
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780138190286
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780138190286
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780138190286

Praise for Software Requirements Essentials

“As research for a book, I once read the ten best-selling requirements engineering books
of the prior ten years. This one book succinctly presents more useful information than
those ten books combined. I wish I’d had it as a reference then.”

—Mike Cohn, author of User Stories Applied and co-founder
of the Scrum Alliance

“Diamonds come about when a huge amount of carbon atoms are compressed. The com-
pression crystallizes to form diamonds. Karl and Candase have done something very
similar: they have compressed their vast requirements knowledge into 20 gems they call
‘core practices.’

“These 20 practices give you the essence of requirements discovery, and for extra
convenience they are categorized to make your requirements journey more effective.
These practices are potent stuff, and I recommend that they become part of everyone’s
requirements arsenal.”

—James Robertson, author of Mastering the Requirements
Process and Business Analysis Agility

“What a valuable resource for new and experienced business analysts alike, who want an
accessible, clearly written, and well-organized introduction to key business analyst prac-
tices. Karl and Candase do a great job of breaking down a complex role into a straight-
forward set of practices that can be integrated into your business analysis process to
make it more effective.”

—Laura Brandenburg, author of How to Start a Business Analyst Career

“Candase and Karl have drawn upon their deep knowledge and experience of what it
takes to elicit, identify, represent, communicate, and validate requirements for software
products effectively. They have produced a useful, accessible, and clear book, which is full
of practical advice, great examples, and answers to the hard questions that people build-
ing software products face in the real world. If you’re involved in building software in any
role, this book will give you guidance on ways to make sure the product meets customer
needs and delivers real value.”

—Shane Hastie, Global Delivery Lead at SoftEd and Lead Editor, Culture and
Methods at InfoQ.com

“Software Requirements Essentials will be a high-value addition to your business analysis
library. I give the book high marks, as it does an excellent job of selecting and comprehen-
sively covering the most essential business analysis practices teams should be considering.
I thoroughly appreciated that the content was not overdone. Lessons were succinct while
remaining extremely usable. Care was taken to ensure the guidance was applicable

9780138190286_print.indb 1 14/02/23 6:14 PM

http://InfoQ.com

whether you are using a waterfall, agile, or hybrid delivery approach. I believe anyone
looking to improve their business analysis practices will find great practical advice they’ll
be able to apply immediately.”

—Laura Paton, Principal Consultant, BA Academy, Inc.

“Here is a book that all business analysts should have on their shelves, a readable refer-
ence that pulls together all the best practices we’ve been applying in business analysis for
50 years or so. While the book is aimed at the experienced BA, Karl and Candase thought-
fully provide an opening chapter reviewing the basic precepts and principles of business
analysis. The book is written in Karl’s inimitable easy-to-read style, so even beginning
BAs can understand and apply the practices. Karl and Candase have made the book
‘agile’ with lots of practices applicable both to the traditional BA approach and to the BA
who’s defining user stories for the agile software developers.

“Software Requirements Essentials encapsulates all of the excellent advice and coun-
sel Karl has given us over the years into this one touchstone of a book. I wish that I had
written it.”

—Steve Blais, author of Business Analysis: Best Practices for Success and
co-author of Business Analysis for Practitioners

“One of the many aspects of Karl Wiegers’s latest book that we love is the universality
of the requirements techniques he describes. Using real-life examples and easy-to-
understand illustrations, Wiegers and Candase Hokanson describe practices that can be
applied regardless of the project at hand or the methodology followed. They emphasize
that there is no one right way to elicit and manage requirements; rather, they present
many tried-and-true practices that lead to successful outcomes. Also helpful are the doz-
ens of questions that business analysts can use to elicit various types of requirements.

“The authors emphasize concepts over methodology-specific terminology to ensure
that the practices can be understood and applied as methodologies change. The recurrent
themes they mention are spot-on and apply to any development effort. Software Require-
ments Essentials is a must-read for every business analyst who wants to avoid the pitfall
of achieving ‘project success but product failure.’”

—Elizabeth Larson and Richard Larson, past co-owners of Watermark Learning
and authors of CBAP Certification Study Guide

“So many product development projects face challenges because the stated requirements
are ill-defined. This issue can be addressed by business analysts, or anyone conducting
business analysis, if they possess the necessary toolkit of techniques and skills. Software
Requirements Essentials offers an excellent introduction to the requirements engineering
framework, and the techniques it encompasses, in an accessible and engaging way. The
book offers invaluable guidance and insights via 20 best practices that are highly relevant,
if not essential, for anyone working to define requirements. All business analysts need a
mental map of the requirements definition service; this book provides it and more.”

—Dr. Debra Paul, Managing Director, Assist Knowledge Development

9780138190286_print.indb 2 14/02/23 6:14 PM

Software Requirements
Essentials

9780138190286_print.indb 3 14/02/23 6:14 PM

9780138190286_print.indb 4 14/02/23 6:14 PM

This page intentionally left blank

Software Requirements
Essentials

Core Practices for Successful
Business Analysis

Karl Wiegers
Candase Hokanson

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City
São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

9780138190286_print.indb 5 14/02/23 6:14 PM

Cover image: dani3315/Shutterstock

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any
kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic
versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2023931578

Copyright © 2023 Karl Wiegers and Seilevel Partners, LP

All rights reserved. This publication is protected by copyright, and permission must be obtained from the publisher prior to any
prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, request forms and the appropriate contacts
within the Pearson Education Global Rights & Permissions Department, please visit www.pearson.com/permissions/.

ISBN-13: 978-0-13-819028-6
ISBN-10: 0-13-819028-3

ScoutAutomatedPrintCode

9780138190286_print.indb 6 14/02/23 6:14 PM

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearson.com/permissions/

Pearson’s Commitment to Diversity, Equity, and Inclusion

Pearson is dedicated to creating bias-free content that reflects the diversity of all
learners. We embrace the many dimensions of diversity, including but not limited to
race, ethnicity, gender, socioeconomic status, ability, age, sexual orientation, and
religious or political beliefs.

Education is a powerful force for equity and change in our world. It has the poten-
tial to deliver opportunities that improve lives and enable economic mobility. As we
work with authors to create content for every product and service, we acknowledge
our responsibility to demonstrate inclusivity and incorporate diverse scholarship so
that everyone can achieve their potential through learning. As the world’s leading
learning company, we have a duty to help drive change and live up to our purpose to
help more people create a better life for themselves and to create a better world.

Our ambition is to purposefully contribute to a world where:

• Everyone has an equitable and lifelong opportunity to succeed through
learning.

• Our educational products and services are inclusive and represent the rich
diversity of learners.

• Our educational content accurately reflects the histories and experiences of the
learners we serve.

• Our educational content prompts deeper discussions with learners and moti-
vates them to expand their own learning (and worldview).

While we work hard to present unbiased content, we want to hear from you about
any concerns or needs with this Pearson product so that we can investigate and
address them.

• Please contact us with concerns about any potential bias at
https://www.pearson.com/report-bias.html.

9780138190286_print.indb 7 14/02/23 6:14 PM

https://www.pearson.com/report-bias.html

9780138190286_print.indb 4 14/02/23 6:14 PM

This page intentionally left blank

For Chris, naturally
—K.W.

For Peter and Edward
—C.H.

9780138190286_print.indb 9 14/02/23 6:14 PM

9780138190286_print.indb 4 14/02/23 6:14 PM

This page intentionally left blank

xi

Contents

Foreword .xvii

Acknowledgments . xix

About the Authors . xxi

Chapter 1: Essentials of Software Requirements .1

Requirements Defined . 2
Good Practices for Requirements Engineering . 5
Who Does All This Stuff? . 8
Some Recurrent Themes . 9
The Life and Times of Requirements . 11
Getting Started . 11

Chapter 2: Laying the Foundation .13

Practice #1: Understand the problem before converging on
a solution. 14

Business Problems . 14
Eliciting the Real Problems . 15
Keeping the Business Problem in Focus . 17
Related Practices . 18
Next Steps . 18

Practice #2: Define business objectives. 19
Business Requirements . 19
Business Objectives . 22
Success Metrics . 23
Product Vision . 24
Related Practices . 25
Next Steps . 26

Practice #3: Define the solution’s boundaries. 26

9780138190286_print.indb 11 14/02/23 6:14 PM

Contentsxii

Refining the Solution Concept . 27
Setting the Context . 28
Expanding the Ecosystem . 29
Applying the Solution’s Boundaries . 30
Related Practices . 32
Next Steps . 32

Practice #4: Identify and characterize stakeholders 33
The Quest for Stakeholders . 34
Stakeholders, Customers, and User Classes 36
Characterizing Stakeholders . 37
Related Practices . 39
Next Steps . 39

Practice #5: Identify empowered decision makers. 39
Who Makes the Call? . 40
How Do They Decide? . 41
What Happens Following the Decision? . 43
Related Practices . 43
Next Steps . 44

Chapter 3: Requirements Elicitation. .45

Practice #6: Understand what users need to do with the solution. 47
Focusing on Usage . 47
Eliciting User Requirements . 48
Anatomy of a Use Case . 51
Applying Usage-centric Requirements Information 52
Related Practices . 52
Next Steps . 53

Practice #7: Identify events and responses. 53
Types of Events . 54
Specifying Events . 55
Related Practices . 59
Next Steps . 59

Practice #8: Assess data concepts and relationships. 59
Understanding Data Objects and Their Relationships 60
Refining the Data Understanding . 62
Data Details Determine Success . 64

9780138190286_print.indb 12 14/02/23 6:14 PM

Contents xiii

Find Data Requirements Wherever They Are Hiding 66
Related Practices . 67
Next Steps . 67

Practice #9: Elicit and evaluate quality attributes. 67
Eliciting Quality Attributes . 68
Quality Attribute Implications . 69
Quality Attribute Trade-offs . 70
Specifying Quality Attributes . 71
Related Practices . 73
Next Steps . 73

Chapter 4: Requirements Analysis .75

Practice #10: Analyze requirements and requirement sets. 76
Analyzing Individual Requirements . 77
Analyzing Sets of Requirements . 81
Related Practices . 83
Next Steps . 83

Practice #11: Create requirements models. . 84
Selecting the Right Models . 85
Using Models to Refine Understanding . 87
Iterative Modeling . 90
Related Practices . 91
Next Steps . 91

Practice #12: Create and evaluate prototypes. 91
Reasons to Prototype . 92
How to Prototype . 93
The Prototype’s Fate . 96
Related Practices . 97
Next Steps . 97

Practice #13: Prioritize the requirements. . 97
The Prioritization Challenge . 98
Factors That Influence Priority . 99
Prioritization Techniques . 100
Pairwise Comparison for Prioritizing Quality Attributes 102
Analytical Prioritization Methods . 103
Related Practices . 104
Next Steps . 105

9780138190286_print.indb 13 14/02/23 6:14 PM

Contentsxiv

Chapter 5: Requirements Specification .107

Practice #14: Write requirements in consistent ways. 109
Some Common Requirement Patterns . 109
Levels of Abstraction . 111
Requirement Attributes . 113
Nonfunctional Requirements . 114
Related Practices . 115
Next Steps . 115

