic, and often as something
to be avoided in day-to-day production code. If you’ve never done any metaprogramming, it may
not even have an obvious relationship to the work you do. With this book, we hope to lift the veil of
mystery, so that you get an understanding not only of how metaprogramming is done, but also why
and when. The best part is that while much of the mystery will have dissolved, we think you’ll still
find enough magic left in the subject to stay as inspired about it as we are.

— Dave and Aleksey
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3

A Deeper Look at Metafunctions

With the foundation laid so far, we’re ready to explore one of the most basic uses for template
metaprogramming techniques: adding static type checking to traditionally unchecked operations.
We’ll look at a practical example from science and engineering that can find applications in almost
any numerical code. Along the way you’ll learn some important new concepts and get a taste of
metaprogramming at a high level using the MPL.

3.1 Dimensional Analysis

The first rule of doing physical calculations on paper is that the numbers being manipulated don’t
stand alone: most quantities have attached dimensions, to be ignored at our peril. As computations
become more complex, keeping track of dimensions is what keeps us from inadvertently assigning a
mass to what should be a length or adding acceleration to velocity—it establishes a type system for
numbers.

Manual checking of types is tedious, and as a result, it’s also error-prone. When human beings
become bored, their attention wanders and they tend to make mistakes. Doesn’t type checking seem
like the sort of job a computer might be good at, though? If we could establish a framework of C++
types for dimensions and quantities, we might be able to catch errors in formulae before they cause
serious problems in the real world.

Preventing quantities with different dimensions from interoperating isn’t hard; we could simply
represent dimensions as classes that only work with dimensions of the same type. What makes this
problem interesting is that different dimensions can be combined, via multiplication or division, to
produce arbitrarily complex new dimensions. For example, take Newton’s law, which relates force
to mass and acceleration:

F = ma

Since mass and acceleration have different dimensions, the dimensions of force must somehow
capture their combination. In fact, the dimensions of acceleration are already just such a composite,
a change in velocity over time:

dv/dt

37



38 CHAPTER 3 A Deeper Look at Metafunctions

Since velocity is just change in distance (l) over time (t), the fundamental dimensions of acceleration
are:

(l/t)/t = l/t2

And indeed, acceleration is commonly measured in “meters per second squared.” It follows that the
dimensions of force must be:

ml/t2

and force is commonly measured in kg(m/s2), or “kilogram-meters per second squared.” When
multiplying quantities of mass and acceleration, we multiply their dimensions as well and carry
the result along, which helps us to ensure that the result is meaningful. The formal name for this
bookkeeping is dimensional analysis, and our next task will be to implement its rules in the C++ type
system. John Barton and Lee Nackman were the first to show how to do this in their seminal book,
Scientific and Engineering C++ [BN94]. We will recast their approach here in metaprogramming
terms.

3.1.1 Representing Dimensions

An international standard called Système International d’Unites breaks every quantity down into a
combination of the dimensions mass, length or position, time, charge, temperature, intensity, and
amount of substance. To be reasonably general, our system would have to be able to represent seven
or more fundamental dimensions. It also needs the ability to represent composite dimensions that,
like force, are built through multiplication or division of the fundamental ones.

In general, a composite dimension is the product of powers of fundamental dimensions.1 If we
were going to represent these powers for manipulation at runtime, we could use an array of seven
ints, with each position in the array holding the power of a different fundamental dimension:

typedef int dimension[7]; // m l t ...
dimension const mass = {1, 0, 0, 0, 0, 0, 0};
dimension const length = {0, 1, 0, 0, 0, 0, 0};
dimension const time = {0, 0, 1, 0, 0, 0, 0};
...

In that representation, force would be:

dimension const force = {1, 1, -2, 0, 0, 0, 0};

1. Divisors just contribute negative exponents, since 1/x = x−1.
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that is, mlt−2. However, if we want to get dimensions into the type system, these arrays won’t do
the trick: they’re all the same type! Instead, we need types that themselves represent sequences of
numbers, so that two masses have the same type and a mass is a different type from a length.

Fortunately, the MPL provides us with a collection of type sequences. For example, we can
build a sequence of the built-in signed integral types this way:

#include <boost/mpl/vector.hpp>

typedef boost::mpl::vector<
signed char, short, int, long> signed types;

How can we use a type sequence to represent numbers? Just as numerical metafunctions pass
and return wrapper types having a nested ::value, so numerical sequences are really sequences of
wrapper types (another example of polymorphism). To make this sort of thing easier, MPL supplies
the int <N> class template, which presents its integral argument as a nested ::value:

#include <boost/mpl/int.hpp>

namespace mpl = boost::mpl; // namespace alias
static int const five = mpl::int <5>::value;

Namespace Aliases

namespace alias = namespace-name;

declares alias to be a synonym for namespace-name. Many examples in this book
will use mpl:: to indicate boost::mpl::, but will omit the alias that makes it legal
C++.

In fact, the library contains a whole suite of integral constant wrappers such as long and bool ,
each one wrapping a different type of integral constant within a class template.

Now we can build our fundamental dimensions:

typedef mpl::vector<
mpl::int <1>, mpl::int <0>, mpl::int <0>, mpl::int <0>

, mpl::int <0>, mpl::int <0>, mpl::int <0>
> mass;

typedef mpl::vector<
mpl::int <0>, mpl::int <1>, mpl::int <0>, mpl::int <0>

, mpl::int <0>, mpl::int <0>, mpl::int <0>
> length;
...
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Whew! That’s going to get tiring pretty quickly. Worse, it’s hard to read and verify: The
essential information, the powers of each fundamental dimension, is buried in repetitive syntactic
“noise.” Accordingly, MPL supplies integral sequence wrappers that allow us to write:

#include <boost/mpl/vector c.hpp>

typedef mpl::vector c<int,1,0,0,0,0,0,0> mass;
typedef mpl::vector c<int,0,1,0,0,0,0,0> length; // or position
typedef mpl::vector c<int,0,0,1,0,0,0,0> time;
typedef mpl::vector c<int,0,0,0,1,0,0,0> charge;
typedef mpl::vector c<int,0,0,0,0,1,0,0> temperature;
typedef mpl::vector c<int,0,0,0,0,0,1,0> intensity;
typedef mpl::vector c<int,0,0,0,0,0,0,1> amount of substance;

Even though they have different types, you can think of these mpl::vector c specializations
as being equivalent to the more verbose versions above that use mpl::vector.

If we want, we can also define a few composite dimensions:

// base dimension: m l t ...
typedef mpl::vector c<int,0,1,-1,0,0,0,0> velocity; // l/t
typedef mpl::vector c<int,0,1,-2,0,0,0,0> acceleration; // l/(t2)
typedef mpl::vector c<int,1,1,-1,0,0,0,0> momentum; // ml/t
typedef mpl::vector c<int,1,1,-2,0,0,0,0> force; // ml/(t2)

And, incidentally, the dimensions of scalars (like pi) can be described as:

typedef mpl::vector c<int,0,0,0,0,0,0,0> scalar;

3.1.2 Representing Quantities

The types listed above are still pure metadata; to typecheck real computations we’ll need to somehow
bind them to our runtime data. A simple numeric value wrapper, parameterized on the number type
T and on its dimensions, fits the bill:

template <class T, class Dimensions>
struct quantity
{
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explicit quantity(T x)
: m value(x)

{}

T value() const { return m value; }
private:

T m value;
};

Now we have a way to represent numbers associated with dimensions. For instance, we can say:

quantity<float,length> l( 1.0f );
quantity<float,mass> m( 2.0f );

Note that Dimensions doesn’t appear anywhere in the definition of quantity outside the
template parameter list; its only role is to ensure that l and m have different types. Because they do,
we cannot make the mistake of assigning a length to a mass:

m = l; // compile time type error

3.1.3 Implementing Addition and Subtraction

We can now easily write the rules for addition and subtraction, since the dimensions of the arguments
must always match.

template <class T, class D>
quantity<T,D>
operator+(quantity<T,D> x, quantity<T,D> y)
{

return quantity<T,D>(x.value() + y.value());
}

template <class T, class D>
quantity<T,D>
operator-(quantity<T,D> x, quantity<T,D> y)
{

return quantity<T,D>(x.value() - y.value());
}

These operators enable us to write code like:
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quantity<float,length> len1( 1.0f );
quantity<float,length> len2( 2.0f );

len1 = len1 + len2; // OK

but prevent us from trying to add incompatible dimensions:

len1 = len2 + quantity<float,mass>( 3.7f ); // error

3.1.4 Implementing Multiplication

Multiplication is a bit more complicated than addition and subtraction. So far, the dimensions of
the arguments and results have all been identical, but when multiplying, the result will usually have
different dimensions from either of the arguments. For multiplication, the relation:

(
xa

)(
xb

) = x(a+b)

implies that the exponents of the result dimensions should be the sum of corresponding exponents
from the argument dimensions. Division is similar, except that the sum is replaced by a difference.

To combine corresponding elements from two sequences, we’ll use MPL’stransform algorithm.
transform is a metafunction that iterates through two input sequences in parallel, passing an element
from each sequence to an arbitrary binary metafunction, and placing the result in an output sequence.

template <class Sequence1, class Sequence2, class BinaryOperation>
struct transform; // returns a Sequence

The signature above should look familiar if you’re acquainted with the STL transform algorithm
that accepts two runtime sequences as inputs:

template <
class InputIterator1, class InputIterator2

, class OutputIterator, class BinaryOperation
>
void transform(

InputIterator1 start1, InputIterator1 finish1
, InputIterator2 start2
, OutputIterator result, BinaryOperation func);

Now we just need to pass a BinaryOperation that adds or subtracts in order to multiply or
divide dimensions with mpl::transform. If you look through the MPL reference manual, you’ll
come across plus and minus metafunctions that do just what you’d expect:



Section 3.1 Dimensional Analysis 43

#include <boost/static assert.hpp>
#include <boost/mpl/plus.hpp>
#include <boost/mpl/int.hpp>
namespace mpl = boost::mpl;

BOOST STATIC ASSERT((
mpl::plus<

mpl::int <2>
, mpl::int <3>

>::type::value == 5
));

BOOST STATIC ASSERT

is a macro that causes a compilation error if its argument is false. The double paren-
theses are required because the C++ preprocessor can’t parse templates: it would
otherwise be fooled by the comma into treating the condition as two separate macro
arguments. Unlike its runtime analogue assert(...), BOOST STATIC ASSERT can
also be used at class scope, allowing us to put assertions in our metafunctions.
See Chapter 8 for an in-depth discussion.

