
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780138308681
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780138308681
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780138308681

Programming:
Principles and Practice Using C++

Third Edition

Bjarne Stroustrup

Hoboken, New Jersey

Cover photo by Photowood Inc./Corbis.
Author photo courtesy of Bjarne Stroustrup.
Page 294: ‘‘Promenade a Skagen’’ by Peder Severin Kroyer.
Page 308: Photo of NASA’s Ingenuity Mars Helicopter, The National Aeronautics and Space Administration (NASA).
Page 354: Photo of Hurricane Rita as seen from space, The National Oceanic and Atmospheric Administration (NOAA).

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any
kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic
versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding inter-
ests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2024932369

Copyright 2024 by Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be obtained from the publisher prior to
any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechani-
cal, photocopying, recording, or likewise. For information regarding permissions, request forms and the appropriate con-
tacts within the Pearson Education Global Rights & Permissions Department, please visit www.pearson.com/permissions.

This book was typeset in Times and Helvetica by the author.

ISBN-13: 978-0-13-830868-1
ISBN-10: 0-13-83086-3
First printing, May 2024
$Pr intCode

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearson.com/permissions

Contents

Preface ix

0 Notes to the Reader 1

0.1 The structure of this book ... 2
0.2 A philosop y of teaching and learning 5
0.3 ISO standard C++ ... 8
0.4 PPP support ... 11
0.5 Author biography .. 13
0.6 Bibliography ... 13

Part I: The Basics

1 Hello, World! 17

1.1 Programs ... 18
1.2 The classic first program ... 18
1.3 Compilation .. 21
1.4 Linking .. 23
1.5 Programming environments .. 24

iv Contents

2 Objects, Types, and Values 29

2.1 Input .. 30
2.2 Variables .. 32
2.3 Input and type ... 33
2.4 Operations and operators .. 34
2.5 Assignment and initialization ... 36
2.6 Names ... 40
2.7 Types and objects .. 42
2.8 Type safety .. 43
2.9 Conversions ... 44

2.10 Type deduction: auto ... 46

3 Computation 51

3.1 Computation .. 52
3.2 Objectives and tools .. 53
3.3 Expressions ... 55
3.4 Statements ... 58
3.5 Functions ... 68
3.6 vector ... 71
3.7 Language features ... 77

4 Errors! 83

4.1 Introduction ... 84
4.2 Sources of errors ... 85
4.3 Compile-time errors .. 86
4.4 Link-time errors .. 88
4.5 Run-time errors ... 89
4.6 Exceptions ... 94
4.7 Avoiding and finding errors .. 99

5 Writing a Program 115

5.1 A problem ... 116
5.2 Thinking about the problem .. 116
5.3 Back to the calculator! .. 119
5.4 Back to the drawing board .. 126
5.5 Turning a grammar into code .. 130
5.6 Trying the first version .. 136
5.7 Trying the second version ... 140
5.8 Token streams ... 142
5.9 Program structure .. 146

v

6 Completing a Program 151

6.1 Introduction ... 152
6.2 Input and output .. 152
6.3 Error handling ... 154
6.4 Negative numbers .. 156
6.5 Remainder: % .. 157
6.6 Cleaning up the code ... 158
6.7 Recovering from errors ... 164
6.8 Variables .. 167

7 Technicalities: Functions, etc. 179

7.1 Technicalities .. 180
7.2 Declarations and definitions .. 181
7.3 Scope ... 186
7.4 Function call and return .. 190
7.5 Order of evaluation ... 206
7.6 Namespaces ... 209
7.7 Modules and headers ... 211

8 Technicalities: Classes, etc. 221

8.1 User-defined types .. 222
8.2 Classes and members .. 223
8.3 Interface and implementation ... 223
8.4 Evolving a class: Date ... 225
8.5 Enumerations .. 233
8.6 Operator overloading .. 236
8.7 Class interfaces ... 237

Part II: Input and Output

9 Input and Output Streams 251

9.1 Input and output .. 252
9.2 The I/O stream model ... 253
9.3 Files ... 254
9.4 I/O error handling ... 258
9.5 Reading a single value .. 261
9.6 User-defined output operators ... 266
9.7 User-defined input operators ... 266
9.8 A standard input loop .. 267

vi Contents

9.9 Reading a structured file ... 269
9.10 Formatting ... 276
9.11 String streams ... 283

10 A Display Model 289

10.1 Why graphics? .. 290
10.2 A display model .. 290
10.3 A first example .. 292
10.4 Using a GUI library .. 295
10.5 Coordinates ... 296
10.6 Shapes ... 297
10.7 Using Shape primitives ... 297
10.8 Getting the first example to run .. 309

11 Graphics Classes 315

11.1 Overview of graphics classes .. 316
11.2 Point and Line .. 317
11.3 Lines .. 320
11.4 Color .. 323
11.5 Line_style ... 325
11.6 Polylines .. 328
11.7 Closed shapes .. 333
11.8 Te xt .. 346
11.9 Mark ... 348

11.10 Image ... 350

12 Class Design 355

12.1 Design principles .. 356
12.2 Shape ... 360
12.3 Base and derived classes ... 367
12.4 Other Shape functions ... 375
12.5 Benefits of object-oriented programming 376

13 Graphing Functions and Data 381

13.1 Introduction ... 382
13.2 Graphing simple functions .. 382
13.3 Function ... 386
13.4 Axis .. 390

vii

13.5 Approximation .. 392
13.6 Graphing data .. 397

14 Graphical User Interfaces 409

14.1 User-interface alternatives .. 410
14.2 The ‘‘Next’’ button .. 411
14.3 A simple window .. 412
14.4 Button and other Widg ets ... 414
14.5 An example: drawing lines ... 419
14.6 Simple animation .. 426
14.7 Debugging GUI code .. 427

Part III: Data and Algorithms

15 Vector and Free Store 435

15.1 Introduction ... 436
15.2 vector basics .. 437
15.3 Memory, addresses, and pointers .. 439
15.4 Free store and pointers .. 442
15.5 Destructors .. 447
15.6 Access to elements .. 451
15.7 An example: lists ... 452
15.8 The this pointer ... 456

16 Arrays, Pointers, and References 463

16.1 Arrays .. 464
16.2 Pointers and references ... 468
16.3 C-style strings ... 471
16.4 Alternatives to pointer use .. 472
16.5 An example: palindromes ... 475

17 Essential Operations 483

17.1 Introduction ... 484
17.2 Access to elements .. 484
17.3 List initialization ... 486
17.4 Copying and moving ... 488
17.5 Essential operations .. 495

viii Contents

17.6 Other useful operations ... 500
17.7 Remaining Vector problems .. 502
17.8 Changing size .. 504
17.9 Our Vector so far .. 509

18 Templates and Exceptions 513

18.1 Templates .. 514
18.2 Generalizing Vector ... 522
18.3 Range checking and exceptions .. 525
18.4 Resources and exceptions ... 529
18.5 Resource-management pointers .. 537

19 Containers and Iterators 545

19.1 Storing and processing data .. 546
19.2 Sequences and iterators ... 552
19.3 Linked lists .. 555
19.4 Generalizing Vector yet again .. 560
19.5 An example: a simple text editor .. 566
19.6 vector, list, and string ... 572

20 Maps and Sets 577

20.1 Associative containers ... 578
20.2 map .. 578
20.3 unordered_map .. 585
20.4 Timing ... 586
20.5 set .. 589
20.6 Container overview ... 591
20.7 Ranges and iterators .. 597

21 Algorithms 603

21.1 Standard-library algorithms .. 604
21.2 Function objects .. 610
21.3 Numerical algorithms .. 614
21.4 Copying ... 619
21.5 Sorting and searching .. 620

Index 625

Preface

Damn the torpedoes!
Full speed ahead.

– Admiral Farragut

Programming is the art of expressing solutions to problems so that a computer can execute those
solutions. Much of the effort in programming is spent finding and refining solutions. Often, a
problem is only fully understood through the process of programming a solution for it.

This book is for someone who has never programmed before but is willing to work hard to
learn. It helps you understand the principles and acquire the practical skills of programming using
the C++ programming language. It can also be used by someone with some programming knowl-
edge who wants a more thorough grounding in programming principles and contemporary C++.

Why would you want to program? Our civilization runs on software. Without understanding
software, you are reduced to believing in ‘‘magic’’ and will be locked out of many of the most
interesting, profitable, and socially useful technical fields of work. When I talk about program-
ming, I think of the whole spectrum of computer programs from personal computer applications
with GUIs (graphical user interfaces), through engineering calculations and embedded systems
control applications (such as digital cameras, cars, and cell phones), to text manipulation applica-
tions as found in many humanities and business applications. Like mathematics, programming –
when done well – is a valuable intellectual exercise that sharpens our ability to think. However,
thanks to feedback from the computer, programming is more concrete than most forms of math and
therefore accessible to more people. It is a way to reach out and change the world – ideally for the
better. Finally, programming can be great fun.

