
TECHNICAL DRAWING WITH ENGINEERING GRAPHICS

SIXTEENTH EDITION

TECHNICAL DRAWING WITH ENGINEERING GRAPHICS

FREDERICK E. GIESECKE

Late Professor Emeritus of Drawing Texas A&M University

SHAWNA LOCKHART

Formerly Adjunct Professor, Engineering Graphics Department of Industrial and Mechanical Engineering Montana State University

MARLA GOODMAN
CINDY M. JOHNSON

Editor in Chief: Mark Taub

Acquisitions Editor: Anshul Sharma Project Manager: Tracey Croom Managing Editor: Sandra Schroeder Operations Specialist: Deidra Skahill Cover Designer: Chuti Prasertsith Cover Image: FotoStocker/Shutterstock

Full-Service Project Management: Publishing Services

Composition: Publishing Services

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on the appropriate page within the text. Credits for artwork from *Engineering Design Communication, Second Edition*, by Lockhart and Johnson, appear on page C-1. Unless otherwise stated, all artwork has been provided by the authors.

SolidWorks[®] is a registered trademark of Dassault Systèmes SolidWorks Corporation.

Certain images and materials contained in this text were reproduced with permission of Autodesk, Inc. © 2022. All rights reserved. Autodesk, AutoCAD, Autodesk Inventor, Civil 3D, DWG, and the DWG logo are registered trademarks of Autodesk, Inc., in the U.S.A. and certain other countries.

PTC, Creo, and Windchill are trademarks or registered trademarks of PTC Inc. or its subsidiaries in the United States and in other countries.

Copyright © 2023 by Pearson Education, Inc. All rights reserved. This publication is protected by Copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, request forms, and the appropriate contacts within the Pearson Education Global Rights & Permissions Department, please visit www.pearson.com/permissions.

Many of the designations by manufacturers and seller to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Library of Congress Control Number: 2022950831

Pearson

ScoutAutomatedPrintCode

ISBN 10: 0-13-806572-1 **pearson.com** ISBN 13: 978-0-13-806572-0

SIXTEENTH EDITION

TECHNICAL DRAWING WITH ENGINEERING GRAPHICS

ABOUT THIS BOOK

The sixteenth edition of Giesecke's *Technical Drawing* with Engineering Graphics is a comprehensive introduction and detailed reference for creating 3D models and 2D documentation drawings.

Continuing its reputation as a trusted reference, this edition is updated to convey recent standards for documenting 2D drawings and 3D CAD models. It provides excellent integration of its hallmark illustrations with text and contemporary examples, and consistent

navigational features make it easy to find important information.

This edition illustrates the application of both 3D and 2D modeling and technical drawing skills to real-world work practice and integrates drawing and CAD skills in a variety of disciplines. Reviewers advised us on how to make *Technical Drawing with Engineering Graphics* a superb guide and resource for today's students.

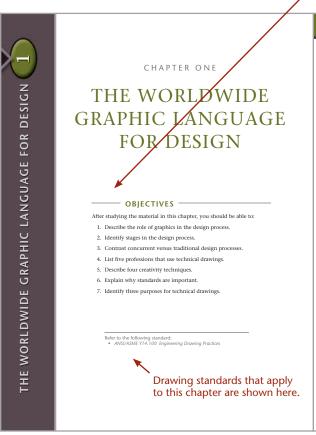
Updated Content

- Coverage of 3D design and modeling techniques
- Updated for current ASME standards, particularly for GD&T and surface finish symbology
- · Updated examples of rapid prototyping and direct printing
- Updated software examples
- Thoroughly checked for accuracy
- Web chapters available for axonometric projection and perspective drawing

Teaching/Learning Features

Visually oriented students and busy professionals will quickly locate content by navigating these consistent chapter features.

- *Splash Spread* An attention-getting chapter opener interests readers and provides context for chapter content.
- **References and Web Links** Applicable references to standards and links to handy websites are at the beginning of each chapter.
- **Foundations Section** An introductory section, set off by a topic heading tab at the top of the page for easy navigation, covers the topic's usage and importance, visualization tips, and theory related to the drawing techniques.


- **Detail Section** This is the "brass tacks" part of the book, where detailed explanations of drawing and modeling techniques, variations, and examples are organized into quick-read sections, each numbered for quick reference in the detailed table of contents.
- *CAD at Work* This breakout page includes tips related to using the 2D or 3D CAD model to generate drawings.
- *Industry Case* 3D modeling practitioners share their best practices for modeling and documenting design.
- Portfolio Examples of finished drawings wrap up the chapter by showing real-world application of topics presented.
- *Key Words* Set in bold italics on first reference, key words are summarized at the end of the chapter.
- Chapter Summary
- · Review Questions
- Chapter Exercises The excellent Giesecke problem sets feature updated exercises, including plastic and sheet metal parts, modeling exercises, assembly drawings from CAD models, and sketching problems.

The following features were designed to provide easy navigation and quick reference for students and professionals who look to Giesecke both as a helpfully-organized teaching text and a lasting reference.

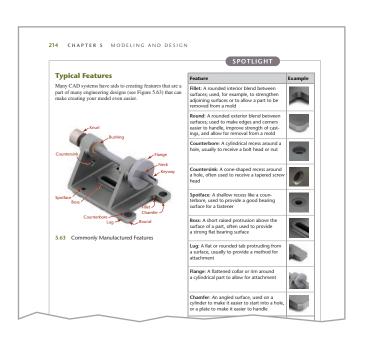
CHAPTER OPENER

Topics that you can expect to learn about in this chapter are listed here.

A large illustration and an interesting overview give you a real-world context for what this chapter is about.

OVERVIEW -

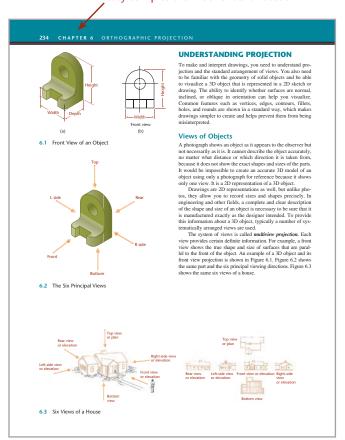
the world use technical drawings to communicate constraints. Effective graphic communication is also their ideas. Graphic representation is a basic, natural an advantage in the global marketplace, where team form of communication that isn't tied to a particular members may not always share a common language. time or place. It is, in a sense, a universal language.


most elaborate, requires teamwork. A new product, facturers, and technicians learn the tools of technimachine, structure, or system may exist in the mind cal drawing. They learn specific methods to represent of the engineer or designer, but before it can become ideas, designs, and specifications in a consistent way a reality, the idea must be communicated to many that others can understand. Being an effective graphic different people. The ability to communicate design communicator ensures that the product, system, or concepts quickly and accurately through technical structure that you envision is produced as you specified.

Regardless of the language they speak, people all over drawings is key to meeting project budgets and time

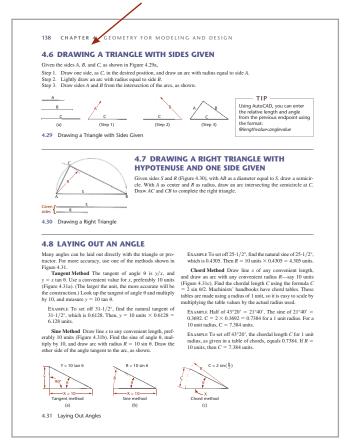
Like carpenters who learn to use the tools of their Accomplishing ideas, from the simplest to the trade, engineers, architects, drafters, designers, manu-

"SPOTLIGHT" SECTIONS


These sections add background information for key topics.

"FOUNDATIONS" SECTION

This introductory section covers the chapter topic's usage and importance, visualization tips, and theory related to the drawing and modeling techniques.


Color at the top of the page makes it easy to flip to the "Foundations" section.

"DETAIL" SECTION

This is the "brass tacks" of the book, where detailed techniques, variations, and examples are organized into quick-read sections, numbered for easy reference.

Content is broken into individual, numbered sections.

activities with each illustration right next to the

6.24 BECOMING A 3D VISUALIZER

Draw the view by locating each vertex of the surface on the projection line and across the miter line.

To move the right-side view to the right or left, move the top view upward or downward by moving the miter line closer to or father from the view. You don't need to draw continuous lines between the top and side views via the miter line. Intensed, make short dashes across the miter line and project from these. The 45° miter-line method is used to the view of v

STEP by STEP

"STEP BY STEP" ACTIVITIES CONSTRAINING A SKETCH CONSTRAINING A SKETCH

Like a hand-drawn sketch, the sketch for a constraint-based model captures the basic geometry of the feature as it would appear in a 2D view.

1 Sketch the basic shapes as you would see them in a the software.

2 Apply geometric constraints to define the geometry of the sketch. If it is important to your design intent that lines remain tangent to lines, apply that constraint. If ares must remain tangent to line, apply that constraint. If are must remain tangent to line, apply that constraint the parallel constraint to be been been constraint. The length of line B was sketched so that the software interpreted the subject shown at right.

3 Add dimensional constraints. The length of line B was sketched so that the software interpreted the colper shown at right.

4 Draw the view on the project of the designed constraint to produce the designed appear in 2D part of line B was sketched so that the software interpreted the colper shown at right.

5 Locate the miter line a convenient distance away from the object to produce the designed spacing between views.

6 Draw the view on the project of the line was updated to the new length.

6 Draw the view on the project on the line was updated to the new length.

8 Draw the view on the project on the line was updated to the new length.

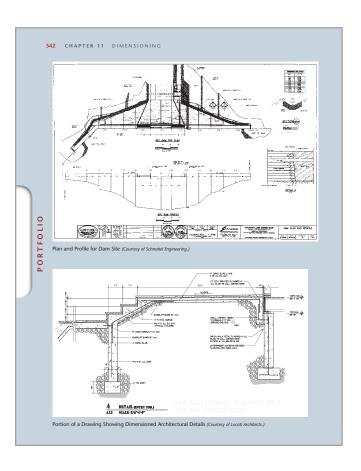
"CAD AT WORK"

CAD at Work sections break out examples related to using the 2D or 3D CAD model to generate drawings.

"INDUSTRY CASE"

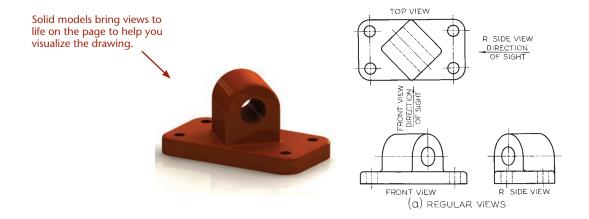
Several industry practitioners share their approaches to modeling and documenting design.

INDUSTRY CASE THE GEOMETRY OF 3D MODELING: USE THE SYMMETRY Strategix ID used magnets to create a clean, quiet, zero maintenance brake for the exercise bike it designed for Park City Entertainment. When cooper rings on the bike's iron flywheel spin past four rare-earth magnets, whey create current in circular flow (an eddy current) that sets up a magnetic field. This opposing magnetic field dissipates power and slows the wheel. Moving the magnets onto and off the copper rings varies the amount of resistance delivered. When Mary Albini, Senior Mechanical Engineer, modeled the plastic magnet curterior for the brake, he strated with the magnets and their behavior as the carrier moved them onto and off the copper rings (see Figure 4.84). "There is no one way to think about modeling a part", 'Albini said. "The key is to design for the use of the part and the process that will be used to manufacture it." To make the magnet carrier was designed as a part in the larger flywheel assembly, parts of which were already completed. Each pair of magnets was attached to a backing bur that how thom a fixed distance apart. To begin, Albini started with hywheel assembly, parts of which were already amplicated and the properties of the p

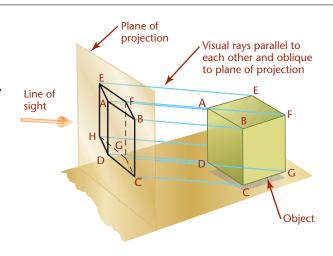


4.85 Extruding the Carrier. The magnet carrier was extruded up and down from the sketch, shown here as an outline in the mic the extruded part. Notice that the sketch is the extraction part. Notice train the sketch is tangent to the guide tube rail, and the centers of the arcs in the sketch are located on the centerline of the conductor ring.

"PORTFOLIO"


These pages offer examples of finished drawings showing real-world application of topics presented.

CAD at WORK MODEL SPACE AND PAPER SPACE IN AUTOCAD Using CAD, you can make an accurat The control of the co 12: E


(B) The window at left shows a paper space representation of the full-size CAD model in the smaller window at right. Note that AutoCAD uses icons to help users differentiate the two "spaces." (Autodesk screen shots reprinted courtesy of Autodesk, Inc.)

SOLID MODEL VISUALIZATION ART

ILLUSTRATIONS

Colored callouts differentiate explanatory text from annotations in technical drawings. Consistent use of color helps differentiate the meaning of projection lines, fold lines, and other drawing elements. A color key is provided for easy reference.

Color Key for Instructional Art

Item	In instructional art	In a technical drawing
Callout arrow	→	*
Dimension line		a thin (0.3mm) black line
Projection line		————— a lightly sketched line
Folding line		—— — used in descriptive geometry
Picture plane on edge		*
Plane of projection		*
Cutting plane on edge		(see Chapter 6)
Cutting plane		*
Reference plane on edge		—— —— used in descriptive geometry
Reference plane		*
Viewing direction arrow		<u> </u>
Horizon + ground line		
Rotation arrow		30°

^{*} Not a typical feature of technical drawings. (Shown in this book for instructional purposes.)

CHAPTER REVIEW

Each chapter ends with Key Words, a Chapter Summary, and Review Questions.

> Review and exercises are tabbed to make them easy to find. The color stripe corresponds to the alternating chapter color.

CHAPTER 6 ORTHOGRAPHIC PROJECTION

First-Angle Projection

Frontal Plane

Glass Box

Height Horizontal Plane Inclined Edge

Inclined Surface Multiview Projection

Necessary Views

Normal Edge Normal Surface

Oblique Edge Oblique Surface

Orthographic Plane

Plane of Projection

Profile Plane

Projection Symbols Surfaces Third-Angle Projection

Three Regular Views

CHAPTER SUMMARY

- Orthographic drawings are the result of projecting the image of a 3D object onto one of six standard planes of projection. The six standard views are often thought of as mufolded glass box. The arrangement of the views in relation to one another is important. Views must line up to line up with that same point in the adjacent view. The standard arrangement of views shows the top, front, and right side of the object.

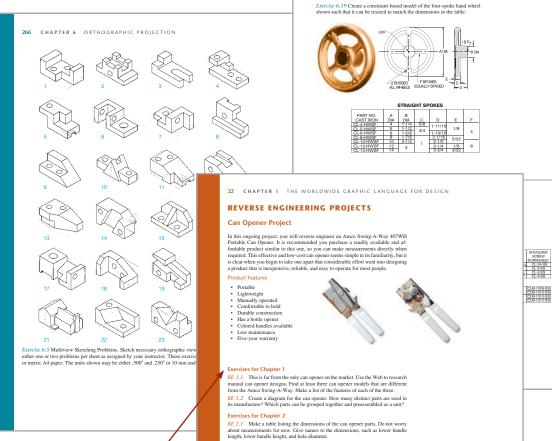
 Visualization is an important skill. You can build your visual abilities through practice and through understanding terms describing objects. For example, surfaces can be normal, inclined, or oblique. Normal surfaces appear true-size in one orincinal view and as an odec in the other two.

- Choice of scale is important for representing objects clearly on the drawing sheet.
 Hidden lines are used to show the intersections of surfaces,
- rinder lines are used to show the intersections of surfaces, surfaces that appear on edge, and the limits of surfaces that are hidden from the viewing direction.

 Centerlines are used to show the axis of symmetry for features and paths of motion, and to indicate the arrangement for circular patterns.
- tor circular patterns.

 Creating CAD drawings involves applying the same concepts as in paper drawing. The main difference is that drawing geometry is stored more accurately using a com-puter than in any hand drawing. CAD drawing geometry can be reused in many ways and plotted to any scale as

REVIEW QUESTIONS


- REVIEW QUESTIONS

 1. Sketch the symbol for third-angle projection.
 2. List the six principal views of projection.
 3. Sketch the top, front, and right-side views of an object of your design having normal, inclined, and oblique surfaces.
 4. In a drawing that shows the top, front, and right-side view, which two views show depth? Which view shows depth vertically on the sheet? Which view shows depth horizontally on the drawing sheet?
 5. What is the definition of a normal surface? An inclined surface? An oblique surface?
 6. What are three similarities between using a CAD program to create 2D drawing geometry and sketching on a sheet of paper? What are three differences?
 7. What dimensions are the same between the top and front view: width, height, or depth? Between the found right-side view? Between the top and right-side view?
 8. List two ways of transferring depth between the top and right-side views?
 9. If surface A contains corners 1, 2, 3, 4, and surface B contains 3, 4, 5, 6, what is the name of the line where surfaces A and B intersect?

CHAPTER EXERCISES

CHAPTER EXERCISES

The Giesecke problem sets feature updated exercises including plastic and sheet metal parts, constraint-based modeling, sketching problems, and reverse engineering projects.

Exercises for two reverse engineering projects are keyed to the chapter they best accompany.

RE 2.2 Which dimensions in the list you created are critical to the function of the can opener? Identify in your list the dimensions that must match dimensions on other parts for the can opener to function. Which dimensions will not be very important to the can opener's function?

RE 2.3 To accurately reverse engineer the can opener, you will need to make measurements for the part features. Metrology is the science of making measure-ments. The digital caliper is one commonly used measurement tool. The accuracy of a measurement is dependent on several factors, including the following:

- the skill of the operator
 the temperature at which the measurements are taken

PREFACE

For many decades, *Technical Drawing with Engineering Graphics* has been recognized as an authority on the theories and techniques of graphics communication. Generations of instructors and students have used and retained this book as a professional reference. The long-standing success of *Technical Drawing with Engineering Graphics* can be attributed to its clear and engaging explanation of principles, and to its drawings, which are unsurpassed in detail and accuracy.

Although not a departure from its original authoritative nature and hallmark features, the book is thoroughly revised and updated to the latest technologies and practices in the field. With the addition of topics related to the role of the 3D CAD database in design and documentation, this sixteenth edition of *Technical Drawing with Engineering Graphics* will prepare students to enter the marketplace of the twenty-first century and continue to serve as a lasting reference.

Shawna Lockhart, contributing author since the ninth edition, first used Giesecke's *Technical Drawing* when teaching engineering graphics at Montana State University. Throughout her 15 years as an award-winning professor, she selected this text because, in her words, "It was the most thorough and well-presented text with the best graphic references and exercises on the market."

The quality of the illustrations and drawing examples was established by the original author, Frederick E. Giesecke, who created the majority of the illustrations in the first edition of *Technical Drawing*, published in 1933.

Giesecke, founder of the first formal architectural education program in Texas at what is today Texas A&M University, has been described as "a wunderkind of the first magnitude." He joined the A&M faculty at the age of 17, after graduating in 1886 with a B.S. in Mechanical Engineering, and by the age of 19, was appointed head of A&M's Department of Mechanical Drawing. Having studied architectural drawing and design at Cornell University and the Massachusetts Institute of Technology, Giesecke also served as head of the Department of Architecture and the official college architect at Texas A&M, designing many campus buildings that are still standing today.

A long-time admirer of Giesecke's legacy, Lockhart was honored to carry on the commitment to clear, engaging, thorough, and well-organized presentation that began with the original author.

Lockhart is known as an early adopter and authority on CAD technologies. She is an instructor noted for outstanding dedication to students and for encouraging a broad spectrum of individuals, particularly women and minorities, to follow careers in engineering-related fields. Lockhart now works full time to ensure that the Giesecke graphics series continually applies to an evolving variety of technical disciplines.

ONLINE RESOURCES

An Instructor's Manual (9780138065676) and Lecture Slides in PowerPoint format (9780138104405) are available on the companion site for this book at https://www.pearson.com/en-us/subject-catalog/p/technical-drawing-with-engineering-graphics/P200000009880.

Web chapters on axonometric projection and perspective drawing may be downloaded from www.peachpit.com. To access and download the bonus chapters:

- 1. Visit www.peachpit.com/techdrawing16e.
- 2. Log in with your Peachpit account, or if you don't have one, create an account.
- 3. Register using this book's ISBN, 9780138065720, then click the Access Bonus Content link next to this book on your account's Registered Products page.

ACKNOWLEDGMENTS

Sincere thanks to all the individuals and companies who shared their expertise through drawings and advice with the readers of this book:

Robert A. Ackein, Marty Albini, Jacob Baron-Taltre, Albert Brown, Jr., Will Callahan, Ryan Cargo, Jason Cohn, David and Caroline Collett, André Cotan, David Demchenkov, Tim Devries, Jost Diedrichs, Steve Elpel, Joe Evers, Carl Fehres, Mark Gerisch, Joe Graney, Leo Greene, Tom Jungst, Scott Keller, Robert Kincaid, Brandon Larocque, Matt McCune, Stan McLean, Laine McNeil, Rob Mesaros, Cliff Moore, Jeremy Olson, Andrea Orr, Kelly Pavlik, Jeffrey Pentecost, Mark Perkins, David Pinchefsky, Robert Rath, Jake Reis, Erik Renna, Steve Sanford, Chad Schipman, Scott Schwartzenberger, Timothy Seaman, Mark Soares, Ben Staal, Bryan Strobel, Lee Sutherland, Kent Swendseid, Bill Townsend, Michael T. Wheelock, Alex Wilson, Douglas Wintin, Brandon Wold, Rick Zaik, and Jeff Zerr.

We gratefully acknowledge the reviewers' many contributions to the development of *Technical Drawing with Engineering Graphics*:

Tarek Abdel-Salam, East Carolina University

Robert A. Ackein, Bates Technical College

Fred Brasfield, Tarrant Community College

Charles Richard Cole, Southern Polytechnic State University

Robert Conn, Illinois Eastern Community Colleges—Wabash Valley College

Steven L. Dulmes, College of Lake County

Jeff Levy, New River Community College

J.D. Mather, Pennsylvania College of Technology

Saeid Motavalli, California State University East Bay

Mostafa A. Tossi, Pennsylvania State Worthington Scranton

Michael T. Wheelock, Idaho State University

Paige Wyatt, Columbia Basin College

A very special thanks to Robert Conn and J.D. Mather for their constructive comments and suggestions.

PEARSON'S COMMITMENT TO DIVERSITY, EQUITY, AND INCLUSION

Pearson is dedicated to creating bias-free content that reflects the diversity of all learners. We embrace the many dimensions of diversity, including but not limited to race, ethnicity, gender, socioeconomic status, ability, age, sexual orientation, and religious or political beliefs.

Education is a powerful force for equity and change in our world. It has the potential to deliver opportunities that improve lives and enable economic mobility. As we work with authors to create content for every product and service, we acknowledge our responsibility to demonstrate inclusivity and incorporate diverse scholarship so that everyone can achieve their potential through learning. As the world's leading learning company, we have a duty to help drive change and live up to our purpose to help more people create a better life for themselves and to create a better world.

Our ambition is to purposefully contribute to a world where:

- Everyone has an equitable and lifelong opportunity to succeed through learning.
- Our educational products and services are inclusive and represent the rich diversity of learners.
- Our educational content accurately reflects the histories and experiences of the learners we serve.
- Our educational content prompts deeper discussions with learners and motivates them to expand their own learning (and worldview).

While we work hard to present unbiased content, we want to hear from you about any concerns or needs with this Pearson product so that we can investigate and address them.

Please contact us with concerns about any potential bias at https://www.pearson.com/report-bias.html.

CONTENTS

CHAPIER ONE			CHAPIER IWO				
	WORLDWIDE GRAPHIC	LAYOUTS AND LETTERING 30					
U	NDERSTANDING THE ROLE OF TECHNICAL RAWINGS 4	U	NDERSTANDING PROJECTION 32 Types of Projection 32 Drawing Vocabulary 34				
	The Design Process 5 Concurrent Engineering 6	2.1	ALPHABET OF LINES 34				
	Computer-Aided Design and Product Development 6 Designing Quality into Products 7 The Digital Database 7	2.2	FREEHAND LINES 36 MEASUREMENT SYSTEMS 36 U.S. Customary Units 36 The Metric System 36				
1.1	GRAPHICS TOOLS IN ACTION 8	2.4	DRAWING SCALE 37				
	Design Phase: Problem Identification 8 Design Phase: Ideation 9 Design Phase: Decision Process/Design Selection 9	2.5	SPECIFYING THE SCALE ON A DRAWING 37				
	Design Phase: Refinement 10	2.6	LETTERING 40				
	Design Phase: Analysis 11 Design Phase: Decision Process/Design Selection 12	2.7	LETTERING STANDARDS 40				
	Design Phase: Implementation 13 Design Phase: Documentation 14		USING GUIDELINES FOR HAND LETTERING 40				
1.2 1.3	RAPID PROTOTYPING 15 DRAFTING STANDARDS 16	2.9	VERTICAL AND INCLINED LETTERS AND NUMERALS 41				
1.4	CREATIVITY TECHNIQUES 16	2.10	FRACTIONS 43				
	Examine Manufactured Products 16	2.11	SPACING OF LETTERS AND WORDS 44				
	Study the Natural World 16 Watch the Web 16	2.12	LETTERING FOR TITLES 45				
	Research Patent Drawings 17	2.13	DRAWING PENCILS 46				
1.5	Design Groups 17 PRODUCT DEFINITION 18	2.14	TEMPLATES 47				
1.6	SHOWING THE DESIGN PROCESS IN A	2.15	CAD TOOLS 47				
1.0	PORTFOLIO 18	2.16	SKETCHING AND DRAWING MEDIA 49				
KEY V	VORDS 20	2.17	STANDARD SHEETS 49				
REVIE CHAP	PTER SUMMARY 20 EW QUESTIONS 20 PTER EXERCISES 21 RSE ENGINEERING PROJECTS 22	2.18	STANDARD LAYOUT ELEMENTS 50 Margins and Borders 50 Zones 50 Typical Letter Sizes 50 Title Block 51				
Car	n Opener Project 22 cking Pliers Project 28	2.19	LAYOUTS 52				

Nonisometric Lines 84 Isometric Scales 84

2.20 PLANNING YOUR DRAWING	3.10 ISOMETRIC DRAWINGS 85
OR SKETCH 52 Show Details Clearly 52	3.11 MAKING AN ISOMETRIC DRAWING 86
KEY WORDS 57	3.12 OFFSET LOCATION MEASUREMENTS 88 Isometric Drawings of Inclined Surfaces 89
CHAPTER SUMMARY 57	3.13 HIDDEN LINES AND CENTERLINES 89
REVIEW QUESTIONS 57	3.14 ANGLES IN ISOMETRIC 90
CHAPTER EXERCISES 58	3.15 IRREGULAR OBJECTS 91
Drawing Exercises 58 Lettering Exercises 60	3.16 CURVES IN ISOMETRIC 91
5	3.17 TRUE ELLIPSES IN ISOMETRIC 92
CHAPTER THREE VISUALIZATION AND	3.18 ORIENTING ELLIPSES IN ISOMETRIC DRAWINGS 93
SKETCHING 62	3.19 DRAWING ISOMETRIC CYLINDERS 95
UNDERSTANDING SOLID OBJECTS 64	3.20 SCREW THREADS IN ISOMETRIC 95
Types of Solids 64	
UNDERSTANDING SKETCHING	3.21 ARCS IN ISOMETRIC 95
TECHNIQUES 66	3.22 SPHERES IN ISOMETRIC 96
Analyzing Complex Objects 66 Viewpoint 68 Shading 68 Edges and Vertices 69	3.23 OBLIQUE SKETCHES 98 Appearance of Oblique Drawings 98 Choosing the Front Surface 98 Angle of Receding Lines 98
Points and Lines 69 Angles 70 Drawings and Sketches 70 Freehand Sketching 71	3.24 LENGTH OF RECEDING LINES 99 Cavalier Projection 99 Cabinet Projection 99
3.1 TECHNIQUE OF LINES 72 Lineweights 72	3.25 CHOICE OF POSITION IN OBLIQUE DRAWINGS 100
3.2 SKETCHING STRAIGHT LINES 73	3.26 ELLIPSES FOR OBLIQUE DRAWINGS 100
Blocking in a Freehand Drawing 73	3.27 ANGLES IN OBLIQUE PROJECTION 101
3.3 SKETCHING CIRCLES,	3.28 SKETCHING ASSEMBLIES 103
ARCS, AND ELLIPSES 75 Circles 75 Sketching Arcs 77 Sketching Ellipses 77	3.29 SKETCHING PERSPECTIVES 104 The Three Types of Perspective 105 Bird's-Eye View Versus Worm's-Eye View 107
3.4 MAINTAINING PROPORTIONS 77	3.30 CURVES AND CIRCLES IN PERSPECTIVE 107
3.5 ONE-VIEW DRAWINGS 79	3.31 SHADING 108
3.6 PICTORIAL SKETCHING 80	3.32 COMPUTER GRAPHICS 108
3.7 PROJECTION METHODS 82	3.33 DRAWING ON DRAWING 109
3.8 AXONOMETRIC PROJECTION 82	KEY WORDS 116 CHAPTER SUMMARY 116
Axonometric Projections and 3D Models 83 3.9 ISOMETRIC PROJECTION 84	REVIEW QUESTIONS 116
Isometric Axes 84	SKETCHING EXERCISES 117

ı	$\overline{}$	ш	1	۸	D	Т	-	E	С)	1	_ ($\overline{}$	١	П	D	
Л	l l	П		ч	 Р.	- 1		_	м			- 1	ι.	, ,	u	к	

GEOMETRY FOR MODELING AND DESIGN 124

COORDINATES F	FOR 3D	CAD	MODELING	126
---------------	--------	-----	----------	-----

Specifying Location 127

GEOMETRIC ENTITIES 130

Points 130 Lines 130 Planes 131 Circles 132 Arcs 133

- 4.1 MANUALLY BISECTING A LINE OR CIRCULAR ARC 134
- 4.2 DRAWING TANGENTS TO TWO CIRCLES 135
- 4.3 DRAWING AN ARC TANGENT TO A LINE OR ARC AND THROUGH A POINT 135
- 4.4 BISECTING AN ANGLE 137
- 4.5 DRAWING A LINE THROUGH A POINT AND PARALLEL TO A LINE 137
- 4.6 DRAWING A TRIANGLE WITH SIDES
 GIVEN 138
- 4.7 DRAWING A RIGHT TRIANGLE WITH HYPOTENUSE AND ONE SIDE GIVEN 138
- 4.8 LAYING OUT AN ANGLE 138
- 4.9 DRAWING AN EQUILATERAL TRIANGLE 139
- 4.10 POLYGONS 139
- 4.11 DRAWING A REGULAR PENTAGON 140
- 4.12 DRAWING A HEXAGON 140
- 4.13 ELLIPSES 141
- 4.14 SPLINE CURVES 142
- 4.15 GEOMETRIC RELATIONSHIPS 145
- 4.16 SOLID PRIMITIVES 146

Making Complex Shapes with Boolean Operations 147

4.17 RECOGNIZING SYMMETRY 149

Right- and Left-Hand Parts 149 Parting-Line Symmetry 150

- **4.18 EXTRUDED FORMS 151**Swept Shapes 151
- 4.19 REVOLVED FORMS 152
- 4.20 IRREGULAR SURFACES 152

4.21 USER COORDINATE SYSTEMS 153

4.22 TRANSFORMATIONS 154

Geometric Transformations 154 Viewing Transformations 155

KEY WORDS 161

CHAPTER SUMMARY 161

SKILLS SUMMARY 161

REVIEW QUESTIONS 161

CHAPTER EXERCISES 162

CHAPTER FIVE

MODELING AND DESIGN 170

REFINEMENT AND MODELING 172

KINDS OF MODELS 173

Descriptive Models 173 Analytical Models 174

5.1 2D MODELS 176

Paper Drawings 176 2D CAD Models 176 2D Constraint-Based Modeling 178

5.2 3D MODELS 179 Physical Models 179

3D CAD Models 181

5.3 TYPES OF 3D MODELS 182

Wireframe Models 182 Surface Models 184 Solid Models 190

- 5.4 CONSTRAINT-BASED MODELING 191
- 5.5 CONSTRAINTS DEFINE THE GEOMETRY 193
 Feature-Based Modeling 196
- 5.6 PLANNING PARTS FOR DESIGN FLEXIBILITY 197
- 5.7 SKETCH CONSTRAINTS 199

Overconstrained Sketches 203 Underconstrained Sketches 203 Applying Constraints 203 Setting the Base Point 204

5.8 THE BASE FEATURE 205

Adding Features to the Model 206
Parent-Child Relationships 207
Datum Planes and Surfaces 209

5.9 EDITING THE MODEL 212

Standard Features 213 Working with Built-in Features 213 Complex Shapes 216

6.11 EDGES 252

5.10	CONSTRAINT-BASED MODELING	6.12 NORMAL EDGES 252	
	MODES 216 Assemblies 217	6.13 INCLINED EDGES 252	
	Drawings from the Model 218	6.14 OBLIQUE EDGES 252	
5.11	CHOOSING THE RIGHT MODELING	6.15 PARALLEL EDGES 252	
	METHOD 222	6.16 ANGLES 253	
KEY V	VORDS 228	6.17 VERTICES 253	
CHAP	TER SUMMARY 228	6.18 INTERPRETING POINTS 253	
REVIE	W QUESTIONS 228	6.19 INTERPRETING LINES 253	
CHAP	TER EXERCISES 229		
		6.20 SIMILAR SHAPES OF SURFACES 25	4
СНА	PTER SIX	6.21 INTERPRETING VIEWS 254	
	THOGRAPHIC DIECTION 232	6.22 MODELS 256 Rules for Visualizing from a Drawing:	
U	NDERSTANDING PROJECTION 234	Putting It All Together 256	
	Views of Objects 234	6.23 PROJECTING A THIRD VIEW 256	
	The Six Standard Views 235	6.24 BECOMING A 3D VISUALIZER 258	
	Principal Dimensions 235 Projection Method 236	KEY WORDS 262	
	The Glass Box 236	CHAPTER SUMMARY 262	
	Spacing between Views 238	REVIEW QUESTIONS 262	
Transferring Depth Dimensions 238 Measuring from a Reference Surface 238 Necessary Views 239		CHAPTER EXERCISES 263	
	Orientation of the Front View 240	CHAPTER SEVEN	
	First- and Third-Angle Projection 240 Third-Angle Projection 241	2D DRAWING	
	Alternative Arrangements for	REPRESENTATION 284	
	Third-Angle Projection 242	PRACTICES FOR 2D DOCUMENTATION	I
	First-Angle Projection 242 Projection System Drawing Symbol 242	DRAWINGS 286	
	Hidden Lines 243	Common Manufactured Features 286	
	Centerlines 244	Conventional Representations 287 Intersections and Tangencies 287	
6.1	HIDDEN LINE TECHNIQUE 244	Removed Views 287	
6.26.3	PRECEDENCE OF LINES 244 CENTERLINES 246	7.1 VISUALIZING AND DRAWING COM CYLINDRICAL SHAPES 288	PLEX
		7.2 CYLINDERS WHEN SLICED 289	
6.4	LAYING OUT A DRAWING 246	7.3 CYLINDERS AND ELLIPSES 290	
6.5	DEVELOPING VIEWS FROM 3D MODELS 247	7.4 INTERSECTIONS AND TANGENCIES	290
	Placing the Views 248 Isometric Views 249	Intersections of Cylinders 291	
6.6	VISUALIZATION 250	7.5 FILLETS AND ROUNDS 293	
0.0	Surfaces, Edges, and Corners 250	7.6 RUNOUTS 294	
6.7	VIEWS OF SURFACES 250	7.7 CONVENTIONAL EDGES 295	
6.8	NORMAL SURFACES 251	7.8 NECESSARY VIEWS 296	
6.9	INCLINED SURFACES 251	7.9 PARTIAL VIEWS 297	
6.10	OBLIQUE SURFACES 251	Showing Enlarged Details 298 Conventional Breaks 298	
U. 1 U	ODLIQUE JUNI ACES ZJI	CONVENIUONAI DIEAKS 270	

