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Praise for Better Python Code

“You’ll not just be aspiring to be an expert anymore after practicing through Better Python
Code: A Guide for Aspiring Experts, you’ll be one of them! Learn from David Mertz, who’s
been making experts through his writing and training for the past 20 years.”
—Iqbal Abdullah, past Chair, PyCon Asia Pacific, and past board member, PyCon Japan

“In Better Python Code: A Guide for Aspiring Experts, David Mertz serves up bite-sized
chapters of Pythonic wisdom in this must-have addition to any serious Python
programmer’s collection. This book helps bridge the gap from beginner to advanced
Python user, but even the most seasoned Python programmer can up their game with
Mertz’s insight into the ins and outs of Python.”
—Katrina Riehl, President, NumFOCUS

“What separates ordinary coders from Python experts? It’s more than just knowing best
practices—it’s understanding the benefits and pitfalls of the many aspects of Python, and
knowing when and why to choose one approach over another. In this book David draws
on his more than 20 years of involvement in the Python ecosystem and his experience as a
Python author to make sure that the readers understand both what to do and why in a wide
variety of scenarios.”
—Naomi Ceder, past Chair, Python Software Foundation

“Like a Pythonic BBC, David Mertz has been informing, entertaining, and educating the
Python world for over a quarter of a century, and he continues to do so here in his own
pleasantly readable style.”
—Steve Holden, past Chair, Python Software Foundation

“Being expert means someone with a lot of experience. David’s latest book provides some
important but common problems that folks generally learn only after spending years of
doing and fixing. I think this book will provide a much quicker way to gather those
important bits and help many folks across the world to become better.”
—Kushal Das, CPython Core Developer and Director, Python Software Foundation

“This book is for everyone: from beginners, who want to avoid hard-to-find bugs, all the
way to experts looking to write more efficient code. David Mertz has compiled a great set
of useful idioms that will make your life as a programmer easier and your users happier.”
—Marc-André Lemburg, past Chair, EuroPython, and past Director, Python Software Foundation
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Pearson’s Commitment to Diversity, Equity, and Inclusion
Pearson is dedicated to creating bias-free content that reflects the diversity of all learners.
We embrace the many dimensions of diversity, including but not limited to race, ethnicity,
gender, socioeconomic status, ability, age, sexual orientation, and religious or political
beliefs.

Education is a powerful force for equity and change in our world. It has the potential to
deliver opportunities that improve lives and enable economic mobility. As we work with
authors to create content for every product and service, we acknowledge our responsibility
to demonstrate inclusivity and incorporate diverse scholarship so that everyone can achieve
their potential through learning. As the world’s leading learning company, we have a duty
to help drive change and live up to our purpose to help more people create a better life for
themselves and to create a better world.

Our ambition is to purposefully contribute to a world where:

. Everyone has an equitable and lifelong opportunity to succeed through learning.

. Our educational products and services are inclusive and represent the rich diversity
of learners.

. Our educational content accurately reflects the histories and experiences of the
learners we serve.

. Our educational content prompts deeper discussions with learners and motivates
them to expand their own learning (and worldview).

While we work hard to present unbiased content, we want to hear from you about any
concerns or needs with this Pearson product so that we can investigate and address them.

. Please contact us with concerns about any potential bias at
https://www.pearson.com/report-bias.html.
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Foreword

It was a pleasure for me to be asked to write a foreword for David’s new book, as I always
expect David to provide useful, insightful content.

Much as I began with high expectations, I am delighted to say that they were not just
met but exceeded: The book is an engaging read, offers a great deal of insight for anyone
at an intermediate or advanced level to improve their Python programming skill, and
includes copious sharing of precious experience practicing and teaching the language; it is
easy to read and conversational in style. In spite of all this, David manages to keep the
book short and concise enough to absorb quickly and fully.

Most of the book’s content reflects, and effectively teaches, what amounts to a
consensus among Python experts about best practices and mistakes to avoid. In a few cases
in which the author’s well-explained opinions on certain issues of style differ from those of
other experts, David carefully and clearly points out these cases so readers can weigh the
pros and cons and come to their own decisions.

Most of the book deals with Python-related issues at intermediate levels of experience
and skill. These include many instances in which programmers familiar with different
languages may adopt an inferior style in Python, simply because it appears to be a direct
“translation” of a style that’s appropriate for the languages that they know well.

An excellent example of the latter problem is writing APIs that expose getter and setter
methods: In Python, direct getting and setting of the attribute (often enabled via the
property decorator) should take their place. Reading hypothetical code like widgets.
set_count(widgets.get_count() + 1) — where experienced Pythonistas would
instead have used the direct, readable phrasing widgets.count += 1 — would clearly
show that the hypothetical coder is ignoring or unaware of Python “best practices.” David’s
book goes a long way toward addressing this and other common misunderstandings.

Despite its overall intermediate level, the book does not hesitate to address quite a few
advanced topics, including the danger of catastrophic backtracking in regular expressions,
some quirks in floating-point representations of numbers, “round-tripping” problems with
serialization approaches like JSON, etc. The coverage of such issues makes studying this
book definitely worthwhile, not just for Python programmers of intermediate skills, but
for advanced ones too.

—Alex Martelli
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Preface

Python is a very well-designed programming language. In surprisingly many cases, the
language manages to meet one of the aphorisms in Tim Peters’ The Zen of Python: “There
should be one—and preferably only one—obvious way to do it.” If there is only one way
to do it, it’s hard to make mistakes.

Of course, that aphorism is an aspiration that is not uniformly met. Often there are
many ways to perform a task in Python, many of them simply wrong, many inelegant,
many leaning heavily on idioms of other programming languages rather than being
Pythonic, and some of them not exactly wrong but still grossly inefficient. All the problems
described in this book are ones that I’ve seen in real-life code, sometimes in the wild,
sometimes caught during code review, and admittedly far too often in code I wrote myself
before reflecting upon its flaws.

About the Book
The sections of this book each present some mistake, pitfall, or foible that developers can
easily fall into, and are accompanied by descriptions of ways to avoid making them. At
times those solutions simply involve a minor change in “spelling,” but in most cases they
require a nuance of thought and design in your code. Many of the discussions do
something else as well… 

I do not hope only to show you something you did not know, but in a great many cases
I hope to show you something about which you did not know there was something to
know. I believe that the most effective writing and teaching conveys to readers or students
not only information, but also good ways of thinking about problems and reasoning about
their particular solutions. The info boxes, footnotes, and silly digressions within this book
all hope to allow you to think deeper about a particular domain, or a particular task, or a
particular style of programming.

There is no need to read this book from cover to cover (but I believe that readers who
do so will benefit). Each chapter addresses a related cluster of concepts, but stands alone.
Moreover, each section within a chapter is also self-contained. Each can be read
independently of the others, and most readers will learn something interesting in each one.
Some of the sections are more advanced than others, but even in those that seem
introductory, I think you will find nuances you did not know. And even in those that seem
advanced, I hope you will find the discussions accessible and enlightening.

Notwithstanding that each section forms a sort of vignette, the chapters are generally
organized in sequence of increasing sophistication, and the sections loosely build upon
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each other. Where it feels helpful, many discussions refer to other sections that might
provide background, or foreshadow elaboration in later sections.

In general, I am aiming at a reader who is an intermediate-level Python developer, or
perhaps an advanced beginner. I assume you know the basics of the Python programming
language; these discussions do not teach the most basic syntax and semantics that you
would find in a first course or first book on Python. Mostly I simply assume you have an
inquisitive mind and a wish to write code that is beautiful, efficient, and correct.

This book is written with Python 3.12 in mind, which was released in October 2023.
Code shown has been tested against 3.12 betas. The large majority of the code examples
will work in Python 3.8, which is the earliest version that has not passed end-of-life as of
mid-2023. In some cases, I note that code requires at least Python 3.10, which was
released on October 4, 2021; or occasionally at least Python 3.11, released on October 24,
2022. The large majority of the mistakes discussed within this book were mistakes already
in Python 3.8, although a few reflect improvements in later versions of Python.

Documents titled “What’s new in Python M.m.μ”1 have been maintained since at least
the Python 1.4 days (in 1996).2

Code Samples
Most of the code samples shown in this book use the Python REPL (Read-Evaluate-
Print-Loop). Or more specifically, they use the IPython (https://ipython.readthedocs.io)
enhanced REPL, but using the %doctest_mode magic to make the prompt and output
closely resemble the plain python REPL. One IPython “magic” that is used fairly
commonly in examples is %timeit; this wraps the standard library timeit module, but
provides an easy-to-use and adaptive way of timing an operation reliably. There are some
mistakes discussed in this book where a result is not per se wrong, but it takes orders of
magnitude longer to calculate than it should; this magic is used to illustrate that.

When you write your own code, of course, interaction within a REPL—including
within Jupyter notebooks (https://jupyter.org) or other richly interactive
environments—will only be a small part of what you write. But the mistakes in this book
try to focus on samples of code that are as narrow as possible. An interactive shell is often a
good way to illustrate these mistakes; I encourage you to borrow the lessons you learn, and
copy them into full *.py files. Ideally these discussions can be adapted into rich codebases
after starting as mere snippets.

At times when presenting commands run in the operating system shell (i.e., running a
Python script to show results), I display the command prompt [BetterPython]$ to
provide a quick visual clue. This is not actually the prompt on my personal machine, but
rather is something to which I could change if I wanted to do so. On Unix-like systems,
the $ is often (but not always) part of shell prompts.

1. Python does not strictly use Semantic Versioning (https://semver.org), so my implied nomenclature
“major.minor.micro” is not strictly accurate.
2. See https://docs.python.org/3/whatsnew/index.html for an index of past release notes.

https://ipython.readthedocs.io
https://jupyter.org
https://semver.org
https://docs.python.org/3/whatsnew/index.htmlforanindexofpastreleasenotes
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Note A short introduction to a REPL

Many developers who have come from other programming languages, or who
are just beginning programming in general, may not appreciate how amazingly
versatile and useful an interactive shell can be. More often than not, when I
wish to figure out how I might go about some programming task, I jump into a
Python, IPython, or Jupyter environment to get a more solid understanding of
how my imagined approach to a problem will work out.

A quick example of such a session, for me within a bash terminal, might
look like this:
[BetterPython]$ ipython
Python 3.11.0 | packaged by conda-forge |

(main, Oct 25 2022, 06:24:40) [GCC 10.4.0]
Type 'copyright', 'credits' or 'license' for more information
IPython 8.7.0 -- An enhanced Interactive Python. Type '?' for help.