Practice #15: Organize requirements in a structured fashion. 115
Requirements Templates . 115
The Software Requirements Specification 117
Requirements Management Tools . 119
Related Practices . 120
Next Steps . 121

Practice #16: Identify and document business rules. 121
Business Rules Defined . 121
Discovering Business Rules . 123
Documenting Business Rules . 124
Applying Business Rules . 125
Related Practices . 126
Next Steps . 126

Practice #17: Create a glossary. . 127
Synchronizing Communication . 127
Related Practices . 130
Next Steps . 130

Chapter 6: Requirements Validation. .131

Practice #18: Review and test the requirements. 132
Requirements Reviews . 132
Testing the Requirements . 134
Acceptance Criteria . 135
Testing Analysis Models . 136
Testing Requirements Efficiently . 138
Pushing Quality to the Front . 139
Related Practices . 140
Next Steps . 140

9780138190286_print.indb 14 14/02/23 6:14 PM

Contents xv

Chapter 7: Requirements Management .141

Practice #19: Establish and manage requirements baselines. 142
Requirements Baseline Defined . 142
Two Baselining Strategies . 143
Identifying Which Requirements Are Included in a Baseline 144
Getting Agreement on the Baseline . 145
Managing Multiple Baselines and Changes to Them 147
Related Practices . 148
Next Steps . 149

Practice #20: Manage changes to requirements effectively. 149
Anticipating Requirement Changes . 150
Defining the Change Control Process . 151
Assessing Changes for Impacts . 154
After a Decision Is Made . 155
In Search of Less Change . 155
Related Practices . 155
Next Steps . 156

Appendix: Summary of Practices .157

References . 159

Index . 165

A01_Wiegers_FM_pi-xxii.indd 15 17/02/23 2:34 PM

9780138190286_print.indb 4 14/02/23 6:14 PM

This page intentionally left blank

xvii

Foreword

Long story short: If you are going to read only one requirements book, this is it. Karl
and Candase have created the long-story-short version of how to develop good
requirements on a software project.

Let’s back up for the long story. If you made it this far, you already appreciate that
good requirements are the foundation of any successful software or systems develop-
ment project. Whether you’re a business analyst, product owner, product manager,
business stakeholder, or developer, it’s well worth investing the time to elicit, ana-
lyze, document, and manage requirements to avoid paying for it later—quite literally.
Good requirements lead to high-quality software.

Software Requirements Essentials is designed for the busy practitioner (and who
isn’t?) as a quick read about the most important requirements practices. It applies to
projects using either traditional or agile approaches. The terminology and cadence
of these practices may vary, but this book does a nice job of simplifying the differ-
ences and pointing out the similarities in those approaches. The practices described
apply to virtually any kind of team building virtually any kind of product.

I know Karl and Candase very well personally and can attest to the strength of
their collaboration. They each have areas of deep knowledge that complement one
another, both extending and balancing each other’s ideas. They also both live by
what they say, having used the techniques themselves on many projects.

When it comes to comprehensive requirements books, I’m slightly biased in that I
do love Software Requirements, Third Edition, which I coauthored with Karl. What
many don’t know is that I learned to be a business analyst from the first edition of
Software Requirements. In fact, that’s when I first met Karl. My job in the late 1990s
was to define requirements practices for an agile-like iterative development approach
at my software company. Boy, do I ever wish I had had this book back then!

Software Requirements Essentials distills the wealth of information found in Soft-
ware Requirements and many other texts down to twenty of the most important
requirements activities that apply on nearly all projects. Today’s busy BA simply
doesn’t have the time to read a lengthy instructive guide front to back. But they
should find the time to read this book.

This is the CliffsNotes version of many software requirements books, rolled into
one. By nature of it being consciously focused and condensed, you should not expect
massive details or full examples of every topic in Software Requirements Essentials.

9780138190286_print.indb 17 14/02/23 6:14 PM

Forewordxviii

For each of the many techniques presented, you’ll get a little what, a little why, and a
little how—enough to get you started and motivated. When you want more, follow
the numerous links provided to reference materials.

As with any book by Karl, there is lots of practicality to it, with a dash of humor.
Candase brings a long history of agile experience, keeping the text modern for
today’s common practices. Together, they’ve done a fine job of making this book
highly relatable by pulling from their collective wealth of project experiences. The
many real-life anecdotes make the recommended techniques real and justify their
validity.

You don’t have to read Software Requirements Essentials. But if you deal with
requirements in any capacity on a software project, I’d consider it … a requirement!

—Joy Beatty, COO, ArgonDigital

9780138190286_print.indb 18 14/02/23 6:14 PM

xix

Acknowledgments

In preparing this book, we had valuable discussions with Jim Brosseau, Mike Cohn,
Jennifer Colburn, David Mantica, Ramsay Millar, and Meilir Page-Jones. We thank
them sincerely for their time and expert input. James Robertson eloquently reminded
us of how important it is to understand the problem rather than assuming a pro-
posed solution is correct. We appreciate Holly Lee Sefton sharing her expertise on
data elicitation and governance. Eugenia Schmidt kindly provided an insightful quo-
tation on requirements analysis, and Tim Lister allowed us to share his succinct defi-
nition of project success.

We greatly appreciate the helpful manuscript review input provided by Jeremy
Beard, Tanya Charbury, Jennifer Colburn, James Compton, Mihai Gherghelescu,
Lisa Hill, Fabrício Laguna, Reneé Lasswell, Linda Lewis, Geraldine Mongold, Meilir
Page-Jones, Laura Paton, Maud Schlich, Eugenia Schmidt, James Shields, and Tom
Tomasovic. Review comments from Joy Beatty, Runna Hammad, and Holly Lee
Sefton were especially valuable.

Many thanks to Noor Ghafoor, Joyce Grapes, and Joe Hawes at ArgonDigital,
who helped with prototype wireframes, example models, and glossary entries. Early
editorial reviews by Erin Miller were particularly helpful.

Special thanks go to Jim Brosseau of Clarrus for his generous permission to
include a version of his quality attribute prioritization spreadsheet tool in the sup-
plementary materials for the book.

We’re grateful to Haze Humbert, Menka Mehta, and the production team at
Pearson Education for their fine editorial and production work on the manuscript.
We also thank ArgonDigital and particularly Joy Beatty for their steadfast support
for, and many contributions to, this project.

Working with a coauthor brings numerous benefits. It’s tremendously helpful to
have someone to bounce ideas off, to clarify your thinking, to improve your presenta-
tion, and to contribute new content, fresh perspectives, and unique project experi-
ences. Two authors generate a synergy that lets them tell a richer story than either
could on their own. Karl thanks Candase for contributing all those benefits, sharing
her extensive experience on agile projects, and adding many illuminating true stories
to this book.

9780138190286_print.indb 19 14/02/23 6:14 PM

Acknowledgmentsxx

As always, Karl is indebted to his wife, Chris, for patiently tolerating yet another
book project. She’s heard way more about software development and book writing
over the years than she ever expected or cared to.

Candase is extremely grateful to her family for supporting her in her first book-
writing experience. Special thanks go to her project teammates at ArgonDigital and
at her major consulting client for their encouragement even during long and arduous
product launches. Two people at ArgonDigital stand out for particular thanks: Joy
Beatty for her encouragement and guidance in becoming an author and Megan
Stowe for always inspiring Candase to continue learning. Finally, Candase would like
to thank Karl for giving her the opportunity to coauthor with him, for being a great
mentor through the publishing process, and for making the work fun and enjoyable.

9780138190286_print.indb 20 14/02/23 6:14 PM

xxi

About the Authors

Since 1997, Karl Wiegers has been Principal Consultant with Process Impact, a soft-
ware development consulting and training company in Happy Valley, Oregon. He
has delivered more than 650 presentations to thousands of students and conference
attendees worldwide. Previously, he spent eighteen years at Kodak, where he held
positions as a photographic research scientist, software developer, software manager,
and software process and quality improvement leader. Karl received a PhD in organic
chemistry from the University of Illinois.

Karl is the author of thirteen previous books, including Software Requirements,
More About Software Requirements, Software Development Pearls, The Thought-
less Design of Everyday Things, Practical Project Initiation, Peer Reviews in Soft-
ware, and a forensic mystery novel titled The Reconstruction. He has written many
articles on software development, management, design, consulting, chemistry, mili-
tary history, and self-help. Several of Karl’s books have won awards, most recently
the Society for Technical Communication’s Award of Excellence for Software
Requirements, Third Edition (coauthored with Joy Beatty). Karl has served on the
Editorial Board for IEEE Software magazine and as a contributing editor for Soft-
ware Development magazine.

9780138190286_print.indb 21 14/02/23 6:14 PM

About the Authorsxxii

When he’s not at the keyboard, Karl enjoys wine tasting, volunteering at the pub-
lic library, delivering Meals on Wheels, wine tasting, playing guitar, writing and
recording songs, wine tasting, reading military history, traveling, and wine tasting.
You can reach him through www.processimpact.com and www.karlwiegers.com.

Candase Hokanson is a Business Architect and PMI-Agile Certified Practitioner at
ArgonDigital, a software development, professional services, and training company
based in Austin, Texas. With over ten years of experience in product ownership and
business analysis, Candase works with clients to identify and implement the require-
ments that generate the best return on investment for their projects, regardless of the
development life cycle. She has also trained or coached several hundred fellow prod-
uct owners and business analysts. Her current passions are understanding how to
optimize agile in large enterprises and agile requirements for very technical or back-
end systems. Candase graduated from Rice University with a BS and an MS in civil
engineering and a BA in religious studies.

Candase is an active member of the product management and business analysis
communities, previously serving as a co-chair for the Keep Austin Agile conference
in 2019 and president of the Austin IIBA. She has authored multiple articles on using
visual models in agile, requirements in agile, and agile in the large enterprise.

Outside of work, Candase enjoys spending time with her family, all things Disney
related, reading about British history, traveling, and wine tasting. You can reach her
through www.argondigital.com and candase.hokanson@argondigital.com.

9780138190286_print.indb 22 14/02/23 6:14 PM

http://www.processimpact.com
http://www.karlwiegers.com
http://www.argondigital.com
mailto:candase.hokanson@argondigital.com

1

Chapter 1

Essentials of Software
Requirements

Many years ago, I (Karl) would sometimes dive into writing a new program based
on nothing more than an initial idea. I’d spend time coding, executing, fixing, and
making a mess in my source code editor as I fumbled around, trying to get results.
Eventually, I realized that the root of the problem was rushing to code without hav-
ing an end point in mind—coding’s fun! Those frustrating experiences taught me the
importance of thinking through some requirements—objectives, usage tasks, data
elements, and more—before doing anything else. After I adjusted my process to
understand my requirements first, I never again felt like a software project was out of
control.

All projects have requirements. Some teams begin with crisply defined business
objectives, other teams receive a rich description of the desired solution’s capabili-
ties and characteristics, and still others start with only a fuzzy new product con-
cept. Regardless of the starting point, all participants eventually must reach a shared
understanding of what the team is supposed to deliver.

Some project participants aren’t very interested in requirements. Certain man-
agers may claim they’re too busy to engage in requirements discussions. But then
their expectations surface after the product has progressed to the point where major
changes mean expensive rework. Some technical people might regard the time spent
exploring and documenting requirements as a distraction from the real work of craft-
ing code. However, a good set of requirements lets you answer some important—
and universal—questions.