7.10	ALIGNMENT OF VIEWS 299		TER SUMMARY 350
7.11	REMOVED VIEWS 300		W QUESTIONS 350
7.12	RIGHT-HAND AND LEFT-HAND PARTS 301	СНАР	TER EXERCISES 351
7.13	REVOLUTION CONVENTIONS 302 Common Hole Features Shown in Orthographic Views 303 Common Features Shown in		PTER NINE (ILIARY VIEWS 362
	Orthographic Views 304	U	NDERSTANDING AUXILIARY VIEWS 364
KEY W	/ORDS 307		The Auxiliary Plane 364 Primary Auxiliary Views 365
	TER SUMMARY 307		Visualizing an Auxiliary View
	W QUESTIONS 307		as a Revolved Drawing 366 Classification of Auxiliary Views 366
	TER EXERCISES 308		Successive Auxiliary Views 368 Secondary Auxiliary Views 368 Reference Planes 369
	PTER EIGHT	0.1	
	TION VIEWS 326	9.1	USING TRIANGLES TO SKETCH AUXILIARY VIEWS 371
U	NDERSTANDING SECTIONS 328 Sections of Single Parts 328 Full Sections 328	9.2	USING GRID PAPER TO SKETCH AUXILIARY VIEWS 371
	The Cutting Plane 328 Lines behind the Cutting Plane 328	9.3	USING CAD TO CREATE AUXILIARY VIEWS 373
8.1 8.2	PLACEMENT OF SECTION VIEWS 331 LABELING CUTTING PLANES 332	9.4	CIRCLES AND ELLIPSES IN AUXILIARY VIEWS 373
8.3	LINE PRECEDENCE 332	9.5	HIDDEN LINES IN AUXILIARY VIEWS 373
8.4	RULES FOR LINES IN SECTION VIEWS 333	9.6	PARTIAL AUXILIARY VIEWS 375
8.5	CUTTING-PLANE LINE STYLE 334	9.7	HALF AUXILIARY VIEWS 375
	Visualizing Cutting-Plane Direction 334	9.8	REVERSE CONSTRUCTION 375
8.6	SECTION-LINING TECHNIQUE 335	9.9	AUXILIARY SECTIONS 376
	Section Lining Large Areas 336 Section-Lining Symbols 336 Section Lining in CAD 337	9.10	VIEWING-PLANE LINES AND ARROWS 377
8.7	HALF SECTIONS 337	9.11	USES OF AUXILIARY VIEWS 378
8.8	BROKEN OUT SECTIONS 338	9.12	TRUE LENGTH OF A LINE 378
8.9	REVOLVED SECTIONS 339	9.13	POINT VIEW OF A LINE 380
8.10	REMOVED SECTIONS 340	0.14	Showing the Point View of a Line 380
8.11	OFFSET SECTIONS 342	9.14	EDGE VIEW OF A PLANE 381 Showing the Edge View of a Plane 381
8.12	RIBS IN SECTION 343	9.15	TRUE SIZE OF AN OBLIQUE SURFACE 382
8.13	ALIGNED SECTIONS 343		Showing the True Size and Shape of an Oblique Surface 382
8.14	PARTIAL VIEWS 345	9.16	DIHEDRAL ANGLES 384
8.15	INTERSECTIONS IN SECTIONS 346		NDERSTANDING DEVELOPMENTS AND
8.16	CONVENTIONAL BREAKS		TERSECTIONS 385
8.17	AND SECTIONS 346 ASSEMBLY SECTIONS 346		Surface Terminology 385 Developable Surfaces 386

KEY WORDS 350

Principles of Intersections 386

Constraint-Based Assemblies 419 Choosing the Parent Part 420

Assembly Constraints 421

Managing Assembly Files 423

9.17	DEVELOPMENTS 387 Finding the Intersection of a Plane and a Prism and Developing the Prism 387 Finding the Intersection of a Plane and a Cylinder and Developing the Cylinder 389	10.2	ASSEMBLIES AND DESIGN 424 Layout Drawings 425 Assembling to a Skeleton 425 Global Parameters 427 Seed Parts 428 Constraint-Based Drawing Elements 429
9.18	HEMS AND JOINTS FOR SHEET METAL AND OTHER MATERIALS 390	10.3	ASSEMBLIES AND SIMULATION 429
9.19	MORE EXAMPLES OF DEVELOPMENTS AND INTERSECTIONS 390	10.4	PARTS FOR ASSEMBLIES 430 Standard Parts 430 Fastener Libraries 431
	Developing a Plane and an Oblique Prism 390 Developing a Plane and an Oblique Cylinder 391 Developing a Plane and a Pyramid 391 Developing a Plane and a Cone 391	10.5	USING YOUR MODEL TO CHECK FITS 432 Interference Checking 432 Accessibility Checking 433
	Developing a Hood and Flue 392	10.6	MANUFACTURING PROCESSES 434
9.20	TRANSITION PIECES 393		Designing Plastic Parts 434
9.21	TRIANGULATION 393		Cast Parts 437 Modeling Machined Parts 437
9.22	DEVELOPING A TRANSITION PIECE CONNECTING RECTANGULAR PIPES ON THE SAME AXIS 394		Modeling Sheet Metal Parts 438 Other Methods of Production 440
			DOS AND DON'TS OF PRACTICAL
0.22		10.7	DESIGN 441
9.23	DEVELOPING A PLANE AND A SPHERE 394		Casting Design 441
9.24	REVOLUTION 395 Axis of Revolution 395 Creating a Revolved Drawing 395	10.8	Practical Considerations 441 MANUFACTURING MATERIALS 443 Material Assignment in Models 444
9.25	PRIMARY AND SUCCESSIVE REVOLUTIONS 396	10.9	APPEARANCE, SERVICE LIFE, AND RECYCLING 445
9.26	TRUE LENGTH OF A LINE: REVOLUTION METHOD 396	10.10	DIMENSIONAL ACCURACY AND SURFACE FINISH 445
KEY W	ORDS 398	10.11	NET-SHAPE MANUFACTURING 446
	TER SUMMARY 398 N QUESTIONS 398	10.12	COMPUTER-INTEGRATED MANUFACTURING 447
CHAP	TER EXERCISES 399	10.13	SHARED MANUFACTURING 448
Auxi	gn Project 399 liary View Exercises 399	10.14	MANUFACTURING METHODS AND THE DRAWING 448
	olution Exercises 407 Pelopment Exercises 410	10.15	MODELING FOR TESTING AND REFINEMENT 451
	PTER TEN DELING FOR MANUFACTURE	10.16	DETERMINING MASS PROPERTIES 451 Understanding Mass Property Calculations 454
	ASSEMBLY 414	10.17	EXPORTING DATA FROM THE
DE	SSIGN FOR MANUFACTURE, ASSEMBLY, SASSEMBLY, AND SERVICE 416		DATABASE 456 File Formats 456 Common Formats for Export 457
10.1	ASSEMBLY MODELS 418		Vector versus Raster Data 459

10.18 DOWNSTREAM APPLICATIONS 460

Spreadsheets 460

Equation Solvers 460

Finite Element Analysis 463 Simulation Software 468

	Human Factors 470	11.19	FILLETS AND ROUNDS 517
10 10	Integrated Modeling and Design Software 472	11.20	SIZE DIMENSIONING: PRISMS 518
10.19	PROTOTYPING YOUR DESIGN 474 Rapid Prototyping 474	11.21	SIZE DIMENSIONING: CYLINDERS 518
	Translating the Model 474	11.22	SIZE DIMENSIONING: HOLES 519
	Rapid Prototyping Systems 476 Rapid Tooling 480	11.23	APPLYING STANDARD DIMENSIONING SYMBOLS 520
	ORDS 486 FER SUMMARY 487	11.24	DIMENSIONING COUNTERBORES AND SPOTFACES WITH FILLETS 521
SKILLS	S SUMMARY 487	11.25	DIMENSIONING TRIANGULAR PRISMS,
	N QUESTIONS 488		PYRAMIDS, AND CONES 522
	FER EXERCISES 490		DIMENSIONING CURVES 522
	s Properties Exercises 500	11.27	DIMENSIONING CURVED SURFACES 523
	PTER ELEVEN ENSIONING 502	11.28	DIMENSIONING ROUNDED-END SHAPES 523
UN	NDERSTANDING DIMENSIONING 504	11.29	DIMENSIONING THREADS 524
	Three Aspects of Good Dimensioning 505 Tolerance 505	11.30	DIMENSIONING TAPERS 524
	Geometric Breakdown 506	11.31	DIMENSIONING CHAMFERS 524
11.1	LINES USED IN DIMENSIONING 506	11.32	SHAFT CENTERS 525
11.2	USING DIMENSION AND	11.33	DIMENSIONING KEYWAYS 525
	EXTENSION LINES 508	11.34	DIMENSIONING KNURLS 525
11.3	ARROWHEADS 508	11.35	FINISH MARKS 526
11.4	LEADERS 509	11.36	SURFACE ROUGHNESS 526
11.5	DRAWING SCALE AND DIMENSIONING 509		Applications of Surface Roughness Symbols 527
11.6	DIRECTION OF DIMENSION VALUES	11.37	LOCATION DIMENSIONS 530
	AND NOTES 510	11.38	MATING DIMENSIONS 532
11.7	DIMENSION UNITS 510	11.39	COORDINATE DIMENSIONING 533
	MILLIMETER VALUES 510	11.40	TABULAR DIMENSIONS 534
	DECIMAL-INCH VALUES 511	11.41	DIMENSIONING FOR NUMERICALLY-
11.10	RULES FOR DIMENSION VALUES 512	11 42	CONTROLLED MACHINING 534
11.11	RULES FOR ROUNDING DECIMAL DIMENSION VALUES 512	11.42	MACHINE, PATTERN, AND FORGING DIMENSIONS 535
11.12	DUAL DIMENSIONING 512	11.43	SHEET METAL BENDS 536
11.13	COMBINATION UNITS 513	11.44	NOTES 536
11.14	DIMENSIONING SYMBOLS 513	11.45	STANDARDS 538
11.15	PLACING AND SHOWING DIMENSIONS LEGIBLY 514		DOS AND DON'TS OF DIMENSIONING 538 ORDS 543
	Rules for Placing Dimensions Properly 514		FER SUMMARY 543
11.16	SUPERFLUOUS DIMENSIONS 516		N QUESTIONS 543
11.17	DIMENSIONING ANGLES 517		TER EXERCISES 544
11.18	DIMENSIONING ARCS 517	•	

CHAPTER TWELVE

TOLERANCING 546

UNDFRSTA	NDING	TOI FRANCE	548

Tolerance 548

Quality Control 548

Definitions for Size Designation 548

Variations in Form 549

Tolerance Envelope 549

Implied Right Angles 550

Fits between Mating Parts 551

Selective Assembly 553

Hole System 554

Shaft System 554

- 12.1 SPECIFYING TOLERANCES 556
- 12.2 GENERAL TOLERANCE NOTES 556
- **12.3 LIMIT TOLERANCES 557**Single-Limit Dimensioning 557
- 12.4 PLUS-OR-MINUS TOLERANCES 558
- 12.5 TOLERANCE STACKING 559
 Chained or Continuous Dimensioning 559
 Baseline Dimensioning 559
- 12.6 USING AMERICAN NATIONAL STANDARD LIMITS AND FIT TABLES 560
- 12.7 TOLERANCES AND MACHINING PROCESSES 561
- 12.8 METRIC SYSTEM OF TOLERANCES AND FITS 562
- 12.9 PREFERRED SIZES 564
- 12.10 PREFERRED FITS 564
- 12.11 GEOMETRIC DIMENSIONING AND TOLERANCING 565
- 12.12 SYMBOLS FOR TOLERANCES OF POSITION AND FORM 566
- 12.13 DATUM FEATURES 568

Datum Features Versus
Datum Feature Simulator 569
Datum Reference Frame 569
Datum Targets 570

- 12.14 POSITIONAL TOLERANCES 572
- **12.15 MAXIMUM MATERIAL CONDITION 574**Virtual Condition (VC) 575
- 12.16 TOLERANCES OF ANGLES 575
- 12.17 FORM TOLERANCES FOR SINGLE FEATURES 576
- 12.18 ORIENTATIONS FOR RELATED FEATURES 578

- 12.19 USING GEOMETRIC DIMENSIONING AND TOLERANCING 580
- 12.20 TOLERANCES AND DIGITAL PRODUCT DEFINITION 581
- 12.21 COMPUTER GRAPHICS 582

KEY WORDS 587

CHAPTER SUMMARY 587

REVIEW QUESTIONS 588

CHAPTER EXERCISES 588

Design Project 588

Tolerancing Projects 588

CHAPTER THIRTEEN

THREADS, FASTENERS, AND SPRINGS 592

UNDERSTANDING THREADS AND FASTENERS 594

Screw Thread Terms 595
Screw Thread Forms 596
Thread Pitch 597
Thread Series 598
Right-Hand and Left-Hand Threads 598
Single and Multiple Threads 599
American National Thread Fits 599
Metric and Unified Thread Fits 600
Three Methods for Drawing Thread 600

- **13.1 THREAD NOTES 604**Acme Thread Notes 605
- 13.2 EXTERNAL THREAD SYMBOLS 606
- 13.3 INTERNAL THREAD SYMBOLS 606
- 13.4 DETAILED REPRESENTATION:
 METRIC, UNIFIED, AND AMERICAN
 NATIONAL THREADS 608
 Detailed Internal Square Thread 608
 Detailed External Square Thread 608
- 13.5 THREADS IN ASSEMBLY 610
- 13.6 MODELING THREAD 610
- 13.7 AMERICAN NATIONAL STANDARD PIPE THREADS 610
- 13.8 USE OF PHANTOM LINES 612
- 13.9 TAPPED HOLES 612
- 13.10 BOLTS, STUDS, AND SCREWS 613
- 13.11 STANDARD BOLTS AND NUTS 614
- 13.12 DRAWING STANDARD BOLTS 615
- 13.13 SPECIFICATIONS FOR BOLTS AND NUTS 615

13.14	LOCKNUTS AND LOCKING DEVICES 617	14.9	DRAWING NUMBERS 650
13.15	STANDARD CAP SCREWS 618	14.10	ZONING 650
13.16	STANDARD MACHINE SCREWS 619	14.11	CHECKING DRAWINGS 650
13.17	STANDARD SET SCREWS 620	14.12	DRAWING REVISIONS 650
13.18	AMERICAN NATIONAL STANDARD WOOD SCREWS 621		SIMPLIFYING DRAWINGS 651 PATENT DRAWINGS 652
13.19	MISCELLANEOUS FASTENERS 621		VORDS 657
13.20	KEYS 622		TER SUMMARY 657
13.21	MACHINE PINS 622		W QUESTIONS 657
13.22	RIVETS 623 Riveted Joints 623 Rivet Symbols 624 Small Rivets 624 Blind Rivets 624	CHAP Desi Wor	TER EXERCISES 658 ign Project 658 -king Drawing Exercises 659
13.23	SPRINGS 625 Helical Springs 625	DRA	PTER FIFTEEN WING CONTROL AND DATA
13.24	DRAWING HELICAL SPRINGS 626	MAI	NAGEMENT 710
13.25	MODELING SPRINGS 627		OCUMENTATION AND THE DESIGN ATABASE 712
KEY V	VORDS 631		
CHAP	TER SUMMARY 631	15.1	REQUIREMENTS FOR ENGINEERING DOCUMENTATION 713
CHAP Des	W QUESTIONS 631 TER EXERCISES 631 ign Project 631 ead and Fastener Projects 631	15.2	DRAWING CONTROL METHODS 713 Drawing Approval and Release 713 Change Orders 714 Revision Block 714 A Drawing as a Snapshot in Time 715
WO W	PTER FOURTEEN RKING DRAWINGS 636 ORKING DRAWINGS OR CONSTRUCTION RAWINGS 638	15.3	GOOD PRACTICES FOR ELECTRONIC DRAWING STORAGE 715 Storing Electronic Files 715 Organized Directory Structures 715 File Naming Conventions 716
	Assembly Drawings 639	15.4	DRAWING STANDARDS 717
	Detail Drawings or Piece Part Drawings 640	15.5	PERMISSION AND OWNERSHIP 718
14.1	SUBASSEMBLIES 642	15.6	BACKING UP DRAWING FILES 718
14.2	IDENTIFICATION 642 Multidetail Drawings 643	15.7	STORAGE MEDIA 718
14.3	PARTS LISTS 644	15.8	USING THE 3D DESIGN DATABASE
14.4	ASSEMBLY SECTIONS 645	4.5.0	IN CONCURRENT ENGINEERING 719
14.5	WORKING DRAWING ASSEMBLY 646	15.9	QUALITY MANAGEMENT 719 ISO 9000/9001 719
14.6	INSTALLATION ASSEMBLIES 647	15.10	PRODUCT DATA MANAGEMENT 721
14.7	CHECK ASSEMBLIES 647		Organized by Product 721 A Relational Database 722
14.8	WORKING DRAWING FORMATS 648 Number of Details per Sheet 648 Digital Drawing Transmittal 648 Title and Record Strips 649	15.11	MANAGING WORK FLOW 724 Archiving Work History 724 Individual Productivity 724

15.12	DATA MANAGEMEN	NT AND THE WEB	725
	CAD Files on the Web	725	

KEY WORDS 728

CHAPTER SUMMARY 728

SKILLS SUMMARY 728

REVIEW QUESTIONS 728

CHAPTER EXERCISES 728

CHAPTER SIXTEEN

GEARS AND CAMS 730

UNDERSTANDING GEARS 732
Using Gears to Transmit Power 732

Spur Gear Definitions and Formulas 732

- 16.1 CONSTRUCTING A BASE CIRCLE 734
- 16.2 THE INVOLUTE TOOTH SHAPE 734
- 16.3 APPROXIMATE INVOLUTE USING CIRCULAR ARCS 734
- 16.4 SPACING GEAR TEETH 735
- 16.5 RACK TEETH 736
- 16.6 WORKING DRAWINGS OF SPUR GEARS 736
- 16.7 SPUR GEAR DESIGN 737
- 16.8 WORM GEARS 738
- 16.9 WORKING DRAWINGS OF WORM GEARS 739
- 16.10 BEVEL GEARS 740
- 16.11 BEVEL GEAR DEFINITIONS AND FORMULAS 740
- 16.12 WORKING DRAWINGS OF BEVEL GEARS 741
- 16.13 CAMS 743
- 16.14 DISPLACEMENT DIAGRAMS 744
- **16.15 CAM PROFILES 744**
- 16.16 OFFSET AND PIVOTED CAM FOLLOWERS 746
- 16.17 CYLINDRICAL CAMS 747
- 16.18 OTHER DRIVE DEVICES 747

KEY WORDS 750

CHAPTER SUMMARY 750

REVIEW QUESTIONS 750

CHAPTER EXERCISES 751

Gearing 751 Cams 754

CHAPTER SEVENTEEN

ELECTRONIC DIAGRAMS 756

UNDERSTANDING ELECTRONIC DIAGRAMS 758

Standard Symbols 758
CAD Symbol Libraries 758
Types of Electronic Diagrams 760

- 17.1 DRAWING SIZE, FORMAT, AND TITLE 762
- 17.2 LINE CONVENTIONS AND LETTERING 762
- 17.3 STANDARD SYMBOLS FOR ELECTRONIC DIAGRAMS 762
- 17.4 ABBREVIATIONS 763
- 17.5 GROUPING PARTS 763
- 17.6 ARRANGEMENT OF ELECTRICAL/ ELECTRONIC SYMBOLS 764
- 17.7 CONNECTIONS AND CROSSOVERS 766
- 17.8 INTERRUPTED PATHS 766
- 17.9 TERMINALS 767
- 17.10 COLOR CODING 768
- 17.11 DIVISION OF PARTS 769
- 17.12 ELECTRON TUBE PIN IDENTIFICATION 769
- 17.13 REFERENCE DESIGNATIONS 770
- 17.14 NUMERICAL VALUES 770
- 17.15 FUNCTIONAL IDENTIFICATION
 AND OTHER INFORMATION 771
- 17.16 INTEGRATED CIRCUITS 771
- 17.17 PRINTED CIRCUITS 772
- 17.18 COMPUTER GRAPHICS 773

KEY WORDS 775

CHAPTER SUMMARY 775

REVIEW QUESTIONS 775

CHAPTER EXERCISES 776

CHAPTER EIGHTEEN

STRUCTURAL DRAWINGS 780

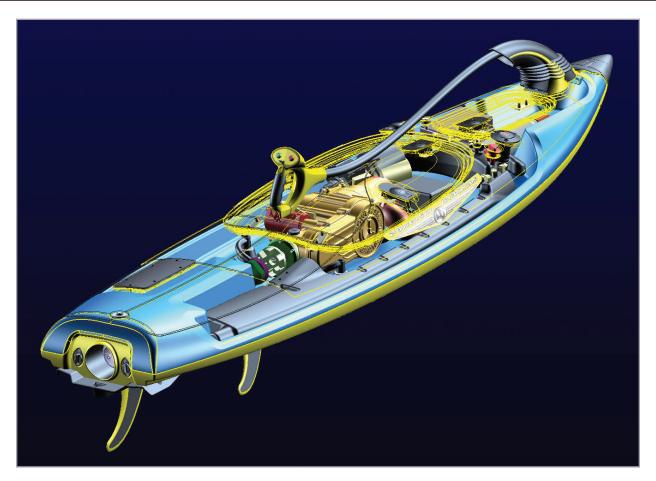
STRUCTURAL DRAWINGS 782

18.1 WOOD CONSTRUCTION 783

Nominal Sizes for Wood Products 783
Symbols for Finished Surfaces on
Wood Products 783
Wood Joints 784
Connector Designs 784
Metal Ring Connectors 784
Straps and Plates 785

18.2	STRUCTURAL STEEL 786 Piece Marks 786 Erection Plans 786	PIPI	PTER TWENTY NG DRAWINGS 828
18.3	STRUCTURAL STEEL SHAPES 788	U	NDERSTANDING PIPING DRAWINGS 830
18.4	SPECIFICATIONS 788		Standard Symbols 830 Types of Drawings 830
18.5	WELDED AND BOLTED CONNECTIONS 789		Dimensioning Piping Drawings 833
18.6	RIVETED CONNECTIONS 789	20.1	STEEL AND WROUGHT IRON PIPE 834
18.7	FRAME BEAM CONNECTIONS 790	20.2	CAST IRON PIPE 834
18.8	WELDING 791	20.3	SEAMLESS BRASS AND COPPER PIPE 835
18.9	HIGH-STRENGTH BOLTING FOR STRUCTURAL JOINTS 792	20.4 20.5	COPPER TUBING 835 PLASTIC AND SPECIALTY PIPES 836
18.10	ACCURACY OF DIMENSIONS 794	20.6	PIPE FITTINGS 837
18.11	CONCRETE CONSTRUCTION 794	20.7	PIPE JOINTS 838
18.12	REINFORCED CONCRETE DRAWINGS 795		Flanged Joints 838
18.13	STRUCTURAL CLAY PRODUCTS 797	20.8	Welded Joints 838 VALVES 839
18.14	STONE CONSTRUCTION 798	20.6	Globe Valves 839
KEY W	ORDS 802		Check Valves 839
CHAPTER SUMMARY 802			Gate Valves 839 Solenoid-Actuated Valves 840
REVIE	N QUESTIONS 802	20.9	AMERICAN NATIONAL STANDARD
CHAP	TER EXERCISES 803		CODE FOR PRESSURE PIPING 840
		KEY WORDS 843	
CHAPTER NINETEEN LANDFORM DRAWINGS 808		CHAPTER SUMMARY 843	
		REVIEW QUESTIONS 843	
	DEFINITION FOR MARK 813		TER EXERCISES 844
	TTING INFORMATION FOR MAPS 812		PTER TWENTY-ONE .DING REPRESENTATION 846
	SYMBOLS 815		
19.2	BEARINGS 815		NDERSTANDING WELDMENT RAWINGS 848
19.3	ELEVATION 815		Welding Processes 848
19.4	CONTOURS 816 Interpolating Elevation Data 817		Standard Symbols 848
	3D Terrain Models 819	UI UI	NDERSTANDING A WELDING SYMBOL 849
19.5	CITY MAPS 819	21.1	TYPES OF WELDED JOINTS 850
	Subdivision Plats 820 Uses for Subdivision Plats 821	21.2	TYPES OF WELDS 850
	Landscape Drawings 821	21.3	WELDING SYMBOLS 851
19.6	STRUCTURE LOCATION PLANS 822	21.4	FILLET WELDS 853
19.7	HIGHWAY PLANS 823	21.5	GROOVE WELDS 855
KEY WORDS 826		21.6	BACK OR BACKING WELDS 856
		21.7	SURFACE WELDS 856
•		21.8	PLUG AND SLOT WELDS 856
CHAPTER EXERCISES 827		21.9	SPOT WELDS 857

21.10 SEAM WELDS 857	CHAPTER TWENTY-THREE	
21.11 PROJECTION WELDS 858	PERSPECTIVE	
21.12 FLASH AND UPSET WELDS 858	DRAWINGS ONLINE ONLY	
21.13 WELDING APPLICATIONS 859	UNDERSTANDING PERSPECTIVES	
21.14 WELDING TEMPLATES 860	23.1 PERSPECTIVE FROM A MULTIVIEW PROJECTION	
21.15 COMPUTER GRAPHICS 860 KEY WORDS 864	23.2 NONROTATED SIDE VIEW METHOD FOR PERSPECTIVE	
CHAPTER SUMMARY 864	23.3 DRAWING AN ANGULAR PERSPECTIVE	
REVIEW QUESTIONS 864	23.4 POSITION OF THE STATION POINT	
CHAPTER EXERCISES 865	23.5 LOCATION OF THE PICTURE PLANE	
Roof Truss Exercises 869	23.6 BIRD'S-EYE VIEW OR WORM'S-EYE VIEW	
CHAPTER TWENTY-TWO	23.7 THE THREE TYPES OF PERSPECTIVES	
AXONOMETRIC	23.8 ONE-POINT PERSPECTIVE	
PROJECTION ONLINE ONLY ■ UNDERSTANDING AXONOMETRIC PROJECTION	23.9 ONE-POINT PERSPECTIVE OF A CYLINDRICAL SHAPE	
Projection Methods Reviewed	23.10 TWO-POINT PERSPECTIVE	
Types of Axonometric Projection	23.11 THREE-POINT PERSPECTIVE	
22.1 DIMETRIC PROJECTION	23.12 MEASUREMENTS IN PERSPECTIVE	
22.2 APPROXIMATE DIMETRIC DRAWINGS	23.13 DIRECT MEASUREMENTS ALONG	
22.3 TRIMETRIC PROJECTION	INCLINED LINES	
22.4 TRIMETRIC SCALES	23.14 VANISHING POINTS OF INCLINED LINES	
22.5 TRIMETRIC ELLIPSES22.6 AXONOMETRIC PROJECTION USING	23.15 INCLINED LINES IN PERSPECTIVE, JOINING ENDPOINT METHOD	
INTERSECTIONS	23.16 CURVES AND CIRCLES IN PERSPECTIVE	
22.7 COMPUTER GRAPHICS	23.17 THE PERSPECTIVE PLAN METHOD	
22.8 OBLIQUE PROJECTIONS	23.18 PERSPECTIVE DIAGRAM	
Directions of Projectors	23.19 SHADING	
22.9 ELLIPSES FOR OBLIQUE DRAWINGS Alternative Four-Center Ellipses	23.20 COMPUTER GRAPHICS	
Four-Center Ellipse for Cavalier Drawings	KEY WORDS	
22.10 OFFSET MEASUREMENTS	CHAPTER SUMMARY	
22.11 OBLIQUE DIMENSIONING	REVIEW QUESTIONS	
22.12 COMPUTER GRAPHICS	CHAPTER EXERCISES	
KEY WORDS		
CHAPTER SUMMARY	GLOSSARY G-1	
REVIEW QUESTIONS	APPENDICES A-1	
CHAPTER EXERCISES Axonometric Problems	INDEX I-1	
Oblique Projection Problems	CREDITS C-1	

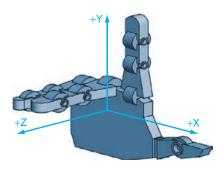

CHAPTER FOUR

GEOMETRY FOR MODELING AND DESIGN

OBJECTIVES

After studying the material in this chapter, you should be able to:

- 1. Identify and specify basic geometric elements and primitive shapes.
- 2. Select a 2D profile that best describes the shape of an object.
- 3. Identify mirrored shapes and sketch their lines of symmetry.
- 4. Identify shapes that can be formed by extrusion and sketch their cross sections.
- 5. Identify shapes that can be formed by revolution techniques and sketch their profiles.
- 6. Define Boolean operations.
- 7. Specify the Boolean operations to combine primitive shapes into a complex shape.
- 8. Work with Cartesian coordinates and user coordinate systems in a CAD system.
- 9. Identify the transformations common to CAD systems.


Many different geometric shapes were used to model this jetboard. The wireframe view of the top cover reveals several regular geometric shapes used to model the interior components. The graceful lines of the outer hull are defined by the irregular curves used to model it. (Courtesy of Leo Greene, www.e-Cognition.net.)

OVERVIEW

Engineering drawings combine basic geometric shapes and relationships to define complex objects. 2D drawings are composed of simple entities such as points, lines, arcs, and circles, as well as more complex entities such as ellipses and curves. Reviewing the basic geometry of these elements helps you define and combine these elements in your drawings and CAD models.

Accurate construction is critical to creating useful drawings. Lines drawn using a CAD system are highly accurate definitions—much greater than you can see on a computer monitor. Good manual drawing technique can typically produce a drawing accurate to about 1/40th of the drawing scale. For example, a hand-drawn survey created at 1" = 400' might be

accurate to a range of plus or minus 10′. The internal precision of drawings created using CAD systems is limited by the 64 bits (base-2 places) typically used to represent decimal numbers in a CAD system. This produces a theoretical accuracy of around 1 in 10 quadrillion (10¹6). If you drew two beams, each three times the distance from the Sun to Pluto, and made one of the beams just 1 mm longer than the other one, a CAD system could still accurately represent the difference between the two beams. Wow! That's a lot better than the 1 in 40 accuracy of a manual drawing. However, CAD drawings are accurate only if the drawing geometry is defined accurately when the drawing is created.

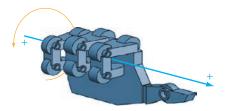
4.1 Right-Hand Rule

4.2 The Z-Axis. In systems that use the right-hand rule, the positive Z-axis points toward you when the face of the monitor is parallel to the X-Y plane.

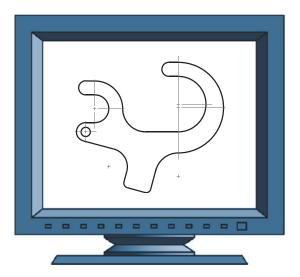
COORDINATES FOR 3D CAD MODELING

2D and 3D CAD drawing entities are stored in relationship to a Cartesian coordinate system. No matter what CAD software system you will be using, it is helpful to understand some basic similarities of coordinate systems.

Most CAD systems use the *right-hand rule* for coordinate systems; if you point the thumb of your right hand in the positive direction for the X-axis and your index finger in the positive direction for the Y-axis, your remaining fingers will curl in the positive direction for the Z-axis (shown in Figure 4.1). When the face of your monitor is the X-Y plane, the Z-axis is pointing toward you (see Figure 4.2).


The right-hand rule is also used to determine the direction of rotation. For rotation using the right-hand rule, point your thumb in the positive direction along the axis of rotation. Your fingers will curl in the positive direction for the rotation, as shown in Figure 4.3.

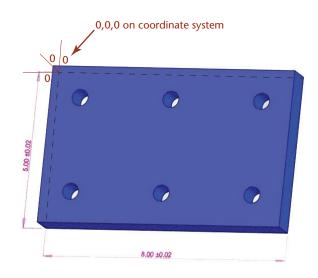
Though rare, some CAD systems use a left-hand rule. In this case, the curl of the fingers on your left hand gives you the positive direction for the Z-axis. In this case, when the face of your computer monitor is the X-Y plane, the positive direction for the Z-axis extends into your computer monitor, not toward you.


A 2D CAD system uses only the X- and Y-coordinates of the Cartesian coordinate system. 3D CAD systems use X, Y, and Z. To represent 2D in a 3D CAD system, the view is straight down the Z-axis. Figure 4.4 shows a drawing created using only the X- and Y- values, leaving the Z-coordinates set to 0, to produce a 2D drawing.

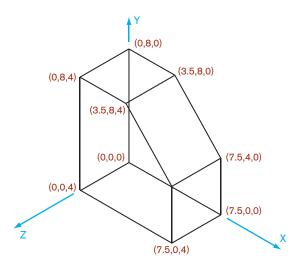
Recall that each orthographic view shows only two of the three coordinate directions because the view is straight down one axis. 2D CAD drawings are the same: They show only the X- and Y-coordinates because you are looking straight down the Z-axis.

When the X-Y plane is aligned with the screen in a CAD system, the Z-axis is oriented horizontally. In machining and many other applications, the Z-axis is considered to be the vertical axis. In all cases, the coordinate axes are mutually perpendicular and oriented according to the right-hand or left-hand rule. Because the view can be rotated to be straight down any axis or any other direction, understanding how to use coordinates in the model is more important than visualizing the direction of the default axes and planes.

4.3 Axis of Rotation. *The curl of the fingers indicates the positive direction along the axis of rotation.*



4.4 2D CAD Drawing. This drawing was created on the X-Y plane in the CAD system. It appears true shape because the viewing direction is perpendicular to the X-Y plane—straight down the Z-axis.

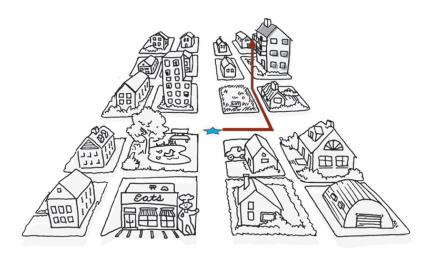

The vertices of the 3D shape shown in Figure 4.5 are identified by their X-, Y-, and Z-coordinates. Often, it is useful when modeling parts to locate the origin of the coordinate system at the lower left of the part, as shown in Figure 4.5. This location for the (0,0,0) point on a part is useful when the part is being machined, as it then makes all coordinates on the part positive (Figure 4.6). Some older numerically-controlled machinery will not interpret a file correctly if it has negative lengths or coordinates. CAD models are often exported to other systems for manufacturing parts, so try to create them in a common and useful way.

