
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780138203283
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780138203283
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780138203283

Clean Architecture
with .NET

Dino Esposito

Clean Architecture with .NET
Published with the authorization of Microsoft Corporation by:

Pearson Education, Inc., Hoboken, New Jersey

Copyright © 2024 by Dino Esposito.
All rights reserved. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information
regarding permissions, request forms, and the appropriate contacts within the
Pearson Education Global Rights & Permissions Department, please visit
www.pearson.com/permissions.

No patent liability is assumed with respect to the use of the information con-
tained herein. Although every precaution has been taken in the preparation
of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of
the information contained herein.

ISBN-13: 978-0-13-820328-3

ISBN-10: 0-13-820328-8

Library of Congress Control Number: 2024930932

$PrintCode

Trademarks
Microsoft and the trademarks listed at http://www.microsoft.com on the
“Trademarks” webpage are trademarks of the Microsoft group of companies.
All other marks are property of their respective owners.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on
an “as is” basis. The author, the publisher, and Microsoft Corporation shall have
neither liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book or from
the use of the programs accompanying it.

Special Sales
For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs;
and content particular to your business, training goals, marketing focus, or
branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact
governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Editor-in-Chief

Brett Bartow

Executive Editor

Loretta Yates

Associate Editor

Shourav Bose

Development Editor

Kate Shoup

Managing Editor

Sandra Schroeder

Senior Project Editor

Tracey Croom

Copy Editor

Dan Foster

Indexer

Ken Johnson

Proofreader

Jennifer Hinchliffe

Technical Editor

Milan Jovanovic

Editorial Assistant

Cindy Teeters

Cover Designer

Twist Creative, Seattle

Compositor

codeMantra

Graphics

codeMantra

http://www.pearson.com/permissions
http://www.microsoft.com
mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com

Contents at a Glance

Introduction xv

PART I THE HOLY GRAIL OF MODULARITY

CHAPTER 1 The quest for modular software architecture 3

CHAPTER 2 The ultimate gist of DDD 23

CHAPTER 3 Laying the ground for modularity 47

PART II ARCHITECTURE CLEANUP

CHAPTER 4 The presentation layer 65

CHAPTER 5 The application layer 91

CHAPTER 6 The domain layer 133

CHAPTER 7 Domain services 169

CHAPTER 8 The infrastructure layer 189

PART III COMMON DILEMMAS

CHAPTER 9 Microservices versus modular monoliths 219

CHAPTER 10 Client-side versus server-side 255

CHAPTER 11 Technical debt and credit 285

Index 301

This page intentionally left blank

 v

Contents

Acknowledgments . xiii

Introduction .xv

PART I THE HOLY GRAIL OF MODULARITY

Chapter 1 The quest for modular software architecture 3
In the beginning, it was three-tier . 4

Core facts of a three-tier system . 4

Layers, tiers, and modularization . 7

The DDD canonical architecture . 9

The proposed supporting architecture . 9

Adding more to the recipe . 12

Different flavors of layers . 17

Hexagonal architecture . 17

Clean architecture . 18

Feature-driven architecture . 20

Summary . 22

Chapter 2 The ultimate gist of DDD 23
Design driven by the domain . 23

Strategic analysis . 24

Tactical design. 26

DDD misconceptions . 27

Tools for strategic design. 29

Ubiquitous language . 29

A domain-specific language vocabulary . 29

Building the glossary . 31

Keeping business and code in sync . 33

The bounded context . 36

Making sense of ambiguity. 37

vi Contents

Devising bounded contexts . 39

The context map .42

Upstream and downstream .42

An example context map .43

An example deployment map .44

Summary . 45

Chapter 3 Laying the ground for modularity 47
Aspects and principles of modularization .48

Separation of concerns .48

Loose coupling .49

Reusability .49

Dependency management . 50

Documentation . 50

Testability . 50

Applying modularization . 51

The presentation layer: interacting with the outside world 51

The application layer: processing received commands 51

The domain layer: representing domain entities 52

The data/infrastructure layer: persisting data . 52

Achieving modularity . 52

More modularity in monoliths . 52

Introducing microservices .54

The simplest solution ever . 56

Maintainability . 57

Designing for testability . 58

Summary . 60

PART II ARCHITECTURE CLEANUP

Chapter 4 The presentation layer 65
Project Renoir: the final destination . 66

Introducing the application . 66

The abstract context map . 68

Designing the physical context map . 71

Business requirements engineering . 74

Breakdown of software projects . 75

Event-based storyboards . 76

Fundamental tasks of Project Renoir . 77

Boundaries and deployment of the presentation layer 79

Knocking at the web server’s door . 79

ASP.NET application endpoints . 80

Presentation layer development . 82

Connecting to business workflows . 82

Front-end and related technologies . 86

API-only presentation . 88

Summary . 89

Chapter 5 The application layer 91
An architectural view of Project Renoir . 91

The access control subsystem . 92

The document-management subsystem .94

Project Renoir in Visual Studio . 95

Task orchestration . 96

What is a task, anyway? . 96

An example distributed task . 97

An example task in Project Renoir . 99

Data transfer . 99

From the presentation layer to the application layer 100

From the application layer to the persistence layer 104

Implementation facts . 106

Outline of an application layer . 106

Propagating application settings . 110

Logging . 113

Handling and throwing exceptions . 119

 Contents vii

viii Contents

Caching and caching patterns . 123

Injecting SignalR connection hubs . 126

Boundaries and deployment of the application layer 129

The dependency list . 129

Deployment options . 129

Summary . 131

Chapter 6 The domain layer 133
Decomposition of the domain layer . 133

The business domain model . 133

Helper domain services . 137

Devising a domain model . 138

Shifting focus from data to behavior . 138

Life forms in a domain model . 141

The domain model in Project Renoir . 145

The hitchhiker’s guide to the domain . 147

Treating software anemia . 148

Common traits of an entity class . 149

Rules of etiquette . 152

Style conventions . 161

Writing truly readable code . 165

Summary . 168

Chapter 7 Domain services 169
What is a domain service, anyway? . 170

The stateless nature of domain services . 170

Marking domain service classes . 170

Domain services and ubiquitous language . 171

Data access in domain services . 172

Data injection in domain services . 172

Common scenarios for domain services . 173

Determining the loyalty status of a customer . 173

Blinking at domain events . 174

 Contents ix

Sending business emails . 174

Service to hash passwords . 175

Implementation facts . 176

Building a sample domain service . 176

Useful and related patterns . 179

The REPR pattern adapted . 180

Open points . 184

Are domain services really necessary? . 184

Additional scenarios for domain services . 187

Summary . 187

Chapter 8 The infrastructure layer 189
Responsibilities of the infrastructure layer . 190

Data persistence and storage. 190

Communication with external services . 190

Communication with internal services . 191

Implementing the persistence layer . 192

Repository classes . 193

Using Entity Framework Core . 196

Using Dapper .205

Hosting business logic in the database .207

Data storage architecture .208

Introducing command/query separation .208

An executive summary of event sourcing . 213

Summary . 215

PART III COMMON DILEMMAS

Chapter 9 Microservices versus modular monoliths 219
Moving away from legacy monoliths .220

Not all monoliths are equal .220

Potential downsides of monoliths . 221

Facts about microservices .224

x Contents

Early adopters .224

Tenets of a microservices architecture and SOA 224

How big or small is “micro”? .225

The benefits of microservices .227

The gray areas .229

Can microservices fit all applications? .235

The big misconception of big companies .235

SOA and microservices .237

Are microservices a good fit for your scenario?237

Planning and deployment . 241

Modular monoliths .245

The delicate case of greenfield projects .246

Outlining a modular monolith strategy for new projects247

From modules to microservices .249

Summary .253

Chapter 10 Client-side versus server-side 255
A brief history of web applications .256

The prehistoric era .256

The server-scripting era .257

The client-scripting era. .260

Client-side rendering .262

The HTML layer .263

The API layer .266

Toward a modern prehistoric era .269

Server-side rendering .273

Front-end–back-end separation . 274

ASP.NET front-end options .275

ASP.NET Core versus Node.js .278

The blocking/non-blocking saga .280

Summary .283

 Contents xi

Chapter 11 Technical debt and credit 285
The hidden cost of technical debt .285

Dealing with technical debt .286

Ways to address debt .288

Debt amplifiers .290

The hidden profit of technical credit .293

The theory of broken windows .293

The power of refactoring .295

Do things right, right away .297

Summary .299

Index 301

This page intentionally left blank

 xiii xiii

Acknowledgments

As hair thins and grays, memories return of when I was the youngest in every meeting
or conference room. In 30 years of my career, I witnessed the explosion of Windows as
an operating system, the rise of the web accompanied by websites and applications, and
then the advent of mobile and cloud technologies.

Several times, I found myself having visions related to software technology devel-
opments, not too far from what happened a few years later. At other times, I surprised
myself by formulating personal projects halfway between dreams and ambitious goals.

The most unspoken of all is the desire to travel the world, speaking at international
conferences without the pressure to talk about what is cool and trendy but only about
what I have seen and made work—without mincing words and without filters or
reservations. To do this, I needed to work—finally—daily on the development of real
applications that contributed to some kind of business and simplified the lives of some
kind of audience.

Thanks to Crionet and KBMS Data Force, this is now a reality.

After many years, I have a full-time position (CTO of Crionet), a team of people grown
in a few years from juniors to bold and capable professionals, and the will to share with
everyone a recipe for making software that is neither secret nor magical.

I have nothing to sell; only to tell. And this book is for those who want to listen.

This book is for Silvia and Francesco.

This book is for Michela.

This book is for Giorgio and Gaetano.

This book was made possible by Loretta and Shourav and came out as you’re getting
it thanks to Milan, Tracey, Dan, and Kate.

This book is my best until the next one!

This page intentionally left blank

 xv

Introduction

I graduated in Computer Science in the summer of 1990. At the time, there were not
many places in Europe to study computers. The degree course was not even set up with

its own Computer Science faculty but was an extension of the more classical faculty of
Mathematics, Physics, and Natural Sciences. Those with strong computer expertise in the
1990s were really cool people—in high demand but with unclear career paths. I started
as a Windows developer. Computer magazines were popular and eagerly awaited every
month. I dreamt of writing for one of them. I won the chance to do it once and liked it so
much that I’m still doing it today, 30 years later.

My passion for sharing knowledge was so intense that five years after my first serious
developer job it became my primary occupation. For over two decades all I did was write
books and articles, speak at conferences, teach courses, and do occasional consulting.
Until 2020, I had a very limited exposure to production code and the routine of day-by-
day development. Yet, I managed to write successful books for those who were involved
in real-world projects.

Still, in a remote area of my mind was a thorny doubt: Am I just a lecture type of pro-
fessional or am I also an action person? Will I be able to ever build a real-world system?
The pandemic and other life changes brought me to ultimately find an answer.

I faced the daunting task of building a huge and intricate system in a fraction of the
time originally scheduled that the pandemic sharply cut off. No way to design, be agile,
do testing and planning—the deadline was the only certain thing. I resorted to doing—
and letting a few other people do—just what I taught and had discovered while teaching
for years. It worked. Not just that. Along the way, I realized that the approach we took
to build software, and related patterns, also had a name: clean architecture. This book is
the best I know and have learned in three years of everyday software development after
over two decades of learning, teaching, and consulting.

In our company, we have several developers who joined as juniors and have grown
up using and experimenting with the content of this book. It worked for us; I hope it will
work for you, too!

xvi Introduction

Who should read this book

Software professionals are the audience for this book, including architects, lead develop-
ers, and—I would say, especially—developers of any type of .NET applications. Everyone
who wants to be a software architect should find this book helpful and worth the cost.
And valid architects are, for the most part, born developers. I strongly believe that the
key to great software passes through great developers, and great developers grow out
of good teachers, good examples, and—hopefully—good books and courses.

Is this book only for .NET professionals? Although all chapters have a .NET flavor, most
of the content is readable by any software professional.

Assumptions
This book expects that you have at least a minimal understanding of .NET development and
object-oriented programming concepts. A good foundation in using the .NET platform and
knowledge of some data-access techniques will also help. We put great effort into making
this book read well. It’s not a book about abstract design concepts, and it’s not a classic archi-
tecture book either, full of cross-references or fancy strings in square brackets that hyperlink
to some old paper listed in a bibliography at the end of the book. It’s a book about building
systems in the 2020s and facing the dilemmas of the 2020s, from the front end to the back
end, passing through cloud platforms and scalability issues.

This book might not be for you if…

If you’re seeking a reference book or you want to find out how to use a given pattern or
technology then this book might not for you. Instead, the goal is sharing and
transferring knowledge so that you know what to do at any point. Or, at least, you now
know what other guys—Dino and team—did in an analogous situation.

Organization of this book

In all, modern software architecture has just one precondition: modularity. Whether you
go with a distributed, service-oriented structure, a microservices fragmented pattern,
or a compact monolithic application, modularity is crucial to build and manage the
codebase and to further enhance the application following the needs of the business.
Without modularity, you can just be able to deliver a working system once, but it will be
hard to expand and update it.

 Introduction xvii

Part I of this book, titled “The Holy Grail of modularity,” lays the foundation of soft-
ware modularity, tracing back the history of software architecture and summarizing the
gist of domain-driven design (DDD)—one of the most helpful methodologies for break-
ing down business domains, though far from being an absolute necessity in a project.

Part II, “Architecture cleanup,” is about the five layers that constitute, in the vision of
this book, a “clean” architecture. The focus is not much on the concentric rendering of
the architecture, as popularized by tons of books and articles, but on the actual value
delivered by constituent layers: presentation, application, domain, domain services, and
infrastructure.

Finally, Part III, “Common dilemmas,” focuses on three frequently faced stumbling
blocks: monoliths or microservices, client-side or server-side for the front end, and the
role and weight of technical debt.

Downloads: reference application

Part II of the book describes a reference application, Project Renoir, whose entire code-
base is available on GitHub at:

https://github .com/Youbiquitous/project-renoir

A zipped version of the source code is also available for download at
MicrosoftPressStore .com/NET/download .