• Why are we working on this?

• Who are we trying to satisfy?

9780138190286_print.indb 1 14/02/23 6:14 PM

Chapter 1 Essentials of Software Requirements2

• What are we trying to build?

• What functionality do we implement first? Next? Maybe never?

• How can we tell if our solution1 is good enough?

• How do we know when we’re done?

This book describes the twenty most important practices that help software teams
create a set of requirements to serve as the foundation for the subsequent development
work. These practices broadly apply regardless of the type of product the team is cre-
ating or their development approach. Some software teams work not on discrete devel-
opment projects but on existing products that demand ongoing modifications and
new functionality. The people who are responsible for requirements work on product
teams like those will find the practices in this book equally applicable to their work.

The requirements terminology differs between traditional (plan-driven or predic-
tive) and agile (change-driven or adaptive) projects. Regardless of the terminology
used, developers still need the same information to build the right solution correctly
(Wiegers and Beatty, n.d.a). Some teams will perform certain practices iteratively,
delivering value in small chunks. Others may do much of the requirements work early
in the project because the problem is well understood. A startup that’s trying to assess
its product’s market fit will focus on exploring ideas and approaches rather than try-
ing to assemble a detailed specification. Whichever way you plan your development
cycles, performing these twenty practices well can make the difference between deliv-
ering a solution that satisfies your stakeholders and creating one that does not.

Requirements Defined

Now that we’ve used the word requirement several times, we should define what we
mean. A software team must deal with many types of requirements-related knowl-
edge, and people will be confused if they lack a common understanding of them.
Although it’s not fully inclusive, one useful definition of requirement comes from
Ian Sommerville and Pete Sawyer (1997):

Requirements are … a specification of what should be implemented. They are descrip-
tions of how the system should behave, or of a system property or attribute. They may
be a constraint on the development process of the system.

1. A project is an initiative that’s launched to create a solution for one or more business problems or to
exploit a business opportunity. A solution involves creating or modifying one or more products, which
could include software systems, manual operations, and business processes. This book uses the terms
product, system, and application interchangeably to refer to whatever your team is building.

9780138190286_print.indb 2 14/02/23 6:14 PM

3Requirements Defined

This definition points out that requirements encompass multiple types of infor-
mation. However, one aspect lacking from that definition is the concept of a require-
ment as a statement of a stakeholder need, which is the real starting point for all
discussions about requirements.

Several classification schemas and models are in common use to describe vari-
ous kinds of requirements information (Robertson and Robertson 2013, Wiegers and
Beatty 2013, IIBA 2015). They generally agree but differ in some terminology details.
In this book, we’ll use the model shown in Figure 1.1.

This model shows various categories of requirements information (ovals) as well
as containers in which to store that information (rectangles). For simplicity, this
book will refer to those containers as documents. They could just as well be spread-
sheets, databases, requirements management tools, issue tracking tools, wikis, or a
wall covered with sticky notes—whatever works for your team. The container itself
is less important than the information it holds and how you choose to record, organ-
ize, and communicate that information.

Figure 1.1 Connections between several types of requirements information and containers
that store them. Solid lines mean “are stored in.” Dotted lines mean “are the origin of ” or
“influence.”

Business
Requirements

Vision and
Scope

Document

User
Requirements

Document

Constraints

External
Interfaces

Business
Rules

Software
Requirements
Specification

System
Requirements
Specification

User
Requirements

System
Requirements

Solution
Requirements

9780138190286_print.indb 3 14/02/23 6:14 PM

Chapter 1 Essentials of Software Requirements4

Table 1.1 Definitions of several types of requirements information

Type of information Definition

Business requirement Information that describes why the organization is undertaking the
project, establishes business objectives, defines a product vision, and
includes other direction-setting information. (See Practice #2, “Define
business objectives.”)

Business rule A directive that defines or restricts actions within an organization’s
operations. A policy, regulation, law, or standard that leads to derived
solution requirements that enforce or comply with it. (See Practice #16,
“Identify and document business rules.”)

Constraint A restriction imposed on the requirements, design, or implementation
activities.

Data requirement A definition of a data object or element that the system must
manipulate, its composition and attributes, relationships among data
objects, and their input and output formats. (See Practice #8, “Assess
data concepts and relationships.”)

External interface requirement A description of a connection between the solution being built and
other elements of the world around it, including users, other software
systems, hardware devices, and networks.

Functional requirement A description of some behavior that the product will exhibit under
specified circumstances.

Nonfunctional requirement Most commonly refers to what is also known as a quality attribute
requirement. Quality attributes describe various quality, service, or
performance characteristics of the solution. (See Practice #9, “Elicit
and evaluate quality attributes.”)

Solution requirement A description of a capability or characteristic that the product being
created must possess to satisfy certain user requirements and help
achieve the project’s business objectives. Solution requirements include
functional, nonfunctional, and data requirements, as well as manual
operations.

System requirement A description of a top-level capability or characteristic of a complex
system that has multiple subsystems, often including both hardware
and software elements. System requirements serve as the origin of
derived software solution requirements.

Models like that in Figure 1.1 illustrate that there are many types of require-
ments information. This book uses the definitions in Table 1.1, which are broadly
accepted in the requirements engineering and business analysis domains. Note that
solution requirements encompass functional, nonfunctional, and data require-
ments (IIBA 2015). You’ll see examples of these various items in later chapters.
This book uses the collective term requirements to refer to all of these types of
information, whether your local terminology focuses on features, use cases, user
stories, or anything else.

9780138190286_print.indb 4 14/02/23 6:14 PM

5Good Practices for Requirements Engineering

The fact that the diagonal arrows in Figure 1.1 that lead from Business Require-
ments down to the Software Requirements Specification are all aligned is no accident.
Developers do not directly implement business requirements or user requirements.
They implement functional requirements, including those derived from other cat-
egories of requirements information. The goal is to implement the right set of func-
tionality that lets users perform their tasks and satisfies their quality expectations,
thereby (hopefully) achieving the project’s business requirements, within all imposed
constraints. That “right set” of functional requirements comes from a foundation of
well-understood business and user requirements.

Not every requirement will fit tidily into one or another of the categories in
Table 1.1. Debating exactly what to call a specific statement is not important. What’s
important is that the team recognizes the need, analyzes it, records it in an appropri-
ate form and location, and builds whatever is necessary to satisfy it.

Good Practices for Requirements Engineering

The domain of requirements engineering is broadly divided into requirements devel-
opment and requirements management. Requirements development encompasses
the activities a team performs to identify, understand, and communicate require-
ments knowledge. Requirements management deals with taking care of requirements
once you have them in hand. Requirements management activities include handling
the inevitable changes, tracking versions of requirements and their status over time,
and tracing individual requirements to related requirements, design components,
code, tests, and other elements.

Requirements development is further partitioned into four subdomains:

Elicitation Activities to collect, discover, and invent requirements. Some-
times called gathering requirements, but elicitation is much
more than a collection process.

Analysis Activities to assess requirements for their details, value,
interconnections, feasibility, and other properties to reach a

Type of information Definition

User requirement A description of a task or goal that a user wishes to accomplish
with the solution. The International Institute of Business Analysis
generalizes this category to “stakeholder requirements,” but in
actuality, all requirements originate from some stakeholder (IIBA 2015).
Here, we’re specifically referring to things the user needs to do and
user-specific expectations the solution must satisfy. (See Practice #6,
“Understand what users need to do with the solution.”)

Table 1.1 (continued)

9780138190286_print.indb 5 14/02/23 6:14 PM

Chapter 1 Essentials of Software Requirements6

sufficiently precise understanding to implement the require-
ments at low risk.

Specification Activities to represent requirements knowledge in appropri-
ate and persistent forms so that they can be communicated to
others.

Validation Activities to assess the extent to which requirements will
satisfy a stakeholder need.

These four sets of activities are not simply performed in a linear, one-pass
sequence. As Figure 1.2 illustrates, they are interwoven and repeated until a particu-
lar set of requirements is understood well enough that the development team can
build and verify that part of the solution with confidence. Requirements develop-
ment is an incremental and iterative process by necessity, frustrating though that can
be for the participants. Exploring requirements is an investment that reduces uncer-
tainty and improves efficiency. The process might feel slow, but requirements think-
ing saves time in the end.

Elicitation Analysis Specification Validation

close gaps

close gaps

revise

re-evaluate

clarify revise

Figure 1.2 Requirements elicitation, analysis, specification, and validation are performed
incrementally, iteratively, and often concurrently.

Each of the requirements engineering subdomains encompasses numerous dis-
crete practices. That’s what this book is about. It describes twenty core practices that
are particularly strong contributors to success on nearly all projects. Whether you
lead requirement efforts, take part in them, or depend on them to perform your own
work, you’ll be more effective if you apply these core practices. Several of the prac-
tices refer to templates, spreadsheet tools, checklists, and other work aids, which you
may download from the website associated with this book at www.informit.com.

We’ve grouped the practices by requirements engineering subdomain, four
for requirements development and one for requirements management. Chapter 3
addresses requirements elicitation, Chapter 4 describes analysis practices, Chapter 5
deals with requirements specification, and Chapter 6 discusses key validation prac-
tices. The most important requirements management practices appear in Chapter 7.

9780138190286_print.indb 6 14/02/23 6:14 PM

http://www.informit.com

7Good Practices for Requirements Engineering

Each practice description presents numerous practical techniques, identifies related
practices, and suggests several Next Steps to help you put the practice into action
right away. The practice descriptions are relatively short, so we’ve provided many
references to other sources where you can get more detailed information.

Some practices in the elicitation chapter also describe related analysis and speci-
fication activities for topics like quality attributes and data. This grouping under-
scores the intrinsic entanglement of these requirements subdomains. It’s not a clean
separation.

You might have noticed that we skipped past Chapter 2. That chapter discusses
five additional requirements-related activities that every project should perform to
lay a solid foundation for a successful outcome. You’re well served to conduct those
activities early on to align all the stakeholders toward common goals, rather than
going back to address them later when the team runs into problems.

This set of practices does not constitute a one-size-fits-all requirements process.
When developing software, whoever leads the requirements work should work with
other leaders to decide which requirements approaches will be most effective. Fac-
tors to consider include the project’s nature and size, the team’s experience with
similar products, the access the team will have to stakeholders, particular areas of
requirements risk, constraints, and organizational cultures (IIBA 2015). Select those
practices that you believe will add the most value to the work, and adapt the practice
descriptions from this book and other sources to best meet your specific needs.

