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Introduction

I graduated in Computer Science in the summer of 1990. At the time, there were not 
many places in Europe to study computers. The degree course was not even set up with 

its own Computer Science faculty but was an extension of the more classical faculty of 
Mathematics, Physics, and Natural Sciences. Those with strong computer expertise in the 
1990s were really cool people—in high demand but with unclear career paths. I started 
as a Windows developer. Computer magazines were popular and eagerly awaited every 
month. I dreamt of writing for one of them. I won the chance to do it once and liked it so 
much that I’m still doing it today, 30 years later.

My passion for sharing knowledge was so intense that five years after my first serious 
developer job it became my primary occupation. For over two decades all I did was write 
books and articles, speak at conferences, teach courses, and do occasional consulting. 
Until 2020, I had a very limited exposure to production code and the routine of day-by-
day development. Yet, I managed to write successful books for those who were involved 
in real-world projects.

Still, in a remote area of my mind was a thorny doubt: Am I just a lecture type of pro-
fessional or am I also an action person? Will I be able to ever build a real-world system? 
The pandemic and other life changes brought me to ultimately find an answer.

I faced the daunting task of building a huge and intricate system in a fraction of the 
time originally scheduled that the pandemic sharply cut off. No way to design, be agile, 
do testing and planning—the deadline was the only certain thing. I resorted to doing—
and letting a few other people do—just what I taught and had discovered while teaching 
for years. It worked. Not just that. Along the way, I realized that the approach we took 
to build software, and related patterns, also had a name: clean architecture. This book is 
the best I know and have learned in three years of everyday software development after 
over two decades of learning, teaching, and consulting. 

In our company, we have several developers who joined as juniors and have grown 
up using and experimenting with the content of this book. It worked for us; I hope it will 
work for you, too!
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Who should read this book

Software professionals are the audience for this book, including architects, lead develop-
ers, and—I would say, especially—developers of any type of .NET applications. Everyone 
who wants to be a software architect should find this book helpful and worth the cost. 
And valid architects are, for the most part, born developers. I strongly believe that the 
key to great software passes through great developers, and great developers grow out 
of good teachers, good examples, and—hopefully—good books and courses.

Is this book only for .NET professionals? Although all chapters have a .NET flavor, most 
of the content is readable by any software professional.

Assumptions
This book expects that you have at least a minimal understanding of .NET development and 
object-oriented programming concepts. A good foundation in using the .NET platform and 
knowledge of some data-access techniques will also help. We put great effort into making 
this book read well. It’s not a book about abstract design concepts, and it’s not a classic archi-
tecture book either, full of cross-references or fancy strings in square brackets that hyperlink 
to some old paper listed in a bibliography at the end of the book. It’s a book about building 
systems in the 2020s and facing the dilemmas of the 2020s, from the front end to the back 
end, passing through cloud platforms and scalability issues.

This book might not be for you if…

If you’re seeking a reference book or you want to find out how to use a given pattern or 
technology then this book might not for you. Instead, the goal is sharing and  
transferring knowledge so that you know what to do at any point. Or, at least, you now 
know what other guys—Dino and team—did in an analogous situation.

Organization of this book

In all, modern software architecture has just one precondition: modularity. Whether you 
go with a distributed, service-oriented structure, a microservices fragmented pattern, 
or a compact monolithic application, modularity is crucial to build and manage the 
codebase and to further enhance the application following the needs of the business. 
Without modularity, you can just be able to deliver a working system once, but it will be 
hard to expand and update it. 
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Part I of this book, titled “The Holy Grail of modularity,” lays the foundation of soft-
ware modularity, tracing back the history of software architecture and summarizing the 
gist of domain-driven design (DDD)—one of the most helpful methodologies for break-
ing down business domains, though far from being an absolute necessity in a project. 

Part II, “Architecture cleanup,” is about the five layers that constitute, in the vision of 
this book, a “clean” architecture. The focus is not much on the concentric rendering of 
the architecture, as popularized by tons of books and articles, but on the actual value 
delivered by constituent layers: presentation, application, domain, domain services, and 
infrastructure. 

Finally, Part III, “Common dilemmas,” focuses on three frequently faced stumbling 
blocks: monoliths or microservices, client-side or server-side for the front end, and the 
role and weight of technical debt. 

Downloads: reference application

Part II of the book describes a reference application, Project Renoir, whose entire code-
base is available on GitHub at:

https://github .com/Youbiquitous/project-renoir 

A zipped version of the source code is also available for download at  
MicrosoftPressStore .com/NET/download .

Note The reference application requires .NET 8 and is an ASP.NET application 
with a Blazor front end. It uses Entity Framework for data access and assumes a 
SQL Server (any version) database.

Errata, updates, and book support

We’ve made every effort to ensure the accuracy of this book and its companion content. 
You can access updates to this book—in the form of a list of submitted errata and their 
related corrections—at: 

MicrosoftPressStore .com/NET/errata

If you discover an error that is not already listed, please submit it to us at the same 
page.

https://github.com/Youbiquitous/project-renoir
http://MicrosoftPressStore.com/NET/download
http://ASP.NET
http://MicrosoftPressStore.com/NET/errata
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For additional book support and information, please visit  
MicrosoftPressStore .com/Support.

Please note that product support for Microsoft software and hardware is not offered 
through the previous addresses. For help with Microsoft software or hardware, go to 
http://support .microsoft .com.

Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter .com/MicrosoftPress

http://MicrosoftPressStore.com/Support
http://support.microsoft.com
http://twitter.com/MicrosoftPress
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C H A P T E R  2

The ultimate gist of DDD

Get your facts first, and then you can distort them as much as you please.
—Mark Twain

Domain-driven design (DDD) is a 20-year-old methodology. Over the years, there have been several 
books, learning paths, and conferences dedicated to it, and every day, various social networks 

archive hundreds of posts and comments about it. Still, although the essence of DDD remains surpris-
ingly simple to grasp, it is much less simple to adopt.

Today more than ever, software adds value only if it helps streamline and automate business pro-
cesses. For this to happen, the software must be able to faithfully model segments of the real world. 
These segments are commonly referred to as business domains.