Note The reference application requires .NET 8 and is an ASP.NET application
with a Blazor front end. It uses Entity Framework for data access and assumes a
SQL Server (any version) database.

Errata, updates, and book support

We’ve made every effort to ensure the accuracy of this book and its companion content.
You can access updates to this book—in the form of a list of submitted errata and their
related corrections—at:

MicrosoftPressStore .com/NET/errata

If you discover an error that is not already listed, please submit it to us at the same
page.

https://github.com/Youbiquitous/project-renoir
http://MicrosoftPressStore.com/NET/download
http://ASP.NET
http://MicrosoftPressStore.com/NET/errata

xviii Introduction

For additional book support and information, please visit
MicrosoftPressStore .com/Support.

Please note that product support for Microsoft software and hardware is not offered
through the previous addresses. For help with Microsoft software or hardware, go to
http://support .microsoft .com.

Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter .com/MicrosoftPress

http://MicrosoftPressStore.com/Support
http://support.microsoft.com
http://twitter.com/MicrosoftPress

 23

C H A P T E R 2

The ultimate gist of DDD

Get your facts first, and then you can distort them as much as you please.
—Mark Twain

Domain-driven design (DDD) is a 20-year-old methodology. Over the years, there have been several
books, learning paths, and conferences dedicated to it, and every day, various social networks

archive hundreds of posts and comments about it. Still, although the essence of DDD remains surpris-
ingly simple to grasp, it is much less simple to adopt.

Today more than ever, software adds value only if it helps streamline and automate business pro-
cesses. For this to happen, the software must be able to faithfully model segments of the real world.
These segments are commonly referred to as business domains.

For a few decades, client/server, database-centric applications have provided an effective way
to mirror segments of the real world—at least as those segments were perceived at the time. Now,
though, working representations of segments of the real world must become much more precise
to be useful. As a result, a database with just some code around is often no longer sufficient. Faithfully
mirroring real-world behaviors and processes requires an extensive analysis.

What does this have to do with DDD? Ultimately, DDD has little to do with actual coding. It relates to
methods and practices for exploring the internals of the business domain. The impact of DDD on cod-
ing and on the representation of the real world depends on the results of the analysis.

DDD is not strictly required per se, but it is an effective method for exploring and understanding
the internal structure of the business domain. What really matters is getting an accurate analysis of the
domain and careful coding to reflect it. DDD systematizes consolidated practices to produce an archi-
tectural representation of the business domain, ready for implementation.

Design driven by the domain

Conceptually, DDD is about design rather than coding. It rests on two pillars: one strategic and one
tactical. The original authors of DDD outlined the strategy pillar and suggested tactics to achieve it.
Today, however, I believe strategic analysis is the beating heart of DDD.

24 PART I The Holy Grail of modularity

Strategic analysis
Any world-class software application is built around a business domain. Sometimes, that business
domain is large, complex, and intricate. It is not a natural law, however, that an application must rep-
resent an intricate business domain to be broken down into pieces with numerous and interconnected
function points. The strategic analysis can easily return the same monolithic business domain you
started from.

Top-level architecture
The ultimate goal of the DDD strategic analysis is to express the top-level architecture of the business
domain. If the business domain is large enough, then it makes sense to break it down into pieces, and
DDD provides effective tools for the job. Tools like ubiquitous language (UL) and bounded contexts
may help identify subdomains to work on separately. Although these subdomains may potentially
overlap in some way, they remain constituent parts of the same larger ecosystem.

Figure 2-1 illustrates the conceptual breakdown of a large business domain into smaller pieces, each
of which ultimately results in a deployed application. The schema—overly simplified for the purposes
of this book—is adapted from a real project in sport-tech. The original business domain—a data-
collection platform—is what stakeholders attempted to describe and wanted to produce. The team
conducted a thorough analysis and split the original domain into five blocks. Three of these blocks
were then further broken into smaller pieces. The result is 10 applications, each independent from the
other in terms of technology stack and hosting model, but still able to communicate via API and in
some cases sharing the same database.

TABLET APP

DATA ROUTER

SCORING
API

DATA
STORAGE

PUBLIC APIMANAGEMENT

LIVE
INSPECTOR

ROUTER
INSPECTOR

SAMPLE
DATA

COLLECTION
PLATFORM

MODULE

OPERATIONS
MODULE

INTERNAL
TOOLING

UI
WIDGETS

MOBILE
APP

FIGURE 2-1 Breakdown of a business domain.

 CHAPTER 2 The ultimate gist of DDD 25

Business domain breakdown
Nobody really needs DDD (or any other specific methodology) to move from the dashed circle on the
left of Figure 2-1 to the final list of 10 bold squares on the right. As hinted at earlier, DDD doesn’t push
new revolutionary practices; rather, it systematizes consolidated practices. With knowledge of the
business and years of practice in software architecture, a senior architect might easily design a similar
diagram without using DDD, instead relying on the momentum of experience and technical common
sense. Still, although deep knowledge of a business domain might enable you to envision a practical
way to break up the domain without the explicit use of an analytical method, DDD does provide a
step-by-step procedure and guidance.

Subdomains versus features
Recall the block labeled “Management” in Figure 2-1. This refers to a piece of functionality whose
cardinality is not obvious. That is, whereas all the other blocks in Figure 2-1 reasonably map to a single
leaf-level application, this one doesn’t. Within the Management block, you could identify the functions
shown in Figure 2-2.

MANAGEMENT
MODULE

CONFIG

CALENDAR PRINTOUTS STATS

LEGACYREPORTSRESULTS

FIGURE 2-2 Further functional split of the Management module.

The question is, are these functions just features in a monolithic application or independent ser-
vices? Should this block be broken down further?

Determining the ideal size of building blocks is beyond DDD. That task requires the expertise and
sensitivity of the architect. In the actual project on which this example is based, we treated the Man-
agement module as a whole and treated the smaller blocks shown in Figure 2-2 as features rather than
subdomains. Ultimately, the DDD breakdown of subdomains hinges on the invisible border of local
functions. All the blocks in Figure 2-2 are objectively local to the Management module and not impact-
ful or reusable within the global, top-level architecture. Hence, in the actual project we treated them as
features.

The confusing role of microservices
These days, at this point of the domain breakdown, one inevitably considers microservices. I’ll return to
microservices in Chapter 3, “Laying the ground for modularity,” and in Chapter 9 “Microservices versus
modular monoliths.” Here, however, I would like to make a clear statement about microservices and
DDD: DDD refers only to top-level architecture and breaks the business domain in modules known as

26 PART I The Holy Grail of modularity

bounded contexts. A bounded context is an abstract element of the architectural design. It has its own
implementation, and it can be based on microservices, but microservices are on a different level of
abstraction than bounded context and DDD.

Note The term microservices refers to physical boundaries of deployable units, whereas the
term bounded contexts refers to logical boundaries of business units. Technically, though, a
microservice might implement all business functions of a bounded context. When this
happens, calling it “micro” is a bit counterintuitive!

With reference to Figure 2-2, the question whether blocks are features of a domain or subdomains
relates to top-level architecture. Once it is ascertained that the Management block is a leaf subdo-
main—namely, a bounded context—its recognized features in the implementation can be treated as
in-process class libraries, functional areas, lambda functions, or even autonomous microservices. The
abstraction level, though, is different.

The actual scale of DDD solutions
Many articles and blog posts that discuss DDD and bounded contexts presume that the entire enter-
prise back end is the domain that needs to be decomposed. So, they identify, say, Sales, Marketing,
IT, Finance, and other departments as bounded contexts on which to focus. Such a large-scale scenario
is fairly uncommon, however; companies rarely plan a big rewrite of the entire back end. But should
this happen, the number of architects involved at the top level of the design, as large as that may be,
would be relatively small.

DDD is a design approach primarily used for designing and organizing the architecture of software
systems. It’s not tied to a specific scale in terms of the size of the system. Instead, it focuses on the orga-
nization of domains and subdomains within the software. Since the beginning, it has been pushed as a
method dealing with enterprise-scale applications, but it is also applicable and effective at a medium-
and small-scale level.

Tactical design
In general terms, strategy sets out what you want to achieve; tactics define how you intend to achieve
it. Strategically, DDD provides tools to partition the business domain in smaller bounded contexts.
Tactically, DDD suggests a default architecture to give life to each bounded context.

The default supporting architecture
Chapter 1 presented the highlights of the default DDD supporting architecture—the layered architec-
ture, whose inspiring principles are now at the foundation of clean architecture. The layered architec-
ture evolved from the multi-tier architecture in vogue when DDD was first devised.

 CHAPTER 2 The ultimate gist of DDD 27

The DDD reference architecture, monolithic and OOP-friendly, is just one suggestion. It was ideal
in 2004 but sufficiently abstract and universal to retain great value even now. Today, though, other
options and variations exist—for example, command/query responsibility segregation (CQRS), event
sourcing, and non-layered patterns such as event-driven patterns and microservices. The key point is
that for a long time, with respect to DDD, applying the layered architecture and some of its side class
modeling patterns has been the way to go, putting domain decomposition in the background.

What’s a software model, anyway?
Beyond the preliminary strategic analysis, DDD is about building a software model that works in com-
pliance with identified business needs. In his book Domain-Driven Design: Tackling Complexity at the
Heart of Software (2003), author Eric Evans, uses the object-oriented programming (OOP) paradigm to
illustrate building the software model for the business domain, and calls the resulting software model
the domain model.

At the same time, another prominent person in the software industry, Martin Fowler—who wrote
the foreword for Evans’ book—was using the same term (domain model) to indicate a design pattern
for organizing the business logic. In Fowler’s definition, the domain model design pattern is a graph of
interconnected objects that fully represent the domain of the problem. Everything in the model is an
object and is expected to hold data and expose a behavior.

In a nutshell, in the context of DDD, the domain model is a software model. As such, it can be real-
ized in many ways, such as OOP, functional, or CRUD. In contrast, the domain model design pattern as
defined by Martin Fowler is just one possible way to implement such a software model.

Important In DDD, the outcome of the analysis of the business model is a software model.
A software model is just the digital twin of the real business in software form. It doesn’t nec-
essarily have to be an object-oriented model written following given standards.

DDD misconceptions
The name conflict with Fowler’s design pattern—quite paradoxical in a methodology in which unam-
biguous language is key—sparked several misconceptions around DDD.

The relevance of coding rules
The DDD definition details certain characteristics of the classes that participate in an object-oriented
domain model: aggregates, value types, factories, behaviors, private setters, and so on. Having an
object-oriented model, though, is neither mandatory nor crucial. To be crystal-clear, it’s not the exten-
sive use of factory methods in lieu of unnamed constructors, or using carefully crafted value objects
instead of loose primitive values, that makes a software project run on time and budget.

Put another way, blind observation of the coding rules set out in the DDD tactics guarantees noth-
ing, and without a preliminary strategic design and vision, may generate more technical issues and

28 PART I The Holy Grail of modularity

debt than it prevents. For example, using a functional approach in the design of the domain model
is neither prohibited nor patently out of place. You’re still doing DDD effectively even if you code a
collection of functions or build an anemic object model with stored procedures doing the persistence
work.

The value of coding rules
When it comes to DDD coding rules, though, there’s a flip side of the coin. Those rules—value types
over primitive types, semantic methods over plain setters, factory methods over constructors, aggre-
gates to better handle persistence—exist for a clear and valid reason. They enable you to build a soft-
ware representation of the business model that is much more likely to be coherent with the language
spoken in the business. If you don’t first identify the language of the business (the ubiquitous language)
and the context in which that language is spoken, the blind application of coding rules just creates
unnecessary complexity with no added value.

Database agnosticism
When you examine DDD, it’s easy to conclude that the domain model should be agnostic of the persis-
tence layer—the actual database. This is great in theory. In practice, though, no domain model is truly
agnostic from the persistence.

Note, though, that the preceding sentence is not meant to encourage you to mix persistence and
business logic. A clear boundary between business and persistence is necessary. (More on this in the
next chapter.) The point of DDD is that when building an object-oriented software model to represent
the business domain, persistence should not be your primary concern, period.

That said, however, be aware that at some point the same object model you may have crafted ignor-
ing persistence concerns will be persisted. When this happens, the database and the API you may use
to go to the database—for example, Entity Framework (EF) Core, Dapper, and so on—are a constraint
and can’t always be blissfully ignored. More precisely, blissfully ignoring the nature of the persistence
layer—although a legitimate option—comes at a cost.

If you really want to keep the domain model fully agnostic of database concerns, then you should
aim at having two distinct models—a domain model and a persistence model—and use adapters to
switch between the two for each operation. This is extra work, whose real value must be evaluated case
by case. My two cents are that a pinch of sane pragmatism is not bad at times.

Language is not simply about naming conventions
DDD puts a lot of emphasis on how entities are named. As you’ll soon see, the term ubiquitous lan-
guage (UL) simply refers to a shared vocabulary of business-related terms that is ideally reflected in the
conventions used to name classes and members. Hence, the emphasis on names descends from the
need for code to reflect the vocabulary used in the real world. It’s not a mere matter of choosing arbi-
trary descriptive names; quite the reverse. It’s about applying the common language rules discovered
in the strategic analysis and thoughtfully choosing descriptive names.

 CHAPTER 2 The ultimate gist of DDD 29

Tools for strategic design
I’ve touched on the tools that DDD defines to explore and describe the business domain. Now let’s look
at them more closely.

You use three tools to conduct an analysis of a business model to build a conceptual view of its
entities, services, and behavior:

 ■ Ubiquitous language

 ■ Bounded context

 ■ Context mapping

By detecting the business language spoken in a given area, you identify subdomains and label them
as bounded context of the final architecture. Bounded contexts are then connected using different
types of logical relationships to form the final context map.

Note In the end, DDD is just what its name says it is: design driven by a preliminary, thor-
ough analysis of the business domain.

