
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780138052102
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780138052102
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780138052102

Core Java
for the Impatient

Third Edition

This page intentionally left blank

Core Java
for the Impatient
Third Edition

Cay S. Horstmann

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town

Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Cover illustration by Morphart Creation / Shutterstock
Figures 1.1 and 1.3: Microsoft
Figure 1.2: Eclipse Foundation
Figures 1.4, 1.5, 11.1: Oracle Corporation

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and the publisher was aware of a trademark claim, the designations have been
printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for
errors or omissions. No liability is assumed for incidental or consequential damages
in connection with or arising out of the use of the information or programs contained
herein.

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs; and
content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact
intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2022942895

Copyright © 2023 Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must
be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, request
forms and the appropriate contacts within the Pearson Education Global Rights &
Permissions Department, please visit www.pearson.com/permissions/.

ISBN-13: 978-0-13-805210-2
ISBN-10: 0-13-805210-7

ScoutAutomatedPrintCode

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearson.com/permissions/

Pearson’s Commitment to Diversity, Equity, and
Inclusion

Pearson is dedicated to creating bias-free content that reflects the diver-
sity of all learners. We embrace the many dimensions of diversity, in-
cluding but not limited to race, ethnicity, gender, socioeconomic status,
ability, age, sexual orientation, and religious or political beliefs.

Education is a powerful force for equity and change in our world. It has
the potential to deliver opportunities that improve lives and enable
economic mobility. As we work with authors to create content for every
product and service, we acknowledge our responsibility to demonstrate
inclusivity and incorporate diverse scholarship so that everyone can
achieve their potential through learning. As the world’s leading learning
company, we have a duty to help drive change and live up to our pur-
pose to help more people create a better life for themselves and to create
a better world.

Our ambition is to purposefully contribute to a world where:

• Everyone has an equitable and lifelong opportunity to succeed
through learning.

• Our educational products and services are inclusive and represent
the rich diversity of learners.

• Our educational content accurately reflects the histories and
experiences of the learners we serve.

• Our educational content prompts deeper discussions with learners
and motivates them to expand their own learning (and worldview).

While we work hard to present unbiased content, we want to hear from
you about any concerns or needs with this Pearson product so that we
can investigate and address them.

• Please contact us with concerns about any potential bias at
https://www.pearson.com/report-bias.html.

https://www.pearson.com/report-bias.html

This page intentionally left blank

To Chi—the most patient person in my life.

This page intentionally left blank

Preface xxiii

Acknowledgments xxv

About the Author xxvii

FUNDAMENTAL PROGRAMMING STRUCTURES 11
Our First Program 21.1

Dissecting the “Hello, World” Program 21.1.1
Compiling and Running a Java Program 41.1.2
Method Calls 61.1.3
JShell 71.1.4

Primitive Types 111.2
Signed Integer Types 111.2.1
Floating-Point Types 131.2.2
The char Type 141.2.3
The boolean Type 141.2.4

Variables 141.3
Variable Declarations 151.3.1
Identifiers 151.3.2

ix

Contents

Initialization 161.3.3
Constants 161.3.4

Arithmetic Operations 171.4
Assignment 181.4.1
Basic Arithmetic 191.4.2
Mathematical Methods 201.4.3
Number Type Conversions 211.4.4
Relational and Logical Operators 221.4.5
Big Numbers 241.4.6

Strings 251.5
Concatenation 251.5.1
Substrings 261.5.2
String Comparison 261.5.3
Converting Between Numbers and Strings 281.5.4
The String API 281.5.5
Code Points and Code Units 311.5.6
Text Blocks 331.5.7

Input and Output 351.6
Reading Input 351.6.1
Formatted Output 361.6.2

Control Flow 381.7
Branches 381.7.1
Switches 391.7.2
Loops 411.7.3
Breaking and Continuing 431.7.4
Local Variable Scope 451.7.5

Arrays and Array Lists 461.8
Working with Arrays 461.8.1
Array Construction 471.8.2
Array Lists 481.8.3
Wrapper Classes for Primitive Types 491.8.4
The Enhanced for Loop 501.8.5
Copying Arrays and Array Lists 511.8.6
Array Algorithms 521.8.7

Contentsx

Command-Line Arguments 521.8.8
Multidimensional Arrays 531.8.9

Functional Decomposition 561.9
Declaring and Calling Static Methods 561.9.1
Array Parameters and Return Values 561.9.2
Variable Arguments 571.9.3

Exercises 58

OBJECT-ORIENTED PROGRAMMING 612
Working with Objects 622.1

Accessor and Mutator Methods 642.1.1
Object References 652.1.2

Implementing Classes 672.2
Instance Variables 672.2.1
Method Headers 672.2.2
Method Bodies 682.2.3
Instance Method Invocations 682.2.4
The this Reference 692.2.5
Call by Value 702.2.6

Object Construction 712.3
Implementing Constructors 712.3.1
Overloading 722.3.2
Calling One Constructor from Another 732.3.3
Default Initialization 732.3.4
Instance Variable Initialization 742.3.5
Final Instance Variables 752.3.6
The Constructor with No Arguments 752.3.7

Records 762.4
The Record Concept 772.4.1
Constructors: Canonical, Custom, and Compact 782.4.2

Static Variables and Methods 792.5
Static Variables 792.5.1
Static Constants 802.5.2
Static Initialization Blocks 812.5.3

xiContents

Static Methods 812.5.4
Factory Methods 832.5.5

Packages 832.6
Package Declarations 832.6.1
The jar Command 852.6.2
The Class Path 862.6.3
Package Access 872.6.4
Importing Classes 882.6.5
Static Imports 892.6.6

Nested Classes 902.7
Static Nested Classes 902.7.1
Inner Classes 912.7.2
Special Syntax Rules for Inner Classes 942.7.3

Documentation Comments 952.8
Comment Insertion 952.8.1
Class Comments 962.8.2
Method Comments 972.8.3
Variable Comments 972.8.4
General Comments 972.8.5
Links 982.8.6
Package, Module, and Overview Comments 992.8.7
Comment Extraction 992.8.8

Exercises 100

INTERFACES AND LAMBDA EXPRESSIONS 1053
Interfaces 1063.1

Using Interfaces 1063.1.1
Declaring an Interface 1073.1.2
Implementing an Interface 1083.1.3
Converting to an Interface Type 1103.1.4
Casts and the instanceof Operator 1103.1.5
The “Pattern-Matching” Form of instanceof 1113.1.6
Extending Interfaces 1123.1.7