At this point it might seem as though we have a solution, but we’re not quite there yet. A naive
attempt to apply the transform algorithm in the implementation of operator* yields a compiler
error:

#include <boost/mpl/transform.hpp>

template <class T, class D1, class D2>
quantity<

T
, typename mpl::transform<D1,D2,mpl::plus>::type

>
operator*(quantity<T,D1> x, quantity<T,D2> y) { ... }

It fails because the protocol says that metafunction arguments must be types, and plus is not a type,
but a class template. Somehow we need to make metafunctions like plus fit the metadata mold.

One natural way to introduce polymorphism between metafunctions and metadata is to employ
the wrapper idiom that gave us polymorphism between types and integral constants. Instead of a
nested integral constant, we can use a class template nested within a metafunction class:
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struct plus f
{

template <class T1, class T2>
struct apply
{

typedef typename mpl::plus<T1,T2>::type type;
};

};

Definition
A metafunction class is a class with a publicly accessible nested metafunction
called apply.

Whereas a metafunction is a template but not a type, a metafunction class wraps that template
within an ordinary non-templated class, which is a type. Since metafunctions operate on and return
types, a metafunction class can be passed as an argument to, or returned from, another metafunction.

Finally, we have a BinaryOperation type that we can pass to transform without causing a
compilation error:

template <class T, class D1, class D2>
quantity<

T
, typename mpl::transform<D1,D2,plus f>::type // new dimensions

>
operator*(quantity<T,D1> x, quantity<T,D2> y)
{

typedef typename mpl::transform<D1,D2,plus f>::type dim;
return quantity<T,dim>( x.value() * y.value() );

}

Now, if we want to compute the force exerted by gravity on a five kilogram laptop computer,
that’s just the acceleration due to gravity (9.8 m/sec2) times the mass of the laptop:

quantity<float,mass> m(5.0f);
quantity<float,acceleration> a(9.8f);
std::cout << "force = " << (m * a).value();

Our operator* multiplies the runtime values (resulting in 49.0f), and our metaprogram code
uses transform to sum the meta-sequences of fundamental dimension exponents, so that the result
type contains a representation of a new list of exponents, something like:
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vector c<int,1,1,-2,0,0,0,0>

However, if we try to write:

quantity<float,force> f = m * a;

we’ll run into a little problem. Although the result of m * a does indeed represent a force with
exponents of mass, length, and time 1, 1, and -2 respectively, the type returned by transform isn’t
a specialization of vector c. Instead, transform works generically on the elements of its inputs
and builds a new sequence with the appropriate elements: a type with many of the same sequence
properties as vector c<int,1,1,-2,0,0,0,0>, but with a different C++ type altogether. If you
want to see the type’s full name, you can try to compile the example yourself and look at the error
message, but the exact details aren’t important. The point is that force names a different type, so
the assignment above will fail.

In order to resolve the problem, we can add an implicit conversion from the multiplication’s
result type to quantity<float,force>. Since we can’t predict the exact types of the dimensions
involved in any computation, this conversion will have to be templated, something like:

template <class T, class Dimensions>
struct quantity
{

// converting constructor
template <class OtherDimensions>
quantity(quantity<T,OtherDimensions> const& rhs)

: m value(rhs.value())
{
}
...

Unfortunately, such a general conversion undermines our whole purpose, allowing nonsense such
as:

// Should yield a force, not a mass!
quantity<float,mass> bogus = m * a;

We can correct that problem using another MPL algorithm, equal, which tests that two sequences
have the same elements:

template <class OtherDimensions>
quantity(quantity<T,OtherDimensions> const& rhs)

: m value(rhs.value())
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{
BOOST STATIC ASSERT((

mpl::equal<Dimensions,OtherDimensions>::type::value
));

}

Now, if the dimensions of the two quantities fail to match, the assertion will cause a compilation
error.

3.1.5 Implementing Division

Division is similar to multiplication, but instead of adding exponents, we must subtract them. Rather
than writing out a near duplicate of plus f, we can use the following trick to make minus f much
simpler:

struct minus f
{

template <class T1, class T2>
struct apply

: mpl::minus<T1,T2> {};
};

Here minus f::apply uses inheritance to expose the nested type of its base class, mpl::
minus, so we don’t have to write:

typedef typename ...::type type

We don’t have to write typename here (in fact, it would be illegal), because the compiler knows that
dependent names in apply’s base-specifier-list must be base classes.2 This powerful simplification
is known as metafunction forwarding; we’ll apply it often as the book goes on.3

Syntactic tricks notwithstanding, writing trivial classes to wrap existing metafunctions is going
to get boring pretty quickly. Even though the definition of minus f was far less verbose than that
of plus f, it’s still an awful lot to type. Fortunately, MPL gives us a much simpler way to pass
metafunctions around. Instead of building a whole metafunction class, we can invoke transform
this way:

2. In case you’re wondering, the same approach could have been applied to plus f, but since it’s a little subtle, we introduced
the straightforward but verbose formulation first.
3. Users of EDG-based compilers should consult Appendix C for a caveat about metafunction forwarding. You can tell whether
you have an EDG compiler by checking the preprocessor symbol EDG VERSION , which is defined by all EDG-based
compilers.
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typename mpl::transform<D1,D2, mpl::minus< 1, 2> >::type

Those funny looking arguments ( 1 and 2) are known as placeholders, and they signify
that when the transform’s BinaryOperation is invoked, its first and second arguments will
be passed on to minus in the positions indicated by 1 and 2, respectively. The whole type
mpl::minus< 1, 2> is known as a placeholder expression.

Note
MPL’s placeholders are in the mpl::placeholders namespace and defined in
boost/mpl/placeholders.hpp. In this book we will usually assume that you
have written:

#include<boost/mpl/placeholders.hpp>
using namespace mpl::placeholders;

so that they can be accessed without qualification.

Here’s our division operator written using placeholder expressions:

template <class T, class D1, class D2>
quantity<

T
, typename mpl::transform<D1,D2,mpl::minus< 1, 2> >::type

>
operator/(quantity<T,D1> x, quantity<T,D2> y)
{

typedef typename
mpl::transform<D1,D2,mpl::minus< 1, 2> >::type dim;

return quantity<T,dim>( x.value() / y.value() );
}

This code is considerably simpler. We can simplify it even further by factoring the code that
calculates the new dimensions into its own metafunction:

template <class D1, class D2>
struct divide dimensions

: mpl::transform<D1,D2,mpl::minus< 1, 2> > // forwarding again
{};

template <class T, class D1, class D2>
quantity<T, typename divide dimensions<D1,D2>::type>
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operator/(quantity<T,D1> x, quantity<T,D2> y)
{

return quantity<T, typename divide dimensions<D1,D2>::type>(
x.value() / y.value());

}

Now we can verify our “force-on-a-laptop” computation by reversing it, as follows:

quantity<float,mass> m2 = f/a;
float rounding error = std::abs((m2 - m).value());

If we got everything right, rounding error should be very close to zero. These are boring
calculations, but they’re just the sort of thing that could ruin a whole program (or worse) if you got
them wrong. If we had written a/f instead of f/a, there would have been a compilation error,
preventing a mistake from propagating throughout our program.

3.2 Higher-Order Metafunctions

In the previous section we used two different forms—metafunction classes and placeholder expres-
sions—to pass and return metafunctions just like any other metadata. Bundling metafunctions into
“first class metadata” allows transform to perform an infinite variety of different operations: in our
case, multiplication and division of dimensions. Though the idea of using functions to manipulate
other functions may seem simple, its great power and flexibility [Hudak89] has earned it a fancy title:
higher-order functional programming. A function that operates on another function is known
as a higher-order function. It follows that transform is a higher-order metafunction: a metafunc-
tion that operates on another metafunction.

Now that we’ve seen the power of higher-order metafunctions at work, it would be good to be
able to create new ones. In order to explore the basic mechanisms, let’s try a simple example. Our
task is to write a metafunction called twice, which—given a unary metafunction f and arbitrary
metadata x—computes:

twice(f, x) := f (f (x)) .

This might seem like a trivial example, and in fact it is. You won’t find much use for twice in
real code. We hope you’ll bear with us anyway: Because it doesn’t do much more than accept and
invoke a metafunction, twice captures all the essential elements of “higher-orderness” without any
distracting details.

If f is a metafunction class, the definition of twice is straightforward:
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template <class F, class X>
struct twice
{

typedef typename F::template apply<X>::type once; // f(x)
typedef typename F::template apply<once>::type type; // f(f(x))

};

Or, applying metafunction forwarding:

template <class F, class X>
struct twice

: F::template apply<
typename F::template apply<X>::type

>
{};

C++ Language Note
The C++ standard requires the template keyword when we use a dependent
name that refers to a member template. F::apply may or may not name a tem-
plate, depending on the particular F that is passed. See Appendix B for more
information about template.

Given the need to sprinkle our code with the template keyword, it would be nice to reduce the
syntactic burden of invoking metafunction classes. As usual, the solution is to factor the pattern into
a metafunction:

template <class UnaryMetaFunctionClass, class Arg>
struct apply1

: UnaryMetaFunctionClass::template apply<Arg>
{};

Now twice is just:

template <class F, class X>
struct twice

: apply1<F, typename apply1<F,X>::type>
{};

To see twice at work, we can apply it to a little metafunction class built around the add pointer
metafunction:
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struct add pointer f
{

template <class T>
struct apply : boost::add pointer<T> {};

};

Now we can use twice with add pointer f to build pointers-to-pointers:

BOOST STATIC ASSERT((
boost::is same<

twice<add pointer f, int>::type
, int**

>::value
));

3.3 Handling Placeholders

Our implementation of twice already works with metafunction classes. Ideally, we would like it
to work with placeholder expressions, too, much the same as mpl::transform allows us to pass
either form. For example, we would like to be able to write:

template <class X>
struct two pointers

: twice<boost::add pointer< 1>, X>
{};

But when we look at the implementation of boost::add pointer, it becomes clear that the current
definition of twice can’t work that way.

template <class T>
struct add pointer
{

typedef T* type;
};

To be invokable by twice, boost::add pointer< 1> would have to be a metafunction class,
along the lines of add pointer f. Instead, it’s just a nullary metafunction returning the almost
senseless type 1*. Any attempt to use two pointers will fail when apply1 reaches for a nested
::apply metafunction in boost::add pointer< 1> and finds that it doesn’t exist.