Ubiquitous language

As emphatic as it may sound, the creation of the software model for a business domain may be (fanci-
fully) envisioned as the creation of a new world. In this perspective, quoting a couple of (sparse) sen-
tences about the genesis of the universe from the Gospel of John may be inspiring:

 ■ In the beginning was the Word

 ■ The Word became flesh, and dwelt among us

Setting aside the intended meaning of “the Word,” and instead taking it literally and out of the
original context, the word is given a central role in the beginning of the process and in the end it
becomes substance. Ubiquitous language (UL) does the same.

A domain-specific language vocabulary
As a doctor or an accountant, you learn at the outset a set of core terms whose meaning remains the
same throughout the course of your career and that are—by design—understood by your peers, coun-
terparts, and customers. Moreover, these terms are likely related to what you do every day. It’s different
if, instead, you are, say, a lawyer—or worse yet, a software architect or software engineer.

In both cases, you may be called to work in areas that you know little or nothing about. For example,
as a lawyer, you might need to learn about high finance for the closing argument on a bankruptcy case.
Likewise, as a software engineer in sport-tech, you would need to know about ranking and scoring
rules to enable the application’s operations to run week after week. In DDD, this is where having a UL
fits in.

30 PART I The Holy Grail of modularity

Motivation for a shared glossary of terms
At the end of the day, the UL is a glossary of domain-specific terms (nouns, verbs, adjectives, and
adverbs, and even idiomatic expressions and acronyms) that carry a specific and invariant meaning in
the business context being analyzed. The primary goal of the glossary is to prevent misunderstandings
between parties involved in the project. For this reason, it should be a shared resource used in all forms
of spoken and written communication, whether user stories, RFCs, emails, technical documentation,
meetings, or what have you.

In brief, the UL is the universal language of the business as it is done in the organization. In the book
Domain-Driven Design, author Eric Evans recommends using the UL as the backbone of the model. Dis-
covering the UL helps the team understand the business domain in order to design a software model
for it.

Choosing the natural language of the glossary
As you discover the UL of a business domain and build your glossary of terms, you will likely encounter
a few unresolved issues. The most important is the natural language to use for the words in the glos-
sary. There are a few options:

 ■ Plain, universal English

 ■ The customer’s spoken language

 ■ The development team’s spoken language

While any answer might be either good or bad (or both at the same time), it can safely be said that
there should be no doubt about the language to use when the team and the customer speak the same
language. Beyond that, every other situation is tricky to address with general suggestions. However, in
software as in life, exceptions do almost always apply. Once, talking DDD at a workshop in Poland,
I heard an interesting comment: “We can’t realistically use Polish in code—let alone have Polish names
or verbs appear in public URLs in web applications—as ours is an extremely cryptic language. It would
be hard for everyone. We tend to use English regardless.”

Note In the novel Enigma (1995), author Robert Harris tells the story of a fictional character
who deciphers stolen Enigma cryptograms during World War II. Once the character decrypts
some code, though, he discovers the text looks as if it contains yet another level of cryptog-
raphy—this one unknown. The mystery is solved when another cryptogram reveals the text
to be a consecutive list of abbreviated Polish names!

If the language of the glossary differs from the language used by some involved parties, and trans-
lations are necessary for development purposes, then a word-to-word table is necessary to avoid ambi-
guity, as much as possible. Note, though, that ambiguity is measured as a function that approaches
zero rather than reaches zero.

 CHAPTER 2 The ultimate gist of DDD 31

Building the glossary
You determine what terms to include in the glossary through interviews and by processing the written
requirements. The glossary is then refined until it takes a structured form in which natural language
terms are associated with a clear meaning that meets the expectations of both domain (stakeholder)
and technical (software) teams. The next sections offer a couple of examples.

Choosing the right term
In a travel scenario, what technical people would call “deleting a booking” based on their database-
oriented vision of the business, is better referred to as “canceling a booking,” because the latter verb
is what people on the business side would use. Similarly, in an e-commerce scenario, “submitting an
order form” is too HTML-oriented; people on the business side would likely refer to this action simply as
“checking out.”

Here’s a real-world anecdote, from direct experience. While building a platform for daily operations
for a tennis organization, we included a button labeled “Re-pair” on an HTML page, based on language
used by one of the stakeholders. The purpose of the button was to trigger a procedure that allowed
one player to change partners in a doubles tournament draw (in other words, as the stakeholder said,
to “re-pair”). But we quickly learned that users were scared to click the button, and instead called the
Help desk any time they wanted to “re-pair” a player. This was because another internal platform used
by the organization (to which we didn’t have access) used the same term for a similar, but much more
disruptive, operation. So, of course, we renamed the button and the underlying business logic method.

Discovering the language
Having some degree of previous knowledge of the domain helps in quickly identifying all the terms
that may have semantic relevance. If you’re entirely new to the domain, however, the initial research of
hot terms may be like processing the text below.

As a registered customer of the I-Buy-Stuff online store, I can redeem a voucher for an order I place
so that I don’t actually pay for the ordered items myself.

Verbs are potential actions, whereas nouns are potential entities. Isolating them in bold, the text
becomes:

As a registered customer of the I-Buy-Stuff online store, I can redeem a voucher for an order I
place so that I don’t actually pay for the ordered items myself.

The relationship between verbs and nouns is defined by the syntax rules of the language being
used: subject, verb, and direct object. With reference to the preceding text,

 ■ Registered customer is the subject

 ■ Redeem is the verb

 ■ Voucher is the direct object

32 PART I The Holy Grail of modularity

As a result, we have two domain entities: (Registered-Customer and Voucher) and a behavior
(Redeem) that belongs to the Registered-Customer entity and applies to the Voucher entity.

Another result from such an analysis is that the term used in the business context to indicate the title
to receive a discount is voucher and only that. Synonyms like coupon or gift card should not be used.
Anywhere.

Dealing with acronyms
In some business scenarios, most notably the military industry, acronyms are very popular and widely
used. Acronyms, however, may be hard to remember and understand.

In general, acronyms should not be included in the UL. Instead, you should introduce new words
that retain the original meaning that acronyms transmit—unless an acronym is so common that not
using it is a patent violation of the UL pattern itself. In this case, whether you include it in the UL is up
to you. Just be aware that you need to think about how to deal with acronyms, and that each acronym
may be treated differently.

Taken literally, using acronyms is a violation of the UL pattern. At the same time, because the UL is
primarily about making it easier for everyone to understand and use the business language and the
code, acronyms can’t just be ignored. The team should evaluate, one by one, how to track those pieces
of information in a way that doesn’t hinder cross-team communication. An example of a popular and
cross-industry acronym that can hardly be renamed is RSVP. But in tennis, the acronyms OP and WO,
though popular, are too short and potentially confusing to maintain in software. So, we expanded them
to Order-of-Play and Walkover.

Dealing with technical terms
Yet another issue with the UL is how technical the language should be. Although we are focused on
understanding the business domain, we do that with the purpose of building a software application.
Inevitably, some spoken and written communication is contaminated by code-related terms, such as
caching, logging, and security. Should this be avoided? Should we instead use verbose paraphrasing
instead of direct and well-known technical terms? The general answer here is no. Instead, limit the use
of technical terms as much as possible, but use them if necessary.

Sharing the glossary
The value of a language is in being used rather than persisted. But just as it is helpful to have an English
dictionary on hand to explain or translate words, it might also be useful to have a physical document to
check for domain-specific terms.

To that end, the glossary is typically saved to a shared document that can be accessed, with different
permissions, by all stakeholders. This document can be an Excel file in a OneDrive folder or, better yet,
a file collaboratively edited via Microsoft Excel Online. It can even be a wiki. For example, with an in-
house wiki, you can create and evolve the glossary, and even set up an internal forum to openly discuss
features and updates to the language. A wiki also allows you to easily set permissions to control how
editing takes place and who edits what. Finally, a GitBook site is another excellent option.

 CHAPTER 2 The ultimate gist of DDD 33

Important Any change to the language is a business-level decision. As such, it should
always be made in full accordance with stakeholders and all involved parties. Terms of the
language become software and dwell in code repositories. You should expect a one-to-one
relationship between words and code, to the point that misunderstanding a term is akin to
creating a bug, and wrongly naming a method misrepresents a business workflow.

Keeping business and code in sync
The ultimate goal of the UL is not to create comprehensive documentation about the project, nor is it
to set guidelines for naming code artifacts like classes and methods. The real goal of the UL is to serve
as the backbone of the actual code. To achieve this, though, it is crucial to define and enforce a strong
naming convention. Names of classes and methods should always reflect the terms in the glossary.

Note As strict as it may sound, you should treat a method that starts a process with a name
that is different from what users call the same process as technical debt—no more, no less.

Reflecting the UL in code
The impact of the UL on the actual code is not limited to the domain layer. The UL helps with the design
of the application logic too. This is not coincidental, as the application layer is where the various busi-
ness tasks for use cases are orchestrated.

As an example, imagine the checkout process of an online store. Before proceeding with a typical
checkout process, you might want to validate the order. Suppose that you’ve set a requirement that
validating the order involves ensuring that ordered goods are in stock and the payment history of the
customer is not problematic. How would you organize this code?

There are a couple of good options to consider:

 ■ Have a single Validate step for the checkout process in the application layer workflow that
incorporates (and hides) all required checks.

 ■ Have a sequence of individual validation steps right in the application layer workflow.

From a purely functional perspective, both options would work well. But only one is ideal in a given
business context. The answer to the question of which is the most appropriate lies in the UL. If the UL
calls for a validate action to be performed on an order during the checkout process, then you should
go with the first option. If the vocabulary includes actions like check-payment-history or check-current-
stock, then you should have individual steps in the workflow for just those actions.

34 PART I The Holy Grail of modularity

Note If there’s nothing in the current version of the UL to clarify a coding point, it probably
means that more work on the language is required—specifically, a new round of discussion
to break down concepts one more level.

Ubiquitous language changes
There are two main reasons a UL might change:

 ■ The team’s understanding of the business context evolves.

 ■ The business context is defined while the software application is designed and built.

The former scenario resulted in the idea of DDD more than 20 years ago. The business model was
intricate, dense, and huge, and required frequent passes to define, with features and concepts intro-
duced, removed, absorbed, or redesigned on each pass.

Note This type of iterative process usually occurs more quickly in the beginning of a project
but slows down and perhaps almost stops at some point later. (This cycle might repeat with
successive major releases of the software.)

The latter scenario is common in startup development—for example, for software specifically
designed for a business project in its infancy. In this case, moving fast and breaking things is acceptable
with both the software and the UL.

So, the UL might change—but not indefinitely. The development team is responsible for detecting
when changes are needed and for applying them to the degree that business continuity allows. Be aware,
though, that a gap between business language and code is, strictly speaking, a form of technical debt.

Everyone makes mistakes
I have worked in the sport-tech industry for several years and have been involved in building a
few platforms that now run daily operations for popular sports organizations. If tournaments
run week after week, it’s because the underlying software works. Sometimes, however, that
software may still have design issues.

Yes, I do make mistakes at times, which result in design issues. More often, though, any
design issues on my software exist because I’m pragmatic. To explain, let me share a story
(with the disclaimer that this design issue will likely be sorted out by the time you read this).

Recently, my team adapted an existing software system for a different—though nearly
identical—sport. One difference was that the new system did not need to support singles
matches. Another difference was that points, rather than positions, would be used to order
players in draws.

 CHAPTER 2 The ultimate gist of DDD 35

A segment of the domain layer and a few data repositories in the persistence layer used
two properties—SinglesRank and DoublesRank. Initially, we didn’t change anything in
the naming (including related database tables). We simply stored doubles rankings in the
DoublesRank property and left the SinglesRank property empty. Then, to use points instead
of positions to order players in draws, I pragmatically suggested repurposing the otherwise-
unused SinglesRank property—a perfectly effective solution that would require very minimal
effort.

Just two weeks later, however, people began asking repeatedly what the heck the actual
value of SinglesRank was. In other words, we experienced a gap between the UL and its repre-
sentation in the code and data structures.

Helpful programming tools
There are several features in programming languages to help shape code around a domain language.
The most popular is support for classes, structs, records, and enum types. Another extremely helpful
feature—at least in C#—is extension methods, which help ensure that the readability of the code is
close to that of a spoken language.

An extension method is a global method that developers can use to add behavior to an existing
type without deriving a new type. With extension methods, you can extend, say, the String class or
even an enum type. Here are a couple of examples:

public static class SomeExtensions
{
 // Turns the string into the corresponding number (if any)
 // Otherwise, it returns the default value
 public static int ToInt(this string theNumber, int defaultValue = 0)
 {
 if (theNumber == null)
 return defaultValue;
 var success = int.TryParse(theNumber, var out calc);
 return success
 ? calc
 : defaultValue;
 }
 // Adds logic on top of an enum type
 public static bool IsEarlyFinish(this CompletionMode mode)
 {
 return mode == CompletionMode.Disqualified ||
 mode == CompletionMode.OnCourtRetirement ||
 mode == CompletionMode.Withdrawal;
 }
}

36 PART I The Holy Grail of modularity

The first extension method extends the core String type to add a shortcut to turn the string to a
number, if possible.

// With extension methods
var number = "4".ToInt();
// Without extension methods
int.TryParse("4", out var number);

Suppose you want to query all matches with an early finish. The code for this might take the follow-
ing form:

var matches = db.Matches
 .Where(m => m.MatchCompletionMode.IsEarlyFinish())
 .ToList();

The benefit is having a tool to hide implementation details, so the actual behavioral logic can
emerge.

Value types and factory methods
Remember the misconceptions around DDD mentioned earlier in this chapter? I’m referring in particu-
lar to the relevance of coding rules.

DDD recommends several coding rules, such as using factory methods over constructors and value
types over primitive types. By themselves, these rules add little value (hence, the misconception).
However, in the context of the UL, these rules gain a lot more relevance. They are crucial to keeping
language and code in sync.