For a few decades, client/server, database-centric applications have provided an effective way 
to mirror segments of the real world—at least as those segments were perceived at the time. Now, 
though, working representations of segments of the real world must become much more precise  
to be useful. As a result, a database with just some code around is often no longer sufficient. Faithfully 
mirroring real-world behaviors and processes requires an extensive analysis. 

What does this have to do with DDD? Ultimately, DDD has little to do with actual coding. It relates to 
methods and practices for exploring the internals of the business domain. The impact of DDD on cod-
ing and on the representation of the real world depends on the results of the analysis. 

DDD is not strictly required per se, but it is an effective method for exploring and understanding 
the internal structure of the business domain. What really matters is getting an accurate analysis of the 
domain and careful coding to reflect it. DDD systematizes consolidated practices to produce an archi-
tectural representation of the business domain, ready for implementation.

Design driven by the domain

Conceptually, DDD is about design rather than coding. It rests on two pillars: one strategic and one  
tactical. The original authors of DDD outlined the strategy pillar and suggested tactics to achieve it. 
Today, however, I believe strategic analysis is the beating heart of DDD.
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Strategic analysis
Any world-class software application is built around a business domain. Sometimes, that business 
domain is large, complex, and intricate. It is not a natural law, however, that an application must rep-
resent an intricate business domain to be broken down into pieces with numerous and interconnected 
function points. The strategic analysis can easily return the same monolithic business domain you 
started from.

Top-level architecture
The ultimate goal of the DDD strategic analysis is to express the top-level architecture of the business 
domain. If the business domain is large enough, then it makes sense to break it down into pieces, and 
DDD provides effective tools for the job. Tools like ubiquitous language (UL) and bounded contexts 
may help identify subdomains to work on separately. Although these subdomains may potentially 
overlap in some way, they remain constituent parts of the same larger ecosystem.

Figure 2-1 illustrates the conceptual breakdown of a large business domain into smaller pieces, each 
of which ultimately results in a deployed application. The schema—overly simplified for the purposes 
of this book—is adapted from a real project in sport-tech. The original business domain—a data-
collection platform—is what stakeholders attempted to describe and wanted to produce. The team 
conducted a thorough analysis and split the original domain into five blocks. Three of these blocks 
were then further broken into smaller pieces. The result is 10 applications, each independent from the 
other in terms of technology stack and hosting model, but still able to communicate via API and in 
some cases sharing the same database.

TABLET APP

DATA ROUTER

SCORING
API

DATA
STORAGE

PUBLIC APIMANAGEMENT

LIVE
INSPECTOR

ROUTER
INSPECTOR

SAMPLE
DATA

COLLECTION
PLATFORM

MODULE

OPERATIONS
MODULE

INTERNAL
TOOLING

UI
WIDGETS

MOBILE
APP

FIGURE 2-1 Breakdown of a business domain.
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Business domain breakdown
Nobody really needs DDD (or any other specific methodology) to move from the dashed circle on the 
left of Figure 2-1 to the final list of 10 bold squares on the right. As hinted at earlier, DDD doesn’t push 
new revolutionary practices; rather, it systematizes consolidated practices. With knowledge of the 
business and years of practice in software architecture, a senior architect might easily design a similar 
diagram without using DDD, instead relying on the momentum of experience and technical common 
sense. Still, although deep knowledge of a business domain might enable you to envision a practical 
way to break up the domain without the explicit use of an analytical method, DDD does provide a  
step-by-step procedure and guidance.

Subdomains versus features
Recall the block labeled “Management” in Figure 2-1. This refers to a piece of functionality whose 
cardinality is not obvious. That is, whereas all the other blocks in Figure 2-1 reasonably map to a single 
leaf-level application, this one doesn’t. Within the Management block, you could identify the functions 
shown in Figure 2-2.

MANAGEMENT
MODULE

CONFIG

CALENDAR PRINTOUTS STATS

LEGACYREPORTSRESULTS

FIGURE 2-2 Further functional split of the Management module.

The question is, are these functions just features in a monolithic application or independent ser-
vices? Should this block be broken down further? 

Determining the ideal size of building blocks is beyond DDD. That task requires the expertise and 
sensitivity of the architect. In the actual project on which this example is based, we treated the Man-
agement module as a whole and treated the smaller blocks shown in Figure 2-2 as features rather than 
subdomains. Ultimately, the DDD breakdown of subdomains hinges on the invisible border of local 
functions. All the blocks in Figure 2-2 are objectively local to the Management module and not impact-
ful or reusable within the global, top-level architecture. Hence, in the actual project we treated them as 
features.

The confusing role of microservices
These days, at this point of the domain breakdown, one inevitably considers microservices. I’ll return to 
microservices in Chapter 3, “Laying the ground for modularity,” and in Chapter 9 “Microservices versus 
modular monoliths.” Here, however, I would like to make a clear statement about microservices and 
DDD: DDD refers only to top-level architecture and breaks the business domain in modules known as 
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bounded contexts. A bounded context is an abstract element of the architectural design. It has its own 
implementation, and it can be based on microservices, but microservices are on a different level of 
abstraction than bounded context and DDD.

 

Note The term microservices refers to physical boundaries of deployable units, whereas the 
term bounded contexts refers to logical boundaries of business units. Technically, though, a 
microservice might implement all business functions of a bounded context. When this  
happens, calling it “micro” is a bit counterintuitive!

With reference to Figure 2-2, the question whether blocks are features of a domain or subdomains 
relates to top-level architecture. Once it is ascertained that the Management block is a leaf subdo-
main—namely, a bounded context—its recognized features in the implementation can be treated as 
in-process class libraries, functional areas, lambda functions, or even autonomous microservices. The 
abstraction level, though, is different.

The actual scale of DDD solutions
Many articles and blog posts that discuss DDD and bounded contexts presume that the entire enter-
prise back end is the domain that needs to be decomposed. So, they identify, say, Sales, Marketing,  
IT, Finance, and other departments as bounded contexts on which to focus. Such a large-scale scenario 
is fairly uncommon, however; companies rarely plan a big rewrite of the entire back end. But should 
this happen, the number of architects involved at the top level of the design, as large as that may be, 
would be relatively small.