Specifying Location

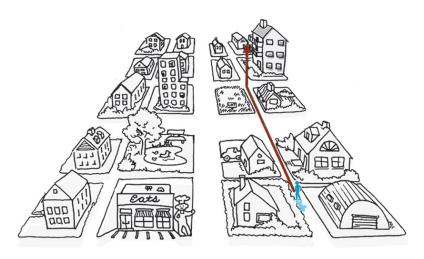
Even though the model is ultimately stored in a single Cartesian coordinate system, you may usually specify the location of features using other location methods as well. The most typical of these are relative, polar, cylindrical, and spherical coordinates. These coordinate formats are useful for specifying locations to define your CAD drawing geometry.

4.6 This CAD model for a plate with 6 holes has its origin (0,0,0) at the back left of the part when it is set up for numerically-controlled machining. (Courtesy of Matt McCune, Autopilot, Inc.)

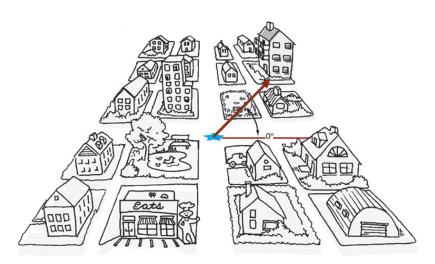
4.5 3D Coordinates for Vertices


4.7 The part is clamped in place during machining. The back left corner of the part is the 0,0,0 location during the machining process. (Courtesy of Matt McCune, Autopilot, Inc.)

SPOTLIGHT


The First Coordinate System

René Descartes (1596–1650) was the French philosopher and mathematician for whom the Cartesian coordinate system is named. Descartes linked algebra and geometry to classify curves by the equations that describe them. His coordinate system remains the most commonly used coordinate system today for identifying points. A 2D coordinate system consists of a pair of lines, called the X- and Y-axes, drawn on a plane so that they intersect at right angles. The point of intersection is called the *origin*. A 3D coordinate system adds a third axis, referred to as the Z-axis, that is perpendicular to the two other axes. Each point in space can


be described by numbers, called coordinates, that represent its distance from this set of axes. The Cartesian coordinate system made it possible to represent geometric entities by numerical and algebraic expressions. For example, a straight line is represented by a linear equation in the form ax + by + c = 0, where the x- and y-variables represent the x- and y-coordinates for each point on the line. Descartes' work laid the foundation for the problem-solving methods of analytic geometry and was the first significant advance in geometry since those of the ancient Greeks.

4.8 Absolute coordinates define a location in terms of distance from the origin (0,0,0), shown here as a star. These directions are useful because they do not change unless the origin changes.

4.9 Relative coordinates describe the location in terms of distance from a starting point. Relative coordinates to the same location differ according to the starting location.

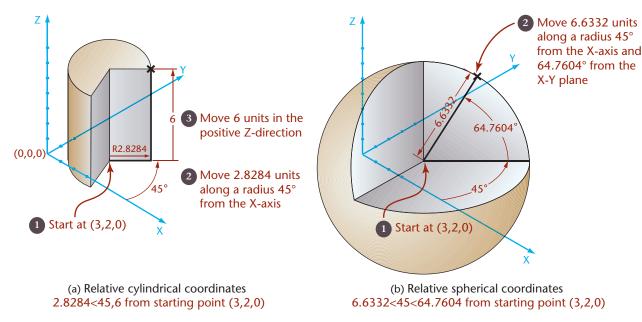
4.10 Polar coordinates describe the location using an angle and distance from the origin (absolute) or starting point (relative).

Absolute Coordinates

Absolute coordinates are used to store the locations of points in a CAD database. These coordinates specify location in terms of distance from the origin in each of the three axis directions of the Cartesian coordinate system.

Think of giving someone directions to your house (or to a house in an area where the streets are laid out in rectangular blocks). One way to describe how to get to your house would be to tell the person how many blocks over and how many blocks up it is from two main streets (and how many floors up in the building, for 3D). The two main streets are like the X- and Y-axes of the Cartesian coordinate system, with the intersection as the origin. Figure 4.8 shows how you might locate a house with this type of absolute coordinate system.

Relative Coordinates


Instead of having to specify each location from the origin, you can use *relative coordinates* to specify a location by giving the number of units from a previous location. In other words, the location is defined relative to your previous location.

To understand relative coordinates, think about giving someone directions from his or her current position, not from two main streets. Figure 4.9 shows the same map again, but this time with the location of the house relative to the location of the person receiving directions.

Polar Coordinates

Polar coordinates are used to locate an object by giving an angle (from the X-axis) and a distance. Polar coordinates can either be absolute, giving the angle and distance from the origin, or relative, giving the angle and distance from the current location.

Picture the same situation of having to give directions. You could tell the person to walk at a specified angle from the crossing of the two main streets, and how far to walk. Figure 4.10 shows the angle and direction for the shortcut across the empty lot using absolute polar coordinates. You could also give directions as an angle and distance relative to a starting point.

4.11 Relative Cylindrical and Spherical Coordinates. The target points in (a) and (b) are described by relative coordinates from the starting point (3,2,0). Although the paths to the point differ, the resulting endpoint is the same.

Cylindrical and Spherical Coordinates

Cylindrical and spherical coordinates are similar to polar coordinates except that a 3D location is specified instead of one on a single flat plane (such as a map).

Cylindrical coordinates specify a 3D location based on a radius, angle, and distance (usually in the Z-axis direction). This gives a location as though it were on the edge of a cylinder. The radius tells how far the point is from the center (or origin); the angle is the angle from the X-axis along which the point is located; and the distance provides the height where the point is located on the cylinder. Cylindrical coordinates are similar to polar coordinates, but they add distance in the Z-direction.

Figure 4.11a depicts relative cylindrical coordinates used to specify a location, where the starting point serves as the center of the cylinder.

Spherical coordinates specify a 3D location by the radius, an angle from the X-axis, and the angle from the X-Y plane. These coordinates locate a point on a sphere, where the origin of the coordinate system is at the center of the sphere. The radius gives the size of the sphere; the angle from the X-axis locates a place on the equator. The second angle gives the location from the plane of the equator to a point on the sphere in line with the location specified on the equator. Figure 4.11b depicts relative spherical coordinates, where the starting point serves as the center of the sphere.

Even though you may use these different systems to enter information into your 3D drawings, the end result is stored using one set of Cartesian coordinates.

Using Existing Geometry to Specify Location

Most CAD packages offer a means of specifying location by specifying the relationship of a point to existing objects in the model or drawing. For example, AutoCAD's "object snap" feature lets you enter a location by "snapping" to the endpoint of a line, the center of a circle, the intersection of two lines, and so on (Figure 4.12). Using existing geometry to locate new entities is faster than entering coordinates. This feature also

4.12 Object snaps are aids for selecting locations on existing CAD drawing geometry. (Autodesk screen shots reprinted courtesy of Autodesk, Inc.)

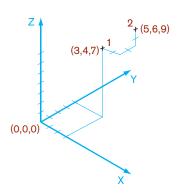
allows you to capture geometric relationships between objects without calculating the exact location of a point. For example, you can snap to the midpoint of a line or the nearest point of tangency on a circle. The software calculates the exact location.

GEOMETRIC ENTITIES

Points

Points are geometric constructs. Points are considered to have no width, height, or depth. They are used to indicate locations in space. In CAD drawings, a point is located by its coordinates and usually shown with some sort of marker like a cross, circle, or other representation. Many CAD systems allow you to choose the style and size of the mark that is used to represent points.

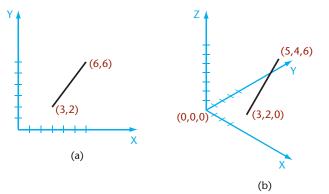
Most CAD systems offer three ways to specify a point:

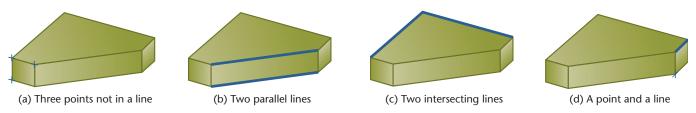

- Type in the coordinates (of any kind) for the point (see Figure 4.13).
- Pick a point from the screen with a pointing device (mouse or tablet).
- Specify the location of a point by its relationship to existing geometry (e.g., an endpoint of a line, an intersection of two lines, or a center point).

Picking a point from the screen is a quick way to enter points when the exact location is not important, but the accuracy of the CAD database makes it impossible to enter a location accurately in this way.

Lines

A straight line is defined as the shortest distance between two points. Geometrically, a line has length but no other dimension such as width or thickness. Lines are used in drawings to represent the edge view of a surface, the limiting element of a contoured surface, or the edge formed where two surfaces on an object join. In a CAD database, lines are typically stored by the coordinates of their endpoints.


For the lines shown in Figure 4.14, the table below shows how you can specify the second endpoint for a particular type of coordinate entry. (For either or both endpoints, you can also snap to existing geometry without entering any coordinates.)


4.13 Specifying Points. Point 1 was added to the drawing by typing the absolute coordinates 3,4,7. Point 2 was added relative to Point 1 with the relative coordinates @2,2,2.

The @ sign in AutoCAD indicates relative

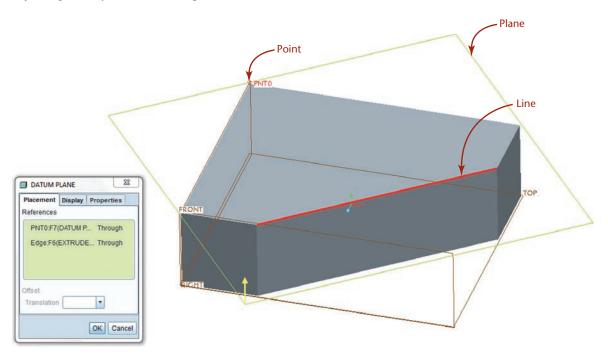
	(a) Second Endpoint for 2D Line	(b) Second Endpoint for 3D Line
Absolute	6,6	5,4,6
Relative	@3,4	@2,2,6
Relative polar	@5<53.13	n/a
Relative cylindrical	n/a	@2.8284<45,6
Relative spherical	n/a	@6.6332<45<64.7606

4.14 Specifying Lines. (a) This 2D line was drawn from endpoint (3,2) to (6,6). (b) This 3D line was drawn from endpoint (3,2,0) to (5,4,6).

4.15 Defining a Plane. The highlighted entities in each image define a plane.

Planes

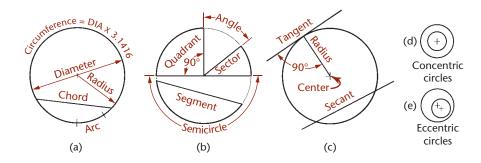
Planes are defined by any of the following (see Figure 4.15):


- Three points not lying in a straight line
- · Two parallel lines
- Two intersecting lines
- · A point and a line

The last three ways to define a plane are all special cases of the more general case—three points not in a straight line. Knowing what can determine a plane can help you understand the geometry of solid objects and use the geometry as you model in CAD.

For example, a face on an object is a plane that extends between the vertices and edges of the surface. Most CAD programs allow you to align new entities with an existing plane. You can use any face on the object—whether it is normal, inclined, or oblique—to define a plane for aligning a new entity.

Defining planes on the object or in 3D space is an important skill for working in 3D CAD. The software provides tools for defining new planes (see Figure 4.16). The options for these tools are based on the geometry of planes, as defined in the preceding list. Typical choices allow the use of any three points not in a line, two parallel lines, two intersecting lines, a point and a line, or being parallel to, perpendicular to, or at an angle from an existing plane.


A plane may serve as a coordinate-system orientation that shows a surface true shape. You will learn more about orienting work planes to take advantage of the object's geometry later in this chapter.

4.16 Defining a Plane in CAD. A point and a line (the edge between two surfaces in this case) were used to define a plane in this Pro/ENGINEER model.

Circles

A circle is a set of points that are equidistant from a center point. The distance from the center to one of the points is the radius (see Figure 4.17). The distance across the center to any two points on opposite sides is the diameter. The circumference of a circle contains 360° of arc. In a CAD file, a circle is often stored as a center point and a radius.

Center, Radius

Center, Diameter

2-Point

3-Point

Tan, Tan, Radius

Tan, Tan, Tan

4.18 AutoCAD Circle Construction Options (Autodesk screen shots reprinted courtesy of Autodesk, Inc.)

SPOTLIGHT

Formulas for Circles and Arcs

r = radius

4.17 The Circle

C = circumference

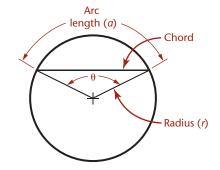
 $\pi = pi \cong 3.14159$

a = arc length

A = area

L =chord length

 θ (theta) = included angle


rad (radian) = the included angle of an arc length such that the arc length is equal to the radius

 $C = 2\pi r$, the curved distance around a circle

 $A = \pi r^2$, the area of a circle

 $a = 2\pi r \times \theta/360$, so the arc length = 0.01745 r θ when you know its radius, r, and the included angle, θ , in degrees

 $a = r \times \theta$ (when the included angle is measured in radians)

Bolt-hole circle

Bolt-Hole Circle Chord Lengths

To determine the distance between centers for equally spaced holes on a bolt-hole circle:

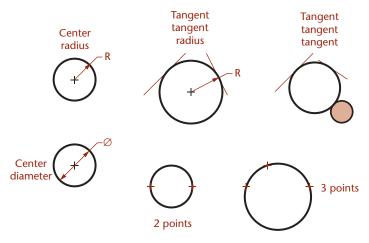
n = 180/number of holes in pattern

 $L = \sin n \times \text{bolt-hole circle diameter}$

EXAMPLE: 8-hole pattern on a 10.00-diameter circle:

180/8 = 22.5

sin of 22.5 is .383

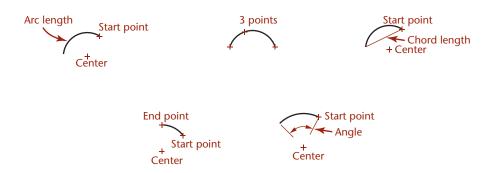

 $.383 \times 10 = 3.83$ (chord length)

For more useful formulas, see Appendix 3.

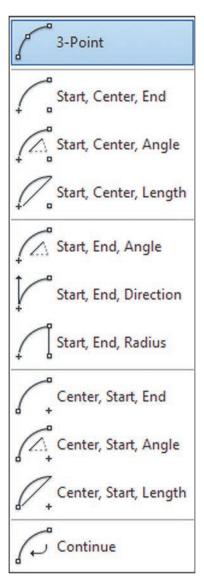
Most CAD systems allow you to define a circle by specifying any one of the following:

- The center and a diameter
- The center and a radius
- Two points on the diameter
- Three points on the circle
- A radius and two entities to which the circle is tangent
- Three entities to which the circle is tangent

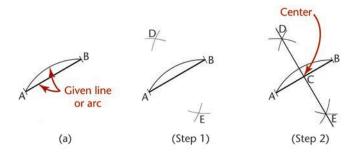
These methods are illustrated in Figure 4.19.



4.19 Ways to Define a Circle


Arcs

An arc is a portion of a circle. An arc can be defined by specifying any one of the following (see Figure 4.20):


- A center, radius, and angle measure (sometimes called the *included angle* or *delta angle*)
- · A center, radius, and chord length
- · A center, radius, and arc length
- The endpoints and a radius
- The endpoints and a chord length
- The endpoints and arc length
- The endpoints and one other point on the arc (3 points)

4.20 Defining Arcs. Arcs can be defined many different ways. Like circles, arcs may be located from a center point or an endpoint, making it easy to locate them relative to other entities in the model.

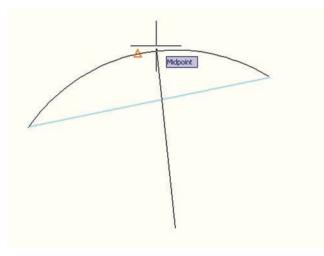
4.21 AutoCAD Arc Construction Options (Autodesk screen shots reprinted courtesy of Autodesk, Inc.)

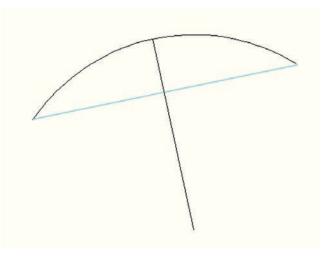
4.1 MANUALLY BISECTING A LINE OR CIRCULAR ARC

Figure 4.22a shows the given line or arc AB to be bisected.

- Step 1. From *A* and *B* draw equal arcs with their centers at the endpoints and a with radius greater than half *AB*.
- Step 2. Join intersections *D* and *E* with a straight line to locate center *C*.

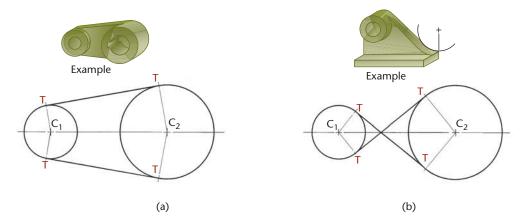
4.22 Bisecting a Line or a Circular Arc

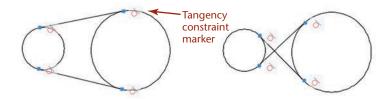

– TIP —


Accurate Geometry with AutoCAD

Using object snaps (Figure A) to locate drawing geometry, such as the midpoint of the arc shown in Figure B, is a quick and easy way to draw a line bisecting an arc or another line.

(A) The AutoCAD Drafting Settings dialog box can be used to turn on objects snaps, a method of selecting locations on drawing geometry. (Autodesk screen shots reprinted courtesy of Autodesk Inc.)



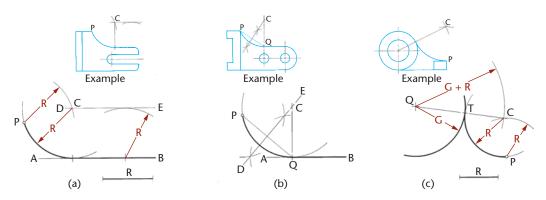

(B) Bisecting a Line or a Circular Arc Using AutoCAD's Midpoint Object Snap

4.2 DRAWING TANGENTS TO TWO CIRCLES

When drawing entities tangent to a circle, there are two locations that satisfy the condition of tangency. When using a CAD system, select a point close to the tangent location you intend.

4.23 Drawing Tangents to Two Circles

4.24 Tangency constraints for two identical sets of circles are shown in AutoCAD.


4.3 DRAWING AN ARC TANGENT TO A LINE OR ARC AND THROUGH A POINT

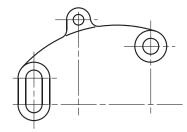
Given line AB, point P, and radius R (Figure 4.25a), draw line DE parallel to the given line and distance R from it. From P draw an arc with radius R, cutting line DE at C, the center of the required tangent arc.

Given line AB, with tangent point Q on the line and point P (Figure 4.25b), draw PQ, which will be a chord of the required arc. Draw perpendicular bisector DE, and at Q draw a

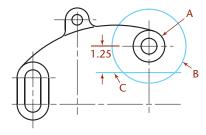
line perpendicular to the line to intersect *DE* at *C*, the center of the required tangent arc.

Given an arc with center Q, point P, and radius R (Figure 4.25c), from P, draw an arc with radius R. From Q, draw an arc with radius equal to that of the given arc plus R. The intersection C of the arcs is the center of the required tangent arc.

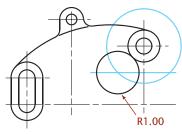
4.25 Tangents. These are often easy constructions using CAD and object snaps.

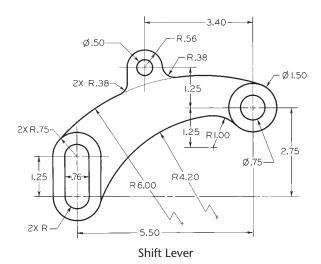

DRAWING AN ARC TANGENT TO TWO ARCS

Creating Construction Geometry

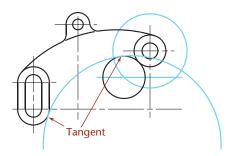

CAD software typically provides a command option to draw a circle or arc tangent to two entities (any combination of arcs, circles, or lines) given the radius. For example, the AutoCAD **Circle** command has an option called Ttr (tangent, tangent, radius). When you use this command, you first select the two drawing objects to which the new circle will be tangent and then enter the radius.

Take a look at the shift lever drawing. To draw this figure you must use a geometric construction to find the center of the 1.00-radius tangent arc. Before the lower 4.20-radius arc can be drawn, the smaller 1.00-radius arc must be constructed tangent to the 1.50 diameter circle. When an arc is tangent to a circle, its center must be the radius distance away from that circle.


Use basic CAD commands to draw the portions shown.



Construct circle B with a radius 1.00 larger than circle A. You can use the AutoCAD **Offset** command to do this quickly. The desired tangent arc must have its center somewhere on circle B. The vertical dimension of 1.25 is given between the two centers in the drawing. Construct line C at this distance. The only point that is on both the circle and the line is the center of the desired tangent arc.



Draw the 1.00-radius circle tangent to the 1.50-diameter circle and centered on the point just found.

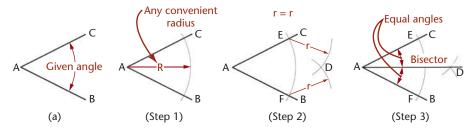
Next, construct the lower 4.20-radius arc to be tangent to the lower curve at the left and to the 1.00-radius circle. Then, trim the circles at their intersections to form the desired arcs.

Geometric Constraints

Using geometric constraints is another way to create this CAD geometry. When geometric constraints are used, a general-case arc can be drawn that is not perfectly tangent. Then, a tangent constraint, the vertical dimension between the arc center and the circle, and the required radius can be applied to the arc as drawn. The software will then calculate the correct arc based on these constraints.

If the desired distance changes, the dimensional constraint values can be updated, and the software will recalculate the new arc. Not all software provides constraint-based modeling, especially in a 2D drafting context. The AutoCAD software has had this feature since release 2010.

When using constraint-based modeling, you still must understand the drawing geometry clearly to create a consistent set of geometric and dimensional constraints.

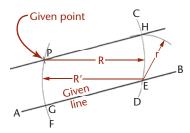

TIP

Two different tangent circles with the same radius are possible—one as shown and one that includes both circles. To get the desired arc using AutoCAD, select near the tangent location for the correctly positioned arc.

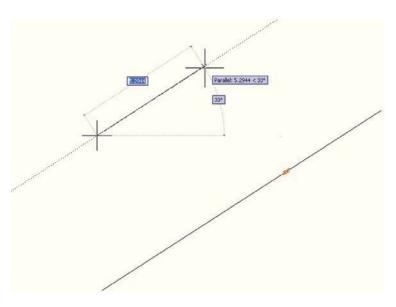
4.4 BISECTING AN ANGLE

Figure 4.26a shows the given angle BAC to be bisected.

- Step 1. Lightly draw large arc with center at A to intersect lines AC and AB.
- Step 2. Lightly draw equal arcs *r* with radius slightly larger than half *BC*, to intersect at *D*.
- Step 3. Draw line AD, which bisects the angle.



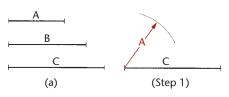
4.26 Bisecting an Angle

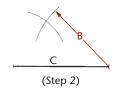

4.5 DRAWING A LINE THROUGH A POINT AND PARALLEL TO A LINE

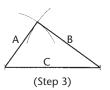
With given point P as center, and any convenient radius R, draw arc CD to intersect the given line AB at E (Figure 4.27). With E as center and the same radius, strike arc R' to intersect the given line at G. With PG as radius and E as center, strike arc F to locate point F. The line F is the required parallel line.

Using AutoCAD, you can quickly draw a new line parallel to a given line and through a given point using the **Offset** command with the **Through** option. Another method is to use the **Parallel** object snap while drawing the line as shown in Figure 4.28. You can also copy the original line and place the copy through the point.

4.27 Drawing a Line through a Point

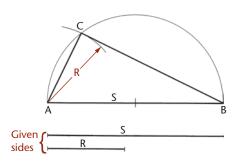



4.28 Drawing a Line through a Point


4.6 DRAWING A TRIANGLE WITH SIDES GIVEN

Given the sides A, B, and C, as shown in Figure 4.29a,

- Step 1. Draw one side, as C, in the desired position, and draw an arc with radius equal to side A.
- Step 2. Lightly draw an arc with radius equal to side *B*.
- Step 3. Draw sides A and B from the intersection of the arcs, as shown.



Using AutoCAD, you can enter the relative length and angle from the previous endpoint using the format: @lengthvalue<anglevalue

TIP -

4.29 Drawing a Triangle with Sides Given

4.7 DRAWING A RIGHT TRIANGLE WITH HYPOTENUSE AND ONE SIDE GIVEN

Given sides S and R (Figure 4.30), with AB as a diameter equal to S, draw a semicircle. With A as center and R as radius, draw an arc intersecting the semicircle at C. Draw AC and CB to complete the right triangle.

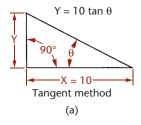
4.30 Drawing a Right Triangle

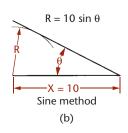
4.8 LAYING OUT AN ANGLE

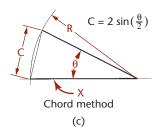
Many angles can be laid out directly with the triangle or protractor. For more accuracy, use one of the methods shown in Figure 4.31.

Tangent Method The tangent of angle θ is y/x, and $y = x \tan \theta$. Use a convenient value for x, preferably 10 units (Figure 4.31a). (The larger the unit, the more accurate will be the construction.) Look up the tangent of angle θ and multiply by 10, and measure $y = 10 \tan \theta$.

EXAMPLE To set off $31-1/2^{\circ}$, find the natural tangent of $31-1/2^{\circ}$, which is 0.6128. Then, y = 10 units \times 0.6128 = 6.128 units.

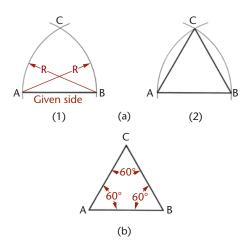

Sine Method Draw line x to any convenient length, preferably 10 units (Figure 4.31b). Find the sine of angle θ , multiply by 10, and draw arc with radius $R = 10 \sin \theta$. Draw the other side of the angle tangent to the arc, as shown.


EXAMPLE To set off 25-1/2°, find the natural sine of 25-1/2°, which is 0.4305. Then R = 10 units \times 0.4305 = 4.305 units.


Chord Method Draw line x of any convenient length, and draw an arc with any convenient radius R—say 10 units (Figure 4.31c). Find the chordal length C using the formula $C = 2 \sin \theta/2$. Machinists' handbooks have chord tables. These tables are made using a radius of 1 unit, so it is easy to scale by multiplying the table values by the actual radius used.

EXAMPLE Half of $43^{\circ}20' = 21^{\circ}40'$. The sine of $21^{\circ}40' = 0.3692$. $C = 2 \times 0.3692 = 0.7384$ for a 1 unit radius. For a 10 unit radius, C = 7.384 units.

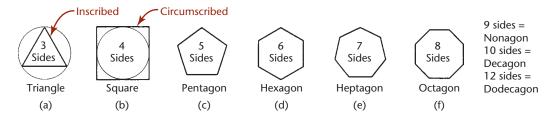
EXAMPLE To set off $43^{\circ}20'$, the chordal length C for 1 unit radius, as given in a table of chords, equals 0.7384. If R = 10 units, then C = 7.384 units.

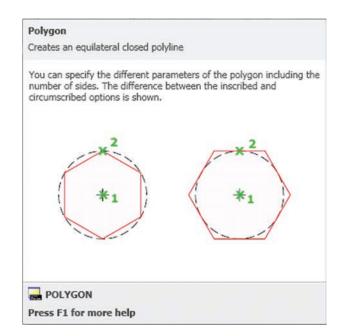


4.31 Laying Out Angles

4.9 DRAWING AN EQUILATERAL TRIANGLE

Side *AB* is given. With *A* and *B* as centers and *AB* as radius, lightly construct arcs to intersect at *C* (Figure 4.32a). Draw lines *AC* and *BC* to complete the triangle.


Alternative Method Draw lines through points A and B, making angles of 60° with the given line and intersecting C (Figure 4.32b).


4.32 Drawing an Equilateral Triangle

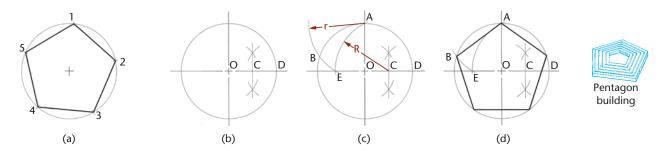
4.10 POLYGONS

A polygon is any plane figure bounded by straight lines (Figure 4.33). If the polygon has equal angles and equal sides, it can be inscribed in or circumscribed around a circle and is called a regular polygon.

4.33 Regular Polygons

4.34 Polygons can be defined by the number of sides and whether they are inscribed in or circumscribed around a circle. (Autodesk screen shots reprinted courtesy of Autodesk, Inc.)

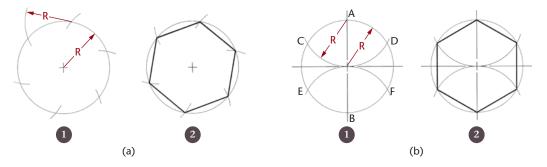
TIP


The AutoCAD **Polygon** command is used to draw regular polygons with any number of sides. The polygon can be based on the radius of an inscribed or circumscribed circle. The length of an edge of the polygon can also be used to define the size. Figure 4.34 shows the quick help for the **Polygon** command. The **Rectangle** command is another quick way to make a square in AutoCAD.

4.11 DRAWING A REGULAR PENTAGON

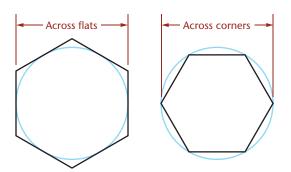
Dividers Method: Divide the circumference of the circumscribed circle into five equal parts with the dividers, and join the points with straight lines (Figure 4.35a).

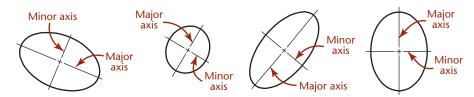
Geometric Method:


- Step 1. Bisect radius *OD* at *C* (Figure 4.35b).
- Step 2. Use *C* as the center and *CA* as the radius to lightly draw arc *AE*. With *A* as center and *AE* as radius, draw arc *EB* (Figure 4.35c).
- Step 3. Draw line *AB*, then measure off distances *AB* around the circumference of the circle. Draw the sides of the pentagon through these points (Figure 4.35d).

4.35 Drawing a Pentagon

4.12 DRAWING A HEXAGON


Each side of a hexagon is equal to the radius of the circumscribed circle (Figure 4.36a). To use a compass or dividers, use the radius of the circle to mark the six points of the hexagon around the circle. Connect the points with straight lines. Check your accuracy by making sure the opposite sides of the hexagon are parallel.

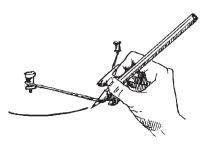

4.36 Drawing a Hexagon

Centerline Variation Draw vertical and horizontal centerlines (Figure 4.36b). With *A* and *B* as centers and radius equal to that of the circle, draw arcs to intersect the circle at *C*, *D*, *E*, and *F*, and complete the hexagon as shown.

Hexagons, especially when drawn to create bolt heads, are usually dimensioned by the distance across the flat sides (not across the corners). When creating a hexagon using CAD, it is typical to draw it as circumscribed about a circle, so that the circle diameter is defining the distance across the flat sides of the hexagon (see Figure 4. 32).

4.37 Across Flats vs. Across Corners

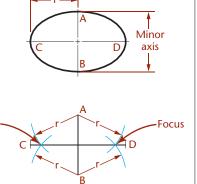
4.38 Major and Minor Axes of Some Ellipses


4.13 ELLIPSES

An ellipse can be defined by its major and minor axis distances. The major axis is the longer axis of the ellipse; the minor axis is the shorter axis. Some ellipses are shown and labeled in Figure 4.38.

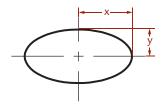
An ellipse is created by a point moving along a path where the sum of its distances from two points, each called a focus of an ellipse (foci is the plural form), is equal to the major diameter. As an aid in understanding the shape of an ellipse, imagine pinning the ends of a string in the locations of the foci, then sliding a pencil along inside the string, keeping it tightly stretched, as in Figure 4.39. You would not use this technique when sketching, but it serves as a good illustration of the definition of an ellipse.

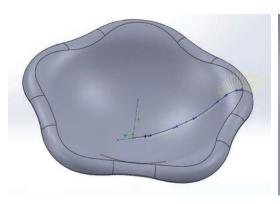
Most CAD systems provide an Ellipse command that lets you enter the major and minor axis lengths, center, or the angle of rotation for a circle that is to appear elliptical.

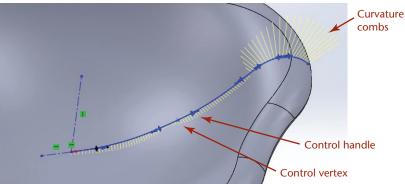

Focus

4.39 Pencil and String Method. When an ellipse is created with the pencil-and-string method, the length of the string between the foci is equal to the length of the major axis of the ellipse. Any point that can be reached by a pencil inside the string when it is pulled taut meets the condition that its distances from the two foci sum to the length of the major diameter.

Locating the Foci of an Ellipse To locate the foci of an ellipse, draw arcs with their centers at the ends of


arcs with their centers at the ends of the minor axis and their radii equal to half the major axis. The intersection of each pair of arcs is a focus of the ellipse.

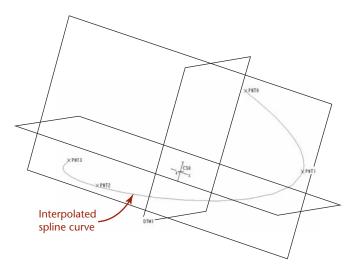

SPOTLIGH1


The Perimeter of an Ellipse

The perimeter, *P*, of an ellipse is a set of points defined by their distance from the two foci. The sum of the distances from any point on the ellipse to the two foci must be equal to the length of the major diameter. The perimeter of an ellipse may be approximated in different ways. Many CAD packages use infinite series to most closely approximate the perimeter. The mathematical relationship of each point on the ellipse to the major and minor axes may be seen in the approximation of the perimeter at right:

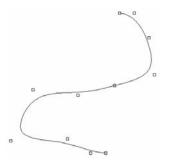
$$P=2\pi\sqrt{\frac{x^2+y^2}{2}}$$

4.14 SPLINE CURVES


Splines are used to describe complex, or *freeform*, curves. Many surfaces cannot be easily defined using simple curves such as circles, arcs, or ellipses. For example, the flowing curves used in automobile design blend many different curves into a smooth surface. Creating lifelike shapes and aerodynamic forms may require spline curves (Figure 4.40).

The word *spline* originally described a flexible piece of plastic or rubber used to draw irregular curves between points. Mathematical methods generate the points on the curve for CAD applications.

One way to create an irregular curve is to draw curves between each set of points. The points and the tangencies at each point are used in a polynomial equation that determines the shape of the curve. This type of curve is useful in the design of a ship's hull or an aircraft wing. Because this kind of irregular curve passes through all the points used to define the curve, it is sometimes called an *interpolated spline* or a *cubic spline*. An example and its vertices are shown in Figure 4.41.


Other spline curves are approximated: they are defined by a set of vertices. The resulting curve does not pass through all the vertices. Instead, the vertices "pull" the curve in the direction of the vertex. Complex curves can be created with relatively few vertices using approximation methods. Figure 4.42 shows a 3D approximated spline curve and its vertices.