In [1]: %doctest_mode # 1

Exception reporting mode: Plain
Doctest mode is: ON
>>> from collections import ChainMap # 2

>>> ChainMap? # 3

Init signature: ChainMap(*maps)
Docstring:
A ChainMap groups multiple dicts (or other mappings) together
to create a single, updateable view.
[...]
File: ~/miniconda3/lib/python3.11/collections/__init__.py
Type: ABCMeta
>>> dict1 = dict(foo=1, bar=2, baz=3)
>>> dict2 = {"bar": 7, "blam": 55}
>>> chain = ChainMap(dict1, dict2)
>>> chain["blam"], chain["bar"] # 4

(55, 2)
>>> !ls src/d*.adoc # 5

src/datastruct2.adoc src/datastruct.adoc

1 Use a display style similar to running just python with no script.
2 I pressed <tab> to select a completed line after collections.
3 I’d like information about what this object does (abridged here).
4 Entering expressions shows their value immediately.
5 With !, I can run a command within an external shell and see results.

There’s much more to what REPLs can do than is shown, but this gives you
a quick feel for their capabilities.
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Different programming environments will treat copying/pasting code samples into them
differently. Within IPython itself, using the %paste magic will ignore the leading >>> or
... characters in an appropriate way. Various other shells, IDEs, and code editors will
behave differently. Many of the code samples that are presented outside a REPL, and also
many of the data files used, are available at https://gnosis.cx/better. Moreover, paths are
mostly simplified for presentation; files often live within the code/ or data/ subdirectories
of the book’s website, but those paths are usually not shown. In other words, the code
presented is used to explain concepts, not as reusable code I intend for you to copy directly.
(That said, you may use it, of course.) In particular, much of the code shown is code that
has foibles in it; for that code, I most certainly do not want you to use it in production.

All code blocks whose title includes “Source code of <filename>” are available for
download from https://gnosis.cx/better. In some cases, the code shown in this book is an
excerpt from a longer file named. All other code blocks, whether titled to aid navigation
or untitled, are present only to explain concepts; of course, you are free to use them by
copying, retyping, or adapting for your purpose.

Obtaining the Tools Used in This Book
The Python programming language is Free Software that may be obtained at the official
site of the Python Software Foundation (PSF). A variety of other entities have also created
customized Python distributions with additional or different capabilities bundled with the
same core programming language. These include many operating system vendors. Most
Linux distributions bundle Python. macOS (formerly stylized in slightly different ways,
such as “Mac OS X” and “OS X”) has included Python since 2001. It is available for
Windows from the Microsoft Store.

To obtain the PSF distribution of Python, go to https://www.python.org/downloads/.
Versions are available for many operating systems and hardware platforms. To follow some
of the examples within this book, using the IPython terminal-based REPL (https://
ipython.org/install.html) or Jupyter notebooks (https://docs.jupyter.org/en/latest/install
.html) is advisable. These enhanced interactive environments support “magics,” such as
%timeit, that are special commands not contained in the Python language itself, but
which can improve interactive exploration. Throughout the book, when interactive
sessions are shown, they can be easily identified by a leading >>> for initial lines and leading
... for continuation lines (when present). However, Jupyter—as well as the interactive
shells in many integrated development environments (IDEs) or sophisticated code
editors—mark code entered and results produced by other visual indicators. The enhanced
REPLs mentioned also support adding a single or double ? at the end of a Python name to
display information about the object it refers to; this is used in some examples.

I personally use Miniconda (https://docs.conda.io/en/latest/miniconda.html) as a
means of installing Python, IPython, Jupyter, and many other tools and libraries.
Miniconda itself contains a version of Python, but will also allow creation of environments
with different versions of Python, or indeed without Python at all, but rather other useful
tools. You will see hints in some examples about my choice of installation, but nothing in
the book depends on you following my choice.

https://gnosis.cx/better
https://gnosis.cx/better.Insomecases,thecodeshowninthisbookisan
https://www.python.org/downloads/
https://ipython.org/install.html
https://ipython.org/install.html
https://docs.jupyter.org/en/latest/install.html
https://docs.jupyter.org/en/latest/install.html
https://docs.conda.io/en/latest/miniconda.html
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Other Useful Tools
Most of the discussions in this book are conceptual rather than merely stylistic. However,
linters will often detect mistakes that at least border on conceptual, including sometimes
mistakes described in this book. A particularly good linter for Python is Flake8
(https://flake8.pycqa.org/), which actually utilizes several lower-level linters as (optional)
dependencies. A good linter may very well not detect important mistakes, but you cannot
go wrong in at least understanding why a linter is complaining about your code.

The home page for the Black code formatter (https://black.readthedocs.io/) describes
itself well:

Black is the uncompromising Python code formatter. By using it, you agree to
cede control over minutiae of hand-formatting. In return, Black gives you
speed, determinism, and freedom from pycodestyle nagging about formatting.
You will save time and mental energy for more important matters.

— Black home page

Opinions about using Black vary among Pythonistas. I have found that even if Black
occasionally formats code in a manner I wouldn’t entirely choose, enforcing consistency
when working with other developers aids the readability of shared code, especially on large
projects.

A very impressive recent project for linting and code formatting is Ruff
(https://beta.ruff.rs/docs/). Ruff covers most of the same linting rules as Flake8 and other
tools, but is written in Rust and runs several orders of magnitude faster than other linters.
As well, Ruff provides auto-formatting similar to Black, but cleans up many things that
Black does not address. (However, Black also cleans things that Ruff does not; they are
complementary.)

In modern Python development, type annotations and type-checking tools are in
relatively widespread use. The most popular of these tools are probably Mypy
(http://mypy-lang.org/), Pytype (https://google.github.io/pytype/), Pyright
(https://github.com/Microsoft/pyright), and Pyre (https://pyre-check.org/). All of these
tools have virtues, especially for large-scale projects, but this book generally avoids
discussion of the Python type-checking ecosystem. The kinds of mistakes that type
checking can detect are mostly disjointed from the semantic and stylistic issues that we
discuss herein.

Register your copy of Better Python Code on the InformIT site for convenient access
to updates and/or corrections as they become available. To start the registration process,
go to informit.com/register and log in or create an account. Enter the product ISBN
(9780138320942) and click Submit. Look on the Registered Products tab for an Access
Bonus Content link next to this product, and follow that link to access any available bonus
materials. If you would like to be notified of exclusive offers on new editions and updates,
please check the box to receive email from us.

https://flake8.pycqa.org/
https://black.readthedocs.io/
https://beta.ruff.rs/docs/
http://mypy-lang.org/
https://google.github.io/pytype/
https://github.com/Microsoft/pyright
https://pyre-check.org/
http://gotoinformit.com/register
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7
Misusing Data Structures

Python has extremely well-designed data structures and data representations, many of
which are discussed in the prior chapter. However, a few antipatterns, that are
unfortunately common, can make the use of data structures dramatically inefficient or lead
to unintended behavior in your code.

7.1 Quadratic Behavior of Repeated List
Search

In Python, the in keyword is a very flexible way of looking for “membership” in an
object, most often some sort of container. Behind the scenes, the keyword in is calling the
.__contains__(self, elem) method of the object that potentially has something
“inside” it.

Bear with me for a few paragraphs while I discuss the behavior of in, and before I get
to the quadratic behavior gotcha one can encounter using lists. I believe a deeper
understanding of the mechanisms of “containment” will help many developers who might
have only an approximate mental model of what’s going on.

A great many kinds of objects—some that might seem unexpected—respond to in.
Here is an example.

RegexFlag can check for membership

>>> import re
>>> flags = re.VERBOSE | re.IGNORECASE | re.DOTALL | re.UNICODE
>>> type(flags)
<flag 'RegexFlag'>
>>> re.U in flags
True
>>> type(re.M)
<flag 'RegexFlag'>

In a commonsense way, the flag re.U (which is simply an alias for re.UNICODE) is
contained in the mask of several flags. A single flag is simply a mask that indicates only one
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operational re modifier. Moreover, a few special objects that are not collections but
iterables also respond to in. For example, range is special in this way.

Exploring what a range is

>>> import collections
>>> r = range(1_000_000_000_000) # 1

>>> isinstance(r, collections.abc.Collection)
True
>>> r[:10] # 2

range(0, 10)
>>> r[999_999_999_990:]
range(999999999990, 1000000000000)
>>> f"{r[999_999_999_990:][5]:,}" # 2

'999,999,999,995'

1 Ostensibly, this is a very large collection; in truth it is a very compact representation
that doesn’t actually contain a trillion integers, only the endpoints and step of the
range.

2 A number of clever shortcuts exist in the implementation of the range object,
generally producing what we “expect.”

Part of the cleverness of range is that it does not need to do a linear search through its
items, even though it is in many respects list-like. A range object behaves like a realized
list in most ways, but only contains anything in a synthetic sense. In other words,
range(start, stop, step) has an internal representation similar to its call signature,
and operations like a slice or a membership test are calculated using a few arithmetic
operations. For example, n in my_range can simply check whether start ≤ n < stop
and whether (n− start) % step = 0.

Timing the efficiency of range

>>> %timeit 10 in r
54 ns ± 0.85 ns per loop (mean ± std. dev. of 7 runs, 10,000,000
loops each)
>>> %timeit 999_999_999_995 in r
77 ns ± 0.172 ns per loop (mean ± std. dev. of 7 runs, 10,000,000
loops each)

The time to check for membership of an element near the “start” of a range is almost
identical to that for membership of an element near the “end” because Python is not
actually searching the members.

Lists are a concrete and ordered collection of elements that can be appended to very
quickly, and have a few other internal optimizations. However, we have to watch where
the ordered part might bite us. The only generic way to tell if an element is contained in a
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list is to do a linear search on the list. We might not find it until near the end of the search,
and if it isn’t there, we will have had to search the entire list.

Note When you want your lists sorted

We can use the bisect module in the standard library if we wish to speed this
greatly for lists we are happy to keep in sorted order (which is not all of our
lists, however). The sortedcontainers third-party library (https://grantjenks.
com/docs/sortedcontainers/) also provides a similar speedup when we can
live with the mentioned constraint.

We can see where checking containment within a list becomes unwieldy with a simple
example. I keep a copy of the 267,752-word SOWPODS (https://en.wikipedia.org/wiki
/Collins_Scrabble_Words) English wordlist on my own system. We can use that as an
example of a moderately large list (of strings, in this case).

Searching the SOWPODS wordlist

>>> words = [w.rstrip() for w in open('data/sowpods')]
>>> len(words)
267752
>>> import random
>>> random.seed(42)
>>> most_words = random.sample(words, k=250_000) # 1

>>> %timeit "zygote" in most_words
2.8 ms ± 147 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
>>> %timeit "zebra" in most_words
200 µs ± 12.2 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops
each)
>>> %timeit "aardvark" in most_words
172 µs ± 776 ns per loop (mean ± std. dev. of 7 runs, 10,000 loops
each)
>>> %timeit "coalfish" in most_words
10.7 ms ± 163 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

1 The words are genuinely shuffled in the random sampling.

We can see that both “aardvark” and “zebra” take a fairly modest 200 microseconds to
search. Showing that the most_words list really is not ordered alphabetically, “zygote”
takes over 10 times as long to find (but it is found).