DDD is a design approach primarily used for designing and organizing the architecture of software 
systems. It’s not tied to a specific scale in terms of the size of the system. Instead, it focuses on the orga-
nization of domains and subdomains within the software. Since the beginning, it has been pushed as a 
method dealing with enterprise-scale applications, but it is also applicable and effective at a medium- 
and small-scale level.

Tactical design
In general terms, strategy sets out what you want to achieve; tactics define how you intend to achieve 
it. Strategically, DDD provides tools to partition the business domain in smaller bounded contexts. 
Tactically, DDD suggests a default architecture to give life to each bounded context.

The default supporting architecture
Chapter 1 presented the highlights of the default DDD supporting architecture—the layered architec-
ture, whose inspiring principles are now at the foundation of clean architecture. The layered architec-
ture evolved from the multi-tier architecture in vogue when DDD was first devised.
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The DDD reference architecture, monolithic and OOP-friendly, is just one suggestion. It was ideal 
in 2004 but sufficiently abstract and universal to retain great value even now. Today, though, other 
options and variations exist—for example, command/query responsibility segregation (CQRS), event 
sourcing, and non-layered patterns such as event-driven patterns and microservices. The key point is 
that for a long time, with respect to DDD, applying the layered architecture and some of its side class 
modeling patterns has been the way to go, putting domain decomposition in the background.

What’s a software model, anyway?
Beyond the preliminary strategic analysis, DDD is about building a software model that works in com-
pliance with identified business needs. In his book Domain-Driven Design: Tackling Complexity at the 
Heart of Software (2003), author Eric Evans, uses the object-oriented programming (OOP) paradigm to 
illustrate building the software model for the business domain, and calls the resulting software model 
the domain model.

At the same time, another prominent person in the software industry, Martin Fowler—who wrote 
the foreword for Evans’ book—was using the same term (domain model) to indicate a design pattern 
for organizing the business logic. In Fowler’s definition, the domain model design pattern is a graph of 
interconnected objects that fully represent the domain of the problem. Everything in the model is an 
object and is expected to hold data and expose a behavior.

In a nutshell, in the context of DDD, the domain model is a software model. As such, it can be real-
ized in many ways, such as OOP, functional, or CRUD. In contrast, the domain model design pattern as 
defined by Martin Fowler is just one possible way to implement such a software model.

 

Important In DDD, the outcome of the analysis of the business model is a software model. 
A software model is just the digital twin of the real business in software form. It doesn’t nec-
essarily have to be an object-oriented model written following given standards.

DDD misconceptions
The name conflict with Fowler’s design pattern—quite paradoxical in a methodology in which unam-
biguous language is key—sparked several misconceptions around DDD.

The relevance of coding rules
The DDD definition details certain characteristics of the classes that participate in an object-oriented 
domain model: aggregates, value types, factories, behaviors, private setters, and so on. Having an 
object-oriented model, though, is neither mandatory nor crucial. To be crystal-clear, it’s not the exten-
sive use of factory methods in lieu of unnamed constructors, or using carefully crafted value objects 
instead of loose primitive values, that makes a software project run on time and budget.

Put another way, blind observation of the coding rules set out in the DDD tactics guarantees noth-
ing, and without a preliminary strategic design and vision, may generate more technical issues and 
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debt than it prevents. For example, using a functional approach in the design of the domain model 
is neither prohibited nor patently out of place. You’re still doing DDD effectively even if you code a 
collection of functions or build an anemic object model with stored procedures doing the persistence 
work.

The value of coding rules
When it comes to DDD coding rules, though, there’s a flip side of the coin. Those rules—value types 
over primitive types, semantic methods over plain setters, factory methods over constructors, aggre-
gates to better handle persistence—exist for a clear and valid reason. They enable you to build a soft-
ware representation of the business model that is much more likely to be coherent with the language 
spoken in the business. If you don’t first identify the language of the business (the ubiquitous language) 
and the context in which that language is spoken, the blind application of coding rules just creates 
unnecessary complexity with no added value.

Database agnosticism
When you examine DDD, it’s easy to conclude that the domain model should be agnostic of the persis-
tence layer—the actual database. This is great in theory. In practice, though, no domain model is truly 
agnostic from the persistence.

Note, though, that the preceding sentence is not meant to encourage you to mix persistence and 
business logic. A clear boundary between business and persistence is necessary. (More on this in the 
next chapter.) The point of DDD is that when building an object-oriented software model to represent 
the business domain, persistence should not be your primary concern, period.

That said, however, be aware that at some point the same object model you may have crafted ignor-
ing persistence concerns will be persisted. When this happens, the database and the API you may use 
to go to the database—for example, Entity Framework (EF) Core, Dapper, and so on—are a constraint 
and can’t always be blissfully ignored. More precisely, blissfully ignoring the nature of the persistence 
layer—although a legitimate option—comes at a cost.

If you really want to keep the domain model fully agnostic of database concerns, then you should 
aim at having two distinct models—a domain model and a persistence model—and use adapters to 
switch between the two for each operation. This is extra work, whose real value must be evaluated case 
by case. My two cents are that a pinch of sane pragmatism is not bad at times.

Language is not simply about naming conventions
DDD puts a lot of emphasis on how entities are named. As you’ll soon see, the term ubiquitous lan-
guage (UL) simply refers to a shared vocabulary of business-related terms that is ideally reflected in the 
conventions used to name classes and members. Hence, the emphasis on names descends from the 
need for code to reflect the vocabulary used in the real world. It’s not a mere matter of choosing arbi-
trary descriptive names; quite the reverse. It’s about applying the common language rules discovered 
in the strategic analysis and thoughtfully choosing descriptive names.



 CHAPTER 2 The ultimate gist of DDD 29

Tools for strategic design
I’ve touched on the tools that DDD defines to explore and describe the business domain. Now let’s look 
at them more closely.

You use three tools to conduct an analysis of a business model to build a conceptual view of its  
entities, services, and behavior:

 ■ Ubiquitous language

 ■ Bounded context

 ■ Context mapping

By detecting the business language spoken in a given area, you identify subdomains and label them 
as bounded context of the final architecture. Bounded contexts are then connected using different 
types of logical relationships to form the final context map. 

 

Note In the end, DDD is just what its name says it is: design driven by a preliminary, thor-
ough analysis of the business domain.