The mathematical definition for this type of spline curve uses the X- and Y- (and Z- for a 3D shape) coordinates and a parameter, generally referred to as u. A polynomial equation is used to generate functions in u for each point used to specify the curve. The resulting functions are then blended to generate a curve that is influenced by each point specified but not necessarily coincident with any of them.

4.41 Interpolated Spline. An interpolated spline curve passes through all the points used to define the curve.

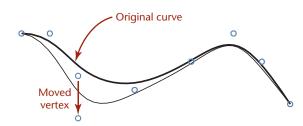
4.40 Complex Curves. The organic shape of this flowerlike bowl was created using SolidWorks splines. Splines can be controlled in a variety of ways. The enlarged view shows the curvature combs used to view the effect of the controlling curves that make up the spline. Dragging a control handle changes the direction of the curve at the control vertex. (Courtesy of Robert Kincaid.)

4.42 Approximated Spline. Except for the beginning and endpoints, the fit points for the spline curve stored in the database do not always lie on the curve. They are used to derive the curve mathematically.

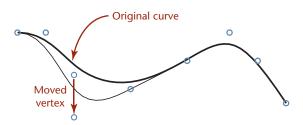
B-Splines

The *Bezier curve* was one of the first methods to use spline approximation to create flowing curves in CAD applications. The first and last vertices are on the curve, but the rest of the vertices contribute to a blended curve between them. The Bezier method uses a polynomial curve to approximate the shape of a polygon formed by the specified vertices. The order of the polynomial is 1 degree less than the number of vertices in the polygon (see Figure 4.43).

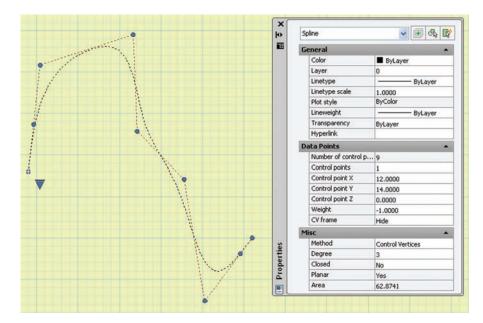
The Bezier method is named for Pierre Bezier, a pioneer in computer-generated surface modeling at Renault, the French automobile manufacturer. Bezier sought an easier way of controlling complex curves, such as those defined in automobile surfaces. His technique allowed designers to shape natural-looking curves more easily than they could by specifying points that had to lie on the resulting curve, yet the technique also provided control over the shape of the curve. Changing the slope of each line segment defined by a set of vertices adjusts the slope of the resulting curve (see Figure 4.44). One disadvantage of the Bezier formula is that the polynomial curve is defined by the combined influence of every vertex: a change to any vertex redraws the entire curve between the start point and endpoint.


A B-spline approximation is a special case of the Bezier curve that is more commonly used in engineering to give the designer more control when editing the curve. A B-spline is a blended piecewise polynomial curve passing near a set of control points. The spline is referred to as piecewise because the blending functions used to combine the polynomial curves can vary over the different segments of the curve. Thus, when a control point changes, only the piece of the curve defined by the new point and the vertices near it change, not the whole curve (see Figure 4.45). B-splines may or may not pass through the first and last points in the vertex set. Another difference is that for the B-spline the order of the polynomial can be set independently of the number of vertices or control points defining the curve.

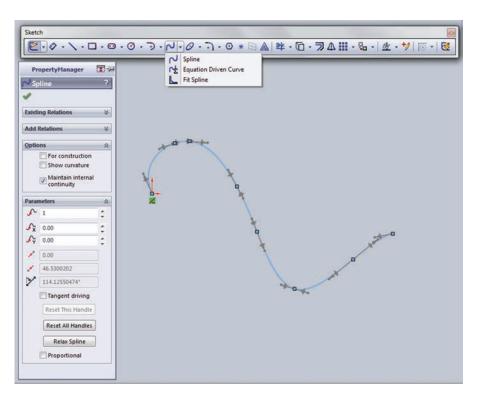
In addition to being able to locally modify the curve, many modelers allow sets of vertices to be weighted differently. The weighting, sometimes called tolerance, determines how closely the curve should fit the set of vertices. Curves can range from fitting all the points to being loosely controlled by the vertices. This type of curve is called a nonuniform rational B-spline, or *NURBS* curve. A rational curve (or surface) is one that has a weight associated with each control point.


SPOTLIGHT

4.43 Bezier Curve. A Bezier curve passes through the first and last vertex but uses the other vertices as control points to generate a blended curve.



4.44 Editing a Bezier Curve. Every vertex contributes to the shape of a Bezier curve. Changing the location of a single vertex redraws the entire curve.



4.45 B-Spline Approximation. The B-spline is constructed piecewise, so changing a vertex affects the shape of the curve near only that vertex and its neighbors.

Splines are drawn in CAD systems based on the mathematical relationships defining their geometry. Figure 4.46 shows an approximated spline drawn using AutoCAD. Figure 4.47 shows an interpolated spline drawn using SolidWorks. Both curves are drawn with a spline command, and both provide a dialog box that allows you to change properties defining the curve; however, the properties that are controlled vary by the type of spline being created by the software package. You should be familiar with the terms used by your modeling software for creating different types of spline curves.

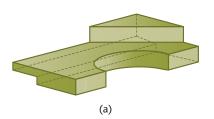
4.46 Approximated Spline. This spline drawn in AutoCAD is pulled toward the defined control points. The Properties dialog box at the right allows you to change the weighting factor for each control point. (Autodesk screen shots reprinted courtesy of Autodesk, Inc.)

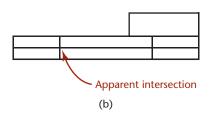
4.47 Interpolated Spline. This SolidWorks spline passes through each control point. Software tools allow you to control spline properties. (Image courtesy of ©2016 Dassault Systèmes SolidWorks Corporation.)

4.15 GEOMETRIC RELATIONSHIPS

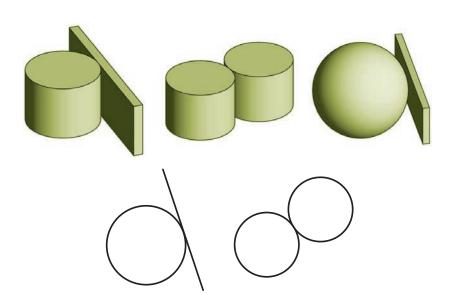
When you are sketching, you often imply a relationship, such as being parallel or perpendicular, by the appearance of the lines or through notes or dimensions. When you are creating a CAD model you use drawing aids to specify these relationships between geometric entities.

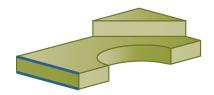
Two lines or planes are *parallel* when they are an equal distance apart at every point. Parallel entities never intersect, even if extended to infinity. Figure 4.48 shows an example of parallel lines.

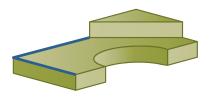

Two lines or planes are *perpendicular* when they intersect at right angles (or when the intersection that would be formed if they were extended would be a right angle), as in Figure 4.49.


Two entities *intersect* if they have at least one point in common. Two straight lines intersect at only a single point. A circle and a straight line intersect at two points, as shown in Figure 4.50.

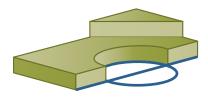
When two lines intersect, they define an angle as shown in Figure 4.51.

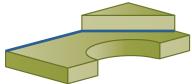

The term *apparent intersection* refers to lines that appear to intersect in a 2D view or on a computer monitor but actually do not touch, as shown in Figure 4.52. When you look at a wireframe view of a model, the 2D view may show lines crossing each other when, in fact, the lines do not intersect in 3D space. Changing the view of the model can help you determine whether an intersection is actual or apparent.


Two entities are *tangent* if they touch each other but do not intersect, even if extended to infinity, as shown in Figure 4.53. A line that is tangent to a circle will have only one point in common with the circle.



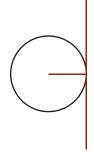
4.52 Apparent Intersection. From the shaded view of this model in (a), it is clear that the back lines do not intersect the half-circular shape. In the wire-frame front view in (b), the lines appear to intersect.



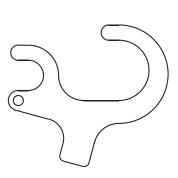

4.48 The highlighted lines are parallel.

4.49 The highlighted lines are perpendicular.

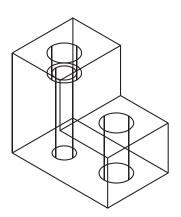
4.50 The highlighted circle intersects the highlighted line at two different points.



4.51 An angle is defined by the space between two lines (such as those highlighted here) or planes that intersect.

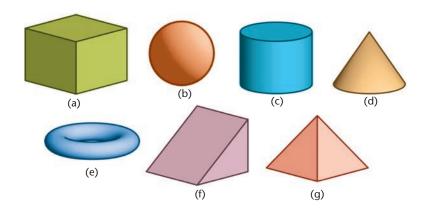

4.53 Tangency. Lines that are tangent to an entity have one point in common but never intersect. 3D objects may be tangent at a single point or along a line.

When a line is tangent to a circle, a radial line from the center of the circle is perpendicular at the point of tangency, as shown in Figure 4.54. Knowing this can be useful in creating sketches and models.

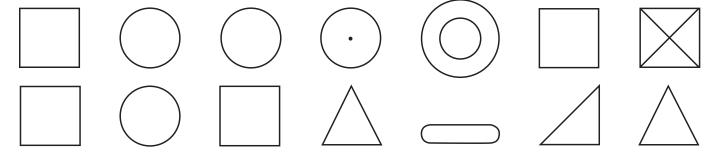

The regular geometry of points, lines, circles, arcs, and ellipses is the foundation for many CAD drawings that are created from these types of entities alone. Figure 4.55 shows a 2D CAD drawing that uses only lines, circles, and arcs to create the shapes shown. Figure 4.56 shows a 3D wireframe model that is also made entirely of lines, circles, and arcs. Many complex-looking 2D and 3D images are made solely from combinations of these shapes. Recognizing these shapes and understanding the many ways you can specify them in the CAD environment are key modeling skills.

4.54 A radial line from the point where a line is tangent to a circle will always be perpendicular to that line.

4.55 A 2D Drawing Made of Only Lines, Circles, and Arcs



4.56 A 3D Model Made of Only Lines, Circles, and Arcs


4.16 SOLID PRIMITIVES

Many 3D objects can be visualized, sketched, and modeled in a CAD system by combining simple 3D shapes or primitives. They are the building blocks for many solid objects. You should become familiar with these common shapes and their geometry. The same primitives that are useful when sketching objects are also used to create 3D models of those objects.

A common set of primitive solids used to build more complex objects is shown in Figure 4.57. Which of these objects are polyhedra? Which are bounded by single-curved surfaces? Which are bounded by double-curved surfaces? How many vertices do you see on the cone? How many on the wedge? How many edges do you see on the box? Familiarity with the appearance of these primitive shapes when shown in orthographic views can help you in interpreting drawings and in recognizing features that make up objects. Figure 4.58 shows the primitives in two orthographic views.

4.57 Solid Primitives. The most common solid primitives are (a) box, (b) sphere, (c) cylinder, (d) cone, (e) torus, (f) wedge, and (g) pyramid.

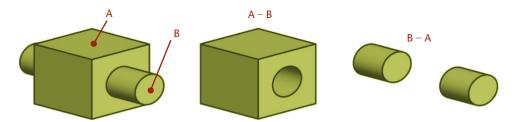
4.58 Match the top and front views shown here with the primitives shown in Figure 4.57.

Review the orthographic views and match each to the isometric of the same primitive shown in Figure 4.57.

Look around and identify some solid primitives that make up the shapes you see. The ability to identify the primitive shapes can help you model features of the objects using a CAD system (see Figure 4.59). Also, knowing how primitive shapes appear in orthographic views can help you sketch these features correctly and read drawings that others have created.

Making Complex Shapes with Boolean Operations

Boolean operations, common to most 3D modelers, allow you to join, subtract, and intersect solids. Boolean operations are named for the English mathematician George Boole, who developed them to describe how sets can be combined. Applied to solid modeling, Boolean operations describe how volumes can be combined to create new solids.


The three Boolean operations, defined in Table 4.1, are

- Union (join/add)
- Difference (subtract)
- Intersection

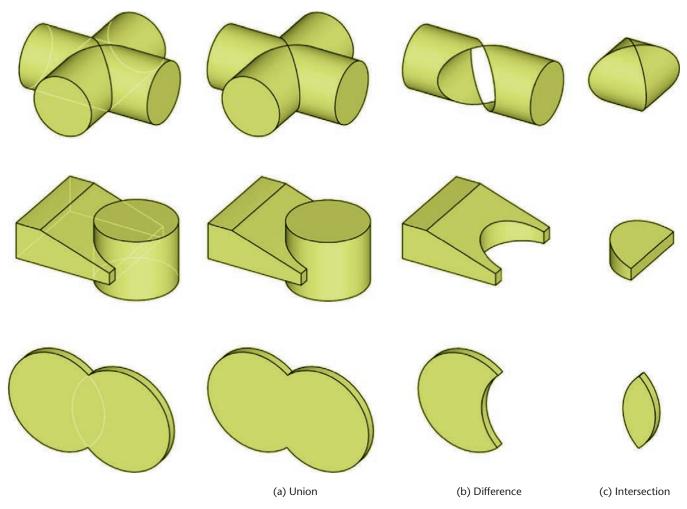
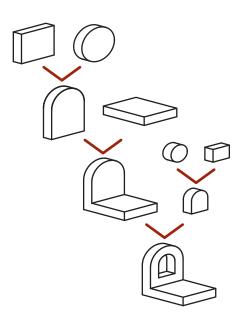

4.59 Complex Shapes. The 3D solid primitives in this illustration show basic shapes that make up a telephone handset. (Photo copyright Everything/Shutterstock.)

Table 4.1 Boolean Operations

Name	Definition	Venn Diagram
Union (join/add)	The volume in both sets is combined or added. Overlap is eliminated. Order does not matter: A union B is the same as B union A.	
Difference (subtract)	The volume from one set is subtracted or eliminated from the volume in another set. The eliminated set is completely eliminated—even the portion that does not overlap the other volume. The order of the sets selected when using difference <i>does</i> matter (see Figure 4.60). A subtract B is not the same as B subtract A.	
Intersection	The volume common to both sets is retained. Order does not matter: B intersect A is the same as A intersect B.	

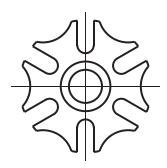
4.60 Order Matters in Subtraction. *The models here illustrate how A – B differs significantly from B – A.*

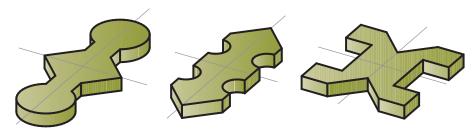


4.61 Boolean Operations. The three sets of models at left produce the results shown at right when the two solids are (a) unioned, (b) subtracted, and (c) intersected.

Figure 4.61 illustrates the result of the Boolean operations on three pairs of solid models. Look at some everyday objects around you and make a list of the primitive solid shapes and Boolean operations needed to make them.

Figure 4.62 shows a bookend and a list of the primitives available in the CAD system used to create it, along with the Boolean operations used to make the part.


4.62 Shapes in a Bookend. This diagram shows how basic shapes were combined to make a bookend. The box and cylinder at the top were unioned, then the resulting end piece and another box were unioned. To form the cutout in the end piece, another cylinder and box were unioned, then the resulting shape was subtracted from the end piece.


4.17 RECOGNIZING SYMMETRY

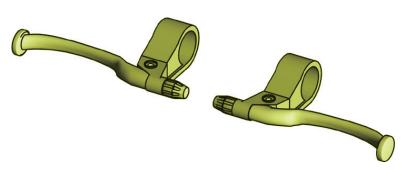
An object is symmetrical when it has the same exact shape on opposite sides of a dividing line (or plane) or about a center or axis. Recognizing the symmetry of objects can help you in your design work and when you are sketching or using CAD to represent an object. Figure 4.63 shows a shape that is symmetrical about several axes of symmetry (of which two are shown) as well as about the center point of the circle.

Mirrored shapes have symmetry where points on opposite sides of the dividing line (or mirror line) are the same distance away from the mirror line. For a 2D mirrored shape, the axis of symmetry is the mirror line. For a 3D mirrored shape, the symmetry is about a plane. Examples of 3D mirrored shapes are shown in Figure 4.64.

4.63 Symmetrical Part. Symmetrical parts can have symmetry about a line or point, or both.

4.64 3D Mirrored Shapes. Each of these symmetrical shapes has two mirror lines, indicated by the thin axis lines. To create one of these parts, you could model one quarter of it, mirror it across one of the mirror lines, then mirror the resulting half across the perpendicular mirror line.

To simplify sketching, you need to show only half the object if it is symmetrical (Figure 4.65). A centerline line pattern provides a visual reference for the mirror line on the part.


Most CAD systems have a command available to mirror existing features to create new features. You can save a lot of modeling time by noticing the symmetry of the object and copying or mirroring the existing geometry to create new features.

4.65 Orthographic sketches of symmetrical parts may show only half of the object.

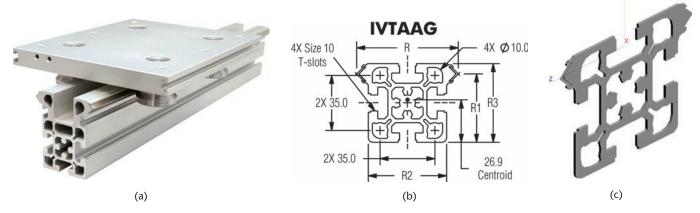
Right- and Left-Hand Parts

Many parts function in pairs for the right and left sides of a device. A brake lever for the left side of a mountain bike is a mirror image of the brake lever for the right side of the bike (Figure 4.66). Using CAD, you can create the part for the left side by mirroring the entire part. On sketches you can indicate a note such as RIGHT-HAND PART IS SHOWN. LEFT-HAND PART IS OPPOSITE. Right-hand and left-hand are often abbreviated as RH and LH in drawing notes.

TIP -

Using symmetry when you model can be important when the design requires it. When the design calls for symmetrical features to be the same, mirroring the feature ensures that the two resulting features will be the same.

Parting-Line Symmetry

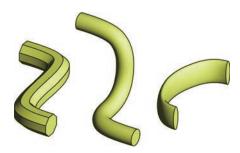

Molded symmetrical parts are often made using a mold with two halves, one on each side of the axis of symmetry. The axis or line where two mold parts join is called a *parting line*. When items are removed from a mold, sometimes a small ridge of material is left on the object. See if you can notice a parting line on a molded object such as your toothbrush or a screwdriver handle such as the one shown in Figure 4.67. Does the parting line define a plane about which the object is symmetrical? Can you determine why that plane was chosen? Does it make it easier to remove the part from the mold? As you are developing your sketching and modeling skills think about the axis of symmetry for parts and how it could affect their manufacture.

4.67 Parting Line. The parting line on a molded part is often visible as a ridge of material.

4.68 Two Halves of a Mold Used to Form a Strap (shown at left). (Two straps can be molded at once.)



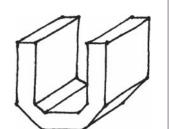
4.69 Extruded Shape. Symmetry and several common geometric shapes were used to create this linear guide system. The rail in (a) was created by forcing aluminum through an opening with the shape of its cross section. The extruded length was then cut to the required length. The solid model in (c) was created by defining the 2D cross-sectional shape (b) and specifying a length for the extrusion. (Integrated configuration of Integral V^{TM} linear guides courtesy of PBCLinear.)


4.18 EXTRUDED FORMS

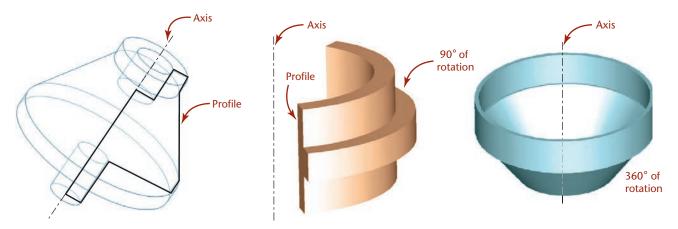
Extrusion is the manufacturing process of forcing material through a shaped opening (Figure 4.69). Extrusion in CAD modeling creates a 3D shape in a way similar to the extrusion manufacturing process. This modeling method is common even when the part will not be manufactured as an extrusion.

To create as shape by extrusion, sketch the 2D outline of the basic shape of the object (usually called a profile), and then specify the length for the extrusion. Most 3D CAD systems provide an Extrude command. Some CAD systems allow a taper (or draft) angle to be specified to narrow the shape over its length (Figure 4.70).

4.70 These CAD models were formed by extruding a 2D outline. Two of the models were extruded with a taper.


4.71 Swept Shapes. These shapes started as an octagon, a circle, and an ellipse, then were swept along a curved path.

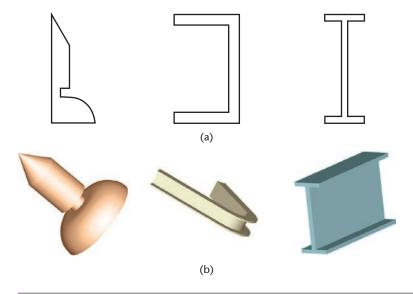
Swept Shapes


A swept form is a special case of an extruded form. Sweeping describes extruding a shape along a curved path. To sweep a shape in CAD, create the 2D profile and a 2D or 3D curve to serve as the path. Some swept shapes are shown in Figure 4.71.

Sketching Extruded Shapes

Shapes that can be created using extrusion are often easily sketched as oblique projections. To sketch extruded shapes, show the shape (or profile) that will be extruded parallel to the front viewing plane in the sketch. Copy this same shape over and up in the sketch based on the angle and distance you want to use to represent the depth. Then, sketch in the lines for the receding edges.

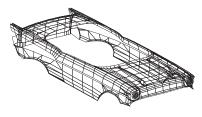
SPOTLIGH^{*}



4.72 Revolved Shapes. Each of the solids shown here was created by revolving a 2D shape around an axis.

4.19 REVOLVED FORMS

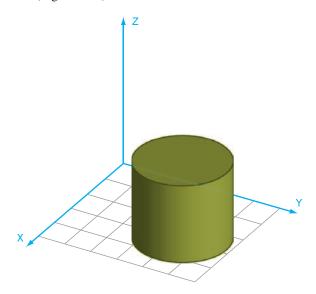
Revolution creates 3D forms from basic shapes by revolving a 2D profile around an axis to create a closed solid object. To create a revolved solid, create the 2D shape to be revolved, specify an axis about which to revolve it, then indicate the number of degrees of revolution. Figure 4.72 shows some shapes created by revolution.


Often, a 2D sketch is used to create 3D CAD models. Look at the examples shown in Figure 4.73 and match them to the 2D profile used to create the part. For each part, decide whether extrusion, revolution, or sweeping was used to create it.

4.73 What operation would you choose to transform the profiles shown in (a) into the models in (b)?

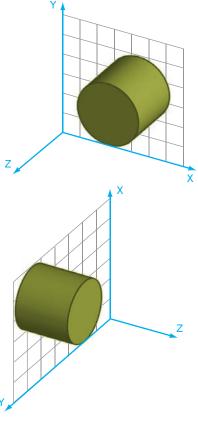
4.20 IRREGULAR SURFACES

Not every object can be modeled using the basic geometric shapes explored in this chapter. Irregular surfaces are those that cannot be unfolded or unrolled to lie in a flat plane. Solids that have irregular or warped surfaces cannot be created merely by extrusion or revolution. These irregular surfaces are created using surface modeling techniques. Spline curves are frequently the building blocks of the irregular surfaces found on car and snowmobile bodies, molded exterior parts, aircraft, and other (usually exterior) surfaces of common objects, such as an ergonomic mouse. An example of an irregular surface is shown in Figure 4.74. You will learn more about modeling irregular surfaces in Chapter 5.


4.74 Irregular Surfaces

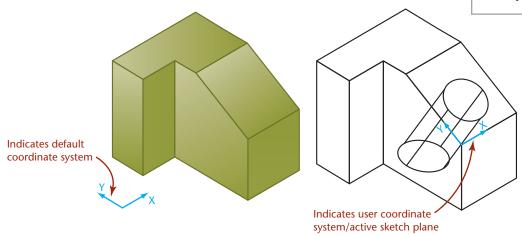
4.21 USER COORDINATE SYSTEMS

Most CAD systems allow you to create your own coordinate systems to aid in creating drawing geometry. These are often termed user coordinate systems (in Auto-CAD, for example) or local coordinate systems, in contrast with the default coordinate system (sometimes called the world coordinate system or absolute coordinate system) that is used to store the model in the drawing database. To use many CAD commands effectively, you must know how to orient a user coordinate system.


Most CAD systems create primitive shapes the same way each time with respect to the current X-, Y-, and Z-directions. For example the circular shape of the cylinder is always in the current X-Y plane, as shown in Figure 4.75.

To create a cylinder oriented differently, create a user coordinate system in the desired orientation (Figure 4.76).

4.75 Cylinder Construction. *The cylinder is created with the circular base on the X-Y plane and the height in Z.*


To create the hole perpendicular to the oblique surface shown in Figure 4.77, create a new local coordinate system aligned with the inclined surface. After you have specified the location of the hole using the more convenient local coordinate system, the CAD software translates the location of the hole to the world (default) coordinate system.

4.76 These cylinders were created after the X-Y plane of the coordinate system was reoriented.

- TIP -

All CAD systems have a symbol that indicates the location of the coordinate axes—both the global one used to store the model and any user-defined one that is active. Explore your modeler so you are familiar with the way it indicates each.

4.77 Drawing on an Inclined Plane. A new coordinate system is defined relative to the slanted surface to make it easy to create the hole.

Many CAD systems have a command to define the plane for a user coordinate system by specifying three points. This is often an easy way to orient a new coordinate system—especially when it needs to align with an oblique or inclined surface. Other solid modeling systems allow the user to select an existing part surface on which to draw the new shape. This is analogous to setting the X-Y plane of the user coordinate system to coincide with the selected surface. With constraint-based modelers a "sketch plane" often is selected on which a basic shape is drawn that will be used to form a part feature. This defines a coordinate system for the sketch plane.

A user or local coordinate system is useful for creating geometry in a model. Changing the local coordinate system does not change the default coordinate system where the model data are stored.

4.22 TRANSFORMATIONS

A 3D CAD package uses the default Cartesian coordinate system to store information about the model. One way it may be stored is as a matrix (rows and columns of numbers) representing the vertices of the object. Once the object is defined, the software uses mathematical methods to transform the matrix (and the object) in various ways. There are two basic kinds of transformations: those that transform the model itself (called geometric transformations) and those that merely change the view of the model (called viewing transformations).

Geometric Transformations

The model stored in the computer is changed using three basic transformations (or changes): moving (sometimes called translation), rotating, and scaling. When you select a CAD command that uses one of these transformations, the CAD data stored in your model are converted mathematically to produce the result. Commands such as Move (or Translate), Rotate, and Scale transform the object on the coordinate system and change the coordinates stored in the 3D model database.

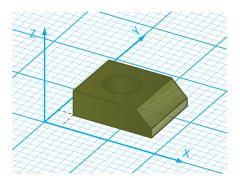
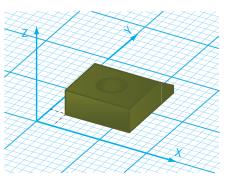
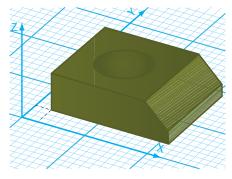

Figure 4.78 shows a part after translation. The model was moved over 2 units in the X-direction and 3 units in the Y-direction. The corner of the object is no longer located at the origin of the coordinate system.

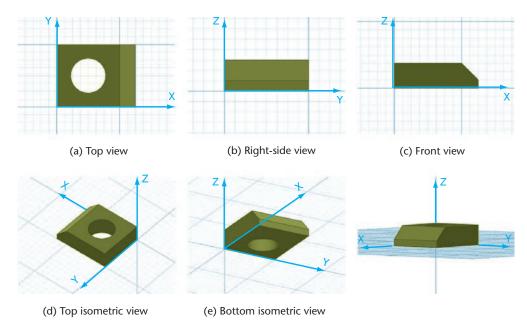
Figure 4.79 illustrates the effect of rotation. The rotated object is situated at a different location in the coordinate system. Figure 4.80 shows the effect of scaling. The scaled object is larger dimensionally than the previous object.


TIP -

The following command names are typically used when transforming geometry:

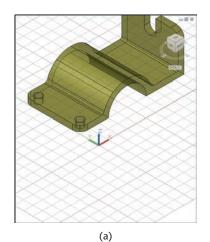

- Move
- Rotate
- Scale

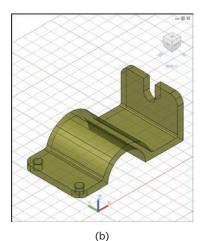
4.78 Translation. This model has been moved 2 units in the X-direction and 3 units in the Y-direction.



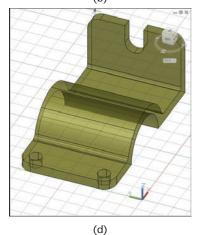
4.79 Rotation. *This model has been rotated in the X-Y plane.*

4.80 Scaling. This model has been scaled to 1.5 times its previous size.


4.81 Changing the View. Note that the location of the model relative to the coordinate axes does not change in any of the different views. Changing the view does not transform the model itself.


Viewing Transformations

A viewing transformation does not change the coordinate system or the location of the model on the coordinate system; it simply changes your view of the model. The model's vertices are stored in the computer at the same coordinate locations no matter the direction from which the model is viewed on the monitor (Figure 4.81).


Although the model's coordinates do not change when the view does, the software does mathematically transform the model database to produce the new appearance of the model on the screen. This viewing transformation is stored as a separate

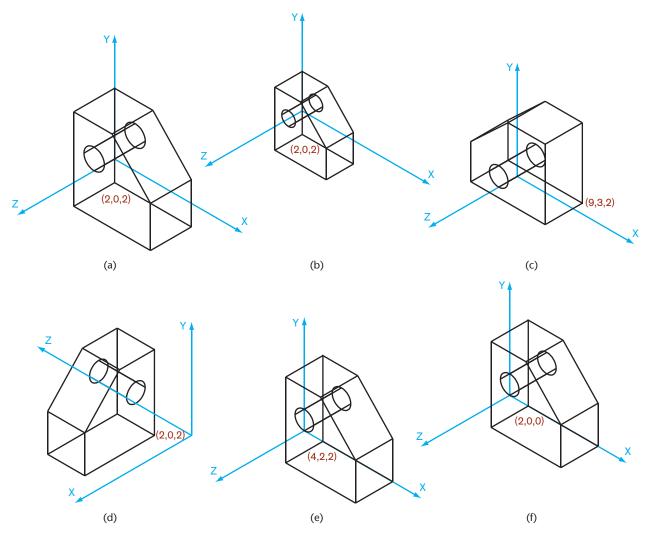
4.82 Common View Transformations. Panning moved the view of the objects in (a) to expose a different portion of the part in (b). In (c), the view is enlarged to show more detail. In (d), the view is rotated to a different line of sight. In each case, the viewing transformation applies to all the objects in the view and does not affect the location of the objects on the coordinate system. (Notice that the position relative to the coordinate system icon does not change.)

(c)

part of the model file (or a separate file) and does not affect the coordinates of the stored model. Viewing transformations change the view on the screen but do not change the model relative to the coordinate system.

Common viewing transformations are illustrated in Figure 4.82. Panning moves the location of the view on the screen. If the monitor were a hole through which you were viewing a piece of paper, panning would be analogous to sliding the piece of paper to expose a different portion of it through the hole. Zooming enlarges or reduces the view of the objects and operates similar to a telephoto lens on a camera. A view rotation is actually a change of viewpoint; the object appears to be rotated, but it is your point of view that is changing. The object itself remains in the same location on the coordinate system.

Viewing controls transform only the viewing transformation file, changing just your view. Commands to scale the object on the coordinate system transform the object's coordinates in the database.


Examine the six models and their coordinates in Figure 4.83. Which are views that look different because of changes in viewing controls? Which look different because the objects were rotated, moved, or scaled on the coordinate system?

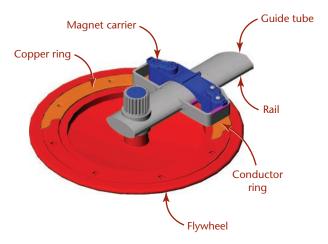
You will use the basic geometric shapes and concepts outlined in this chapter to build CAD models and create accurate freehand sketches. The ability to visualize geometric entities on the Cartesian coordinate system will help you manipulate the coordinate system when modeling in CAD.

TIF

The following are typical command names for view transformations:

- Pan
- Spin (or Rotate View)
- Zoom

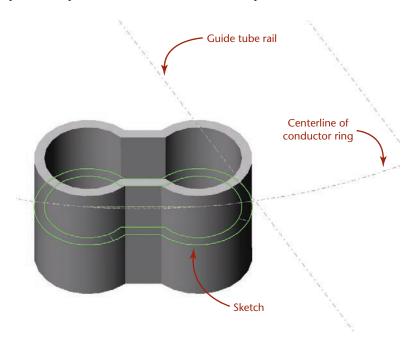
4.83 Geometric or Viewing Transformation? *Three of these models are the same, but the viewing location, zoom, or rotation has changed. Three have been transformed to different locations on the coordinate system.*


THE GEOMETRY OF 3D MODELING: USE THE SYMMETRY

Strategix ID used magnets to create a clean, quiet, zero maintenance brake for the exercise bike it designed for Park City Entertainment. When copper rings on the bike's iron flywheel spin past four rare-earth magnets, they create current in circular flow (an eddy current) that sets up a magnetic field.

This opposing magnetic field dissipates power and slows the wheel. Moving the magnets onto and off the copper rings varies the amount of resistance delivered. When Marty Albini, Senior Mechanical Engineer, modeled the plastic magnet carrier for the brake, he started with the magnets and their behavior as the carrier moved them onto and off the copper rings (see Figure 4.84). "There is no one way to think about modeling a part," Albini said. "The key is to design for the use of the part and the process that will be used to manufacture it." To make the magnet carrier symmetrical, Albini started by modeling half of it.

The magnet carrier was designed as a part in the larger flywheel assembly, parts of which were already completed.


Each pair of magnets was attached to a backing bar that kept them a fixed distance apart. To begin, Albini started with the geometry he was sure of: the diameter of the magnets, the space between them, and the geometry of the conductor ring. He sketched an arc sized to form a pocket around one of the magnets so that its center point would be located on the centerline of the conductor ring (see Figure 4.85). He then sketched another similar arc but with its center point positioned to match the distance between the centers of the two magnets. He connected the two arcs with parallel lines to complete the sketch of the inside of the carrier. This outline was offset to the outside by the thickness of the wall of the holder. (Because this is an injection-molded plastic part, a uniform wall thickness was used throughout.) One final constraint was added to position

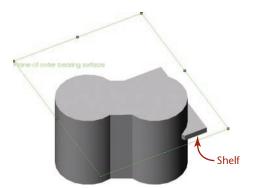
4.84 Flywheel Assembly. The magnet carrier for the brake was designed to move onto and off the conductor ring by sliding along an elliptical guide tube, pulled by a cable attached to the small tab in the middle of the carrier.

the carrier against the rail on the elliptical tube along which it would slide: the outside of the inner arc is tangent to this rail. With the sketch geometry fully defined, Albini extruded the sketch up to the top of the guide tube and down to the running clearance from the copper ring.