Contentsxii

Implementing Multiple Interfaces 1133.1.8
Constants 1133.1.9

Static, Default, and Private Methods 1133.2
Static Methods 1133.2.1
Default Methods 1143.2.2
Resolving Default Method Conflicts 1153.2.3
Private Methods 1173.2.4

Examples of Interfaces 1173.3
The Comparable Interface 1173.3.1
The Comparator Interface 1193.3.2
The Runnable Interface 1203.3.3
User Interface Callbacks 1203.3.4

Lambda Expressions 1213.4
The Syntax of Lambda Expressions 1223.4.1
Functional Interfaces 1233.4.2

Method and Constructor References 1243.5
Method References 1243.5.1
Constructor References 1263.5.2

Processing Lambda Expressions 1273.6
Implementing Deferred Execution 1273.6.1
Choosing a Functional Interface 1283.6.2
Implementing Your Own Functional Interfaces 1303.6.3

Lambda Expressions and Variable Scope 1313.7
Scope of a Lambda Expression 1313.7.1
Accessing Variables from the Enclosing Scope 1323.7.2

Higher-Order Functions 1353.8
Methods that Return Functions 1353.8.1
Methods That Modify Functions 1353.8.2
Comparator Methods 1363.8.3

Local and Anonymous Classes 1373.9
Local Classes 1373.9.1
Anonymous Classes 1383.9.2

Exercises 139

xiiiContents

INHERITANCE AND REFLECTION 1434
Extending a Class 1444.1

Super- and Subclasses 1454.1.1
Defining and Inheriting Subclass Methods 1454.1.2
Method Overriding 1454.1.3
Subclass Construction 1474.1.4
Superclass Assignments 1474.1.5
Casts 1484.1.6
Anonymous Subclasses 1494.1.7
Method Expressions with super 1504.1.8

Inheritance Hierarchies 1504.2
Final Methods and Classes 1504.2.1
Abstract Methods and Classes 1514.2.2
Protected Access 1524.2.3
Sealed Types 1534.2.4
Inheritance and Default Methods 1574.2.5

Object: The Cosmic Superclass 1574.3
The toString Method 1584.3.1
The equals Method 1594.3.2
The hashCode Method 1624.3.3
Cloning Objects 1634.3.4

Enumerations 1664.4
Methods of Enumerations 1664.4.1
Constructors, Methods, and Fields 1684.4.2
Bodies of Instances 1684.4.3
Static Members 1694.4.4
Switching on an Enumeration 1704.4.5

Runtime Type Information and Resources 1704.5
The Class Class 1704.5.1
Loading Resources 1744.5.2
Class Loaders 1744.5.3
The Context Class Loader 1764.5.4
Service Loaders 1774.5.5

Contentsxiv

Reflection 1794.6
Enumerating Class Members 1794.6.1
Inspecting Objects 1804.6.2
Invoking Methods 1824.6.3
Constructing Objects 1824.6.4
JavaBeans 1834.6.5
Working with Arrays 1854.6.6
Proxies 1864.6.7

Exercises 188

EXCEPTIONS, ASSERTIONS, AND LOGGING 1915
Exception Handling 1925.1

Throwing Exceptions 1925.1.1
The Exception Hierarchy 1935.1.2
Declaring Checked Exceptions 1955.1.3
Catching Exceptions 1965.1.4
The Try-with-Resources Statement 1975.1.5
The finally Clause 1995.1.6
Rethrowing and Chaining Exceptions 2015.1.7
Uncaught Exceptions and the Stack Trace 2025.1.8
API Methods for Throwing Exceptions 2035.1.9

Assertions 2045.2
Using Assertions 2045.2.1
Enabling and Disabling Assertions 2055.2.2

Logging 2065.3
Should You Use the Java Logging
Framework? 206

5.3.1

Logging 101 2075.3.2
The Platform Logging API 2085.3.3
Logging Configuration 2095.3.4
Log Handlers 2115.3.5
Filters and Formatters 2135.3.6

Exercises 214

xvContents

GENERIC PROGRAMMING 2196
Generic Classes 2206.1
Generic Methods 2216.2
Type Bounds 2226.3
Type Variance and Wildcards 2236.4

Subtype Wildcards 2246.4.1
Supertype Wildcards 2256.4.2
Wildcards with Type Variables 2266.4.3
Unbounded Wildcards 2276.4.4
Wildcard Capture 2286.4.5

Generics in the Java Virtual Machine 2286.5
Type Erasure 2296.5.1
Cast Insertion 2296.5.2
Bridge Methods 2306.5.3

Restrictions on Generics 2316.6
No Primitive Type Arguments 2316.6.1
At Runtime, All Types Are Raw 2326.6.2
You Cannot Instantiate Type Variables 2336.6.3
You Cannot Construct Arrays of Parameterized
Types 235

6.6.4

Class Type Variables Are Not Valid in Static
Contexts 236

6.6.5

Methods May Not Clash after Erasure 2366.6.6
Exceptions and Generics 2376.6.7

Reflection and Generics 2386.7
The Class<T> Class 2396.7.1
Generic Type Information in the Virtual
Machine 239

6.7.2

Exercises 241

COLLECTIONS 2477
An Overview of the Collections Framework 2487.1
Iterators 2527.2
Sets 2547.3

Contentsxvi

Maps 2557.4
Other Collections 2597.5

Properties 2597.5.1
Bit Sets 2607.5.2
Enumeration Sets and Maps 2627.5.3
Stacks, Queues, Deques, and Priority Queues 2627.5.4
Weak Hash Maps 2637.5.5

Views 2647.6
Small Collections 2647.6.1
Ranges 2657.6.2
Unmodifiable Views 2667.6.3

Exercises 267

STREAMS 2718
From Iterating to Stream Operations 2728.1
Stream Creation 2738.2
The filter, map, and flatMap Methods 2768.3
Extracting Substreams and Combining Streams 2788.4
Other Stream Transformations 2798.5
Simple Reductions 2808.6
The Optional Type 2818.7

Producing an Alternative 2818.7.1
Consuming the Value If Present 2818.7.2
Pipelining Optional Values 2828.7.3
How Not to Work with Optional Values 2828.7.4
Creating Optional Values 2848.7.5
Composing Optional Value Functions with flatMap 2848.7.6
Turning an Optional into a Stream 2858.7.7