The Appendix lists all twenty practices we address. These are by no means the
only available requirements techniques. Numerous comprehensive (meaning long)
books describe dozens of practices for requirements engineering and business analy-
sis. These are some of the most useful resources:

• Software Requirements, 3rd Edition by Karl Wiegers and Joy Beatty
(Microsoft Press, 2013)

• Mastering the Requirements Process: Getting Requirements Right, 3rd Edition
by Suzanne Robertson and James Robertson (Addison-Wesley, 2013)

• Agile Software Requirements: Lean Requirements Practices for Teams,
Programs, and the Enterprise by Dean Leffingwell (Addison-Wesley, 2011)

• Business Analysis: Best Practices for Success by Steven P. Blais (John Wiley &
Sons, Inc., 2012)

• Business Analysis, 4th Edition by Debra Paul and James Cadle (BCS, The
Chartered Institute for IT, 2020)

• A Guide to the Business Analysis Body of Knowledge (BABOK Guide), 3rd
Edition (International Institute of Business Analysis, 2015)

9780138190286_print.indb 7 14/02/23 6:14 PM

Chapter 1 Essentials of Software Requirements8

• Business Analysis for Practitioners: A Practice Guide (Project Management
Institute, Inc., 2015)

• The PMI Guide to Business Analysis (Project Management Institute,
Inc., 2017)

We encourage you to refer to books like those for more information on the top-
ics we discuss here, as well as to learn about other practices you might find helpful.
A professional in the requirements field must accumulate a rich tool kit of practices
and techniques, along with the experience to know which tool is the best one to use
in each situation.

Some books or development frameworks recommend that you discard certain
established practices and replace them with others. That’s poor advice. You should
add new practices to your tool kit, discarding older ones only when you can replace
them with something that’s demonstrably better in all situations. If something works
for you, why throw it away?

Who Does All This Stuff?

Historically, someone responsible for developing and managing requirements on a
software project was called a requirements analyst, systems analyst, business systems
analyst, or simply analyst. Large projects, particularly those building systems with
both hardware and software components, might have requirements engineers who
perform this function. Organizations that create commercial software products use
product managers to bridge the gap between marketing and the development team.
Agile development teams often include a product owner who defines and manages
the requirements and other work items—collectively called product backlog items—
that will lead to the solution.

In recent years, the term business analyst has largely replaced those historical job
titles. This book uses business analyst, or BA, to refer to whomever on a development
team has responsibility for requirements. In many organizations, a BA’s role extends
beyond dealing with requirements, but we will focus on their requirements activities.

Note that business analyst refers to a role, not necessarily a job title. Even if the
team lacks an official BA, someone still must elicit, analyze, specify, validate, and
manage its requirements. This work could be divided among multiple individu-
als, possibly including a project manager, quality assurance leader, and developers.
When a team member who has another title is performing this kind of work, they are
acting as a BA.

9780138190286_print.indb 8 14/02/23 6:14 PM

9Some Recurrent Themes

In recent years, several organizations have recognized the great value that busi-
ness analysts and requirements engineers can contribute. These organizations have
developed bodies of knowledge and professional certifications that people working
in these fields can pursue. Such professional organizations include

• The International Institute of Business Analysis (IIBA), iiba.org

• The International Requirements Engineering Board (IREB), ireb.org

• The Project Management Institute (PMI), pmi.org

The bodies of knowledge these organizations have accumulated are rich sources of
information about the many requirements processes, techniques, and tools that con-
tribute to success.

Some Recurrent Themes

Some common themes run through this book. Keep the following themes in mind as
you select practices to use on your projects and tailor them to suit each situation.

Table 1.2 Some valuable business analyst skills and characteristics

Listening

Interviewing and questioning

Facilitation

Nonverbal communication

Analytical thinking

Systems thinking

Quick thinking

Observation

Writing

Modeling

Flexibility across the abstraction scale

Organizing information and activities

Handling interpersonal interactions

Leadership

Creativity

Curiosity

Because the requirements domain is both critical and complex, it’s unrealistic to
expect any random team member to perform the BA role without some education
about how to do it well. A capable BA brings a particular set of knowledge, expe-
rience, personality characteristics, and skills to the process, including those listed
in Table 1.2 (Wiegers and Beatty 2013). If you’re working in this role, assess your
capabilities in each category and then work to improve those that aren’t as strong as
others.

9780138190286_print.indb 9 14/02/23 6:14 PM

http://iiba.org
http://ireb.org
http://pmi.org

Chapter 1 Essentials of Software Requirements10

• Requirements development demands an incremental and iterative
approach. It’s highly unlikely that anyone will think of all the requirements
before development begins and that they will remain unchanged. People get
more information, have fresh ideas, remember things they had overlooked,
change their minds, and must adapt to changing business and technical
realities.

• No matter how you choose to represent requirements knowledge, the goal
of all specification activities is clear and effective communication. The
artifacts the BA produces have multiple audiences. Those audiences may
wish to see information presented in different forms and at various lev-
els of detail. Consider those diverse audiences as you create requirements
deliverables.

• Requirements engineering is a collaborative process. Requirements affect all
stakeholders. Many people can supply input to the requirements, many people
do work based on them, and many people use the resultant solution. Customer
engagement is a powerful contributor to a successful outcome. The BA must
work with people who can accurately present the needs of diverse stakeholder
communities. Most requirements decisions involve multiple participants with
different, and sometimes conflicting, interests and priorities.

• Change happens. A solution-development effort is chasing a moving tar-
get. Business needs, technologies, markets, regulations, and users change. A
BA must keep up with evolving needs and make sure that changes are clearly
understood, recorded, and communicated to those they affect.

• A powerful way to increase development productivity is to minimize the
amount of rework the team must perform. Therefore, try to push quality
activities to the front of the development cycle—that is, earlier rather than
later. Better requirements pay off with less rework later in development or fol-
lowing delivery.

• Use risk thinking to decide which requirements practices to employ, when to
perform them, when to stop, and how much detail is necessary. For instance,
the risks of miscommunication and wasted effort are greater when develop-
ment is outsourced or teams are remote than when participants work in prox-
imity. Therefore, requirements for such projects must be written more precisely
and in more detail than when developers can quickly get answers from the peo-
ple around them.

9780138190286_print.indb 10 14/02/23 6:14 PM

11The Life and Times of Requirements

The Life and Times of Requirements

Neither requirements development nor requirements management activities end
when the initial project team delivers the solution. They continue throughout the
product’s operational or market life, as it evolves through an ongoing series of
enhancement and maintenance cycles. As change requests arrive, someone must elicit
the corresponding requirements details and evaluate their impact on the current
solution. They must then document the new or changed requirements, validate them,
track their implementation status, trace them to other system elements, and so forth.

The BA should look for existing requirements-related items from other projects
they could reuse. At times, they might create deliverables that have reuse potential
elsewhere in the organization. Glossaries, business rules, process descriptions, stake-
holder catalogs, data models, security requirements, and the like can apply to mul-
tiple situations. Once an organization invests in creating these artifacts, it should
organize them to enable reuse and look for opportunities to leverage that investment
further (Wiegers and Beatty 2013).

Getting Started

This book contains a lot of information and recommends many practices and tech-
niques. Some of these you no doubt already perform; others might be new to you. We
have two pieces of advice about getting started with the practices we suggest.

1. Don’t feel bad if you don’t already perform all these activities on your projects.

2. Don’t try to do everything at once.

As you read, identify those practices that you think would add the most value to
your project. Look for opportunities to try them and situations in which they might
yield better results. Recognize the reality that the learning curve will slow you down
a bit as you try to figure out how to make new methods work for you and your col-
leagues. Follow the references we’ve provided to learn more about those practices
that look interesting to you. Over time, new ways of working will become part of
your BA tool kit—and you will get better results.

Whether you call it business analysis or requirements engineering, it’s a challeng-
ing, yet vital, function. The core practices described in this book give you solid tools
to tackle this critical activity with confidence.

9780138190286_print.indb 11 14/02/23 6:14 PM

9780138190286_print.indb 4 14/02/23 6:14 PM

This page intentionally left blank

13

Chapter 2

Laying the Foundation

In the classical pure (and hypothetical) waterfall software development model, the
team accumulates a complete set of requirements for the product, designs a solution,
builds the entire solution, tests it all, and delivers it. We all know that approach
doesn’t work well in most cases.

Projects will vary in how much requirements work can, and should, be done up
front. Sometimes it’s possible to specify a good portion of the requirements for an
information system before getting too far into implementation. Complex products
with multiple hardware and software components demand careful requirements
engineering because the cost of making late changes is high. For applications that
change rapidly or lend themselves to incrementally releasing ever more capable soft-
ware versions, developing requirements just-in-time in small chunks is an effective
approach. Innovative apps may involve a lot of concept exploration, prototyping,
feasibility studies, and market assessment.

No single approach to the development life cycle or requirements work opti-
mally fits every situation. However, there are several interconnected activities related
to requirements that every team should perform at the beginning. This chapter
describes five essential practices that collectively provide a solid foundation for both
technical and business success:

Practice #1. Understand the problem before converging on a solution.

Practice #2. Define business objectives.

Practice #3. Define the solution’s boundaries.

Practice #4. Identify and characterize stakeholders.

Practice #5. Identify empowered decision makers.

9780138190286_print.indb 13 14/02/23 6:14 PM

Chapter 2 Laying the Foundation14

Imagine that you worked for more than a year on a project that had executive sup-
port and high visibility. In your business analyst role, you performed the require-
ments elicitation, analysis, and specification. The development team built what the
stakeholders asked for and deployed the product on schedule. But just three months
later, the product is considered a failure and decommissioned. Why? Because it
didn’t solve the right problem.

Far too often, teams build and release requirements, features, and even entire
products that go unused because those teams didn’t fully understand the business
situation and the problems they were trying to solve. Understanding the problems or
opportunities that your solution will address aligns all participants on the core issues
and provides confidence that the solution will indeed achieve the desired outcomes.

Business Problems

A business problem is any issue that prevents the business from achieving its goals or
exploiting an opportunity (Beatty and Chen 2012). A business problem can be small,
such as a user complaint that some task takes too long, which can perhaps be solved
by streamlining some functionality. Or it can be as large as organization-level busi-
ness challenges—spending too much money, not making enough money, or losing
money—that demand major projects or entirely new products.

Organizations launch initiatives to solve one or more business problems. Each
activity gets funded because management expects its business value to outweigh its
costs. However, those problems or opportunities often are neither explicitly stated
nor documented. Rather than presenting a clear problem statement, the executive
sponsor or lead customer might simply tell the team what to build. This can cause the
scenario described above: project success but product failure. If you don’t understand
the problem adequately, or if you begin with a specific solution in mind, there’s a
good chance that the team will solve only part of the problem—or perhaps none of it.

It’s a good idea to avoid presuming that either a presented problem or a presented
solution is necessarily correct. That initial presentation might come from a business
case, project charter, senior manager, or product visionary. But can you trust it as set-
ting the right direction for all the work that will follow?

When you’re presented with a stated problem, perform a root cause analysis
until you’re confident that the real issue and its contributing factors are well under-
stood (Tableau 2022). Then you can derive possible solutions that you know will
address those very issues. If you’re presented with a solution, explore this question:
“If <solution> is the answer, what was the question?” In other words, ask “Why do

Practice #1 Understand the problem before converging on a solution.

9780138190286_print.indb 14 14/02/23 6:14 PM

15Practice #1: Understand the Problem before Converging on a Solution

you think that’s the right solution?” You might discover that the underlying issue
demands a different approach: possibly simpler, possibly more complex, possibly
more specific, possibly more general. You won’t know until you perform the analysis.

Eliciting the Real Problems

A stakeholder might request a solution such as “Combine several systems into one,”
with the expectation that such a strategy would address multiple, unspecified objec-
tives. However, system consolidation could be overkill if a simpler answer is appro-
priate. If the problem is that you’re spending too much money on maintenance and
support for four existing systems, combining them could be the right approach.
However, suppose that the most pressing concern instead is that your users are
unhappy. A root cause analysis using the 5 Whys technique with the pertinent stake-
holders could sort all this out (Tableau 2022).