There are many kinds of programming. This book aims to serve those who want to write non-
trivial programs for the use of others and to do so responsibly, providing a decent level of system
quality. That is, I assume that you want to achieve a lev el of professionalism. Consequently, I
chose the topics for this book to cover what is needed to get started with real-world programming,
not just what is easy to teach and learn. If you need a technique to get basic work done right, I
describe it, demonstrate concepts and language facilities needed to support the technique, and pro-
vide exercises for it. If you just want to understand toy programs or write programs that just call
code provided by others, you can get along with far less than I present. In such cases, you will

x Preface

probably also be better served by a language that’s simpler than C++. On the other hand, I won’t
waste your time with material of marginal practical importance. If an idea is explained here, it’s
because you’ll almost certainly need it.

Programming is learned by writing programs. In this, programming is similar to other endeav-
ors with a practical component. You cannot learn to swim, to play a musical instrument, or to drive
a car just from reading a book – you must practice. Nor can you become a good programmer with-
out reading and writing lots of code. This book focuses on code examples closely tied to explana-
tory text and diagrams. You need those to understand the ideals, concepts, and principles of pro-
gramming and to master the language constructs used to express them. That’s essential, but by
itself, it will not give you the practical skills of programming. For that, you need to do the exer-
cises and get used to the tools for writing, compiling, and running programs. You need to make
your own mistakes and learn to correct them. There is no substitute for writing code. Besides,
that’s where the fun is!

There is more to programming – much more – than following a few rules and reading the man-
ual. This book is not focused on ‘‘the syntax of C++.’’ C++ is used to illustrate fundamental con-
cepts. Understanding the fundamental ideals, principles, and techniques is the essence of a good
programmer. Also, ‘‘the fundamentals’’ are what last: they will still be essential long after today’s
programming languages and tools have evolved or been replaced.

Code can be beautiful as well as useful. This book is written to help you to understand what it
means for code to be beautiful, to help you to master the principles of creating such code, and to
build up the practical skills to create it. Good luck with programming!

Previous Editions
The third edition of Programming: Principles and Practice Using C++ is about half the size of the
second edition. Students having to carry the book will appreciate the lighter weight. The reason
for the reduced size is simply that more information about C++ and its standard library is available
on the Web. The essence of the book that is generally used in a course in programming is in this
third edition (‘‘PPP3’’), updated to C++20 plus a bit of C++23. The fourth part of the previous edi-
tion (‘‘PPP2’’) was designed to provide extra information for students to look up when needed and
is available on the Web:

• Chapter 1: Computers, People, and Programming
• Chapter 11: Customizing Input and Output
• Chapter 22: Ideas and History
• Chapter 23 Text Manipulation
• Chapter 24: Numerics
• Chapter 25: Embedded Systems Programming
• Chapter 26: Testing
• Chapter 27: The C Programming Language
• Glossary

Where I felt it useful to reference these chapters, the references look like this: PPP2.Ch22 or
PPP2.§27.1.

Acknowledgments xi

Acknowledgments
Special thanks to the people who reviewed drafts of this book and suggested many improvements:
Clovis L. Tondo, Jose Daniel Garcia Sanchez, J.C. van Winkel, and Ville Voutilainen. Also, Ville
Voutilainen did the non-trivial mapping of the GUI/Graphics interface library to Qt, making it por-
table to an amazing range of systems.

Also, thanks to the many people who contributed to the first and second editions of this book.
Many of their comments are reflected in this third edition.

This page intentionally left blank

10
A Display Model

The world was black and white then.
It didn´t turn color

until sometime in the 1930s.
– Calvin´s dad

This chapter presents a display model (the output part of GUI), giving examples of use
and fundamental notions such as screen coordinates, lines, and color. Line, Lines, Poly-

gons, Axis, and Te xt are examples of Shapes. A Shape is an object in memory that we
can display and manipulate on a screen. The next two chapters will explore these
classes further, with Chapter 11 focusing on their implementation and Chapter 12 on
design issues.

§10.1 Why graphics?
§10.2 A display model
§10.3 A first example
§10.4 Using a GUI library
§10.5 Coordinates
§10.6 Shapes
§10.7 Using Shape primitives

Graphics headers and main; Axis; Graphing a function; Polygons; Rectangles; Fill;
Te xt; Images; And much more

§10.8 Getting the first example to run
Source files; Putting it all together

290 A Display Model Chapter 10

10.1 Why graphics?
Why do we spend four chapters on graphics and one on GUIs (graphical user interfaces)? After all,
this is a book about programming, not a graphics book. There is a huge number of interesting soft-
ware topics that we don’t discuss, and we can at best scratch the surface on the topic of graphics.
So, ‘‘Why graphics?’’ Basically, graphics is a subject that allows us to explore several important
areas of software design, programming, and programming language facilities:

• Graphics are useful. There is much more to programming than graphics and much more to
software than code manipulated through a GUI. However, in many areas good graphics are
either essential or very important. For example, we wouldn’t dream of studying scientific
computing, data analysis, or just about any quantitative subject without the ability to graph
data. Chapter 13 gives simple (but general) facilities for graphing data. Also consider
browsers, games, animation, scientific visualization, phones, and control displays.

• Graphics are fun. There are few areas of computing where the effect of a piece of code is as
immediately obvious and – when finally free of bugs – as pleasing. We’d be tempted to play
with graphics even if it wasn’t useful!

• Graphics provide lots of interesting code to read. Part of learning to program is to read lots
of code to get a feel for what good code is like. Similarly, the way to become a good writer
of English involves reading a lot of books, articles, and quality newspapers. Because of the
direct correspondence between what we see on the screen and what we write in our pro-
grams, simple graphics code is more readable than most kinds of code of similar complex-
ity. This chapter will prove that you can read graphics code after a few minutes of introduc-
tion; Chapter 11 will demonstrate how you can write it after another couple of hours.

• Graphics are a fertile source of design examples. It is actually hard to design and imple-
ment a good graphics and GUI library. Graphics are a very rich source of concrete and prac-
tical examples of design decisions and design techniques. Some of the most useful tech-
niques for designing classes, designing functions, separating software into layers (of
abstraction), and constructing libraries can be illustrated with a relatively small amount of
graphics and GUI code.

• Graphics provide a good introduction to what is commonly called object-oriented program-
ming and the language features that support it. Despite rumors to the contrary, object-ori-
ented programming wasn’t inv ented to be able to do graphics (see PPP2.§22.2.4), but it was
soon applied to that, and graphics provide some of the most accessible and tangible exam-
ples of object-oriented designs.

• Some of the key graphics concepts are nontrivial. So they are worth teaching, rather than
leaving it to your own initiative (and patience) to seek out information. If we did not show
how graphics and GUI were done, you might consider them ‘‘magic,’’ thus violating one of
the fundamental aims of this book.

10.2 A display model
The iostream library is oriented toward reading and writing streams of characters as they might
appear in a list of numeric values or a book. The only direct supports for the notion of graphical
position are the newline and tab characters. You can embed notions of color and two-dimensional

Section 10.2 A display model 291

positions, etc. in a one-dimensional stream of characters. That’s what layout (typesetting,
‘‘markup’’) languages such as Troff, TeX, Word, Markup, HTML, and XML (and their associated
graphical packages) do. For example:

<hr>
<h2>
Organization
</h2>
This list is organiz ed in three parts:

Proposals, numbered EPddd, ...
Issues, numbered EIddd, ...
Suggestions, numbered ESddd, ...

<p>We try to ...
<p>

This is a piece of HTML specifying a header (<h2> ... </h2>), a list (...) with list items (

...), and a paragraph (<p>). We left out most of the actual text because it is irrelevant here. The
point is that you can express layout notions in plain text, but the connection between the characters
written and what appears on the screen is indirect, governed by a program that interprets those
‘‘markup’’ commands. Such techniques are fundamentally simple and immensely useful (just
about everything you read has been produced using them), but they also have their limitations.

In this chapter and the next four, we present an alternative: a notion of graphics and of graphical
user interfaces that is directly aimed at a computer screen. The fundamental concepts are inher-
ently graphical (and two-dimensional, adapted to the rectangular area of a computer screen), such
as coordinates, lines, rectangles, and circles. The aim from a programming point of view is a direct
correspondence between the objects in memory and the images on the screen.

CCThe basic model is as follows: We compose objects with basic objects provided by a graphics
system, such as lines. We ‘‘attach’’ these graphics objects to a window object, representing our
physical screen. A program that we can think of as the display itself, as ‘‘a display engine,’’ as
‘‘our graphics library,’’ as ‘‘the GUI library,’’ or even (humorously) as ‘‘the small gnome sitting
behind the screen,’’ then takes the objects we have attached to our window and draw them on the
screen:

Circle

Square

Window
Display
engine

attach()

attach()
draw()

The ‘‘display engine’’ draws lines on the screen, places strings of text on the screen, colors areas of
the screen, etc. For simplicity, we’ll use the phrase ‘‘our GUI library’’ or even ‘‘the system’’ for the
display engine even though our GUI library does much more than just drawing the objects. In the
same way that our code lets the GUI library do most of the work for us, the GUI library delegates
much of its work to the operating system.