Collecting Results 2868.8
Collecting into Maps 2878.9
Grouping and Partitioning 2898.10
Downstream Collectors 2898.11
Reduction Operations 2928.12
Primitive Type Streams 2948.13

xviiContents

Parallel Streams 2958.14
Exercises 298

PROCESSING INPUT AND OUTPUT 3019
Input/Output Streams, Readers, and Writers 3029.1

Obtaining Streams 3029.1.1
Reading Bytes 3039.1.2
Writing Bytes 3049.1.3
Character Encodings 3059.1.4
Text Input 3079.1.5
Text Output 3089.1.6
Reading and Writing Binary Data 3109.1.7
Random-Access Files 3109.1.8
Memory-Mapped Files 3119.1.9
File Locking 3129.1.10

Paths, Files, and Directories 3129.2
Paths 3129.2.1
Creating Files and Directories 3149.2.2
Copying, Moving, and Deleting Files 3159.2.3
Visiting Directory Entries 3169.2.4
ZIP File Systems 3199.2.5

HTTP Connections 3209.3
The URLConnection and HttpURLConnection Classes 3209.3.1
The HTTP Client API 3219.3.2

Regular Expressions 3239.4
The Regular Expression Syntax 3249.4.1
Testing a Match 3299.4.2
Finding All Matches 3299.4.3
Groups 3309.4.4
Splitting along Delimiters 3319.4.5
Replacing Matches 3329.4.6
Flags 3339.4.7

Serialization 3339.5
The Serializable Interface 3349.5.1

Contentsxviii

Transient Instance Variables 3369.5.2
The readObject and writeObject Methods 3369.5.3
The readExternal and writeExternal Methods 3389.5.4
The readResolve and writeReplace Methods 3399.5.5
Versioning 3409.5.6
Deserialization and Security 3429.5.7

Exercises 344

CONCURRENT PROGRAMMING 34710
Concurrent Tasks 34810.1

Running Tasks 34810.1.1
Futures 35110.1.2

Asynchronous Computations 35310.2
Completable Futures 35310.2.1
Composing Completable Futures 35510.2.2
Long-Running Tasks in User-Interface Callbacks 35810.2.3

Thread Safety 36010.3
Visibility 36010.3.1
Race Conditions 36210.3.2
Strategies for Safe Concurrency 36410.3.3
Immutable Classes 36510.3.4

Parallel Algorithms 36610.4
Parallel Streams 36610.4.1
Parallel Array Operations 36710.4.2

Threadsafe Data Structures 36810.5
Concurrent Hash Maps 36910.5.1
Blocking Queues 37010.5.2
Other Threadsafe Data Structures 37210.5.3

Atomic Counters and Accumulators 37310.6
Locks and Conditions 37510.7

Locks 37510.7.1
The synchronized Keyword 37710.7.2
Waiting on Conditions 37910.7.3

Threads 38110.8

xixContents

Starting a Thread 38110.8.1
Thread Interruption 38210.8.2
Thread-Local Variables 38410.8.3
Miscellaneous Thread Properties 38510.8.4

Processes 38610.9
Building a Process 38610.9.1
Running a Process 38810.9.2
Process Handles 38910.9.3

Exercises 390

ANNOTATIONS 39711
Using Annotations 39811.1

Annotation Elements 39811.1.1
Multiple and Repeated Annotations 40011.1.2
Annotating Declarations 40011.1.3
Annotating Type Uses 40111.1.4
Making Receivers Explicit 40211.1.5

Defining Annotations 40311.2
Standard Annotations 40611.3

Annotations for Compilation 40711.3.1
Meta-Annotations 40811.3.2

Processing Annotations at Runtime 41011.4
Source-Level Annotation Processing 41311.5

Annotation Processors 41311.5.1
The Language Model API 41411.5.2
Using Annotations to Generate Source Code 41511.5.3

Exercises 417

THE DATE AND TIME API 42112
The Time Line 42212.1
Local Dates 42412.2
Date Adjusters 42812.3
Local Time 42912.4
Zoned Time 43012.5

Contentsxx

Formatting and Parsing 43312.6
Interoperating with Legacy Code 43612.7

Exercises 437

INTERNATIONALIZATION 44113
Locales 44213.1

Specifying a Locale 44313.1.1
The Default Locale 44513.1.2
Display Names 44613.1.3

Number Formats 44713.2
Currencies 44813.3
Date and Time Formatting 44913.4
Collation and Normalization 45113.5
Message Formatting 45313.6
Resource Bundles 45513.7

Organizing Resource Bundles 45513.7.1
Bundle Classes 45713.7.2

Character Encodings 45813.8
Preferences 45913.9

Exercises 461

COMPILING AND SCRIPTING 46314
The Compiler API 46314.1

Invoking the Compiler 46414.1.1
Launching a Compilation Task 46414.1.2
Capturing Diagnostics 46514.1.3
Reading Source Files from Memory 46514.1.4
Writing Byte Codes to Memory 46614.1.5

The Scripting API 46714.2
Getting a Scripting Engine 46814.2.1
Evaluating Scripts 46814.2.2
Bindings 46914.2.3
Redirecting Input and Output 46914.2.4
Calling Scripting Functions and Methods 47014.2.5

xxiContents

Compiling a Script 47114.2.6
Exercises 472

THE JAVA PLATFORM MODULE SYSTEM 47515
The Module Concept 47615.1
Naming Modules 47815.2
The Modular “Hello, World!” Program 47815.3
Requiring Modules 48015.4
Exporting Packages 48215.5
Modules and Reflective Access 48515.6
Modular JARs 48815.7
Automatic Modules 48915.8
The Unnamed Module 49115.9
Command-Line Flags for Migration 49115.10
Transitive and Static Requirements 49315.11
Qualified Exporting and Opening 49515.12
Service Loading 49615.13
Tools for Working with Modules 49715.14

Exercises 499

Index 501

Contentsxxii

Java has seen many changes since its initial release in 1996. The classic book,
Core Java, covers, in meticulous detail, not just the language but all core li-
braries and a multitude of changes between versions, spanning two volumes
and over 2,000 pages. However, if you just want to be productive with
modern Java, there is a much faster, easier pathway for learning the language
and core libraries. In this book, I don’t retrace history and don’t dwell on
features of past versions. I show you the good parts of Java as it exists today,
so you can put your knowledge to work quickly.