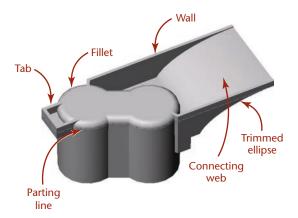
To add a lid to the holder, Albini used the SolidWorks **Offset** command to trace the outline of the holder. First, he clicked on the top of the holder to make its surface the active sketch plane. This is equivalent to changing the user coordinate system in other packages: it signals to SolidWorks that points picked from the screen lie on this plane. He then selected the

4.85 Extruding the Carrier. The magnet carrier was extruded up and down from the sketch, shown here as an outline in the middle of the extruded part. Notice that the sketch is tangent to the guide tube rail, and the centers of the arcs in the sketch are located on the centerline of the conductor ring.

top edges of the holder and used the **Offset** command with a 0 offset to "trace" the outline as a new sketch. To form the lid, he extruded the sketch up (in the positive Z-direction) the distance of the uniform wall thickness.


SolidWorks joined this lid to the magnet holder automatically because both features are in the same part and have surfaces that are coincident. This built-in operation is similar to a Boolean join in that the two shapes are combined to be one.

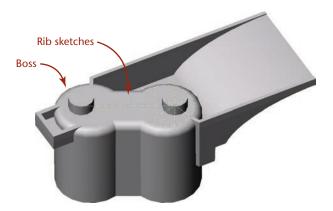
For the next feature, Albini created a "shelf" at the height of the rail on which the holder will slide. Using **Offset** again, he traced the outline of the holder on the sketch plane, then added parallel and perpendicular lines to sketch the outline of the bottom of the shelf. The outline was then extruded up by the wall thickness. The distance from the outside of the magnet holder to the edge of the shelf created a surface that would sit on the rail (see Figure 4.86).


Two walls were added by offsetting the edge of the shelf toward the magnet holder by the wall thickness, then offsetting the edge again by 0. Lines were added to connect the endpoints into an enclosed shape to be extruded. (In SolidWorks, an extrusion can be specified to extend in one or both directions, and to extend to a vertex, a known distance, the next surface, or the last surface encountered.) For the walls, Albini extruded them to the top surface of the magnet holder "lid."

The connecting web between the magnet holders needed to match the shape of the elliptical tube in the flywheel assembly (see Figure 4.87). To make it, Albini sketched an ellipse on the newly created wall. An ellipse is a sketching primitive that can be specified by entering the length of the major and minor axes. Albini used the dimensions from the tube for the first ellipse sketch, then drew a second one with the same center point but with longer axes so that a gap equal to the wall thickness between them would be formed. The two ellipses were trimmed off at the bottom surface of the shelf and at the midpoint, and lines were drawn to make a closed outline. The finished sketch was extruded to the outside surface of the opposite wall.

More walls were sketched and extruded from the bottom surface of the shelf. Then, the wall over the connecting web was sketched and extruded down to the web.

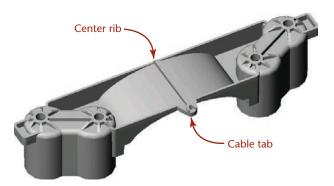
4.86 Changing the Sketch Plane. The surface of the rail was used as the sketch plane for the "shelf" on which the magnet carrier will slide.


4.87 This view of the magnet carrier shows the elliptical shape of the connecting web and the rectangular shape of the tab. The parting line for the part, shown here as a dotted white line, is located at the edge of the fillet on the top of the magnet chambers.

The next step was to add the rounded edges for the top of the magnet holder. Albini invoked the **Fillet** command and selected to round all the edges of the top surface at once. As it created the fillet, SolidWorks maintained the relationship between the wall surfaces that intersected the top edge of the holder and extended them to the new location of the edge.

Next, Albini created a tab at the end of the part that would rest on the plastic collar in the assembly that went all the way around the magnet carrier. He first extruded a rectangular shape up from the top of the collar to form the "floor" of the tab. The walls of the tab required two additional extrusions.

The fillet at the top of the magnet holder provided the location for the parting line—the line where the two halves of the mold would come apart and release the part. Albini added a parting plane and used the built-in **Draft** option to add taper to the part so it would come out of the mold. After selecting all the surfaces below the parting plane, he specified a draft angle, and SolidWorks adjusted all the surfaces. This feature of SolidWorks makes it easy to add the draft angle after a part is finished. When draft is added, the geometry of the part becomes more complex and harder to work with. A cylinder with draft added becomes a truncated cone, for example, and the angles at which its edges intersect other edges vary along its length.


The next step was to add the bosses at the top of the magnet chambers that would support the bolts controlling the depth of the magnets. As it was a design goal to make the top of the chamber as stiff as possible to limit flex caused by the attraction of the magnets to the flywheel, the bosses were placed as far apart as possible, and ribs were added for rigidity. The bosses were sketched as circles on the top surface of the magnet holder with their centers concentric with the holes in the bar connecting the magnets below. Both bosses were extruded up in the same operation.

4.88 Bosses and Ribs. Sketched circles were extruded to form the bosses on the top of the magnet chamber. The dotted lines shown here on the top of the chamber pass through the center point of the bosses and were used to locate the center rib and radial ribs.

Ribs in SolidWorks are built-in features. To create a rib, you simply draw a line and specify a width, and SolidWorks creates the rib and ends it at the first surface it encounters. To create the center rib, Albini sketched a line on the plane at the top of the bosses and specified a width (ribs on a plastic part are usually two thirds of the thickness of the walls). The rib was formed down to the top surface of the holder lid. For the ribs around the bosses, Albini did as Obi Wan Kenobi might have advised: "Use the symmetry, Luke." He sketched the lines for ribs radially from the center points of the bosses (see Figure 4.88). To create the ribs, Albini created four of them on one boss, then mirrored them once to complete the set for one boss, then mirrored all the ribs from one boss to the other boss. Once all the ribs were formed, he cut the tops off the ribs and bosses to achieve the shape shown in Figure 4.89.

The result was a stiffer rib and a shape that could not be achieved with a single rib operation. To complete the part, circles were drawn concentric to the bosses and extruded to form holes that go through the part (see Figure 4.90). Draft was added to the ribs and walls to make the part release from the mold easily. Fillets were added to round all the edges, reducing stresses and eliminating hot spots in the mold. Then, the part was mirrored to create the other half. The center rib and tab for attaching the cable were added and more edges filleted. Draft was added to the inside of the holder, and the part was complete.

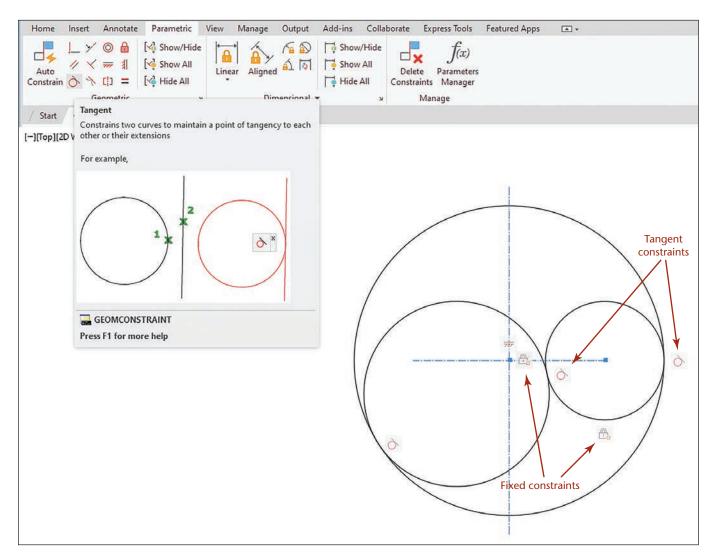
4.90 Circles concentric with the bosses were extruded to form the holes before the part was mirrored and remaining features added to finish the magnet carrier.

4.89 This view of the magnet carrier shows the symmetry of the ribs and the shape that resulted from "slicing off" the top of the bosses after the ribs were formed.

(Images courtesy of Marty Albini. This case study is provided as a courtesy by the owner of the intellectual property rights, Park City Entertainment. All rights reserved.)

DEFINING DRAWING GEOMETRY

2D CAD programs may allow drawing geometry to be controlled through *constraints* or *parametric* definitions. Auto-CAD is one software platform that now provides this tool. In AutoCAD, constraints are associations that can be applied to 2D geometry to restrict how the drawing behaves when a change is made.


Constraints are of two types:

- Geometric constraints create geometric relationships between drawing objects, such as requiring that a circle remain tangent to a line, even when its radius is updated.
- *Dimensional constraints* define distances, angles, and radii for drawing objects. These dimensional constraints typically can also be defined by equations, making them a powerful tool.

Usually, it is best to define the geometric constraints first and then apply dimensional constraints. This way the essential geometry of the shape is defined, and the dimensions can be changed as the size requirements vary.

Figure A shows an AutoCAD drawing that uses fixed and tangent constraints. The fixed constraint allows you to force a drawing object to stay in a permanent location on the coordinate system. The tangent constraint defines a relationship between two drawing objects, such as circles, arcs, and lines.

Understanding geometric relationships is a key skill for creating drawings that use parametric constraints. When geometric constraints are applied awkwardly or when the software does not provide a robust tool for constraining the shape, it can be difficult to get good results when updating drawings.

(A) AutoCAD provides tools for defining geometric and dimensional constraints to control drawing geometry. (Autodesk screen shots reprinted courtesy of Autodesk, Inc.)

KEY WORDS

Absolute Coordinate

System

Absolute Coordinates

Angle

Apparent Intersection

Bezier Curve

B-Spline

Cubic Spline

Cylindrical Coordinates

Default Coordinate

System

Diameter

Extrusion

Focus of an Ellipse

Freeform

Interpolated Spline

Local Coordinate System

Mirrored

NURBS Curve

Parallel

Perpendicular

Piecewise

Polar Coordinates

Primitives

Radius

Relative Coordinates

Revolution

Right-Hand Rule

Spherical Coordinates

Spline

Sweeping

Symmetrical

Transformations

Translation

User Coordinate System

World Coordinate System

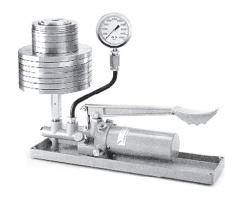
CHAPTER SUMMARY

- Understanding how to produce accurate geometry is required for technical drawings whether constructed by hand or using a CAD system.
- All drawings are made up of points, lines, arcs, circles, and other basic elements in relation to each other.
 Whether you are drawing manually or using CAD, the techniques are based on the relationships between basic geometric elements.
- CAD systems often produce the same result as a complicated hand construction technique in a single step. A good understanding of drawing geometry helps you produce quick and accurate CAD drawings as well as manual drawings.

SKILLS SUMMARY


You should be able to convert and interpret different coordinate formats used to describe point locations and be familiar with some of the basic geometry useful in creating CAD drawings. You should also be able to identify and sketch primitive shapes joined by Boolean operations. In addition, you should be able to visualize and sketch revolved and extruded shapes. The following exercises will give you practice using all these skills.

REVIEW QUESTIONS


- 1. What tools are useful for drawing straight lines?
- 2. What tools are used for drawing arcs and circles?
- 3. How many ways can an arc be tangent to one line? To two lines? To a line and an arc? To two arcs? Draw examples of each.
- 4. Draw an approximate ellipse with a major diameter of 6" and a minor diameter of 3". Draw a second approximate ellipse with a major diameter of 200 mm and a minor diameter of 100 mm.
- 5. Give one example of a construction technique for CAD that requires a good understanding of drawing geometry.
- 6. What is typical accuracy for manually created drawings?
- 7. What accuracies may be possible using a CAD system?
- 8. Sketch some objects that you use or would design that have right-hand and left-hand parts, such as a pair of in-line skates or side-mounted stereo computer speakers.
- 9. In solid modeling, simple 3D shapes are often used to create more complex objects. These are called primitives. Using an isometric grid, draw seven primitives.
- 10. What is a Boolean operation? Define two Boolean operations by sketching an example of each in isometric view.
- 11. Consider primitives and Boolean operations that could be used to create a "rough" model of each of the items shown below. Using the photos as underlays, sketch primitives that could be used to create items a–d.
 - a. Handlebar-mount gun rack

b. ACME Corporation reduction gear

c. Ashcroft Model 1305D deadweight pressure tester

d. Davis Instruments solar-powered digital thermometer

12. Use nothing but solid primitives to create a model of a steam locomotive. Sketch the shapes and note the Boolean operations that would be used to union, difference, or intersect them, or create the model using Boolean operations with your modeling software. Use at least one box, sphere, cylinder, cone, torus, wedge, and pyramid in your design.

CHAPTER EXERCISES

Exercise 4.1 Draw inclined line AB 65 mm long. Bisect it with line CD.

Exercise 4.2 Draw any angle. Label its vertex C. Bisect the angle and transfer half the angle to place its vertex at arbitrary point D.

Exercise 4.3 Draw an inclined line EF. Use distance GH equal to 42 mm. Draw a new line parallel to EF and distance GH away.

Exercise 4.4 Draw line JK 95 mm long. Draw a second line LM 58 mm long. Divide JK into five equal parts. Use a different method than you selected to divide line JK to divide line LM into three equal parts.

Exercise 4.5 Draw line *OP* 92 mm long. Divide it into three proportional parts with the ratio 3:5:9.

Exercise 4.6 Draw a line 87 mm long. Divide it into parts proportional to the square of x, where x = 1, 2, 3, and 4.

Exercise 4.7 Draw a triangle with the sides 76 mm, 85 mm, and 65 mm. Bisect the three interior angles. The bisectors should meet at a point. Draw a circle inscribed in the triangle, with the point where the bisectors meet as its center.

Exercise 4.8 Draw a right triangle that has a hypotenuse of 65 mm and one leg 40 mm. Draw a circle through the three vertices.

Exercise 4.9 Draw inclined line QR 84 mm long. Mark point P on the line 32 mm from Q. Draw a line perpendicular to QR at point P. Select any point S 45.5 mm from line QR. Draw a line perpendicular from S to line QR.

Exercise 4.10 Draw two lines forming an angle of 35.5°.

Exercise 4.11 Draw two lines forming an angle of 33.16°.

Exercise 4.12 Draw an equilateral triangle with sides of 63.5 mm. Bisect the interior angles. Draw a circle inscribed in the triangle.

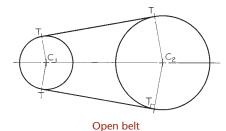
Exercise 4.13 Draw an inclined line TJ 55 mm long. Using line TJ as one of the sides, construct a square.

Exercise 4.14 Create a 54-mm-diameter circle. Inscribe a square in the circle, and circumscribe a square around the circle.

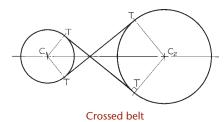
Exercise 4.15 Create a 65-mm-diameter circle. Find the vertices of an inscribed regular pentagon. Join these vertices to form a five-pointed star.

Exercise 4.16 Create a 65-mm-diameter circle. Inscribe a hexagon, and circumscribe a hexagon.

Exercise 4.17 Create a square with 63.5 mm sides. Inscribe an octagon.


Exercise 4.18 Draw a triangle with sides 50 mm, 38 mm, and 73 mm. Copy the triangle to a new location and rotate it 180°.

Exercise 4.19 Make a rectangle 88 mm wide and 61 mm high. Scale copies of this rectangle, first to 70 mm wide and then to 58 mm wide.


Exercise 4.20 Draw three points spaced apart randomly. Create a circle through the three points.

Exercise 4.21 Draw a 58-mm-diameter circle. From any point S on the left side of the circle, draw a line tangent to the circle at point S. Create a point T, to the right of the circle and 50 mm from its center. Draw two tangents to the circle from point T.

Exercise 4.22 Open-Belt Tangents. Draw a horizontal centerline near the center of the drawing area. On this centerline, draw two circles spaced 54 mm apart, one with a diameter of 50 mm, the other with a diameter of 38 mm. Draw "open-belt"-style tangents to the circles.

Exercise 4.23 Crossed-Belt Tangents. Use the same instructions as Exercise 4.22, but for "crossed-belt"-style tangents.

Exercise 4.24 Draw a vertical line VW. Mark point P 44 mm to the right of line VW. Draw a 56-mm-diameter circle through point P and tangent to line VW.

Exercise 4.25 Draw a vertical line XY. Mark point P 44 mm to the right of line XY. Mark point Q on line XY and 50 mm from P. Draw a circle through P and tangent to XY at point Q.

Exercise 4.26 Draw a 64-mm-diameter circle with center C. Create point P to the lower right and 60 mm from C. Draw a 25-mm-radius arc through P and tangent to the circle.

Exercise 4.27 Draw intersecting vertical and horizontal lines, each 65 mm long. Draw a 38-mm-radius arc tangent to the two lines.

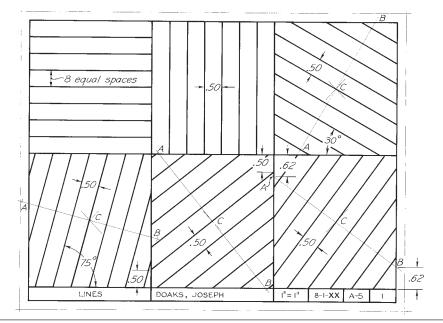
Exercise 4.28 Draw a horizontal line. Create a point on the line. Through this point, draw a line upward to the right at 60° from horizontal. Draw 35-mm-radius arcs in an obtuse and an acute angle tangent to the two lines.

Exercise 4.29 Draw two intersecting lines to form a 60° angle. Create point *P* on one line a distance of 45 mm from

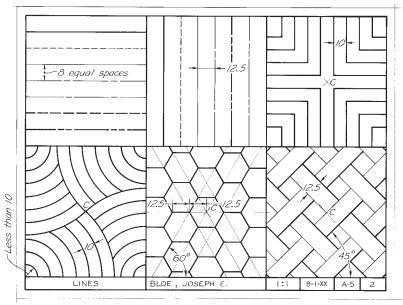
the intersection. Draw an arc tangent to both lines with one point of tangency at *P*.

Exercise 4.30 Draw a vertical line AB. In the lower right of the drawing, create a 42-mm-radius arc with its center 75 mm to the right of the line. Draw a 25-mm-radius arc tangent to the first arc and to line AB.

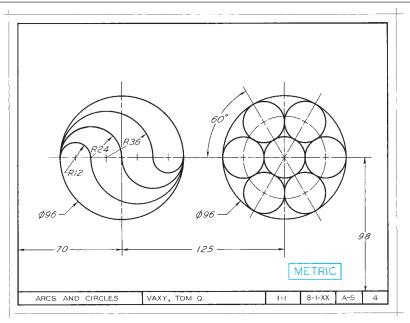
Exercise 4.31 With centers 86 mm apart, draw arcs of radii 44 mm and 24 mm. Draw a 32-mm-radius arc tangent to the two arcs.

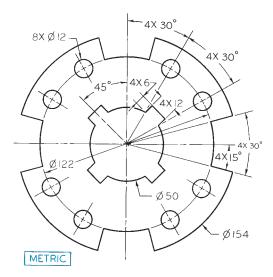

Exercise 4.32 Draw a horizontal centerline near the center of the drawing area. On this centerline, draw two circles spaced 54 mm apart, one with a diameter of 50 mm, the other with a diameter of 38 mm. Draw a 50-mm-radius arc tangent to the circles and enclosing only the smaller one.

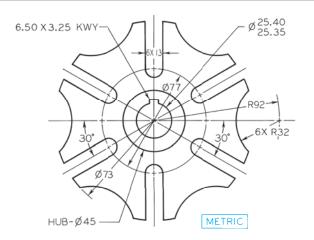
Exercise 4.33 Draw two parallel inclined lines 45 mm apart. Mark a point on each line. Connect the two points with an ogee curve tangent to the two parallel lines. (An ogee curve is a curve tangent to both lines.)

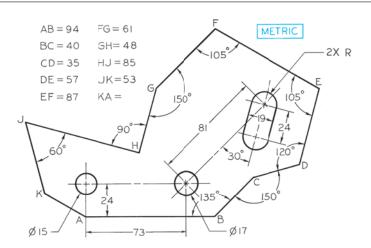

Exercise 4.34 Draw a 54-mm-radius are that subtends an angle of 90°. Find the length of the arc.

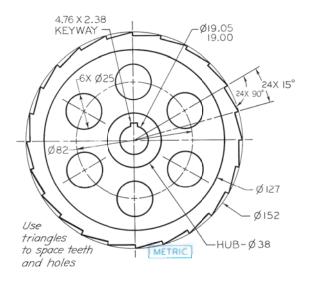
Exercise 4.35 Draw a horizontal major axis 10 mm long and a minor axis 64 mm long to intersect near the center of the drawing space. Draw an ellipse using these axes.

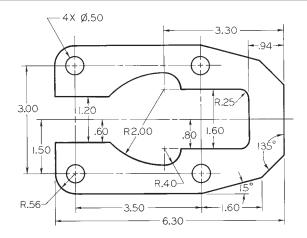

Exercise 4.36 Create six equal rectangles and draw visible lines, as shown. Omit dimensions and instructional notes.

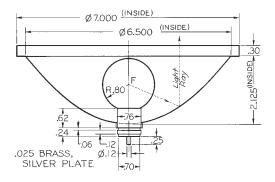

Exercise 4.37 Create six equal rectangles and draw lines as shown. In the first two spaces, draw examples of the standard line patterns used in technical drawings: visible, hidden, construction, centerlines, cutting-plane lines, and phantom. In the remaining spaces, locate centers *C* by diagonals, and then work constructions out from them. Omit the metric dimensions and instructional notes.

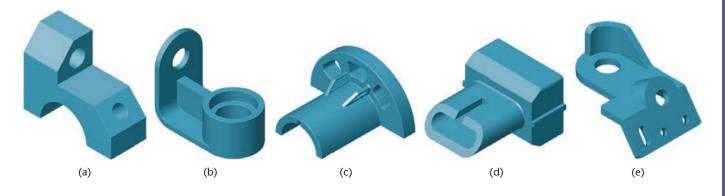

Exercise 4.38 Draw the figures as shown. Omit all dimensions.


Exercise 4.39 Draw the friction plate. Omit dimensions and notes.

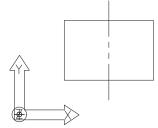

Exercise 4.40 Draw the Geneva cam. Omit dimensions and notes.


Exercise 4.41 Draw accurately in pencil the shear plate. Give the length of *KA*. Omit the other dimensions and notes.

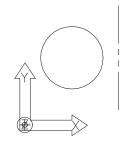

Exercise 4.42 Draw the ratchet wheel using pencil. Omit the dimensions and notes.


Exercise 4.43 Draw the latch plate using pencil. Omit the dimensions and notes.

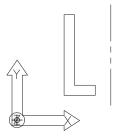
Exercise 4.44 Draw the parabolic floodlight reflector shown.

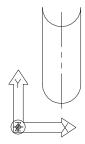


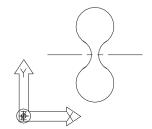
Exercise 4.45 Identify the solid primitives and Boolean operations you could use to create the following objects.

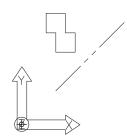


Exercise 4.46 Use an isometric grid to help sketch the solids formed by revolving the following shapes about the axis shown. Coordinates are defined by the X-Y-Z icon, with positive X to the right, positive Y up, and positive Z out of the page.

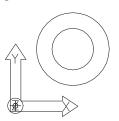



b.

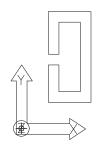

c.


d.

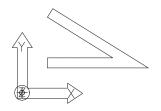
e.

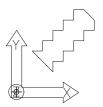


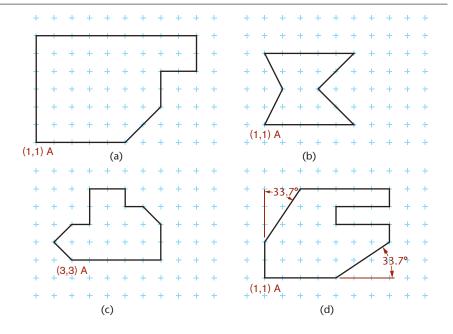
f.



Exercise 4.47 Use an isometric grid to help sketch the solids formed by extruding the following shapes along the axis specified. Coordinates are defined by the X-Y-Z icon, with positive X to the right, positive Y up, and positive Z out of the page.


a. Extrude 6 inches in the positive Z-direction.

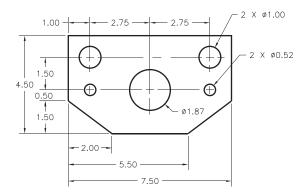

b. Extrude 4 inches in the positive Z-direction.


c. Extrude 6 inches in the positive Z-direction.

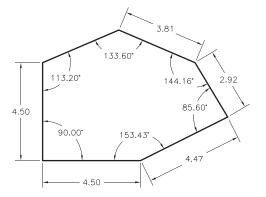
d. Extrude 4 inches in the positive Z-direction.

Exercise 4.48 Starting at point A in each of the figures, list the coordinates for each point in order as relative coordinates from the previous point.

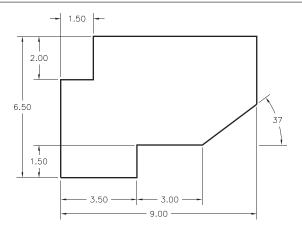
Exercise 4.49 Plot the coordinates in each of the lists on grid paper. Each point represents the endpoint of a line from the previous point, unless otherwise indicated. Relative coordinates are preceded by @.


a.	X, Y
	1.00, 1.00
	4.00, 1.00
	4.00, 2.00
	6.00, 2.00
	6.00, 1.00
	8.00, 1.00
	8.00, 4.00
	5.00, 4.00
	4.00, 5.00
	1.00, 5.00
	1.00, 1.00

	b.	0.00, 0.00
1.00		3.00, 0.00
1.00		4.00, 1.00
2.00		5.00, 0.00
2.00		6.00, 1.00
1.00		7.00, 0.00
1.00		8.00, 1.00
4.00		9.00, 0.00
4.00		10.00, 1.00
5.00		10.00, 3.00
5.00		9.00, 4.00
1.00		8.00, 3.00
		7.00, 4.00
		6.00, 3.00
		5.00, 4.00


4.00, 3.00

d. 2,2
@-1<0
@3<90
@4<-30
@3<30
@1<0
@3.24<230
@4<180


Exercise 4.50 Using the information provided on the drawing, determine the coordinates you would use (absolute, relative, or polar) and the order in which you would enter them to create the figure.

Exercise 4.51 Using the information provided on the drawing, determine the coordinates you would use (absolute, relative, or polar) and the order in which you would enter them to create the figure.

Exercise 4.52 Using the information provided on the drawing, determine the coordinates you would use (absolute, relative, or polar) and the order in which you would enter them to create the figure.

INDEX

2D CAD models, 176–177	3D printing, as prototyping tool, 479	American bond, 797
2D drawings. See also drawings.	3D shapes, formulas for, A-34–A-35	American Gear Manufacturers Association
aligned sections, 302	8-pitch thread, 598	(AGMA), 731
aligning views, 299–300	12-pitch thread, 598	American National screw threads,
break lines, 297–298	16-pitch thread, 598	A-53-A-55
common manufactured features, 286, 304	30° angles, estimating, 90	American National Standard cap screws,
complex cylindrical shapes, 288	45° miter line, 238, 259	618
conventional breaks, 298-299		American National Standard pipe thread,
conventional edges, 295		610–611
conventions, 287	A	American National Standard Unified screw
cylinders, 289–290	abbreviations	threads, A-53–A-55
ellipses, 290	dimensioning, 537	American National Standards Institute
enlarged details, 298	electronic diagrams, 763	(ANSI) standards, 16
fillets, 293–294	list of, A-4–A-29	abbreviations, A-4 to A-29
hole features, in orthographic views, 303	absolute coordinates, 128, 153	bolts, 614–615, A-58 to A-60
intersections, 287, 290–291	accessibility, checking fits, 433	cap screws, 618, A-58 to A-62
necessary views, 296–297	accuracy	cast iron pipe flanges and fittings,
partial views, 297–298	checking working drawings, 650	A-89–A-92
plotting curves by hand, 289	dimensional, 445–446	cast iron pipe screwed fittings,
removed views, 287, 299–301	dimensioning, structural drawings, 794	A-87–A-89
revolution conventions, 302	importance of, 70	cast iron pipe thicknesses and weights,
revolved sectional views, 302	isometric drawings, 94	A-86
right- and left-hand parts, 301–302	surface models, 188 verifying, 455	clearance locational fits, A-38–A-39
rounds, 293–294	working drawings, 650	cotter pins, A-72
runouts, 294	Acme threads	dimensions, 520–521, 538
tangencies, 287, 290–291 tangent surfaces, hiding, 292	detailed description, 607	electronic diagram symbols, A-80 flanged fittings, 835
2D models	forms, 596	force and shrink fits, A-42–A-43
constraint-based modeling, 178	notes, 605	heating, ventilating, and ductwork sym-
paper drawings, 176	fits, 605	bols, A-79
wireframe, 222	specifications, A-57, A-65	locational interference fits, A-41
3D CAD modeling	actual local feature, 548	machine screws, A-63–A-64
assembly drawings, example, 654–656	actual mating envelope, 549	metric hole basis clearance fits,
case study: exercise bike brake, 157–159	actual minimal material envelope, 549	A-45–A-46
combining shapes. See solid primitives.	actual size, 548	metric hole basis transition and
coordinates, 126–130	adapters between copper pipe and threaded	interference fits, A-47-A-48
creating auxiliary views, 397	pipe, 836	metric shaft basis clearance fits,
vertices, 127	adaptive control (AC), 447	A-49–A-50
virtual prototypes, 181	addendum, 736	metric shaft basis transition and
VR (virtual reality), 181	addendum circle, 734	interference fits, A-51-A-52
3D data, contour maps from, 824	adjacent views, 369	nuts, 614-615, A-58-A-60
3D models	aerial photogrammetry, 812	pipe threads, 610–611
developing views from, 247-248	aeronautical maps, 811	piping symbols, A-78
isometric projection, 83	AISC Manual of Steel Construction, 790	pressure piping, 840
physical models, 179–180	align constraint, 422	rivets, 623-624
prototypes, 179–180	align offset, 422	running and sliding fits, A-36-A-37
solid models, 190, 223	aligned sections, 302, 343–345	screw threads, 598–599, 604–605,
surface models, 184–189	Allen key screw drivers, 619	A-55–A-55
terrain models, 819	allowance, 450, 548	sheets, 49
types of, 182–183, 223	alloys and their characteristics, 443	slotted and socket head cap screws, 618,
wireframe modeling, 182–183, 223	alternate views, 369	A-61–A-62
visualizing, 258	aluminum, as drawing medium, 49	springs, 625

archiving work history, 724

American National Standards Institute (ANSI) standards, continued	arcs bisecting manually, 134	assembly sections, 346, 640, 645–646 associativity, constraint-based
steel pipe flanges and flanged fittings,	defining, 132–133	modeling, 218
838	delta angles, 133	AutoCAD
taper pins, A-71	dimensioning, 517	2D CAD models, 176–177
tolerance, 560, 566	drawing tangents to, 135–136	2D constraints, 178
transition locational fits, A-40	formulas for, 132–133	annotation scaling, 54
twist drill sizes, A-56 to A-57	included angles, 133	constraint defaults, changing, 201
washers, A-68 to A-69	isometric, 95	constraints, 136, 160
wood screws, 621	sketching, 76–77	electronic diagram symbols, 764
Woodruff keys, A-66	arrow-side welds, 851	geometric construction geometry, 136
wrought steel pipe and taper pipe threads,	arrowheads, dimensioning, 508	isometric drawings, 97
A-85	artificial intelligence (AI), 448	mass properties, 455
American National thread, 594, 596	ASCII file formats, 456–457	object snap, 129, 134, 137
American National thread fits, 599	ashlar masonry, 798	perspective views, 111
American Records Management Association	ASME Y14.41 Digital Product Definition	scaling text, 54
(ARMA), 713	Data Practices, 540, 713	Autodesk Inventor
American Society for Engineering Educa-	ASME/ANSI Y14.6 Screw Thread Representation 50% 604	spur gears, 748
tion (ASEE), 16	sentation, 598, 604	weld symbols, 861
American Welding Society Standards,	assemblies	automated assembly, 447
A-74–A-76	constraint-based modeling, 217–218	automated materials handling, 447 auxiliary plane, 364
analysis stage, design process, 5, 11–12	DFA (design for assembly), 416	auxiliary sections, 376
analytical models, 174–175 analyzing complex objects, 66–67	simulation, 429 sketching techniques, 103	auxiliary views
angle of thread, 595	assemblies, and design	adjacent views, 369
angles	assembling to a skeleton, 425–426	alternate views, 369
bisecting, 137	bottom-up design, 424, 449–450	circles and ellipses, 372, 373
dihedral, 384	constraint-based drawing elements,	classification of, 366
dimensioning, 517	428–429	creating with CAD, 373, 397
implied right, 550	global parameters, 427–428	depth, 366–367
isometric drawings, 90	layout drawings, 425	descriptive geometry, 378
oblique projection, 101	middle-out design, 424	developments and intersections, 385–395
sketching techniques, 70	overview, 424	front adjacent, 366
tolerance, 575	seed parts, 428–429	half, 375
views of, 253	top-down design, 424, 449–450	height, 366–367
angles, laying out	assemblies, checking fits, 432–433	hidden lines, 373
chord method, 138	assembly constraints, 421–422	partial, 375
sine method, 138	assembly drawings	plotting curves manually, 374–375
tangent method, 138	3D CAD, example, 654–656	primary, 365
angular perspective. See two-point	assembly sections, 640, 645–646	projecting, 370–371
perspective.	check assemblies, 647	purpose of, 364, 378
angular tolerance, 558	dimensions, 640	reference planes, 369
angularity, specifying, 578–579	exploded views, 639-640	reverse construction, 375
annotation scaling, 54	hidden lines, 640	secondary, 368
annular space, copper pipe, 836	installation assemblies, 647	showing true size, 364, 372
ANSI/AF&PA NDS National Design Speci-	outline assemblies, 647	sketching, 371
fication for Wood Construction, 783	overview, 639–640	successive, 368
ANSI/AWS A2.4, Standard Symbols for	poche, 645	third, 368
Welding, Brazing, and Nondestructive	section lining, 645	top adjacent, 366
Examination, 848	views, 639	visualizing as revolved drawing, 366
ANSI/IEEE 315 Graphic Symbols for Elec-	working drawings, 638	width, 366–367
trical and Electronic Diagrams, 758	assembly files, managing, 423	AWS Standard Welding Terms and Defini-
apparent intersection, 145	assembly mode, constraint-based modeling,	tions, 848
appearance, manufacturing materials, 445	216	axes, positioning in isometric drawings, 85
approval, engineering documents, 713	assembly models	axes method for sketching ellipses, 76
approval block, 51, 713	constraint-based assemblies, 419	axis of revolution, 395
approximated curves, 142, 144	dynamic assemblies, 418, 421	axis of screw, 595
arc welding, 848, 850	parent parts, choosing, 420	axonometric projection, 32, 82–83
Archimedes, history of the screw	static assemblies, 418	piping drawings, 832
principle, 595	subassemblies, 418	sketches, 81
architects' scale, 39, A-93	assembly parts	D.
architectural terra cotta, 798	fastener libraries, 431	В