However, “coalfish” (a genuine word in the full dictionary, closely related in the
Linnaean classification system to pollock) takes over 10 milliseconds because it is never
found in the sampled list.

https://grantjenks.com/docs/sortedcontainers/
https://grantjenks.com/docs/sortedcontainers/
https://en.wikipedia.org/wiki/Collins_Scrabble_Words
https://en.wikipedia.org/wiki/Collins_Scrabble_Words
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For a one-off operation, 10 milliseconds is probably fine. But imagine we want to do
something slightly more complicated. The example is somewhat artificial, but one can
realistically imagine wanting instead to compare lists of people’s names or addresses for a
degree of duplication—or, for example, of shotgun-sampled nucleotide fragments from
soil—in a real-world situation.

Finding words from one collection in another collection

>>> random.seed(13)
>>> some_words = random.sample(words, k=10_000)
>>> sum(1 for word in some_words if word not in most_words)
649
>>> %timeit sum(1 for word in some_words if word not in most_words)
55.2 s ± 1.26 s per loop (mean ± std. dev. of 7 runs, 1 loop each)

Taking a full minute for this simple operation is terrible, and it gets worse quickly—at
approximately an O(N²) rate (to be precise, it is Ω(N×M) since it gets even worse as the hit
rate goes down for specific data).1

What we’ve shown is concise and superficially intuitive code to perform one linear scan
of most_words for every word in some_words. That is, we perform an O(N) scan
operation M different times (where N and M are the sizes of the respective lists). A quick
clue you can use in spotting such pitfalls is to look for multiple occurrences of the in
keyword in an expression or within a suite. Whether in an if expression or within a loop,
the complexity is similar.

Fortunately, Python gives us a very efficient way to solve exactly this problem by using
sets.

Efficiently finding words from one collection in another collection

>>> len(set(some_words) - set(most_words))
649
>>> %timeit len(set(some_words) - set(most_words))
43.3 ms ± 1.31 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

That’s better than a 1000x speedup. We can see that the result is exactly the same. Even
assuming we needed to concretely look at where those words occur within our lists rather

1. The so-called big-O notation is commonly used in computer science when analyzing the complexity of an
algorithm. Wikipedia has a good discussion at https://en.wikipedia.org/wiki/Big_O_notation. There are
multiple symbols used for slightly different characterizations of asymptotic complexity: O, o, Ω, ω, and Θ.
Big-O is used most commonly, and indicates a worst-case behavior; Big-Theta indicates an asymptote for both
worst case and best case; Big-Omega indicates a best-case behavior. Small-o and Small-omega are used to express
the somewhat more complex concepts of one function dominating another rather than bounding another.

https://en.wikipedia.org/wiki/Big_O_notation
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than merely count them or see what they are, 649 operations of some_words.index
(word) is comparatively cheap relative to the three-orders-of-magnitude difference
encountered (looking through the shorter list is far faster, and typically we find the
different word after searching halfway).

Note Trie structures for fast prefix search

If the particular problem discussed is genuinely close to the one you face, look
towards the third-party module pygtrie (https://pypi.org/project/pygtrie/),
which will probably get you even faster and more flexible behavior. For the
precise problem described, CharTrie is the class you’d want. In general, the
trie data structure (https://en.wikipedia.org/wiki/Trie) is very powerful for a
class of string search algorithms.

7.2 Deleting or Adding Elements to the
Middle of a List

An early discussion in this book, in Chapter 3, A Grab Bag of Python Gotchas, addresses
how naive string concatenation within a loop might encounter quadratic complexity. That
is to say, the overall time and computation needed to perform a sequence of N operations
is O(N2).2

Although in many situations the solution to a slowdown in (certain) string operations is
to simply “use a list instead” (perhaps followed by a final "".join(thelist) to get back a
string), lists have their own very similar danger. The problem here is in not understanding
what is “cheap” and what is “expensive” for lists. Specifically, inserting or removing items
from a list anywhere other than at the end is expensive.

We first explore some details of exactly how lists are implemented in Python, then look
at which other data structures would be good choices for which actual use cases.

Python gives you the ability to insert or remove items from anywhere within a list, and
for some purposes it will seem like the obvious approach. Indeed, for a few operations on
a relatively small list, the minor inefficiency is wholly unimportant.

2. Ibid.

https://pypi.org/project/pygtrie/
https://en.wikipedia.org/wiki/Trie
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Note Cost and amortized cost

For lists, accessing an item at a given numeric position is O(1). Changing the
value at a numeric position is O(1). Perhaps surprisingly, list.append() and
list.pop() are also amortized O(1).

That is, adding more items to a list will intermittently require reallocating
memory to store their object references; but Python is clever enough to use
pre-allocated reserve space for items that might be added. Moreover, as the
size of a list grows, the pre-allocation padding also grows. The overall effect is
that reallocations become rarer, and their relative cost averages out to 0%
asymptotically. In CPython 3.11, we see the following behavior on an x86-64
architecture (but these details are not promised for a different Python
implementation, version, or chip architecture):

>>> from sys import getsizeof
>>> def pre_allocate():
... lst = []
... size = getsizeof(lst)
... print(" Len Size Alloc")
... for i in range(1, 10_001):
... lst.append('a')
... newsize = getsizeof(lst)
... if newsize > size:
... print(f"{i:>4d}{newsize:>7d}{newsize-size:>6d}")
... size = newsize
...
>>> pre_allocate() # 1

Len Size Alloc | Len Size Alloc
1 88 32 | 673 6136 704
5 120 32 | 761 6936 800
9 184 64 | 861 7832 896

17 248 64 | 973 8856 1024
25 312 64 | 1101 10008 1152
33 376 64 | 1245 11288 1280
41 472 96 | 1405 12728 1440
53 568 96 | 1585 14360 1632
65 664 96 | 1789 16184 1824
77 792 128 | 2017 18232 2048
93 920 128 | 2273 20536 2304

109 1080 160 | 2561 23128 2592
129 1240 160 | 2885 26040 2912
149 1432 192 | 3249 29336 3296
173 1656 224 | 3661 33048 3712
201 1912 256 | 4125 37208 4160
233 2200 288 | 4645 41880 4672
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269 2520 320 | 5229 47160 5280
309 2872 352 | 5889 53080 5920
353 3256 384 | 6629 59736 6656
401 3704 448 | 7461 67224 7488
457 4216 512 | 8397 75672 8448
521 4792 576 | 9453 85176 9504
593 5432 640
1 Printed output modified to show two columns of len/size/alloc

This general pattern of pre-allocating a larger amount each time the list
grows, roughly in proportion to the length of the existing list, continues for lists
of millions of items.

Inserting and removing words from middle of list

>>> words = [get_word() for _ in range(10)]
>>> words
['hennier', 'oughtness', 'testcrossed', 'railbus', 'ciclatoun',
'consimilitudes', 'trifacial', 'mauri', 'snowploughing', 'ebonics']
>>> del words[3] # 1

>>> del words[7]
>>> del words[3] # 1

>>> words
['hennier', 'oughtness', 'testcrossed', 'consimilitudes', 'trifacial',
'mauri', 'ebonics']
>>> words.insert(3, get_word())
>>> words.insert(1, get_word())
>>> words # 2

['hennier', 'awless', 'oughtness', 'testcrossed', 'wringings',
'consimilitudes', 'trifacial', 'mauri', 'ebonics']

1 The word deleted at initial index 3 was railbus, but on next deletion ciclatoun was at
that index.

2 The word wringings was inserted at index 3, but got moved to index 4 when awless
was inserted at index 1.

Note Focus on concepts, but code available at book website

The specific implementation of the get_word() function used here is not
important. However, as with other examples ancillary to the main point of a
section, or requiring larger datasets, the source code and data file can be
found at https://gnosis.cx/better. All that matters for the current section is
that get_word() returns some string each time it is called.

https://gnosis.cx/better
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For the handful of items inserted and removed from the small list in the example, the
relative inefficiency is not important. However, even in the small example, keeping track
of where each item winds up by index becomes confusing.

As the number of operations gets large, this approach becomes notably painful. The
following toy function performs fairly meaningless insertions and deletions, always
returning five words at the end. But the general pattern it uses is one you might be
tempted towards in real-world code.

Asymptotic timing for insert-and-delete from list middle

>>> from random import randrange
>>> def insert_then_del(n):
... words = [get_word() for _ in range(5)]
... for _ in range(n):
... words.insert(randrange(0, len(words)), get_word())
... for _ in range(n):
... del words[randrange(0, len(words))]
... return words
...
>>> insert_then_del(100)
['healingly', 'cognitions', 'borsic', 'rathole', 'division']
>>> insert_then_del(10_000)
['ferny', 'pleurapophyses', 'protoavis', 'unhived', 'misinform']
>>> %timeit insert_then_del(100)
109 µs ± 2.42 µs per loop (mean ± std. dev. of 7 runs, 10,000 loops
each)
>>> %timeit insert_then_del(10_000)
20.3 ms ± 847 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
>>> %timeit insert_then_del(1_000_000)
1min 52s ± 1.51 s per loop (mean ± std. dev. of 7 runs, 1 loop each)

Going from 200 operations (counting each of insertion and deletion) to 20,000
operations takes on the order of 200x as long. At these sizes the lists themselves are small
enough to matter little; the time involved is dominated by the number of calls to
get_word(), or perhaps a bit to randrange(), although we still see a 2x proportional
slowdown from the list operations.

However, upon increasing the number of operations by another 100x, to 2 million,
linear scaling would see an increase from 20 ms to about 2 seconds. Instead it jumps to
nearly 2 minutes, or about a 55x slowdown from linear scaling. I watched my memory
usage during the 15 minutes that %timeit took to run the timing seven times, and it
remained steady.

It’s not that these operations actually use very much memory; rather, every time we
insert one word near the middle of a 1 million word list, that requires the interpreter to
move 500,000 pointers up one position in the list. Likewise, each deletion near the middle
of a 1 million word list requires us to move the top 500,000 pointers back down. This gets
much worse very quickly as the number of operations increases further.
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7.2.1 More Efficient Data Structures
There is no one solution to the problem described here. On the other hand, there is
exceedingly rarely an actual use case for the exact behavior implemented by code such as
the preceding example. Trust me, code like that is not purely contrived for this book—I
have encountered a great much like it in production systems (with the problem buried
beneath a lot of other functionality in such code).

If you merely need to be able to insert and delete from either the end or the beginning
of a concrete sequence, collections.deque gives you exactly what you need. This is not
an arbitrary middle for insertion and deletion, but very often all you actually want is
.appendleft() and .popleft() to accompany .append() and .pop().

In some cases, sortedcontainers or pyrsistent may have closer to the performance
characteristics you need, while still offering a sequence datatype. Generally, using these
third-party containers is still only going to get you to O(N×log N) rather than O(N), but
that remains strikingly better than O(N2).