As with my previous “Impatient” books, I quickly cut to the chase, showing
you what you need to know to solve a programming problem without lecturing
about the superiority of one paradigm over another. I also present the infor-
mation in small chunks, organized so that you can quickly retrieve it when
needed.

Assuming you are proficient in some other programming language, such as
C++, JavaScript, Swift, PHP, or Ruby, with this book you will learn how to
become a competent Java programmer. I cover all aspects of Java that a de-
veloper needs to know today, including the powerful concepts of lambda
expressions and streams, as well as modern constructs such as records and
sealed classes.

A key reason to use Java is to tackle concurrent programming. With parallel
algorithms and threadsafe data structures readily available in the Java library,

xxiii

Preface

the way application programmers should handle concurrent programming
has completely changed. I provide fresh coverage, showing you how to use
the powerful library features instead of error-prone low-level constructs.

Traditionally, books on Java have focused on user interface programming,
but nowadays, few developers produce user interfaces on desktop computers.
If you intend to use Java for server-side programming or Android program-
ming, you will be able to use this book effectively without being distracted
by desktop GUI code.

Finally, this book is written for application programmers, not for a college
course and not for systems wizards. The book covers issues that application
programmers need to wrestle with, such as logging and working with files,
but you won’t learn how to implement a linked list by hand or how to write
a web server.

I hope you enjoy this rapid-fire introduction into modern Java, and I hope it
will make your work with Java productive and enjoyable.

If you find errors or have suggestions for improvement, please visit
http://horstmann.com/javaimpatient, head for the errata page, and leave a comment.
Be sure to visit that site to download the runnable code examples that
complement this book.

Register your copy of Core Java for the Impatient, Third Edition, on the InformIT
site for convenient access to updates and/or corrections as they become
available. To start the registration process, go to informit.com/register and log
in or create an account. Enter the product ISBN (9780138052102) and click
Submit. Look on the Registered Products tab for an Access Bonus Content
link next to this product, and follow that link to access any available bonus
materials. If you would like to be notified of exclusive offers on new editions
and updates, please check the box to receive email from us.

Prefacexxiv

http://horstmann.com/javaimpatient
http://informit.com/register

My thanks go, as always, to my editor Greg Doench, who enthusiastically
supported the vision of a short book that gives a fresh introduction to Java.
Dmitry Kirsanov and Alina Kirsanova once again turned an XHTML manuscript
into an attractive book with amazing speed and attention to detail. My special
gratitude goes to the excellent team of reviewers for all editions who spotted
many errors and gave thoughtful suggestions for improvement. They are:
Andres Almiray, Gail Anderson, Paul Anderson, Marcus Biel, Brian Goetz,
Mark Lawrence, Doug Lea, Simon Ritter, Yoshiki Shibata, and Christian
Ullenboom.

Cay Horstmann
Berlin
August 2022

xxv

Acknowledgments

This page intentionally left blank

Cay S. Horstmann is the author of JavaScript for the Impatient and Scala for
the Impatient (both from Addison-Wesley), is principal author of Core Java,
Volumes I and II, Twelfth Edition (Pearson, 2022), and has written a dozen
other books for professional programmers and computer science students.
He is professor emeritus of computer science at San Jose State University and
is a Java Champion.

xxvii

About the Author

Topics in This Chapter

1.1 Our First Program — page 2

1.2 Primitive Types — page 11

1.3 Variables — page 14

1.4 Arithmetic Operations — page 17

1.5 Strings — page 25

1.6 Input and Output — page 35

1.7 Control Flow — page 38

1.8 Arrays and Array Lists — page 46

1.9 Functional Decomposition — page 56

Exercises — page 58

Fundamental
Programming
Structures

Topics in This Chapter

9.1 Input/Output Streams, Readers, and Writers — page 302

9.2 Paths, Files, and Directories — page 312

9.3 HTTP Connections — page 320

9.4 Regular Expressions — page 323

9.5 Serialization — page 333

Exercises — page 344

Processing
Input and Output

In this chapter, you will learn how to work with files, directories, and web
pages, and how to read and write data in binary and text format. You will
also find a discussion of regular expressions, which can be useful for process-
ing input. (I couldn’t think of a better place to handle that topic, and appar-
ently neither could the Java developers—when the regular expression API
specification was proposed, it was attached to the specification request for
“new I/O” features.) Finally, this chapter shows you the object serialization
mechanism that lets you store objects as easily as you can store text or
numeric data.

The key points of this chapter are:

1. An InputStream is a source of bytes, and an OutputStream is a destination for
bytes.

2. A Reader reads characters, and a Writer writes them. Be sure to specify a
character encoding.

3. The Files class has convenience methods for reading all bytes or lines of
a file.

4. The DataInput and DataOutput interfaces have methods for writing numbers
in binary format.

5. Use a RandomAccessFile or a memory-mapped file for random access.

301

9Chapter

6. A Path is an absolute or relative sequence of path components in a file
system. Paths can be combined (or “resolved”).

7. Use the methods of the Files class to copy, move, or delete files and to
recursively walk through a directory tree.

8. To read or update a ZIP file, use a ZIP file system.

9. You can read the contents of a web page with the URL class. To read
metadata or write data, use the URLConnection class.

10. With the Pattern and Matcher classes, you can find all matches of a regular
expression in a string, as well as the captured groups for each match.

11. The serialization mechanism can save and restore any object implementing
the Serializable interface, provided its instance variables are also serializable.

9.1 Input/Output Streams, Readers, and Writers

In the Java API, a source from which one can read bytes is called an input
stream. The bytes can come from a file, a network connection, or an array in
memory. (These streams are unrelated to the streams of Chapter 8.) Similarly,
a destination for bytes is an output stream. In contrast, readers and writers
consume and produce sequences of characters. In the following sections, you
will learn how to read and write bytes and characters.

9.1.1 Obtaining Streams

The easiest way to obtain a stream from a file is with the static methods
InputStream in = Files.newInputStream(path);
OutputStream out = Files.newOutputStream(path);

Here, path is an instance of the Path class that is covered in Section 9.2.1,
“Paths” (page 312). It describes a path in a file system.

If you have a URL, you can read its contents from the input stream returned
by the openStream method of the URL class:

var url = new URL("https://horstmann.com/index.html");
InputStream in = url.openStream();

Section 9.3, “HTTP Connections” (page 320) shows how to send data to a
web server.