standard parts, 430-431, 646

back or backing welds, 850, 856

box primitive, 146	graphics and design process, Santa Cruz
bracket method for dual dimensioning, 512	Bicycles, 8–15
brake press, 438	heart model, 186
	Hyatt Regency walkway collapse, 712
	Oral-B toothbrush design, 112–115
	patent application, 653
	robot hand, 219–221
	Santa Cruz Bicycles, 8–15
	sheet metal modeling, 449–450
•	sketching techniques, 109, 112–115
	Smart Tourniquet, 224–227
	surface modeling, 224–227
	symmetry, 157–159
	vibration analysis, Quantel USA,
buttress thread, 59/	481–482
_	Zuma coffee brewer, 418, 421
	cast iron pipe, 834
	cast iron pipe ANSI standards
1 0	drilling for bolts, A-90–A-92
	flanges and fittings, A-89–A-92
	screwed fittings, A-87–A-88
_	thicknesses and weight, A-86
- · · · · · · · · · · · · · · · · · · ·	casting
	design tips, 441–442
	metal parts, 437
	sand casting, 437, 448
· · · · · · · · · · · · · · · · · · ·	cavalier projection, 99
	cavities, 480
	cellular manufacturing, 447–448
	center of gravity, 453 centerline method
-	for four-center ellipses, 94
	for sketching circles, 75
	centerlines
	dimensioning, 506
	isometric drawings, 89
	uses for, 244, 246
	centralizing (C) thread fits, 605
	centroid, 453
	ceramic manufacturing materials, 443
	cgs (centimeter-gram-second) system, 456
-	chained dimensions, 559
	chamfers
	definition, 214, 286, 524
*	dimensioning, 524
-	change permission, engineering
•	documents, 718
-	chassis, displaying functional
*	designations, 771
	check valves, 839
	checked-by block, 713
•	checking assemblies, 647
	chord method for laying out angles, 138
	chordal addendum, 736
	chordal dimensions, 523
	chordal thickness, 736
-	chords, 792
	circled numbers in drawings, 642-643
	circles
-	in auxiliary views, 373
	C' 1 1 12C
exercise bike brake, 157–159	Circle command, 136
exercise bike brake, 157–159 floating bridge, 191–192	circumference, 132 defining, 132–133
	bracket method for dual dimensioning, 512

circles, continued	expert systems, 448	part mode, 216
diameter, 132	FMS (flexible manufacturing	subassemblies, 216
dividing equally, 735	systems), 448	constraints
drawing tangents to, 135	GT (group technology), 447	applying, 203
formulas for, 132–133, A-30	industrial robots, 447	base points, setting, 204–205
great, 394–395	JIT (just-in-time) production, 447	AutoCAD, 160
involutes, 734	concentric (insert) constraint, 422	defaults, changing, 201
oblique, 98, 100	concentricity tolerance, 579	design intent, 197–198
radius, 132	concrete construction, 794–796	geometric, 193
sketching, 75	concurrent engineering	overconstrained sketches, 203
in perspectives, 107	design process, 6	sketch constraints, 110, 199-202
circuit diagrams, 760–761	documentation management, 719	underconstrained sketches, 203
circular pitch, 736	cones	relationships, table of, 202
circularity (roundness) tolerance, 576	definition, 65	size, 193
circumference, 132	developments, 391-392	SolidWorks, 202
city maps, 820-821	dimensioning, 522	types of, 193
Class 1 thread fits, 599	formulas, A-34	construction drawings. See working
Class 2 thread fits, 599	primitive, 146	drawings.
Class 3 thread fits, 599	conic sections, 386	construction lines, 36, 66
clay construction, 797	connection diagrams, 760–761	continuous dimensioning, 559
clearances	connections	continuous liquid interface production
fits, 551, A-38-A-39	electronic diagrams, 766	(CLIP), 477
holes, 612–613	structural steel drawings, 786	contour intervals, landform drawings, 816
clip angles, 792	welded and bolted, 789	contour maps from 3D data, 824
CLIP (continuous liquid interface produc-	constraining	contours
tion), 477	degrees of freedom, 570	landform drawings, 811, 816
close running fits, A-36	sketches, 110	sketching techniques, 67
close sliding fits, A-36	constraint-based modeling	convex, 854
CMM (coordinate measuring machine), 16	2D models, 178	conventions for 2D drawings, 287
CNC (computer numerical control), 447	advantages of, 191	breaks, 298-299, 346
coarse threads, 598	assemblies, 217-218, 419	edges, 295
coincident (align) constraint, 422	case studies, 11, 157–159, 191–192,	converting
color coding, electronic diagrams, 768	219–221	motion with gears. See gears.
combination screw drivers, 619	cosmetic dimensions, 195	between U.S. and metric measures, A-73
combination units, dimensioning, 513	definition, 178	Coon's patch, 187
combined tolerance symbols, 567	design intent, 197–198, 219–221	coordinate dimensions, 531, 533
combining surfaces, 187	drawing elements, 428–429	coordinate measuring machine (CMM), 16
comma-delimited text format, 457	driven dimensions, 194, 195	coordinate systems
common manufactured features, 286, 304	driving dimensions, 194	for 3D CAD modeling, 126–130, 153
complex cylindrical shapes, in 2D	feature dimensions, 194	invention of, 127
drawings, 288	feature-based modeling, 196–197	origins (point of intersection), 127
complex surfaces, 187, 216	formulas in dimensions, 194–195	right-hand rule, 126
composite materials, 443	global parameters, 195	specifying location, 126, 129–130
compression springs, 625	parameters, 193	user-created, 153–154
computer graphics	reference dimensions, 195	X- and Y-axes, 127
electronic diagrams, 773	variables, 193	coordinates
sketching techniques, 108	constraint-based modeling, features	absolute, 128
computer numerical control (CNC), 447	adding, 206	cylindrical, 129
computer-aided design (CAD). See CAD.	base features, 205–206	definition, 127
computer-aided engineering (CAE), 7	built-in, 213	polar, 128
computer-aided manufacturing (CAM),	datums, 209–211	relative, 128
7, 458	editing, 212	spherical, 129
computer-aided process planning	existing, specifying an edge for, 206	copper pipe
(CAPP), 447	hole properties, 213	adapting to threaded pipe, 836
computer-integrated manufacturing	parent-child relationships, 207–209	drawings, 835
AC (adaptive control), 447	placed, 213	joints and fittings, 836
AI (artificial intelligence), 448	standard, 213	copper tubing, 835–836
automated assembly, 447	constraint-based modeling modes	cores, 480
automated materials handling, 447	assembly mode, 216	corner joint, 850
CAPP (computer-aided process	associativity, 218	corners rounding on plactic parts 436
planning), 447	bidirectional associativity, 218	corners, rounding on plastic parts, 436
cellular manufacturing, 447–448	drawing mode, 216	cosmetic dimensions, 195
CNC (computer numerical control), 447	drawings from the model, 218–221	cost estimates, modeling, 461–462

cotter pins, 617, A-72	decimal-inch drawing scale, A-93, A-95	surface types, 385
counterbored holes	decimal-inch values, dimensioning, 511	transition pieces, 393–394
definition, 213-214, 286	dedendum, 736	triangulation, 393
dimensioning, 521	default coordinate system, 153	deviation, metric tolerances, 562
	-	
countersunk holes, 213–214, 286, 521	Define, Measure, Analyze, Improve, and	DFA (design for assembly), 416
CPVC (chlorinated polyvinyl chloride) pipe	Control (DMAIC), 7	DFM (design for manufacture), 416. See
drawings, 836	degrees of freedom, constraining, 570	also manufacturing processes.
creativity techniques, 16–17	delta angles, 133	DFSS (Design for Six Sigma), 7
crest (of thread), 595	depth	diameter, 132
cross section. See section views.	auxiliary views, 366–367	diametral pitch, 734, 737
crossovers, in electronic diagrams, 766	thread, 595	difference (subtract) operation, 147–148
cubic splines, 142	in orthographic views, 235	differential leveling, landform drawings, 815
curved surfaces, dimensioning, 523	depth dimensions, transferring, 238	digital databases, 7, 722–723
_	· ·	
curves	derived surfaces, 187	digital product definition, 581–584
dimensioning, 522	Descartes, René, 127	digitizing, surface models, 187
freeform. See spline curves.	descriptive geometry, 177, 378	dihedral angles, 384
isometric drawings, 91	descriptive models, 173	dimension lines, 506, 508
perspectives, 107	Design Activity Identification (DAI), in title	dimension values, rules for, 512
plotting by hand in 2D drawings, 289	blocks, 51	dimensional accuracy, 445–446
cutaway views. See section views.	design database, documentation manage-	dimensional constraints, 160
cutting planes	ment, 712	dimensioning
	*	
choosing, 331	design drawings, 786	abbreviations, 537
description, 328	design for assembly (DFA), 416	angles, 517
direction, visualizing, 334	design for manufacture (DFM), 416. See	arcs, 517
half sections, 337	also manufacturing processes.	arrowheads, 508
labeling, 332	Design for Six Sigma (DFSS), 7	BA (bend allowance), 536
cutting-plane lines	design intent	centerlines, 506
definition, 328	capturing, 219–221	chamfers, 524
illustration, 329	case study: Santa Cruz Bicycles, 11	choosing dimensions, 505
line style, 334	constraint-based modeling, 197–198	cones, 522
cycloids, A-103	planning for, 197–198	coordinate, 533
cylinder primitive, 146	design process	counterbores, 521
cylinders	case study: Santa Cruz bicycles, 8–15	curved surfaces, 523
in 2D drawings, 290	design intent, 11	curves, 522
complex shapes in 2D drawings, 288	in a portfolio, 18–19	cylinders, 518–519
definition, 65	stages of, 5–6, 8-15	direction of values and notes, 510
elements of, 65	definition, 5	dos and don'ts, 538-539
formulas, A-35	designating fitting size, 837	drawing scale, indicating, 509
intersection with a plane, 389	designing quality into products, 7	extension lines, 506, 508
-		
isometric drawings, 95	detail drawings, 638, 640–641	fillet welds, 853
size dimensioning, 518–519	detailed thread drawings, 600–601, 603	fillets, 517
sliced, 289	Detailing for Steel Construction, 786	finish marks, 526
cylindrical cams, 747	developable surfaces, 386	general notes, 536
cylindrical coordinates, 129	developed piping drawings, 832	geometric breakdown, 506-507
cylindricity tolerance, 576, 577	development of a surface, 385	holes, 519–520
	developments	IML (inside mold line), 536
D	definition, 385	isometric drawings, 86
	equator, 395	keyways, 525
da Vinci, Leonardo, 17, 595	-	
DAI (Design Activity Identification), in title	generatrix, 385	knurls, 525
blocks, 51	great circle, 394–395	lay symbols, 529
databases, 7, 722–723	hems and joints, 390	leaders, 509
datum	hood and flue, 392–393	legibility, 510, 514–515
description, 209-211	hyperboloids, 385	lines used in, 506
identifying, 567	intersections, 385–389	local notes, 536–537
landform drawings, 810	laying out a surface, 387	mold line, 536
	meridian, 395	neutral axis, 536
tolerance symbols, 567, A-81	plane and a cone, 391–392	for numerically-controlled
datum features, 568–571		-
versus datum feature simulator, 569, 571	plane and a pyramid, 391	machining, 534
datum planes, 209–210	plane and a sphere, 394–395	OML (outside mold line), 536
datum reference frame, 569	plane and an oblique cylinder, 391	overview, 504–506
datum targets, 570	plane and an oblique prism, 390	piping drawings, 833
daylight polymer printing (DPP), 477	polyconic method, 395	placing dimensions, 505, 514-515
decimal dimension values, rounding, 512	polycylindric method, 395	portfolio, 541–542

dimensioning, continued	ASME Y14.41 Digital Product Defini-	balloon numbers, 642-643
prisms, 518	tion Data Practices, 713	BOM (bill of material), 642, 644-645
pyramids, 522	backing up drawing files, 718	for buildings. See structural drawings.
roughness values, 528-529	case studies, 712, 726–727	circled numbers, 642–643
rounded-end shapes, 523	checked-by block, 713	for civil structures. See structural
rounds, 517	in concurrent engineering teams, 719	drawings.
shaft centers, 525	design database, 712	concrete construction. See structural
sheet metal bends, 536	drawing control methods, 713–715	drawings, concrete construction.
spotfaces, 521	drawing standards, 717	construction. See structural drawings;
standards, 538	drawn-by block, 713	working drawings.
stretchout, 536	ECOs (engineering change orders), 714	detail, 640–641
structural steel drawings, 794	electronic storage, 715	identification, 642-643
supplementary notes, 536-537	engineering ethics, 712	of individual parts, 640–641
surface roughness, 526-527	enterprise level, 721	of landforms. See landform drawings.
surface texture symbols, 527-528, 529	FDA guidelines, 713	laying out, 246
symbols, 513, 520–521	file naming conventions, 716	managing. See documentation
tabular, 534	flat-file databases, 722–723	management.
tapers, 524	individual productivity, 724	multidetail, 643
technique, 505	International Organization for Standardi-	part, 640–641
in terms of material removal, 515	zation, 719–720	parts list. See BOM (bill of material).
threads, 524	ISO 9000/9001, 719-720	piece part, 640–641
tolerance, 505	organizing by product, 721	piping. See piping drawings.
triangular prisms, 522	organizing directory structures, 715–716	reading, 255
units, 510–512	ownership, 718	sheet metal, 448, 483, 484
waviness values, 528	PIN (part identification number), 716	size, in title blocks, 51
dimensions	PDM (product data management) sys-	standard bolts, 615
assembly drawings, 640	tem, 721, 724	structural steel. See structural drawings,
baseline, 531	permissions, 718	structural steel.
chordal, 523	quality management, 719–720	subassemblies, 642
coordinate, 531	relational databases, 722–723	threads. See threads, drawing.
forging, 535	release, 713	title, in title blocks, 51
holes about a common center, 530–531	requirements for, 713	welding, 448, 484
location, 506-507, 530-531	retention period, 713	wood construction. See structural draw-
machine, 535	revision blocks, 714–715	ings, wood construction.
mating, 532	storage media, 718	drawings, assembly. See assembly drawings
pattern, 535	on the Web, 725	drawings, lines. See also lines.
size, 506–507	work flow management, 724–725	definition, 34
superfluous, 516	work group level, 721	freehand technique, 34, 36
units of measure, 505	dos and don'ts, dimensioning, 538–539	types of, 34–35
dimetric projection, 83	double-curved surfaces, 64, 385	drawings, scale. See also scale.
diode symbol, electronic diagrams, 764	double-line piping drawings, 830–831	definition, 37
direct light processing (DLP), 477	double-square screw drivers, 619	indicating, 509
digital light synthesis (DLS), 477	doughnut-shaped solids. See tori.	laying out a drawing, 38
directory structures, documentation manage-	downloading, fasteners, 628	specifying on a drawing, 37
ment, 715–716	downstream applications. See modeling,	drawn-by block, 713
displacement diagrams for cams, 744	downstream applications.	drill bits, sizes, A-56–A-57
Divide command, 735	DPP (daylight polymer printing), 477	driven dimensions, 194, 195
Dividers Method for drawing pentagons,	draft, plastic parts, 434, 436	driving dimensions, 194
140	drafting standards. See standards.	dual dimensioning, 512
dividing lines equally or proportionally, 74	drawing control methods, 713–715	ductwork symbols, A-79
DLP (direct light processing), 477	Drawing Exchange Format (DXF), 458	Dview, AutoCAD command, 111
DLS (digital light synthesis), 477	drawing format, electronic diagrams, 762	DXF (Drawing Exchange Format), 458
DMAIC (Define, Measure, Analyze,	drawing media, 49	dynamic assemblies, 418, 421
Improve, and Control), 7	drawing mode, 216	aynamic assembles, 116, 121
documentation	drawing number, in title blocks, 51	
purpose of technical drawing, 4	drawing pencils, 45–46	ECN (iii
design process, 5	drawing scales, 37–39, 74, A-93–A-95	ECN (engineering change notification), 714
documentation management	drawing size, electronic diagrams, 762	ECOs (engineering change orders), 7, 714
approval block, 713	drawing standards, 717	ECR (engineering change request), 714
	_	edge joint, 850
archiving work history, 724	drawings See also 2D drawings; electronic	edges
ARMA (American Records Management	drawings. See also 2D drawings; electronic	in 2D drawings, 295
Association), 713	diagrams; sketching. ball tags, 642–643	sketching techniques, 69
	vaii tags, 042-043	in views, 250–252

editing	relays, 762	exporting data from the database. See mod-
features, 212	signal paths, 764–765	eling, exporting data from the database.
surface models, 188	size, 762	extension figure, 790
EDM (enterprise data management), 7	stages, 764	extension lines, 506, 508
egg-shaped solids. See ellipsoids.	standard symbols, 758, 762, A-80	extension springs, 625–626
8-pitch thread, 598	switches, 762	external square thread, 608
eight-point method for sketching ellipses, 92	symbol libraries, 758	external threads
ejector pins, plastic parts, 434–435	template for, 764	defined, 595
elasticity, 464	electronic survey instruments, 812	dimensioning, 524
electric resistance welding. See resistance	elements	forms, 596–597
welding.	cylinders, 65	notes, 604–605
electron tube pin identification, in electronic	standard layouts, 50–51	symbols, 606
diagrams, 769	surface, 385	extruded forms, 151
electronic diagrams	elevation view, 793. See also landform	extruded surfaces, 184–185
abbreviations, 763	drawings, elevation.	extrusion, definition, 151
IEEE 315 Graphic Symbols for Electrical	ellipses	
and Electronic Diagrams, 758	in 2D drawings, 290	F
chassis, displaying functional	approximate, A-96	faces
designations, 771	approximating perimeter of, 141	flanges, 838
circuit diagram, 760–761	in auxiliary views, 373	objects. See planar surfaces; polyhedra.
color coding, 768	definition, 65	factor of safety, 451
computer graphics, 773	double-curved surface, 385	fasteners
connection diagram, 760–761	drawing, 141	downloading, 628
connections, 766	examples, 65	overview, 594, 621
crossovers, 766	formulas, A-33	portfolio, 629-630
division of parts, 769	locating the foci of, 141	FDA guidelines, documentation manage-
drawing size, format, and title, 762	orienting in isometric drawings, 93	ment, 713
electron tube pin identification, 769	pencil and string method for drawing,	FDM (fused deposition modeling), 478
examples, 758, 759	141	FEA (finite element analysis), 174, 190,
functional block diagram, 760	sketching, 76	463–467
functional identification, 771	embryo heart model, 186	feather keys, 622
ground points, 771	enclosing-square method for sketching	features. See also constraint-based mod-
grouping parts, 763	circles, 75	eling, features.
inductance, 770	enclosing-rectangle method for four-center	datum, 568–571
integrated circuits, 771	ellipses, 94	definition, 196
interconnection diagram, 760	engineering change notification (ECN), 714	first created. See base feature.
interrupted paths, 766	engineering change orders (ECOs), 7, 714	size designation, 548
lettering, 762	engineering change request (ECR), 714	tolerance, 548
line conventions, 762	engineering drawings. See documentation	feature control frame, 566
MIL-STD-681 Identification Coding and	management; drawings; sketching.	feature dimensions, 194
Application of Hook Up and Lead	engineering ethics, 712	feature of size, 548
Wires, 758	engineering maps, 811	feature-based modeling, 196–197. See also
numerical values, 770	engineers' drawing scale, 37, A-93, A-95 English bond, 797	constraint-based modeling.
part value placement, 770	enlarging shapes with a grid of squares, 78	ferrous metals, manufacturing materials, 443
portfolio, 774 printed circuits, 772	enterprise data management (EDM), 7	field rivets, 624
reference designations, 770	enterprise data management (EDM), 7 enterprise level documentation management,	file formats, 456–457
resistors, 771	721	file naming conventions, documentation
schematic diagram, 760–761	epicycloid, A-103	management, 716
semiconductors, 770	equation solvers, 460	filler beams, 786
signal paths, 762	equator, 395	fillets. See also runouts.
single-line diagram, 760	equilateral hyperbolas, A-100	in 2D drawings, 293–294
standards, 758, A-80	erasers, 46	definition, 214, 286
terminals, 767–768	erection plans, 786–787	dimensioning, 517
transformer windings, 771	ergonomics, 433. <i>See also</i> human factors.	example, 215, 286
types of, 760–761	essential shapes, 66	shading, 293
UL (Underwriters' Laboratory)	ethics, of engineering drawings, 712	fillet welde 701, 850, 852, 855
standards, 758	examples. See case studies; portfolios	fillet welds, 791, 850, 853–855
wiring diagram, 760–761	(examples).	filling sectioned areas, assembly drawings,
electronic diagrams, symbols	expert systems, 448	645 fillister head cap screws, 618
arranging, 764–765	exploded views, assembly drawings,	fine thread, 598
AutoCAD tool palette, 764	639–640	finish, bolts, 614
diodes, 764	export formats, 457–459	finish marks, dimensioning, 526
	-	

finishing operations, 448	forging, 448, 535	gears
finite element analysis (FEA), 174, 190,	form tolerance	alternative devices, 747
463–467	for single features, 576–577	base circle, constructing, 734
finite elements, 463	symbols, 566–568	bevel, 740–741
first-angle projection, 240–241, 242–243	variations, 549	circular pitch, 736
fit. See also tolerance.	forming metal, principal methods, 448	converting motion, 732
allowance, 548–549, 551	formulas	definition, 732
assemblies. See assemblies, checking fits.	circles and arcs, 132	friction wheels, 732
case study, 583	in dimensions, 194–195	gear ratio, 732
clearance locational, A-38–A-39	for geometric entities, A-30–A-35	helical, 732
force and shrink, A-42–A-43	operators, table of, 195	herringbone, 732
interference, 551, 554–555	45° miter line, 238, 259	hypoid, 732
line, 552	four-center ellipses, sketching, 93–94	line of contact, 734
locational interference, A-41	fps (foot-pound-second) system, 456	linear pitch, 736
mating parts, 551	fractions, lettering, 43	pinion, 732
metric hole basis clearance, A-45–A-46	frame beam connections, 790	pitch circles, 732
metric hole basis transition and interfer-	freeform curves. <i>See</i> spline curves.	pitch diameter, 732
ence, A-47–A-48 metric shaft basis clearance, A-49–A-50	freehand compass, 75 freehand sketching	portfolio, 748–749
metric shaft basis clearance, A-49–A-50	arcs, 77	rack, 736
ence, A-51–A-52	blocking in borders, 71	rack teeth, 736 rpm (revolutions per minute), 732
metric system, 562–563	construction lines, 36	spacing gear teeth, 735
running and sliding, A-36–A-37	ellipses, 76	spacing gear teeth, 755 spur, 732–737
specifying, 552	finding the midpoint on a line, 71	stock models and drawings, 742
study, 583	lines, 34, 36, 71	transmitting power, 732
thread, 599–600	long freehand lines, 73	worm, 738–739
transition locational, 552, A-40	friction wheels, 732	gears, involute tooth shape
types and subtypes, 560	front adjacent, 366	addendum circle, 734
fit, threads	front orientation, 240	approximating with circular arcs,
Acme thread notes, 605	front views, 234–236	734–735
American National thread fits, 599	frontal plane projection, 236	diametral pitch, 734
C (centralizing), 605	frustum, 65	hobbing, 735
definition and classes, 599	full sections	root circle, 734
G (general purpose), 605	definition, 328–329	chordal addendum, 736
metric, 600	visualizing, 330–331	chordal thickness, 736
unified, 600	functional block diagrams, 760	dedendum, 736
fitting size, designating, 837	functional decomposition, as design aid, 16	definition, 732–733
flag notes, 537	functional identification, in electronic dia-	designing, 737
flanged fittings, 837	grams, 771	diametral pitch, 737
flanged joints, 834, 838	fundamental deviation, metric tolerances,	formulas, 732–733
flanges	562–563	gear blanks, 736
cast iron pipe, A-89–A-92	fused deposition modeling (FDM), 478	outside diameter, 736
definition, 214, 286		pitch diameter, 736
in structural steel shapes, 788	G	root diameter, 736
flared joints, 835–836	G (general purpose) notes for thread fits,	whole depth, 736
flash welds, 850, 853, 858	605	working drawings, 736–737
flat head cap screws, 618	gage	general notes, dimensioning, 536
flat keys, 622, A-65	line thickness, 34	general purpose (G) notes for thread fits,
flat patterns. See also developments.	thread pitch, 597	605
definition, 385	wire, standards, A-70	generatrix, 385
modeling sheet metal parts, 438–439	gage blocks, 555	Genesis space capsule crash, 70
flat springs, 625–626	gage line, of angles, 790	geometric breakdown, dimensioning, 506
flat-file databases, 722–723	galvanized pipe, 834	geometric characteristic symbols, 566, A-81
flatness tolerance, 576	gas metal arc welding (GMAW), 848	geometric constraints, 136, 160, 193
Flemish bond, 797	gas tungsten arc welding (GTAW), 848	geometric constructions
flip constraint, 422	gas welding, 848, 850	angle layout, 138
flush symbol, 854 FMS (flexible manufacturing systems), 448	gaskets, 838	arcs, 133
foci of an ellipse, locating, 141	gate valves, 839	arcs tangent to arcs, 136 bisecting angles, 137
folding lines, 237, 364	gauge, sheet metal, 450	bisecting lines and circular arcs, 134
fonts (lettering), 40	GDT (geometric dimensioning and toleranc-	circles, 132–133,
force fits, A-42–A-43	ing), 565–582, A-81–A-84	conic sections, 386
foreshortening, 83	gear blanks, 736 gear ratio, 732	cycloids, A-103
<i>U</i> , -	50m 10m0, 102	J /

plane and a prism, 387-388

ellipses, 141, 143-47, A-96	hatchures, landform drawings, 811	1
epicycloid, A-103	HDPE (high-density polyethylene) pipe	ideation, design process, 5
equilateral triangles, 139	drawings, 836	case study: Santa Cruz Bicycles, 9
equilateral hyperbolas, A-100	heart model, 186	universal possibilities, 9
geometric entities, 130–133	heating, ventilating, and ductwork symbols,	identifying drawings, 642-643
helix, A-101	A-79	IGES (Initial Graphics Exchange Specifica
hexagons, 139	height, in views, 235	tion), 458
hyperbolas, A-99	height auxiliary views, 366–367	IML (inside mold line), dimensioning, 536
hypocycloids, A-103	helical gears, 732	implementation, design process, 3, 5
involutes, A-102	helical springs, 625–627	implied right angles, tolerances, 550
parabolas, A-97–A-98	helix, A-101	inch-pound-second (ips) system, 456
parallel lines, 137	hems, sheet metal, 390, 439	inclined edges, in views, 252
pentagons, 140	herringbone gears, 732	inclined (italic) fonts, 40–42
polygons, 139–140	hex head bolts, A-58–A-60	inclined surfaces
spiral of Archimedes, A-101	grades, 617	isometric drawings, 89
spline curves, 142–144	sketching, 616	in views, 250–251
tangents with arcs, 135–136	hex screw drivers, 619	included angles, 133
tangents with circles, 135	hexagon head cap screws, 618	individual productivity, documentation
triangles, 138, 139	hexagon socket cap screws, 618	management, 724
geometric continuity, 215	hexagons	inductance, in electronic diagrams, 770
geometric dimensioning and tolerancing	centerline variation, 140	industrial robots, 447
(GDT), 565–582, A-81–A-84	drawing, 140	industry cases. See case studies.
geometric entities. See specific shapes.	hexalobular screw drivers, 619	injection-molding, plastic parts, 434–436
geometric method for drawing pentagons,	hidden lines	insert (concentric) constraint, 422
140	assembly drawings, 640	installation assemblies, assembly drawings
geometric methods for plane figures, 78	in auxiliary views, 373	647
geometric tolerances. See GDT (geometric	correct and incorrect practices, 245	integrated circuits, in electronic diagrams,
dimensioning and tolerancing).	description, 243	771
geometric transformations, 154	intersecting, 243 isometric drawings, 89	integrated modeling and design, 472–473
gib head keys, 622, A-65 girders, 786	techniques for drawing, 244	interconnection diagrams, 760
glass box, 236–238	high-density polyethylene (HDPE) pipe	interference, checking fits, 432–433
global parameters	drawings, 836	Interference Detection command, 583
assemblies and design, 427–428	high-strength concrete, 794	interference fit locational, A-41
definition, 195	high-strength steel bolts, 792–793	*
global positioning system (GPS), 812	highway plans, landform drawings, 823	metric tolerances, 563 preferred metric hole basis, A-47–A-48
globe valves, 839	hobbing, involute tooth shape, 735	preferred metric shaft basis, A-51–A-52
GMAW (gas metal arc welding), 848	hole features, in orthographic views, 303	tolerances, 551, 554–555
GPS (global positioning system), 812	hole properties, 213	intermittent fillet welding, 854
GPS satellite constellation, 812	hole system	internal square thread, 608
grade (slope), 517	metric tolerances, 563	internal square timead, 500
grades of steel, 788	tolerances, 554–555	internal thread symbols, 606
graphics exchange format, 457–458	holes	international drafting standards, 16
great circle, 394–395	blind, 213	International Organization for Standardiza-
green lumber, 783	counterbored, 213	tion (ISO), 16, 719–720
grid paper, sketching auxiliary views, 371	countersunk, 213	international tolerance grade (IT), 562
groove welds, 850, 855	locating about a common	interpolated patches, 187
ground points, in electronic diagrams, 771	center, 530–531	interpolated splines, 142, 144
grouping parts, in electronic diagrams, 763	size dimensioning, 519–520	interpolating polynomials, 467
GT (group technology), 447	spotface, 213	interpreting
GTAW (gas tungsten arc welding), 848	through, 213	lines, 253
guidelines, for lettering, 40, 42	hood and a flue, developing, 392–393	points, 253
	horizon line, 107	views, 254
Н	horizontal plane projection, 236	interrupted paths, in electronic
half auxiliary views, 375	human factors, 470-471. See also	diagrams, 766
half sections, 337	ergonomics.	intersecting hidden lines, 243
Handbook of Bolts and Bolted Joints, 793	HumanCAD software models, 471	intersection operation, 147–148
haptic devices, 181	hyperbolas, A-99	intersections
hard temper copper tubing, 835–836	hydrographic maps, 811	in 2D drawings, 287, 290-291
hatching	hyperboloids, double-curved surface, 385	apparent intersection, 145
description, 68	hypocycloids, A-103	definition, 145, 385
section lining, 335	hypoid gears, 732	plane and a cylinder, 389