For example, if the business domain involves money, then you’d better have a Money custom value
type that handles currency and totals internally rather than manually pairing decimal values with
hard-coded currency strings. Similarly, a factory method that returns an instance of a class from a
named method is preferable to an unnamed constructor that is distinguishable from others only by the
signature.

The bounded context

Tweaking the business language and renaming classes and methods is tricky, but thanks to integrated
development environment (IDE) features and plug-ins, it is not terribly problematic. However, failing to
identify subdomains that are better treated independently could seriously undermine the stability of
the whole solution.

No matter how hard you try, your UL will not be a unique set of definitions that is 100-percent
unambiguous within your organization. In fact, the same term (for example, customer) might have
different meanings across different business units. Like suitcases on an airport baggage belt that look
alike, causing confusion among travelers, functions and names that look alike can cause problems in
your solution.

 CHAPTER 2 The ultimate gist of DDD 37

Understanding differences between functions and names is crucial, and effectively addressing those
differences in code is vital. Enter bounded contexts.

Making sense of ambiguity
When analyzing a business domain, ambiguity occurs. Sometimes we run into functions that look alike
but are not the same. When this occurs, developers often reveal an innate desire to create a unique
hierarchy of highly abstracted entities to handle most scenarios and variations in a single place. Indeed,
all developers have the secret dream of building a universal code hierarchy that traces back to a root
Big-Bang object.

The reality is that abstraction is great—but more so in mathematics than in mere software. The
great lesson we learn from DDD is that sometimes code fragmentation (and to some extent even code
duplication) is acceptable just for the sake of maintenance.

Note Code duplication can be just the starting point that leads to a model that is ideal for
the business. Experience teaches us that when two descriptions seem to point to the same
entity (except for a few attributes), forcing them to be one is almost always a mistake; treat-
ing them as distinct entities is usually acceptable even if it is not ideal.

The cost of abstraction
Abstraction always comes at a cost. Sometimes this cost is worth it; sometimes it is not.

Originally, abstraction came as a manna from heaven to help developers devise large domain
models. Developers examined a larger problem and determined that it could be articulated as many
smaller problems with quite a few things in common. Then, to combat code duplication, developers
righteously added abstraction layers.

As you proceed with your analysis and learn about new features, you might add new pieces to the
abstraction to accommodate variations. At some point, though, this may become unmanageable. The
bottom line is that there is a blurred line between premature abstraction (which just makes the overall
design uselessly complex) and intelligent planning of features ahead of time. In general, a reasonable
sign that abstraction may be excessive is if you catch yourself handling switches in the implementation
and using the same method to deal with multiple use cases.

So much for abstraction in coding. What about top-level architecture? With this, it’s nearly the same
issue. In fact, you might encounter a business domain filled with similar functions and entities. The
challenge is understanding when it’s a matter of abstracting the design and when it’s breaking down
the domain in smaller parts. If you break it down in parts, you obtain independent but connected (or
connectable) functions, each of which remains autonomous and isolated.

38 PART I The Holy Grail of modularity

Using ambiguity as the borderline
A reasonable sign that you may need to break a business domain into pieces is if you encounter
ambiguity regarding a term of the UL. In other words, different stakeholders use the same term to
mean different things. To address such a semantic ambiguity, the initial step is to determine whether
you really are at the intersection of two distinct contexts. One crucial piece of information is whether
one term can be changed to a different one without compromising the coherence of the UL and its
adherence to the business language.

An even subtler situation is when the same entity appears to be called with different names by dif-
ferent stakeholders. Usually, it’s not just about having different names of entities (synonyms); it often
has to do with different behaviors and different sets of attributes. So, what should you do? Use coding
abstractions, or accept the risk of some duplication? (See Figure 2-3.)

Problem Space Solution Space

Subdomain Bounded Context

Domain Domain Model

FIGURE 2-3 Domain and subdomains versus domain models and bounded contexts.

Discovering ambiguity in terms is a clear sign that two parts of the original domain could possibly
be better treated as different subdomains, each of which assigns the term an unambiguous meaning.
DDD calls a modeled subdomain a bounded context.

Note Realistically, when modeling a large domain, it gets progressively harder to build a
single unified model. Also, people tend to use subtly different vocabularies in different parts
of a large organization. The purpose of DDD is to deal with large models by dividing them
into different bounded contexts and being explicit about their interrelationships.

The savings of code duplication
From long experience in the code trenches, my hearty suggestion is that whenever you feel unsure
whether abstraction is necessary, then by default, it isn’t. In that case, you should use code duplication
instead.

That said, I know that tons of articles and books out there (including probably a few of mine) warn
developers of the “don’t repeat yourself” (DRY) principle, which encourages the use of abstraction to
reduce code repetitions. Likewise, I’m also well aware that the opposite principle—write every time
(WET)—is bluntly dismissed as an anti-pattern.

 CHAPTER 2 The ultimate gist of DDD 39

Yet, I dare say that unless you see an obvious benefit to keeping a piece of the top-level architecture
united, if a term has ambiguity within the business language that can’t just be solved by renaming it
using a synonym, you’d better go with an additional bounded context.

In coding, the cost of a bad abstraction is commonly much higher than the cost of duplicated code.
In architecture, the cost of a tangled monolith can be devastating, in much the same way the cost of
excessive fragmentation can be. Yes, as usual, it depends!

Devising bounded contexts
A bounded context is a segment of the original model that turns out to be better modeled and imple-
mented as a separate module. A bounded context is characterized by three aspects:

 ■ Its own custom UL

 ■ Its own autonomous implementation and technology stack

 ■ A public interface to other contexts, if it needs be connected

As a generally observed fact, the resulting set of bounded contexts born from the breakdown of a
business domain tends to reflect (or at least resemble) the structure of the owner organization.

Breakdown of a domain
Here’s an example taken from a realistic sport-tech scenario. If you’re called to build an entire IT system
to manage the operations of a given sport, you can come up with at least the partitions in subdomains
shown in Figure 2-4.

Live
Scoring

Event
Operations

Legacy
Platform

Live
Monitor

Data
Dispatcher

3rd Party
Widgets

SPORT
MANAGEMENT

PLATFORM

FIGURE 2-4 Breakdown of an example domain model in a sport-tech scenario.

It’s unrealistic to build the system as a single monolith. And it’s not a matter of faith in the software
creed of microservices; it’s just that, with a decent analysis of the domain, processes, and requirements,
you’ll see quite a few distinct clusters of related operations (although maybe not just the six shown in
Figure 2-4). These distinct blocks should be treated as autonomous projects for further analysis, imple-
mentation, and deployment.

In summary, each bounded context is implemented independently. And aside from some technical
resources it may share with other contexts (for example, a distributed cache, database tables, or bus), it
is completely autonomous from both a deployment and coding perspective.

40 PART I The Holy Grail of modularity

Shared kernels
Suppose you have two development teams working on what has been identified as a bounded context
and you have an agreed-upon graph of functionalities in place. At some point, team 1 and team 2 may
realize they are unwittingly working on the same small subset of software entities.

Having multiple teams share work on modules poses several synchronization issues. These range
from just keeping changes to the codebase in sync to solving (slightly?) conflicting needs. Both teams
must achieve coherency with their respective specs—not to mention any future evolutions that might
bring the two teams into a fierce contrast. (See Figure 2-5.)

TEAM 1 ??? TEAM 2

FIGURE 2-5 Discovering a shared kernel.

There are three possible ways to deal with such a situation. The most conservative option is to let
each team run its own implementation of the areas that appear common. Another option is to appoint
one team the status of owner, giving it the final word on any conflicts. As an alternative, you could just
let the teams come to a mutual agreement each time a conflict arises. Finally, there is the shared kernel
option.

Shared kernel is a special flavor of bounded context. It results from a further breakdown of an exist-
ing bounded context. For example, the subdomain in Figure 2-5 will be partitioned in three contexts—
one under the total control of team 1, one under the total control of team 2, and a third one. Who’s in
charge of the shared kernel? Again, the decision is up to the architect team, but it can be one of the
existing teams or even a new team.

Legacy and external systems
For the most part, bounded contexts isolate a certain related amount of behavior. Identifying these
contexts is up to the architect team. However, certain pieces of the overall system should be treated as
distinct bounded contexts by default—in particular, wrappers around legacy applications and external
subsystems.

 CHAPTER 2 The ultimate gist of DDD 41

Whenever you have such strict dependencies on systems you don’t control (or are not allowed to
control), the safest thing you can do is create a wrapper around those known interfaces—whether a
plain shared database connection string or an API. These wrappers serve a double purpose. First, they
are an isolated part of the final system that simply call remote endpoints by proxy. Second, they can
further isolate the general system from future changes on those remote endpoints.

In DDD jargon, the isolated wrappers around an external system are called an anti-corruption layer
(ACL). Simply put, an ACL is a thin layer of code that implements a familiar pattern. It offers your call-
ing modules a dedicated and stable (because you own it) programming interface that internally deals
with the intricacies of the endpoints. In other words, the ACL is the only section of your code where the
nitty-gritty details of the remote endpoints are known. No part of your code is ever exposed to that.
As a result, in the event of breaking changes that occur outside your control, you have only one, ideally
small, piece of code to check and fix.

Coding options of bounded contexts
How would you code a bounded context? Technically, a bounded context is only a module treated in
isolation from others. Often, this also means that a bounded context is deployed autonomously. How-
ever, the range of options for coding a bounded context is ample and includes in-process options.

The most common scenario—and the most common reason for wanting a bounded context—is
to deploy it as a standalone web service accessible via HTTPS and JSON, optionally with a private or
shared database. A bounded context, though, can easily be a class library distributed as a plain DLL or,
better yet, as a NuGet package. For example, it is almost always a class library when it represents the
proxy to an external system.

The public interface of a bounded context with other bounded contexts can be anything that allows
for communication: a REST or gRPC gateway, a SignalR or in-process dependency, a shared database, a
message bus, or whatever else.

Note Does the definition of a bounded context sound like that of a microservice? As you’ll
see in Chapter 9, there is a resemblance to the definition of microservice given by Martin
Fowler: a module that runs in its own process and communicates through lightweight mech-
anisms such as an HTTPS API. In Fowler’s vision, a microservice is built around specific busi-
ness capabilities. The issue is in the intended meaning of the prefix micro. Size aside, I like to
think of a bounded context as the theoretical foundation of a microservice. The same is true
if we consider the alternative architecture of modular monoliths (see Chapter 9). A bounded
context is also the theoretical foundation of a module in a monolith. I say “theoretical” for
a reason: microservices and modular monoliths live in the space of the software solution,
whereas bounded contexts exist in the space of the business domain.

42 PART I The Holy Grail of modularity

The context map

The outcome of a DDD analysis of business domain requirements is a collection of bounded contexts
that, when combined, form the whole set of functions to implement. How are bounded contexts con-
nected? Interestingly, connection occurs at two distinct levels. One is the physical connection between
running host processes. As mentioned, such connections can take the form of HTTPS, SignalR, shared
databases, or message buses. But another equally important level of connection is logical and collabor-
ative rather than physical. The following sections explore the types of business relationships supported
between bounded contexts.

Bounded contexts and their relationships form a graph that DDD defines as the context map. In the
map, each bounded context is connected to others with which it is correlated in terms of function-
alities. It doesn’t have to be a physical connection, though. Often, it looks much more like a logical
dependency.

Upstream and downstream
Each DDD relationship between two bounded contexts is rendered with an arc connecting two nodes
of a graph. More precisely, the arc has a directed edge characterized by the letter U (upstream context)
or D (downstream context). (See Figure 2-6.)

Bounded
Context

A D
U Bounded

Context
B

Re
la

tio
ns

hi
p

FIGURE 2-6 Graphical notation of a context map relationship.

An upstream bounded context influences a downstream bounded context, but the opposite is not
true. Such an influence may take various forms. Obviously, the code in the upstream context is avail-
able as a reference to the downstream context. It also means, though, that the schedule of work in the
upstream context cannot be changed on demand by the team managing the downstream context.
Furthermore, the response of the upstream team to requests for change may not be as prompt as
desired by the downstream team.

Starting from the notion of upstream and downstream contexts, DDD defines a few specific types
of relationships. Essentially, each relationship defines a different type of mutual dependency between
involved contexts. These relationships are as follows:

 ■ Conformist A conformist relationship indicates that the code in the downstream context is
totally dependent on the code in the upstream context. At the end of the day, this means that
if a breaking change happens upstream, the downstream context must adapt and conform. By
design, the downstream context has no room to negotiate about changes. Typically, a conform-
ist relationship exists when the upstream context is based on some legacy code or is an external

 CHAPTER 2 The ultimate gist of DDD 43

service (for example, a public API) placed outside the control of the development teams.
Another possible scenario is when the chief architect sets one context as high priority, meaning
that any changes the team plans must be reflected, by design, by all other contexts and teams.

 ■ Customer/supplier In this parent–child type of relationship, the downstream customer
context depends on the upstream supplier context and must adapt to any changes. Unlike the
conformist relationship, though, with the customer/supplier relationship, the two parties are
encouraged to negotiate changes that may affect each other. For example, the downstream
customer team can share concerns and expect that the upstream supplier team will address
them in some way. Ultimately, though, the final word belongs to the upstream supplier context.

 ■ Partner The partner relationship is a form of mutual dependency set between the two
involved bounded contexts. Put another way, both contexts depend on each other for the
actual delivery of the code. This means that no team is allowed to make changes to the pub-
lic interface of the context without consulting with the other team and reaching a mutual
agreement.

An example context map
Considering this discussion of bounded contexts and relationships, one might reasonably ask how
these work in a realistic example. Figure 2-4 showed an example breakdown of a sport-tech data-
collection business domain. Figure 2-7 shows a possible set of relationships for that scenario.

Event
Operations

Data
Dispatcher

Live
Scoring

Live
Monitor

3rd Party
Widgets

Legacy
Platform

U

U

D

DD

D

U

U

Custo
m

er
/S

upplie
r

Custo
m

er
/S

upplie
r

Co
nf

or
m

ist

Partner

Conformist

Partner

FIGURE 2-7 An example context map for the bounded contexts identified in Figure 2-4.