Later in this chapter, in the section “Rolling Your Own Data Structures,” I show an
example where creating a custom data structure actually can make sense. My pure-Python
implementation of CountingTree is able to do exactly the “insert into the middle” action
that is described in this section, and remains relatively efficient. For this narrow and
specific use case, my custom data structure is actually pretty good.

However, instead of reaching for the abovementioned collections—as excellent as each
of them genuinely is—this problem is probably one in which you (or the developer before
you) misunderstood what the underlying problem actually requires.

For example, a somewhat plausible reason you might actually want to keep an order for
items is because they represent some sort of priority of actions to be performed or data to
be processed. A wonderful data structure in which to maintain such priorities is simply a
Python dict. A plausible way of using this fast data structure is to keep your “words” (per
the earlier example) as keys, and their priority as values.

A priority is not exactly the same thing as an index position, but it is something that
very quickly allows you to maintain a sequence for the data you wish to handle, while
keeping insertion or deletion operations always at O(1). This means, of course, that
performing N such operations is O(N), which is the best we might plausibly hope for.
Constructing a sequence at the end of such operations is both cheap and easy, as the
following example shows.

A collection of items with a million possible priorities

>>> from pprint import pprint
>>> from functools import partial
>>> priority = partial(randrange, 1, 1_000_000)
>>> words = {get_word():priority() for _ in range(100_000)}
>>> words_by_priority = sorted(words.items(), key=lambda p: p[1])
>>> pprint(words_by_priority[:10])
[('badland', 8),
('weakliest', 21),
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('sowarry', 28),
('actinobiology', 45),
('oneself', 62),
('subpanel', 68),
('alarmedly', 74),
('marbled', 98),
('dials', 120),
('dearing', 121)]

>>> pprint(words_by_priority[-5:])
[('overslow', 999976),
('ironings', 999980),
('tussocked', 999983),
('beaters', 999984),
('tameins', 999992)]

It’s possible—even likely—that the same priority occurs for multiple words,
occasionally. It’s also very uncommon that you actually care about exactly which order two
individual items come in out of 100,000 of them. However, even with duplicated
priorities, items are not dropped, they are merely ordered arbitrarily (but you could easily
enough impose an order if you have a reason to).

Deleting items from the words data structure is just slightly more difficult than was
del words[n] where it had been a list. To be safe, you’d want to do something like:

>>> for word in ['producibility', 'scrambs', 'marbled']:
... if word in words:
... print("Removing:", word, words[word])
... del words[word]
... else:
... print("Not present:", word)
...
Not present: producibility
Removing: scrambs 599046
Removing: marbled 98

The extra print() calls and the else clause are just for illustration; presumably if this
approach is relevant to your requirements, you would omit them:

>>> for word in ['producibility', 'scrambs', 'marbled']:
... if word in words:
... del words[word]

This approach remains fast and scalable, and is quite likely much closer to the actual
requirements of your software than was misuse of a list.
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7.3 Strings Are Iterables of Strings
Strings in Python are strange objects. They are incredibly useful, powerful, and well
designed. But they are still strange. In many ways, strings are scalar objects. They are
immutable and hashable, for example. We usually think of a string as a single value, or
equivalently call it atomic.

However, at the same time, strings are iterable, and every item in their iteration is also a
string (which is itself iterable). This oddity often leads to mistakes when we wish to
decompose or flatten nested data. Sometimes in related contexts as well, as shown in the
following example.

Naive attempt at flatten() function

>>> def flatten(o, items=[]):
... try:
... for part in o:
... flatten(part, items)
... except TypeError:
... items.append(o)
... return items

If you prefer LBYL (look before you leap) to EAFP (easier to ask forgiveness than
permission) you could write this as follows.

Naive attempt at flatten2() function

>>> from collections.abc import Iterable
>>> def flatten2(o, items=[]):
... if isinstance(o, Iterable):
... for part in o:
... flatten2(part, items)
... else:
... items.append(o)
... return items

Either way, these are perfectly sensible functions to take a nested data structure with
scalar leaves, and return a linear sequence from them. These first two functions return a
concrete list, but they could equally well be written as a generator function such as the
following.

Naive attempt at flatten_gen function

>>> def flatten_gen(o):
... if isinstance(o, Iterable):
... for part in o:
... yield from flatten_gen(part)
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... else:

... yield o

Using this function often produces what we’d like:

>>> nested = [
... (1, 2, 3),
... {(4, 5, 6), 7, 8, frozenset([9, 10, 11])},
... [[[12, 13], [14, 15], 16], 17, 18]
... ]
>>> flatten(nested, []) # 1

[1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15, 16, 17, 18]
>>> flatten2(nested, []) # 1

[1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15, 16, 17, 18]
>>> for item in flatten_gen(nested):
... print(item, end=" ")
... print()
1 2 3 8 9 10 11 4 5 6 7 12 13 14 15 16 17 18

1 To avoid mutable-default issues, pass in initial items to expand.

In the examples, the iterable but unordered set in the middle happens to yield the
frozenset first, although it is listed last in the source code. You are given no guarantee
about whether that accident will hold true in a different Python version, or even on a
different machine or different run.

This all breaks down terribly when strings are involved. Because strings are iterable,
every item in their iteration is also a string (which is itself iterable).

How strings break recursion

>>> import sys
>>> sys.setrecursionlimit(10) # 1

>>> flatten(nested, [])
[1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15, 16, 17, 18]
>>> flatten('abc', [])
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "<stdin>", line 4, in flatten
File "<stdin>", line 4, in flatten
File "<stdin>", line 4, in flatten
[Previous line repeated 6 more times] # 2

RecursionError: maximum recursion depth exceeded

1 The same breakage occurs with a default depth of 1000, it just shows more lines of
traceback before doing so.

2 Recent python shells simplify many tracebacks, but ipython does not by default.
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Using flatten2() or flatten_gen() will produce very similar tracebacks and
exceptions (small details of their tracebacks vary, but RecursionError is the general result
in all cases). If strings are nested within other data structures rather than top level, the
result is essentially the same:

>>> flatten2(('a', ('b', 'c')), [])
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "<stdin>", line 4, in flatten2
File "<stdin>", line 4, in flatten2
File "<stdin>", line 4, in flatten2
[Previous line repeated 2 more times]
File "<stdin>", line 2, in flatten2
File "<frozen abc>", line 119, in __instancecheck__

RecursionError: maximum recursion depth exceeded in comparison

The solution to these issues is to add some unfortunate ugliness to code, as in the
examples shown here.

Ugly but safe flatten function

>>> def flatten_safe(o, items=[]):
... if isinstance(o, (str, bytes)): # 1

... items.append(o)

... elif isinstance(o, Iterable):

... for part in o:

... flatten_safe(part, items)

... else:

... items.append(o)

... return items

...
>>> flatten_safe(('a', ['b', 'c'], {'dee'}), [])
['a', 'b', 'c', 'dee']
>>> flatten_safe(nested, [])
[1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15, 16, 17, 18]

>>> flatten([b'abc', [100, 101]], [])
[97, 98, 99, 100, 101] # 2

>>> flatten_safe([b'abc', [100, 101]], [])
[b'abc', 100, 101] # 3

1 bytes has a slightly different but also annoying issue.

2 No exception occurred, but probably not what you wanted

3 Most likely the behavior you were hoping for
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It would be nice if Python had a virtual parent class like collections.abc.
NonAtomicIterable. Unfortunately, it does not, and it cannot without substantially
changing the semantics of Python strings. Or perhaps, less intrusively, isinstance()
could conceivably check for something else beyond the presence of an .__iter__()
when deciding whether an object is an instance of this hypothetical NonAtomicIterable
interface.

For the current Python version, 3.12 as of this writing, special case checking for
string-ness is really the only approach available to handle the dual composite/atomic
nature of strings.

7.4 (Often) Use enum Rather Than CONSTANT
The enum module was added to Python 3.4, and has grown incremental new capabilities in
several versions since then. Prior to that module being added, but also simply because
some developers are more accustomed to languages such as bash, C, and Java,3 it is not
uncommon to see capitalized names (usually defined at a module scope) used as constants
in Python code.

Informal enumerations using capitalization

"This module works with sprites having colors and shapes"

RED = "RED"
GREEN = "GREEN"
BLUE = "BLUE"

CIRCLE, SQUARE, TRIANGLE = range(3)

class Sprite:
def __init__(self, shape, color):

self.shape = shape
self.color = color

# ... other methods

def process(sprite):
if sprite.shape == TRIANGLE and sprite.color == RED:

red_triangle_action(sprite)
elif something_else:

# ... other processing

3. C, Java, Go, Rust, C#, TypeScript, and most programming languages also have enums of varying stripes. But
the CONSTANT convention is nonetheless often seen in code in those languages.
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In a highly dynamic language like Python, we can potentially redefine “constants” since
the capitalization is only a convention rather than in the syntax or semantics of the
language. If some later line of the program redefines SQUARE = 2, buggy behavior is likely
to emerge. More likely is that some other module that gets imported has redefined SQUARE
to something other than the expectation of the current module. This risk is minimal if
imports are within namespaces, but from othermod import SQUARE, CUBE,
TESSERACT is not necessarily unreasonable to have within the current module.

Programs written like the preceding one are not necessarily broken, and not even
necessarily mistakes, but it is certainly more elegant to use enums for constants that come
in sets.

Using enums for sets of alternatives

>>> from enum import Enum
>>> Color = Enum("Color", ["RED", "GREEN", "BLUE"])
>>> class Shape(Enum):
... CIRCLE = 0
... SQUARE = 1
... TRIANGLE = 2
...
>>> my_sprite = Sprite(Shape.TRIANGLE, Color.RED)
>>> def process(sprite):
... if sprite.shape == Shape.TRIANGLE and sprite.color ==
Color.RED:
... print("It is a red triangle")
... elif something_else:
... pass
...
>>> process(my_sprite)
It is a red triangle
>>> Color.RED = 2
Traceback (most recent call last):
[...]
AttributeError: cannot reassign member 'RED'

It’s not impossible to get around the protection that an Enum provides, but you have to
work quite hard to do so rather than break it inadvertently. In effect, the attributes of an
enum are read-only. Therefore, reassigning to an immutable attribute raises an exception.