292 A Display Model Chapter 10

10.3 A first example
Our job is to define classes from which we can make objects that we want to see on the screen. For
example, we might want to draw a graph as a series of connected lines. Here is a small program
presenting a very simple version of that:

#include "Simple_window.h" // get access to our window librar y
#include "Graph.h" // get access to our graphics librar y facilities

int main()
{

using namespace Graph_lib; // our graphics facilities are in Graph_lib

Application app; // star t a Graphics/GUI application

Point tl {900,500}; // to become top left corner of window

Simple_window win {tl,600,400,"Canvas"}; // make a simple window

Polygon poly; // make a shape (a polygon)
poly.add(Point{300,200}); // add a point
poly.add(Point{350,100}); // add another point
poly.add(Point{400,200}); // add a third point
poly.set_color(Color::red); // adjust properties of poly

win.attach (poly); // connect poly to the window

win.wait_for_button(); // give control to the display engine
}

When we run this program, the screen looks something like this:

AA In the background of our window, we see a laptop screen (cleaned up for the occasion). For people
who are curious about irrelevant details, we can tell you that my background is a famous painting

Section 10.3 A first example 293

by the Danish painter Peder Severin Krøyer. The ladies are Anna Ancher and Marie Krøyer, both
well-known painters. If you look carefully, you’ll notice that we have the Microsoft C++ compiler
running, but we could just as well have used some other compiler (such as GCC or Clang). Let’s
go through the program line by line to see what was done.

First we #include our graphics interface library:

#include "Simple_window.h" // get access to our window librar y
#include "Graph.h" // get access to our graphics librar y facilities

Why don’t we use a module Graph_lib (§7.7.1)? One reason is at the time of writing not all imple-
mentations are up to using modules for this relatively complex task. For example, the system we
use to implement our graphics library, Qt, exports its facilities using header files (§7.7.2). Another
reason is that there is so much C++ code ‘‘out there’’ using header files (§7.7.2) that we need to
show a realistic example somewhere.

Then, in main(), we start by telling the compiler that our graphics facilities are to be found in
Graph_lib:

using namespace Graph_lib; // our graphics facilities are in Graph_lib

Then we start our display engine (§10.2):

Application app; // star t a Graphics/GUI application

Then, we define a point that we will use as the top left corner of our window:

Point tl {900,500}; // to become top left corner of window

Next, we create a window on the screen:

Simple_window win {tl,600,400,"Canvas"}; // make a simple window

We use a class called Simple_window to represent a window in our Graph_lib interface library . The
name of this particular Simple_window is win; that is, win is a variable of class Simple_window. The
initializer list for win starts with the point to be used as the top left corner, tl, followed by 600 and
400. Those are the width and height, respectively, of the window, as displayed on the screen, mea-
sured in pixels. We’ll explain in more detail later, but the main point here is that we specify a rec-
tangle by giving its width and height. The string "Canvas" is used to label the window. If you look,
you can see the word Canvas in the top left corner of the window’s frame.

Next, we put an object in the window:

Polygon poly; // make a shape (a polygon)
poly.add(Point{300,200}); // add a point
poly.add(Point{350,100}); // add another point
poly.add(Point{400,200}); // add a third point

We define a polygon, poly, and then add points to it. In our graphics library, a Polygon starts empty
and we can add as many points to it as we like. Since we added three points, we get a triangle. A
point is simply a pair of values giving the x and y (horizontal and vertical) coordinates within a
window.

Just to show off, we then color the lines of our polygon red:

poly.set_color(Color::red); // adjust properties of poly

294 A Display Model Chapter 10

Finally, we attach poly to our window, win:

win.attach(poly); // connect poly to the window

If the program wasn’t so fast, you would notice that so far nothing had happened to the screen:
nothing at all. We created a window (an object of class Simple_window, to be precise), created a
polygon (called poly), painted that polygon red (Color::red), and attached it to the window (called
win), but we have not yet asked for that window to be displayed on the screen. That’s done by the
final line of the program:

win.wait_for_button(); // give control to the display engine

To get a GUI system to display objects on the screen, you have to giv e control to ‘‘the system.’’
Our wait_for_button() does that, and it also waits for you to ‘‘press’’ (‘‘click’’) the ‘‘Next’’ button in
the top right corner of our Simple_window before proceeding. This gives you a chance to look at the
window before the program finishes and the window disappears. When you press the button, the
program terminates, closing the window.

For the rest of the Graphics-and-GUI chapters, we eliminate the distractions around our window
and just show the window itself:

You’ll notice that we ‘‘cheated’’ a bit. Where did that button labeled ‘‘Next’’ come from? We built
it into our Simple_window class. In Chapter 14, we’ll move from Simple_window to ‘‘plain’’ Win-

dow, which has no potentially spurious facilities built in, and show how we can write our own code
to control interaction with a window.

For the next three chapters, we’ll simply use that ‘‘Next’’ button to move from one ‘‘display’’ to
the next when we want to display information in stages (‘‘frame by frame’’).

The pictures in this and the following chapters were produced on a Microsoft Windows system,
so you get the usual three buttons on the top right ‘‘for free.’’ This can be useful: if your program
gets in a real mess (as it surely will sometimes during debugging), you can kill it by hitting the X

Section 10.3 A first example 295

button. When you run your program on another system, a different frame will be added to fit that
system’s conventions. Our only contribution to the frame is the label (here, Canvas).

10.4 Using a GUI library
CCIn this book, we will not use the operating system’s graphical and GUI (graphical user interface)

facilities directly. Doing so would limit our programs to run on a single operating system and
would also force us to deal directly with a lot of messy details. As with text I/O, we’ll use a library
to smooth over operating system differences, I/O device variations, etc. and to simplify our code.
Unfortunately, C++ does not provide a standard GUI library the way it provides the standard stream
I/O library, so we use one of the many available C++ GUI libraries. So as not to tie you directly
into one of those GUI libraries, and to save you from hitting the full complexity of a GUI library all
at once, we use a set of simple interface classes that can be implemented in a couple of hundred
lines of code for just about any GUI library.

The GUI toolkit that we are using (indirectly for now) is called Qt from www.qt.io. Our code is
portable wherever Qt is available (Windows, Mac, Linux, many embedded systems, phones,
browsers, etc.). Our interface classes can also be re-implemented using other toolkits, so code
using them is potentially even more portable.

The programming model presented by our interface classes is far simpler than what common
toolkits offer. For example, our complete graphics and GUI interface library is about 600 lines of
C++ code, whereas the Qt documentation is thousands of pages. You can download Qt from
www.qt.io, but we don’t recommend you do that just yet. You can do without that level of detail for
a while. The general ideas presented in Chapter 10 – Chapter 14 can be used with any popular GUI
toolkit. We will of course explain how our interface classes map to Qt so that you will (eventually)
see how you can use that (and similar toolkits) directly, if necessary.

CCWe can illustrate the parts of our ‘‘graphics world’’ like this:

Our code

Our interface library

A graphics/GUI library
(here Qt)

The operating system
(e.g., Linux or Windows)

Our screen

our mouse

our keyboard

http://www.qt.io
http://www.qt.io

296 A Display Model Chapter 10

Our interface classes provide a simple and user-extensible basic notion of two-dimensional shapes
with limited support for the use of color. To drive that, we present a simple notion of GUI based on
‘‘callback’’ functions triggered by the use of user-defined buttons, etc. on the screen (Chapter 14).

10.5 Coordinates
CC A computer screen is a rectangular area composed of pixels. A pixel is a tiny spot that can be given

some color. The most common way of modeling a screen in a program is as a rectangle of pixels.
Each pixel is identified by an x (horizontal) coordinate and a y (vertical) coordinate. The x coordi-
nates start with 0, indicating the leftmost pixel, and increase (toward the right) to the rightmost
pixel. The y coordinates start with 0, indicating the topmost pixel, and increase (toward the bottom)
to the lowest pixel:

(200,0)

(0,100)

(0,0)

(50,50)

(200,100)

XX Please note that y coordinates ‘‘grow downward.’’ Mathematicians, in particular, find this odd, but
screens (and windows) come in many sizes, and the top left point is about all that they hav e in com-
mon.

The number of pixels available depends on the screen and varies a lot (e.g., 600-by-1024,
1280-by-1024, 1920-by-1080, 2412-by-1080, and 2880-by-1920).

In the context of interacting with a computer using a screen, a window is a rectangular region of
the screen devoted to some specific purpose and controlled by a program. A window is addressed
exactly like a screen. Basically, we see a window as a small screen. For example, when we said

Simple_window win {tl,600,400,"Canvas"};

we requested a rectangular area 600 pixels wide and 400 pixels high that we can address as 0–599
(left to right) and 0–399 (top to bottom). The area of a window that you can draw on is commonly
referred to as a canvas. The 600-by-400 area refers to ‘‘the inside’’ of the window, that is, the area
inside the system-provided frame; it does not include the space the system uses for the title bar, quit
button, etc.

Section 10.6 Shapes 297

10.6 Shapes
Our basic toolbox for drawing on the screen consists of about a dozen classes, including:

Window

Simple_window

Line_style Color

PointShape

AxisPolygonLinesLine Rectangle Te xt Image

An arrow indicates that the class pointing can be used where the class pointed to is required. For
example, a Polygon can be used where a Shape is required; that is, a Polygon is a kind of Shape.