44 PART I The Holy Grail of modularity

Let’s review the diagram proceeding from left to right:

 ■ The Live Scoring context dominates the Data Dispatcher and Live Monitor contexts. So, any
changes required for the Live Scoring context must be immediately accepted and reflected by
the downstream contexts. This is reasonable, because the Data Dispatcher context is simply
expected to route live information to takers and the Live Monitor context just proxies live data
for internal scouting and analysis. Indeed, both relationships could be set to conformist, which
is even stricter.

 ■ The Live Scoring context partners with the Event Operations context. This is because in the
architect’s vision, the two modules may influence each other, and changes in one may be as
important as changes in the other. A similar production system might have a partner relation-
ship between the Live Scoring and Event Operations contexts, in which case it’s often true that
one team must conform to changes requested by the other (always for strict business reasons).

 ■ The Event Operations context is totally dependent on the legacy applications connected to the
system. This means that live data should be packaged and pushed in exactly the legacy format,
with no room for negotiation.

 ■ The Data Dispatcher context and the Event Operations context are partners, as both contexts
collect and shape data to be distributed to the outside world, such as to media and IT partners.

 ■ The Third-Party Widgets context contains widgets designed to be embedded in websites. As
such, they are subject to conditions set by the Data Dispatcher context. From the perspective of
the widget module, the dispatcher is a closed external system.

Important The person responsible for setting up the network of relationships is the chief
architect. The direction of connections also has an impact on teams, their schedule, and
their way of working.

An example deployment map
The context map is a theoretical map of functions. It says nothing about the actual topology of the
deployment environment. In fact, as mentioned, a bounded context may even be a class library coded
in an application that turns out to be another bounded context. Often, a bounded context maps to a
deployed (web) service, but this is not a general rule. That said, let’s imagine a possible deployment
map for the context map in Figure 2-7. Figure 2-8 shows a quite realistic high-level deployment
scenario for a sport-tech data-collection platform.

 CHAPTER 2 The ultimate gist of DDD 45

WEB API

3rd Party
Widgets

Data
Dispatcher

WEB APP

Live
Monitor

WEB APP

Event
Operations

MOBILE

Live
Scoring

Legacy
Platform

HTML

Shared DB

Shared DB

API

API
API

API

FIGURE 2-8 An example deployment map.

Summary

This chapter focused on DDD strategic design in a way that is mostly agnostic of software technology
and frameworks. The strategic part of DDD is crucial; it involves discovering the top-level architecture
of the system using a few analysis patterns and common practices.

The chapter covered the role of the UL, the discovery of distinct bounded contexts, and the relation-
ships the chief architect may use to link contexts together. The map of contexts—the final deliverable
of the DDD strategic analysis—is not yet a deployable architecture, but it is key to understanding how
to map identified blocks to running services.

All these notions are conceptually valid and describe the real mechanics of DDD. However, it might
seem as though they have limited concrete value if measured against relatively simple and small busi-
ness domains. The actual value of DDD analysis shines when the density of the final map is well beyond
the tens of units. Indeed, the largest map I’ve ever seen (for a pharmaceutical company) contained
more than 400 bounded contexts. The screenshot of the map was too dense to count!

The next chapter draws some conclusions about the structure of a .NET and ASP.NET project that
maintains clear boundaries between layers. In Part II of the book, we’ll delve into each layer.

http://ASP.NET

This page intentionally left blank

 301

Index

SYMBOLS
{ } (braces), coding style conventions, 161

A
accessibility

access control
exception details, 120
file access, application layer, 107–108
Project Renoir, 92–94

data access, domain services, 172
rich frameworks, 269
user access control, Project Renoir, 78

ACL (Anti-Corruption Layer), 41
ACM Turing Award, 47
acronyms, UL glossaries, 32
ADO.NET, repository pattern, 194
aggregates

business domain model, 135, 136, 143–144
characteristics of, 143
classes, 144
consistency boundaries, 143
isolation, 143
persistence-driven definitions, Project Renoir, 146–147
relationships, 143
roots, 104
transactional boundaries, 143

Agile
development, microservices, 228
methodologies, technical credit, 294–295

Agile Manifesto, The, 18, 75
agility, FDA, 21–22
AJAX (Asynchronous JavaScript and XML), 260
Amazon, 224
ambiguity, DDD architectures, 37–39
anemia, software, 148–149
anemic programming, business domain model, 135
Angular, 261–262, 265–266
annotations, entities, 152
API (Application Programming Interface)

API-only presentations, 88–89
endpoints, 89
Minimal API, 81–82, 273
Web API, 191
web exposure, 88

API layer, 266–269
application endpoints, ASP.NET, 80–82
application layer, 10, 91

application services, blueprint of, 107
application settings, 110

classes, 111
data mergers from various sources, 110–111
hot reloads, 112–113
injecting into application services, 111–112

boundaries of, 129–130
caching, 123

cache-aside patterns, 124
distributed caches, 123–124
location of, 124–125
in-memory caches, 123
organizing data in caches, 126
write-through patterns, 124

cross-cutting, 110
data transfers

from application layer to persistence layer, 104–106
from presentation layer to application layer, 100–103

dependencies, 129
deploying, 129

microservices, 130
separate class libraries, 130
tightly coupled with web applications, 129

exception handling, 119–122
file access, 107–108
logging, 113

application facts, 117–118
ASP.NET Core, 113
ASP.NET loggers (default), 113–114
configuring loggers, 116–117
embedding loggers in base controllers, 118
production-level loggers, 114–116
registering loggers, 113–114

modularization, 51–52
multi-tiered architectures, 6
outline of, 106–110
presentation layer

dependencies, 83–84
mediator connections, 85–86
message bus connections, 86

Project Renoir
access control, 92–94
architectural view, 91–92

http://ADO.NET
http://ASP.NET
http://ASP.NET
http://ASP.NET

302

application layer

data transfers, application layer to persistence
layer, 104–106
data transfers, presentation layer to application
layer, 100–103
document management, 94–95
fixed user/role association, 93
flexible user/asset/role association, 93
permissions, 94–95
sharing documents, 95
task orchestration, 96–99
user authentication, 92

SignalR connection hubs, 126
monitoring hubs, 126–127
notifications, sending to client browsers, 128
propagating, 127–128

task orchestration, 96
defining tasks, 96–97
distributed tasks, 97–99
example task, 99

throwing exceptions, 119–122
use-case workflows, 108–109

application services
blueprint of, 107
domain services versus, 184–185
injecting application settings into, 111–112
libraries, 72–73

applications
API layer, 266

GraphQL API, 266–269
REST API, 266–269

application layer deployments, 129
base classes, entities, 151–152
brief history of, 256
collections of applications versus microservices, 241
defined, 6–7
facts, logging, 117–118
HTML layer

front-end pages, 263
rendering HTML, 264–265
SSG, 272
Svelte, 270–271
text templating, 263–264

legacy applications
dealing with, 220–221
origin of, 220

microservices, flexibility in all applications, 235
rich frameworks

accessibility, 269
BFF, 270
drawbacks of, 269–270
performance overhead, 269
SEO, 269
SSR, 270

settings, 110
classes, 111
data mergers, from various sources, 110–111
hot reloads, 112–113
injecting into application services, 111–112

SPA, 260–261
SSG, 271–272

“archipelago of services,” microservices as, 227
architectures

CA, 18–20
client/server architectures, 4
CQRS, 12–13
data storage, 208
DDD architectures, 9, 12, 23

ACL, 41
ambiguity, 37–39
application layer. See separate entry
author’s experience with, 139–140
bounded contexts, 39–41
coding rules, relevance of, 27–28
coding rules, value of, 28
context maps, 42–44
database agnosticism, 28
deployment maps, 44–45
domain layer. See separate entry
domain models, 27
infrastructure layer. See separate entry
language rules, 28
layer interconnections, 12
misconceptions of, 27–28
persistence ignorance, 141
presentation layer, 10
programming tools, 35–36
proposed supporting architecture, 9–10
scale of, 26
software models, 27
strategic analysis, 24–26
strategic design tools (overview), 29
supporting architectures (default), 26–27
tactical design, 26–27
UL, 29–39

EDA, 16
event sourcing, 14–16
FDA, 20

agility, 21–22
tradeoffs, 21–22
VSA, 21

HA, 17–18
layers, defined, 5
microservices implications, 242
multi-tiered architectures, 4–5

application layer, 6
business layer, 8
data layer, 8
defining applications, 6–7
defining layers, 5
defining tiers, 5
domain layer, 6
infrastructure layer, 6
presentation layer, 6, 8
purpose of, 9
SoC, 7, 9
software monoliths, 5
value of N, 6

Project Renoir architectural view, 91–92
SOA, 224, 225–226

microservices and, 237

business domain model

 303

tenets of, 224–225
software architectures

modular monoliths, 248
Zen of, 297

three-tier architectures, 4–5, 10
defining layers, 5
defining tiers, 5
software monoliths, 5
U.S. Prohibition Act, 7
value of N, 6

tiers, defined, 5
VSA, 21

ASP.NET
Blazor, 278
HTMX, 277
loggers (default), 113–114
multithreading, 282–283
Project Renoir, application endpoints, 80–82
Razor, 275–277
SSG, 272
Svelte, 276
Vanilla JavaScript, 275–276
Vue.js framework, 276–277
Web Forms, 258–259
web stacks, front-end and back-end separation, 274

ASP.NET Core
DI containers, 180–182
distributed caches, 123–124
logging, 113
in-memory caches, 123
microservices, 243–244
middleware, 106
Minimal API, 273
Node.js versus, 278–281
Project Renoir

application gateways, 80
middleware, 79–80

assets (Project Renoir), flexible user/asset/role
association, 93
attribute-based equality, domain value types, 142
Atwood, Jeff, 240–241
authentication

microservices, 231
Project Renoir, 92

authorization
domain services, 187
microservices, 231

B
back-end and front-end separation, 274

data, 274–275
markups, 274–275
single web stacks, 274

Barham, Paul, 237
base controllers, embedding loggers in, 118
batch operations, EF Core, 205
Beck, Kent, 133
behavioral gaps (business domain model), filling, 137
BFF (Back-end for Front-end), 270

Blazor
ASP.NET, 278
server apps, 87

blinking at domain events, 174
Boolean methods, clean code etiquette, 157–158
boundaries, modular monoliths

extracting, 250–251
logical boundaries, 250

bounded contexts, 25–26, 36–37, 38, 69
coding options, 41
context maps, 42–44
deployment maps, 44–45
domain model breakdowns, 39
external systems, 40–41
legacy systems, 40–41
shared kernels, 40

braces ({ }), coding style conventions, 161
bridging domains/infrastructures, business domain
model, 137–138
broken window theory, 293–295
browser wars, 257
bubbling exceptions, 121–122
BUFD (Big Up-Front Design), 246
business domain model, 23, 133–134, 138

aggregates, 135, 136, 143–144, 146–147
anemic programming, 135
breakdowns, 24–25
bridging domains/infrastructures, 137–138
complexity, 147–148
cross-cutting, 136
data-centric system builds, 138–139
decision trees, 147–148
domain entities, 141–142

application-specific base classes, 151–152
common traits of, 149–152
data annotations, 152
identity, 150
loading states, 144–145
states, 138
top-level base cases, 149–150

domain services, states, 138
domain value types, 142–143
entities, 134, 141–142, 149–152
filling behavioral gaps, 137
functional programming, 135
helper domain services, 137–138
internals of, 134–135
life forms in, 141–145
microservices, 25–26
models, defined, 140
OOP, 135
paradigms, 135
persistence ignorance, 141
persistence of, 135–136
Project Renoir, 145

aggregates, 146–147
dependency lists, 145
life forms in libraries, 146
top-level base cases, 149–150

roots, 143–144
software anemia, 148–149

http://ASP.NET
http://ASP.NET
http://ASP.NET

304

business domain model

subdomains, 25
top-level architectures, 24
value objects, 134

business emails, sending with domain services, 174–175
business layer, multi-tiered architectures, 8
business logic

defined, 91
errors, data transfers, 105–106
hosting in databases, 207

stored procedures, EF Core, 207–208
stored procedures, pros/cons, 207

message-based business logic, 14–15
business rules, handling with strategy pattern, 182–183
business terms, Project Renoir, 68
business workflow connections, presentation layer, 82

application layer dependency, 83–84
controller methods, 82–83
exceptions to controller rules, 84–85
mediator connections, 85–86

business-requirements engineering
domain models, 76–77
event modeling, 76–77
event storming, 76
event-based storyboards, 76–77
software projects, 74–75

Agile Manifesto, The, 75
waterfall model, 75

C
C#, DTO implementations, 100
CA (Clean Architectures), 18–20
caching, 123

cache-aside patterns, 124
distributed caches, 123–124
location of, 124–125
in-memory caches, 123
organizing data in caches, 126
write-through patterns, 124

centralized logging services, microservices, 230–231
circuit breakers, 234
class libraries, application layer deployments, 130
classes

aggregates, 144
application settings, 111
DocumentManagerService class, 177–179
domain services

DocumentManagerService class, 177–179
marking classes, 170–171

partial classes, 162
repository classes, 193–196
WCF reference classes, 191

clean code, 20
DIP, 167
etiquette, 152

Boolean methods, 157–158
constant values, 159–160
Data Clump anti-pattern, 160–161
ER principle, 153
extension methods, 156–157

Extract Method refactoring pattern, 155–156
if pollution, 153
LINQ, 154–155
loop emissions, 154–155
naturalizing enums, 158–159
pattern matching, 153–154
syntactic sugar, 156–157