We’ve determined that we don’t get the behavior we want automatically, so what next? Since
mpl::transform can do this sort of thing, there ought to be a way for us to do it too—and so
there is.
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3.3.1 The lambda Metafunction

We can generate a metafunction class from boost::add pointer< 1>, using MPL’s lambda
metafunction:

template <class X>
struct two pointers

: twice<typename mpl::lambda<boost::add pointer< 1> >::type, X>
{};

BOOST STATIC ASSERT((
boost::is same<

typename two pointers<int>::type
, int**

>::value
));

We’ll refer to metafunction classes like add pointer f and placeholder expressions like
boost::add pointer< 1> as lambda expressions. The term, meaning “unnamed function ob-
ject,” was introduced in the 1930s by the logician Alonzo Church as part of a fundamental theory
of computation he called the lambda-calculus.4 MPL uses the somewhat obscure word lambda
because of its well-established precedent in functional programming languages.

Although its primary purpose is to turn placeholder expressions into metafunction classes,
mpl::lambda can accept any lambda expression, even if it’s already a metafunction class. In
that case, lambda returns its argument unchanged. MPL algorithms like transform call lambda
internally, before invoking the resulting metafunction class, so that they work equally well with either
kind of lambda expression. We can apply the same strategy to twice:

template <class F, class X>
struct twice

: apply1<
typename mpl::lambda<F>::type

, typename apply1<
typename mpl::lambda<F>::type

, X
>::type

>
{};

4. See http://en.wikipedia.org/wiki/Lambda_calculus for an in-depth treatment, including a reference to Church’s paper
proving that the equivalence of lambda expressions is in general not decidable.

http://en.wikipedia.org/wiki/Lambda_calculus
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Now we can use twice with metafunction classes and placeholder expressions:

int* x;

twice<add pointer f, int>::type p = &x;
twice<boost::add pointer< 1>, int>::type q = &x;

3.3.2 The apply Metafunction

Invoking the result of lambda is such a common pattern that MPL provides an apply metafunction
to do just that. Using mpl::apply, our flexible version of twice becomes:

#include <boost/mpl/apply.hpp>

template <class F, class X>
struct twice

: mpl::apply<F, typename mpl::apply<F,X>::type>
{};

You can think of mpl::apply as being just like the apply1 template that we wrote, with two
additional features:

1. While apply1 operates only on metafunction classes, the first argument to mpl::apply can
be any lambda expression (including those built with placeholders).

2. While apply1 accepts only one additional argument to which the metafunction class will be
applied, mpl::apply can invoke its first argument on any number from zero to five additional
arguments.5 For example:

// binary lambda expression applied to 2 additional arguments
mpl::apply<

mpl::plus< 1, 2>
, mpl::int <6>
, mpl::int <7>

>::type::value // == 13

Guideline
When writing a metafunction that invokes one of its arguments, use mpl::apply
so that it works with lambda expressions.

5. See the Configuration Macros section of the MPL reference manual for a description of how to change the maximum
number of arguments handled by mpl::apply.
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3.4 More Lambda Capabilities

Lambda expressions provide much more than just the ability to pass a metafunction as an argument.
The two capabilities described next combine to make lambda expressions an invaluable part of almost
every metaprogramming task.

3.4.1 Partial Metafunction Application

Consider the lambda expression mpl::plus< 1, 1>. A single argument is directed to both of
plus’s parameters, thereby adding a number to itself. Thus, a binary metafunction, plus, is used to
build a unary lambda expression. In other words, we’ve created a whole new computation! We’re
not done yet, though: By supplying a non-placeholder as one of the arguments, we can build a unary
lambda expression that adds a fixed value, say 42, to its argument:

mpl::plus< 1, mpl::int <42> >

The process of binding argument values to a subset of a function’s parameters is known in the
world of functional programming as partial function application.

3.4.2 Metafunction Composition

Lambda expressions can also be used to assemble more interesting computations from simple meta-
functions. For example, the following expression, which multiplies the sum of two numbers by their
difference, is a composition of the three metafunctions multiplies, plus, and minus:

mpl::multiplies<mpl::plus< 1, 2>, mpl::minus< 1, 2> >

When evaluating a lambda expression, MPL checks to see if any of its arguments are themselves
lambda expressions, and evaluates each one that it finds. The results of these inner evaluations are
substituted into the outer expression before it is evaluated.

3.5 Lambda Details
Now that you have an idea of the semantics of MPL’s lambda facility, let’s formalize our under-
standing and look at things a little more deeply.

3.5.1 Placeholders

The definition of “placeholder” may surprise you:
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Definition
A placeholder is a metafunction class of the form mpl::arg<X>.

3.5.1.1 Implementation

The convenient names 1, 2,. . . 5 are actually typedefs for specializations of mpl::arg that
simply select the N th argument for any N.6 The implementation of placeholders looks something
like this:

namespace boost { namespace mpl { namespace placeholders {

template <int N> struct arg; // forward declarations
struct void ;

template <>
struct arg<1>
{

template <
class A1, class A2 = void , ... class Am = void >

struct apply
{

typedef A1 type; // return the first argument
};

};
typedef arg<1> 1;

template <>
struct arg<2>
{

template <
class A1, class A2, class A3 = void , ...class Am = void

>
struct apply
{

typedef A2 type; // return the second argument
};

};

6. MPL provides five placeholders by default. See the Configuration Macros section of the MPL reference manual for a
description of how to change the number of placeholders provided.
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typedef arg<2> 2;

more specializations and typedefs...

}}}

Remember that invoking a metafunction class is the same as invoking its nested apply meta-
function. When a placeholder in a lambda expression is evaluated, it is invoked on the expression’s
actual arguments, returning just one of them. The results are then substituted back into the lambda
expression and the evaluation process continues.

3.5.1.2 The Unnamed Placeholder

There’s one special placeholder, known as the unnamed placeholder, that we haven’t yet defined:

namespace boost { namespace mpl { namespace placeholders {

typedef arg<-1> ; // the unnamed placeholder

}}}

The details of its implementation aren’t important; all you really need to know about the unnamed
placeholder is that it gets special treatment. When a lambda expression is being transformed into a
metafunction class by mpl::lambda,

the nth appearance of the unnamed placeholder in a given template specialization is
replaced with n.

So, for example, every row of Table 3.1 contains two equivalent lambda expressions.

Table 3.1 Unnamed Placeholder Semantics

mpl::plus< , > mpl::plus< 1, 2>
boost::is same<

, boost::add pointer< >
>

boost::is same<
1

, boost::add pointer< 1>
>

mpl::multiplies<
mpl::plus< , >

, mpl::minus< , >
>

mpl::multiplies<
mpl::plus< 1, 2>

, mpl::minus< 1, 2>
>
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Especially when used in simple lambda expressions, the unnamed placeholder often eliminates
just enough syntactic “noise” to significantly improve readability.

3.5.2 Placeholder Expression Definition

Now that you know just what placeholder means, we can define placeholder expression:

Definition
A placeholder expression is either:

• a placeholder

or

• a template specialization with at least one argument that is a placeholder
expression.

In other words, a placeholder expression always involves a placeholder.

3.5.3 Lambda and Non-Metafunction Templates

There is just one detail of placeholder expressions that we haven’t discussed yet. MPL uses a special
rule to make it easier to integrate ordinary templates into metaprograms: After all of the placeholders
have been replaced with actual arguments, if the resulting template specialization X doesn’t have a
nested ::type, the result of lambda is just X itself.

For example, mpl::apply<std::vector< >, T> is always just std::vector<T>. If it
weren’t for this behavior, we would have to build trivial metafunctions to create ordinary template
specializations in lambda expressions:

// trivial std::vector generator
template<class U>
struct make vector { typedef std::vector<U> type; };
typedef mpl::apply<make vector< >, T>::type vector of t;

Instead, we can simply write:

typedef mpl::apply<std::vector< >, T>::type vector of t;
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3.5.4 The Importance of Being Lazy

Recall the definition of always int from the previous chapter:

struct always int
{

typedef int type;
};

Nullary metafunctions might not seem very important at first, since something like add
pointer<int> could be replaced by int* in any lambda expression where it appears. Not all
nullary metafunctions are that simple, though:

struct add pointer f
{

template <class T>
struct apply : boost::add pointer<T> {};

};
typedef mpl::vector<int, char*, double&> seq;
typedef mpl::transform<seq, boost::add pointer< > > calc ptr seq;

Note that calc ptr seq is a nullary metafunction, since it has transform’s nested ::type.
A C++ template is not instantiated until we actually “look inside it,” though. Just naming calc
ptr seq does not cause it to be evaluated, since we haven’t accessed its ::type yet.

Metafunctions can be invoked lazily, rather than immediately upon supplying all of their argu-
ments. We can use lazy evaluation to improve compilation time when a metafunction result is only
going to be used conditionally. We can sometimes also avoid contorting program structure by naming
an invalid computation without actually performing it. That’s what we’ve done with calc ptr seq
above, since you can’t legally form double&*. Laziness and all of its virtues will be a recurring
theme throughout this book.

3.6 Details

By now you should have a fairly complete view of the fundamental concepts and language of both
template metaprogramming in general and of the Boost Metaprogramming Library. This section
reviews the highlights.

Metafunction forwarding. The technique of using public derivation to supply the nested type of
a metafunction by accessing the one provided by its base class.
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Metafunction class. The most basic way to formulate a compile-time function so that it can be
treated as polymorphic metadata; that is, as a type. A metafunction class is a class with a
nested metafunction called apply.

MPL. Most of this book’s examples will use the Boost Metaprogramming Library. Like the Boost
type traits headers, MPL headers follow a simple convention:

#include <boost/mpl/component-name.hpp>

If the component’s name ends in an underscore, however, the corresponding MPL header
name does not include the trailing underscore. For example, mpl::bool can be found in
<boost/mpl/bool.hpp>. Where the library deviates from this convention, we’ll be sure to
point it out to you.

Higher-order function. A function that operates on or returns a function. Making metafunctions
polymorphic with other metadata is a key ingredient in higher-order metaprogramming.