There are also “constants” that are not alternatives, but simply values; these likewise
cannot actually be enforced as constants in Python. Enums might still be reasonable
namespaces with slightly more enforcement against changes than modules have.
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Overwriting constants

>>> import math
>>> radius = 2
>>> volume = 4/3 * math.pi * radius**3
>>> volume # 1

33.510321638291124
>>> math.pi = 3.14 # 2

>>> 4/3 * math.pi * radius**3
33.49333333333333
>>> from math import pi
>>> 4/3 * pi * radius**3
33.49333333333333
>>> pi = 3.1415 # 3

>>> 4/3 * pi * radius**3
33.50933333333333

1 As good as we get with 64-bit floating point numbers

2 Monkeypatching a bad approximation of pi

3 A somewhat less bad approximation of pi

Using enums to “enforce” value consistency

>>> from enum import Enum
>>> import math
>>> class Math(Enum):
... pi = math.pi
... tau = math.tau
... e = math.e
...
>>> radius = 2
>>> Math.pi.value
3.141592653589793
>>> 4/3 * Math.pi.value * radius**3
33.510321638291124
>>> math.pi = 3
>>> 4/3 * Math.pi.value * radius**3
33.510321638291124
>>> Math.pi.value = 3
Traceback (most recent call last):
[...]
AttributeError: <enum 'Enum'> cannot set attribute 'value'

This usage doesn’t really use Enum as a way of enumerating distinct values, but it does
carry with it a modest protection of “read-only” values.
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7.5 Learn Less Common Dictionary
Methods

Dictionaries are a wonderful data structure that in many ways make up the heart of
Python. Internally, most objects, including modules, are defined by their dictionaries.

The sometimes overlooked method dict.get() was discussed in Chapter 3, A Grab
Bag of Python Gotchas, but dicts also have a few other methods that are often overlooked,
even by experienced Python programmers. As with a number of other mistakes
throughout this book, the mistake here is simply one of ignorance or forgetfulness; the
result is not usually broken code, but rather just code that is less fast, elegant, and
expressive than it might be.

7.5.1 The Dictionaries Defining Objects
This subsection is a digression into Python’s internal mechanisms. Feel free to skip it for
the actual pitfall; or read it to understand Python a little bit better.

You can use Python for a long time without ever needing to think about the
dictionaries at the heart of most non-dict objects. There are some exceptions, but many
Python objects have a .__dict__ attribute to store the dictionary providing its capabilities
and behaviors.

Let’s look at a couple examples.

Module dictionaries

>>> import re
>>> type(re.__dict__)
<class 'dict'>
>>> for key in re.__dict__.keys():
... print(key, end=" ")
...
__name__ __doc__ __package__ __loader__ __spec__ __path__ __file__
__cached__ __builtins__ enum _constants _parser _casefix _compiler
functools __all__ __version__ NOFLAG ASCII A IGNORECASE I LOCALE L
UNICODE U MULTILINE M DOTALL S VERBOSE X TEMPLATE T DEBUG RegexFlag
error match fullmatch search sub subn split findall finditer compile
purge template _special_chars_map escape Pattern Match _cache
_MAXCACHE _compile _compile_repl _expand _subx copyreg _pickle Scanner

The various functions and constants in a module are simply its dictionary. Built-in types
usually use a slightly different dictionary-like object.
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Dictionaries of basic types

>>> for typ in (str, int, list, tuple, dict):
... print(typ, type(typ.__dict__))
...
<class 'str'> <class 'mappingproxy'>
<class 'int'> <class 'mappingproxy'>
<class 'list'> <class 'mappingproxy'>
<class 'tuple'> <class 'mappingproxy'>
<class 'dict'> <class 'mappingproxy'>

>>> int.__dict__["numerator"]
<attribute 'numerator' of 'int' objects>
>>> (7).__class__.__dict__["numerator"]
<attribute 'numerator' of 'int' objects>
>>> (7).numerator
7

Custom classes also continue this pattern (their instances have either .__dict__ or
.__slots__, depending on how they are defined).

Dictionaries defining classes (and instances)

>>> class Point:
... def __init__(self, x, y):
... self.x = x
... self.y = y
... def from_origin(self):
... from math import sqrt
... return sqrt(self.x**2 + self.y**2)
...
>>> point = Point(3, 4)
>>> point.from_origin()
5.0
>>> type(Point.__dict__)
<class 'mappingproxy'>
>>> type(point.__dict__)
<class 'dict'>
>>> Point.__dict__.keys()
dict_keys(['__module__', '__init__', 'from_origin', '__dict__',
'__weakref__', '__doc__'])
>>> point.__dict__
{'x': 3, 'y': 4}
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7.5.2 Back to Our Regularly Scheduled Mistake
The Method .setdefault()

Of all the useful methods of dictionaries, the one I personally forget the most often is
dict.setdefault(). I have written code like this embarrassingly often:

>>> point = {"x": 3, "y": 4}
>>> if 'color' in point:
... color = point["color"]
... else:
... color = "lime green"
... point["color"] = color
...
>>> point
{'x': 3, 'y': 4, 'color': 'lime green'}

All the while, I should have simply written:

>>> point = {"x": 3, "y": 4}
>>> color = point.setdefault("color", "lime green")
>>> color
'lime green'
>>> point
{'x': 3, 'y': 4, 'color': 'lime green'}
>>> point.setdefault("color", "brick red")
'lime green'

The first version works, but it uses five lines where one would be slightly faster and
distinctly clearer.

The Method .update()

The method dict.update() is useful to avoid writing:

>>> from pprint import pprint
>>> features = {
... "shape": "rhombus",
... "flavor": "vanilla",
... "color": "brick red"}
>>> for key, val in features.items():
... point[key] = val
...
>>> pprint(point)
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{'color': 'brick red',
'flavor': 'vanilla',
'shape': 'rhombus',
'x': 3,
'y': 4}

Prior to Python 3.9, the friendlier shortcut was:

>>> point = {"x": 3, "y": 4, "color": "chartreuse"}
>>> point.update(features)
>>> pprint(point)
{'color': 'brick red',
'flavor': 'vanilla',
'shape': 'rhombus',
'x': 3,
'y': 4}

But with recent Python versions, even more elegant versions are:

>>> point = {"x": 3, "y": 4, "color": "chartreuse"}
>>> point | features # 1

{'x': 3, 'y': 4, 'color': 'brick red', 'shape': 'rhombus',
'flavor': 'vanilla'}
>>> point
{'x': 3, 'y': 4, 'color': 'chartreuse'}
>>> point |= features # 2

>>> point
{'x': 3, 'y': 4, 'color': 'brick red', 'shape': 'rhombus',
'flavor': 'vanilla'}

1 Create a new dictionary merging features with point.

2 Equivalent to point.update(features)

The Methods .pop() and .popitem()

The methods dict.pop() and dict.popitem() are also easy to forget, but extremely
useful when you need them. The former is useful when you want to find and remove a
specific key; the latter is useful when you want to find and remove an unspecified
key/value pair:

>>> point.pop("color", "gray")
'brick red'
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>>> point.pop("color", "gray")
'gray'
>>> point
{'x': 3, 'y': 4, 'shape': 'rhombus', 'flavor': 'vanilla'}

That is much friendlier than:

>>> point = {'x': 3, 'y': 4, 'color': 'brick red',
'shape': 'rhombus', 'flavor': 'vanilla'}

>>> if "color" in point:
... color = point["color"]
... del point["color"]
... else:
... color = "gray"
... color
'brick red'

Likewise, to get an arbitrary item in a dictionary, dict.popitem() is very quick and
easy. This is often a way to process the items within a dictionary, leaving an empty
dictionary when processing is complete. Since Python 3.7, “arbitrary” is always LIFO
(last-in, first-out) because dictionaries maintain insertion order. Depending on your
program flow, insertion order may or may not be obvious or reproducible; but you are
guaranteed some order for successive removal:

>>> point = {'x': 3, 'y': 4, 'color': 'brick red',
'shape': 'rhombus', 'flavor': 'vanilla'}

>>> while point and (item := point.popitem()):
... print(item)
...
('flavor', 'vanilla')
('shape', 'rhombus')
('color', 'brick red')
('y', 4)
('x', 3)
>>> point
{}

Making Copies
Another often-overlooked method is dict.copy(). However, I tend to feel that this
method is usually properly overlooked. The copy made by this method is a shallow copy, so
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any mutable values might still be changed indirectly, leading to subtle and hard-to-find bugs.
Chapter 2, Confusing Equality with Identity, is primarily about exactly this kind of mistake.

Most of the time, a much better place to look is copy.deepcopy(). For example:

>>> d1 = {"foo": [3, 4, 5], "bar": {6, 7, 8}}
>>> d2 = d1.copy()
>>> d2["foo"].extend([10, 11, 12])
>>> del d2["bar"]
>>> d1
{'foo': [3, 4, 5, 10, 11, 12], 'bar': {8, 6, 7}}
>>> d2
{'foo': [3, 4, 5, 10, 11, 12]}

This is confusing, and pretty much a bug magnet. Much better is:

>>> from copy import deepcopy
>>> d1 = {"foo": [3, 4, 5], "bar": {6, 7, 8}}
>>> d2 = deepcopy(d1)
>>> d2["foo"].extend([10, 11, 12])
>>> del d2["bar"]
>>> d1
{'foo': [3, 4, 5], 'bar': {8, 6, 7}}
>>> d2
{'foo': [3, 4, 5, 10, 11, 12]}

Dictionaries are an amazingly rich data structure in Python. As well as the usual
efficiency that hash maps or key/value stores have in most programming languages, Python
provides a moderate number of well-chosen “enhanced” methods. In principle, if
dictionaries only had key/value insertion, key deletion, and a method to list keys, that
would suffice to do everything the underlying data structure achieves. However, your code
can be much cleaner and more intuitive with strategic use of the additional methods
discussed.

7.6 JSON Does Not Round-Trip Cleanly to
Python

A Python developer can be tempted into mistakenly thinking that arbitrary Python objects
can be serialized as JSON, and relatedly that objects that can be serialized are necessarily
deserialized as equivalent objects.
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7.6.1 Some Background on JSON
In the modern world of microservices and “cloud-native computing,” Python often needs
to serialize and deserialize JavaScript Object Notation ( JSON) data. Moreover, JSON
doesn’t only occur in the context of message exchange between small cooperating services,
but is also used as a storage representation of certain structured data. For example,
GeoJSON and the related TopoJSON, or JSON-LD for ontology and knowledge graph
data, are formats that utilize JSON to encode domain-specific structures.

In surface appearance, JSON looks very similar to Python numbers, strings, lists, and
dictionaries. The similarity is sufficient that for many JSON strings, simply writing
eval(json_str) will deserialize a string to a valid Python object; in fact, this will often
(but certainly not always) produce the same result as the correct approach of
json.loads(json_str). JSON looks even more similar to native expressions in JavaScript
(as the name hints), but even there, a few valid JSON strings cannot be deserialized
(meaningfully) into JavaScript.

While superficially json.loads() performs a similar task as pickle.loads(), and
json.dumps() performs a similar task as pickle.dumps(), the JSON versions do
distinctly less in numerous situations. The “type system” of JSON is less rich than is that of
Python. For a large subset of all Python objects, including (deeply) nested data structures,
this invariant holds:

obj == pickle.loads(pickle.dumps(obj))

There are exceptions here. File handles or open sockets cannot be sensibly serialized
and deserialized, for example. But most data structures, including custom classes, survive this
round-trip perfectly well.