Ubiquitous language

As emphatic as it may sound, the creation of the software model for a business domain may be (fanci-
fully) envisioned as the creation of a new world. In this perspective, quoting a couple of (sparse) sen-
tences about the genesis of the universe from the Gospel of John may be inspiring:

 ■ In the beginning was the Word

 ■ The Word became flesh, and dwelt among us

Setting aside the intended meaning of “the Word,” and instead taking it literally and out of the  
original context, the word is given a central role in the beginning of the process and in the end it 
becomes substance. Ubiquitous language (UL) does the same.

A domain-specific language vocabulary
As a doctor or an accountant, you learn at the outset a set of core terms whose meaning remains the 
same throughout the course of your career and that are—by design—understood by your peers, coun-
terparts, and customers. Moreover, these terms are likely related to what you do every day. It’s different 
if, instead, you are, say, a lawyer—or worse yet, a software architect or software engineer. 

In both cases, you may be called to work in areas that you know little or nothing about. For example, 
as a lawyer, you might need to learn about high finance for the closing argument on a bankruptcy case. 
Likewise, as a software engineer in sport-tech, you would need to know about ranking and scoring 
rules to enable the application’s operations to run week after week. In DDD, this is where having a UL 
fits in.
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Motivation for a shared glossary of terms
At the end of the day, the UL is a glossary of domain-specific terms (nouns, verbs, adjectives, and 
adverbs, and even idiomatic expressions and acronyms) that carry a specific and invariant meaning in 
the business context being analyzed. The primary goal of the glossary is to prevent misunderstandings 
between parties involved in the project. For this reason, it should be a shared resource used in all forms 
of spoken and written communication, whether user stories, RFCs, emails, technical documentation, 
meetings, or what have you.

In brief, the UL is the universal language of the business as it is done in the organization. In the book 
Domain-Driven Design, author Eric Evans recommends using the UL as the backbone of the model. Dis-
covering the UL helps the team understand the business domain in order to design a software model 
for it. 

Choosing the natural language of the glossary
As you discover the UL of a business domain and build your glossary of terms, you will likely encounter 
a few unresolved issues. The most important is the natural language to use for the words in the glos-
sary. There are a few options:

 ■ Plain, universal English

 ■ The customer’s spoken language

 ■ The development team’s spoken language

While any answer might be either good or bad (or both at the same time), it can safely be said that 
there should be no doubt about the language to use when the team and the customer speak the same 
language. Beyond that, every other situation is tricky to address with general suggestions. However, in 
software as in life, exceptions do almost always apply. Once, talking DDD at a workshop in Poland,  
I heard an interesting comment: “We can’t realistically use Polish in code—let alone have Polish names 
or verbs appear in public URLs in web applications—as ours is an extremely cryptic language. It would 
be hard for everyone. We tend to use English regardless.”

 

Note In the novel Enigma (1995), author Robert Harris tells the story of a fictional character 
who deciphers stolen Enigma cryptograms during World War II. Once the character decrypts 
some code, though, he discovers the text looks as if it contains yet another level of cryptog-
raphy—this one unknown. The mystery is solved when another cryptogram reveals the text 
to be a consecutive list of abbreviated Polish names!

If the language of the glossary differs from the language used by some involved parties, and trans-
lations are necessary for development purposes, then a word-to-word table is necessary to avoid ambi-
guity, as much as possible. Note, though, that ambiguity is measured as a function that approaches 
zero rather than reaches zero.
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Building the glossary
You determine what terms to include in the glossary through interviews and by processing the written 
requirements. The glossary is then refined until it takes a structured form in which natural language 
terms are associated with a clear meaning that meets the expectations of both domain (stakeholder) 
and technical (software) teams. The next sections offer a couple of examples.

Choosing the right term
In a travel scenario, what technical people would call “deleting a booking” based on their database-
oriented vision of the business, is better referred to as “canceling a booking,” because the latter verb 
is what people on the business side would use. Similarly, in an e-commerce scenario, “submitting an 
order form” is too HTML-oriented; people on the business side would likely refer to this action simply as 
“checking out.”

Here’s a real-world anecdote, from direct experience. While building a platform for daily operations 
for a tennis organization, we included a button labeled “Re-pair” on an HTML page, based on language 
used by one of the stakeholders. The purpose of the button was to trigger a procedure that allowed 
one player to change partners in a doubles tournament draw (in other words, as the stakeholder said, 
to “re-pair”). But we quickly learned that users were scared to click the button, and instead called the 
Help desk any time they wanted to “re-pair” a player. This was because another internal platform used 
by the organization (to which we didn’t have access) used the same term for a similar, but much more 
disruptive, operation. So, of course, we renamed the button and the underlying business logic method.

Discovering the language
Having some degree of previous knowledge of the domain helps in quickly identifying all the terms 
that may have semantic relevance. If you’re entirely new to the domain, however, the initial research of 
hot terms may be like processing the text below.

As a registered customer of the I-Buy-Stuff online store, I can redeem a voucher for an order I place 
so that I don’t actually pay for the ordered items myself.

Verbs are potential actions, whereas nouns are potential entities. Isolating them in bold, the text 
becomes:

As a registered customer of the I-Buy-Stuff online store, I can redeem a voucher for an order I 
place so that I don’t actually pay for the ordered items myself.

The relationship between verbs and nouns is defined by the syntax rules of the language being 
used: subject, verb, and direct object. With reference to the preceding text,

 ■ Registered customer is the subject

 ■ Redeem is the verb

 ■ Voucher is the direct object
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As a result, we have two domain entities: (Registered-Customer and Voucher) and a behavior 
(Redeem) that belongs to the Registered-Customer entity and applies to the Voucher entity.

Another result from such an analysis is that the term used in the business context to indicate the title 
to receive a discount is voucher and only that. Synonyms like coupon or gift card should not be used. 
Anywhere.

Dealing with acronyms
In some business scenarios, most notably the military industry, acronyms are very popular and widely 
used. Acronyms, however, may be hard to remember and understand. 

In general, acronyms should not be included in the UL. Instead, you should introduce new words 
that retain the original meaning that acronyms transmit—unless an acronym is so common that not 
using it is a patent violation of the UL pattern itself. In this case, whether you include it in the UL is up 
to you. Just be aware that you need to think about how to deal with acronyms, and that each acronym 
may be treated differently.