We will start out presenting and using
• Simple_window, Window

• Shape, Te xt, Polygon, Line, Lines, Rectangle, Function, Circle, Ellipse, etc.
• Color, Line_style, Point

• Axis

Later (Chapter 14), we’ll add GUI (user interaction) classes:
• Button, In_box, Menu, etc.

We could easily add many more classes (for some definition of ‘‘easy’’), such as
• Spline, Grid, Block_char t, Pie_char t, etc.

However, defining or describing a complete GUI framework with all its facilities is beyond the
scope of this book.

10.7 Using Shape primitives
In this section, we will walk you through some of the primitive facilities of our graphics library:
Simple_window, Window, Shape, Te xt, Polygon, Line, Lines, Rectangle, Color, Line_style, Point, Axis.
The aim is to give you a broad view of what you can do with those facilities, but not yet a detailed
understanding of any of those classes. In the next chapters, we explore the design of each.

We will now walk through a simple program, explaining the code line by line and showing the
effect of each on the screen. When you run the program, you’ll see how the image changes as we
add shapes to the window and modify existing shapes. Basically, we are ‘‘animating’’ the progress
through the code by looking at the program as it is executed.

10.7.1 Axis

An almost blank window isn’t very interesting, so we’d better add some information. What would
we like to display? Just to remind you that graphics is not all fun and games, we will start with
something serious and somewhat complicated, an axis. A graph without axes is usually a disgrace.
You just don’t know what the data represents without axes. Maybe you explained it all in some

298 A Display Model Chapter 10

accompanying text, but it is far safer to add axes; people often don’t read the explanation and often
a nice graphical representation gets separated from its original context. So, a graph needs axes:

Axis xa {Axis::x, Point{20,300}, 280, 10, "x axis"}; // make an Axis
// an Axis is a kind of Shape
// Axis::x means horizontal
// star ting at (20,300)
// 280 pixels long
// with 10 "notches"
// label the axis "x axis"

win.attach(xa); // attach xa to the window, win
win.set_label("X axis"); // re-label the window
win.wait_for_button(); // display!

The sequence of actions is: make the axis object, add it to the window, and finally display it:

We can see that an Axis::x is a horizontal line. We see the required number of ‘‘notches’’ (10) and
the label ‘‘x axis.’’ Usually, the label will explain what the axis and the notches represent. Natu-
rally, we chose to place the x axis somewhere near the bottom of the window. In real life, we’d rep-
resent the height and width by symbolic constants so that we could refer to ‘‘just above the bottom’’
as something like y_max−bottom_margin rather than by a ‘‘magic constant,’’ such as 300 (§3.3.1,
§13.6.3).

To help identify our output we relabeled the screen to X axis using Window’s member function
set_label().

Now, let’s add a y axis:

Axis ya {Axis::y, Point{20,300}, 280, 10, "y axis"};
ya.set_color(Color::cyan); // choose a color for the y axis
ya.label.set_color(Color::dark_red); // choose a color for the text

Section 10.7.1 Axis 299

win.attach(ya);
win.set_label("Y axis");
win.wait_for_button(); // display!

Just to show off some facilities, we colored our y axis cyan and our label dark red.

We don’t actually think that it is a good idea to use different colors for x and y axes. We just
wanted to show you how you can set the color of a shape and of individual elements of a shape.
Using lots of color is not necessarily a good idea. In particular, novices often use color with more
enthusiasm than taste.

10.7.2 Graphing a function

What next? We now hav e a window with axes, so it seems a good idea to graph a function. We
make a shape representing a sine function and attach it:

double dsin(double d) { return sin(d); } // chose the right sin() (§13.3)

Function sine {dsin,0,100,Point{20,150},1000,50,50}; // sine curve
// plot sin() in the range [0:100) with (0,0) at (20,150)
// using 1000 points; scale x values *50, scale y values *50

win.attach(sine);
win.set_label("Sine");
win.wait_for_button();

Here, the Function named sine will draw a sine curve using the standard-library function sin(double)

to generate values. We explain details about how to graph functions in §13.3. For now, just note

300 A Display Model Chapter 10

that to graph a function we have to say where it starts (a Point) and for what set of input values we
want to see it (a range), and we need to give some information about how to squeeze that informa-
tion into our window (scaling):

Note how the curve simply stops when it hits the edge of the window. Points drawn outside our
window rectangle are simply ignored by the GUI system and never seen.

10.7.3 Polygons

A graphed function is an example of data presentation. We’ll see much more of that in Chapter 11.
However, we can also draw different kinds of objects in a window: geometric shapes. We use geo-
metric shapes for graphical illustrations, to indicate user interaction elements (such as buttons), and
generally to make our presentations more interesting. A Polygon is characterized by a sequence of
points, which the Polygon class connects by lines. The first line connects the first point to the sec-
ond, the second line connects the second point to the third, and the last line connects the last point
to the first:

sine .set_color(Color::blue); // we changed our mind about sine’s color

Polygon poly; // a polygon; a Polygon is a kind of Shape
poly.add(Point{300,200}); // three points make a triangle
poly.add(Point{350,100});
poly.add(Point{400,200});
poly.set_color(Color::red);

Section 10.7.3 Polygons 301

win.attach(poly);
win.set_label("Triangle");
win.wait_for_button();

This time we change the color of the sine curve (sine) just to show how. Then, we add a triangle,
just as in our first example from §10.3, as an example of a polygon. Again, we set a color, and
finally, we set a style. The lines of a Polygon have a ‘‘style.’’ By default, that is solid, but we can
also make those lines dashed, dotted, etc. as needed (§11.5). We get

10.7.4 Rectangles

CCA screen is a rectangle, a window is a rectangle, and a piece of paper is a rectangle. In fact, an
awful lot of the shapes in our modern world are rectangles (or at least rectangles with rounded cor-
ners). There is a reason for this: a rectangle is the simplest shape to deal with. For example, it’s
easy to describe (top left corner plus width plus height, or top left corner plus bottom right corner,
or whatever), it’s easy to tell whether a point is inside a rectangle or outside it, and it’s easy to get
hardware to draw a rectangle of pixels fast.

So, most higher-level graphics libraries deal better with rectangles than with other closed
shapes. Consequently, we provide Rectangle as a class separate from the Polygon class. A Rectan-

gle is characterized by its top left corner plus a width and height:

Rectangle r {Point{200,200}, 100, 50}; // top left corner, width, height

win.attach(r);
win.set_label("Rectangle");
win.wait_for_button();

302 A Display Model Chapter 10

From that, we get

Please note that making a polyline with four points in the right places is not enough to make a Rec-

tangle. It is easy to make a Closed_polyline that looks like a Rectangle on the screen (you can even
make an Open_polyline that looks just like a Rectangle). For example:

Closed_polyline poly_rect;
poly_rect.add(Point{100,50});
poly_rect.add(Point{200,50});
poly_rect.add(Point{200,100});
poly_rect.add(Point{100,100});

win.set_label("Polyline");
win.attach(poly_rect);
win.wait_for_button();

That polygon looks exactly – to the last pixel – like a rectangle:

Section 10.7.4 Rectangles 303

However, it only looks like a Rectangle. No Rectangle has four points:

poly_rect.add(Point{50,75});
win.set_label("Polyline 2");
win.wait_for_button();

No rectangle has five points:

304 A Display Model Chapter 10

CC In fact, the image on the screen of the 4-point poly_rect is a rectangle. However, the poly_rect object
in memory is not a Rectangle and it does not ‘‘know’’ anything about rectangles.

It is important for our reasoning about our code that a Rectangle doesn’t just happen to look like
a rectangle on the screen; it maintains the fundamental guarantees of a rectangle (as we know them
from geometry). We write code that depends on a Rectangle really being a rectangle on the screen
and staying that way.

10.7.5 Fill

We hav e been drawing our shapes as outlines. We can also ‘‘fill’’ a rectangle with color:

r.set_fill_color(Color::yellow); // color the inside of the rectangle
poly.set_style(Line_style(Line_style::dash,4));
poly_rect.set_style(Line_style(Line_style::dash,2));
poly_rect.set_fill_color(Color::green);
win.set_label("Fill");
win.wait_for_button();

We also decided that we didn’t like the line style of our triangle (poly), so we set its line style to
‘‘fat (thickness four times normal) dashed.’’ Similarly, we changed the style of poly_rect (now no
longer looking like a rectangle) and filled it with green:

If you look carefully at poly_rect, you’ll see that the outline is printed on top of the fill.
It is possible to fill any closed shape (§11.7, §11.7.2). Rectangles are just special in how easy

(and fast) they are to fill.

Section 10.7.6 Text 305

10.7.6 Text

CCFinally, no system for drawing is complete without a simple way of writing text – drawing each
character as a set of lines just doesn’t cut it. We label the window itself, and axes can have labels,
but we can also place text anywhere using a Te xt object:

Te xt t {Point{150,150}, "Hello, graphical world!"};
win.attach(t);
win.set_label("Text");
win.wait_for_button();

From the primitive graphics elements you see in this window, you can build displays of just about
any complexity and subtlety. For now, just note a peculiarity of the code in this chapter: there are
no loops, no selection statements, and all data was ‘‘hardwired’’ in. The output was just composed
of primitives in the simplest possible way. Once we start composing these primitives, using data
and algorithms, things will start to get interesting.