The ByteArrayInputStream class lets you read from an array of bytes.

Chapter 9 Processing Input and Output302

https://horstmann.com/index.html"

byte[] bytes = ...;
var in = new ByteArrayInputStream(bytes);
Read from in

Conversely, to send output to a byte array, use a ByteArrayOutputStream:
var out = new ByteArrayOutputStream();
Write to out
byte[] bytes = out.toByteArray();

9.1.2 Reading Bytes

The InputStream class has a method to read a single byte:
InputStream in = ...;
int b = in.read();

This method either returns the byte as an integer between 0 and 255, or returns
-1 if the end of input has been reached.

CAUTION: The Java byte type has values between -128 and 127. You
can cast the returned value into a byte after you have checked that it
is not -1.

More commonly, you will want to read the bytes in bulk. The most convenient
method is the readAllBytes method that simply reads all bytes from the stream
into a byte array:

byte[] bytes = in.readAllBytes();

TIP: If you want to read all bytes from a file, call the convenience
method

byte[] bytes = Files.readAllBytes(path);

If you want to read some, but not all bytes, provide a byte array and call the
readNBytes method:

var bytes = new byte[len];
int bytesRead = in.readNBytes(bytes, offset, n);

The method reads until either n bytes are read or no further input is available,
and returns the actual number of bytes read. If no input was available at all,
the methods return -1.

3039.1 Input/Output Streams, Readers, and Writers

NOTE: There is also a read(byte[], int, int) method whose description
seems exactly like readNBytes. The difference is that the read method only
attempts to read the bytes and returns immediately with a lower count
if it fails. The readNBytes method keeps calling read until all requested
bytes have been obtained or read returns -1.

Finally, you can skip bytes:
long bytesToSkip = ...;
in.skipNBytes(bytesToSkip);

9.1.3 Writing Bytes

The write methods of an OutputStream can write individual bytes and byte arrays.
OutputStream out = ...;
int b = ...;
out.write(b);
byte[] bytes = ...;
out.write(bytes);
out.write(bytes, start, length);

When you are done writing a stream, you must close it in order to commit
any buffered output. This is best done with a try-with-resources statement:

try (OutputStream out = ...) {
 out.write(bytes);
}

If you need to copy an input stream to an output stream, use the
InputStream.transferTo method:

try (InputStream in = ...; OutputStream out = ...) {
 in.transferTo(out);
}

Both streams need to be closed after the call to transferTo. It is best to use a
try-with-resources statement, as in the code example.

To write a file to an OutputStream, call
Files.copy(path, out);

Conversely, to save an InputStream to a file, call
Files.copy(in, path, StandardCopyOption.REPLACE_EXISTING);

Chapter 9 Processing Input and Output304

9.1.4 Character Encodings

Input and output streams are for sequences of bytes, but in many cases you
will work with text—that, is, sequences of characters. It then matters how
characters are encoded into bytes.

Java uses the Unicode standard for characters. Each character or “code point”
has a 21-bit integer number. There are different character encodings—methods
for packaging those 21-bit numbers into bytes.

The most common encoding is UTF-8, which encodes each Unicode code
point into a sequence of one to four bytes (see Table 9-1). UTF-8 has the
advantage that the characters of the traditional ASCII character set, which
contains all characters used in English, only take up one byte each.

Table 9-1 UTF-8 Encoding

EncodingCharacter range

0a6a5a4a3a2a1a00...7F

110a10a9a8a7a6 10a5a4a3a2a1a080...7FF

1110a15a14a13a12 10a11a10a9a8a7a6 10a5a4a3a2a1a0800...FFFF

11110a20a19a18 10a17a16a15a14a13a12 10a11a10a9a8a7a6 10a5a4a3a2a1a010000...10FFFF

Another common encoding is UTF-16, which encodes each Unicode code
point into one or two 16-bit values (see Table 9-2). This is the encoding used
in Java strings. Actually, there are two forms of UTF-16, called “big-endian”
and “little-endian.” Consider the 16-bit value 0x2122. In big-endian format, the
more significant byte comes first: 0x21 followed by 0x22. In little-endian format,
it is the other way around: 0x22 0x21. To indicate which of the two is used, a
file can start with the “byte order mark,” the 16-bit quantity 0xFEFF. A reader
can use this value to determine the byte order and discard it.

Table 9-2 UTF-16 Encoding

EncodingCharacter range

a15a14a13a12a11a10a9a8a7a6a5a4a3a2a1a00...FFFF

110110b19b18b17b16a15a14a13a12a11a10 110111a9a8a7a6a5a4a3a2a1a0
where b19b18b17b16 = a20a19a18a17a16 – 1

10000...10FFFF

3059.1 Input/Output Streams, Readers, and Writers

CAUTION: Some programs, including Microsoft Notepad, add a byte
order mark at the beginning of UTF-8 encoded files. Clearly, this is
unnecessary since there are no byte ordering issues in UTF-8. But the
Unicode standard allows it, and even suggests that it’s a pretty good
idea since it leaves little doubt about the encoding. It is supposed to
be removed when reading a UTF-8 encoded file. Sadly, Java does not
do that, and bug reports against this issue are closed as “will not fix.”
Your best bet is to strip out any leading \uFEFF that you find in your
input.

In addition to the UTF encodings, there are partial encodings that cover a
character range suitable for a given user population. For example, ISO 8859-1
is a one-byte code that includes accented characters used in Western European
languages. Shift_JIS is a variable-length code for Japanese characters. A large
number of these encodings are still in widespread use.

There is no reliable way to automatically detect the character encoding from
a stream of bytes. Some API methods let you use the “default charset”—the
character encoding that is preferred by the operating system of the computer.
Is that the same encoding that is used by your source of bytes? These bytes
may well originate from a different part of the world. Therefore, you should
always explicitly specify the encoding. For example, when reading a web
page, check the Content-Type header.

NOTE: The platform encoding is returned by the static method
Charset.defaultCharset. The static method Charset.availableCharsets returns
all available Charset instances, as a map from canonical names to Charset
objects.

CAUTION: The Oracle implementation has a system property file.encoding
for overriding the platform default. This is not an officially supported
property, and it is not consistently followed by all parts of Oracle’s
implementation of the Java library. You should not set it.