ISP, 167
LSP, 167
OCP, 167
SOLID acronym, 166–167
SRP, 166–167
style conventions, 161–165

braces ({ }), 161
comments, 164–165
consistent naming conventions, 161
indentation, 161
line length, 163–164
meaningful naming, 161
method length, 163–164
partial classes, 162
spacing, 162
Visual Studio regions, 163

client browsers, sending SignalR notifications to, 128
client-scripting, 260

AJAX, 260
Angular, 261–262, 265–266
CSR, 262
JavaScript, modern application frameworks, 261–262
React, 261, 262, 265–266

client/server architectures, 4
Cockburn, Alistair, 18
Cockcroft, Adrian, 236–237
Codd, Dr. Edgar F.139
code assistants, 166
code bases, modular monoliths, 248
code-behind classes, Razor pages, 81
coding

bounded contexts, 41
clean code etiquette, 20, 152

Boolean methods, 157–158
constant values, 159–160
Data Clump anti-pattern, 160–161
ER principle, 153
extension methods, 156–157
Extract Method refactoring pattern, 155–156
if pollution, 153
LINQ, 154–155
loop emissions, 154–155
naturalizing enums, 158–159
pattern matching, 153–154
syntactic sugar, 156–157

code assistants, 166
DDD architectures

code duplication, 38–39
programming tools, 35–36
relevance of coding rules, 27–28
value of coding rules, 28

DIP, 167
ISP, 167
LSP, 167

data transfers

 305

monoliths, code development/maintenance, 221–222
OCP, 167
readable code

author’s experience with, 165–166
writing, 165–166

reusability, 196
SOLID acronym, 166–167
SRP, 166–167
style conventions, 161–165

braces ({ }), 161
comments, 164–165
consistent naming conventions, 161
indentation, 161
line length, 163–164
meaningful naming, 161
method length, 163–164
partial classes, 162
spacing, 162
Visual Studio regions, 163

UL, impact on coding, 33–34
Zen of, 297–298

commands
CQRS, 12–13

architectural perspective, 209–210
business perspective, 210–211
distinct databases, 211-
shared databases, 211

query separation, 208–213
comments, style conventions, 164–165
compiled queries, EF Core, 204–205
complexity, business domain model, 147–148
Concerns (SoC), Separation of, 7, 9, 20, 47, 48–49
configuring

loggers, 116–117
monitoring hubs, 126–127

conformists, context maps, 42–43
consistency

boundaries, aggregates, 143
domain entities, 142
domain value types, 142
microservices, 232
naming conventions, 161

constant values, clean code etiquette, 159–160
context maps, 42

application services libraries, 72–73
bounded contexts, 69
conformists, 42–43
customers/suppliers, 43
domain models, 69–71, 73
downstream context, 42–43
EF, 70
example of, 43–44
front-end application project, 71
helper libraries, 74
infrastructure libraries, 73
O/RM tool, 70
partners, 43
persistence libraries, 74
Project Renoir

abstract context maps, 68–71
physical context maps, 71–74

UL, 68–69
upstream context, 42–43

controller methods, 82–83
controllers (base), embedding loggers in, 118
costs, 239

microservices, 239–240
technical debt, 285–286

coupling, loose, 49
CQRS (Command/Query Responsibility Segregation),
12–13

architectural perspective, 209–210
business perspective, 210–211
distinct databases, 211-
shared databases, 211

Craver, Nick, 241
credit, technical, 285

Agile methodologies, 294–295
broken window theory, 293–295
design principles, 294
profit of, 293
refactoring, 293
testability, 295

cross-cutting
application layer, 110
business domain model, 136
microservices, 230

CSR (Client-Side Rendering), 262
CSS (Cascading Style Sheets), 256
customers

context maps, 43
loyalty status, determining with domain services, 173

D
Dapper

defined, 205
internal operation, 206
operating, 206

data access, domain services, 172
data annotations, entities, 152
Data Clump anti-pattern, 160–161
data injection, domain services, 172
data layer

modularization, 52
multi-tiered architectures, 8

data management, microservices, 233–234
data mergers, from various sources, 110–111
data normalization, domain services, 187
data organization in caches, 126
data persistence, infrastructure layer, 190
data separation, front-end and back-end, 274–275
data storage

architectures, 208
infrastructure layer, 190

data transfers
from application layer to persistence layer,
104–106
business logic errors, 105–106
disconnecting from HTTP context, 100–101
domain entities, 103

306

data transfers

DTO
C# implementations, 100
defined, 99

input view model, 101–102
from presentation layer to application layer, 100–103
repositories, 104
response view model, 102

databases
agnosticism, DDD architectures, 28
business logic, hosting in databases, 207

stored procedures, EF Core, 207–208
stored procedures, pros/cons, 207

CQRS
distinct databases, 211-
shared databases, 211

EF Core connections, 197–198
microservice database patterns, 233
shared databases

CQRS, 211
infrastructure layer, 191

data-centric system builds, business domain model,
138–139
DbContext object pooling, 204
DDD architectures, 9, 12, 23

ACL, 41
ambiguity, 37–39
application layer. See separate entry
author’s experience with, 139–140
bounded contexts, 36–37, 38, 69

coding options, 41
context maps, 42–44
deployment maps, 44–45
domain model breakdowns, 39
external systems, 40–41
legacy systems, 40–41
shared kernels, 40

business-requirements engineering, 74–75
Agile Manifesto, The, 75
domain models, 76–77
event modeling, 76–77
event storming, 76
event-based storyboards, 76–77
waterfall model, 75

code duplication, 38–39
coding rules

relevance of, 27–28
value of, 28

context maps
abstract context maps, 68–71
application services libraries, 72–73
bounded contexts, 69
domain model libraries, 73
domain models, 69–71
EF, 70
front-end application project, 71
helper libraries, 74
infrastructure libraries, 73
O/RM tool, 70
persistence libraries, 74
physical context maps, 71–74
UL, 68–69

database agnosticism, 28
domain layer . See separate entry
domain models, 27
infrastructure layer . See separate entry
language rules, 28
layer interconnections, 12
misconceptions of, 27–28
persistence ignorance, 141
presentation layer . See separate entry
programming tools, 35–36
proposed supporting architecture, 9–10
scale of, 26
software models, 27
strategic analysis, 24

bounded contexts, 25–26
business domains, breakdowns, 24–25
business domains, microservices, 25–26
business domains, subdomains, 25
business domains, top-level architectures, 24

strategic design tools (overview), 29
supporting architectures (default), 26–27
tactical design, 26–27
UL, 29, 68–69

acronyms in glossaries, 32
building glossaries, 31–32
changes to languages, 33, 34–35
choosing natural language of glossaries, 30
factory methods, 36
goal of, 33
impact on coding, 33–34
shared glossaries of terms, 30
sharing glossaries, 32–33
technical terms in glossaries, 32
value types, 36

debt, technical
amplifiers, 292

lack of documentation, 290–291
lack of skills, 292
rapid prototyping, 291–292
scope creep, 291

costs, 285–286
defined, 285
genesis of, 296–297
impact of, 289
pragmatic perspective, 286–287
quality bar, raising, 298
reasons for creating debt, 287
reducing

inventory of debt items, 289
separating projects, 288–289
ship-and-remove strategy, 289
slack time, 290
spikes, 290
timeboxing, 290

refactoring, 295
signs of, 287–288
Zen of coding, 297–298
Zen of software infrastructure, 297

debugging, modular monoliths, 248
decision trees, business domain model, 147–148
dependencies

domains/infrastructures (business domain model)

 307

application layer, 129
decoupling in monoliths, 53
injections,

domain services, 180–182
lists, Project Renoir, business domain model, 145
managing, modularization, 50
on other functions, domain services, 177

deploying
application layer, 129

microservices, 130
separate class libraries, 130
tightly coupled with web applications, 129

microservices, 226–227, 243–244
monoliths, 223
presentation layer, 79

deployment maps, 44–45
design patterns, testability, 59–60
design principles

DRY, 294
KISS, 248, 294
SOLID, 166–167, 294
technical credit, 294
YAGNI, 294

Deutsch, Peter, 247
development costs, microservices, 239
development velocity, modular monoliths, 249
DI containers, 180–182
dictionary of business terms, Project Renoir, 68
Dijkstra, Edsgar W.7, 20, 91
DIP (Dependency Inversion Principle), 167
disabling object tracking with EF Core, 204
disconnecting from HTTP context, data transfers,
100–101
distributed caches, 123–124
distributed tasks, example of, 97–99
distributed transactions, microservices, 232
diversity, technology

microservices, 55–56
monoliths, 223

documentation
lack of, debt amplifiers, 290–291
modularization, 50
Project Renoir, document management, 94–95
sharing documents, 95

DocumentManagerService class, domain services,
177–179
DOM (Document Object Models), 257, 265–266
Domain-Driven Design: Tackling Complexity at the Heart
of Software (2003), 27, 139, 170
domain layer, 11, 133

business domain model, 133–134, 138
aggregates, 135, 136
anemic programming, 135
application-specific base classes, 151–152
bridging domains/infrastructures, 137–138
complexity, 147–148
cross-cutting, 136
data annotations, 152
data-centric system builds, 138–139
decision trees, 147–148
domain entities, 141–142

domain entities, common traits of, 149–152
domain entities, identity, 150
domain entities, states, 138
domain services, states, 138
domain value types, 142–143
entities, 134, 141–142, 149–152
filling behavioral gaps, 137
functional programming, 135
helper domain services, 137–138
internals of, 134–135
life forms in, 141–145
models, defined, 140
OOP, 135
paradigms, 135
persistence ignorance, 141
persistence of, 135–136
Project Renoir, 145–147
software anemia, 148–149
value objects, 134

decomposition of, 133
modularization, 52
multi-tiered architectures, 6
in perspective, 134

domains/infrastructures (business domain model)
bridging, 137–138
business domains, 23
business emails, sending, 174–175
costs, microservices, 239
DI containers, 180–182
DocumentManagerService class, 177–179
domain validation, 187
entities, 52

application-specific base classes, 151–152
business domain model, 141–142
common traits of, 149–152
consistency, 142
data annotations, 152
data transfers, 103
identity, 141
life cycles, 142
loading states, 144–145
mutability, 141–142
states, 138
top-level base cases, 149–150

events, blinking at, 174
If…Then…Throw pattern, 179–180
implementing, 176
impure/pure domain services, 185–186
interfaces, creating, 177
legacy system integration, 187
libraries, 73
marking classes, 170–171
models, 11, 27, 76–77

breakdowns, bounded contexts, 39
context maps, 69–71
libraries, 73
persistence models versus, 105, 201–203

necessity of, 184–186
open points, 184
pure/impure domain services, 185–186
readiness, microservices, 238

308

domains/infrastructures (business domain model)

repositories
domains versus, 193
expanding scope of, 186

REPR pattern, 180
security, 187
service to hash passwords, 175–176
services, 11, 52, 169

application services versus, 184–185
authorization, 187
blinking at domain events, 174
building, 176–179
common scenarios, 173–177, 187
customer loyalty status, determining, 173
data access, 172
data injection, 172
data normalization, 187
defined, 170
dependencies, injections, 180–182
dependencies, on other functions, 177

special case pattern, 183–184
stateless nature of, 170
states, 138
strategy pattern, 182–183
UL, 171
validation, 187
value types

attribute-based equality, 142
business domain model, 142–143
consistency, 142
immutability, 142
invariants, 142
life cycles, 142
no life cycle, 142
primitive types, 143

DotNetCore Show, 241
downstream context, context maps, 42–43
driven ports, HA, 18
driver ports, HA, 18
DRY (Don’t Repeat Yourself), 294
DTO (Data Transfer Objects)

C# implementations, 100
defined, 99

dumb pipes, 227
duplicating code, DDD architectures, 38–39

E
eager loading, EF Core, 204
EDA (Event-Driven Architectures), 16
EF (Entity Frameworks), context maps, 70
EF Core, 196–197

batch operations, 205
compiled queries, 204–205
database connections, 197–198
DbContext object pooling, 204
eager loading, 204
object tracking, disabling, 204
pagination, 205
persistence models, building, 199–201
repository pattern, 194

stored procedures, 207–208
unavoidable practices, 204–205

“Eight Fallacies of Distributed Computing”247
emails (business), sending with domain services, 174–175
embedding loggers in base controllers, 118
endpoints

API, 89
smart endpoints, 227

Enigma (1995), 30
entities

application-specific base classes, 151–152
business domain model, 134, 141–142
common traits of, 149–152
data annotations, 152
definitions, event modeling, 77
identity, 150
top-level base cases, 149–150

enums, naturalizing, clean code etiquette, 158–159
equality (attribute-based), domain value types, 142
ER principle, 153
ES (Event Sourcing), 14–16

architectural implications, 214–215
characterizing traits, 213–214
executive summary, 213–215

Esposito, Francesco, 72
etiquette, clean code, 152

Boolean methods, 157–158
constant values, 159–160
Data Clump anti-pattern, 160–161
ER principle, 153
extension methods, 156–157
Extract Method refactoring pattern, 155–156
if pollution, 153
LINQ, 154–155
loop emissions, 154–155
naturalizing enums, 158–159
pattern matching, 153–154
syntactic sugar, 156–157

Evans, Eric, 27, 139, 170
event modeling, 76–77
event storming, 76
event-based storyboards, 76–77
exception handling/throwing, 119

accessing exception details, 120
bubbling exceptions, 121–122
custom exception classes, 120–121
middleware, 119
reformulating exceptions, 121–122
swallowing exceptions, 121–122

exchanging data, repositories, 104
extension methods, clean code etiquette, 156–157
external services, communication via infrastructure layer,
190–191
external systems, bounded contexts, 40–41
Extract Method refactoring pattern, 155–156

F
Facebook, 296–297
factory methods, DDD architectures, 36
fault tolerance, microservices, 229

infrastructures/domains (business domain model)