In contrast, this “invariant” is very frequently violated:

obj = json.loads(json.dumps(obj))

JSON is a very useful format in several ways. It is (relatively) readable pure text; it is
highly interoperable with services written in other programming languages with which a
Python program would like to cooperate; deserializing JSON does not introduce code
execution vulnerabilities.

Pickle (in its several protocol versions) is also useful. It is a binary serialization format
that is more compact than text. Or specifically, it is protocol 0, 1, 2, 3, 4, or 5, with each
successive version being improved in some respect, but all following that characterization.
Almost all Python objects can be serialized in a round-trippable way using the pickle
module. However, none of the services you might wish to interact with, written in
JavaScript, Go, Rust, Kotlin, C++, Ruby, or other languages, has any idea what to do
with Python pickles.
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7.6.2 Data That Fails to Round-Trip
In the first place, JSON only defines a few datatypes. These are discussed in RFC 8256
(https://datatracker.ietf.org/doc/html/rfc8259), ECMA-404 (https://www.ecma-
international.org/publications-and-standards/standards/ecma-404/), and ISO/IEC
21778:2017 (https://www.iso.org/standard/71616.html). Despite having “the standard”
enshrined by several standards bodies in not-quite-identical language, these standards are
equivalent.

We should back up for a moment. I’ve now twice claimed—a bit incorrectly—that
JSON has a limited number of datatypes. In reality, JSON has zero datatypes, and instead
is, strictly speaking, only a definition of a syntax with no semantics whatsoever. As RFC
8256 defines the highest level of its BNF (Backus–Naur form):

value ::= false | null | true | object | array | number | string

Here false, null, and true are literals, while object, array, number, and string are
textual patterns. To simplify, a JSON object is like a Python dictionary, with curly braces,
colons, and commas. An array is like a Python list, with square brackets and commas. A
number can take a number of formats, but the rules are almost the same as what defines
valid Python numbers. Likewise, JSON strings are almost the same as the spelling of
Python strings, but always with double quotation marks. Unicode numeric codes are
mostly the same between JSON and Python (edge cases concern very obscure surrogate
pair handling).

Let’s take a look at some edge cases. The Python standard library module json
“succeeds” in two cases by producing output that is not actually JSON:

>>> import json
>>> import math
>>> print(json.dumps({"nan": math.nan})) # 1

{"nan": NaN}
>>> print(json.dumps({"inf": math.inf}))
{"inf": Infinity}
>>> json.loads(json.dumps({'nan': math.nan})) # 2

{'nan': nan}
>>> json.loads(json.dumps({'inf': math.inf}))
{'inf': inf}

1 The result of json.dumps() is a string; printing it just removes the extra quotes in
the echoed representation.

2 Neither NaN nor Infinity (under any spelling variation) are in the JSON standards.

In some sense, this behavior is convenient for Python programmers, but it breaks
compatibility with (many) consumers of these serializations in other programming
languages. We can enforce more strictness with json.dumps(obj, allow_nan=False),

https://datatracker.ietf.org/doc/html/rfc8259
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
https://www.iso.org/standard/71616.html
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which would raise ValueError in the preceding lines. However, some other libraries in
some other programming languages also allow this almost-JSON convention.

Depending on what you mean by “round-trip,” you might say this succeeded. Indeed it
does strictly within Python itself; but it fails when the round-trip involves talking with a
service written in a different programming language, and it talking back. Let’s look at some
failures within Python itself. The most obvious cases are in Python’s more diverse
collection types.

Not-quite round-tripping collections with JSON

>>> from collections import namedtuple
>>> Person = namedtuple("Person", "first last body_temp")
>>> david = Person("David", "Mertz", "37°C")
>>> vector1 = (4.6, 3.2, 1.5)
>>> vector2 = (9.8, -1.2, 0.4)
>>> obj = {1: david, 2: [vector1, vector2], 3: True, 4: None}
>>> obj
{1: Person(first='David', last='Mertz', body_temp='37°C'),
2: [(4.6, 3.2, 1.5), (9.8, -1.2, 0.4)], 3: True, 4: None}

>>> print(json.dumps(obj))
{"1": ["David", "Mertz", "37\u2103"], "2": [[4.6, 3.2, 1.5],
[9.8, -1.2, 0.4]], "3": true, "4": null}
>>> json.loads(json.dumps(obj))
{'1': ['David', 'Mertz', '37°C'], '2': [[4.6, 3.2, 1.5],
[9.8, -1.2, 0.4]], '3': True, '4': None}

In JSON, Python’s True is spelled true, and None is spelled null, but those are
entirely literal spelling changes. Likewise, the Unicode character DEGREE CELSIUS can
perfectly well live inside a JSON string (or any Unicode character other than a quotation
mark, reverse solidus/backslash, and the control characters U+0000 through U+001F). For
some reason, Python’s json module decided to substitute with the numeric code, but such
has no effect on the round-trip.

What got lost was that some data was inside a namedtuple called Person, and other
data was inside tuples. JSON only has arrays, that is, things in square brackets. The general
“meaning” of the data is still there, but we’ve lost important type information.

Moreover, in the serialization, only strings are permitted as object keys, and hence our
valid-in-Python integer keys were converted to strings. However, this is lossy since a
Python dictionary could, in principle (but it’s not great code), have both string and
numeric keys:

>>> json.dumps({1: "foo", "1": "bar"})
'{"1": "foo", "1": "bar"}'
>>> json.loads(json.dumps({1: "foo", "1": "bar"}))
{'1': 'bar'}
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Two or three things conspired against us here. Firstly, the JSON specification doesn’t
prevent duplicate keys from occurring. Secondly, the integer 1 is converted to the string
"1" when it becomes JSON. And thirdly, Python dictionaries always have unique keys, so
the second try at setting the "1" key overwrote the first try.

Another somewhat obscure edge case is that JSON itself can validly represent numbers
that Python does not support:

>>> json_str = '[1E400, 3.141592653589793238462643383279]'
>>> json.loads(json_str)
[inf, 3.141592653589793]

This is not a case of crashing, nor failing to load numbers at all. But rather, one number
overflows to infinity since it is too big for float64, and the other is approximated to fewer
digits of precision than are provided.

A corner edge case is that JSON numbers that “look like Python integers” actually get
cast to int rather than float:

>>> json_str = f'{"7"*400}' # 1

>>> val = json.loads(json_str)
>>> math.log10(val)
399.8908555305749
>>> type(val)
<class 'int'>

1 A string of four hundred "7"s in a row

However, since few other programming languages or architectures you might
communicate with will support, for example, float128 either, the best policy is usually to
stick with numbers float64 can represent.

7.7 Rolling Your Own Data Structures
This section covers a nuanced issue (and a long one). Readers who have come out of a
college data structures course, or read a good book on the topic,4 have learned of many
powerful data structures that are neither within Python’s standard library nor in the
prominent third-party libraries I discuss in various parts of this book. Some of these include
treaps, k-d trees, R-trees, B-trees, Fibonacci heaps, tries (prefix tree), singly-, doubly-, and
multiply-linked lists, heaps, graphs, bloom filters, cons cells, and dozens of others.

4. Perhaps even Donald Knuth’s “bible”: The Art of Computer Programming (various editions among its current five
volumes; but especially the 3rd edition of volume 1, Addison-Wesley, 1997).
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The choice of which data structures to include as built-ins, or in the standard library, is
one that language designers debate, and which often leads to in-depth discussion and
analysis. Python’s philosophy is to include a relatively minimal, but extremely powerful and
versatile, collection of primitives with dict, list, tuple, set, frozenset, bytes, and
bytearray in __builtins__ (arguably, complex is a simple data structure as well).
Modules such as collections, queue, dataclasses, enum, array, and a few others
peripherally, include other data structures, but even there the number is much smaller than
for many programming languages.

A clear contrast with Python, in this regard, is Java. Whereas Python strives for
simplicity, Java strives to include every data structure users might ever want within its
standard library (i.e., the java.util namespace). Java has hundreds of distinct data
structures included in the language itself. For Pythonic programmers, this richness of
choice largely leads only to “analysis paralysis” (https://en.wikipedia.org/wiki
/Analysis_paralysis). Choosing among so many only-slightly-different data structures
imposes a large cognitive burden, and the final decision made (after greater work) often
remains sub-optimal. Giving someone more hammers can sometimes provide little other
than more ways for them to hit their thumb.

Note A data structure that hasn’t quite made it into Python

A really lovely example of the design discussions that go into Python is in PEP
603 (https://peps.python.org/pep-0603/), and the python-dev mailing list
and Discourse thread among core developers that followed this PEP. The
proposal of a new data structure has not been entirely rejected since
September 2019, but it also has not been accepted so far.

Internally, CPython utilizes a data structure called a Hash Array Mapped
Trie (HAMT). This isn’t used widely, but there are specific places in the C code
implementing CPython where it is the best choice. A HAMT is a kind of
immutable dictionary, in essence. Since this structure already exists in the
CPython codebase, it would be relatively easy to expose it under a name like
frozenmap or frozendict; this would parallel the existing frozenset and
tuple in being the “immutable version of built-in mutable collections.”

HAMT is clearly a useful data structure for some purposes. If it were not,
the very talented CPython developers would not have utilized it. However, the
current tide of opinion among these developers is that HAMT is not general
purpose enough to add to the cognitive load of tens of millions of Python
developers who probably won’t need it.

7.7.1 When Rolling Your Own Is a Bad Idea
Writing any of the data structures mentioned thus far is comparatively easy in Python.
Doing so is often the subject of college exams and software engineering interviews, for
example. Doing so is also usually a bad idea for most software tasks you will face. When

https://en.wikipedia.org/wiki/Analysis_paralysis
https://en.wikipedia.org/wiki/Analysis_paralysis
https://peps.python.org/pep-0603/
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you reach quickly for an opportunity to use one of these data structures you have
learned—each of which genuinely does have concrete advantages in specific contexts—it
often reflects an excess of cleverness and eagerness more than it does good design instincts.

A reality is that Python itself is a relatively slow bytecode interpreter. Unlike compiled
programming languages, including just-in-time ( JIT) compiled languages, which produce
machine-native instructions, CPython is a giant bytecode dispatch loop. Every time an
instruction is executed, many levels of indirection are needed, and basic values are all
relatively complex wrappers around their underlying data (remember all those methods of
datatypes that you love so much?).

Note Python implementations

Several alternative implementations of Python exist besides CPython. In
particular, a few of these include JIT compilation. The most widely used such
implementation is PyPy (https://www.pypy.org/), which JITs everything, and
does so remarkably well. Its main drawbacks are that it has fallen behind
version compatibility with CPython, and that using compiled extensions
created for CPython can encounter overheads that reduce the speed
advantages greatly.

Less widely used attempts at JIT Python interpreters include Pyston
(https://github.com/pyston/pyston), Cinder (https://github.com
/facebookincubator/cinder), and Pyjion (https://github.com/tonybaloney
/Pyjion). While all of these have good ideas within them—and all are derived
from CPython source code (unlike PyPy)—these open source projects still
largely have a focus within the private companies that developed them. Those
are Dropbox, Meta, and Microsoft, respectively (Alphabet—i.e.,
Google—subsidiary DeepMind abandoned its similar S6 project).