We hav e seen how we can control the color of text: the label of an Axis (§10.7.1) is simply a
Te xt object. In addition, we can choose a font and set the size of the characters:

t.set_font(Font::times_bold);
t.set_font_siz e(20);
win.set_label("Bold text");
win.wait_for_button();

We enlarged the characters of the Te xt string Hello, graphical world! to point size 20 and chose the
Times font in bold:

306 A Display Model Chapter 10

10.7.7 Images

We can also load images from files:

This was done by:

Section 10.7.7 Images 307

Image copter {Point{100,50},"mars_copter.jpg"};
win.attach(copter);
win.set_label("Mars copter");
win.wait_for_button();

That photo is relatively large, and we placed it right on top of our text and shapes. So, to clean up
our window a bit, let us move it a bit out of the way:

copter.move(100,250);
win.set_label("Move");
win.wait_for_button();

Note how the parts of the photo that didn’t fit in the window are simply not represented. What
would have appeared outside the window is ‘‘clipped’’ away.

10.7.8 And much more

And here, without further comment, is some more code:

Circle c {Point{100,200},50};

Ellipse e {Point{100,200}, 75,25};
e.set_color(Color::dark_red);

Mark m {Point{100,200},'x'};
m.set_color(Color::red);

308 A Display Model Chapter 10

ostringstream oss;
oss << "screen size: " << x_max() << "∗" << y_max()

<< "; window siz e: " << win.x_max() << "∗" << win.y_max();
Te xt siz es {Point{100,20},oss.str()};

Image scan{ Point{275,225},"scandinavia.jfif" };
scan.scale(150,200);

win.attach(c);
win.attach(m);
win.attach(e);

win.attach(siz es);
win.attach(scan);
win.set_label("Final!");
win.wait_for_button();

Can you guess what this code does? Is it obvious?

AA The connection between the code and what appears on the screen is direct. If you don’t yet see how
that code caused that output, it soon will become clear.

Note the way we used an ostringstream (§9.11) to format the text object displaying sizes. The
string composed in oss is referred to as oss.str().

Section 10.8 Getting the first example to run 309

10.8 Getting the first example to run
We hav e seen how to make a window and how to draw various shapes in it. In the following chap-
ters, we’ll see how those Shape classes are defined and show more ways of using them.

Getting this program to run requires more than the programs we have presented so far. In addi-
tion to our code in main(), we need to get the interface library code compiled and linked to our code,
and finally, nothing will run unless the GUI system we use is installed and correctly linked to ours.
Previous editions of the PPP code used the FLTK library; the current version uses the more modern
Qt library. Both work over a wide range of systems.

One way of looking at the program is that it has four distinct parts:
• Our program code (main(), etc.)
• Our interface library (Window, Shape, Polygon, etc.)
• The Qt library
• The C++ standard library

Indirectly, we also use the operating system.

10.8.1 Source files

Our graphics and GUI interface library consists of just five header files:
• Headers meant for users (aka ‘‘user-facing headers’’):

• Point.h

• Window.h

• Simple_window.h

• Graph.h

• GUI.h

• To implement the facilities offered by those headers, a few more files are used. Implementa-
tion headers:
• Qt headers
• GUI_private .h

• Image_private .h

• Colormap.h

• Code files:
• Window.cpp

• Graph.cpp

• GUI.cpp

• GUI_private .cpp

• Image_private .cpp

• Colormap.cpp

• Qt code
We can represent the user-facing headers like this:

310 A Display Model Chapter 10

struct Point{ ... };
Point.h:

// Graphing interface
struct Shape { ... };

...

Graph.h: // Window interface
struct Window { ... };

...

Window.h:

// GUI interface
struct Button { ... };

...

GUI.h:

// Simple window interface
struct Simple_window { ... };

...

Simple_window.h:

int main() { ... }
Ch10.cpp:

An arrow represents a #include. Until Chapter 14 you can ignore the GUI header.
A code file implementing a user-facing header #includes that header plus any headers needed for

its code. For example, we can represent Window.cpp like this

Qt headers

...
Graph.h:

...
Window.h:

...
GUI.h:

...
Image_private .h:

...
GUI_private .h:

Window code
Window.cpp:

In this way, we use files to separate what a user sees (the user-facing headers, such as Window.h)
and what the implementation of such headers uses (e.g., Qt headers and GUI_private .h. In modules,
that distinction is controlled by expor t specifiers (§7.7.1).

This ‘‘mess of files’’ is tiny compared to industrial systems, where many thousands of files are
common, not uncommonly tens of thousands of files. That’s one reason we prefer modules; they
help organize code. Fortunately, we don’t hav e to think about more than a few files at a time to get
work done. This is what we have done here: the many files of the operating system, the C++ stan-
dard library, and Qt are invisible to us as users of our graphics interface library.

Section 10.8.2 Putting it all together 311

10.8.2 Putting it all together

Different systems (such as Windows, Mac, and Linux) have different ways of installing a library
(such as Qt) and compiling and linking a program (such as ours). Worse, such set-up procedures
change over time. Therefore, we place the instructions on the Web: www.stroustrup.com/program-

ming.html and try to keep those descriptions up to date. When setting up your first project, be care-
ful and be prepared for possible frustration. Setting up a relatively complex system like this can be
very simple, but there are usually ‘‘things’’ that are not obvious to a novice. If you are part of a
course, your teacher or teaching assistant can help, and might even hav e found an easier way to get
you started. In any case, installing a new system or library is exactly where a more experienced
person can be of significant help.

Drill
The drill is the graphical equivalent to the ‘‘Hello, World!’’ program. Its purpose is to get you
acquainted with the simplest graphical output tools.

[1] Get an empty Simple_window with the size 600 by 400 and a label My window compiled,
linked, and run. Note that you have to link the Qt library, #include Graph.h and Sim-

ple_window.h in your code, and compile and link Graph.cpp and Window.cpp into your
program.

[2] Now add the examples from §10.7 one by one, testing between each added subsection
example.

[3] Go through and make one minor change (e.g., in color, in location, or in number of
points) to each of the subsection examples.

Review
[1] Why do we use graphics?
[2] When do we try not to use graphics?
[3] Why is graphics interesting for a programmer?
[4] What is a window?
[5] In which namespace do we keep our graphics interface classes (our graphics library)?
[6] What header files do you need to do basic graphics using our graphics library?
[7] What is the simplest window to use?
[8] What is the minimal window?
[9] What’s a window label?
[10] How do you label a window?
[11] How do screen coordinates work? Window coordinates? Mathematical coordinates?
[12] What are examples of simple ‘‘shapes’’ that we can display?
[13] What command attaches a shape to a window?
[14] Which basic shape would you use to draw a hexagon?
[15] How do you write text somewhere in a window?
[16] How would you put a photo of your best friend in a window (using a program you wrote

yourself)?

http://www.stroustrup.com/program-ming.html
http://www.stroustrup.com/program-ming.html

312 A Display Model Chapter 10

[17] You made a Window object, but nothing appears on your screen. What are some possible rea-
sons for that?

[18] What library do we use to implement our graphics/GUI interface library? Why don’t we use
the operating system directly?

Terms

color graphic JPEG coordinates
GUI line style display PPP_graphics

library software layer fill Shape

color HTML window Qt
image XML Simple_window

Exercises
We recommend that you use Simple_window for these exercises.

[1] Draw a rectangle as a Rectangle and as a Polygon. Make the lines of the Polygon red and
the lines of the Rectangle blue.

[2] Draw a 100-by-30 Rectangle and place the text ‘‘Howdy!’’ inside it.
[3] Draw your initials 150 pixels high. Use a thick line. Draw each initial in a different

color.
[4] Draw a 3-by-3 tic-tac-toe board of alternating white and red squares.
[5] Draw a red 1/4-inch frame around a rectangle that is three-quarters the height of your

screen and two-thirds the width.
[6] What happens when you draw a Shape that doesn’t fit inside its window? What happens

when you draw a Window that doesn’t fit on your screen? Write two programs that illus-
trate these two phenomena.

[7] Draw a two-dimensional house seen from the front, the way a child would: with a door,
two windows, and a roof with a chimney. Feel free to add details; maybe have ‘‘smoke’’
come out of the chimney.

[8] Draw the Olympic five rings. If you can’t remember the colors, look them up.
[9] Display an image on the screen, e.g., a photo of a friend. Label the image both with a

title on the window and with a caption in the window.
[10] Draw the source file diagram from §10.8.1.
[11] Draw a series of regular polygons, one inside the other. The innermost should be an equi-

lateral triangle, enclosed by a square, enclosed by a pentagon, etc. For the mathemati-
cally adept only: let all the points of each N-polygon touch sides of the (N+1)-polygon.
Hint: The trigonometric functions are found in <cmath> and module std (PPP2.§24.8).

[12] A superellipse is a two-dimensional shape defined by the equation

|
x

a
|m + |

y

b
|n = 1; where m > 0 and n > 0.

Look up superellipse on the Web to get a better idea of what such shapes look like.
Write a program that draws ‘‘starlike’’ patterns by connecting points on a superellipse.