Lambda expression. Simply put, a lambda expression is callable metadata. Without some form
of callable metadata, higher-order metafunctions would be impossible. Lambda expressions
have two basic forms: metafunction classes and placeholder expressions.

Placeholder expression. A kind of lambda expression that, through the use of placeholders, enables
in-place partial metafunction application and metafunction composition. As you will see
throughout this book, these features give us the truly amazing ability to build up almost any
kind of complex type computation from more primitive metafunctions, right at its point of use:

// find the position of a type x in some sequence such that:
// x is convertible to 'int'
// && x is not 'char'
// && x is not a floating type
typedef mpl::find if<

some sequence
, mpl::and <

boost::is convertible< 1,int>
, mpl::not <boost::is same< 1,char> >
, mpl::not <boost::is float< 1> >

>
>::type iter;

Placeholder expressions make good on the promise of algorithm reuse without forcing us to
write new metafunction classes. The corresponding capability is often sorely missed in the
runtime world of the STL, since it is often much easier to write a loop by hand than it is to use
standard algorithms, despite their correctness and efficiency advantages.
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The lambda metafunction. A metafunction that transforms a lambda expression into a corre-
sponding metafunction class. For detailed information on lambda and the lambda evaluation
process, please see the MPL reference manual.

The apply metafunction. A metafunction that invokes its first argument, which must be a lambda
expression, on its remaining arguments. In general, to invoke a lambda expression, you should
always pass it to mpl::apply along with the arguments you want to apply it to in lieu of using
lambda and invoking the result “manually.”

Lazy evaluation. A strategy of delaying evaluation until a result is required, thereby avoiding
any unnecessary computation and any associated unnecessary errors. Metafunctions are only
invoked when we access their nested ::types, so we can supply all of their arguments without
performing any computation and delay evaluation to the last possible moment.

3.7 Exercises

3-0. Use BOOST STATIC ASSERT to add error checking to the binary template presented in
section 1.4.1, so that binary<N>::value causes a compilation error if N contains digits
other than 0 or 1.

3-1. Turn vector c<int,1,2,3> into a type sequence with elements (2,3,4) using transform.

3-2. Turn vector c<int,1,2,3> into a type sequence with elements (1,4,9) using transform.

3-3. Turn T into T**** by using twice twice.

3-4. Turn T into T**** using twice on itself.

3-5. There’s still a problem with the dimensional analysis code in section 3.1. Hint: What happens
when you do:

f = f + m * a;

Repair this example using techniques shown in this chapter.

3-6. Build a lambda expression that has functionality equivalent to twice. Hint: mpl::apply is
a metafunction!

3-7*. What do you think would be the semantics of the following constructs:

typedef mpl::lambda<mpl::lambda< 1> >::type t1;
typedef mpl::apply< 1,mpl::plus< 1, 2> >::type t2;
typedef mpl::apply< 1,std::vector<int> >::type t3;
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typedef mpl::apply< 1,std::vector< 1> >::type t4;
typedef mpl::apply<mpl::lambda< 1>,std::vector<int> >::type t5;
typedef mpl::apply<mpl::lambda< 1>,std::vector< 1> >::type t6;
typedef mpl::apply<mpl::lambda< 1>,mpl::plus< 1, 2> >::type t7;
typedef mpl::apply< 1,mpl::lambda< mpl::plus< 1, 2> > >::type t8;

Show the steps used to arrive at your answers and write tests verifying your assumptions. Did
the library behavior match your reasoning? If not, analyze the failed tests to discover the actual
expression semantics. Explain why your assumptions were different, what behavior you find
more coherent, and why.

3-8*. Our dimensional analysis framework dealt with dimensions, but it entirely ignored the issue
of units. A length can be represented in inches, feet, or meters. A force can be represented in
newtons or in kg m/sec2. Add the ability to specify units and test your code. Try to make your
interface as syntactically friendly as possible for the user.
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additional tools, 173
ADL (argument-dependent lookup), 206, 207
advance algorithm, 180
advance(), 182
Alexandrescu, Andrei, 194
algorithm, 113

abstraction, 113
advance, 180
binary searching, 132
compile time, 77
counterpart, 124
equal, 90
filter, 137
fold, 190
functional, 126
fundamental sequence, 119
idioms, reuse and abstractions, 113
iteration, 121
linear traversal, 127
MPL, 115
querying, 122, 128
reusability, 127
reuse, 58
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re-use the MPL, 127
screensaver, 197
sequence, 78, 109
sequence building, 119, 123, 125, 126, 128
sequence traversal, 120
writing your own, 127

<algorithm>, 115
alias, 39
always_int, struct, 29, 57
analysis

dimensional, 37, 38, 165
DSEL, 276
tools for diagnostic, 155
user, 7

angle, 38
anti-pattern, 16
application

context, 313
application, partial function, 240
apply_fg(), 17
apply_fg(), template, 16
apply metafunction, 52, 59
apply, mpl::, 52, 56, 59
argument

complexity, 339
empty, 297
list, 284
macro, 284, 301, 303
metafunctions as, 16, 139
selection, 296
separators, macro, 297
structural complexity of metafunction, 338
types, 17

argument-dependent lookup (ADL), 206–207
arithmetic, logical, and comparison operations, 293
arithmetic operations, preprocessor library, 293
arithmetic operator, 72
arity, 338
array initialization, 236
arrays, 304
asserting numerical relationships, 164
assertion

likely, 163

messages, 165
MPL static, 161
negative, 163
static, 160, 165

associated types, 78
associations, type, 11
Associative Sequence, 86, 87, 109
Associative Sequence, extensible, 88, 89, 94
automate wrapper-building, 200
automatic type erasure, 200
auxiliary object generator function, 185
avoiding unnecessary computation, 137

B

backtrace, instantiation, 144, 145, 173
Backus Naur Form, see BNF
Barton and Nackman trick, 205
base class, 316
begin, 103
begin_impl, struct, 85
Bentley, Jon, 217
bidirectional iterator, 81–82

requirements, 82
sequence, 84

binary
function, 127, 296
implementation, 6
meta, 5
metafunction, 42, 53, 128
numerals, 6
operation, 42
recursion, 4, 5
runtime version, 5
search, 115
searching algorithm, 132
struct, 4
template, 4, 15

"binary.hpp", 1
binary(), 5, 6
binary<>, 1
binary<N>::value, 4, 7
BinaryOperation, 42, 44, 47
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bit_iterator, 22
bit_iterator, struct, 21
bitwise operator, 72
Blitz++, 242, 264

and expression templates, 231, 232
array initialization, 236
compile-time parse tree, 233
domain, 235
evaluation engine, 233
library, 231
magic, 236
range objects, 237
subarray syntax, 237
syntactic innovations, 236

blob, 15, 30, 32
BNF (Backus Naur Form), 220

context-free grammar, 220
definition, 220
efficiencty, 222
extended, 222
grammar, 225
productions, 220
rules, 220
symbols, 220

boilerplate code repetition, 281
boilerplate implementation code, 8
bool constants, 30
bool valued nullary metafunction, 162
bool values, 61
Boolean

conditions, inverting, 69
valued metafunctions, 34
valued operator, 71
wrappers and operations, 61

Boost
::iterator_facade, 214
::iterator_value, 209
::mpl::, 39
::mpl::vector, 39
Bind library, 185, 240, 244, 264
compressed_pair, 190
Concept Checking library, 173
DSEL libraries, 255

enable_if, 209
Function library, 203, 295
Graph library, 238
integral metafunction, 65
Iterator Adaptor library, 141
Lambda library, 114, 242–244
libraries, convention used by, 17
metafunctions, 66
Metaprogramming Library, 9, 15, 31, 57, 281
namespace, 24, 72
Preprocessor library, 283, 285
Python library, 96
Spirit library, 6, 243, 247
Type Traits, 30, 64
Type Traits library, 24, 30, 81, 212, 229, 301

BOOST_MPL_ASSERT, 162, 165
BOOST_MPL_ASSERT_MSG, 169
BOOST_PP_CAT, 300
BOOST_PP_EMPTY, 297
BOOST_PP_IDENTITY, 299
BOOST_PP_IF, 296
BOOST_PP_ITERATE, 293
BOOST_STATIC_ASSERT, 43, 50, 51, 79, 160
boundary, crossing the compile-time runtime, 175
bug, 144, 155
building anonymous functions, 239

C

_c integral shorthand, 73
C++

classes in runtime, 127
code, 2
compile time, 5
compiler, 2, 3, 7, 330
compiler diagnostics, 143
Generic Programming in, 8
host language, 229
iterators in, 12
language for building DSELs, 277
language note, 12, 49
limitation of the language, 159
metaprogram, 5, 215
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metaprogramming, 3, 9
metaprogramming advantages, 7
operator, built-in, 71
overloadable operator syntaxes, 229
preprocessors, 282
program, 1, 224
runtime, 175
standard library, 149
template syntax, 91
templates, 9, 270
view concept, 141

categorization, primary type, 25
categorization, secondary type, 26
charge, 38
checking, error, 4
choosing a DSL, 262
Church, Alonzo, 51
class, 12

base, 316
composition, 190
customization, 198
eliminating storage for empty, 187
empty, 181, 187
float_function, 201
metafunction, 43, 77
namespace of the base, 205
runtime polymorphic base, 199
sequence, 91
structural changes to the, 186
template, 29
template specialization, 31, 179
templates-as-functions, 15
vs. typename, 310–311

clear, 86, 88
clone(), 202
closures, 241, 247, 249
code, expressive, 7
code generation, 282
code repetition, 281
code, self-documenting, 226
combining multiple sequences, 135
Comeau C++, 155, 330, 339
commands, Make, 218

common interface, 32
common syntax, 17
comparing values computed from sequence

elements, 131
comparison

heterogeneous, 133
homogeneous, 132
operations, 293
operations, preprocessor library, 294
predicate, 132
predicate, homogeneous, 134
value, 71

compilation, 143
error, 19, 46, 48, 170, 179, 188, 207
grammar, 7
improve, 57
phases, template, 308
slow, 16, 323
speed, 32
time and long symbols, 337
time, argument complexity effect on, 339
times, 324
times, compiler and, 331