Root cause analysis involves working backward from a stated problem or a pro-
posed solution to identify the underlying problems and the factors that contribute
to them. Assessing those factors then leads to the appropriate solution choice. With
the 5 Whys technique, you ask questions like “Why is that a problem?” or “Why are
we not already achieving that goal today?” repeatedly until you unveil the compelling
issue that drove launching the initiative in the first place. The conversation between a
business analyst and a key stakeholder might go something like this:

Analyst: “You requested that we combine your four current systems into one. Why do
we need to combine them?”

Stakeholder: “Because our customers complain that they must keep signing in between
webpage clicks. It’s annoying. This is because they’re accessing different backend
systems that all have separate user accounts.”

Analyst: “Why is it an issue if your customers are complaining?”

Stakeholder: “According to our market research, 25 percent of our customers have left
us for the competition because of their frustrations with usability on our site.”

Analyst: “If that’s the case, why not just implement single sign-on to improve usability?”

Stakeholder: “That would help, but we’d still have to maintain and support all four systems.”

Analyst: “If we combined them, wouldn’t you still need the same number of support
people for the new system?”

Stakeholder: “We don’t believe so. The four current systems use different programming
languages. We need at least one engineer fluent in each language to support each sys-
tem, although there’s not enough work to keep them busy. By combining the systems
into one using a single language, we could free up the additional engineers to work on
other products.”

9780138190286_print.indb 15 14/02/23 6:14 PM

Chapter 2 Laying the Foundation16

Analyst: “Ah, so it looks like you’re trying to solve multiple problems. You want higher
customer retention, and you also want to reduce support costs and free up staff by
using fewer technologies.”

By asking “why” several times in this conversation, the analyst now understands
that the stakeholder expects their proposed solution to address two significant con-
cerns. The request to combine several systems into one might indeed be the best
long-term strategy. However, an interim solution using single sign-on could appease
the disgruntled customers quickly, while the consolidation initiative works on the
larger concern of support and maintenance.

A root cause analysis diagram, also called a fishbone or Ishikawa diagram, is a
way to show the analysis results. Suppose the BA drills down into the first problem
the stakeholder brought up: losing frustrated customers. The BA could apply the
5 Whys technique to determine exactly why the customers are frustrated and then
draw a diagram like the one in Figure 2.1. The problem goes at the head of the “fish.”
Place the highest-level causes in the boxes on diagonal lines coming off the fish’s
backbone. Add contributing causes on the short horizontal lines from each diagonal.
Continue the exploration until you reach the ultimate, actionable root causes. Then
you can devise one or more solutions to address them.

Losing
Frustrated
Customers

Keep having to
log in

Can’t find what
they’re looking

for

Difficulties
navigating the

site

multiple user accounts
and passwords needed

m
ult

ipl
e

ba
ck

en
d

sy
ste

m
s

search isn’t shared
across systems

disjointed user experience
across UIs using different

backend systems

systems use different
search algorithms, leading

to different results on
different pages

Figure 2.1 A root cause analysis (fishbone or Ishikawa) diagram example shows the factors
that contribute to the stated problem.

M02_Wiegers_C02_p013-044.indd 16 15/02/23 11:24 AM

17Practice #1: Understand the Problem before Converging on a Solution

Once you’ve identified the primary and contributing issues, consider all their
implications before committing to a solution. The requested or most apparent solu-
tion could be the wrong strategy. On one of Candase’s projects, the problem was that
the version of the commercial off-the-shelf (COTS) package the company used was
going end-of-life soon and the vendor would no longer support it. After that, any
production issue could have cost the company its entire business because it wouldn’t
have any vendor assistance. Nor could it currently make its own enhancements to
the vendor product. The obvious solution was to upgrade to the latest version of
the vendor’s product. However, the company would have had to pay the vendor high
service fees to resolve problems and add enhancements. Consequently, the company
considered both acquiring a new COTS package from a different vendor and build-
ing an in-house replacement as better solutions to both the initial end-of-life concern
and the additional issues.

Problem analysis can reveal other, unobvious challenges. You might confront con-
flicting problems from different stakeholders or be trying to solve multiple, disparate
problems with a single fix. As you explore the issues, look for situations where you
might need several solutions, rather than seeking a single silver bullet.

Keeping the Business Problem in Focus

When the key stakeholders have agreed upon a clear understanding of the core busi-
ness concerns, consider writing a problem statement (Kyne 2022). A template like
this can be helpful (Compton 2022):

Situation Describe the background, context, and environment.

Problem Describe the business problems or opportunities as you now
understand them.

Implication Describe the likely results if the problem isn’t solved.

Benefit State the business value of solving the problem.

Vision Describe what the desired future state would look like.

A concise problem statement serves as the reference point for the rest of the
work. It feeds directly into crafting the specific business objectives that manage-
ment or your customers expect the solution to achieve (see Practice #2, “Define
business objectives”). The problem statement also helps the team make decisions
throughout the project. When prioritizing requirements, favor those items that are
the most critical or timely contributors to solving the highest-value problem (see
Practice #13, “Prioritize the requirements”). In the combine-several-systems-into-
one example above, implementing single sign-on to relieve customer frustration

9780138190286_print.indb 17 14/02/23 6:14 PM

Chapter 2 Laying the Foundation18

would be a quicker fix than combining multiple systems and would address the
immediate concern of losing customers.

Whenever someone requests a new system capability, ask how it relates to the
business problems (see Practice #20, “Manage changes to requirements effec-
tively”). If you can’t tie each new requirement to any of the defined business prob-
lems, either there are more problems yet to explore or you don’t need the new
requirement.

Stakeholders often will propose a specific deliverable as a requirement: “Build
me product X or feature Y.” The stakeholder’s solution may indeed be the correct
one—but not necessarily. Take the time to thoroughly understand the real busi-
ness problem to ensure that the team focuses on achieving the proper outcomes.
If your analysis reveals that the real problem doesn’t quite match what you found
in a business case or other originating document, revise that document to match
the newly understood reality. That insight could profoundly change the project’s
direction.

Related Practices

Practice #2. Define business objectives.

Practice #3. Define the solution’s boundaries.

Practice #13. Prioritize the requirements.

Practice #20. Manage changes to requirements effectively.

Next Steps

1. If you haven’t already done so, talk with project leadership and key stakehold-
ers about why they’re undertaking your initiative to make sure you understand
the problem it is intended to solve.

2. Create a root cause analysis diagram for your core business problem, using a
technique like 5 Whys to discover both major and contributing causes.

3. Write a problem statement using the template described in this section.

4. Based on the problem or problems identified, assess whether your current solu-
tion concept will address them adequately. If not, either change the solution or
point out the risk that the current solution may not be sufficient.

9780138190286_print.indb 18 14/02/23 6:14 PM

45

Chapter 3

Requirements Elicitation

The first step in dealing with requirements is to get some. People often speak of
“gathering requirements,” as though it were a simple collection process: The require-
ments are sitting around in people’s heads, and the business analyst merely asks for
them and writes them down. It’s never that simple. In reality, stakeholders begin with
random fragments of information: dissatisfaction with their current systems, bits of
functionality they want, tasks to perform, important pieces of data, and ideas of
what screen displays might look like.

Requirements elicitation is a better term for this foundational activity. To elicit
something means to draw it forth or bring it out, particularly something that’s hid-
den or latent. The Merriam-Webster Thesaurus (2022) says, “elicit usually implies
some effort or skill in drawing forth a response.” That skill is a significant asset that
a business analyst brings to software development. Requirements elicitation does
involve collection, but it also involves exploration, discovery, and invention. The BA
guides this imaginative journey, working with diverse stakeholders to understand the
problem and then define a satisfactory solution. The BA looks for potential require-
ments from many sources, including these:

• User representatives and many other stakeholders

• Documentation about business processes, current systems, and competing
products

• Laws, regulations, and business policies

• Existing systems, which may or may not be documented

• User problem reports, help desk records, and support staff

9780138190286_print.indb 45 14/02/23 6:14 PM

Chapter 3 Requirements Elicitation46

An experienced BA exploits multiple techniques for elicitation, choosing the
appropriate tool for a particular situation. Factors to consider when selecting elicita-
tion methods include the types of information needed; who has that information,
where those people are located, and their availability; the effort that the method
requires; the budget and time available; the development team’s life cycle model and
methodologies; and the cultures of the developing and customer organizations (IIBA
2015).

This book does not go into elicitation techniques in detail, as those are thoroughly
described in other resources (e.g., Davis 2005, Robertson and Robertson 2013, Wieg-
ers and Beatty 2013, IIBA 2015). Table 3.1 lists several commonly used elicitation
activities and the typical participants.

Table 3.1 Some common requirements elicitation techniques

Participants Activities

Business analyst • Document analysis

• Existing product and process analysis

• System interface analysis

• User interface analysis

• Data mining and analysis

Business analyst and
stakeholders

• Interviews

• Facilitated group workshops

• Scenario analysis

• Observing users at work

• Process modeling

• Focus groups

• Brainstorming

• Mind mapping

• Prototyping

• Collaboration tools such as wikis and discussion forums

• Questionnaires and surveys

This chapter describes four core practices that are particularly valuable for elicit-
ing both functional and nonfunctional requirements:

Practice #6. Understand what users need to do with the solution.

Practice #7. Identify events and responses.

Practice #8. Assess data concepts and relationships.

Practice #9. Elicit and evaluate quality attributes.

9780138190286_print.indb 46 14/02/23 6:14 PM

47

If you were holding a requirements elicitation discussion with some users about a
new information system, which of these questions do you think would yield the
greatest insights?

• What do you want?

• What are your requirements?

• What do you want the system to do?

• What features would you like to see in the system?

• What do you need to do with the solution?

We favor the final question. While the first four questions can provide a good
starting point to ask why a stakeholder wants those things, they all inquire about the
solution, not the user’s problems, needs, or goals. Focusing on features can lead the
team to implement incomplete functionality that doesn’t let users do all the things
they must do. The feature-centered mindset also can lead to building functionality
that seems like a good idea but goes unused because it doesn’t directly relate to user
tasks. Regardless of your development approach, if you don’t understand what the
users need to do with the features they request, you might release a product that you
must rework later.

Karl once saw the limitations of elicitation questions that focus on the solution. A
company held a daylong workshop with about sixty participants to brainstorm ideas
for a large new commercial product. They stapled together the output from their six
subgroups and called it a requirements specification. But it wasn’t. It was a mishmash
of functionality fragments, feature descriptions, user tasks, data objects, and perfor-
mance expectations, along with extraneous information, all stirred together with no
structure or organization. Simply asking people to imagine what they wanted to see
in the new product didn’t produce actionable requirements knowledge. Much more
requirements development work was needed following the workshop.

Focusing on Usage

The question “What do you need to do with the solution?” is a more effective open-
ing for discussing requirements. By understanding what the users need to do, the BA
can deduce just what functionality is needed. A usage-centric approach makes it

Practice #6 Understand what users need to do with the solution.