Taken literally, using acronyms is a violation of the UL pattern. At the same time, because the UL is 
primarily about making it easier for everyone to understand and use the business language and the 
code, acronyms can’t just be ignored. The team should evaluate, one by one, how to track those pieces 
of information in a way that doesn’t hinder cross-team communication. An example of a popular and 
cross-industry acronym that can hardly be renamed is RSVP. But in tennis, the acronyms OP and WO, 
though popular, are too short and potentially confusing to maintain in software. So, we expanded them 
to Order-of-Play and Walkover.

Dealing with technical terms
Yet another issue with the UL is how technical the language should be. Although we are focused on 
understanding the business domain, we do that with the purpose of building a software application. 
Inevitably, some spoken and written communication is contaminated by code-related terms, such as 
caching, logging, and security. Should this be avoided? Should we instead use verbose paraphrasing 
instead of direct and well-known technical terms? The general answer here is no. Instead, limit the use 
of technical terms as much as possible, but use them if necessary.

Sharing the glossary
The value of a language is in being used rather than persisted. But just as it is helpful to have an English 
dictionary on hand to explain or translate words, it might also be useful to have a physical document to 
check for domain-specific terms.

To that end, the glossary is typically saved to a shared document that can be accessed, with different 
permissions, by all stakeholders. This document can be an Excel file in a OneDrive folder or, better yet, 
a file collaboratively edited via Microsoft Excel Online. It can even be a wiki. For example, with an in-
house wiki, you can create and evolve the glossary, and even set up an internal forum to openly discuss 
features and updates to the language. A wiki also allows you to easily set permissions to control how 
editing takes place and who edits what. Finally, a GitBook site is another excellent option.
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Important Any change to the language is a business-level decision. As such, it should 
always be made in full accordance with stakeholders and all involved parties. Terms of the 
language become software and dwell in code repositories. You should expect a one-to-one 
relationship between words and code, to the point that misunderstanding a term is akin to 
creating a bug, and wrongly naming a method misrepresents a business workflow.

Keeping business and code in sync
The ultimate goal of the UL is not to create comprehensive documentation about the project, nor is it 
to set guidelines for naming code artifacts like classes and methods. The real goal of the UL is to serve 
as the backbone of the actual code. To achieve this, though, it is crucial to define and enforce a strong 
naming convention. Names of classes and methods should always reflect the terms in the glossary.

 

Note As strict as it may sound, you should treat a method that starts a process with a name 
that is different from what users call the same process as technical debt—no more, no less.

Reflecting the UL in code
The impact of the UL on the actual code is not limited to the domain layer. The UL helps with the design 
of the application logic too. This is not coincidental, as the application layer is where the various busi-
ness tasks for use cases are orchestrated.

As an example, imagine the checkout process of an online store. Before proceeding with a typical 
checkout process, you might want to validate the order. Suppose that you’ve set a requirement that 
validating the order involves ensuring that ordered goods are in stock and the payment history of the 
customer is not problematic. How would you organize this code?

There are a couple of good options to consider:

 ■ Have a single Validate step for the checkout process in the application layer workflow that 
incorporates (and hides) all required checks.

 ■ Have a sequence of individual validation steps right in the application layer workflow.

From a purely functional perspective, both options would work well. But only one is ideal in a given 
business context. The answer to the question of which is the most appropriate lies in the UL. If the UL 
calls for a validate action to be performed on an order during the checkout process, then you should 
go with the first option. If the vocabulary includes actions like check-payment-history or check-current-
stock, then you should have individual steps in the workflow for just those actions.
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Note If there’s nothing in the current version of the UL to clarify a coding point, it probably 
means that more work on the language is required—specifically, a new round of discussion 
to break down concepts one more level.

Ubiquitous language changes
There are two main reasons a UL might change:

 ■ The team’s understanding of the business context evolves.

 ■ The business context is defined while the software application is designed and built.

The former scenario resulted in the idea of DDD more than 20 years ago. The business model was 
intricate, dense, and huge, and required frequent passes to define, with features and concepts intro-
duced, removed, absorbed, or redesigned on each pass.

 

Note This type of iterative process usually occurs more quickly in the beginning of a project 
but slows down and perhaps almost stops at some point later. (This cycle might repeat with 
successive major releases of the software.)

The latter scenario is common in startup development—for example, for software specifically 
designed for a business project in its infancy. In this case, moving fast and breaking things is acceptable 
with both the software and the UL.

So, the UL might change—but not indefinitely. The development team is responsible for detecting 
when changes are needed and for applying them to the degree that business continuity allows. Be aware, 
though, that a gap between business language and code is, strictly speaking, a form of technical debt.

 

Everyone makes mistakes
I have worked in the sport-tech industry for several years and have been involved in building a 
few platforms that now run daily operations for popular sports organizations. If tournaments 
run week after week, it’s because the underlying software works. Sometimes, however, that 
software may still have design issues.

Yes, I do make mistakes at times, which result in design issues. More often, though, any  
design issues on my software exist because I’m pragmatic. To explain, let me share a story 
(with the disclaimer that this design issue will likely be sorted out by the time you read this). 

Recently, my team adapted an existing software system for a different—though nearly 
identical—sport. One difference was that the new system did not need to support singles 
matches. Another difference was that points, rather than positions, would be used to order 
players in draws. 
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A segment of the domain layer and a few data repositories in the persistence layer used 
two properties—SinglesRank and DoublesRank. Initially, we didn’t change anything in 
the naming (including related database tables). We simply stored doubles rankings in the 
DoublesRank property and left the SinglesRank property empty. Then, to use points instead 
of positions to order players in draws, I pragmatically suggested repurposing the otherwise-
unused SinglesRank property—a perfectly effective solution that would require very minimal 
effort. 

Just two weeks later, however, people began asking repeatedly what the heck the actual 
value of SinglesRank was. In other words, we experienced a gap between the UL and its repre-
sentation in the code and data structures.

Helpful programming tools
There are several features in programming languages to help shape code around a domain language. 
The most popular is support for classes, structs, records, and enum types. Another extremely helpful 
feature—at least in C#—is extension methods, which help ensure that the readability of the code is 
close to that of a spoken language.