compile time, 11, 18, 33, 62, 80, 127
constant, 7, 269
constants for comparison, 276
error, 93, 108, 158
error generation, intentional, 172
execution log, 171
lambda expressions, 114
managing, 326
metaprograms, 213
performance, 323
programming, 330
runtime boundary, 175, 265
runtime differences, 92
STL, 77
wasting, 64

compiler, 4, 16, 32
C++, 2, 3, 330
C/C++, 7
Comeau C++, 155, 330, 339
compilation times, 331
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deep typedef substitution, 151
diagnostic, 158
diagnostic formats, 155
diagnostic using different, 155
diagnostics, C++, 143
EBO, 187
EDG-based, 173
erratic performance, 329
error, 22, 43, 145, 160, 195
error from VC++ 7.1, 152
error message, 143
GCC, 155, 156, 164, 166, 171
GCC-3.2, 154
GCC-3.2.2, 148
GCC-3.3.1, 161
GCCs, 330, 339
generating a warning, 171
get a second opinion, 155
ideal, 326
incomplete support for templates, 343
Intel C++ 7.1, 153
Intel C++ 8.0, 151, 169
Intel C++ 8.1, 161
known NOT to work with MPL, 344
memoization, 327
Metrowerks CodeWarrior, 24
Metrowerks CodeWarrior Pro 9, 155
Microsoft Visual C++ 6, 146
modern, 146
more work for the, 16
object code, 7
optimized space, 27
optimizing storage for empty subobjects, 190
overload resolution capability, 269
performance, 333
post processing filter, 156
requiring no user workarounds, 343
requiring user workarounds, 343
SGI MipsPro, 24
support, 24
support, without, 25, 26
supported, 162
test, 327

three different, 146
tip, 155
traits, 24
unable to work with MPL, 344
values of template parameters, 32
VC++ 7.0, 150
VC++ 7.1, 150, 168
Visual C++ 6 revised, 148

complexity guarantees, 78
complexity tests, structural, 338
component implementations, 8
composition, class, 190
computation

avoiding unnecessary, 137
invalid, 57
naming an invalid, 57
numeric, 3
runtime, 4, 6
type, 5

computational model, 323
computed by a metaprogram, 6
computing with types, 5
concept, 77
concept requirements, 77
concerns, separation of, 115
constant folding, 277
constant time specialization, 103
constant wrapper, integral, 17
constants, integral, 74
constants, named local, 244
constructs, selection, 299
context application, 313
context-free grammar, 220
control structures, 295
conventions, naming, 288
copyability, 202
cost of instantiation, 326
cost of memoized lookups, 327
counterpart algorithms, 124
Curiously Recurring Template Pattern

(CRTP), 203–209, 251, 267–268
and type safety, 205

custom source code generator, 8
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customize function, 197
customized assertion messages, 165
customized error message, 174
customized errors, 173
customizing the predicate, 165
cv-qualification, 25, 27
cv-unqualified, 61
Czarnecki, Kristof, ix

D

data types, 301
arrays, 304
lists, 305
sequences, 301
tuples, 303

debug metaprograms, 143, 153
debugging, 155
debugging the error novel, 143
declaration, single, 314
declarative languages, 226
decrementable iterator, 81
deep typedef substitution, 151
deeply-nested metafunction, 333
default template arguments, 150
definition, DSL, 228
definition, metafunction, 29
definition, point of, 308
dependencies, Make, 218
dependent name, 12, 49, 310
dependent type, 310
dependent type names, identifying, 312
depth, nesting, 338
deque, 93
dereferenceable, 80
derivation, sequence, 96
description, grammar, 2
design, DSEL, 257
design of pointers, 12
destructor, trivial, 24
development process, DSEL, 276
diagnostic, 143, 153

additional tools, 173

analysis, tools for, 155
compiler, 143, 158
customized assertion messages, 165
customized errors, 173
customizing the predicate, 165
deep typedef substitution, 151
earlier, 160
error formatting quirks, 146
filtering tools, 172
generation, intentional, 158
guideline, 158
history, 172
inline message generation, 167
instantiation backtrace, 144, 173
intentionally generated, 170
MPL static assertions, 161
post processing filter, 156
reserved identifiers, 149
selecting a strategy, 170
static assertions, 160, 173
tip, 155
type printing, 170, 174
typedef substitution, 173
unreadable type expansions in the, 169
using different compilers, 155
using filters, 158
using navigational aid, 155

difference_type, 13
dimensional analysis, 37, 38

code, 165
generating errors, 165
implementing addition and subtraction, 41
implementing division, 46
implementing multiplication, 42
representing dimensions, 38
representing quantities, 40

dimensional mismatch, 165
dimensions, 38, 41
dimensions, representing, 38
disambiguating templates, 311
disambiguating types, 310
disambiguation, syntax, 311
dispatching, tag, 180
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domain abstraction of FSMs, 257
domain language, 3, 8
domain-specific embedded language, 215, 276
domain-specific language, 215, 216, 218, 220, 225,

228, 241, 245, 246, 254
DSEL, 215, 229, 236, 266

analysis, 276
design, 267
design walkthrough, 257
development process, 276
finite state machines, 257
framework design goals, 260
highly efficient, 277
notations, 258

DSL, 228–229, 235, 238, 242
Boost Spirit, 247
choosing a, 262
closures, 249
declarative language, 217
declarativeness, 277
definition, 228
design, 230
embedded, 261
FC++, 245
framework interface basics, 261
function object construction, 239
inside out, 226–229
language, 216
library, 276
Make, 218
properties, 216
summary, 225
syntax, 231, 238

dynamic polymorphism, 17
dynamic scoping, 250

E

EBNF, 222
EDG-based compilers, 173
effectiveness of memoization, 326
efficiency, FSM, 264
efficiency, metaprogram, 323

efficiency, metaprogramming, 330
efficiency problem, 186
Eisenecker, Ullrich, ix
eliminating default template arguments, 150
eliminating storage for empty classes, 187
embedded DSL, 261
emergent property, 138
empty argument to the preprocessor, 297
Empty Base Optimization (EBO), 187
empty class, 187
<empty.hpp>, 298
enable_if, struct, 211
end, 103
end_impl, struct, 85
enum, 11
<enum_params.hpp>, 282
equal, 45
equal algorithm, 90
<equal.hpp>, 296
equal_to, 70
equal_to, struct, 70
equality, sequence, 89
equivalence of iterators, 81
erase, 86, 88
erasure, automatic type, 200
erasure, manual type, 199
erasure, type, 196, 251, 264
error, 101

checking, 4, 32
compilation, 19, 46, 48, 170, 179, 188, 207
compiler, 43, 145, 195
during overload resolution, 211
formatting quirks, 146
guideline, 158
ignoring the, 145
iter_swap(), 12
message, 3, 144, 148
message, customized, 174
message reordering, GCC, 156
messages examples, 143
messages, STL, 156
novel, debugging the, 143
programming, 159
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error (continued)
message, 3, 144, 148
message, customized, 174
message reordering, GCC, 156
messages examples, 143
messages, STL, 156
novel, debugging the, 143
programming, 159
realistic, 146
reporting, advanced, 146
strategy to customize, 170
substitution failure is not an, 211
template, 320
typename, 316
VC++ 7.1, 152

eval_if, 65
eval::

eval, 67
evaluation, lazy, 59, 64
evaluation, semantic, 222
example, 197
explicit specialization, 31
explicitly managing the overload set, 209
expr, 6
expression

compile-time lambda, 114
evaluation, lazy, 234
lambda, 51, 52, 56, 136
placeholder, 47, 52
regular, 215
templates, Blitz++ and, 231, 232
templates, drawback of, 236
valid, 78
wrapping and indenting, 157

expressive code, 7
Extended BNF, 222
extensibility, 86
extensibility, adding, 106
extensible associative sequence, 88, 89, 94
extensible sequence, 86
extra level of indirection, 15

F

f(), 12
factor, 6
factorial, 161, 168
factorial metafunction, 160
faster programs, 7
FC++, 244
FC++ language design, 246
Fibonacci function, 324
Fibonacci test, 327
file, index.html, 285
file iteration, 289, 290, 293, 298
file, numbered header, 91
filter, 126

algorithm, 137
function, 137
post processing, 156
STLFilt, 156
STLFilt options, 157
TextFilt, 156

filter_view, 137, 274
find, 78
finite state machine construction framework, 257
finite state machines (FSM), see FSM
five, struct, 18
fixed part, 31
float, 196, 201
float_function, 201
flyswapper, 22
fold, 127
fold algorithm, 190
folding, constant, 277
for_each, 175, 176
for(), 5
force, 38
Form, Backus Naur, 220
formal language, 216
formatting quirks, error, 146
FORTRAN, 217, 237
forward iterators, 80
forward iterators requirements, 81
forward sequence, 92
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forward sequences, 84
friend functions property, 206
FSM, 257

class name, 268
classes, 261
construction framework, 257
declaration, 277
declarativeness, 260, 276
description, 266
design, 260
domain abstraction of, 257
efficiency, 260, 264, 276
events, 258
expressiveness, 260, 276
implementation, 269
interoperability, 260, 276
maintainability, 260, 277
scalability, 260, 277
states, 257
static type safety, 260, 277
transitions, 258

FTSE, 13, 19, 192, 263
full template specializations, 317
function, 33

abs, 206
advance, 182
application, partial, 53
auxiliary object generator, 185
binary, 6, 127, 296
building anonymous, 239
call, 270
call operator, 186
chaining, member, 238
clone, 202
customize, 197
Fibonacci, 324
filter, 137
generating, 204
generic, 14, 159
higher order, 48, 58
like macros, 283
member, 32
meta, 5

names, member, 16
non-member friend, 205
object, 114, 249, 299
object’s signature, 177
object, stored, 6
object template, 194
objects, runtime, 175
ordinary, 15
overloads, 210
parameters, 63
pointer to a transformation, 197
pointer type, 97
pointers, 25
pointers as template arguments, 194
property of friend, 206
recursive, 4
references to, 11
runtime, 16
source code, 290
static member, 23, 179
static visit member, 178
swap, 19
templates, 313
templates and polymorphism, 196
types returning pointers, 153
unary, 296
yyparse, 2

function composition, 240
function, struct, 296
<functional>, 17
functional algorithms, 126
Functional FC++, 244
fundamental abstractions of the preprocessor, 283
fundamental sequence algorithms, 119
fundamental theorem of software engineering