Practice #6: Understand What Users Need to Do with the Solution

9780138190286_print.indb 47 14/02/23 6:14 PM

Chapter 3 Requirements Elicitation48

more likely that the solution will satisfy user needs, incorporating the necessary
capabilities without wasting development effort on unneeded functions (Wiegers
2022).

Stories, scenarios, and use cases are variations on a common theme: asking users
to describe an interaction they might have with a software system or a business to
achieve some goal (Alexander and Maiden 2004). These descriptions of user goals
and the interactions that lead to achieving them constitute the user requirements.
User requirements appear in the middle section of the requirements information
model in Figure 1.1, as reproduced in Figure 3.1. The user requirements should align
with the business objectives from the vision and scope document and contribute to
solving an identified business problem.

Figure 3.1 User requirements lie between business requirements and solution requirements.

Vision and
Scope

Document

User
Requirements

Document

User
Requirements

Eliciting User Requirements

A person doesn’t launch an application to use a particular feature; they launch it to
do something. It’s difficult for users to articulate their “requirements,” but they can
easily describe how they might perform a business activity. During an elicitation dis-
cussion, the BA might ask a user representative, “Please describe a session you might
have with the product we’re talking about. What would you be trying to accomplish?
How do you imagine your dialogue with the system would go?” A description of a
single interactive session like this is called a scenario.

A scenario identifies a sequence of steps that define a task to achieve a specific
intent (Alexander and Maiden 2004). When you ask a user to describe a scenario,
they’ll usually begin with the most typical or frequent activity they perform. This
is sometimes called the normal flow, main flow, main success scenario, or happy
path. From that initial scenario, the BA and user can then explore alternative sce-
narios (or flows), variations that also lead to a successful outcome. They can also

9780138190286_print.indb 48 14/02/23 6:14 PM

49

discuss exceptions, possible conditions that could prevent a scenario from conclud-
ing successfully.

An effective way to organize these related scenarios is in the form of use cases
(Cockburn 2001, Kulak and Guiney 2004). A use case structures all this information
according to a template, which is described in the next section. The use case tech-
nique helps the team acquire and organize the mass of requirements information
that any sizable system involves. If an elicitation participant says “I want to <do
something>” or “I need to be able to <do something>,” the <do something> likely
is a use case.

The various user classes will have different use cases, different things they need
to accomplish with the solution. That’s why it’s a good idea to conduct group
elicitation activities with members of each user class separately. As an example,
Table 3.2 lists a few use cases for each of the user classes named earlier for the hypo-
thetical Speak-Out.biz publication platform in Practice #4, “Identify and character-
ize stakeholders.”

Table 3.2 Some use cases for several Speak-Out.biz user classes

User class Use cases

Author Draft an Article

Edit an Article

Publish an Article

Submit an Article to a Publication

View Article Statistics

Reader Read an Article

Comment on an Article

Subscribe to an Author

Publication Editor Create a New Publication

Accept or Reject a Submitted Article

Reply to an Author

Administrator Respond to a Reader Complaint

Suspend an Author’s Account

Each use case name is a concise statement that clearly indicates the user’s goal,
the outcome of value that the user wishes to achieve. Notice that all the use cases
in Table 3.2 begin with a definitive action verb. This is a standard use case naming
convention.

Practice #6: Understand What Users Need to Do with the Solution

9780138190286_print.indb 49 14/02/23 6:14 PM

Chapter 3 Requirements Elicitation50

Agile projects often rely on user stories as a technique for discussing system
capabilities. According to agile expert Mike Cohn (2004), “A user story describes
functionality that will be valuable to either a user or purchaser of the system or soft-
ware.” A user story is intentionally brief, a starting point for further exploration of
its details so that developers can learn enough to implement the story. User stories
conform to a simple pattern, such as this one:

As a <type of user>, I want to <perform some task> so that I can <achieve some goal>.

Stories that focus on what users need to do with the solution, rather than on bits
of system functionality, can serve the goal of usage-centric requirements explora-
tion. Here’s a user story we might hear from a Speak-Out.biz author:

As an author, I want to view the page-view statistics for my published articles so that
I can see which topics my readers enjoy the most.

This story addresses a piece of the functionality for the final use case shown for the
Author user class in Table 3.2, View Article Statistics. The user story format offers
the advantages of naming the user class and describing the intent. That information
would appear in a use case specification, but it’s helpful to see it right up front like this.

There are ongoing debates about whether use cases are appropriate—or even
allowed—for agile development. This isn’t the place to rehash those debates, but the
short answer is: They are (Leffingwell 2011). Both use cases and user stories have
their advantages and limitations (Bergman 2010). Both can be used to explore what
users need to accomplish with the solution.

One of the BA’s challenges is to examine a particular scenario that describes a
single usage session and consider how to generalize it to encompass a group of logi-
cally related scenarios. That is, the BA moves up the abstraction scale from a specific
scenario to a more general use case. Similarly, the BA on an agile project might see
that a set of related user stories can be abstracted into a larger epic that needs to be
implemented over several iterations.

At other times, elicitation participants might begin with a complex usage descrip-
tion that the BA realizes should be split into multiple use cases. Those individual use
cases often can be implemented, and executed, independently, although several could
perhaps be chained together during execution to carry out a larger task. On an agile
project, a user story that’s too large to implement in a single iteration is split into
several smaller stories. Moving between levels of abstraction like this is a natural
part of exploring user requirements.

Use cases facilitate top-down thinking, describing multiple scenarios and flesh-
ing out the details of the user–system interactions. Use cases provide a context for
organizing related pieces of information. Epics perform an analogous top-down
function on agile projects. User stories describe smaller user goals or pieces of sys-
tem functionality without much context or detail. Stories generally are smaller than

9780138190286_print.indb 50 14/02/23 6:14 PM

51

use cases, describing slices of functionality that can be implemented in a single devel-
opment iteration. Related user stories can be grouped together and abstracted into
an appropriate use case or an epic. Any approach can be effective—use cases or user
stories, top-down or bottom-up—provided the focus stays on usage.

Anatomy of a Use Case

Unlike the simple user story format, a use case specification follows a rich template
like the one in Figure 3.2 (Wiegers and Beatty 2013). You may download this template
from the website that accompanies this book. A collection of use case descriptions
could serve as the contents of the user requirements document (“container”) that
appears in Figure 3.1. Nothing says that you must complete this full template for each
of your use cases. Write in whatever level of detail will clearly communicate the use
case information to those who must validate, implement, or write tests based on it.

Description

ID and Name Give each use case a unique identifier and a descriptive name.
Primary Actor Identify the actor (user role) who initiates the use case and derives the

principal benefit from it.

Secondary
Actors

Identify other users or systems that participate in performing the use
case.

Description Provide a brief description of the use case in just a few sentences.
Trigger Identify the event or action that initiates the use case’s execution.
Preconditions State any prerequisites that must be met before the use case can begin.
Postconditions State conditions that are true after the use case is successfully

completed.

Normal Flow The core of a use case specification describes how the user visualizes
interacting with the system to accomplish the goal. List the steps in the
dialog that takes place between the primary actor, the system, and any
other systems or actors that participate in the normal flow scenario.

Alternative
Flows

Describe any alternative ways the use case might be performed and
still satisfy the postconditions. Alternative flows often involve
branching away from the normal flow at some step and then perhaps
rejoining it.

Exceptions Identify conditions for each flow that could terminate the scenario
before it completes successfully. Describe how the system should
respond or help the user resolve the problem.

Priority State the relative priority of this use case compared to others.
Business Rules Point to any business rules that influence how this use case is

implemented or executed.

Assumptions State any known assumptions that people are making with respect to
this use case.

Use Case
Element

Figure 3.2 A rich use case specification template.

Practice #6: Understand What Users Need to Do with the Solution

9780138190286_print.indb 51 14/02/23 6:14 PM

Chapter 3 Requirements Elicitation52

Applying Usage-centric Requirements Information

User requirements serve as a starting point for several subsequent activities. Both use
cases and user stories need to be further elaborated into a set of functional require-
ments, which is what developers implement. This step takes place whether a BA does
it analytically and documents the resultant details or whether each developer does it
in their head on the fly (not the recommended approach).

Use cases and user stories both facilitate starting testing early in the development
cycle. If a BA derives functional requirements from a use case and a tester derives
tests, you now have two representations of requirements knowledge that you can
compare. That comparison can reveal requirements errors, ambiguities, and omis-
sions. See Practice #18, “Review and test the requirements,” for more on this topic.
Documenting how the system should handle exceptions lets developers build more
robust software and helps testers do a more thorough job.

User stories and use cases also lie at the core of requirements prioritization. The
deciding stakeholder typically prioritizes user stories or use cases in a sequence
that maximizes customer value. The team then fits them into iterations or incre-
ments based on the team’s available capacity, considering any relevant technical and
functional dependencies. While user stories are each prioritized on their own, the
individual flows within a use case could have different priorities. You might opt to
implement the normal flow and its exceptions in one development increment, and
then implement alternative flows and their corresponding exceptions in upcoming
increments.

Usage-centric requirements exploration won’t reveal behind-the-scenes capabili-
ties, such as a timeout to turn off some device or log out a user after a period of
inactivity. Nonetheless, focusing elicitation on understanding what users must do
with the system helps the team implement all the necessary—and no unnecessary—
functionality. Usage-centric thinking also leads nicely into designing an optimal user
experience (Constantine and Lockwood 1999).

Related Practices

Practice #2. Define business objectives.

Practice #4. Identify and characterize stakeholders.

Practice #7. Identify events and responses.

Practice #13. Prioritize the requirements.

Practice #16. Identify and document business rules.

Practice #18. Review and test the requirements.

9780138190286_print.indb 52 14/02/23 6:14 PM

157

Appendix

Summary of Practices

Laying the Foundation

Practice #1. Understand the problem before converging on a solution.

Practice #2. Define business objectives.

Practice #3. Define the solution’s boundaries.

Practice #4. Identify and characterize stakeholders.

Practice #5. Identify empowered decision makers.

Requirements Elicitation

Practice #6. Understand what users need to do with the solution.

Practice #7. Identify events and responses.

Practice #8. Assess data concepts and relationships.

Practice #9. Elicit and evaluate quality attributes.

9780138190286_print.indb 157 14/02/23 6:14 PM

158 Appendix Summary of Practices

Requirements Analysis

Practice #10. Analyze requirements and requirement sets.

Practice #11. Create requirements models.

Practice #12. Create and evaluate prototypes.

Practice #13. Prioritize the requirements.

Requirements Specification

Practice #14. Write requirements in consistent ways.

Practice #15. Organize requirements in a structured fashion.

Practice #16. Identify and document business rules.

Practice #17. Create a glossary.

Requirements Validation

Practice #18. Review and test the requirements.

Requirements Management

Practice #19. Establish and manage requirements baselines.

Practice #20. Manage changes to requirements effectively.