An extension method is a global method that developers can use to add behavior to an existing 
type without deriving a new type. With extension methods, you can extend, say, the String class or 
even an enum type. Here are a couple of examples:

public static class SomeExtensions
{
    // Turns the string into the corresponding number (if any)
    // Otherwise, it returns the default value
    public static int ToInt(this string theNumber, int defaultValue = 0)
    {
        if (theNumber == null)
           return defaultValue;
         var success = int.TryParse(theNumber, var out calc);
         return success
            ? calc
            : defaultValue;
    }
    // Adds logic on top of an enum type 
    public static bool IsEarlyFinish(this CompletionMode mode)
    {
        return mode == CompletionMode.Disqualified ||
               mode == CompletionMode.OnCourtRetirement ||
               mode == CompletionMode.Withdrawal;
    }
}
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The first extension method extends the core String type to add a shortcut to turn the string to a 
number, if possible.

// With extension methods
var number = "4".ToInt();
// Without extension methods
int.TryParse("4", out var number);

Suppose you want to query all matches with an early finish. The code for this might take the follow-
ing form:

var matches = db.Matches
                .Where(m => m.MatchCompletionMode.IsEarlyFinish())
                .ToList();

The benefit is having a tool to hide implementation details, so the actual behavioral logic can 
emerge.

Value types and factory methods
Remember the misconceptions around DDD mentioned earlier in this chapter? I’m referring in particu-
lar to the relevance of coding rules. 

DDD recommends several coding rules, such as using factory methods over constructors and value 
types over primitive types. By themselves, these rules add little value (hence, the misconception). 
However, in the context of the UL, these rules gain a lot more relevance. They are crucial to keeping 
language and code in sync.

For example, if the business domain involves money, then you’d better have a Money custom value 
type that handles currency and totals internally rather than manually pairing decimal values with 
hard-coded currency strings. Similarly, a factory method that returns an instance of a class from a 
named method is preferable to an unnamed constructor that is distinguishable from others only by the 
signature.

The bounded context

Tweaking the business language and renaming classes and methods is tricky, but thanks to integrated 
development environment (IDE) features and plug-ins, it is not terribly problematic. However, failing to 
identify subdomains that are better treated independently could seriously undermine the stability of 
the whole solution.

No matter how hard you try, your UL will not be a unique set of definitions that is 100-percent 
unambiguous within your organization. In fact, the same term (for example, customer) might have 
different meanings across different business units. Like suitcases on an airport baggage belt that look 
alike, causing confusion among travelers, functions and names that look alike can cause problems in 
your solution.
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Understanding differences between functions and names is crucial, and effectively addressing those 
differences in code is vital. Enter bounded contexts.

Making sense of ambiguity
When analyzing a business domain, ambiguity occurs. Sometimes we run into functions that look alike 
but are not the same. When this occurs, developers often reveal an innate desire to create a unique 
hierarchy of highly abstracted entities to handle most scenarios and variations in a single place. Indeed, 
all developers have the secret dream of building a universal code hierarchy that traces back to a root 
Big-Bang object.

The reality is that abstraction is great—but more so in mathematics than in mere software. The 
great lesson we learn from DDD is that sometimes code fragmentation (and to some extent even code 
duplication) is acceptable just for the sake of maintenance.

 

Note Code duplication can be just the starting point that leads to a model that is ideal for 
the business. Experience teaches us that when two descriptions seem to point to the same 
entity (except for a few attributes), forcing them to be one is almost always a mistake; treat-
ing them as distinct entities is usually acceptable even if it is not ideal. 

The cost of abstraction
Abstraction always comes at a cost. Sometimes this cost is worth it; sometimes it is not. 

Originally, abstraction came as a manna from heaven to help developers devise large domain 
models. Developers examined a larger problem and determined that it could be articulated as many 
smaller problems with quite a few things in common. Then, to combat code duplication, developers 
righteously added abstraction layers.

As you proceed with your analysis and learn about new features, you might add new pieces to the 
abstraction to accommodate variations. At some point, though, this may become unmanageable. The 
bottom line is that there is a blurred line between premature abstraction (which just makes the overall 
design uselessly complex) and intelligent planning of features ahead of time. In general, a reasonable 
sign that abstraction may be excessive is if you catch yourself handling switches in the implementation 
and using the same method to deal with multiple use cases.

So much for abstraction in coding. What about top-level architecture? With this, it’s nearly the same 
issue. In fact, you might encounter a business domain filled with similar functions and entities. The 
challenge is understanding when it’s a matter of abstracting the design and when it’s breaking down 
the domain in smaller parts. If you break it down in parts, you obtain independent but connected (or 
connectable) functions, each of which remains autonomous and isolated.



38 PART I The Holy Grail of modularity

Using ambiguity as the borderline
A reasonable sign that you may need to break a business domain into pieces is if you encounter  
ambiguity regarding a term of the UL. In other words, different stakeholders use the same term to 
mean different things. To address such a semantic ambiguity, the initial step is to determine whether 
you really are at the intersection of two distinct contexts. One crucial piece of information is whether 
one term can be changed to a different one without compromising the coherence of the UL and its 
adherence to the business language.

An even subtler situation is when the same entity appears to be called with different names by dif-
ferent stakeholders. Usually, it’s not just about having different names of entities (synonyms); it often 
has to do with different behaviors and different sets of attributes. So, what should you do? Use coding 
abstractions, or accept the risk of some duplication? (See Figure 2-3.)

Problem Space Solution Space

Subdomain Bounded Context

Domain Domain Model

FIGURE 2-3 Domain and subdomains versus domain models and bounded contexts.

Discovering ambiguity in terms is a clear sign that two parts of the original domain could possibly 
be better treated as different subdomains, each of which assigns the term an unambiguous meaning. 
DDD calls a modeled subdomain a bounded context.

 

Note Realistically, when modeling a large domain, it gets progressively harder to build a 
single unified model. Also, people tend to use subtly different vocabularies in different parts 
of a large organization. The purpose of DDD is to deal with large models by dividing them 
into different bounded contexts and being explicit about their interrelationships.

The savings of code duplication
From long experience in the code trenches, my hearty suggestion is that whenever you feel unsure 
whether abstraction is necessary, then by default, it isn’t. In that case, you should use code duplication 
instead.