Reservations mentioned, it is well possible that a custom data structure
developed as pure Python but used in a JIT interpreter will achieve the speed
and flexibility advantages that those developed in compiled languages have.

Accompanying the fact that Python is relatively slow, most of the built-in and standard
library data structures you might reach for are written in highly optimized C. Much the
same is true for the widely used library NumPy, which has a chapter of its own.

On the one hand, custom data structures such as those mentioned can have significant
big-O complexity advantages over those that come with Python.5 On the other hand,
these advantages need to be balanced against what is usually a (roughly) constant

5. See note 1 on page 156.

https://www.pypy.org/
https://github.com/pyston/pyston
https://github.com/facebookincubator/cinder
https://github.com/facebookincubator/cinder
https://github.com/tonybaloney/Pyjion
https://github.com/tonybaloney/Pyjion
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multiplicative disadvantage to pure-Python code. That is to say, implementing the identical
data structure purely in Python is likely to be 100x, or even 1000x, slower than doing so in
a well-optimized compiled language like C, C++, Rust, or Fortran. At some point as a
dataset grows, big-O dominates any multiplicative factor, but often that point is well past
the dataset sizes you actually care about.

Plus, writing a new data structure requires actually writing it. This is prone to bugs,
takes developer time, needs documentation, and accumulates technical debt. In other
words, doing so might very well be a mistake.

7.7.2 When Rolling Your Own Is a Good Idea
Taking all the warnings and caveats of the first subsection of this discussion into account,
there remain many times when not writing a custom data structure is its own mistake.
Damned if you do, damned if you don’t, one might think. But the real issue is more subtle;
it’s a mistake to make a poor judgment about which side of this decision to choose.

I present in the following subsections a “pretty good” specialized data structure that
illustrates both sides. This example is inspired by the section “Deleting or Adding
Elements to the Middle of a List” earlier in this chapter. To quickly summarize that
section: Inserting into the middle of a Python list is inefficient, but doing so is very often a
matter of solving the wrong problem.

For now, however, let’s suppose that you genuinely do need to have a data structure that
is concrete, strictly ordered, indexable, iterable, and into which you need to insert new
items in varying middle positions. There simply is not any standard library or widely used
Python library that gives you exactly this. Perhaps it’s worth developing your own.

Always Benchmark When You Create a Data Structure
Before I show you the code I created to solve this specific requirement, I want to reveal
the “punch line” by showing you performance. A testing function shows the general
behavior we want to be performant.

The insert_many() function that exercises our use case

from random import randint, seed
from get_word import get_word # 1

def insert_many(Collection, n, test_seed="roll-your-own"):
seed(test_seed) # 2

collection = Collection()
for _ in range(n):

collection.insert(randint(0, len(collection)), get_word())
return collection

1 The get_word() function available at this book’s website is used in many examples.
It simply returns a different word each time it is called.

2 Using the same random seed assures that we do exactly the same insertions for each
collection type.
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The testing function performs however many insertions we ask it to, and we can time
that:

>>> from binary_tree import CountingTree

>>> %timeit insert_many(list, 100)
92.9 µs ± 742 ns per loop (mean ± std. dev. of 7 runs, 10,000 loops
each)
>>> %timeit insert_many(CountingTree, 100)
219 µs ± 8.17 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops
each)

>>> %timeit insert_many(list, 10_000)
13.9 ms ± 193 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
>>> %timeit insert_many(CountingTree, 10_000)
38 ms ± 755 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

>>> %timeit insert_many(list, 100_000)
690 ms ± 5.84 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
>>> %timeit insert_many(CountingTree, 100_000)
674 ms ± 20.1 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

>>> %timeit insert_many(list, 1_000_000)
1min 5s ± 688 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
>>> %timeit insert_many(CountingTree, 1_000_000)
9.72 s ± 321 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

Without having yet said just what a CountingTree is, I can say that I spent more time
ironing out the bugs in my code than I entirely want to admit. It’s not a large amount of
code, as you’ll see, but the details are futzy.

Notable points are that even though I’ve created a data structure optimized for exactly
this task, it does worse than list for 100 items. CountingTree does worse than list for
10,000 items also, even by a slightly larger margin than for 100. However, my custom data
structure pulls ahead slightly for 100,000 items; and then hugely so for a million items.

It would be painful to use list for the million-item sequence, and increasingly worse if
I needed to do even more collection.insert() operations.

Performing Magic in Pure Python
The source code for binary_tree.py is available at the book’s website (https://gnosis.cx
/better). But we will go through most of it here. The basic idea behind my Counting
Binary Tree data structure is that I want to keep a binary tree, but I also want each node to
keep a count of the total number of items within it and all of its descendants. Unlike some
other tree data structures, we specifically do not want to order the node values by their
inequality comparison, but rather to maintain each node exactly where it is inserted.

https://gnosis.cx/better
https://gnosis.cx/better
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Figure 7.1 A graph of a Counting Binary Tree.

In Figure 7.1, each node contains a value that is a single letter; in parentheses we show
the length of each node with its subtree. Identical values can occur in multiple places
(unlike, e.g., for a set or a dictionary key). Finding the len() of this data structure is a
matter of reading a single attribute. But having this length available is what guides
insertions.

It is very easy to construct a sequence from a tree. It is simply a matter of choosing a
deterministic rule for how to order the nodes. For my code, I chose to use depth-first,
left-to-right; that’s not the only possible choice, but it is an obvious and common one. In
other words, every node value occurs at exactly one position in the sequence, and every
sequence position (up to the length) is occupied by exactly one value. Since our use case is
approximately random insertion points for new items, no extra work is needed for
rebalancing or enforcing any other invariants.

The code shown only implements insertions, our stated use case. A natural extension to
the data structure would be to implement deletions as well. Or changing values at a given
position. Or other capabilities that lists and other data structures have. Most of those
capabilities would remain inexpensive, but details would vary by the specific operation, of
course.

The basic implementation of Counting Binary Tree

class CountingTree:
def __init__(self, value=EMPTY):

self.left = EMPTY
self.right = EMPTY
self.value = value
self.length = 0 if value is EMPTY else 1
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def insert(self, index: int, value):
if index != 0 and not 0 < index <= self.length:

raise IndexError(
f"CountingTree index {index} out of range")

if self.value is EMPTY:
self.value = value

elif index == self.length:
if self.right is EMPTY:

self.right = CountingTree(value)
else:

self.right.insert(
index - (self.left.length + 1), value)

elif index == 0 and self.left is EMPTY:
self.left = CountingTree(value)

else:
if index > self.left.length:

self.right.insert(
index - (self.left.length + 1), value)

else:
self.left.insert(index, value)

self.length += 1

This much is all we actually need to run the benchmarks performed here. Calling
CountingTree.insert() repeatedly creates trees much like that in the figure. The .left
and .right attributes at each level might be occupied by the sentinel EMPTY, which the
logic can utilize for nodes without a given child.

It’s useful also to define a few other behaviors we’d like a collection to have.

Additional methods within Counting Binary Tree

def append(self, value):
self.insert(len(self), value)

def __iter__(self):
if self.left is not EMPTY:

yield from self.left
if self.value is not EMPTY:

yield self.value
if self.right is not EMPTY:

yield from self.right

def __repr__(self):
return f"CountingTree({list(self)})"
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def __len__(self):
return self.length

def tree(self, indent=0):
print(f"{'· '*indent}{self.value}")
if self.left is not EMPTY or self.right is not EMPTY:

self.left.tree(indent+1)
self.right.tree(indent+1)

These other methods largely just build off of .insert(). A CountingBinaryTree is
iterable, but along with .__iter__() it would be natural to define .__getitem__() or
.__contains__() to allow use of square bracket indexing and the in operator. These
would be straightforward.

For the .tree() method we need our sentinel to have a couple specific behaviors. This
method is just for visual appeal in viewing the data structure, but it’s nice to have.

The EMPTY sentinel

# Sentinel for an unused node
class Empty:

length = 0

def __repr__(self):
return "EMPTY"

def tree(self, indent=0):
print(f"{'· '*indent}EMPTY")

EMPTY = Empty()

Observing the Behavior of Our Data Structure
By no means am I advocating the general use of this specific skeletal data structure
implementation. It’s shown merely to illustrate the general way you might go about
creating something analogous for well-understood use cases and with a knowledge of the
theoretical advantages of particular data structures. Let’s look at a few behaviors, though:

>>> insert_many(CountingTree, 10)
CountingTree(['secedes', 'poss', 'killcows', 'unpucker',
'gaufferings', 'funninesses', 'trilingual', 'nihil', 'bewigging',
'reproachably'])
>>> insert_many(list, 10) # 1

['secedes', 'poss', 'killcows', 'unpucker', 'gaufferings',
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'funninesses', 'trilingual', 'nihil', 'bewigging', 'reproachably']

>>> ct = insert_many(CountingTree, 1000, "david")
>>> lst = insert_many(list, 1000, "david")
>>> list(ct) == lst # 2

True

>>> insert_many(CountingTree, 9, "foobar").tree() # 3

loaf
· acknown
· · spongily
· · · saeculums
· · · EMPTY
· · EMPTY
· fecundities
· · EMPTY
· · input
· · · boddle
· · · · sots
· · · · shrifts
· · · EMPTY

1 Insertions into list or CountingTree preserve the same order.

2 Equivalence for some operations between list and CountingTree

3 Display the underlying tree implementing the sequence.

The tree is fairly balanced, and sometimes a given subtree fills only one or the other of
its left and right children. This balance would be lost if, for example, we always used
.append() (it would degenerate to a singly-linked list).

7.7.3 Takeaways
This section has had a long discussion. The takeaway you should leave with isn’t a simple
one. The lesson is “be subtle and accurate in your judgments” about when to create and
when to avoid creating custom data structures. It’s not a recipe, but more vaguely an
advocacy of a nuanced attitude.

As a general approach to making the right choice, I’d suggest following a few steps in
your thinking:

1. Try implementing the code using a widely used, standard Python data structure.

2. Run benchmarks to find out if any theoretical sub-optimality genuinely matters for
the use case your code is put to.

3. Research the wide range of data structures that exist in the world to see which, if
any, are theoretically optimal for your use case.
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4. Research whether someone else has already written a well-tested Python
implementation of the less common data structure you are considering. Such a
library might not be widely used simply because the niche it fulfills is relatively
narrow. On the other hand, it is also easy to put partially developed, poorly tested,
and buggy libraries on PyPI, conda-forge, GitHub, GitLab, Bitbucket, or other
public locations.

5. Assuming you are writing your own after considering the preceding steps, create
both tests and benchmarks either in conjunction with—or even before—the
implementation of the data structure.