The StandardCharsets class has static variables of type Charset for the character
encodings that every Java virtual machine must support:

StandardCharsets.UTF_8
StandardCharsets.UTF_16
StandardCharsets.UTF_16BE
StandardCharsets.UTF_16LE

Chapter 9 Processing Input and Output306

StandardCharsets.ISO_8859_1
StandardCharsets.US_ASCII

To obtain the Charset for another encoding, use the static forName method:
Charset shiftJIS = Charset.forName("Shift_JIS");

Use the Charset object when reading or writing text. For example, you can
turn an array of bytes into a string as

var contents = new String(bytes, StandardCharsets.UTF_8);

TIP: Some methods allow you to specify a character encoding with a
Charset object or a string. Choose the StandardCharsets constants, so you
don’t have to worry about the correct spelling. For example, new
String(bytes, "UTF 8") is not acceptable and will cause a runtime error.

CAUTION: Some methods (such as the String(byte[]) constructor) use
the default platform encoding if you don’t specify any; others (such as
Files.readAllLines) use UTF-8.

9.1.5 Text Input

To read text input, use a Reader. You can obtain a Reader from any input stream
with the InputStreamReader adapter:

InputStream inStream = ...;
var in = new InputStreamReader(inStream, charset);

If you want to process the input one UTF-16 code unit at a time, you can
call the read method:

int ch = in.read();

The method returns a code unit between 0 and 65536, or -1 at the end of input.

That is not very convenient. Here are several alternatives.

With a short text file, you can read it into a string like this:
String content = Files.readString(path, charset);

But if you want the file as a sequence of lines, call
List<String> lines = Files.readAllLines(path, charset);

If the file is large, process them lazily as a Stream<String>:
try (Stream<String> lines = Files.lines(path, charset)) {
 ...
}

3079.1 Input/Output Streams, Readers, and Writers

NOTE: If an IOException occurs as the stream fetches the lines, that
exception is wrapped into an UncheckedIOException which is thrown out of
the stream operation. (This subterfuge is necessary because stream
operations are not declared to throw any checked exceptions.)

To read numbers or words from a file, use a Scanner, as you have seen in
Chapter 1. For example,

var in = new Scanner(path, StandardCharsets.UTF_8);
while (in.hasNextDouble()) {
 double value = in.nextDouble();
 ...
}

TIP: To read alphabetic words, set the scanner’s delimiter to a regular
expression that is the complement of what you want to accept as a
token. For example, after calling

in.useDelimiter("\\PL+");

the scanner reads in letters since any sequence of nonletters is a
delimiter. See Section 9.4.1, “The Regular Expression Syntax” (page 324)
for the regular expression syntax.

You can then obtain a stream of all words as

Stream<String> words = in.tokens();

If your input does not come from a file, wrap the InputStream into a BufferedReader:
try (var reader = new BufferedReader(new InputStreamReader(url.openStream()))) {
 Stream<String> lines = reader.lines();
 ...
}

A BufferedReader reads input in chunks for efficiency. (Oddly, this is not an
option for basic readers.) It has methods readLine to read a single line and
lines to yield a stream of lines.

If a method asks for a Reader and you want it to read from a file, call
Files.newBufferedReader(path, charset).

9.1.6 Text Output

To write text, use a Writer. With the write method, you can write strings. You
can turn any output stream into a Writer:

Chapter 9 Processing Input and Output308

OutputStream outStream = ...;
var out = new OutputStreamWriter(outStream, charset);
out.write(str);

To get a writer for a file, use
Writer out = Files.newBufferedWriter(path, charset);

It is more convenient to use a PrintWriter, which has the print, println, and
printf that you have always used with System.out. Using those methods, you
can print numbers and use formatted output.

If you write to a file, construct a PrintWriter like this:
var out = new PrintWriter(Files.newBufferedWriter(path, charset));

If you write to another stream, use
var out = new PrintWriter(new OutputStreamWriter(outStream, charset));

NOTE: System.out is an instance of PrintStream, not PrintWriter. This is a
relic from the earliest days of Java. However, the print, println, and
printf methods work the same way for the PrintStream and PrintWriter
classes, using a character encoding for turning characters into bytes.

If you already have the text to write in a string, call
String content = ...;
Files.write(path, content.getBytes(charset));

or
Files.write(path, lines, charset);

Here, lines can be a Collection<String>, or even more generally, an Iterable<?
extends CharSequence>.

To append to a file, use
Files.write(path, content.getBytes(charset), StandardOpenOption.APPEND);
Files.write(path, lines, charset, StandardOpenOption.APPEND);

CAUTION: When writing text with a partial character set such as
ISO 8859-1, any unmappable characters are silently changed to a
“replacement”—in most cases, either the ? character or the Unicode
replacement character U+FFFD.

Sometimes, a library method wants a Writer to write output. If you want to
capture that output in a string, hand it a StringWriter. Or, if it wants a PrintWriter,
wrap the StringWriter like this:

3099.1 Input/Output Streams, Readers, and Writers

var writer = new StringWriter();
throwable.printStackTrace(new PrintWriter(writer));
String stackTrace = writer.toString();

9.1.7 Reading and Writing Binary Data

The DataInput interface declares the following methods for reading a number,
a character, a boolean value, or a string in binary format:

byte readByte()
int readUnsignedByte()
char readChar()
short readShort()
int readUnsignedShort()
int readInt()
long readLong()
float readFloat()
double readDouble()
void readFully(byte[] b)

The DataOutput interface declares corresponding write methods.

NOTE: These methods read and write numbers in big-endian format.

CAUTION: There are also readUTF/writeUTF methods that use a “modified
UTF-8” format. These methods are not compatible with regular UTF-8,
and are only useful for JVM internals.

The advantage of binary I/O is that it is fixed width and efficient. For example,
writeInt always writes an integer as a big-endian 4-byte binary quantity regard-
less of the number of digits. The space needed is the same for each value of
a given type, which speeds up random access. Also, reading binary data is
faster than parsing text. The main drawback is that the resulting files cannot
be easily inspected in a text editor.

You can use the DataInputStream and DataOutputStream adapters with any stream.
For example,

DataInput in = new DataInputStream(Files.newInputStream(path));
DataOutput out = new DataOutputStream(Files.newOutputStream(path));

9.1.8 Random-Access Files

The RandomAccessFile class lets you read or write data anywhere in a file. You
can open a random-access file either for reading only or for both reading and

Chapter 9 Processing Input and Output310

writing; specify the option by using the string "r" (for read access) or "rw" (for
read/write access) as the second argument in the constructor. For example,

var file = new RandomAccessFile(path.toString(), "rw");

A random-access file has a file pointer that indicates the position of the next
byte to be read or written. The seek method sets the file pointer to an arbitrary
byte position within the file. The argument to seek is a long integer between
zero and the length of the file (which you can obtain with the length method).
The getFilePointer method returns the current position of the file pointer.