9780138190286_print.indb 158 14/02/23 6:14 PM

165

Index

Numbers
5 Whys, 15–16

A
abbreviations, defining in glossary, 129
abstraction levels of requirements,

111–112
acceptance

criteria, 57, 79, 111–112, 113, 135–136
tests, 135–136

acronyms, defining in glossary, 127, 129
action enabler, as business rule type, 122
active voice, writing in, 110
activity diagram, 87
agile projects

baselines on, 143–144, 146
data interfaces and, 66
minimum viable product, 104
nonfunctional requirements on, 71–72
prioritization on, 98, 101
product owner, 8, 41
prototyping on, 92
requirements management on,

152–153
use cases on, 50
user stories and, 50, 78, 110–111

alternative flow, use case, 48–49
ambiguity, in requirements, 109
analysis, requirements

activities, 76
defined, 5–6, 75
of individual requirements, 77–81
iteration on, 76

modeling requirements, 84–91
practices for, 76
prioritization of requirements, 83,

97–105
prototypes, 91–97
of sets of requirements, 81–83

analysis models. See also modeling,
requirements

activity diagram, 87
business data diagram, 61
business objectives model, 22–23
context diagram, 28–29
data flow diagram, 63–64, 86
data models, 60, 61
decision table, 86, 124–125
decision tree, 86
ecosystem map, 29–30
entity relationship diagram, 61–62, 86
feature tree, 77–78, 86, 145
fishbone diagram, 16
flowchart, 87
Ishikawa diagram, 16
objective chain, 23
process flow, 87–88
requirements mapping matrix, 87
root cause analysis diagram, 16
state-transition diagram, 57–58, 87,

89–90
state table, 87
strawman, 90
testing, 136–138

analyst, business. See business analyst
aphantasia, 85
architecture, 69, 71, 93
assumed requirements, 83

Z03_Wiegers_Index_p165-186.indd 165 17/02/23 2:33 PM

Index166

assumptions
defined, 80
in requirements analysis, 80
in use cases, 51

attributes
quality. See quality attributes
requirement, 113

B
backlog, product

baselining items in, 143, 146
management of, 8, 40, 41
prioritization of, 98
quality attributes in, 71

baseline, requirements
agreeing upon, 145–146
approving, 145–146
benefits of, 144, 148
defined, 142–143
feature tree and, 145
identifying contents of, 144–145
managing changes to, 152–153, 155
managing multiple, 147–148
models and, 144–145
scope-bound, 144
strategies for, 143–144
time-bound, 143

Beatty, Joy, 22–23
black-box tests, 135, 138–139
Blais, Steven, 21, 36
boundaries, solution, 26–33

applying, 30–32
context diagram, 28–29
ecosystem map, 29–30
questions to determine, 26–27
selecting, 27–28

boundary value analysis, 138–139
BPMN (Business Process Model and

Notation), 85
Brosseau, Jim, 102
business analysis

professional organizations for, 9
resources for information, 7–8

business analyst
requirements elicitation, 45–46
and requirements review, 132–133
skills for, 9
synonyms for, 8
as team role, 8–9, 35

business data diagram, 61
business events, 54–55
business objectives

as business requirement type, 4, 19
defined, 22
examples of, 22
modeling, 23
quantifying, 22
specifying, 22
success metrics, 23–24
use in decision making, 42
use in determining solution

boundaries, 31, 32
use in finding stakeholders, 34
use in prioritization, 98
use in requirements analysis, 81, 87
use in requirements management, 154

business objectives model, 22–23
business opportunities, 14, 17, 19, 20, 24
business problem

analysis, 13–18
defined, 14
template for, 17

Business Process Model and Notation
(BPMN), 85

business requirements,
defined, 4, 19
kinds of information in, 20–21
questions to explore, 19–20
vision and scope document for, 20–21,

116
vision statement, 24–25
use in decision making, 42

business rules
applying, 125–126
data and, 63, 123
decision tables and, 124–125
defined, 4, 121–122

Z03_Wiegers_Index_p165-186.indd 166 17/02/23 2:33 PM

Index 167

discovering, 123–124
documenting, 124–125
as enterprise-level asset, 11, 123
examples, 121, 124
as origin of functional

requirements, 80
patterns for writing, 122–123
reusing, 11, 123
sources of, 123–124
types of, 122
use cases and, 51

business rules engine, 126
business systems analyst. See business

analyst

C
cardinality in entity relationship

diagram, 62
CCB (change or configuration control

board), 152, 154
change, requirements

against a baseline, 149
on agile projects, 149
anticipating, 10, 150–151
assessing impact of, 154–155
communicating decisions, 155
contingency buffers and, 151
cost of, 151, 155
impact assessment, 154–155
incorporating changes in baseline,

149–150
managing, 149, 155
process for managing, 151–154
sources of, 150
status of a change request, 152

change control board (CCB), 152
change control process

defining, 151–152
process flow for, 152–154

characteristics
of good requirements, 79
of good requirement sets, 82

charter, project, 20–21

Chen, Anthony, 22–23
collaboration in requirements

engineering, 10
communication in specification

activities, 10
complexity, managing requirements,

111–112
computation, as business rule type, 122
concept, solution, 22–23, 27–28, 32
conceptual data model, 60, 61, 86
configuration control board (CCB), 152
conflicts

between requirements, 76, 82
across user groups, 36

constraints
as business rule type, 63, 122
on data, 60, 63
defined, 4, 80
project, 80
quality attributes and, 69
solution, 20, 28, 80
sources of, 41

containers for requirements, 3, 116,
117–119

context diagram, 28–29, 31, 60, 63, 144
contingency buffers, 151
criteria, acceptance. See acceptance

criteria
criteria matrix for prioritization, 101, 103
crow’s foot notation, 62
CRUD (create, read, update, delete)

operations, 62, 86
customers

as stakeholders, 36–37
user classes and, 36–37

D
data

CRUD functionality, 62
eliciting requirements for, 59–67
governance, 60, 66
output requirements, 63

data dictionary, 64–66

Z03_Wiegers_Index_p165-186.indd 167 17/02/23 2:33 PM

Index168

data flow diagram (DFD), 63–64, 86
data models

business rules in, 63, 123
conceptual, 60, 61, 86
glossary entries from, 128
logical, 60, 86
physical, 60, 61, 86

data objects
business rules and, 63, 80, 123
constraints and, 63
enabling functionality of, 62
identifying, 60–61
modeling, 60–61, 63, 86
and their relationships, 60–62

data requirements
business rules as source of, 123
defined, 4
eliciting, 59–67
finding hidden, 66
quality attributes as source of, 69–70
specifying, 65

databases, storing requirements in, 3,
107, 119–120

decision leader, 41–43
decision makers, 39–44, 150, 152

identifying, 40–41
decision rules, 41–43
decision table, 86

for business rules, 124–125
for tests, 136

decision tree, 86, 125
decisions

classes of requirements-related, 39–40
communicating, 155
recording, 43

decomposition, requirements, 77–79
dependencies between

requirements, 76, 82
deriving requirements from use case,

48–51, 52, 77–79
DFD, 63–64, 86
diagrams. See analysis models
documentation. See specification,

requirements

documents, requirements. See
requirements documents

duplication of requirements, 82

E
ecosystem map, 29–30, 31, 60
elicitation, requirements

abstraction levels in, 50
of business requirements, 19–20
of business rules, 123
of data requirements, 59–67
defined, 22, 45
from events and responses, 53–59
feature-focused, 47
participants in, 46
practices for, 46
in problem analysis, 15–17
of quality attributes, 67–73
techniques for, 46
usage-centric, 47–53
use cases and, 49, 51
of user requirements, 48–51
user stories and, 50

entities, data, 61
entity relationship diagram (ERD),

61–62, 86
epic, 50, 51, 78, 112
equivalence partitioning, 138–139
ERD. See entity relationship diagram
event analysis, 53–59
event-response table, 56–57
events

business, 54–55
classifying, 54, 55
defined, 54
examples, 55
modeling, 56–58
signal, 54, 55
specifying, 55–59
temporal, 54, 55
testing and, 58–59
types of, 54–55

evolutionary prototype, 97

Z03_Wiegers_Index_p165-186.indd 168 17/02/23 2:33 PM

Index 169

exceptions, 79, 81
use case, 48–49, 52

executable prototype, 94, 96–97
external interface requirements, 4

data dictionary and, 64–66
data for, 64–66
defined, 4
eliciting, 31

F
fact, as business rule type, 122
feature tree, 77–78, 86, 145
feature-centric elicitation, 47
features, 77–78, 90, 103, 117–118, 145

abstraction level of, 112
business objectives and, 22–23
prioritization of, 101, 103–104
product, 77–78, 112, 117
vision statement and, 24

feeding buffers, 151
fidelity of prototype, 93–96
fishbone diagram, 16
fit criteria, 71–72, 134
Five Whys, 15–16
flowchart, 87
flows in a use case

alternative, 48
normal, 48

front, pushing quality to the,
10, 139

functional requirements
business rules as source,

125–126
data models as source, 66
defined, 4
deriving from use cases, 48–51,

52, 77–79
patterns for writing, 109–111
practices for eliciting, 46
quality attributes as source,

 69–70
testing of, 134

G
gaps in requirements, 6, 81
gathering requirements. See elicitation,

requirements
Gilb, Tom, 114
Given-When-Then pattern, 135–136
glossary

contents of, 127–129
data model as source for,

128–129
as enterprise-level asset, 127
project, 127

H
happy path, See normal flow, use case
hazard analysis, 80

I
IDEF0, 85
IIBA (International Institute of Business

Analysis), 5, 9
IKIWISI acronym, 91–92
impact assessment for requirements

changes, 154–155
implied requirements, 83
inconsistencies between

requirements, 82
inference, as business rule type, 122
inspection, as requirement review

technique, 133
interaction design prototype, 92–94
INVEST acronym, 79
IREB (International Requirements

Engineering Board), 9
Ishikawa diagram, 16
iterative modeling, 90–91

K
Kano model for prioritization, 101

Z03_Wiegers_Index_p165-186.indd 169 17/02/23 2:33 PM

Index170

L
labeling requirements, 82, 113, 119
Lister, Tim, 33
logical data model, 61

M
management, requirements

activities, 141–142
baselining, 142–149
change management, 149–155
defined, 5, 141
practices for, 142
requirements traceability, 142
tools, 119–120

managing requirements complexity,
111–112

Miller, Roxanne, 69
Miller’s Magic Number, 84
minimum viable product (MVP), 104
missing requirements, 81, 84, 86, 87, 116,

125, 134
model simulation prototype, 94
modeling, requirements, 84–91

benefits of, 84–85
comparing models, 85–87
iteration in, 90–91
languages of, 85
refining understanding, 87–90
selecting, 85–87
strawman models, 90
testing models, 136–138
types of models, 3, 85–87

models. See analysis models; modeling,
requirements

MoSCoW prioritization, 100
MVP (minimum viable product), 104

N
navigable wireframe prototype, 94
negotiating requirement priorities, 83
nonfunctional requirements. See also

quality attributes

agile projects and, 71–72
defined, 4
specifying with Planguage, 114
writing, 114

normal flow, use case, 48–49

O
objective chain model, 23
objectives, business. See business

objectives
objectives for incremental releases, 31
opportunities, business, 14, 17, 19, 20, 24

P
pairwise comparison for prioritization,

101, 102–103
passaround review, 133
patterns, writing requirements, 109–111
peer deskcheck review, 133
peer reviews. See reviews, requirements
physical data model, 60, 61
Planguage, 114
PMI (Project Management Institute), 9
postconditions, 51
practices for requirements

engineering, 5–8
preconditions, 51, 57, 78, 135
prioritization, requirements

on agile projects, 104
analytical methods, 103–104
challenges, 98
combining methods, 104
factors that influence, 99
granularity, 100
need for, 83
negotiating, 83
quality attributes, 70–71, 102–103
questions to ask, 98
techniques for, 100–101

priority, as requirement attribute, 113
problem, business. See business problem
problem analysis, 13–18