sectioned areas, assembly drawings, 645

	1 050	1 1 1 4 77
intersections, continued	edge, 850	topographic symbols, A-77
principles of, 386	flanged, 834, 838	traverses, 810
in sections, 346	flared, 835–836	landform drawings, city maps
investment casting, 480	lap, 850	landscape drawings, 820–821
involute tooth shape	pipe expansion, 832	overview, 819
addendum circle, 734	riveted, 623	subdivision plats, 820-821
approximating with circular	screwed, 838	landform drawings, elevation
arcs, 734–735	sheet metal, 390	calculation of vertical curves, 823
description, 734	solder, 835–836, 838	definition, 810
diametral pitch, 734	T-joint, 850	determining, 815
	welded, 838	<u> </u>
hobbing, 735		getting information for, 812–813
root circle, 734	wood, 784	interpolating data, 817–818
involutes, construction, A-102	**	landform drawings, getting information for
ips (inch-pound-second) system, 456	K	aerial photogrammetry, 812
irregular objects, isometric drawings, 91	kerned pairs of letters, 44	electronic survey instruments, 812
irregular surfaces, 152	keys	GPS (global positioning system), 812
ISO (International Organization for Stand-	feather, 622	GPS satellite constellation, 812
ardization), 16, 719–720	flat, 622, A-65	laser distance meters, 813
ISO 9000/9001, 719-720	gib head, 622, A-65	Manual of Surveying Instructions for
isometric axes, 84	plain taper, A-65	the Survey of the Public Lands of the
isometric drawings	Pratt & Whitney, 622, A-67	United States, 814
30° angles, estimating, 90	square, 622, A-65	NGS (National Geodetic Survey), 813
angles, 90	Woodruff, 622, A-66	optical mechanical systems, 814
arcs, 95	keyway/keyseat	photogrammetry, 812
with AutoCAD software, 97	definition, 214, 286	satellite imagery, 812
box construction, 86	dimensioning, 525	scaled measurements, 814
,	K-factor, 450	stadia method, 814
centerlines, 89	knuckle thread, 597	steel tape, 814
curves, 91		
cylinders, 95	knurls	terrestrial photogrammetry, 813
definition, 85	definition, 214, 286	landscape drawings, 820–821
dimensioning, 86	dimensioning, 525	landscape maps, 811
ellipses, 92–95		landscape orientation, 49
hidden lines, 89	L	lap joint, 850
inclined surfaces, 89	labeling cutting planes, 332	laser distance meters, 813
irregular objects, 91	laminated object manufacturing (LOM), 478	lay symbols, 528–529
nonisometric lines, 88	land survey plat, 810	layers, 2D CAD models, 176
normal surfaces, 86–87	landform drawings	laying out a drawing, 38
from an object, 96	3D terrain models, 819	layout drawings, assemblies, and design,
ablique quefo esc. 90		
oblique surfaces, 89	aeronautical maps, 811	425
offset location measurements, 88	aeronautical maps, 811 bearings, 815	425 layouts
offset location measurements, 88	bearings, 815	
offset location measurements, 88 overview, 85	bearings, 815 cadastral maps, 811	layouts borders, 50
offset location measurements, 88 overview, 85 positioning the axes, 85	bearings, 815 cadastral maps, 811 cartography, 811	layouts borders, 50 definition, 52
offset location measurements, 88 overview, 85 positioning the axes, 85 of rectangular objects, 86	bearings, 815 cadastral maps, 811 cartography, 811 contour intervals, 816	layouts borders, 50 definition, 52 letter sizes, 50
offset location measurements, 88 overview, 85 positioning the axes, 85 of rectangular objects, 86 screw threads, 95	bearings, 815 cadastral maps, 811 cartography, 811 contour intervals, 816 contour maps from 3D data, 824	layouts borders, 50 definition, 52 letter sizes, 50 margins, 50
offset location measurements, 88 overview, 85 positioning the axes, 85 of rectangular objects, 86 screw threads, 95 spheres, 96	bearings, 815 cadastral maps, 811 cartography, 811 contour intervals, 816 contour maps from 3D data, 824 contours, 811, 816	layouts borders, 50 definition, 52 letter sizes, 50 margins, 50 planning, 52–53
offset location measurements, 88 overview, 85 positioning the axes, 85 of rectangular objects, 86 screw threads, 95 spheres, 96 isometric projection, 83–84	bearings, 815 cadastral maps, 811 cartography, 811 contour intervals, 816 contour maps from 3D data, 824 contours, 811, 816 datum, 810	layouts borders, 50 definition, 52 letter sizes, 50 margins, 50 planning, 52–53 portfolio, 55–56
offset location measurements, 88 overview, 85 positioning the axes, 85 of rectangular objects, 86 screw threads, 95 spheres, 96 isometric projection, 83–84 isometric scales, 84	bearings, 815 cadastral maps, 811 cartography, 811 contour intervals, 816 contour maps from 3D data, 824 contours, 811, 816 datum, 810 differential leveling, 815	layouts borders, 50 definition, 52 letter sizes, 50 margins, 50 planning, 52–53 portfolio, 55–56 title block, 51
offset location measurements, 88 overview, 85 positioning the axes, 85 of rectangular objects, 86 screw threads, 95 spheres, 96 isometric projection, 83–84 isometric scales, 84 isometric sketches. <i>See</i> isometric drawings.	bearings, 815 cadastral maps, 811 cartography, 811 contour intervals, 816 contour maps from 3D data, 824 contours, 811, 816 datum, 810 differential leveling, 815 engineering maps, 811	layouts borders, 50 definition, 52 letter sizes, 50 margins, 50 planning, 52–53 portfolio, 55–56 title block, 51 zone numbers, 50
offset location measurements, 88 overview, 85 positioning the axes, 85 of rectangular objects, 86 screw threads, 95 spheres, 96 isometric projection, 83–84 isometric scales, 84 isometric sketches. <i>See</i> isometric drawings. isometric views, 249	bearings, 815 cadastral maps, 811 cartography, 811 contour intervals, 816 contour maps from 3D data, 824 contours, 811, 816 datum, 810 differential leveling, 815 engineering maps, 811 hatchures, 811	layouts borders, 50 definition, 52 letter sizes, 50 margins, 50 planning, 52–53 portfolio, 55–56 title block, 51 zone numbers, 50 zones, 50
offset location measurements, 88 overview, 85 positioning the axes, 85 of rectangular objects, 86 screw threads, 95 spheres, 96 isometric projection, 83–84 isometric scales, 84 isometric sketches. <i>See</i> isometric drawings. isometric views, 249 IT (international tolerance grade), 562	bearings, 815 cadastral maps, 811 cartography, 811 contour intervals, 816 contour maps from 3D data, 824 contours, 811, 816 datum, 810 differential leveling, 815 engineering maps, 811 hatchures, 811 highway plans, 823	layouts borders, 50 definition, 52 letter sizes, 50 margins, 50 planning, 52–53 portfolio, 55–56 title block, 51 zone numbers, 50 zones, 50 lead (of a screw thread), 595
offset location measurements, 88 overview, 85 positioning the axes, 85 of rectangular objects, 86 screw threads, 95 spheres, 96 isometric projection, 83–84 isometric scales, 84 isometric sketches. <i>See</i> isometric drawings. isometric views, 249	bearings, 815 cadastral maps, 811 cartography, 811 contour intervals, 816 contour maps from 3D data, 824 contours, 811, 816 datum, 810 differential leveling, 815 engineering maps, 811 hatchures, 811 highway plans, 823 hydrographic maps, 811	layouts borders, 50 definition, 52 letter sizes, 50 margins, 50 planning, 52–53 portfolio, 55–56 title block, 51 zone numbers, 50 zones, 50 lead (of a screw thread), 595 lead, worm gears, 738–739
offset location measurements, 88 overview, 85 positioning the axes, 85 of rectangular objects, 86 screw threads, 95 spheres, 96 isometric projection, 83–84 isometric scales, 84 isometric sketches. <i>See</i> isometric drawings. isometric views, 249 IT (international tolerance grade), 562 italic (inclined) fonts, 40–42	bearings, 815 cadastral maps, 811 cartography, 811 contour intervals, 816 contour maps from 3D data, 824 contours, 811, 816 datum, 810 differential leveling, 815 engineering maps, 811 hatchures, 811 highway plans, 823 hydrographic maps, 811 landscape maps, 811	layouts borders, 50 definition, 52 letter sizes, 50 margins, 50 planning, 52–53 portfolio, 55–56 title block, 51 zone numbers, 50 zones, 50 lead (of a screw thread), 595 lead, worm gears, 738–739 lead grades for drawing pencils, 46
offset location measurements, 88 overview, 85 positioning the axes, 85 of rectangular objects, 86 screw threads, 95 spheres, 96 isometric projection, 83–84 isometric scales, 84 isometric sketches. See isometric drawings. isometric views, 249 IT (international tolerance grade), 562 italic (inclined) fonts, 40–42	bearings, 815 cadastral maps, 811 cartography, 811 contour intervals, 816 contour maps from 3D data, 824 contours, 811, 816 datum, 810 differential leveling, 815 engineering maps, 811 hatchures, 811 highway plans, 823 hydrographic maps, 811 landscape maps, 811 military maps, 811	layouts borders, 50 definition, 52 letter sizes, 50 margins, 50 planning, 52–53 portfolio, 55–56 title block, 51 zone numbers, 50 zones, 50 lead (of a screw thread), 595 lead, worm gears, 738–739 lead grades for drawing pencils, 46 leaders, dimensioning, 509
offset location measurements, 88 overview, 85 positioning the axes, 85 of rectangular objects, 86 screw threads, 95 spheres, 96 isometric projection, 83–84 isometric scales, 84 isometric sketches. <i>See</i> isometric drawings. isometric views, 249 IT (international tolerance grade), 562 italic (inclined) fonts, 40–42	bearings, 815 cadastral maps, 811 cartography, 811 contour intervals, 816 contour maps from 3D data, 824 contours, 811, 816 datum, 810 differential leveling, 815 engineering maps, 811 hatchures, 811 highway plans, 823 hydrographic maps, 811 landscape maps, 811 military maps, 811 monuments, 811	layouts borders, 50 definition, 52 letter sizes, 50 margins, 50 planning, 52–53 portfolio, 55–56 title block, 51 zone numbers, 50 zones, 50 lead (of a screw thread), 595 lead, worm gears, 738–739 lead grades for drawing pencils, 46 leaders, dimensioning, 509 least material condition (LMC), tolerance
offset location measurements, 88 overview, 85 positioning the axes, 85 of rectangular objects, 86 screw threads, 95 spheres, 96 isometric projection, 83–84 isometric scales, 84 isometric sketches. <i>See</i> isometric drawings. isometric views, 249 IT (international tolerance grade), 562 italic (inclined) fonts, 40–42 JIT (just-in-time) production, 447 Jo blocks, 555	bearings, 815 cadastral maps, 811 cartography, 811 contour intervals, 816 contour maps from 3D data, 824 contours, 811, 816 datum, 810 differential leveling, 815 engineering maps, 811 hatchures, 811 highway plans, 823 hydrographic maps, 811 landscape maps, 811 military maps, 811	layouts borders, 50 definition, 52 letter sizes, 50 margins, 50 planning, 52–53 portfolio, 55–56 title block, 51 zone numbers, 50 zones, 50 lead (of a screw thread), 595 lead, worm gears, 738–739 lead grades for drawing pencils, 46 leaders, dimensioning, 509 least material condition (LMC), tolerance symbols, 567
offset location measurements, 88 overview, 85 positioning the axes, 85 of rectangular objects, 86 screw threads, 95 spheres, 96 isometric projection, 83–84 isometric scales, 84 isometric sketches. <i>See</i> isometric drawings. isometric views, 249 IT (international tolerance grade), 562 italic (inclined) fonts, 40–42	bearings, 815 cadastral maps, 811 cartography, 811 contour intervals, 816 contour maps from 3D data, 824 contours, 811, 816 datum, 810 differential leveling, 815 engineering maps, 811 hatchures, 811 highway plans, 823 hydrographic maps, 811 landscape maps, 811 military maps, 811 monuments, 811	layouts borders, 50 definition, 52 letter sizes, 50 margins, 50 planning, 52–53 portfolio, 55–56 title block, 51 zone numbers, 50 zones, 50 lead (of a screw thread), 595 lead, worm gears, 738–739 lead grades for drawing pencils, 46 leaders, dimensioning, 509 least material condition (LMC), tolerance symbols, 567 left- and right-hand parts, 149, 301–302
offset location measurements, 88 overview, 85 positioning the axes, 85 of rectangular objects, 86 screw threads, 95 spheres, 96 isometric projection, 83–84 isometric scales, 84 isometric sketches. <i>See</i> isometric drawings. isometric views, 249 IT (international tolerance grade), 562 italic (inclined) fonts, 40–42 JIT (just-in-time) production, 447 Jo blocks, 555	bearings, 815 cadastral maps, 811 cartography, 811 contour intervals, 816 contour maps from 3D data, 824 contours, 811, 816 datum, 810 differential leveling, 815 engineering maps, 811 hatchures, 811 highway plans, 823 hydrographic maps, 811 landscape maps, 811 military maps, 811 monuments, 811 nautical maps, 811	layouts borders, 50 definition, 52 letter sizes, 50 margins, 50 planning, 52–53 portfolio, 55–56 title block, 51 zone numbers, 50 zones, 50 lead (of a screw thread), 595 lead, worm gears, 738–739 lead grades for drawing pencils, 46 leaders, dimensioning, 509 least material condition (LMC), tolerance symbols, 567 left- and right-hand parts, 149, 301–302 left-hand rule of coordinate systems, 126
offset location measurements, 88 overview, 85 positioning the axes, 85 of rectangular objects, 86 screw threads, 95 spheres, 96 isometric projection, 83–84 isometric scales, 84 isometric sketches. <i>See</i> isometric drawings. isometric views, 249 IT (international tolerance grade), 562 italic (inclined) fonts, 40–42 JIT (just-in-time) production, 447 Jo blocks, 555 join/add (union) operation, 147–148	bearings, 815 cadastral maps, 811 cartography, 811 contour intervals, 816 contour maps from 3D data, 824 contours, 811, 816 datum, 810 differential leveling, 815 engineering maps, 811 hatchures, 811 highway plans, 823 hydrographic maps, 811 landscape maps, 811 military maps, 811 monuments, 811 nautical maps, 811 overview, 810–811	layouts borders, 50 definition, 52 letter sizes, 50 margins, 50 planning, 52–53 portfolio, 55–56 title block, 51 zone numbers, 50 zones, 50 lead (of a screw thread), 595 lead, worm gears, 738–739 lead grades for drawing pencils, 46 leaders, dimensioning, 509 least material condition (LMC), tolerance symbols, 567 left- and right-hand parts, 149, 301–302 left-hand rule of coordinate systems, 126 left-hand screw threads, 598
offset location measurements, 88 overview, 85 positioning the axes, 85 of rectangular objects, 86 screw threads, 95 spheres, 96 isometric projection, 83–84 isometric scales, 84 isometric sketches. <i>See</i> isometric drawings. isometric views, 249 IT (international tolerance grade), 562 italic (inclined) fonts, 40–42 JIT (just-in-time) production, 447 Jo blocks, 555 join/add (union) operation, 147–148 joints bell and spigot, 834 butt, 850	bearings, 815 cadastral maps, 811 cartography, 811 contour intervals, 816 contour maps from 3D data, 824 contours, 811, 816 datum, 810 differential leveling, 815 engineering maps, 811 hatchures, 811 highway plans, 823 hydrographic maps, 811 landscape maps, 811 military maps, 811 monuments, 811 nautical maps, 811 overview, 810–811 plats, 810	layouts borders, 50 definition, 52 letter sizes, 50 margins, 50 planning, 52–53 portfolio, 55–56 title block, 51 zone numbers, 50 zones, 50 lead (of a screw thread), 595 lead, worm gears, 738–739 lead grades for drawing pencils, 46 leaders, dimensioning, 509 least material condition (LMC), tolerance symbols, 567 left- and right-hand parts, 149, 301–302 left-hand rule of coordinate systems, 126 left-hand screw threads, 598 left-handed lettering, 45
offset location measurements, 88 overview, 85 positioning the axes, 85 of rectangular objects, 86 screw threads, 95 spheres, 96 isometric projection, 83–84 isometric scales, 84 isometric sketches. See isometric drawings. isometric views, 249 IT (international tolerance grade), 562 italic (inclined) fonts, 40–42 JIT (just-in-time) production, 447 Jo blocks, 555 join/add (union) operation, 147–148 joints bell and spigot, 834	bearings, 815 cadastral maps, 811 cartography, 811 contour intervals, 816 contour maps from 3D data, 824 contours, 811, 816 datum, 810 differential leveling, 815 engineering maps, 811 hatchures, 811 highway plans, 823 hydrographic maps, 811 landscape maps, 811 military maps, 811 monuments, 811 nautical maps, 811 overview, 810–811 plats, 810 portfolio, 825	layouts borders, 50 definition, 52 letter sizes, 50 margins, 50 planning, 52–53 portfolio, 55–56 title block, 51 zone numbers, 50 zones, 50 lead (of a screw thread), 595 lead, worm gears, 738–739 lead grades for drawing pencils, 46 leaders, dimensioning, 509 least material condition (LMC), tolerance symbols, 567 left- and right-hand parts, 149, 301–302 left-hand rule of coordinate systems, 126 left-hand screw threads, 598 left-handed lettering, 45 left-side views, 234–235
offset location measurements, 88 overview, 85 positioning the axes, 85 of rectangular objects, 86 screw threads, 95 spheres, 96 isometric projection, 83–84 isometric scales, 84 isometric sketches. <i>See</i> isometric drawings. isometric views, 249 IT (international tolerance grade), 562 italic (inclined) fonts, 40–42 JIT (just-in-time) production, 447 Jo blocks, 555 join/add (union) operation, 147–148 joints bell and spigot, 834 butt, 850	bearings, 815 cadastral maps, 811 cartography, 811 contour intervals, 816 contour maps from 3D data, 824 contours, 811, 816 datum, 810 differential leveling, 815 engineering maps, 811 hatchures, 811 highway plans, 823 hydrographic maps, 811 landscape maps, 811 military maps, 811 monuments, 811 nautical maps, 811 overview, 810–811 plats, 810 portfolio, 825 profiles, 811	layouts borders, 50 definition, 52 letter sizes, 50 margins, 50 planning, 52–53 portfolio, 55–56 title block, 51 zone numbers, 50 zones, 50 lead (of a screw thread), 595 lead, worm gears, 738–739 lead grades for drawing pencils, 46 leaders, dimensioning, 509 least material condition (LMC), tolerance symbols, 567 left- and right-hand parts, 149, 301–302 left-hand rule of coordinate systems, 126 left-hand screw threads, 598 left-handed lettering, 45 left-side views, 234–235 legibility, dimensioning, 510, 514–515
offset location measurements, 88 overview, 85 positioning the axes, 85 of rectangular objects, 86 screw threads, 95 spheres, 96 isometric projection, 83–84 isometric scales, 84 isometric sketches. <i>See</i> isometric drawings. isometric views, 249 IT (international tolerance grade), 562 italic (inclined) fonts, 40–42 JIT (just-in-time) production, 447 Jo blocks, 555 join/add (union) operation, 147–148 joints bell and spigot, 834 butt, 850 capillary. <i>See</i> solder joints.	bearings, 815 cadastral maps, 811 cartography, 811 contour intervals, 816 contour maps from 3D data, 824 contours, 811, 816 datum, 810 differential leveling, 815 engineering maps, 811 hatchures, 811 highway plans, 823 hydrographic maps, 811 landscape maps, 811 military maps, 811 monuments, 811 nautical maps, 811 overview, 810–811 plats, 810 portfolio, 825 profiles, 811 structure location plans, 822	layouts borders, 50 definition, 52 letter sizes, 50 margins, 50 planning, 52–53 portfolio, 55–56 title block, 51 zone numbers, 50 zones, 50 lead (of a screw thread), 595 lead, worm gears, 738–739 lead grades for drawing pencils, 46 leaders, dimensioning, 509 least material condition (LMC), tolerance symbols, 567 left- and right-hand parts, 149, 301–302 left-hand rule of coordinate systems, 126 left-hand screw threads, 598 left-handed lettering, 45 left-side views, 234–235

lettering	calculating proportions, 74	brake press, 438
CAD examples, 40	dividing lines, 74	cast parts, 437, 441–442, 448
consistent letter height, 40	equal parts, 74	common production methods, 440
definition, 34	finding a midpoint, 73	computer integrated. See computer-inte-
in electronic diagrams, 762	line patterns, 72	grated manufacturing.
fractions, 43	lineweights, 72	DFM (design for manufacture), 416
guidelines, 40, 42	long freehand lines, 73	dimensional accuracy, 445–446
by hand, 40	parallel, exaggerating closely spaced, 74	forging, 448
inclined (italic), 41–42	proportional parts, 74	library of standard punches, 439
kerned pairs of letters, 44	straight lines, 73	machined parts, modeling, 437–438
for left-handers, 45	techniques for, 72	machining, 448
with a pencil, 45	lines of sight. See projectors.	metal forming, principal methods, 448.
spacing, 40, 44	lineweights, 72	See also specific methods.
stability, 44	LMC (least material condition), tolerance	molds, 437, 480
standards, 40	symbols, 567	nanofabrication, 446
template for, 42	Load Resistance Factor Design (LRFD), 790	nanotechnology, 446
for titles, 45	local coordinate systems, 153	net-shape manufacturing, 446
vertical, 41	local notes, dimensioning, 536–537	permanent molds, 437
lettering (fonts), 40	location, specifying with coordinate sys-	sand casting, 437, 448
library of standard punches, 439	tems, 126, 129–130	shared manufacturing, 448
life cycle design, 6	location dimensions, 506, 530-531	Standard for Aluminum Sand and
life-cycle analysis, 473	lock nuts and locking devices	Permanent Mold Castings, 437
lift check valves, 839	cotter pins, 617, A-72	surface finish, 445–446
limit dimensions, 552	lock washers, 617, A-69	welding drawings, 448, 484
limit tolerances, 557	overview, 617	manufacturing processes, plastic parts
line conventions, in electronic diagrams, 762	set screws, 617, 620	constant wall thickness, 436
line fit, 552	lock washers, 617, A-69	draft, 434
line gage, 34	lofting, 185–186	draft angle, 436
line of contact, 734	LOM (laminated object manufacturing), 478	drawings, portfolio, 483
line patterns, 72	long freehand lines, 73	ejector pins, 434–435
linear pitch, 736	lower deviation, metric tolerances, 562	injection-molding characteristics, 434
lines	lugs, 214, 286	injection-molding guidelines, 436
bisecting manually, 74, 134		parting line, 434–435
break, 297	M	projections, 436
center. See centerlines.	machine dimensions, 535	rounding corners, 436
description, 130	machine pins, 622	taper, 434
dividing equally or proportionally, 74	machine screws, 613, A-63-A-64. See also	manufacturing processes, sheet metal
drawing through points, 137	cap screws.	bend allowance, 450
folding, 237	machined parts, modeling, 437-438	case study: Ability Fabricators, Inc.,
freehand construction, 36	machining parts, 448	449–450
hidden. See hidden lines.	machining processes, tolerances, 561	gauge, 450
interpreting, 253	MAG (metal active gas) welding, 848	hems, 439
parallel. See parallel lines.	major diameter (of a screw thread), 595	K-factor, 450
perpendicular. See perpendicular lines.	Manual of Surveying Instructions for the	modeling, 438-440, 449-450
point view, 380	Survey of the Public Lands of the	sheet metal drawings, 448, 483, 484
precedence, 244	United States, 814	thickness, 450
sketching techniques, 69	Manual of Steel Construction, 788	maps. See landform drawings.
specifying, 130	manufactured stone construction, 798	margins, 50
styles, 34–35	manufacturing materials	mass, 452
thick, 34	alloys and their characteristics, 443	mass density, 453
thin, 34	appearance, 445	mass properties, determining. See modeling,
true length, in CAD, 378–379	ceramics, 443	determining mass properties.
used in dimensioning, 506	composite materials, 443	master, creating, 480
lines, cutting-plane	ferrous metals, 443	mate constraint, 422
definition, 328	materials assignment, 444	mate offset, 422
illustration, 329		material files, 444
line style, 334	nanomaterials, 443	material jetting, as prototyping tool, 479
lines, section views	nonferrous metals, 443	materials assignment, 444
behind the cutting plane, 328	plastics, 443	mating dimensions, 532
general rules for, 333	product failure, definition, 443	maximum material condition (MMC),
	recycling, 445	
lines, sketching	service life, 445	tolerance symbols, 567, 574–575
blocking, freehand, 73	manufacturing processes	measurement systems, definition, 34. See
border blocking, 73	assembling an aircraft, 445–446	also specific systems.

mass, 452

measuring, from a reference surface, 238	mass density, 453	models, types of
mechanical engineers' drawing scale, A-93	moment of inertia, 453	analytical, 174–175
media for drawings, 49	overview, 451	comparison of characteristics, 222-223
member marks, in welding, 792	portfolio, 485	descriptive, 173
members, in welding, 792	pounds force, 456	FEA (finite element analysis) model,
meridian, 395	pounds mass, 456	174, 190
meshes, 185, 463–464	radii of gyration, 453	motion analysis, 175
metal active gas (MAG) welding, 848	right cylinder, 452	scale, example, 173
metal connectors for wood construction,	SI (Système International), 456	solid, 190
784–785	surface area, 452	surface, 184–
metal forming, principal methods, 448	units and assumptions, 455–456	constraint-based, 191–192
metal parts, casting, 437	volume, 452	mold line, dimensioning, 536
metric drawing scale, A-93–A-94	modeling, downstream applications	molds
metric fastener standard, 594	elasticity, 464	casting metal parts, 437
metric fits, tolerance symbols, 563	equation solvers, 460	plastic parts, 434–436
metric screw threads, A-53–A-55	FEA (finite element analysis), 463–467	cavities and cores, 480
metric system. See also U.S. customary	finite elements, 463	permanent, 437
units.	going green, 473	moment of inertia, 453
converting to U.S., A-73	human factors, 470–471	monuments, landform drawings, 811
	HumanCAD software models, 471	
description, 36–37		motion analysis, 175
dual dimensioning systems, 36–37	integrated modeling and design, 472–473	Mountz, John, 19
preferred scale ratios, 37	meshes, 463–464	mules, 10
unit conversion, 37	ROBOGUIDE software, 469–470	multidetail drawings, 643
metric thread, 596	simulation software, 468–470	multiple threads, 599
metric thread fits, 600	spreadsheets, 460	multiview projections
metric tolerances, 562–563	virtual prototypes, 469	definition, 32
middle-out design, 424	what-if analysis, 460	description, 234
midpoint of a line, finding, 73	modeling, exporting data from the database	illustration, 82
MIG (metal inert gas) welding, 848	ASCII file formats, 456–457	My Documents folder, documentation
military maps, 811	comma-delimited text format, 457	management, 716
millimeter values, dimensioning, 510–511	common export formats, 457–459	
milling machines, tolerances, 561	for cost estimates, 461–462	N
MIL-STD-681 Identification Coding and	DXF (Drawing Exchange Format), 458	name, in title bocks, 51
Application of Hook Up and Lead	file formats, 456–457	nanofabrication, 446
Wires, 758	graphics exchange format, 457–458	nanomaterials, 443
minor diameter (of a screw thread), 595	IGES (Initial Graphics Exchange Specifi-	nanotechnology, 446
mirrored shapes, 149	cation), 458	NASA space capsule crash, 70
MMC (maximum material condition), 567,	native file formats, 456–457	native file formats, 456–457, 459
574–575	native formats, 459	nautical maps, 811
model space, 48	neutral formats, 459	necessary views, 239–240, 296–297
modeling	overview, 456	neck, 214, 286
case study: brake assembly, 465–467	space-delimited text format, 457	negative space, 67
case study: robot hand, 219–221	STEP (Standard for the Exchange of	net-shape manufacturing, 446
case study: surface modeling, 224–227	Product model data), 458	neutral axis, dimensioning, 536
factors of safety, 451	STL (STereo Lithography) format, 458	neutral formats, 459
interpolating polynomials, 467	tab-delimited text format, 457	NGS (National Geodetic Survey), 813
machined parts, 437–438	vector versus raster data, 459	nominal size
P-elements, interpolating, 467	modeling, for testing and refinement	metric tolerances, 562
sheet metal parts, 438–440, 449–450	case study: testing vibration analysis,	tolerances, 548
springs, 627	481–482	for wood products, 783
threads, 610	overview, 451	nonferrous metals, 443
visible embryo heart model, example,	models	nonisometric lines
186	2D. See 2D models.	
modeling, determining mass properties	3D. See 3D models.	isometric drawings, 88
accuracy, verifying, 455	choosing a method, 222–223	isometric projection, 84
calculations, 454–456	creating, 256	sketching ellipses, 92
	definition, 172	normal edges, in views, 252
center of gravity, 453		normal surfaces
centroid, 453	machined parts, 437–438	isometric drawings, 86–87
cgs (centimeter-gram-second)	materials assignment, 444	in views, 250–251
system, 456	qualities of, 175	notes, dimensioning
fps (foot-pound-second) system, 456	sheet metal parts, 438–440	direction of values and notes, 510
ips (inch-pound-second) system, 456	molded parts, 434–437	general notes, 536

notes, dimensioning, continued	line precedence, 244	PDM (product data management), 7, 721,
local notes, 536–537	multiview projection, 82	724
supplementary notes, 536–537	versus photographs, 243	P-elements, interpolating, 467
thread, 604–605	portfolio, 260–261	pencil and string method for drawing
tolerance, 556	other side welds, 851	ellipses, 141
numbering, working drawings, 650	outline assemblies, assembly drawings, 647	pencils, for drawing. <i>See</i> drawing pencils.
numerical values, in electronic diagrams, 770	outside diameter, spur gears, 736 outside mold line (OML), dimensioning, 536	pentagons, drawing, 140 perfect form envelope, 549
numerically-controlled machining, dimen-	overconstrained sketches, 203	permanent molds, 437
sioning, 534	ownership, documentation management, 718	permission, documentation
NURBS (nonuniform rational B-spline)	1,	management, 718
curves, 143	P	perpendicular constraint, 422
NURBS-based surfaces, 185-186, 188	paper	perpendicular lines
nuts. See bolts and nuts.	for drawing and drafting, 49	definition, 145
	landscape orientation, 49	symbol for, 69
0	for sketching, 49	perpendicularity tolerance, 578–579
object snap feature	standard sheet sizes, 49	perspective projections, 32
definition, 129	conservation, 648	perspective sketches, 81
drawing parallel lines, 137	paper drawings	perspectives
enabling, 134	2D models, 176–177	angular. <i>See</i> two-point perspective. in AutoCAD, 111
locating drawing geometry, 134 oblique cylinder, development with	versus other models, 222–223	bird's-eye view, 107
a plane, 391	paper method for sketching circles, 75 paper space, 48	circles, 107
oblique drawings. See sketching techniques,	parabolas, A-97–A-98	curves, 107
oblique sketches.	parallel (orient) constraint, 422	horizon line, 107
oblique edges, in views, 252	parallel edges, in views, 252	one-point, 105
oblique prism, development with a	parallel lines	parallel. See one-point perspective.
plane, 390	closely spaced, exaggerating, 74	pictorial sketching, 80–82
oblique projection	definition, 145	three-point, 105, 106
angles, 101	drawing, 137	two-point, 105, 106
cabinet projection, 99	receding lines, 99	types of, 104–105. See also specific
cavalier projection, 99	symbol for, 69	types. vanishing point, 104
definition, 32 receding lines, 99	parallel perspective. See one-point	worm's-eye view, 107
oblique projectors, 99	perspective.	phantom lines, 612
oblique surfaces	parallel projections, 32 parallelepiped, 65	Phillips screw drivers, 619
isometric drawings, 89	parallelism tolerance, 578–579	photogrammetry, 812
showing true size and shape, 382–383	parameters, 193	photographs versus orthographic projec-
in views, 250–251	parametric modeling, 110 See also	tions, 243
offset cam followers, 746-747	constraint-based modeling.	physical datum feature simulators, 569
Offset command, 137, 157–159	floating bridge example, 191–192	physical models
offset constraint, 422	Santa Cruz Bicycles, 11	description, 179–180
offset measurements	parent parts, choosing, 420	versus other models, 222–223
creating irregular shapes, 78	parent-child relationships, features, 207–209	pictorial sketching, 80–82 piece marks, 786
isometric drawings, 88 offset sections, 342	part identification number (PIN), documen-	piece marks, 780 piece part drawings, 640–641
OML (outside mold line), dimensioning, 536	tation management, 716 part mode, constraint-based modeling, 216	piecewise splines, 143
one-point perspective, 105	part value placement, in electronic diagrams,	piercing points, 32
one-view drawings, 79	770	PIN (part identification number), documen-
opposite views, 239–240	partial auxiliary views, 375	tation management, 716
optical mechanical systems, 814	partial sections, 341	pinion gears, 732
orient (parallel) constraint, 422	partial views, 297–298, 345	pipe
origins (point of intersection), 127	parting line, plastic parts, 434–435	cast iron. See cast iron pipe.
Orth method for four-center ellipses, 94	parting-line symmetry, 150	compound, 838
orthographic, definition, 236	parts drawings, 640–641	fittings, 837
orthographic projection	parts list. See BOM (bill of material).	joints, 838
axonometric projection, 82	patches	schedules, 834 sizes. <i>See</i> pipe schedules.
centerlines, 244, 246 definition, 32, 236	Coon's, 187	pipe schedules, 834
hidden lines, 243, 244, 245	interpolated, 187 surface, 187	pipe threads, 610–611
indicating symmetrical axes of objects.	patent applications, working drawings, 652	piping drawings
See centerlines.	patent drawings, as design aids, 17	adapters between copper pipe and
laying out a drawing, 246	pattern dimensions, 535	threaded pipe, 836

piping drawings, continued	wrought steel pipe, A-85	polycylindric method for developing a
annular space, 836	piping drawings, cast iron pipe	sphere, 395
bell and spigot joints, 834	screwed fittings, A-87-A-88	polyester film, as drawing medium, 49
black pipe, 834	thickness and weight, A-86	Polygon command, 139
butt welded fittings, 837	piping drawings, cast iron pipe flanges	polygons
capillary joints, 836	drilling for bolts, A-90–A-92	drawing, 139
cast iron pipe, 834	fittings, A-89–A-92	formulas, A-31–A-32
check valves, 839	pitch	rectangle method for sketching, 78
copper pipe, 835	welding drawings, 848	sketching techniques, 78
copper tubing, 835–836	worm gears, 738–739	triangle method for sketching, 78
CPVC (chlorinated polyvinyl chloride)	pitch circles, 732	polyhedra, 64
pipe, 836	pitch curve, cams, 744	polyvinyl chloride (PVC) pipe
designating fitting size, 837	pitch diameter, 595, 732, 736	drawings, 836
developed piping drawings, 832	pivoted cam followers, 746–747	pop rivets, 624
dimensioning, 833	placed features, 213	portfolios (examples)
double-line drawings, 830–831	placing, section views, 331–332	2D drawings, 305–306
for a field instrument, example, 841	placing, section views, 551–552 placing dimensions, 505, 514–515	determining mass properties, 485
-	plain taper keys, A-65	dimensioning, 541–542
flanged fittings, 837		in electronic diagrams, 774
flanged joints, 834, 838	plan. See top view.	fasteners, 629–630
flared joints, 835–836	planar surfaces, 64	
galvanized pipe, 834	plane figures, geometric methods for	gears, 748–749
gaskets, 838	sketching, 78	landform drawings, 825
gate valves, 839	plane of projection, 32, 236	layouts, 55–56
globe valves, 839	planes	molded plastic parts drawings, 483
hard temper copper tubing, 835–836	angles between. See dihedral angles.	orthographic projection, 260–261
HDPE (high-density polyethylene)	auxiliary, 364	piping drawings, 842
pipe, 836	cutting. See cutting planes.	section views, 348–349
lift check valves, 839	defining, 131	sheet metal drawings, 483, 484
pipe compound, 838	definition, 131, 385	showing your design process, 18–19
pipe fittings, 837	edge view, 381	structural drawings, 801
pipe joints, 838	intersecting with a prism, 387–388	threads, drawing, 629
pipe schedules, 834	intersection with a cylinder, 389	tolerances, 584–586
pipe sizes. See pipe schedules.	planes, developments with	welded assembly drawings, 484
plastic pipe, 836	a cone, 391–392	welding drawings, 484, 862–863
portfolio, 842	an oblique cylinder, 391	position, tolerance symbols, 566–568
pressure-reducing valves, 839	an oblique prism, 390	position method for dual dimensioning, 512
PVC (polyvinyl chloride) pipe, 836	a pyramid, 391	positional tolerance, 572–574
red brass pipe, 835	a sphere, 394–395	pounds force, 456
reduced fittings, 837	plastic parts, manufacturing. See manufac-	pounds mass, 456
safety valves, 839	turing processes, plastic parts.	pozidriv screw drivers, 619
screwed fittings, 835	plastic pipe, 836	Pratt & Whitney keys, 622, A-67
screwed joints, 838	plastics, manufacturing materials, 443	preferred fits
screwed reducing tee, 837	plates, 785, 792	metric hole basis clearance, A-45–A-46
screwed tee fittings, 837	plats	metric hole basis transition and
seamless brass pipe, 835	definition, 810	interference, A-47-A-48
single-line drawings, 830–831	subdivision, 820–821	metric shaft basis clearance, A-49-A-50
soft copper tubing, 835–836	plotting curves manually, in auxiliary views,	metric shaft basis transition and interfer-
solder fittings, 836	374–375	ence, A-51-A-52
solder joints, 835–836, 838	plug welds, 850, 856–857	metric tolerances, 564–565
solenoid-actuated valves, 840	plus-or-minus tolerances, 558	preferred sizes, metric tolerances, 564
specialty pipe, 836	poche, 645	pressure-reducing valves, 839
standard for pressure piping, 840	points	prestressed concrete, 794
standard for steel pipe flanges and	description, 130	primary auxiliary view, 365
flanged fittings, 838	drawing arcs through, 135	primary datum, 569
standard symbols, 830, A-78	drawing lines through, 137	primary datum, 309 primary revolution, 396
steel pipe, 834	interpreting, 253	primitives. See solid primitives.
swing check valves, 839	sketching techniques, 69	principal dimensions, 235
symbols, A-78	specifying, 130	principal views, 234–235
taper pipe threads, A-85	polar arrays, creating gears, 735	Principles of Brick Masonry, 797
types of drawings, 830–833	polar coordinates, 128	printed circuits, in electronic diagrams, 772
valves, 839–840	polyconic method for developing a sphere,	prisms
welded joints, 838	395	definition and examples, 65
wrought iron pipe, 834		intersecting with a plane, 387–388