 309

FDA (Feature-Driven Architectures), 20
agility, 21–22
tradeoffs, 21–22
VSA, 21

Fellowship of the Ring, The, 255
Fermi, Enrico, 169
files

access, application layer, 107–108
shared files/databases

CQRS, 211
infrastructure layer, 191

filling behavioral gaps, business domain model, 137
fixed user/role association, Project Renoir, 93
flexible user/asset/role association, Project Renoir, 93
Fowler, Martin, 27
frameworks, rich, 269–270

accessibility, 269
BFF, 270
performance overhead, 269
SEO, 269
SSR, 270

front-end and back-end separation, 274
data, 274–275
markups, 274–275
single web stacks, 274

front-end application project, context maps, 71
front-end options, ASP.NET

Blazor, 278
HTMX, 277
Razor, 275–277
Svelte, 276
Vanilla JavaScript, 275–276
Vue.js framework, 276–277

front-end pages, HTML layer, 263
functional programming, business domain model, 135
functions maps, Project Renoir, 77–78

G
glossaries, UL

acronyms, 32
building glossaries, 31–32
choosing natural language of glossaries, 30
shared glossaries of terms, 30
sharing glossaries, 32–33
technical terms, 32

Gmail, 260–261
Gödel, Kurt, 3
Google, 237
Gosling, James, 247
GPT (Generative Pre-trained Transformer), 72
GraphQL API, 266–269
greenfield projects, microservices, 246–247
gRPC (gRPC Remote Procedure Calls), 235

H
HA (Hexagonal Architectures), 17–18
handling exceptions, 119–122

Harris, Robert, 30
hash passwords, service to, 175–176
helper domain services, 137–138
helper libraries, 74
Hoare, Sir Tony, 47
horizontal scalability, monoliths and modularization, 54
hosting business logic in databases, stored procedures,
207

EF Core, 207–208
pros/cons, 207

hot reloads, application settings, 112–113
HTML layer

front-end pages, 263
rendering HTML, 264–265
SSG, 272
Svelte, 270–271
text templating, 263–264

HTMX, 277
HTTP context (data transfers), disconnecting from, 100
hubs (monitoring), configuring, 126–127
human resources costs, microservices, 239

I
IBM 360 system, 4
IBM San Jose Research Laboratory, 139
identity

domain entities, 141
entities, 150

if pollution, 153
If…Then…Throw pattern, domain services, 179–180
IIS middleware, Project Renoir, 79
immutability, domain value types, 142
impure but persistent domain models, 203
impure/pure domain services, 185–186
Incompleteness, Theorem of, 3
increasing technical debt, 292

lack of documentation, 290–291
lack of skills, 292
rapid prototyping, 291–292
scope creep, 291

indentation, coding style conventions, 161
infrastructure layer, 11, 189. See also persistence layer

data persistence, 190
data storage, 190
external services communication, 190–191
internal services communication, 191–192
modularization, 52
multi-tiered architectures, 6
responsibilities of, 190
shared files/databases, 191
WCF reference classes, 191
Web API, 191

infrastructures/domains (business domain model)
bridging, 137–138
business domains, 23
business emails, sending, 174–175
costs, microservices, 239
DI containers, 180–182
DocumentManagerService class, 177–179

http://ASP.NET

310

infrastructures/domains (business domain model)

domain validation, 187
entities, 52

application-specific base classes, 151–152
business domain model, 141–142
common traits of, 149–152
consistency, 142
data annotations, 152
data transfers, 103
identity, 141
life cycles, 142
loading states, 144–145
mutability, 141–142
states, 138
top-level base cases, 149–150

events, blinking at, 174
If…Then…Throw pattern, 179–180
implementing, 176
impure/pure domain services, 185–186
interfaces, creating, 177
legacy system integration, 187
libraries, 73
marking classes, 170–171
models, 11, 27, 76–77

breakdowns, bounded contexts, 39
context maps, 69–71
libraries, 73
persistence models versus, 105, 201–203

necessity of, 184–186
open points, 184
pure/impure domain services, 185–186
readiness, microservices, 238
repositories

domains versus, 193
expanding scope of, 186

REPR pattern, 180
security, 187
service to hash passwords, 175–176
services, 11, 52, 169

application services versus, 184–185
authorization, 187
blinking at domain events, 174
building, 176–179
common scenarios, 173–177, 187
customer loyalty status, determining, 173
data access, 172
data injection, 172
data normalization, 187
defined, 170
dependencies, injections, 180–182
dependencies, on other functions, 177

special case pattern, 183–184
stateless nature of, 170
states, 138
strategy pattern, 182–183
UL, 171
validation, 187
value types

attribute-based equality, 142
business domain model, 142–143
consistency, 142
immutability, 142

invariants, 142
life cycles, 142
no life cycle, 142
primitive types, 143

injecting
data, domain services, 172
dependencies, , 180–182

in-memory caches, 123
input view model, data transfers, 101–102
interfaces, domain services, 177
internal services, infrastructure layer communication,
191–192
invariants, domain value types, 142
inventories of debt items, reducing technical debt, 289
I/O bound tasks, processing in Node.js, 281–282
IoC (Inversion of Control),
isolation, aggregates, 143
ISP (Interface Segregation Principle), 167

J
JavaScript, 256–257

Angular, 261–262, 265–266
HTMX, 277
modern application frameworks, 261–262
Node.js, 273

ASP.NET Core versus, 278–281
processing I/O bound tasks, 281–282
processing requests, 281

React, 261, 262, 265–266
Vanilla JavaScript, 272–273, 275–276
Vue.js framework, 272, 276–277

jobs, defined, 4

K
Kerouac, Jack, 246
KISS principle, 248, 294
Kubernetes, microservice deployments, 243–244

L
lack of documentation, debt amplifiers, 290–291
lack of skills, debt amplifiers, 292
language rules, DDD architectures, 28

changes to languages, 33
glossaries, 30

layers
defined, 5
interconnections, DDD architectures, 12

legacy applications, 220
dealing with, 220–221
origin of, 220

legacy systems
bounded contexts, 40–41
domain service integration, 187

Legoization, 7

http://ASP.NET

modularization

 311

libraries
application services libraries, 72–73
class libraries, application layer deployments, 130
domain model libraries, 73
helper libraries, 74
infrastructure libraries, 73
MediatR mediator library, 85–86
persistence libraries, 74

life cycles
domain entities, 142
domain value types, 142

life forms, Project Renoir, business domain model, 146
line length, style conventions, 163–164
LINQ (Language Integrated Queries), 154–155
Liskov, Barbara, 167
LLM (Large Language Models), 72
loading, eager, 204
logging

application facts, 117–118
application layer, 113
ASP.NET loggers (default), 113–114
centralized logging services, microservices, 230–231
configuring loggers, 116–117
embedding loggers in base controllers, 118
production-level loggers, 114–116
registering loggers, 113–114

logical boundaries, modular monoliths, 250
logical modules, monoliths and modularization, 53
loop emissions, clean code etiquette, 154–155
loose coupling

modular monoliths, 249
modularization, 49

loyalty status of customers, determining with domain
services, 173
LSP (Liskov’s Substitution Principle), 167

M
maintainability, 57

readability, 57
reusability, 57–58
scalability, 58

maintenance
coding in monoliths, 221–222
microservices costs, 239

managing data, microservices, 233–234
marking classes, domain services, 170–171
markups, front-end and back-end separation, 274–275
Martin, Robert, 18, 167
meaningful naming, coding style conventions, 161
mediator libraries, 85–86
MediatR mediator library, 85–86
memory, in-memory caches, 123
merge conflicts, monoliths, 222
merging data from various sources, 110–111
message-based business logic, 14–15
message buses, application layer/presentation layer
connections, 86
method length, style conventions, 163–164
micro-O/RM, repository pattern, 194–195

microservices, 219
Agile development, 228
application layer deployments, 130
“archipelago of services”227
architectural implications, 242
aspects of (overview), 54–55
authentication, 231
authorization, 231
benefits of, 227–229
business domains, 25–26
centralized logging services, 230–231
challenges of, 56
circuit breakers, 234
collected applications versus, 241
consistency, 232
costs, 239–240
cross-cutting, 230
data management, 233–234
database patterns, 233
deploying, 226–227, 243–244
determining necessary number of, 242
determining need for (scenarios), 237–241
distributed transactions, 232
dumb pipes, 227
early adopters, 224
fault tolerance, 229
as first choice, 247
flexibility in all applications, 235
gray areas, 229–235
greenfield projects, 246–247
infrastructure readiness, 238
intricacy of, 247
logical decomposition of systems, 225–226, 242
misconceptions of, 235–236
modular monoliths, transitioning to microservices,
249–252
modularization, 49
Netflix, 236–237
Nuvolaris, 245
operational overhead, 234–235
planning, 241–242
scalability, 228, 237–238
serverless environments, 244–245
service coordination, 229–230
size of, 225–227
smart endpoints, 227
SOA, 224, 237
Stack Overflow, 240–241
technology diversity, 55–56, 239
tenets of, 224–225

middleware
ASP.NET Core, 106
exception handling, 119

Minimal API, 81–82, 273
models

binding, 280
defined, 140

modularization, 47, 52
application layer, 51–52
applying (overview), 51
aspects of (overview), 48

http://ASP.NET
http://ASP.NET

312

modularization

client/server architectures, 4
data layer, 52
dependency management, 50
development of, 3
documentation, 50
domain layer, 52
infrastructure layer, 52
levels of, 47–48
loose coupling, 49
microservices, 49

aspects of (overview), 54–55
challenges of, 56
technology diversity, 55–56

modular monoliths, 66, 245–246
applications, 52–53, 66, 220–221
boundaries, 250–251
BUFD, 246
code bases, 248
code development/maintenance, 221–222
debugging, 248
decomposition of, 251
decoupling dependencies, 53
deployments, 223
development velocity, 249
features, 252
KISS principle, 248
legacy applications, 220–221
logical modules, 53
loose coupling, 249
merge conflicts, 222
new project strategies, 247–250
performance, 249
potential downsides of, 221–223
scalability, 54, 222
session states, 249

shared states, 249
software architectures, 248
sticky sessions, 249
testing, 248
traits of, 248–249
transitioning to microservices, 249–252
presentation layer, 51
principles of (overview), 48
quest for, 3
reusability, 49
SoC, 7, 9, 20, 47, 48–49
SSE, 56–57
testability, 50

monitoring hubs, configuring, 126–127
monoliths,
modular monoliths, 66, 245–246

applications, 52–53, 66, 220–221
boundaries, 250–251
BUFD, 246
code bases, 248
code development/maintenance, 221–222
debugging, 248
decomposition of, 251
decoupling dependencies, 53
deployments, 223
development velocity, 249

features, 252
KISS principle, 248
legacy applications, 220–221
logical modules, 53
loose coupling, 249
merge conflicts, 222
new project strategies, 247–250
performance, 249
potential downsides of, 221–223
scalability, 54, 222
session states, 249

shared states, 249
software architectures, 248
sticky sessions, 249
testing, 248
traits of, 248–249
transitioning to microservices, 249–252
software monoliths, defined, 5
technology diversity, 223

multithreading, ASP.NET, 282–283
multi-tiered architectures, 4–5

application layer, 6
applications, defined, 6–7
business layer, 8
data layer, 8
defining

layers, 5
tiers, 5

domain layer, 6
infrastructure layer, 6
presentation layer, 6, 8
purpose of, 9
SoC, 7, 9
software monoliths, 5
value of N, 6

mutability, domain entities, 141–142
MVC (Model View Controller)

methods, Project Renoir, 80–81
patterns, 259–260

N
N, value of, 6
naming conventions

consistent naming conventions, 161
meaningful naming, 161

naturalizing enums, clean code etiquette, 158–159
Netflix, 224, 236–237
Newton, Sir Isaac, 189
Nietzche, Friedrich, 219
no life cycle, domain value types, 142
Node.js, 273

ASP.NET Core versus, 278–281
I/O bound tasks, processing, 281–282
requests, processing, 281

normalizing data, domain services, 187
notifications (SignalR), sending to client browsers, 128
NuGet, Project Renoir, 73
Nuvolaris, 245

http://ASP.NET
http://ASP.NET

presentation layer

 313

O
object tracking, disabling with EF Core, 204
OCP (Open/Closed Principle), 167
On The Road, 246
“On the Role of Scientific Thought”7
OOP (Object-Oriented Programming), 135
open points, domain services, 184
operational costs, microservices, 239
operational overhead, microservices, 234–235
organizing data in caches, 126
O/RM tool, context maps, 70

P
pagination, EF Core, 205
partial classes, 162
partners, context maps, 43
passwords, service to hash, 175–176
pattern matching, clean code etiquette, 153–154
performance

modular monoliths, 249
overhead, rich frameworks, 269

permissions, Project Renoir, 94, 95
persistence ignorance, 141
persistence layer. See also infrastructure layer

Dapper
defined, 205
internal operation, 206
operating, 206

data transfers, from application layer to persistence
layer, 104–106
domain models

impure but persistent domain models, 203
persistence models versus, 201–203

EF Core, 196–197
batch operations, 205
building persistence models, 199–201
compiled queries, 204–205
database connections, 197–198
DbContext object pooling, 204
disabling object tracking, 204
eager loading, 204
pagination, 205
stored procedures, 207–208
unavoidable practices, 204–205

implementing, 192
impure but persistent domain models, 203
persistence models

building EF Core-specific models, 199–201
domain models versus, 201–203

repository classes, 193–196
repository pattern, 193–196
UoW pattern, 196

persistence libraries, 74
persistence models, domain models versus, 105, 201–203
persistence of data, infrastructure layer, 190
personas, Project Renoir, 69
Picasso, Pablo, 65

pipes, dumb, 227
planning microservices, 241–242
Polly, transitioning modular monoliths to microservices,
251
ports, driver (HA), 18
presentation layer, 65

API-only presentations, 88–89
application layer

dependencies, 83–84
mediator connections, 85–86
message bus connections, 86

Blazor server apps, 87
boundaries of, 79
business workflow connections, 82

application layer dependency, 83–84
controller methods, 82–83
exceptions to controller rules, 84–85
mediator connections, 85–86

business-requirements engineering, 74–75
Agile Manifesto, The, 75
domain models, 76–77
event modeling, 76–77
event storming, 76
event-based storyboards, 76–77
waterfall model, 75

context maps
abstract context maps, 68–71
application services libraries, 72–73
bounded contexts, 69
domain model libraries, 73
domain models, 69–71
EF, 70
front-end application project, 71
helper libraries, 74
infrastructure libraries, 73
O/RM tool, 70
persistence libraries, 74
physical context maps, 71–74
UL, 68–69