Z03_Wiegers_Index_p165-186.indd 170 17/02/23 2:33 PM

Index 171

problem statement template, 17
process flow, 87–88, 151–154
process workers, 36
product backlog, 8, 40, 41, 71, 98, 143, 146
product champions, 38
product manager, 8
product owner, 8

change management and, 147,
151–152

as requirements decision leader, 41
product vision. See vision statement
professional organizations for business

analysts, 9
project

constraints, 80
defined, 2
versus product teams, 2
scope, 24

project buffers, 151
project charter, 20–21
Project Management Institute (PMI), 9
prototypes

evolutionary, 97
executable, 94, 96–97
fate of, 96–97
fidelity of, 94–95
interaction design, 92–94
model simulation, 94
navigable wireframe, 94
reasons to create, 91–93
sketch, 94
technical design, 92–93
throwaway, 96
types of, 94
wireframe, 94

prototyping
on agile projects, 92
reasons to do, 91–93
tips for, 95–96

Q
qualities

of good requirement sets, 82
of good requirements, 79

quality,
product, 68
pushing to the front, 10, 139

quality attributes
architectural implications, 69, 71
defined, 4, 67
eliciting, 68–69
examples of, 68
external, 68
fit criteria and, 71–72
implications of, 69–70
internal, 68
as origin of functional

requirements, 69–70
prioritizing, 70–71, 102–103
questions to elicit, 68–69
reusing, 70
security, 69–70
specifying, 71–72, 114
trade-offs between, 70–71
types of, 68

quality of service requirements. See
quality attributes

questions requirements let you answer, 1–2
questions to ask

for change control process, 151–152
for characterizing stakeholders, 37
for defining solution boundaries, 26–27
for eliciting business requirements,

19–20, 47
for eliciting data requirements, 59–60
for eliciting quality attributes, 68–69
for identifying stakeholders, 34
for prioritizing requirements, 98

R
RACI matrix, 38
rank ordering for prioritization, 101
relationships between data objects, 60–62
relative weighting for prioritization, 101
release objectives, 31
requirements

abstraction levels of, 111–112
analysis. See analysis, requirements

Z03_Wiegers_Index_p165-186.indd 171 17/02/23 2:33 PM

Index172

assumed, 83
attributes, 113
baseline. See baseline, requirements
business. See business requirements
change management, 149–155
characteristics of good, 79, 82
classification schema, 3
conflicts between, 82
containers for, 3
data. See data requirements
decomposition of, 77–78
defined, 2–3
dependencies between, 82
derived, 5, 63, 69, 78–79, 125, 126, 134
elicitation. See elicitation,

requirements
external interface. See external

interface requirements
functional. See functional

requirements
gaps in, 81
gathering. See elicitation,

requirements
implied, 83
iterative development of, 6, 10
labeling, 82, 113, 119
levels of abstraction of, 111–112
management. See management,

requirements
missing, 81, 84, 86, 87, 116, 125, 134
modeling. See modeling, requirements
nonfunctional. See nonfunctional

requirements
origin of, 26, 77
prioritization. See prioritization,

requirements
quality. See quality attributes
questions answered by, 1–2
rationale for, 77, 113
reusing, 11, 80–81. See also reuse
reviewing, 132–134
risks from, 80
solution. See solution requirements
specification. See specification,

requirements

status, 113
system, 4
terminology, 2
traceability, 82, 87, 120, 142
types of, 4–5
user. See user requirements
validation. See validation,

requirements
version control, 113, 141
writing. See writing requirements

requirements analysis. See analysis,
requirements

requirements analyst. See business analyst
requirements development

as incremental and iterative
activity, 6, 10

subdomains of, 5–6
requirements documents, 3, 20–21, 116–119
requirements elicitation. See elicitation,

requirements
requirements engineer. See business analyst
requirements engineering

collaboration in, 10
good practices for, 5–8
resources for information, 7–8

requirements management. See
management, requirements

requirements mapping matrix (RMM), 87
Requirements Modeling Language

(RML), 22–23, 85
requirements specification. See

specification, requirements
requirements traceability matrix, 142
requirements validation. See validation,

requirements
reuse

of business rules, 123
of ecosystem map, 30
of glossary, 127
of quality attributes, 70
of requirements, 11, 80–81
of stakeholder catalog, 37

reviews, requirements, 132–134
participants, 132–133
types of, 133

Z03_Wiegers_Index_p165-186.indd 172 17/02/23 2:33 PM

Index 173

risk
from requirements, 80
thinking, 10

RML (Requirements Modeling
Language), 22–23, 85

RMM (requirements mapping matrix), 87
Robertson, James, 71, 134
Robertson, Suzanne, 71, 134
root cause analysis, 14–17

diagram, 16
rules, business. See business rules
rules, decision, 41–43

S
Sawyer, Pete, 2
Scaled Agile Framework, 71–72
scenarios, use cases and, 48–51
Schmidt, Eugenia, 75
scope, 24, 28, 31, 32, 40, 143–145

depicting with a feature tree, 145
scope-bound baseline, 144
security requirements, 69–70
sets of requirements, analyzing, 81–83
shall, as requirements keyword, 109–111
signal events, 54, 55
signing off, 132, 146
sketch prototype, 94
Software Requirement Patterns

(Withall), 65
software requirements specification (SRS)

as container, 117–119
template for, 117

solution
acceptance criteria for, 135–136
analyzing a proposed, 15–17, 18
business objectives and, 22–23
concept, 23, 27–28
constraints, 80
defined, 2
eliciting business requirements for, 20
ideas, 80, 104
incremental delivery of, 147–148
prototyping, 91–97

requirements. See solution
requirements

understanding what users need to do
with, 47–53

vision of, 24
solution boundaries, 26–33

applying, 30–32
context diagram, 28–29
ecosystem map, 29–30
questions to define, 26–27

solution requirements, 4, 67, 116, 117
Somerville, Ian, 2
Speak-Out.biz

acceptance tests for, 136
stakeholder profile for, 37–38
use cases for, 49
user classes for, 36–37

specification, requirements. See also
software requirements
specification; writing requirements

communication in, 10
content of, 107
defined, 6, 107
detail in, 108
form of, 108
formality of, 108
practices for, 108
structure of, 107–108, 115–121

SRS. See software requirements
specification

stack ranking for prioritization, 101
stakeholders, 33–39. See also decision

makers
catalog, 34, 38
characterizing, 37–38
classes of, 35
customers and, 36–37
defined, 33
identifying, 33–34
overlooked, 33
profile, 37–38
questions to ask when looking for, 34
representatives of, 33, 38
template for profiling, 37–38
user classes and, 36–37

Z03_Wiegers_Index_p165-186.indd 173 17/02/23 2:33 PM

http://Speak-Out.biz

Index174

state table, 87
statechart diagram. See state-transition

diagram
state-transition diagram, 57–58, 87, 89–90
status

for change requests, 152
of data objects, 87, 89
of requirements, 113, 141

strawman models, 90
structured analysis, 85
subdomains, requirements

development, 5–6
success metrics, 23–24
synonyms, defining in glossary, 127, 129
system boundary, 28–29
system events. See events
system requirements, 4, 107
system requirements specification, 3,

108, 118, 133
systems analyst. See business analyst
Systems Modeling Language (SysML), 85

T
team review, 133
technical debt, 96–97
technical design prototype, 92–93
templates, 115–117

acceptance tests, 135
benefits of, 116–117
problem statement, 17
project charter, 21
software requirements specification,

117
stakeholder profile, 37–38
tailoring, 116–117
use case, 51
user story, 50, 110
vision and scope document, 20–21
vision statement, 24–25

temporal events, 54, 55
terminology, requirements, 2
terms

as business rule type, 122
defining in glossary, 127–130

testing
acceptance, 135–136
analysis models, 136–138
black-box, 135, 138–139
boundary value analysis, 138–139
equivalence partitioning, 138–139
events and, 58–59
Given-When-Then, 135–136
pushing quality to the front, 139
requirements, 134–139
use cases and, 52
user stories and, 136

three-level scale for prioritization, 100
throwaway prototype, 96
time-bound baseline, 143
traceability, requirements, 82, 87, 120, 142
trigger, use case, 51

U
UML (Unified Modeling Language), 85
Unified Modeling Language (UML), 85
usage-centric requirements

elicitation, 47–53
use cases

agile projects and, 50
business rules and, 51
deriving functional requirements from,

48–51, 52, 77–79
deriving tests from, 134
exceptions, 48–49, 79
flows, 48–49
naming convention for, 49
postconditions, 51
preconditions, 51, 78
prioritization and, 52
scenarios and, 48–51
template for, 51
testing and, 52

user classes
direct and indirect, 36
examples of, 36–37
favored, 36, 41, 99
product champions and, 38
as stakeholders, 36–37

Z03_Wiegers_Index_p165-186.indd 174 17/02/23 2:33 PM

Index 175

user representatives, 38
user requirements, 5. See also use cases;

user stories
applying, 52
defined, 5
eliciting, 47–53

user stories, 50–51
epics and, 50, 78, 112
prioritization and, 52
testing and, 52
use cases and, 50–51
writing requirements, 110–111

users. See also stakeholders
direct and indirect, 36
product champions as

representatives, 38

V
validation, requirements

defined, 6, 131–132
practices for, 132
prototypes and, 92, 93, 94
requirements reviews. See reviews,

requirements
testing requirements, 134–139
versus verification, 131

version control, requirements, 113, 141

vision and scope document, 20–21, 37,
48, 118

as container for business requirements,
3, 20, 26

template for, 21
vision statement, template

for, 24–25
visual models. See analysis models
voice of the customer, 38

W
website for this book, 6
Weighted Shortest Job First (WSJF)

prioritization method, 101
why, asking, 15–16
wireframe prototype, 94
Withall, Stephen, 65
writing requirements, 109–115

abstraction levels of, 111–112
good practices for, 110
nonfunctional requirements, 114
patterns for, 109–111
as representing requirements

knowledge, 109
requirement attributes, 113

WSJF (Weighted Shortest Job First)
prioritization method, 101

Z03_Wiegers_Index_p165-186.indd 175 17/02/23 2:33 PM

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	Foreword
	Acknowledgments
	About the Authors
	Chapter 1: Essentials of Software Requirements
	Requirements Defined
	Good Practices for Requirements Engineering
	Who Does All This Stuff?
	Some Recurrent Themes
	The Life and Times of Requirements
	Getting Started

	Chapter 2: Laying the Foundation
	Practice #1: Understand the problem before converging on a solution
	Business Problems
	Eliciting the Real Problems
	Keeping the Business Problem in Focus
	Related Practices
	Next Steps

	Chapter 3: Requirements Elicitation
	Practice #6: Understand what users need to do with the solution
	Focusing on Usage
	Eliciting User Requirements
	Anatomy of a Use Case
	Applying Usage-centric Requirements Information
	Related Practices

	Appendix: Summary of Practices
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