(FTSE), 13, 19, 192, 263

G

GCC, 148, 155, 156, 164, 166, 167, 171
GCC-3.2, 154
GCC-3.2.2, 148
GCC-3.3.1, 161
GCC error messages, 157



358 Index

generic loop termination, 115
generic programming, 17
generic programming in C++, 8
global objects, 11
GNU Make, 220
grammar

BNF, 225
compilation, 7
context-free, 220
description, 2
rules, 2
specifications, 6
YACC, 7

Guzman, Joel de, 252

H

handling placeholders, 50
Haskell, 5, 64, 119, 244
heterogeneous comparisons, 133
hierarchy, refinement, 181
high-level parser, 2
higher order function, 48, 58
higher-order macro, 287
higher order metafunction, 48
homogeneous comparison, 132
homogeneous comparison predicate, 134
horizontal repetition, 286
host language, 3, 229
host language translators, 3

I

IDE, 173
ideal compiler, 326
identifier, 149, 283
identifying dependent type names, 312
identity, type, 89
idiomatic abstraction, 113
<if.hpp>, 296
if statements, 178
implementation of a runtime function template, 178

implementation of placeholders, 54
implementation selection, 178
implementing

addition and subtraction, 41
at for tiny, 100
division, 46
multiplication, 42
sequence, 138
view, 139

implicit pattern rules, 219
incrementable, 80
independent metafunctions, 32
index.html file, 285
inherit_linearly, 193
inheritance, layers of, 191
inline message generation, 167
insert, 86, 88
inserter, optional, 124
inserters, 117, 118, 125, 128
instantiation, 32

backtrace, 144, 145, 173
backtrace, GCC, 148
cost of, 326
depth, reducing, 336
forwarding, nested, 333
nested template, 330
points of, 308
required, template, 324
stack, 151
template, 155, 324, 330

int_, struct, 69
int_<N>, 39
int dimension, 38
int*, 20
integer

constants, 32
large sequences of, 94
values, 11, 61
wrappers and operations, 69

integral
_c, 73
constant, 74
constant wrapper, 17, 39, 66, 176
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operator, 71
sequence wrapper, 40, 70, 95
type, 70
type wrapper operation, 61
valued operator, 72
valued type traits, 183

integral_c, struct, 70
Intel C++ 7.1, 153
Intel C++ 8.0, 151, 169
Intel C++ 8.1, 161
intensity, 38
intentional diagnostic generation, 158
interface basics, framework, 261
interface, common, 32
interface, preserving the, 201
internal pointers, 19
interoperability increased, 117
interoperability of the program, 16
intrinsic sequence operation, 90, 109
invalid computation, 57
invariant, 78
inverting Boolean conditions, 69
<iostream>, 1
<is_reference.hpp>, 22
<is_same.hpp>, 22
is_scalar, 66
iter_fold, 127
iter_swap, 62–63
iter_swap_impl, struct, 23
iter_swap_impl, template, 23
iter_swap(), 15, 18, 22
iter_swap(), error, 12
iter_swap(), template, 11–13, 19, 22
<iterate.hpp>, 290
iteration algorithms, 121
iteration, file, 289, 290, 293, 298
iteration, local, 289
iterator, 19, 79

access, 79
adaptor, 138

Adaptor library, 141
adaptors, views and, 131
associated types, 13
bidirectional, 81
C++, 12
categories, 109
concept, 80, 109
decrementable, 81
dereferenceable, 80
different types, 19
equivalence, 81
forward, 80
handling, 114
incrementable, 80
large sequences of integers, 94
operate on, 127
output, 117
past-the-end, 80
random access, 82, 92, 159
reachable, 81
representation, 99
sequence, 77
struct bit, 21
tiny, 102
type, 9, 12
valid, 12
value type, 12
values, 121
vector<bool>, 21, 22
zip, 139

<iterator>, 22
iterator_category, 13
iterator_range, 95
iterator_traits, 14–16
iterator_traits, partial specialization of, 14
iterator_traits, struct, 13
iterator_traits<int*>, 31
Iterator::, 15

J

joint_view, 137
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K

keywords, typename and template, 307
Koenig, Andrew, 13

L

lambda
calculus, 51
capabilities, 53
details, 53
expression, 51, 52, 56, 58, 67, 68, 136
metafunction, 51, 59
non-metafunction template, 56

Lampson, Butler, 13
language

C++, 277
C++ as the, 229
declarative, 226
design, FC++, 246
directions, 277
domain, 3, 8
domain-specific embedded, 215, 276
DSELs, 215
DSL declarative, 217
formal, 216
FORTRAN, 217
Haskell, 5
host, 3
Make utility, 218
metaprogramming in the host, 3
metaprogramming, native, 3
note, C++, 12, 49
pure functional, 5, 32
Scheme, 3
syntax of formal, 220
target, interaction, 7
translators, host, 3

large sequences of integers, 94
late-binding, 17
layer of indirection, 192
layers of inheritance, 191
lazy, 211

adaptor, 131
evaluation, 57, 59, 64
expression evaluation, 234
random access sequence, 93
sequence, 135, 138
techniques, 137
type selection, 64

legal nullary metafunction, 33
length, 38
level of indirection, extra, 15
library

abstractions, 158
abstractions, preprocessor, 286
arithmetic operations, preprocessor, 293
Blitz++, 231
Boost.Bind, 240, 264
Boost.Function, 203
Boost.Graph, 238
Boost.Lambda, 114, 242
Boost.Metaprogramming, 9, 15, 31
Boost.Preprocessor, 283
Boost.Python, 96
Boost.Spirit, 6, 247
Boost.Type Traits, 24, 30, 33
C++ standard, 149
logical operations, preprocessor, 294
convention used by Boost, 17
data structures, 302
headers, 92
integer logical operations, preprocessor, 294
interface boundary, 158
Iterator Adaptor, 141
Math.h++, 237
metafunctions, 22
metaprogramming, 5, 58, 106
Phoenix, 243
preprocessor, 289
standard, 14
structure, preprocessor, 285
type traits, 27
View Template, 141

limiting nesting depth, 334
linear traversal algorithms, 127
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list, replacement, 283, 284, 287
lists, 92, 305
<local.hpp>, 289
local iteration, 289
log2(), 17
logical

coherence, 293
comparison operations, 293
operations, preprocessor library integer, 294
operator, 66, 71
operator metafunction, 67

long_ and numeric wrappers, 70
long symbols, 337
long*, 20
lookup, argument dependent, 206
loop termination, generic, 115
low-level template metafunctions, 212

M

machine, abstract, 323
machines, finite state, 257
macro

argument separators, 297
arguments, 284, 301, 303
function-like, 283
higher-order, 287
naming conventions, 288
nullary, 299
object-like, 283
parameter, 284
preprocessor, 283

Make, 227, 228, 261
commands, 218
dependencies, 218
GNU, 220
language construct, 218
manual, GNU, 219
rule, 218
system, 219
targets, 218
utility language, 218

makefile, 218, 219

managing compilation time, 326
managing overload resolution, 207
managing the overload set, 209
manipulation, type, 11
manual type erasure, 199
map, 126
map, 94
mass, 38
Math.h++ library, 237
maximum MPL interoperability, 107
member function bodies, 32
member function chaining, 238
member function names, 16
memoization, 324

effectiveness of, 326
record, 330

memoized lookups, cost of, 327
mental model, reusable, 9
mentioning specialization, 329
message

compiler error, 143
customized, 165
customized assertion, 165
customized error, 174
error, 3, 144, 146, 148
examples, error, 143
formatting, 170
generating custom, 167
generation, inline, 167
reordering, GCC error, 156
STL error, 156
template error, 155, 158

metadata, 32, 40
non-type, 11
numerical, 33
polymorphic, 61
pure, 277
traits, 33
type, 11
type wrappers, 33

metafunction, 15, 24, 25, 28, 33, 37, 47, 77, 122
add_pointer, 49
application, partial, 53
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apply, 52, 55, 59
arguments, structural complexity of, 338
as arguments, 16, 139
begin, 79
binary, 42, 53
blob, 16
bool-valued, 24
bool-valued nullary, 162
Boolean-valued, 34
Boost integral, 65
Boost’s numerical, 24
call, 145
class, 43, 50, 51, 55, 58, 77
composition, 53, 58
composition of three, 53
deeply-nested, 333
definition, 29
deref, 79
efficiency issue, 16
equal_to, 70
eval_if, 65
factorial, 160
forwarding, 57, 107
higher-order, 48
implementing a, 127
independent, 32
inherit_linearly, 193
insert, 88
integral constants passed to, 18
integral-valued, 24
invoked lazily, 57
lambda, 51, 59
legal nullary, 33
library, 22, 33
low-level template, 212
MPL, 31, 33, 62
MPL logical operator, 67
mpl::advance, 82
mpl::apply, 52, 56, 59
mpl::end, 79
mpl::find, 79
mpl::identity, 65
mpl::prior, 81

multiple return values, 15
name, 17
next, 72
nullary, 29, 33, 57, 61, 64, 211
numerical, 17, 33, 39
numerical result, 18
operating on another metafunction, 48
order, 87
padded_size, 132
param_type<T>, 63
polymorphic, 18
polymorphism among, 17
preprocessing phase, 283
prior, 72
protocol, 9
returning integral constants, 61
returning itself, 107
reverse_fold, 120
self returning, 98
sequence, 90
single-valued, 30
specialization, 15
transform, 42
type categorization, 25
type manipulation, 28, 33
types of individual class members, 185
unary, 25
zero-argument, 29

metaprogram, 56
C++, 5, 215
complexity, 324
computed by a, 6
correct and maintainable, 7
debug, 143
debugging, 156
efficiency, 97, 323
execution, 143
implementation, 326
interfacing, 8
misbehavior, 170
more expressive code, 7
preprocessor, 288
Scheme, 3
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template, 1, 24
testing the, 282
what is it?, 2

metaprogramming
benefits, 6
C++, 3
C++, advantages of, 7
class generation, 193
compile time, 8
conditions, 8
efficiency, 330
in the host language, 3
introduction to preprocessor, 281
library, 5, 58, 106
library, why a, 9
native language, 3
techniques, 205
template, 156
type computations, 11
when to use, 8

metasyntax, 220
Metrowerks CodeWarrior Pro 9, 155
Microsoft Visual C++ 6, 146
minus_f, 46
minus_f, struct, 46
model, computational, 323
model, reusable mental, 9
model the concept, 77
MPL (Boost Metaprogramming Library), 9, 31,