DDD architectures, 10
deploying, 79
development (overview), 82
modularization, 51
multi-tiered architectures, 6, 8
Project Renoir, 66

ASP.NET, application endpoints, 80–82
ASP.NET Core, application gateways, 80
ASP.NET Core, middleware, 79–80
business terms, 68
business-requirements engineering, 74–77
context maps, abstract, 68–71
context maps, physical, 71–74
functions maps, 77–78
fundamental tasks, 77–79
IIS middleware, 79
introduction to (overview), 66
Minimal API endpoints, 81–82
MVC methods, 80–81
personas, 69
product-related features, 78–79

http://ASP.NET
http://ASP.NET
http://ASP.NET

314

presentation layer

Razor page code-behind classes, 81
release notes, 66–67
release notes, creation tools, 66–67
release notes, writing, 67
user access control, 78

SSR, 86–87
Wisej, 87–88

primitive types, domain value types, 143
procedures, stored

EF Core, 207–208
pros/cons, 207

production-level loggers, 114–116
product-related features, Project Renoir, 78–79
Programming Large Language Models with Azure OpenAI
(2024), 72
programming tools, DDD architectures, 35–36
Prohibition Act, U.S.7
Project Renoir, 66

access control, 92–94
application layer

application services, 107
application settings, 110–113
boundaries of, 129–130
caching, 123–126
cross-cutting, 110
deploying, 129–130
file access, 107–108
handling exceptions, 119–122
logging, 113–118
outline of, 106–110
SignalR connection hubs, 126–128
throwing exceptions, 119–122
use-case workflows, 108–109

architectural view, 91–92
ASP.NET, application endpoints, 80–82
ASP.NET Core

application gateways, 80
middleware, 79–80

authentication, 92
business domain model, 145

aggregates, 146–147
dependency lists, 145
life forms in libraries, 146
top-level base cases, 149–150

business-requirements engineering, 74–75
Agile Manifesto, The, 75
domain models, 76–77
event modeling, 76–77
event storming, 76
event-based storyboards, 76–77
waterfall model, 75
business terms, 68

context maps
abstract context maps, 68–71
application services libraries, 72–73
bounded contexts, 69
domain model libraries, 73
domain models, 69–71
EF, 70
front-end application project, 71

helper libraries, 74
infrastructure libraries, 73
O/RM tool, 70
persistence libraries, 74
physical context maps, 71–74
UL, 68–69

data transfers
from application layer to persistence layer,
104–106
from presentation layer to application layer,
100–103

document management, 94–95
domain services, building, 176–179
fixed user/role association, 93
flexible user/asset/role association, 93
functions maps, 77–78
fundamental tasks, 77–79
IIS middleware, 79
introduction to (overview), 66
Minimal API endpoints, 81–82
modular monoliths, transitioning to microservices,
249–252
MVC methods, 80–81
NuGet, 73
permissions, 94–95
personas, 69
product-related features, 78–79
Razor page code-behind classes, 81
release notes, 66–67

creation tools, 68
writing, 67

sharing documents, 95
task orchestration, 96

defining tasks, 96–97
distributed tasks, 97–99
example task, 99

user access control, 78
user authentication, 92
Visual Studio, 95
Youbiquitous.Martlet, 73

protobufs (Protocol Buffers), 235
prototyping, rapid, 291–292
pure/impure domain services, 185–186

Q
QCon London 2023, 237
quality bar, raising, 298
queries

command/query separation, 208–213
compiled queries, EF Core, 204–205
CQRS, 12–13

architectural perspective, 209–210
business perspective, 210–211
distinct databases, 211-
shared databases, 211

LINQ, 154–155
SQL, 139

http://ASP.NET
http://ASP.NET

 315

sharing

R
rapid prototyping, 291–292
Razor

ASP.NET web stacks, 275–277
pages, code-behind classes, 81

RDBMS (Relational Database Management Systems), 139
React, 261, 262, 265–266
readability

coding
author’s experience with, 165–166
writing, 165–166

maintainability, 57
readiness of infrastructures, microservices, 238
reducing technical debt

inventory of debt items, 289
separating projects, 288–289
ship-and-remove strategy, 289
slack time, 290
spikes, 290
timeboxing, 290

refactoring
goals of, 296
as learning experience, 296
power of, 295
technical credit, 293
technical debt, 295

reference classes, WCF, 191
reformulating exceptions, 121–122
registering loggers, 113–114
relationships, aggregates, 143
release notes, 66

creation tools, 68
writing, 67

reloading (hot), application settings, 112–113
rendering

HTML, 264–265
SSR, 86–87, 270, 273–274

repositories
classes, 193–196
data transfers, 104
domain services versus, 193
expanding scope of, 186
patterns, 193–196

REPR pattern, domain services, 180
ReSharper and Visual Studio, 166
response view model, data transfers, 102
REST API (Representational State Transfer API), 266–269
reusability

coding, 196
maintainability, 57–58
modularization, 49

rich frameworks
accessibility, 269
BFF, 270
drawbacks of, 269–270
performance overhead, 269
SEO, 269
SSR, 270

roles, Project Renoir
fixed user/role association, 93

flexible user/asset/role association, 93
roots, business domain model, 143–144
rules (business), handling with strategy pattern, 182–183

S
scalability

DDD architectures, 9
event sourcing, 16
horizontal scalability, 54
maintainability, 58
microservices, 228, 237–238
monoliths, 54, 222

scope creep, 291
scripting

client-scripting, 260
AJAX, 260
Angular, 261–262, 265–266
CSR, 262
JavaScript, modern application frameworks,
261–262
React, 261, 262, 265–266

server-side scripting, 257–258
ASP.NET Web Forms, 258–259
MVC patterns, 259–260

security, domain services, 187
sending business emails with domain services, 174–175
SEO (Search Engine Optimization), 269
“Separating Data from Function in a Distributed File
System” 4
separating front-end and back-end, 274

data, 274–275
markups, 274–275
single web stacks, 274

serverless environments, microservices, 244–245
server-side scripting, 257–258

ASP.NET Web Forms, 258–259
MVC patterns, 259–260

service to hash passwords, 175–176
services

centralized logging services, microservices, 230–231
domain services, 11, 52, 169

application services versus, 184–185
authorization, 187
blinking at domain events, 174
building, 176–179
common scenarios, 173–177, 187
customer loyalty status, determining, 173
data access, 172
data injection, 172
data normalization, 187
defined, 170
dependencies, injections, 180–182
dependencies, on other functions, 177

microservice coordination, 229–230
session states, modular monoliths, 249
sharing

documents, Project Renoir, 95
files/databases

CQRS, 211

http://ASP.NET
http://ASP.NET
http://ASP.NET

316

sharing

infrastructure layer, 191
kernels, bounded contexts, 40
states, modular monoliths, 249
UL glossaries, 32–33

ship-and-remove strategy, reducing technical debt, 289
SignalR connection hubs, 126

monitoring hubs, 126–127
notifications, sending to client browsers, 128
propagating, 127–128

single web stacks, front-end and back-end separation,
275
skills (debt amplifiers), lack of, 292
slack time, 290
smart endpoints, 227
SOA (Service-Oriented Architectures), 224, 225–226

microservices and, 237
tenets of, 224–225

SoC (Separation of Concerns), 7, 9, 20, 47, 48–49
software

anemia, 148–149
architectures

modular monoliths, 248
Zen of, 297

models, defined, 27
monoliths, defined, 5
projects, business-requirements engineering, 74–75

Agile Manifesto, The, 75
waterfall model, 75

SOLID acronym, 166–167, 294
SPA (Single-Page Applications), 260–261
spacing, style conventions, 162
special case pattern, 183–184
spikes, 290
Spolsky, Joel, 240–241
SQL (Structured Query Language), 139
SRP (Single Responsibility Principle), 166–167
SSE (Simplest Solution Ever), 56–57
SSG (Static Site Generation), 271–272
SSR (Server-Side Rendering), 86–87, 270, 273–274
Stack Overflow, 240–241
stateless nature of domain services, 170
states, loading into domain entities, 144–145
sticky sessions, modular monoliths, 249
storage

data
architectures, 208
infrastructure layer, 190

procedures
EF Core, 207–208
pros/cons, 207

storyboards, event-based, 76–77
strategic analysis, DDD architectures, 24

bounded contexts, 25–26
business domains

breakdowns, 24–25
subdomains, 25
top-level architectures, 24

microservices, 25–26
strategy pattern (business rules), 182–183

style conventions
braces ({ }), 161
clean code etiquette, 161–165
comments, 164–165
consistent naming conventions, 161
indentation, 161
line length, 163–164
meaningful naming, 161
method length, 163–164
partial classes, 162
spacing, 162
Visual Studio regions, 163

subdomains, business domains, 25
suppliers, context maps, 43
Svelte, 270–271, 276
swallowing exceptions, 121–122
syntactic sugar, 156–157

T
tactical design, DDD architectures, 26–27
task orchestration, 96

defining tasks, 96–97
Project Renoir example, 99

TDD (Test-Driven Design), 50, 60
technical credit, 285

Agile methodologies, 294–295
broken window theory, 293–295
design principles, 294
profit of, 293
refactoring, 293
testability, 295

technical debt
amplifiers, 292

lack of documentation, 290–291
lack of skills, 292
rapid prototyping, 291–292
scope creep, 291

costs, 285–286
defined, 285
genesis of, 296–297
impact of, 289
pragmatic perspective, 286–287
quality bar, raising, 298
reasons for creating debt, 287
reducing

inventory of debt items, 289
separating projects, 288–289
ship-and-remove strategy, 289
slack time, 290
spikes, 290
timeboxing, 290

refactoring, 295
signs of, 287–288
Zen of coding, 297–298
Zen of software infrastructure, 297

technical terms, UL glossaries, 32
technology diversity

 317

web applications

microservices, 55–56, 239
monoliths, 223

templates, text, 263–264
terms (business), Project Renoir, 68
testability, 295

design patterns, 59–60
modularization, 50
principles of (overview), 58–59
TDD, 60

testing modular monoliths, 248
text templating, 263–264
Theorem of Incompleteness, 3
three-tier architectures, 4–5, 10

defining
layers, 5
tiers, 5

software monoliths, 5
U.S. Prohibition Act, 7
value of N, 6

throwing exceptions, 119–122
tiers, defined, 5
timeboxing, 290
Tolkien, J.R.R.255
top-level base cases, entities, 149–150
tracking objects, disabling with EF Core, 204
transactional boundaries, aggregates, 143
transferring data

from application layer to persistence layer, 104–106
business logic errors, 105–106
disconnecting from HTTP context, 100–101
domain entities, 103
DTO

C# implementations, 100
defined, 99

input view model, 101–102
from presentation layer to application layer, 100–103
repositories, 104
response view model, 102

Turing, Alan, 3
Twain, Mark, 23

U
UL (Ubiquitous Language)

changes to languages, 33, 34–35
context maps, 68–69
DDD architectures, 29
domain services, 171
factory methods, 36
glossaries

acronyms, 32
building, 31–32
choosing natural language of glossaries, 30
shared terms, 30
sharing, 32–33
technical terms, 32

goal of, 33
impact on coding, 33–34
value types, 36

UoW pattern, 196
upstream context, context maps, 42–43
U.S. Prohibition Act, 7
use cases

event modeling, 77
workflows, application layer, 108–109

users, Project Renoir
access control, 78
authentication, 92

fixed user/role association, 93
flexible user/asset/role association, 93

V
validation, domains, 187
value objects, business domain model, 134
value of N, 6
value types, DDD architectures, 36
values (constant), clean code etiquette, 159–160
Vanilla JavaScript, 272–273, 275–276
Visual Studio

Project Renoir, 95
regions, style conventions, 163
ReSharper and, 166

Von Neumann, John, 3, 4
VSA (Vertical Slice Architectures), 21
Vue.js framework, 272, 276–277

W
waterfall model, 75
WCF (Windows Communication Foundation)

microservices, 225–226
reference classes, 191

Web API, 191
web applications

API layer, 266
GraphQL API, 266–269
REST API, 266–269

application layer deployments, 129
brief history of, 256
defined, 6–7
HTML layer

front-end pages, 263
rendering HTML, 264–265
SSG, 272
Svelte, 270–271
text templating, 263–264

rich frameworks
accessibility, 269
BFF, 270
drawbacks of, 269–270
performance overhead, 269
SEO, 269
SSR, 270

SPA, 260–261
SSG, 271–272

318

web browser wars

web browser wars, 257
Web Forms, ASP.NET, 258–259
web stacks, front-end and back-end separation,
274
Wilde, Oscar, 285
Wisej, 87–88
workflows (use-case), application layer,
108–109
write-through patterns, caching, 124
writing

readable code, 165–166
release notes, 67

X - Y
YAGNI (You Aren’t Gonna Need It), 294
Youbiquitous.Martlet, Project Renoir, 73

Z
Zave, Dr. Pamela, 3
Zen of coding, 297–298
Zen of software infrastructure, 297
Zerox PARC computer scientists, 4

http://ASP.NET

	Cover
	Title Page
	Copyright Page
	Contents at a Glance
	Contents
	Acknowledgments
	Introduction
	Chapter 2 The ultimate gist of DDD
	Design driven by the domain
	Strategic analysis
	Tactical design
	DDD misconceptions
	Tools for strategic design

	Ubiquitous language
	A domain-specific language vocabulary
	Building the glossary
	Keeping business and code in sync

	The bounded context
	Making sense of ambiguity
	Devising bounded contexts

	The context map
	Upstream and downstream
	An example context map
	An example deployment map

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