prisms, continued	prototyping	rapid tooling, 480
size dimensioning, 518	overview, 474	raster versus vector data, 459
triangular, dimensioning, 522	translating the model, 474–475	rational curves, 143
truncated, 65	virtual prototypes, 469	RBM (reinforced brick or masonry), 797
types of, 65	prototyping, RP (rapid prototyping)	reading drawings, 255
problem identification, design process	3D printing, 479	read-only permission, 718
case study: Santa Cruz Bicycles, 8	case study, 15	rear views, 234–235
definition, 5	CLIP (continuous liquid interface pro-	receding lines
product data management (PDM), 7, 721,	duction), 477	angle, 98
724	DLP (direct light processing), 477	length, 99
product definition, 18	DLS (digital light synthesis), 477	oblique projection, 99
product failure, 443	DPP (daylight polymer printing), 477	sketching techniques, 103
product life cycle, 6	DMP (direct metal printing), 477	recess for a bolt head. <i>See</i> counterbore.
profile plane projection, 236	DMLS (direct metal laser sintering), 477	Rectangle command, 139
profile tolerance, 576–577	EBM (electron beam melting), 477	rectangle method for sketching ellipses, 76
profiles	FDM (fused deposition modeling), 478	rectangular objects, isometric drawings, 86
cams, 743–745	investment casting, 480	recycling, manufacturing materials, 445
landform drawings, 811	LOM (laminated object manufacturing),	red brass pipe, 835
projection methods	478	reducing fittings, 837
first angle, 240–241, 242–243	master, creating, 480	reference designations, in electronic dia-
frontal plane, 236	material jetting, 479	grams, 770
horizontal plane, 236	overview, 474	reference dimensions, 195, 559
orthographic, 236	rapid tooling, 480	reference planes, 369
plane of projection, 236	SGC (solid ground curing), 476–477	reference surface, measuring from, 238
profile plane, 236	SLA (stereolithography apparatus), 476	reference to a datum, tolerance symbols, 567
projecting at right angles. See ortho-	SLS (selective laser sintering), 477-478	refinement
graphic projection.	systems for, 476–479	case study: Santa Cruz Bicycles, 10–11
third angle, 240–242	TSF (topographic shell fabrication), 478	definition, 5
projection symbols, 241	purlins, 783	and modeling, 172
projection welds, 850, 858	PVC (polyvinyl chloride) pipe	regular polyhedra, 64
projections projections	drawings, 836	regular views, 239–240
cabinet, 99	pyramid primitive, 146	reinforced brick or masonry (RBM), 797
cavalier, 99	pyramids	reinforced concrete, 794–796
definition, 233	definition, 65	relational databases, documentation manage-
length of receding lines, 99	development with a plane, 391	ment, 722–723
multiview, 234	dimensioning, 522	relative coordinates, 128
piercing points, 32	differential, 322	relay symbols, electronic diagrams, 762
plane of projection, 32	Q	release of engineering documents, documen-
plastic parts, 436	QC (quality certify)	tation management, 713
principal dimensions, 235	calibration and inspection, tolerance, 555	removed sections, section views, 340–342
principal views, 234–235	gage blocks, 555	removed views, 2D drawings, 287, 299–301
projectors, 32	Jo blocks, 555	requirements, for engineering documenta-
station point, 32	tolerances, 548	tion, 713
of a third view, 256–258	QFD (Quality Function Deployment), 7	resistance welding, 848, 850
types of, 32–33. <i>See also</i> specific types.	quality, 7	resistors, in electronic diagrams, 771
views of objects, 234. <i>See also</i> views.	Quality Function Deployment (QFD), 7	retention period, documentation manage-
projectors	quality management, documentation man-	ment, 713
definition, 32	agement, 719–720	reverse construction, 375
oblique, 99	agement, 717 720	reverse engineering
perspective, 104	R	existing products, 16
proportion	rack, 736	surface models, 187
bolts, 614	rack teeth, 736	revision blocks, 51, 714–715
definition, 77	radial leader line, 519–520	revision numbers, working drawings,
sketching techniques, 77	radii of gyration, 453	650–651
prototype drawings. See seed parts.	radius, 132	revision tracking, in title blocks, 51
prototypes	arcs, 517	revolution conventions, 2D drawings, 302
3D models, 179–180	dimension symbols, 513	revolutions
case study: Santa Cruz Bicycles, 10, 15	isometric spheres, 96	axis of, 395
virtual prototypes, 469	radius method for sketching arcs, 76	creating revolved drawings, 395
prototypes, in the design process	random-line method for sketching ellipses,	definition, 395
case study: Santa Cruz bicycles, 10, 15	92	primary and successive, 396
definition, 10	rapid prototyping. See prototyping, RP	true length of a line, 396
rapid prototyping, 15	(rapid prototyping).	revolutions per minute (rpm), 732
1 1 11 0, -	. 1 1 11 0/	1 ' \ I // ' -

definition, 34

revolved sections	for detailing structural steel	section views
2D drawings, 302	drawings, 789	aligned sections, 343–345
section views, 339–340	of drawings, indicating, 509	assembly sections, 346
revolved shapes, 152	measuring instrument. See scales.	auxiliary, 376
revolved surfaces, 184–185	in title blocks, 51	broken out sections, 338
revolving objects, to create views, 235	scale guards, A-93	CAD techniques for, 347
ribs in section, 343	scale models, example, 173	conventional breaks, 346
right- and left-hand parts, 149, 301–302	scaled measurements, 814	cutting-plane lines, 328–329, 334
right angles, implied, 550	scales	cutting planes, 328, 334, 332
right cylinder, mass properties, 452	architects', 39, A-93	full sections, 328–329, 330
right-hand rule of coordinate systems, 126	decimal-inch, A-93, A-95	half sections, 337
right-hand screw threads, 598	dividing lines equally or	intersections in sections, 346
right-side views, 234–235	proportionally, 74	lines behind the cutting plane, 328
rivet symbols, 624	engineers', 37, A-93, A-95	line rules, 333
riveted connections, 789	isometric, 84	offset sections, 342
riveted joints, 623	mechanical engineers', A-93	partial sections, 341
rivets	metric, A-93–A-94	partial views, 345
overview, 623–624	scaling text, 54	placing, 331–332
structural steel drawings, 789–790	scaling transformations, 154	portfolio, 348–349
robot arm, case study, 219–221	schedules, pipe, 834	purposes of, 328
robotic assembly, 447	schematic diagrams, 760–761	removed sections, 340–342
robots, industrial, 447, 469–470	schematic thread drawings, 600,	revolved sections, 339–340
Roman fonts, 40	602–603, 611	ribs in section, 343
roof truss, 785, 789, 792	screw drivers, types of, 619	rotation arrows, 340
root (of a screw thread), 595	screw principle, history of the, 595	section lining, 328
root circle, 734	screw threads. <i>See also</i> threads.	shortening objects. <i>See</i> conventional
root diameter, 736	8-pitch, 598	breaks.
rotation arrows, 340	12-pitch, 598	of single parts, 328
rotation transformation, 154	16-pitch, 598	security T screw drivers, 619
rough sketches, 110	American National, A-53–A-55 definition, 595	seed parts, 428–429
roughness values, dimensioning, 528–529 round head cap screws, 618		selective assembly, 552 selective laser sintering (SLS), 477–478
-	isometric drawings, 95 metric, A-53–A-55	Sellers, William, 594
rounded-end shapes, dimensioning, 523 rounding	screw threads, Acme	semiconductors, in electronic diagrams, 770
corners on plastic parts, 436	detailed description, 607	series of thread, 595, 598
decimal dimension values, 512	forms, 596	serif fonts, 40
roundness (circularity) tolerance, 576	notes, 605	service life, manufacturing materials, 445
rounds	specifications, A-57, A-65	set screws
2D drawings, 293–294	screwed fittings, 835	definition, 613
definition, 214–215, 286	screwed joints, 838	as locking device, 617
dimensioning, 517	screwed reducing tee, 837	standard, 620
example, 215, 286	screwed tee fittings, 837	SGC (solid ground curing), 476–477
shading, 293	screws	shading, sketching techniques, 68, 108
RP (rapid prototyping). <i>See</i> prototyping, RP.	cap, 618, A-58-A-62	shaft centers
rpm (revolutions per minute), 732	heads, 618–619, A-61–A-62	dimensioning, 525
rubble masonry, 798	machine, 619, A-63-A-64	sizes, A-90
ruled surfaces, 385	miscellaneous, 621	shafts
ruler. See drawing scale.	set, 620	basic shaft system, 554-555, 563
running bond, 797	sketching, 475	shaft basis clearance fits, A-49-A-50
running fits, A-36–A-37	threads. See threads.	shaft basis transition and interference
runouts, 294. See also fillets.	wood, 621	fits, A-51-A-52
	seam welds, 850, 853, 857	metric tolerances, 563
S	seamless brass pipe, 835	tolerancing, 554
SAE (Society of Automotive Engineers), 16	secondary auxiliary view, 368	shared manufacturing, 448
SAE grades for bolts, 617	secondary datum, 569	sharp-V thread, 596
safety valves, 839	section lining. See also section views.	sheet metal, manufacturing. See manufactur
sand casting, 437, 448	in CAD, 337	ing processes, sheet metal.
sans serif fonts, 40	correct and incorrect techniques, 335	sheet metal bends, dimensioning
Santa Cruz Bicycles. See case studies, Santa	definition and illustration, 328	BA (bend allowance), 536
Cruz bicycles.	hatching, 335	general notes, 536
satellite imagery, 812	large areas, 336	IML (inside mold line), 536
scale	symbols, 336	local notes, 536–537

mold line, 536

neutral axis, 536	sketching techniques. See also isometric	in AutoCAD, 111
OML (outside mold line), 536	drawings, sketching.	bird's-eye view, 107
sheet metal bends, 536	accuracy, importance of, 70	circles, 107
stretchout, 536	analyzing complex objects, 66–67	curves, 107
supplementary notes, 536–537	angles, 70	horizon line, 107
sheet metal parts, modeling, 438–440,	arcs, 76	one-point, 105
449–450	assemblies, 103	parallel. See one-point perspective.
sheet number, in title blocks, 51	box construction, 86, 101	pictorial sketching, 80–82
sheet revision block, 51	blocking irregular objects, 78	three-point, 105, 106
sheet size, in title blocks, 51	case study: Oral-B toothbrush, 112–115	two-point, 105, 106
shop drawings, 786	circles, 75	types of, 104–105. See also specific
shop rivets, 624	with computer graphics, 108	types.
shortening identical features, 612	constraining sketches, 110	worm's-eye view, 107
showing an inclined elliptical surface in true	construction lines, 66	sketching techniques, pictorial sketching.
size, 372	contours, 67	See also sketching techniques, oblique
showing true size, 364	edges, 69	sketches.
shrink fits, A-42–A-43	ellipses, 76	axonometric sketches, 81
SI (Système International), 456. See also	enlarging shapes with a grid of squares,	definition, 80
metric system.	78	overview, 80–82
side of a screw thread, 595	essential shapes, 66	perspective sketches, 81
side views, 234–236	extruded shapes, 151	sketching techniques, projection methods
signal paths, in electronic diagrams, 762,	freehand, 109	for 3D CAD models, 83
764–765	freehand compass, 75	axonometric, 82–83
simplified thread drawings, 600, 602–603,	freehand sketching, 71	dimetric, 83
611	geometric methods for plane figures, 78	foreshortening, 83
simplifying, working drawings, 651	hatching, 68	isometric, 83
simulation software, 468–470	important skills, 70	multiview, 82
sine method for laying out angles, 138	irregular shapes using offset measure-	orthographic, 82
single thread, 599	ments, 78	overview, 82
single-curved surfaces, 64, 385	lines, 69. See also lines, sketching.	trimetric, 83
single-limit dimensioning, 557	maintaining proportions, 77	types of, 82. See also specific types.
single-line diagrams, 760	negative space, 67	SLA (stereolithography apparatus), 476
single-line piping drawings, 830–831	one-view drawings, 79	sliding fits, A-36–A-37
single-view drawings. See one-view draw-	parametric modeling, 110	slope (grade), 517
ings.	points, 69	slot welds, 850, 856–857
Six Sigma, 7	polygons, 78	slotted head screws, 618, A-61-A-62
16-pitch thread, 598	receding lines, 103	slotted screw drivers, 619
size constraints, 193	rectangle method for sketching polygons,	SLS (selective laser sintering), 477–478
size designation for tolerance, 548	78	small rivets, 624
size dimensioning	rough sketches, 110	Society of Automotive Engineers (SAE), 16
cylinders, 518–519	shading, 68, 108	socket head screws, A-61-A-62
holes, 519–520	stippling, 68	socket weld, 838
prisms, 518	triangle method for sketching polygons,	soft copper tubing, 835–836
skeleton	78	solder joints
assembling to, 425-426	vanishing point, 103	copper pipe, 835–836
modeling, 210–211	vertices, 69	on metallic materials, 838
sketch constraints, 199–202	viewpoint, 68	solenoid-actuated valves, 840
sketching. See also drawings.	sketching techniques, oblique sketches	solid ground curing (SGC), 476–477
assemblies, 103	angles, 101	solid models
auxiliary views, 371	angle of receding lines, 98	description, 190
bolts and nuts, 616	appearance of, 98	versus other models, 223
cap screws, 616	box construction, 101	solid objects, 64–65. See also specific
circles, arcs, ellipses, 75–77	choice of position, 100	types.
hex head bolts, 616	choosing the front surface, 98	solid primitives
managing sketches. See documentation	definition, 81, 98	Boolean operations, 147–148
management.	ellipses for, 100	box, 146
nuts, 616	length of receding lines, 99	cone, 146
pictorials, 80–82	overview, 98	cylinder, 146
perspectives, 104	pictorial sketches, 80-82	difference (subtract) operation, 147-148
plane figures, 78	projection methods, 82	drawing complex shapes with Boolean
straight lines, 73	skeleton construction, 102	operations, 147–148
thread, 603	sketching techniques, perspectives	intersection operation, 147-148

angular. See two-point perspective.

overview, 146-147

solid primitives, continued	spur gears	ANSI/AF&PA NDS National Design
pyramid, 146	addendum, 736	Specification for Wood Construction,
sphere, 146	chordal addendum, 736	783
torus, 146	chordal thickness, 736	ANSI/ASME Y14.5 standard, 565-566,
union (join/add) operation, 147–148	dedendum, 736	580
wedge, 146	definition, 732–733	ANSI/ASME Y14.5M-2009 standard,
SolidWorks	designing, 737	567
assembly file management, 423	diametral pitch, 737	ANSI/AWS A2.4, Standard Symbols for
constraint relationships, table of, 202	formulas, 732–733	Welding, Brazing, and Nondestruc-
drag-and-drop fasteners, 431	gear blanks, 736	tive Examination, 848
fit study, 583	involute tooth shape, 734	ANSI/IEEE 315 Graphic Symbols for
operators, table of, 195	outside diameter, 736	Electrical and Electronic Diagrams,
Pack and Go feature, 423	pitch diameter, 736	758
space-delimited text format, 457	rack teeth, 736	ASEE (American Society for Engineer-
spacing	root diameter, 736	ing Education), 16
gear teeth, 735	tooth spacing, 735	ASME Y14.41 Digital Product Defini-
lettering. See lettering, spacing.	whole depth, 736	tion Data Practices, 540, 713
parallel lines, 74	working drawings, 736–737	ASME Y14.43, 569
section lining, 335	square keys, 622, A-65	ASME/ANSI Y14.6 Screw Thread Rep-
between views, 238	square threads, 596, 609, A-65	resentation, 598, 604
specialty pipe drawings, 836	squares, drawing, 139	AWS A1.1, Metric Practice Guide for the
specific gravity, 444	stability, of lettering, 44	Welding Industry, and ANSI/AWS
specifications, structural steel, 788	stadia method, 814	A3.0, Standard Welding Terms and
sphere primitive, 146	stages, 764	Definitions, 848
spheres	standard features, 213	Detailing for Steel Construction, 786
definition, 65	Standard for Aluminum Sand and Perma-	Guide to Presenting Reinforcing Steel
double-curved surfaces, 385	nent Mold Castings, 437	Design Details, 795
examples, 65	Standard for the Exchange of Product model	Load Resistance Factor Design (LRFD),
isometric drawings, 96	data (STEP), 458	790
developments, 394–395	standard punches, library of, 439	Manual of Steel Construction, 788
spherical coordinates, 129	standard symbols, 830	Manual of Surveying Instructions for
spiral of Archimedes, A-101	standard worm thread, 596	the Survey of the Public Lands of the
spline, definition, 142	standards. See also specific standards.	United States, 814
spline curves	ANSI, See American National Standards	MIL-STD-681 Identification Coding and
approximated curves, 142, 144	Institute standards.	Application of Hook Up and Lead
Bezier curves, 143–144	dimensioning, 538	Wires, 758
B-spline approximation, 143	electronic diagrams, 758	Principles of Brick Masonry, 797
B-splines, 143–144	international, 16	Standard for Aluminum Sand and Perma-
cubic splines, 142	lettering, 40	nent Mold Castings, 437
drawing, 142–144	wire gage, A-70	static assemblies, 418
interpolated splines, 142, 144	standards organizations	station point, 32
NURBS (nonuniform rational B-spline)	ANSI (American National Standards	steel construction drawings. See structural
curves, 143	Institute), 16	drawings, structural steel.
overview, 142	ISO (International Organization for	steel pipe, 834
piecewise splines, 143	Standards), 16	steel tape, 814
rational curves, 143	list of, A-2–A-3	STEP (Standard for the Exchange of Product
split ring connectors for wood, 784	SAE (Society of Automotive Engineers),	model data), 458
spot welds, 850, 853	16	stereolithography apparatus (SLA), 476
spotfaces, 213, 214, 286	UL (Underwriters' Laboratory), 758	stippling, 68
dimensioning, 521	standards publications	STL (STereo Lithography) format, 458
spreadsheets, 460	AISC Manual of Steel Construction,	stone construction, 798
springs	Allowable Stress Design (ASD), 790	storage media, 718
flat, 625–626	American National Standard Code	straight lines, 73
helical, 625–627	for Pressure Piping (ANSI/ASME	straightness tolerance, 576
modeling, 627	B31.1), 840	straps for wood construction, 785
portfolio, 629	American National Standard Drafting	stretchout, dimensioning, 536
springs, helical	Manual—Y14, 16	structural clay products, 797
compression springs, 625	American National Standard for Steel	structural drawings
definition, 625	Pipe Flanges and Flanged Fittings	accurate dimensioning, 794
drawing, 626–627	(ANSI/ASME B16.5), 838	American bond, 797
extension springs, 625–626	ANSI B4.1 Preferred Limits for Fits for	architectural terra cotta, 798
torsion springs, 625–626	Cylindrical Parts, 560	ashlar masonry, 798
types of, 625	ANSI B4.2, 562	brick and mortar, 797

CAD tools for, 799–800	green lumber, 783	uses for, 189
concrete construction, 794–796	metal connectors, 784–785	surface normal vector, 184
definition, 282	nominal sizes for wood products, 783	surface patches, 187
elevation view, 793	plates, 785	surface roughness, dimensioning, 526–527
English bond, 797	purlins, 783	surface texture symbols, 527–528, 529
Flemish bond, 797	split ring connectors, 784	surface welds, 856
manufactured stone, 798	straps, 785	surfaces
overview, 282	symbols for finished surfaces, 783	ellipsoids, 385
portfolio, 801	toothed ring connectors, 784	generatrix, 385
Principles of Brick Masonry, 797	trusses, 783, 785, 792	hyperboloids, 385
RBM (reinforced brick or masonry), 797	wood joints, 784	intersections, definition, 385
rubble masonry, 798	structural steel drawings. See structural	plane, 385
running bond, 797	drawings, structural steel.	ruled surfaces, 385
stone construction, 798	structure location plans, landform	single-curved surface, 385
structural clay products, 797	drawings, 822	spheres, 385
structural steel, 786–792	studs, definition, 613	tori, 385
wood construction, 783–785	studying the natural world, as design aid, 16	types of, 64. <i>See also</i> specific types.
structural drawings, concrete construction	subassemblies	in views. See views, surfaces.
high-strength concrete, 794	constraint-based modeling, 216	warped, 385
Guide to Presenting Reinforcing Steel	definition, 418	surveys, landform drawings, 810
Design Details, 795	drawing, 642	sweeping, 185–186
overview, 794	subdivision plats, 820–821	swept shapes, 151
prestressed concrete, 794	subtract (difference) operation, 147–148	swing check valves, 839
reinforced concrete, 794–796	successive auxiliary views, 368	switch symbols, electronic diagrams, 762
structural drawings, structural steel	successive revolutions, 396	symbols
AISC Manual of Steel Construction,	superfluous dimensions, 516	comparison of, A-84
Allowable Stress Design (ASD), 790	supplementary, tolerance symbols, 567	dimensioning, 513, 520–521, 527–529,
beam web, 791	surface area, determining mass properties,	529
bolted connections, 789	452	ductwork, A-79
chords, 792	surface continuity, 215	electronic diagrams. See electronic dia-
clip angles, 792	surface contour	grams, symbols.
design drawings, 786	fillet welds, 854	for finished wood surfaces, 783
Detailing for Steel Construction, 786	groove welds, 855	heating, A-79
erection plans, 786–787	surface finish, 445–446	landform drawings, 815
extension figure, 790	surface models	piping drawings, A-78
filler beams, 786	accuracy, 188	projection, 241
fillet weld, 791	BREP (boundary representation), 184	section lining, 336
flanges, 788	case studies, Smart Tourniquet, 224-227	surface texture, 527–529
frame beam connections, 790	choosing a method for, 224–227	tolerance, 567, 571
gage line, 790	combining surfaces, 187	topographic, A-77
girders, 786	complex surfaces, 187, 216	ventilating, A-79
grades of, 788	Coon's patches, 187	welding structural steel, 792
high-strength steel bolts, 792-793	definition, 184	symbols, electronic diagrams
Load Resistance Factor Design, 790	derived surfaces, 187	arranging, 764–765
Manual of Steel Construction, 788	digitizing, 187	AutoCAD tool palette, 764
member marks, 792	editing, 188	diodes, 764
members, 792	extruded surfaces, 184–185	relays, 762
overview, 786	interpolated patches, 187	signal paths, 764–765
piece marks, 786	lofting, 185–186	size, 762
plate material, 792	meshes, 185	stages, 764
riveted connections, 789	NURBS-based surfaces, 185–186	standard symbols, 758, 762
scales for detailing, 789	versus other model types, 223	standards, A-80
shapes of, 788	patches, 187	switches, 762
shop drawings, 786	reverse engineering, 187	symbol libraries, 758
specifications, 788	revolved surfaces, 184–185	template for, 764
types of, 788	surface information in the database, 184	symbols, form and proportion of
weld symbols, 792	surface normal, 184	datum, A-81
welded connections, 789	sweeping, 185–186	dimensioning symbols and letters, A-83
welding, 791–792	tessellation lines, 189	geometric characteristics, A-81
structural drawings, wood construction	TINs (triangulated irregular networks),	geometric dimensioning, A-82
ANSI/AF&PA NDS National Design	185	modifying symbols, A-82
Specification for Wood	trimming, 187	symmetry
Construction, 783	tweaking, 188	case study: exercise bike brake, 157–159
	<i>U</i> ,	

sharp-V, 596

symmetry, continued	square thread, 596	3D figures. <i>See</i> solid objects.
definition, 149	standard worm thread, 596	three-point perspective, 105, 106
mirrored shapes, 149	UNEF (unified extra fine thread	through holes, 213
parting line, 150	series), 596	Through option, 137
right- and left-hand parts, 149	Unified thread, 594	TIG (tungsten inert gas) welding, 848
Système International (SI), 456. See also	Whitworth thread, 594, 596	TINs (triangulated irregular networks), 185
metric system.	thread lengths, bolts, 614	title blocks
	thread notes, 604–605	centering words in, 45
Т	thread pitch, 595, 597	components of, 51
tab-delimited text format, 457	thread series, 595, 598	definition, 34
tabular dimensioning, 534	thread symbols, 606	drawing control, 713–714
tabulated tolerances, 579–580	threaded pipe, adapting to copper pipe, 836	general notes in, 550, 556
tangencies, 2D drawings, 287, 290–291	threads. <i>See also</i> screw threads. Acme, 596, A-57	lettering for, 45 T-joint, 850
tangency, definition, 145	American national thread, 594	tolerance
tangent constraint, 422	angle of thread, 595	actual local feature, 548
tangent method for laying out angles, 138	in assembly, 620	actual mating envelope, 549
sketching arcs, 76	axis of screw, 595	actual minimal material envelope, 549
tangent surfaces, hiding in 2D drawings, 292	basic applications, 594	actual size, 548
tangent surfaces, maning in 2D drawings, 252	bolts, 614	allowance, 548
drawing to arcs, 135–136	clearance holes, 612	angular, 558, 575
drawing to circles, 135	crest, 595	ANSI Standard, 559-560
tap breakage, 612	depth of thread, 595	applying with computer graphics, 582
tap drills, 612	dimensioning, 524	barreled parts, 549
taper, plastic parts, 434	external threads, 595	baseline dimensioning, 559
taper pins, specifications, A-71	history of the screw principle, 595	basic angle tolerancing method, 575
taper pipe threads, A-85	internal thread, 595	bilateral, 548
tapered parts, tolerance, 549	isometric drawings, 95	bilateral system, 558
tapers, 524	lead, 595	bowed parts, 549
tapped holes, 612	major diameter, 595 metric fastener standard, 594	calibration and inspection, 555 case study, 583
teams, as design aids, 17	minor diameter, 595	chained dimensions, 559
technical drawing, 4–5. <i>See also</i> specific forms.	multiple threads, 599	circularity (roundness), 576
template files, saving settings, 429	pitch diameter, 595	clearance fit, 551
templates for	right-hand/left-hand, 598	continuous dimensions, 559
drawing, 47	root, 595	cylindricity, 576, 577
lettering, 42	series of thread, 595, 598	definition, 548
map symbols, 815	side, 595	digital product definition, 581-584
seed parts, 428–429	single thread, 599	dimensioning, 505
sketching arcs, 77	tap breakage, 612	feature, 548
sketching ellipses, 95	tap drills, 612	feature of size, 548
symbols for electronic diagrams, 764	tapped holes, 612	fit, specifying, 552
terminals, in electronic diagrams, 767–768	threads, drawing	fit types and subtypes, 560
terrestrial photogrammetry, 813	Acme thread notes, 605	fits between mating parts, 551
tertiary datum, 569	Acme threads, detailed description, 607 American National Standard pipe thread,	flatness, 576 form tolerances for single
tessellation lines, 189	610–611	features, 576–577
theoretically exact datum feature	Briggs standard threads, 610–611	gage blocks, 555
simulators, 569 thick lines, 34	detailed, 600–601, 603	GDT (geometric dimensioning and
thickness, in views, 235	external square thread, 608	tolerancing), 565–582
thickness, sheet metal, 450	internal square thread, 608	general notes, 556
thin lines, 34	modeling thread, 610	hole system, 554–555
third auxiliary view, 368	phantom lines, 612	implied right angles, 550
third-angle projection, 240–242	pipe threads, 610–611	interference fit, 551, 554–555
30° angles, estimating, 90	portfolio, 629	international tolerance grades, A-44
thread fits, 599-600, 605	schematic, 600, 602–603, 611	Jo blocks, 555
thread forms	shortening identical features, 612	limit, 557
Acme thread, 596	simplified, 600, 602–603, 611	limit dimensions, 552
American national thread, 596	square threads, 609, A-65	line fit, 552
buttress thread, 597	tapped holes, 612	and machining processes, 561 metric tolerances, 562
knuckle thread, 597	thread notes, 604–605 threads in assembly, 620	milling machines, 561
metric thread, 596	uneaus in assembly, 020	mining machines, 301

three dimensional. See 3D.

nominal size, 548

overview, 548	basic dimensions, 567	true-position dimensioning, tolerances,
perfect form envelope, 549	combined, 567	572–574
plus-or-minus, 558	datum feature simulator, 571	truncated prisms, 65
portfolio, 584–586	datum features, 571	truss, welded, 859
positional, 572–574	datum identifying, 567	trusses, 783, 785, 792
profile, 576–577	feature control frame, 566	TSF (topographic shell fabrication), 478
QC (quality certify), 548	form, 566–568	tungsten inert gas (TIG) welding, 848
reference dimensions, 559	form tolerance, 567	tweaking surface models, 188
selective assembly, 552	geometric characteristics, 566	12-pitch thread, 598
shaft system, 554	LMC (least material condition), 567	twist bits, sizes, A-56–A-57
single-limit dimensioning, 557	metric fits, 563	two dimensional. See 2D.
size designation, 548	metric tolerances, 563	two-point perspective, 105, 106
specifying, 556	MMC (maximum material condition),	types of drawings, 830–833
straightness, 576	567, 574–575	,, r
tabulated, 579–580	position, 566–568	U
tapered parts, 549	reference to a datum, 567	UL (Underwriters' Laboratory) standards for
transition fit, 552	supplementary, 567	electronic diagrams, 758
true-position dimensioning, 572–574	tolerance zone, metric tolerances, 562–563	UN threads, 598
unilateral system, 558	toothed ring connectors for wood	underconstrained sketches, 203
variations in form, 549	construction, 784	UNEF (unified extra fine thread series), 596
waisted parts, 549	top adjacent, 366	unidirectional dimensioning, 512
tolerance, datum features	top views, 234–236	
ASME Y14.43, 569	top-down design, 424, 449–450	unified thread, 594
constraining degrees of freedom, 570	topographic maps, 811	fits, 600
datum features versus datum feature	topographic shell fabrication (TSF), 478	unilateral system of tolerances, 558
simulator, 569	topographic symbols, A-77	union (join/add) operation, 147–148
datum reference frame, 569	tori, 65, 146, 385	United States, drafting standards, 16
datum targets, 570–571	torsion springs, 625–626	units of measure, for dimensions, 505
overview, 568	tourniquet, case study, 224–227	UNJ threads, 598
physical datum feature simulators, 569	trammel method for sketching arcs and	UNR threads, 598
primary datum, 569	ellipses, 76	upper deviation, metric tolerances, 562
secondary datum, 569	transformations	upset welds, 850, 858
tertiary datum, 569		U.S. customary units. See also metric
	geometric, 154	system.
theoretically exact datum feature simulators, 569	viewing, 155–156 transformer windings, in electronic dia-	converting to metric, A-73
tolerance, metric fits	grams, 771	definition, 36
ANSI B4.2 standard, 562	transition fits	dual dimensioning systems, 36–37
	definition, 552	unit conversion, 37
basic size, 562 deviation, 562	metric tolerances, 563	user coordinate systems, 153–154
fundamental deviation, 562–563	hole basis, A-47–A-48	**
	shaft basis, A-51–A-52	V
hole system, 563		valves, 839–840
interference fit, 563	locational, A-40	vanishing point, 103
IT (international tolerance grade), 562	transition pieces, developing, 393–394 translation, 154	variables, versus parameters, 193
lower deviation, 562		variations in form, tolerances, 549
nominal size, 562	transmitting power with gears. See gears.	vector versus raster data, 459
overview, 562	traverses, landform drawings, 810	ventilating symbols, A-79
preferred fits, 564–565	triangles	vertical lettering, 41
preferred sizes, 564	drawing, 138–139	vertices. See also points.
shaft system, 563	sketching auxiliary views with, 371	3D CAD modeling, 127
tolerance, 562	triangular prisms, dimensioning, 522	identifying with numbers, 250
tolerance symbols, 563	triangulated irregular networks (TINs), 185	sketching techniques, 69
tolerance zone, 562–563	triangulation, finding the development of an	viewing direction arrow, 377
transition fit, 563	oblique cone, 393	viewing transformations, 155–156
upper deviation, 562	trimetric projection, 83	viewing-plane lines, definition, 377
tolerance, orientations for related features	trimming surface models, 187	viewpoint, sketching techniques, 68
angularity, 578–579	true ellipses, 92	views. See also auxiliary views; ortho-
concentricity, 579	true size, showing	graphic projection; projection; section
parallelism, 578–579	in auxiliary views, 364	views.
perpendicularity, 578–579	inclined elliptical surface, 372	45° miter line, 238, 259
tolerance envelope, 549	line length, with revolutions, 396	alignment, 299–300
tolerance stacking, 559	lines, true length in CAD, 378–379	angles, 253
tolerance symbols	oblique surfaces, 382–383	arranging on paper, 235. See also glass
ANSI/ASME Y14.5 standard, 566–567		box.

with models, 256

views, continued	as revolved drawing, 366	surface contour and fillet welds, 854
assembly drawings, 639	views, 250	surface welds, 856
bottom, 234–235	volume, determining mass properties, 452	symbols from CAD, 860-861
corners, 250. See also vertices.	VR (virtual reality), 3D CAD models, 181	templates, 860
creating by revolving objects, 235	•	TIG (tungsten inert gas) welding, 848
depth, 235	W	T-joint, 850
developing from 3D models, 247–248	waisted parts, tolerance, 549	types of welded joints, 850
edges, 250, 252	wall thickness, plastic parts, 436	upset welds, 850, 858
folding lines, 237	warred surfaces, 64, 385	welded roof truss, example, 792
front, 234–236	washers	what-if analysis, 460
front, orientation, 240	lock, 617, A-69	Whitworth, Joseph, 594
glass box, 236–238		Whitworth thread, 594, 596
height, 235	plain, A-68	whole depth, 736
interpreting, 254	waviness values, dimensioning, 529	width, in views, 235
isometric, 249	Web, documentation management, 725	width auxiliary views, 366–367
left side, 234–235	wedge primitive, 146	wireframe, 2D models, 222
length, 235	weight of the part, in title blocks, 51	wireframe modeler versus wireframe
lines, interpreting, 253	welded connections, structural steel, 789	display, 183
measuring from a reference surface, 238	welded joints, 838	wireframe modeling, 3D models,
necessary, 239–240, 296–297	welding, structural steel, 791–792	182–183, 223
opposites, 239–240, 290–297	welding applications, a welded truss, 859	wireframe skeleton, 425–426
partial, 297–298, 345	welding, 848–849	
-	ANSI standard symbols, 848–853,	wiring diagram, in electronic diagrams, 760–761
placing, 248–249	A-74–76	
planes, definition, 250	arc welding, 848, 850	wood construction drawings. See structural
points, interpreting, 253	arrow side welds, 851	drawings, wood construction.
principal, 234–235	AWS A1.1, Metric Practice Guide for the	wood joints, 784
principal dimensions, 235	Welding Industry, and ANSI/AWS	Woodruff keys, 622, A-66
rear, 234–235	A3.0, Standard Welding Terms and	work flow management, 724–725
regular, 239–240	Definitions, 848	work group level, documentation
removed, 287, 299–301	back welds, 850, 856	management, 721
revolved sections, 302	backing welds, 850, 856	working drawing assembly, 638, 646–647
right side, 234–235	"bent" arrow symbol, 851	working drawings
showing height. See elevation.	butt joint, 850	checking accuracy, 650
side, 234–236	convex contour, 854	definition, 638
spacing between, 238	corner joint, 850	detail drawings, 638
thickness, 235	dimensioning fillet welds, 853	numbering, 650
top, 234–236	edge joint, 850	paper conservation, 648
transferring depth dimensions, 238	electric resistance welding. See resist-	for patent applications, 652
vertices, 250, 253	ance welding.	revision numbers, 650–651
visualizing, 250	fillet weld length, 854	simplifying, 651
width, 235	fillet welds, 850, 853-855	zoning, 650
views, surfaces	flash welds, 850, 853, 858	working drawings, formats
definition, 250	flush symbol, 854	digital drawing transmittal, 648
inclined, 250–251	gas welding, 848, 850	number of details per sheet, 648
normal, 250–251	GMAW (gas metal arc welding), 848	PDF (Portable Document Format), 648
oblique, 250–251	groove welds, 850, 855	title and record strips, 649
orientation to the plane of	GTAW (gas tungsten arc welding), 848	world coordinate system, 153
projection, 250–251	intermittent fillet welding, 854	worm gears, 738–739
similar shapes, 254	lap joint, 850	worm's-eye view, 107
using numbers to identity vertices, 250	MAG (metal active gas) welding, 848	write permission, documentation
virtual condition, 575	metal forming, 448	management, 718
virtual prototypes, 181, 469	MIG (metal inert gas) welding, 848	wrought iron pipe, 834
visual rays. See projectors.	other side welds, 851	wrought steel pipe, A-85
visualization	plug welds, 850, 856-857	
from a drawing, 256	portfolio, 484, 862–863	X
purpose of technical drawing, 4	principal methods, 848	X- and Y-axes, coordinate systems, 127
visualizing	projection welds, 850, 858	
2D complex cylindrical shapes, 288	resistance welding, 848, 850	Z
in 3D, 258	seam welds, 850, 853, 857	zone numbers, 50, 650
edges, 250	slot welds, 850, 856–857	Zuma coffee brewer, case study, 418, 421
full sections, 330–331	spot welds, 850, 853	Zuma correct orewer, case study, 418, 421

standards, A-74-76