Exercises 313

Take a, b, m, n, and N as arguments. Select N points on the superellipse defined by a, b,
m, and n. Make the points equally spaced for some definition of ‘‘equal.’’ Connect each
of those N points to one or more other points (if you like you can make the number of
points to which to connect a point another argument or just use N–1, i.e., all the other
points).

[13] Find a way to add color to the lines from the previous exercise. Make some lines one
color and other lines another color or other colors.

Postscript
AAThe ideal for program design is to have our concepts directly represented as entities in our program.

So, we often represent ideas by classes, real-world entities by objects of classes, and actions and
computations by functions. Graphics is a domain where this idea has an obvious application. We
have concepts, such as circles and polygons, and we represent them in our program as class Circle

and class Polygon. Where graphics is unusual is that when writing a graphics program, we also
have the opportunity to see objects of those classes on the screen; that is, the state of our program is
directly represented for us to observe – in most applications we are not that lucky. This direct cor-
respondence between ideas, code, and output is what makes graphics programming so attractive.
Please do remember, though, that graphics/GUI is just an illustration of the general idea of using
classes to directly represent concepts in code. That idea is far more general and useful: just about
anything we can think of can be represented in code as a class, an object of a class, or a set of
classes.

This page intentionally left blank

I
Index

Knowledge is of two kinds.
We know a subject ourselves,

or we know where
we can find information on it.

– Samuel Johnson

Token
!= not equal 500
&

address of 439
reference to 194, 196

&&
move 494
rvalue reference 494

()
application, operator 610
call, operator 610
initializer 46
vector initializer 72

∗
contents of 439
dereference 440, 444
iterator 553

∗= scaling 40
+

addition 34
concatenation 36

++
increment 39, 58
iterator 553

+= 39
->

auto 205
dereference 444
member access 444

.
member 73, 223
member access 444

/∗ comment 163
// comment 19
:: 144

member 229
namespace 209

; semicolon 59
<<

output operator 19
user-defined 266

<
less than 500
less-than operator 58
order 604

= 494
== and 35
assignment 36
assignment operator 57, 490
delete 375
initializer 32, 46
Vector assignment 507

626 Index I

==
and = 35
equal 34, 500, 604
equality operator 57
iterator 553

={} initializer 46
=0 pure vir tual 374
>>

input operator 31, 33
str ing 33
user-defined 267

[]
{} lambda 412
map 578
subscript 444, 464, 466
subscript, operator 484

{}
block 66
format() argument 281
initializer 36, 46
lambda, [] 412

˜ destructor name 448

A
AA 2
abstract class 361
abstraction 54
access 373

. member 444
-> member 444
control 362

accumulate() 614
activation record, function 201
ad hoc polymorphism 517
Ada 516
addition, + 34
address 439

of, & 439
adjacent_difference() 614
age group example 397
Alan Perlis 483
Albert Einstein 151
Alex Stepanov 435, 553
algorithm 517

and container 553
fail 604
numerical 614
parallel 604
ranges 604
standard-library 604
STL 604
vector 604

all, rule of 496
allocation, new 443
allocator 523

almost container 593
alternatives

I/O error handling 261
to pointer 472

analysis 117
animation 426
Annemarie 32
Anya 449
application

domain 356
operator () 610

Application gui_main() 421
approximation 392
argument 69

{}, format() 281
checking, function 199
conversion, function 199
declaration 190
default 387
error 94
formal 190
name 191
pointer 470
value template 521

arithmetic, pointer 466
array 443

associative 578
built-in 594

array 473, 593
assertion 104
assignment

= 36
=, Vector 507
and initialization 38
copy 490
move 494
operator, = 57, 490
self 491

associative
array 578
container 578

attach() 291
attribute

[[fallthrough]] 64
[[nodiscard]] 616

auto 561
-> 205
return type 205
variable type 46

automatic store 442
avoiding error 99
Axis 297, 385, 390

– B – Index 627

B
:b, format() 282
bad() 258
balanced tree 580
base class 318, 367
basic guarantee 533
begin() 594

end() 500
benefits of OOP 376
bibliography 13
big-O 585, 621
binary tree 580
binar y_operation, concept 520
binar y_search() 621
binding, structured 580
Bjarne Stroustrup 10, 13
block, {} 66
body, function 69
bool 32
bottom-up, top-down 128
box, dialog 417
Brian Kernighan 17
browser I/O 410
buffer 143

I/O 253
overflow 465

builder, GUI 431
built-in

array 594
type 222

Button 415
byte 439

C
C

C++ and 10
with classes 10

C++
and C 10
and Simula 10
compiler 12
Core Guidelines 10, 12
design 11
ev olution 11
Foundation 12
history 10
ISO 8
stability 11

C++11 10
C++14 11
C++17 11
C++20 11
C++98 10
calculator example 119

call
cost of vir tual 370
implementation, function 200
operator () 610
recursive function 203
stack, function 203

callee error handling 91
caller error handling 90
capacity(), Vector 506
capture, lambda 613
case 62
cat() 471
catch

exception 95
tr y 530

category, iterator 597
CC 2
CG 12
char 32
character literal 32
Checked_iterator 599
checking

function argument 199
optional 527
range 525

chrono 245, 586
Churchill, Winston 513
cin input stream 31
Circle 342

and Ellipse 345
class 123, 222

abstract 361
base 318, 367
constructor 227
derived 367, 370
graphics interface 316
GUI interface 316
hierarchy 368
implementation 223
interface 223, 237
member 123, 223
member function 226
parameterized 517
pr ivate 142
public 142
scope 186
template 517

classification, I/O 252
cleaning code 158
clipping 339
Closed_polyline 329

Polygon and 334
Rectangle and 302

code
cleaning 158
file, object 21

628 Index I

file, source 21
generalize 547
pseudo 119
ugly 56, 190

Color 323
invisible 339
RGB 325

comment 102, 162
// 19
/∗ 163

comparison operator 500
compatibility 527
compilation 21
compiler

C++ 12
explorer 12

compile-time
computation 204
error 24, 84, 86

completing a program 152
computation 52

compile-time 204
concatenation, + 36
concept, predicate 620
concept 518

binar y_operation 520
convertible_to 520
copyable 520
der ived_from 520
equality_comparable 519
equality_comparable_with 519
floating_point 520
forward_iterator 519
indirect_unar y_predicate 520
input_iterator 519
integral 520
invocable 616, 618
invocable 520
moveable 520
output_iterator 519
predicate 519
random_access_iterator 519
random_access_range 519
range 519
regular 520
semiregular 520
sor table 520
totally_ordered 520
totally_ordered_with 520

console I/O 410
const 57

declaration 184
member function 242
reference, pass-by 194

constant
expression 56

magic 159
symbolic 159

consteval 205
constexpr 56, 204
constraint on solution 527
constr uct_at() 524
constructor

class 227
copy 239, 489
default 240, 496
explicit 497
move 494

container
algorithm and 553
almost 593
and inheritance 520
associative 578
list 591
map 578
multimap 591
multiset 591
overview 591
set 589
STL 592
unordered_map 585
vector 591

contents of, ∗ 439
contract 104
control 414

access 362
inversion 411, 422

conversion 44
function argument 199
narrowing 45
to enum 234
widening 45

convertible_to, concept 520
coordinate 296
copy 488

assignment 490
constructor 239, 489
deep 492
default 488
elision 494
I/O example 594
shallow 492

copy() 487, 619
copyable, concept 520
copy_if() 620
Core Guidelines, C++ 10, 12
correctness 53
corruption, memory 440
cost

of vir tual call 370
of vir tual, memory 370

Courtney 449

– C – Index 629

cout output stream 19
.cpp 21
cppreference 12
C-style string 471

D
:d, format() 282
data 546

graphing 397
date 589
Date example 266, 270
David Wheeler 65, 545
deallocation

delete 446
delete[] 446

debugging 101, 498
GUI 427

declaration 42, 181
argument 190
const 184
function 71
retur n type 190
using 210
variable 184

deep copy 492
default

argument 387
constructor 240, 496
copy 488
destructor 448
initialization 34, 185
member initializer 242

default 62
default_random_engine 108
definition 42, 182

function 69
in-class 144
member function 229
operator 236, 501

delete
= 375
deallocation 446
naked 450
new and 446

delete[] deallocation 446
dereference

-> 444
∗ 440, 444
nullptr 469

derived 366
class 367, 370

der ived_from, concept 520
design 117

C++ 11
strategy 117

destroy() 523
destroy_at() 564
destructor 447–448

default 448
generated 448
name, ˜ 448
pointer 496
resource 496
vir tual 449, 496

development strategy 117
device

input 252
output 252

dialog box 417
directive, using 210
dispatch 367
display model 290
distribution, random number 108
divide-and-conquer 54
domain, application 356
Donald Knuth 606
double 32

int to 89
doubly-linked list 556, 591
Doug McIlroy 577
Dow Jones example 583
draw() 291
draw_all() example 518
Drill 3, 24
duration 587
duration_cast 588
dynamic memory 442

E
editor example 566
efficiency 53, 527
Einstein, Albert 151
elision, copy 494
Ellipse 344