That said, I know that tons of articles and books out there (including probably a few of mine) warn 
developers of the “don’t repeat yourself” (DRY) principle, which encourages the use of abstraction to 
reduce code repetitions. Likewise, I’m also well aware that the opposite principle—write every time 
(WET)—is bluntly dismissed as an anti-pattern.
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Yet, I dare say that unless you see an obvious benefit to keeping a piece of the top-level architecture 
united, if a term has ambiguity within the business language that can’t just be solved by renaming it 
using a synonym, you’d better go with an additional bounded context.

In coding, the cost of a bad abstraction is commonly much higher than the cost of duplicated code. 
In architecture, the cost of a tangled monolith can be devastating, in much the same way the cost of 
excessive fragmentation can be. Yes, as usual, it depends!

Devising bounded contexts
A bounded context is a segment of the original model that turns out to be better modeled and imple-
mented as a separate module. A bounded context is characterized by three aspects:

 ■ Its own custom UL

 ■ Its own autonomous implementation and technology stack

 ■ A public interface to other contexts, if it needs be connected

As a generally observed fact, the resulting set of bounded contexts born from the breakdown of a 
business domain tends to reflect (or at least resemble) the structure of the owner organization.

Breakdown of a domain
Here’s an example taken from a realistic sport-tech scenario. If you’re called to build an entire IT system 
to manage the operations of a given sport, you can come up with at least the partitions in subdomains 
shown in Figure 2-4.

Live
Scoring

Event
Operations

Legacy
Platform

Live
Monitor

Data
Dispatcher

3rd Party
Widgets

SPORT
MANAGEMENT

PLATFORM

FIGURE 2-4 Breakdown of an example domain model in a sport-tech scenario.

It’s unrealistic to build the system as a single monolith. And it’s not a matter of faith in the software 
creed of microservices; it’s just that, with a decent analysis of the domain, processes, and requirements, 
you’ll see quite a few distinct clusters of related operations (although maybe not just the six shown in 
Figure 2-4). These distinct blocks should be treated as autonomous projects for further analysis, imple-
mentation, and deployment.

In summary, each bounded context is implemented independently. And aside from some technical 
resources it may share with other contexts (for example, a distributed cache, database tables, or bus), it 
is completely autonomous from both a deployment and coding perspective.
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Shared kernels
Suppose you have two development teams working on what has been identified as a bounded context 
and you have an agreed-upon graph of functionalities in place. At some point, team 1 and team 2 may 
realize they are unwittingly working on the same small subset of software entities.

Having multiple teams share work on modules poses several synchronization issues. These range 
from just keeping changes to the codebase in sync to solving (slightly?) conflicting needs. Both teams 
must achieve coherency with their respective specs—not to mention any future evolutions that might 
bring the two teams into a fierce contrast. (See Figure 2-5.)

TEAM 1 ??? TEAM 2

FIGURE 2-5 Discovering a shared kernel.

There are three possible ways to deal with such a situation. The most conservative option is to let 
each team run its own implementation of the areas that appear common. Another option is to appoint 
one team the status of owner, giving it the final word on any conflicts. As an alternative, you could just 
let the teams come to a mutual agreement each time a conflict arises. Finally, there is the shared kernel 
option.

Shared kernel is a special flavor of bounded context. It results from a further breakdown of an exist-
ing bounded context. For example, the subdomain in Figure 2-5 will be partitioned in three contexts—
one under the total control of team 1, one under the total control of team 2, and a third one. Who’s in 
charge of the shared kernel? Again, the decision is up to the architect team, but it can be one of the 
existing teams or even a new team.

Legacy and external systems
For the most part, bounded contexts isolate a certain related amount of behavior. Identifying these 
contexts is up to the architect team. However, certain pieces of the overall system should be treated as 
distinct bounded contexts by default—in particular, wrappers around legacy applications and external 
subsystems.
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Whenever you have such strict dependencies on systems you don’t control (or are not allowed to 
control), the safest thing you can do is create a wrapper around those known interfaces—whether a 
plain shared database connection string or an API. These wrappers serve a double purpose. First, they 
are an isolated part of the final system that simply call remote endpoints by proxy. Second, they can 
further isolate the general system from future changes on those remote endpoints.

In DDD jargon, the isolated wrappers around an external system are called an anti-corruption layer 
(ACL). Simply put, an ACL is a thin layer of code that implements a familiar pattern. It offers your call-
ing modules a dedicated and stable (because you own it) programming interface that internally deals 
with the intricacies of the endpoints. In other words, the ACL is the only section of your code where the 
nitty-gritty details of the remote endpoints are known. No part of your code is ever exposed to that. 
As a result, in the event of breaking changes that occur outside your control, you have only one, ideally 
small, piece of code to check and fix.

Coding options of bounded contexts
How would you code a bounded context? Technically, a bounded context is only a module treated in 
isolation from others. Often, this also means that a bounded context is deployed autonomously. How-
ever, the range of options for coding a bounded context is ample and includes in-process options.

The most common scenario—and the most common reason for wanting a bounded context—is 
to deploy it as a standalone web service accessible via HTTPS and JSON, optionally with a private or 
shared database. A bounded context, though, can easily be a class library distributed as a plain DLL or, 
better yet, as a NuGet package. For example, it is almost always a class library when it represents the 
proxy to an external system.

The public interface of a bounded context with other bounded contexts can be anything that allows 
for communication: a REST or gRPC gateway, a SignalR or in-process dependency, a shared database, a 
message bus, or whatever else.

 

Note Does the definition of a bounded context sound like that of a microservice? As you’ll 
see in Chapter 9, there is a resemblance to the definition of microservice given by Martin 
Fowler: a module that runs in its own process and communicates through lightweight mech-
anisms such as an HTTPS API. In Fowler’s vision, a microservice is built around specific busi-
ness capabilities. The issue is in the intended meaning of the prefix micro. Size aside, I like to 
think of a bounded context as the theoretical foundation of a microservice. The same is true 
if we consider the alternative architecture of modular monoliths (see Chapter 9). A bounded 
context is also the theoretical foundation of a module in a monolith. I say “theoretical” for 
a reason: microservices and modular monoliths live in the space of the software solution, 
whereas bounded contexts exist in the space of the business domain.
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The context map

The outcome of a DDD analysis of business domain requirements is a collection of bounded contexts 
that, when combined, form the whole set of functions to implement. How are bounded contexts con-
nected? Interestingly, connection occurs at two distinct levels. One is the physical connection between 
running host processes. As mentioned, such connections can take the form of HTTPS, SignalR, shared 
databases, or message buses. But another equally important level of connection is logical and collabor-
ative rather than physical. The following sections explore the types of business relationships supported 
between bounded contexts.