The RandomAccessFile class implements both the DataInput and DataOutput interfaces.
To read and write numbers from a random-access file, use methods such as
readInt/writeInt that you saw in the preceding section. For example,

int value = file.readInt();
file.seek(file.getFilePointer() - 4);
file.writeInt(value + 1);

9.1.9 Memory-Mapped Files

Memory-mapped files provide another, very efficient approach for random
access that works well for very large files. However, the API for data access
is completely different from that of input/output streams. First, get a channel
to the file:

FileChannel channel = FileChannel.open(path,
 StandardOpenOption.READ, StandardOpenOption.WRITE)

Then, map an area of the file (or, if it is not too large, the entire file) into
memory:

ByteBuffer buffer = channel.map(FileChannel.MapMode.READ_WRITE,
 0, channel.size());

Use methods get, getInt, getDouble, and so on to read values, and the equivalent
put methods to write values.

int offset = ...;
int value = buffer.getInt(offset);
buffer.put(offset, value + 1);

At some point, and certainly when the channel is closed, these changes are
written back to the file.

NOTE: By default, the methods for reading and writing numbers use
big-endian byte order. You can change the byte order with the command

buffer.order(ByteOrder.LITTLE_ENDIAN);

3119.1 Input/Output Streams, Readers, and Writers

9.1.10 File Locking

When multiple simultaneously executing programs modify the same file, they
need to communicate in some way, or the file can easily become damaged.
File locks can solve this problem.

Suppose your application saves a configuration file with user preferences. If
a user invokes two instances of the application, it could happen that both of
them want to write the configuration file at the same time. In that situation,
the first instance should lock the file. When the second instance finds the
file locked, it can decide to wait until the file is unlocked or simply skip
the writing process. To lock a file, call either the lock or tryLock methods of the
FileChannel class.

FileChannel channel = FileChannel.open(path, StandardOpenOption.WRITE);
FileLock lock = channel.lock();

or
FileLock lock = channel.tryLock();

The first call blocks until the lock becomes available. The second call returns
immediately, either with the lock or with null if the lock is not available. The
file remains locked until the lock or the channel is closed. It is best to use a
try-with-resources statement:

try (FileLock lock = channel.lock()) {
 ...
}

9.2 Paths, Files, and Directories

You have already seen Path objects for specifying file paths. In the following
sections, you will see how to manipulate these objects and how to work with
files and directories.

9.2.1 Paths

A Path is a sequence of directory names, optionally followed by a file name.
The first component of a path may be a root component, such as / or C:\. The
permissible root components depend on the file system. A path that starts
with a root component is absolute. Otherwise, it is relative. For example, here
we construct an absolute and a relative path. For the absolute path, we
assume we are running on a Unix-like file system.

Path absolute = Path.of("/", "home", "cay");
Path relative = Path.of("myapp", "conf", "user.properties");

Chapter 9 Processing Input and Output312

The static Path.of method receives one or more strings, which it joins with
the path separator of the default file system (/ for a Unix-like file system, \
for Windows). It then parses the result, throwing an InvalidPathException if the
result is not a valid path in the given file system. The result is a Path object.

You can also provide a string with separators to the Path.of method:
Path homeDirectory = Path.of("/home/cay");

NOTE: A Path object does not have to correspond to a file that actually
exists. It is merely an abstract sequence of names. To create a file, first
make a path, then call a method to create the corresponding file—see
Section 9.2.2, “Creating Files and Directories” (page 314).

It is very common to combine or “resolve” paths. The call p.resolve(q) returns
a path according to these rules:

• If q is absolute, then the result is q.

• Otherwise, the result is “p then q,” according to the rules of the file system.

For example, suppose your application needs to find its configuration file
relative to the home directory. Here is how you can combine the paths:

Path workPath = homeDirectory.resolve("myapp/work");
 // Same as homeDirectory.resolve(Path.of("myapp/work"));

There is a convenience method resolveSibling that resolves against a path’s
parent, yielding a sibling path. For example, if workPath is /home/cay/myapp/work,
the call

Path tempPath = workPath.resolveSibling("temp");

yields /home/cay/myapp/temp.

The opposite of resolve is relativize. The call p.relativize(r) yields the path q
which, when resolved with p, yields r. For example,

Path.of("/home/cay").relativize(Path.of("/home/fred/myapp"))

yields ../fred/myapp, assuming we have a file system that uses .. to denote the
parent directory.

The normalize method removes any redundant . and .. components (or what-
ever the file system may deem redundant). For example, normalizing the path
/home/cay/../fred/./myapp yields /home/fred/myapp.

The toAbsolutePath method yields the absolute path of a given path. If the path
is not already absolute, it is resolved against the “user directory”—that is, the
directory from which the JVM was invoked. For example, if you launched

3139.2 Paths, Files, and Directories

a program from /home/cay/myapp, then Path.of("config").toAbsolutePath() returns
/home/cay/myapp/config.

The Path interface has methods for taking paths apart and combining them
with other paths. This code sample shows some of the most useful ones:

Path p = Path.of("/home", "cay", "myapp.properties");
Path parent = p.getParent(); // The path /home/cay
Path file = p.getFileName(); // The last element, myapp.properties
Path root = p.getRoot(); // The initial segment / (null for a relative path)
Path first = p.getName(0); // The first element
Path dir = p.subpath(1, p.getNameCount());
 // All but the first element, cay/myapp.properties

The Path interface extends the Iterable<Path> element, so you can iterate over
the name components of a Path with an enhanced for loop:

for (Path component : path) {
 ...
}

NOTE: Occasionally, you may need to interoperate with legacy APIs that
use the File class instead of the Path interface. The Path interface has a
toFile method, and the File class has a toPath method.

9.2.2 Creating Files and Directories

To create a new directory, call
Files.createDirectory(path);

All but the last component in the path must already exist. To create
intermediate directories as well, use

Files.createDirectories(path);

You can create an empty file with
Files.createFile(path);

The call throws an exception if the file already exists. The checks for existence
and the creation are atomic. If the file doesn’t exist, it is created before anyone
else has a chance to do the same.