6. If your well-tested implementation of a new data structure makes your code better,
ask your boss for a raise or a bonus… and then share the code with the Python
community under an open source license.

7.8 Wrapping Up
Sometimes a powerful object method or general technique can also lead you in the wrong
direction, even in seemingly ordinary uses. This wrong direction might cause bad
complexity behavior; at times it might work for initial cases but then fail in cases you had
not yet considered.

In this chapter we probed at some operations on lists—generally one of the best
optimized and flexible data structures Python has—where a different data structure is
simply better. We also looked at how recursive algorithms need to remember that strings
are both scalar and iterable, which means they often need to be special-cased in program
flow.

Two more mistakes in this chapter looked at “sins of omission” where a facility that
may be less familiar provides a more convenient and more readable approach to common
tasks. Specifically, two mistakes served as reminders of the enum module and of some of the
less widely used methods of dictionaries.

In the penultimate mistake of this chapter, the capabilities and limitations of the widely
used JSON format were explored. In particular, we saw how Python developers might
forget the (relatively minor) lossiness of JSON representations of data.

The final mistake discussed is one of nuance and complex decision-making. Often,
creating custom data structures is premature optimization; but at other times they can
significantly improve your code. The (long) discussion provides some guidance about
making this choice wisely.
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lists

boxed structure, 148
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memory allocation behavior, 158–159
and memory consumption, 3
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rule, 74

Lodash library, 96
look-before-you-leap (LBYL) approach. See

LBYL approach
loop-and-a-half pattern, 13–15
looping, 3–20
loops

for item in iterable, 12
over index elements, 6
and recursion, 3
unpythonic, 6
while True, 12

M
mapping, index to values, 8
Martelli, Alex, 29, 119n, 225
match/case checks, 215
matching

by NFAs in backtracking, 125–126
with re.match() calls, 112–115
structural patterns, 121–123

math.isclose() function, 224–225
math.isfinite() function, 224
mean and median, of NaN values, 222–223
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with in keyword, 153–156
with range, 154
with RegexFlag, 153–154
with set(), 156–157

memory, consumption of
floating point numbers as conserving,

236
lazy calculation to conserve, 5



Index 253
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fragility of, 111

microservices, 201
ML-family languages, 3
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(Grimm), 112
monkeypatching, 112–115
more-itertools third-party library, 95–98
multiprocessing module, 242
Munroe, Randall, 210
mutable default arguments

class-based approach, 31–32
generator-based approach, 32–33
None sentinel approach, 32
Python behavior, 29–31

mutation
of iterables, 10
of objects, 9

Mypy type analyzer, 100–102, 244

N
name mangling, 78, 116
namedtuple attributes, 80, 142
names and naming concerns

exception statement vagueness, 46–51
filename conflicts, 40–42
import complexity, 39–40, 42–45
overriding names in _builtins_, 71–75
private and protected attributes use, 77–79

namespace, 17, 167
NaN (Not a Number) values

bit patterns, 219–220
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effects on statistics.median, 221–223
excluding with math.isfinite(), 224
mean and median calculations and, 222–223
propagation and stripping of, 223
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new-style loop-and-a-half pattern, 14

NFAs (nondeterministic finite automata), 125
nominative typing, 68
nondeterministic finite automata (NFAs), 125
Not a Number (NaN) values. See NaN values
NullBase class, 111
numeric datatypes

abstract base classes, 232
class parent–child relationships of, 233–234
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235–236
for setting numeric domains, 238
inheritance diagram of base classes, 232f

NumPy
averaging, performance of, 226–228
and choosing a numeric datatype, 226–228
floating point numbers in, 218, 228
for large-scale numeric computation, 217,

224–225
for tabular data handling, 34n
library development of, 244
and naming conflicts, 41
NaN behavior in, 223
and NaN propagation, 223
and truthiness, 25
usage by Python programmers, 96, 149
vectorized properties of, 67, 88, 244

numpy.isclose() function, 224–225

O
object-oriented programming, 21
objects

creating as a filter of a sequence, 11
dictionary storage of characteristics, 169
dual-role, 102–103
equality vs. identity, 21, 35, 37
immutability of, 21
memory-consuming, 3, 5
and polymorphic functions, 67–71

open() function, 48
optimizations

interning strategies, 22
and removal of assertions, 212, 213–215
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P
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Pandas

access to dataframes via, 244
bit width errors, 228
Boolean context of, 25
DataFrames, 218, 244
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for tabular data handling, 34n
and naming conflicts, 41
NaN roles in, 218
and NaN stripping, 223
usage by Python programmers, 96
vectorized properties of, 67

parallel computing, 3, 242
parameters

passing safely, 208
specification styles, 211

parentage of classes, 232, 232f, 233–234
pass by object reference, 21
passwords and secure information

dotenv for semi-secure storage, 197
environment variables for storage, 196–197
examples

insecure code, 196
semi-secure code, 196

keyring for secure storage, 197–198
rationales for putting in source code, 195

PCGs (permuted congruential generators), 190
PEPs (Python Enhancement Proposals)

PEP 249, 211
PEP 484, 99
PEP 603, 179

Peters, Tim, 108, 225
pickle module

characteristics, 175
unpickling concerns, 215

plausibility arguments, 224, 225
Plugin class, 108–111
polymorphism, and function creation, 67–71
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possessive quantifier Python feature, 126
power-of-two modulus, 79
precision, of numbers, 229, 231, 235

predicate(), 12–13
primitives in Python library

cryptographic, 198–199
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“private” and “protected” attributes, 77–79
PRNGs (pseudo-random number generators),

12n, 76, 79, 190
programming languages, 3
propagation, of NaN values, 223
“protected” and “private” attributes, 77–79
pseudo-random number generators (PRNGs),

12n, 76, 79, 190
_pth files and import options, 39
PuDB debugger, 81n
PyCharm debugger, 81n
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pytest, 241
Python documentation URLs

collections.OrderedDict and
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on context managers, 59
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type-checking tool, 244
urllib.request module description, 205
using a deque for a moving average, 136

Python Enhancement Proposals (PEPs). See
PEPs

Python Packaging Authority, 243
PYTHONPATH and import options, 39

Q
quadratic complexity, 11, 52, 54, 135, 153–157

R
raise exception, 215
randomness

for cryptographic purposes, 190–191
for testing purposes, 192–195

range keyword, 154
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RDBMSs (relational database management
systems), 208

recursion
and problem-solving, 3
string breakage of, 164

RecursionError exception, 165
regex. See regular expressions
RegexFlag class, 153–154
regular expressions, 123–126
relative imports, 40, 42
re.match() function in monkeypatching,

112–115
reproducibility, of random values

coding solution, 192–193
random module use for, 192–195

requests third-party library, 121,
205–208

REST (representational state transfer), 201
Roper, James, 191
rounding issues

control with Ratio(Fraction),
237–238

control with dunder methods, 238
in floating point number operations, 220,

224
rules for, in financial regulations,

228–232
rounding modes

in Python, 231–232
ROUND_HALF_DOWN, 231
ROUND_HALF_EVEN, 231

Ruby programming language, 112
run-length encoding (RLE), 92–94
runtime

and data quadratic complexity, 52
and type annotations, 99–102

Rust programming language, 3

S
sanitizing database inputs, 210–212
Scala programming language, 3
scaling, linear, 54, 55
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behavior in Python, 21
and garbage collection, 57

LEGB rule, 74
by using keyword binding, 24

searching
complexity of, in lists, 153–157
with get_word(), 159
one collection to another collection,

156
with range, 153
with RegexFlag, 153

secrets module
brute-force and timing attacks, defense

against, 191
for cryptographic purposes, 191–192
function and purpose, 190

secrets.compare_digest() function, 191
secure sockets layer (SSL) protocol, 201, 202,

205
security concerns

assertions used as safeguards, 212–215
cryptographic randomness, 190–191
custom cryptographic protocols,

198–201
passwords in source code, 195–198
scope of, 189
SQL injection attacks and DB-API

solutions, 208–212
SSL/TLS for secure microservices,

201–208
temp files created with temp.mktemp(),

216
unpickling pickles, 215
URL access with requests third-party

library, 205–208
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YAML loading, 215

sentinel values, 19
sequences

filters for, 11
key to good design, 13

serialization/deserialization, 175–177
session keys. See passwords and secure

information
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sets, 156–157
“singleton pattern,” 29
sortedcontainers library, 129, 155,

161
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sorting
using key arguments, 59–61
using operator.itemgetter or
operator.attrgetter, 62

SOWPODS word list, 98
SQL (structured query language)

and Boolean values, 27
injection attack vulnerability, 208–212

SSL (secure sockets layer) protocol, 201, 202,
205

stateful behavior, 12, 31–33
statistics module, 221–223, 226,

227
statistics.mode() function, 222
strings

append operation, 56
concatenation, 52–56, 157
dual composite/atomic nature of,

166
and flatten functions, 163–166
interning, 22
and recursion, 164
as scalar objects, 163

stripping, of NaN values, 223
structured query language (SQL). See SQL
structural pattern matching, 121–123
subnormal numbers, 218n
sys.path and import options, 39

T
tail-call optimization, absent in Python, 3
TDD (test-driven development)

recommendations, 241–242
tempfile.mkstemp, 216
test-driven development (TDD)

recommendations, 241–242
threading module, 242
threat modeling, 189, 189n
Timsort algorithm, 60, 225
TLS (transport layer security) protocol, 201,

202, 205
tokens. See passwords and secure information
Torvalds, Linus, 150
Tower of Hanoi puzzle, 126
tracebacks, 164–165

transport layer security (TLS) protocol, 201,
202, 205

trie data structures, 157
truthiness

defined by ._bool_() dunder method, 25
Python checks, 26

tuple, 9, 69–70, 102, 110, 142, 143, 147,
150

type annotations
in data classes, 144
and gradual typing, 99
potential to mislead programmers, 105
pros and cons, 243
and runtime behavior, 77, 87, 99–102

typeError, 101
types (of values)

implementations that compare, 67–71
type checking tools, 100–105, 243–244
typing an object, 68

type(x) == type(y) function, 69–70
typing.NewType() function

generally, 102
misapplication, 104–105

U
uncertain keys, 63–64
unittest module, 241
urlib module, 205–208

V
van Rossum, Guido, 89, 108
VS Code debugger, 81n

W
walrus operator, 14–15, 121
web server gateway interface (WSGI) server,

202
while

expressed as for, 12
loop, 3
statement, 14
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while and for equivalence, 13
while True statement, 14
WSGI (web server gateway interface) server,

202

X
x == None error, 28–29, 36
XKCD comic strip (Munroe), 210
XML loading, and denial-of-service attacks,

216

Y
YAML, loading, 215

Z
The Zen of Python (Peters), 17, 97, 108, 123
zip() function, to remedy data flaws, 16–20
zip(strict=True) function, to remedy data

flaws, 17–18
zip_longest() function, 19
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