Bounded contexts and their relationships form a graph that DDD defines as the context map. In the 
map, each bounded context is connected to others with which it is correlated in terms of function-
alities. It doesn’t have to be a physical connection, though. Often, it looks much more like a logical 
dependency.

Upstream and downstream
Each DDD relationship between two bounded contexts is rendered with an arc connecting two nodes 
of a graph. More precisely, the arc has a directed edge characterized by the letter U (upstream context) 
or D (downstream context). (See Figure 2-6.)
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FIGURE 2-6 Graphical notation of a context map relationship.

An upstream bounded context influences a downstream bounded context, but the opposite is not 
true. Such an influence may take various forms. Obviously, the code in the upstream context is avail-
able as a reference to the downstream context. It also means, though, that the schedule of work in the 
upstream context cannot be changed on demand by the team managing the downstream context.  
Furthermore, the response of the upstream team to requests for change may not be as prompt as 
desired by the downstream team.

Starting from the notion of upstream and downstream contexts, DDD defines a few specific types 
of relationships. Essentially, each relationship defines a different type of mutual dependency between 
involved contexts. These relationships are as follows:

 ■ Conformist A conformist relationship indicates that the code in the downstream context is 
totally dependent on the code in the upstream context. At the end of the day, this means that 
if a breaking change happens upstream, the downstream context must adapt and conform. By 
design, the downstream context has no room to negotiate about changes. Typically, a conform-
ist relationship exists when the upstream context is based on some legacy code or is an external 
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service (for example, a public API) placed outside the control of the development teams. 
Another possible scenario is when the chief architect sets one context as high priority, meaning 
that any changes the team plans must be reflected, by design, by all other contexts and teams.

 ■ Customer/supplier In this parent–child type of relationship, the downstream customer 
context depends on the upstream supplier context and must adapt to any changes. Unlike the 
conformist relationship, though, with the customer/supplier relationship, the two parties are 
encouraged to negotiate changes that may affect each other. For example, the downstream 
customer team can share concerns and expect that the upstream supplier team will address 
them in some way. Ultimately, though, the final word belongs to the upstream supplier context.

 ■ Partner The partner relationship is a form of mutual dependency set between the two 
involved bounded contexts. Put another way, both contexts depend on each other for the 
actual delivery of the code. This means that no team is allowed to make changes to the pub-
lic interface of the context without consulting with the other team and reaching a mutual 
agreement.

An example context map
Considering this discussion of bounded contexts and relationships, one might reasonably ask how 
these work in a realistic example. Figure 2-4 showed an example breakdown of a sport-tech data- 
collection business domain. Figure 2-7 shows a possible set of relationships for that scenario.
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FIGURE 2-7 An example context map for the bounded contexts identified in Figure 2-4.
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Let’s review the diagram proceeding from left to right:

 ■ The Live Scoring context dominates the Data Dispatcher and Live Monitor contexts. So, any 
changes required for the Live Scoring context must be immediately accepted and reflected by 
the downstream contexts. This is reasonable, because the Data Dispatcher context is simply 
expected to route live information to takers and the Live Monitor context just proxies live data 
for internal scouting and analysis. Indeed, both relationships could be set to conformist, which 
is even stricter.

 ■ The Live Scoring context partners with the Event Operations context. This is because in the 
architect’s vision, the two modules may influence each other, and changes in one may be as 
important as changes in the other. A similar production system might have a partner relation-
ship between the Live Scoring and Event Operations contexts, in which case it’s often true that 
one team must conform to changes requested by the other (always for strict business reasons).

 ■ The Event Operations context is totally dependent on the legacy applications connected to the 
system. This means that live data should be packaged and pushed in exactly the legacy format, 
with no room for negotiation.

 ■ The Data Dispatcher context and the Event Operations context are partners, as both contexts 
collect and shape data to be distributed to the outside world, such as to media and IT partners. 

 ■ The Third-Party Widgets context contains widgets designed to be embedded in websites. As 
such, they are subject to conditions set by the Data Dispatcher context. From the perspective of 
the widget module, the dispatcher is a closed external system.

 

Important The person responsible for setting up the network of relationships is the chief 
architect. The direction of connections also has an impact on teams, their schedule, and 
their way of working.

An example deployment map
The context map is a theoretical map of functions. It says nothing about the actual topology of the 
deployment environment. In fact, as mentioned, a bounded context may even be a class library coded 
in an application that turns out to be another bounded context. Often, a bounded context maps to a 
deployed (web) service, but this is not a general rule. That said, let’s imagine a possible deployment 
map for the context map in Figure 2-7. Figure 2-8 shows a quite realistic high-level deployment  
scenario for a sport-tech data-collection platform.
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FIGURE 2-8 An example deployment map.

Summary

This chapter focused on DDD strategic design in a way that is mostly agnostic of software technology 
and frameworks. The strategic part of DDD is crucial; it involves discovering the top-level architecture 
of the system using a few analysis patterns and common practices. 

The chapter covered the role of the UL, the discovery of distinct bounded contexts, and the relation-
ships the chief architect may use to link contexts together. The map of contexts—the final deliverable 
of the DDD strategic analysis—is not yet a deployable architecture, but it is key to understanding how 
to map identified blocks to running services.

All these notions are conceptually valid and describe the real mechanics of DDD. However, it might 
seem as though they have limited concrete value if measured against relatively simple and small busi-
ness domains. The actual value of DDD analysis shines when the density of the final map is well beyond 
the tens of units. Indeed, the largest map I’ve ever seen (for a pharmaceutical company) contained 
more than 400 bounded contexts. The screenshot of the map was too dense to count!

The next chapter draws some conclusions about the structure of a .NET and ASP.NET project that 
maintains clear boundaries between layers. In Part II of the book, we’ll delve into each layer.

http://ASP.NET
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