Circle and 345
else 60
empty

statement 59
str ing 34
string 72

encapsulation pr ivate 368
end() 594

begin() 500
fail 604

engine, random number 108, 588
entity 184
enum

class 233
conversion to 234
enumeration 233

630 Index I

plain 235
scoped 233
underlying type 234

enumeration, enum 233
enumerator 233
environment, programming 24
eof() 258
equal, == 34, 500, 604
equality operator, == 57
equality_comparable, concept 519
equality_comparable_with, concept 519
equal_range() 622
erase()

list 562
Vector 564
vector 562

error
argument 94
avoiding 99
compile-time 24, 84, 86
finding 99
handling 154
handling alternatives, I/O 261
handling, callee 91
handling, caller 90
input 97
I/O 258
link-time 24, 84, 88
logic 24, 84, 89
range 95, 465
reporting 93
run-time 24, 84, 89
sources of 85
syntax 84, 86
throw on I/O 260
transient 465
type 84, 87

error() 90
essential operation 495
estimation 100
Euler, Leonhard 1
evaluation

order of 206–207
short-circuit 207

ev olution, C++ 11
example

age group 397
calculator 119
copy I/O 594
Date 266, 270
Dow Jones 583
draw_all() 518
editor 566
exponentiation 392
Expression 128
Fr uit 589

get10() 261
get_int() 264
gods 452
gr id 321
grow() 503
int_to_month() 234
Jack-and-Jill 546, 554
Larger_than 610
Lines_window 419
Link 452
Menu 418
No_case 620
Output_range 598
palindrome() 76, 475
Random 588
Reading 257
read-one-value 261
Record 612
skip_to_int() 263
suspicious() 530
TC++PL 579
temperature 74, 256
Te xt_iterator 569
to_int() 234
Token 121
Token_stream 142
traffic-light 426
Vector 437, 451, 502, 514, 522, 534, 560, 564
word counting 578

exception 525
catch 95
exception 98
out_of_range 96
resource and 529
runtime_error 98
throw 94

exception exception 98
executable file 23
Exercise 3
expect() 105
explicit constructor 497
explorer, compiler 12
exponential_distr ibution 108
exponentiation example 392
expor t 211
expression 55

constant 56
lambda 106, 389, 613

Expression example 128
exter n 182

F
fail

algorithm 604
end() 604

– F – Index 631

fail() 258
fall through 192
[[fallthrough]] attribute 64
false 32
feature creep 127, 135
Feynman, Richard 251
file 254

executable 23
header 25, 213
object code 21
read 256, 269
source code 21
stream, fstream 255
stream, ifstream 255
stream, ofstream 255
write 256

fill 304
finally() 542
find() 605
find_if() 608
finding error 99
first, pair 580
five, rule of 496
floating-point literal 32
floating_point, concept 520
Font 347
for

range 73, 562
statement 67

formal argument 190
format, output 281
format()

argument {} 281
:b 282
:d 282
:o 282
:x 282

forward_iterator, concept 519
forward_list 592
Foundation, C++ 12
framework, test 108
free store 442
free() 472
Fr uit example 589
fstream file stream 255
function 68

activation record 201
argument checking 199
argument conversion 199
body 69
call implementation 200
call, recursive 203
call stack 203
class member 226
const member 242
declaration 71

definition 69
definition, member 229
graphing 382
hash 585
local 613
member 73
modifying 243
object 610–611
parameterized 517
pure vir tual 374
purpose of 69
table, vir tual 369
template 517
utility 265
vir tual 367, 370

Function 299, 386

G
Gavin 571
generalize code 547
generated destructor 448
generator

random number 109
type 516

generic programming 517–518
Gerald Weinberg 51
get10() example 261
get_int() example 264
gif 351
global

initialization of 208
scope 186

gods example 452
good() 258
grammar 127

notation 129
granularity 357
graphical layout 400
graphics 290, 356

interface class 316
model 295

graphing
data 397
function 382

Graph_lib namespace 292
gr id example 321
grow, vector 73
grow() example 503
guarantee

basic 533
no-throw 533
resource 533
strong 533

GUI
builder 431

632 Index I

debugging 427
interface class 316
I/O 410
starting with 311

Guidelines, C++ Core 10, 12
gui_main() 367

Application 421

H
handling, error 154
hash

function 585
table 578

header
file 25, 213
PPP.h 11
PPPheaders.h 11

heap 442
Hein, Piet 221
Hello, Wor ld! 18
hiding, implementation 453
hierarchy, class 368
high-level programming 7
history, C++ 10

I
ideal 380
ideals, STL 549
if statement 60
ifstream file stream 255
Image 306, 350
implementation 117

class 223
function call 200
hiding 453
inheritance 376

implicit
release 530
release of resource 448

impor t 20, 211
In_box 416
in-class

definition 144
initializer 242

#include 25, 213
increment, ++ 39, 58
indentation 190
indirect_unar y_predicate, concept 520
inheritance 367

container and 520
implementation 376
interface 376

initialization

assignment and 38
default 34, 185
of global 208
with list 486

initializer
{} 36, 46
() 46
={} 46
= 32, 46
() vector 72
default member 242
in-class 242
new 445
order, member 420, 487

initializer_list 486
inline 231
in-memory representation 42, 270
inner_product() 617
input 52

device 252
error 97
operator, >> 31, 33
stream, cin 31

input_iterator, concept 519
inser t()

list 562
Vector 565
vector 562

installation instructions 311
installing Qt 311
instantiation, template 516
instructions, installation 311
int 32

to double 89
integer literal 32
integral, concept 520
interface

class 223, 237
class, graphics 316
class, GUI 316
inheritance 376
minimal 357

int_to_month() example 234
invariant 229, 335
inversion, control 411, 422
invisible, Color 339
invocable

concept 616, 618
concept 520

I/O 53
browser 410
buffer 253
classification 252
console 410
error 258
error handling alternatives 261

– I – Index 633

error, throw on 260
GUI 410
stream 253

iota() 614
is kind of 318, 367
ISO

C++ 8
standard 245

istream 253
width() 477

istream_iterator 594
istr ingstream 283
iterate 65, 558
iteration statement 65
iterator

++ 553
∗ 553
== 553
category 597
range 597
sequence and 552

J
Jack-and-Jill example 546, 554
Johnson, Samuel 627
jpg 306, 351

K
Kernighan, Brian 17
keyword 41
Knuth, Donald 606
Kristen Nygaard 115

L
lambda

[] {} 412
capture 613
expression 106, 389, 613

Larger_than example 610
layout

graphical 400
object 368

lcd() 614
lcm() 614
leak

memory 447
resource 530, 539

Leonhard Euler 1
less than, < 500
less-than operator, < 58
library 118

standard 20

lifting 555
Line 318
Lines 320
Line_style 325
Lines_window example 419
Link example 452
linked list 452
linking 23
link-time error 24, 84, 88
list

doubly-linked 556, 591
initialization with 486
linked 452
operation 453
singly-linked 556, 591

List 555
list

container 591
erase() 562
inser t() 562
str ing, vector 572

literal
character 32
floating-point 32
integer 32
string 19, 32

local
function 613
scope 186
static variable 208

logic error 24, 84, 89
look-ahead 121
loop

variable 66–67
wait 413

Louis Pasteur 29
lowercase 620
low-level programming 7
lvalue 55, 58

M
magic constant 159
main() 20, 192
make_shared() 539
make_unique() 450, 538
malloc() 472
management, resource 530
map 580

[] 578
container 578

Mar k 348
Mar ked_polyline 330
Mar ks 332
Maurice Wilkes 83
McIlroy, Doug 577

634 Index I

measuring time 586
member

. 73, 223
:: 229
access, . 444
access, -> 444
class 123, 223
function 73
function, class 226
function, const 242
function definition 229
initializer, default 242
initializer order 420, 487

memory 439
corruption 440
cost of vir tual 370
dynamic 442
leak 447
raw 524

Menu example 418
midpoint() 614
minimal interface 357
model 356

graphics 295
modifying function 243
module 23, 211

PPP_graphics 292, 317
PPP_suppor t 11, 527
scope 186
std 20

move 493
&& 494
assignment 494
constructor 494
retur n 537

moveable, concept 520
multimap container 591
multiset container 591
mutability 359

N
\n 19
naked

delete 450
new 450
new 539

name 40
˜ destructor 448
argument 191

namespace 209
:: 209
Graph_lib 292
scope 186
std 19

naming style 358

narrow() 200
narrowing conversion 45
Negroponte, Nicholas 409
nested scope 188
new 442

allocation 443
and delete 446
initializer 445
naked 450
naked 539

Nicholas 31
Negroponte 409

no op 365
No_case example 620
[[nodiscard]] attribute 616
Norah 55
not equal, != 500
notation

grammar 129
shorthand 519

no-throw guarantee 533
not_null 474
now() 586
null

pointer 468
reference 468

nullptr 446
dereference 469
test 469

numerical algorithm 614
Nygaard, Kristen 115

O
:o, format() 282
object 30, 42

code file 21
function 610–611
layout 368

object-oriented programming 368, 518
of course 126
ofstream file stream 255
OOP 368

benefits of 376
Open_polyline 328
operation

essential 495
list 453
style 357

operator 34, 57
() application 610
= assignment 57, 490
() call 610
== equality 57
>> input 31, 33
< less-than 58