33, 39, 58
adaptor, 139
algorithms in the, 115
benefits, 9
class generation, 193
known NOT to work with, 344
compilers requiring no user workarounds, 343
compilers that require user workarounds, 343
deque, 93
forward iterator requirements, 81
fun, 9
generating custom messages, 167
int wrapper, 69
integral sequence wrappers, 40

interoperability, maximum, 107
iterator, 79
iterator concepts, 80
iterator range, 95
lambda, 53
lambda function, 51
logical operator metafunction, 67
map, 94
metafunction, 33, 62
metafunction equal to, 70
placeholders, 47
portability, 9, 343
productivity, 9
quality, 9
reuse, 9
sequence, 86, 91
sequence building algorithms, 123
sequence querying algorithms, 122
set, 95
static assertion macros, 162
static assertions, 161
transform, 42
type sequence, 39, 97

mpl::, 39
advance, 82, 85, 103, 142
and, 58, 69, 71, 74
apply, 52, 56, 59, 60
arg, 54
at, 85, 95, 101, 103, 110, 136
back, 85, 118, 124
begin, 84–86, 103, 117
bind1, 154
bool, 58, 70, 212
contains, 137
copy, 118, 128, 129
deref, 79–81, 84, 85, 99, 116, 133–135, 139
distance, 82
empty, 193, 299
empty_base, 193
end, 79, 84, 85, 103, 117, 141
equal, 45, 46, 71, 90, 109, 126, 129, 165
erase, 86, 91
eval, 65, 67–69, 73, 98, 161, 297
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false_, 183
filter, 274
filter_view, 138
find, 58, 78, 79, 335
fold, 120, 191, 274
for_each, 175, 177
forward, 139
front, 84, 124
greater, 162, 164
has, 95
identity, 65, 68, 69, 73, 317
if, 62–65, 68, 74, 75, 180, 295
inherit, 193
insert, 86, 88, 89
inserter, 117
int, 39, 40, 69, 119, 144, 161, 171, 281, 287
integral, 70, 154
iterator, 141
joint, 141
lambda, 51, 55, 60
lambda1, 154
less, 116, 122, 133, 163
list, 84, 86, 92, 118, 124, 142, 326
long, 70
lower, 110, 132, 134, 137, 326
map, 87, 94
minus, 46, 47, 53, 103
multiplies, 53, 56, 161
next, 72, 79–81, 83, 86, 99, 100, 139
not, 58
not_, 163
or, 67–69, 73, 74
pair, 94
placeholders, 47, 153
plus, 43, 44, 52, 53, 56, 69, 72, 75, 103, 119,

136, 171
plus_dbg, 171
pop, 89
print, 171
prior, 73, 81, 83, 85
push, 89, 92, 117, 119
quote1, 154
random, 99

range, 93, 142, 171
replace, 117
reverse, 124, 125
set, 87
shift, 126
size, 106, 110
sizeof, 117, 132, 133, 135
transform, 42–44, 47, 50, 67, 68, 119, 124,

136, 137, 153, 177
transform_view, 135, 138, 141
true_, 183
unpack_args, 136
vector, 40, 78, 93, 119, 129, 142, 326
void, 97, 154
zip, 136

multiple return values, metafunctions, 15
multiple return values of traits templates, 15
multiple sequences, 135
multiplication, implementing, 42

N

name, dependent, 12, 310
named class template parameters, 239
named local constants, 244
named parameters, 238
names, namespace, 231
namespace aliases, 39
namespace boost, 24
namespace names, 39, 231
namespace std, 13
naming an invalid computation, 57
naming conventions, 288
native language metaprogramming, 3
negative assertions, 163
nested instantiations without forwarding, 333
nested template instantiations, 330
nested types, 15, 30
nesting depth, 338
nodes, number of, 338
noise, syntactic, 263
non-empty sequence, 284
non-member friend functions, 205
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non-qualified names, 316
non-types, metadata, 11
nullary macro, 299
nullary metafunction, 29, 33, 57, 61, 64, 211
number of nodes, 338
number of partial specializations, 336
numbered header file, 91
numeric computations, 3
numeric relation, 174
numeric wrappers

long_, 70
size_t, 70

numerical
comparison, 164
metadata, 33
metafunction, 17, 33, 39
relationships, asserting, 164

O

object
Blitz++ range, 237
different types, 17
function, 299
generator, 183
generator function, 185
global, 11
like macros, 283
oriented programming, 17, 199
polymorphic, 34
polymorphic class type, 182
runtime function, 175
signature, function, 177
template, function, 194
types of the resulting function, 203

one definition rule, 207
operations

arithmetic, logical and comparison, 293
Boolean-valued operators, 71
Boolean wrappers, 61
comparison, 293
integer wrappers and, 69
integral operator, 71

integral type wrappers, 61
intrinsic sequence, 90, 109
logical, 293
logical operators, 66
preprocessor array, 304
preprocessor library arithmetic, 293
preprocessor library comparison, 294
preprocessor library logical, 294
preprocessor sequence, 302

operator
arithmetic, 72
bitwise, 72
Boolean-valued, 71
function-call, 186
integral, 71
integral-valued, 72
logical, 66, 71
syntaxes, C++ overloadable, 229
token-pasting, 300

operator*, 21, 22, 43, 44
operator=(), 21
optimization, 20, 24, 28, 115
optimization, empty base, 187
optional inserter, 124
ordering, strict weak, 122
ordinary functions, 15
output iterator, 117
overload resolution, managing, 207
overload set, 209

P

param_type, 66
param_type, struct, 64, 68
param_types, 67
parameter, macro, 284
parameter, template, 272
parameters, named, 238
parametric polymorphism, 17
parse tables, 225
parser construction, 6
parser generators, 2
parser, high-level, 2
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partial
function application, 53, 240
metafunction application, 53, 58
specialization, 31, 100, 105
specialization of iterator_traits, 14

pasting, token, 299, 300
performance, compile time, 323
Perl, 156
Phoenix library, 243
placeholder, 53–54, 244

expression, 52, 58
expression definition, 56
handling, 50
implementation of, 54
unnamed, 55

plus, 53
point of definition, 308
pointer, 11, 13–15

data members, 25
design of, 12
function, 25
internal, 19
member functions, 25
members, 11
pointers, 50
single base class, 17
template arguments, function, 194
transformation function, 197

points of instantiation, 308
polymorphic metadata, 61
polymorphism, 30–32

definition of, 17
example, 39
function templates and, 196
parametric, 17
static, 17, 196

portability, MPL, 343
position, 38
post processing filter, 156
predicate, comparison, 132
predicate, customizing the, 165
preprocessing phase, metafunction of the, 283
preprocessing tokens, 283

preprocessor
array operations, 304
data types, 301
empty argument to the, 297
file iteration, 290
fundamental abstractions of the, 283
fundamental unit of data, 283
horizontal repetition, 286
library abstractions, 286
library arithmetic operations, 293
library comparison operations, 294
library integer logical operations, 294
library structure, 285
local iteration, 289
macro, 283
metaprogram, 282, 288
metaprogramming, 281
repetition, 286
self-iteration, 292
sequence operations, 302
vertical repetition, 288, 289

library, 289
preserving the interface, 201
primary

template, 31
traits, 25
type categorization, 25

print_type, struct, 176, 177
printing, type, 176
problem domain, abstractions of the, 8
processing, selective element, 137
productions, BNF, 220
program

C++, 1, 224
faster, 7
interoperability, 16
test, 326

programming
compile time, 330
error, 159
generic, 17
higher-order functional, 48
language, FORTRAN, 217
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object-oriented, 17, 199
properties, DSL, 216
properties, type, 27
property, emergent, 138
proxy reference, 21
proxy, struct, 21
pseudo-English, 35
pure functional language, 5, 32
pure, metadata, 277

Q

quantities, representing, 40
quantity, 41
quantity, struct, 41, 45
quantity<float, force>, 45
querying algorithm, 122, 128

R

r1, typedef, 22
r2, typedef, 23
Random Access Iterator, 82, 99, 115, 159
Random Acess Iterator requirements, 83
Random Access Sequence, 85, 92, 109
range_c, 93
reachable iterator, 81
realistic error, 146
recurring template pattern, curiously, 203, 208
recursion, 5
recursion unrolling to limit nesting depth, 334
recursive function, 4
recursive sequence traversal, 121
reducing instantiation depth, 336
reference, 13, 63

bit, 21
functions, 11
-ness, 22
non-const, 22
proxy, 21
to references, 66
types, 22

refine, 77
refinement hierarchy, 181
regular expressions, 215
relation, numeric, 174
relationship between types, 28
repetition

boilerplate code, 281
horizontal, 286
preprocessor, 286
specialization generated by horizontal, 289
specialization using horizontal, 286
vertical, 288, 289

<repetition.hpp>, 286
replacement-list, 283, 284, 287
representation, iterator, 99
representing dimensions, 38
representing quantities, 40
reserved identifiers, 149
resolution, overload, 207
return type, 133
reusable mental model, 9
reuse and abstraction, 113
reverse_fold, metafunction, 120
reverse, struct, 120
reverse_unique, 126
rule, 207, 218
rules, BNF, 220
rules for template and typename, 312
rules, grammar, 2
rules, implicit pattern, 219
runtime, 42, 109

boundary, 277
boundary, crossing compile-time, 175
C++, 175
call stack backtrace, 145
class template specialization, 179
complexity, 323
computation, 6
constructs, 213
data corruption, 171
dispatch, 17
dispatching, 196
function, 16
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function objects, 175
if statements, 178
implementation selection, 178
linked list, 305
polymorphic base class, 199
polymorphism, 252
tag dispatching, 180

S

Scheme, 3
Scheme metaprogrammer, 3
scoping, dynamic, 250
screensaver algorithm, 197
secondary traits, 26
secondary type categorization, 26
selection

argument, 296
constructs, 299
implementation, 178
lazy type, 64
structure, 185
type, 62

selective element processing, 137
self-documenting code, 226
self-iteration, 292
self-returning metafunction, 98
semantic action, 222
semantic evaluation, 222
semantic value, 222
semantics, 133
separation of concerns, 115
sequence, 115

algorithm, 78, 109
algorithms, fundamental, 119
associative, 86, 87, 109
bidirectional, 84
building a tiny, 97
building algorithms, 119, 123, 125, 126, 128
combining multiple, 135
comparing, 96
concept, 83, 109
derivation, 96

derivation to limit structural complexity, us-
ing, 339

elements, 131
equality, 89–90
extensible, 86
extensible associative, 88, 89, 94
forward, 84, 92
general purpose type, 93
implementing a, 138
integers, large, 94
integral constant wrappers, 176
iterator, 77
lazy, 135, 138
lazy random access, 93
map, 94
MPL, 86
MPL type, 97
mpl::list, 92
non-empty, 284
operation, intrinsic, 90, 109
operations, preprocessor, 302
querying algorithms, 122
random access, 85, 92
sequences, 119
sorted, 132
tag, 102
tiny, 97
traversal algorithms, 120
traversal concept, 83
traversal, recursive, 121
vector, 92
view, 131
wrapper, integral, 95
writing your own, 97

sequence classes, 91
deque, 93
iterator_range, 95
list, 92
map, 94
range_c, 93
set, 95
vector, 92

set, 95
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SFINAE, 211
SGI type traits, 30
signature, struct, 300
single declaration, 314
single template, 30
size_t and numeric wrappers, 70
sizeof trick, 212
slow, compilation, 323
sorted sequence, 132
source code, function, 290
specialization, 31, 89

class template, 31, 179
constant time, 103
explicit, 31
full template, 317
generate, 292
generated by horizontal repetition, 289
mentioning, 329
metafunctions, 15
number of partial, 336
omitted, 144
partial, 31, 105
pattern, 293
terminating, 5
tiny_size, 105
traits template, 15
using horizontal repetition, 286

specifications, grammar, 6
standard library, 14
state transition table, 259
state vector, 198
static

assertions, 160, 165, 173
assertions, MPL, 161
condition, 178
interfaces, 173
member function, 23, 179
noise, 56
polymorphism, 17, 196
type checking operations, 37
type safety, 260, 277
visit member function, 178

static_cast, 205

std, namespace, 13
std::

abs, 15
binary_function, 296
for_each, 115
iterator_traits, 15
lower_bound, 115
negate, 17
reverse_iterator, 138
stable_sort, 115
swap(), 19, 22, 23
unary_function, 296

STL, 58, 77, 79, 128
STL error messages, 156
STLFilt, 172
STLFilt options, 157
storage, eliminating, 187
stored function object, 6
strategy to customize error, 170
strict weak ordering, 122
strings, vectors of, 19
struct

always_int, 29, 57
begin_impl, 85
binary, 4
bit_iterator, 21
enable_if, 211
end_impl, 85
equal_to, 70
five, 18
function, 296
int_, 69
integral_c, 70
iter_swap_impl, 23
iterator_traits, 13, 14
minus_f, 46
padded_size, 132
param_type, 64, 68
print_type, 176, 177
proxy, 21
quantity, 40, 45
reverse, 120
signature, 300
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tiny_size, 281, 282, 286, 287, 290, 291
transform, 42
twice, 49
type_traits, 30
visit_type, 178
wrap, 177

structural
changes to the class, 186
complexity of metafunction arguments, 338
complexity tests, 338
complexity, using sequence derivation to limit, 339
variation, 188

structure, preprocessor library, 285
structure selection, 185, 188
structures, control, 295
STT, 259, 262, 264, 276
subrules, 251, 252
Substitution Failure Is Not An Error, 211
substitution, typedef, 147
subtleties, 314
subtraction, addition and, 41
Sutter, Herb, xi, 21
swap(), std, 19, 22, 23
swap(), template, 19
symbols, BNF, 220
symbols, long, 337
syntactic constructs, 229
syntactic noise, 263
syntax, common, 17
syntax disambiguation, 311
syntax of formal languages, 220

T

tables, parse, 225
tag dispatching, 180
tag dispatching technique, 106
tag type, 101, 180
target language interaction, 7
targets, Make, 218
temperature, 38
template

allowed, 320

and typename, rules, 312
apply_fg(), 16
arguments, eliminating default, 150
arguments, function pointers as, 194
binary(), 4, 15
Blitz++ and expression, 231, 232
boost::function, 203
C++, 9
class, 29
compilation phases, 308
compilers with incomplete support for, 343
dependent names, 319
disambiguating, 311
drawback of expression, 236
error, 143, 320
error message, 155, 158
features, traits, 15
forbidden, 320
function, 313
function object, 194
functions, class, 15
how to apply, 307
implementation of a runtime function, 178
instantiated, 16
instantiation, 32, 155, 324, 330
instantiations, nested, 330
instantiations required, 324
iter_swap_impl, 23
iter_swap(), 11–13, 19, 22
iterator_traits, 14
keywords, typename and, 307
lambda non-metafunction, 56
mechanism, 3
members, 91
metaprogram, 1, 24
metaprogram misbehavior, 170
metaprogramming, 5, 9, 57, 156
metaprograms interpretation, 323
multiple return values of traits, 15
name, 31
parameter, 16, 32, 272
parameter lists, 311, 313
parameters, named class, 239
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pattern, curiously recurring, 203, 208, 251,
267

primary, 31
required, 319
single, 30
specialization, 31, 55, 338
specialization, class, 31, 179
specialization of traits, 15
specializations, full, 317
struct param_type, 64
swap(), 19, 20
syntax, C++, 91
traits, feature of, 13
type_traits, 30
when to use, 319
wrapper, 177

term, 6
terminating specializations, 5
test programs, 326
testing the metaprogram, 282
tests, structural complexity, 338
TextFilt, 156
theorem of software engineering, fundamental, 13,

19, 263
time, 38
time, compile, 18
tiny, 97
tiny_iterator implementation, 102
tiny_size, 105
tiny_size.hpp, 292
tiny_size, struct, 281, 282, 286, 287, 291
token pasting, 299, 300
token-pasting operator, 300
tokens, preprocessing, 283
tools for diagnostic analysis, 155
traits, 33

blob, 16
boost type, 64
integral valued type, 183
primary, 25
secondary, 26
SGI type, 30
templates feature, 13, 15

type, 31, 33
type manipulation, 11

traits1, typedef, 22
traits2, typedef, 22
transform, 42–44, 46, 48, 114, 119, 185
transform, struct, 42
transform_view, 135
transformations, type, 28
transition table, 262
translators, host language, 3
traversal, 79
traversal adaptor, 138
traversal, recursive sequence, 121
trivial destructor, 24
tuples, 303
twice, struct, 49
type, 17, 29, 39, 77, 168

::value, 18
arguments, 17
associated, 78
associations, 11
associations short cut, 14
categorization metafunctions, 25
categorization, primary, 25
categorization, secondary, 26
computating with, 5
computation, 15
data, 301
dependent, 310
difference, 13
different argument, 17
disambiguating, 310
element, 86
erasure, 196, 201, 251, 264
erasure, automatic, 200
erasure example, 197
erasure, manual, 199
expression, 6
float, 196
function pointer, 97
generate, 192
identity, 89
integral, 70
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integral constant wrapper, 17
iterator, 9, 12
iterators of different, 19
iterator’s value, 12
key, 86
manipulation, traits and, 11
manipulations, 28
nested, 15, 30
non-intrusively, 13
object, 17
object of polymorphic class, 182
of the resulting function object, 203
parameters, 8
printing, 170, 174, 176
properties, 27
relationships between, 28
results, 28
return, 133
returning a type called, 33
safety, CRTP and, 205
selection, 62
selection, lazy, 64
sequence general purpose, 93
sequences, 39
specifier, 312
tag, 101, 180
traits, 30, 31, 33
traits library, 27
transformations, 28
two type members, 117
value_type, 12–14, 21
visitation, 177
wrapper, 33, 39

::type, 31, 59
type_traits, struct, 30
typedef

boost::function, 203
r1, 22
r2, 23
s, 91, 177
substitution, 147, 151, 169, 173
traits1, 22
traits2, 22

type, 29
v1, 22
v2, 23
value_type, 14

typename, 12, 13, 310
allowed, 315
base class, 316
class, 310
error, 316
forbidden, 316
full template specializations, 317
function templates, 313
how to apply, 307
iterator_traits, 20, 23
non-qualified names, 316
notes, 317
outside of templates, 316
required, 312
single declaration, several, 314
template keywords, 307
template parameter lists, 313
when to use, 312

typeof operator, 213

U

unary_function, 296
unary lambda expression, 53
unary metafunctions, 25
unique, 126
unit, 60
Unix tools, 172
unnamed placeholder, 55
unpack_args, 136
use_swap, 23
user analysis, 7
using recursion unrolling to limit nesting depth, 334
using sequence derivation to limit structural com-

plexity, 339
<utility>, 22
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V

v1, typedef, 22
v2, typedef, 23
valid expression, 78
valid iterators, 12
value, 32
::value, 4, 17, 24, 30, 33, 61
value comparison, 71
value, semantic, 222
::value_type, 13, 16
value_type, 12–15, 21, 22
value_type, typedef, 14
values computed from sequence elements, 131
variable part, 31
VC++ 7.0, 150
VC++ 7.1, 150, 159, 168
vector, 19, 92
vector-building inserter, 118
vector properties, 124
<vector20.hpp>, 92
vector<bool>, 21
vectors of strings, 19
Veldhuizen, Todd, 229
vertical repetition, 288, 289
view

concept, 138
definition, 131
examples, 131
history, 141
implementing a, 139
iterator adaptor, 131
Template library, 141
writing your own, 139

visit member function, 178
visit_type, struct, 178

visitation, type, 177
Visitor pattern, 177
Visitor::visit(), 178
VTL, 141

W

with clauses, 148, 149
wrap, struct, 177
wrapper, 18

building, automate, 200
integral constant, 17, 39, 66
integral sequence, 40, 70, 95
MPL Boolean constant, 67
operations, Boolean, 61
operations, integer, 69
operations, integral type, 61
sequence of integral constant, 176
template, 177
type, 33, 39

writing your own view, 139

Y

YACC, 2, 6, 7, 222, 226–228, 257, 261
YACC grammar, 7
yyparse(), 2

Z

zip iterator, 139
zip_view, 140
zip_with, 126
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