– O – Index 635

<< output 19
[] subscript 484
comparison 500
definition 236, 501
overloading 236, 501
relational 500

optional checking 527
order

< 604
member initializer 420, 487
of evaluation 206–207

ostream 253
ostream_iterator 594
ostr ingstream 283
out of range 465
Out_box 417
out_of_range exception 96
output 52

device 252
format 281
operator, << 19
range 598
stream, cout 19

output_iterator, concept 519
Output_range example 598
overflow 396

buffer 465
overloading, operator 236, 501
overr ide 366, 370–371
overview, container 591

P
Painter, Qt 329
pair 582

first 580
second 580

palindrome() example 76, 475
parallel algorithm 604
parameter 69, 190

type template 514
parameterized

class 517
function 517

parametric polymorphism 517
parser 128, 130

recursive descent 140
par tial_sum() 614
pass-by

const reference 194
reference 196
value 193
value or const-reference 197

Pasteur, Louis 29
perfection 239
Perlis, Alan 483

philosophy, teaching 5
Piet Hein 221
Point 317
pointer 439

alternatives to 472
and reference 468–469
argument 470
arithmetic 466
destructor 496
null 468
problem 443, 464–465
semantics 492
this 456
use 537

Polygon 300
and Closed_polyline 334

polyline 328
polymorphism

ad hoc 517
parametric 517
run-time 367

portability 9
postcondition 106
Postscript 4
PPP support 11
PPP_graphics module 292, 317
PPP.h, header 11
PPPheaders.h, header 11
PPP_suppor t, module 11, 527
precondition 104
predicate 612
predicate

concept 519
concept 620

preprocessor 215
pr intf() 281
pr ivate 223, 362

class 142
encapsulation 368

problem, pointer 443, 464–465
problems, startup 12
program 18

completing a 152
structure 146

programming
environment 24
generic 517–518
high-level 7
low-level 7
object-oriented 368, 518

promotion 44
protected 368
prototype 119
pseudo code 119
public 223

class 142

636 Index I

pure
vir tual, =0 374
vir tual function 374

purpose of function 69
push_back()

Vector 507
vector 73

Q
Qt 12, 295

installing 311
Painter 329

R
RAII 532
random

number 108
number distribution 108
number engine 108, 588
number generator 109
number seed() ,

Random example 588
random_access_iterator, concept 519
random_access_range, concept 519
random_int() 109, 588
range

checking 525
error 95, 465
for 73, 562
iterator 597
output 598
sequence and 552

range, concept 519
ranges algorithm 604
raw memory 524
read file 256, 269
Reading example 257
read-one-value example 261
Record example 612
Rectangle 301, 336

and Closed_polyline 302
recursive

descent parser 140
function call 203

red-black tree 578
redraw() 366
Reenskaug, Trygve 603
reference

&& rvalue 494
material 13
null 468
pass-by 196
pass-by const 194

pointer and 468–469
semantics 492
to, & 194, 196

regular, concept 520
relational operator 500
release 531

1.0 156
implicit 530
of resource, implicit 448

repeat 65
reporting, error 93
representation

in-memory 42, 270
Vector 505

requirement 117
requires 519
reser ve(), Vector 506
resize(), Vector 506
resource 448

and exception 529
destructor 496
guarantee 533
implicit release of 448
leak 530, 539
management 530

resources, Web 12
return

type, auto 205
type, suffix 205

retur n
move 537
type declaration 190
value 192

Review 4, 26
RGB Color 325
Richard Feynman 251
round_to() 200
rule

of all 496
of five 496
of zero 496

run-time
error 24, 84, 89
polymorphism 367

runtime_error exception 98
rvalue 55

reference, && 494

S
safety, type 43
Samuel Johnson 627
scaling 401

∗= 40
scope 186

class 186

– S – Index 637

global 186
local 186
module 186
namespace 186
nested 188
statement 186

search
sort 620
tree 580

second, pair 580
seed(), random number ,
selection statement 60
self assignment 491
semantics

pointer 492
reference 492
value 492

semicolon, ; 59
semiregular, concept 520
sequence

and iterator 552
and range 552
vector 71

set container 589
setfill() 284
shallow copy 492
Shape 297, 360
shared_ptr 539
short-circuit evaluation 207
shorthand notation 519
Simple_window 293, 412
simplicity 53
Simula, C++ and 10
singly-linked list 556, 591
size(), vector 72
sizeof 441
skip_to_int() example 263
slice 521
solution, constraint on 527
sort search 620
sor t() 76, 620
sor table, concept 520
source code file 21
sources of error 85
span 473
specification 117
stability, C++ 11
stack

function call 203
store 442

standard
ISO 245
library 20

standard-library algorithm 604
starting with GUI 311
startup problems 12

state 52, 222
stream 258
valid 229

statement 58
empty 59
for 67
if 60
iteration 65
scope 186
selection 60
switch 62
while 65

static store 442
static variable, local 208
std

module 20
namespace 19

Stepanov, Alex 435, 553
STL

algorithm 604
container 592
ideals 549

store
automatic 442
free 442
stack 442
static 442

strategy
design 117
development 117

strcpy() 472
stream

cin input 31
cout output 19
fstream file 255
ifstream file 255
I/O 253
ofstream file 255
state 258
str ing 283

string
C-style 471
empty 72
literal 19, 32

str ing 30, 32, 593
>> 33
empty 34
stream 283
vector list 572

str len() 472
strong guarantee 533
Stroustrup, Bjarne 10, 13
structure, program 146
structured binding 580
style

naming 358

638 Index I

operation 357
subclass 367
subscript

[] 444, 464, 466
operator [] 484

suffix return type 205
superclass 367
support, PPP 11
Sure! 135
suspicious() example 530
switch statement 62
symbolic constant 159
syntax error 84, 86
sys_days 589
system_clock 586

T
table

hash 578
vir tual function 369

TC++PL example 579
teaching philosophy 5
technicalities 180
temperature example 74, 256
template 514

argument, value 521
class 517
function 517
instantiation 516
parameter, type 514

Terms 4
test 107, 117, 162

framework 108
nullptr 469

testing 154
Te xt 305, 346
Te xt_iterator example 569
thinking 116
this pointer 456
throw

exception 94
on I/O error 260

time, measuring 586
time_point 587
timer_wait() 426
to_int() example 234
Token example 121
Token_stream example 142
top-down bottom-up 128
totally_ordered, concept 520
totally_ordered_with, concept 520
traffic-light example 426
transient error 465
translation unit 23
transparency 325

traverse, vector 72
tree

balanced 580
binary 580
red-black 578
search 580

tr ue 32
truncate 45
Try this 4
tr y catch 530
Trygve Reenskaug 603
type 30, 42

auto return 205
auto variable 46
built-in 222
enum underlying 234
error 84, 87
generator 516
safety 43
suffix return 205
template parameter 514
user-defined 222

U
ugly code 56, 190
underlying type, enum 234
unifor m_int_distribution 108
uninitialized variable 44
uninitialized_fill() 524
uninitialized_move() 523
unique_copy() 619
unique_ptr 450, 538

Vector 539
unit 588

translation 23
unordered_map container 585
use

case 119
pointer 537

user-defined
>> 267
<< 266
type 222

using
declaration 210
directive 210

utility function 265

V
valarray 593
valid state 229
value 42

or const-reference, pass-by 197

– V – Index 639

pass-by 193
retur n 192
semantics 492
template argument 521

variable 30, 32, 42
declaration 184
local static 208
loop 66–67
type, auto 46
uninitialized 44

vector algorithm 604
Vector

assignment = 507
capacity() 506
erase() 564
example 437, 451, 502, 514, 522, 534, 560, 564
inser t() 565
push_back() 507
representation 505
reser ve() 506
resize() 506
unique_ptr 539

vector 436
container 591
erase() 562
grow 73
initializer, () 72
inser t() 562
list string 572
push_back() 73
sequence 71
size() 72
traverse 72

vector<int> 72
vector<str ing> 72
vir tual 365

=0 pure 374
call, cost of 370
destructor 449, 496
function 367, 370
function, pure 374
function table 369
memory cost of 370

Vitruvius 355
void 191
Voltaire 381
vtbl 369

W
wait loop 413
wait_for_button() 359, 367, 411, 413
Web resources 12
weekday() 589
Weinberg, Gerald 51
Wheeler, David 65, 545

while statement 65
whitespace 33
widening conversion 45
Widget 414

and Window 415
width(), istream 477
Wilkes, Maurice 83
Window, Widget and 415
Winston Churchill 513
word counting example 578
write file 256

X
:x, format() 282
XX 2

Y
year_month_date 245

Z
zero, rule of 496

	Cover
	Title Page
	Copyright Page
	Contents
	Preface
	10 A Display Model
	10.1 Why graphics?
	10.2 A display model
	10.3 A first example
	10.4 Using a GUI library
	10.5 Coordinates
	10.6 Shapes
	10.7 Using Shape primitives
	10.8 Getting the first example to run

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	X
	Y
	Z