The call Files.exists(path) checks whether the given file or directory exists. To
test whether it is a directory or a “regular” file (that is, with data in it, not
something like a directory or symbolic link), call the static methods isDirectory
and isRegularFile of the Files class.

Chapter 9 Processing Input and Output314

There are convenience methods for creating a temporary file or directory in
a given or system-specific location.

Path tempFile = Files.createTempFile(dir, prefix, suffix);
Path tempFile = Files.createTempFile(prefix, suffix);
Path tempDir = Files.createTempDirectory(dir, prefix);
Path tempDir = Files.createTempDirectory(prefix);

Here, dir is a Path, and prefix/suffix are strings which may be null. For
example, the call Files.createTempFile(null, ".txt") might return a path such as
/tmp/1234405522364837194.txt.

9.2.3 Copying, Moving, and Deleting Files

To copy a file from one location to another, simply call
Files.copy(fromPath, toPath);

To move a file (that is, copy and delete the original), call
Files.move(fromPath, toPath);

You can also use this command to move an empty directory.

The copy or move will fail if the target exists. If you want to overwrite
an existing target, use the REPLACE_EXISTING option. If you want to copy all file
attributes, use the COPY_ATTRIBUTES option. You can supply both like this:

Files.copy(fromPath, toPath, StandardCopyOption.REPLACE_EXISTING,
 StandardCopyOption.COPY_ATTRIBUTES);

You can specify that a move should be atomic. Then you are assured that
either the move completed successfully, or the source continues to be present.
Use the ATOMIC_MOVE option:

Files.move(fromPath, toPath, StandardCopyOption.ATOMIC_MOVE);

See Table 9-3 for a summary of the options that are available for file
operations.

Finally, to delete a file, simply call
Files.delete(path);

This method throws an exception if the file doesn’t exist, so instead you may
want to use

boolean deleted = Files.deleteIfExists(path);

The deletion methods can also be used to remove an empty directory.

3159.2 Paths, Files, and Directories

Table 9-3 Standard Options for File Operations

DescriptionOption

StandardOpenOption; use with newBufferedWriter, newInputStream, newOutputStream, write

Open for reading.READ

Open for writing.WRITE

If opened for writing, append to the end of the file.APPEND

If opened for writing, remove existing contents.TRUNCATE_EXISTING

Create a new file and fail if it exists.CREATE_NEW

Atomically create a new file if it doesn’t exist.CREATE

Make a “best effort” to delete the file when it is closed.DELETE_ON_CLOSE

A hint to the file system that this file will be sparse.SPARSE

Requires that each update to the file data|data and metadata
be written synchronously to the storage device.

DSYNC|SYNC

StandardCopyOption; use with copy, move

Move the file atomically.ATOMIC_MOVE

Copy the file attributes.COPY_ATTRIBUTES

Replace the target if it exists.REPLACE_EXISTING

LinkOption; use with all of the above methods and exists, isDirectory, isRegularFile

Do not follow symbolic links.NOFOLLOW_LINKS

FileVisitOption; use with find, walk, walkFileTree

Follow symbolic links.FOLLOW_LINKS

9.2.4 Visiting Directory Entries

The static Files.list method returns a Stream<Path> that reads the entries of
a directory. The directory is read lazily, making it possible to efficiently process
directories with huge numbers of entries.

Since reading a directory involves a system resource that needs to be closed,
you should use a try-with-resources block:

try (Stream<Path> entries = Files.list(pathToDirectory)) {
 ...
}

Chapter 9 Processing Input and Output316

The list method does not enter subdirectories. To process all descendants of
a directory, use the Files.walk method instead.

try (Stream<Path> entries = Files.walk(pathToRoot)) {
 // Contains all descendants, visited in depth-first order
}

Here is a sample traversal of the unzipped src.zip tree:
java
java/nio
java/nio/DirectCharBufferU.java
java/nio/ByteBufferAsShortBufferRL.java
java/nio/MappedByteBuffer.java
...
java/nio/ByteBufferAsDoubleBufferB.java
java/nio/charset
java/nio/charset/CoderMalfunctionError.java
java/nio/charset/CharsetDecoder.java
java/nio/charset/UnsupportedCharsetException.java
java/nio/charset/spi
java/nio/charset/spi/CharsetProvider.java
java/nio/charset/StandardCharsets.java
java/nio/charset/Charset.java
...
java/nio/charset/CoderResult.java
java/nio/HeapFloatBufferR.java
...

As you can see, whenever the traversal yields a directory, it is entered before
continuing with its siblings.

You can limit the depth of the tree that you want to visit by calling
Files.walk(pathToRoot, depth). Both walk methods have a varargs parameter of type
FileVisitOption..., but there is only one option you can supply: FOLLOW_LINKS to
follow symbolic links.

NOTE: If you filter the paths returned by walk and your filter criterion
involves the file attributes stored with a directory, such as size, creation
time, or type (file, directory, symbolic link), then use the find method
instead of walk. Call that method with a predicate function that accepts
a path and a BasicFileAttributes object. The only advantage is efficiency.
Since the directory is being read anyway, the attributes are readily
available.

3179.2 Paths, Files, and Directories

This code fragment uses the Files.walk method to copy one directory to another:
Files.walk(source).forEach(p -> {
 try {
 Path q = target.resolve(source.relativize(p));
 if (Files.isDirectory(p))
 Files.createDirectory(q);
 else
 Files.copy(p, q);
 } catch (IOException ex) {
 throw new UncheckedIOException(ex);
 }
});

Unfortunately, you cannot easily use the Files.walk method to delete a tree of
directories since you need to first visit the children before deleting the parent.
In that case, use the walkFileTree method. It requires an instance of the FileVisitor
interface. Here is when the file visitor gets notified:

1. Before a directory is processed:
FileVisitResult preVisitDirectory(T dir, IOException ex)

2. When a file is encountered:
FileVisitResult visitFile(T path, BasicFileAttributes attrs)

3. When an exception occurs in the visitFile method:
FileVisitResult visitFileFailed(T path, IOException ex)

4. After a directory is processed:
FileVisitResult postVisitDirectory(T dir, IOException ex)

In each case, the notification method returns one of the following results:

• Continue visiting the next file: FileVisitResult.CONTINUE

• Continue the walk, but without visiting the entries in this directory:
FileVisitResult.SKIP_SUBTREE

• Continue the walk, but without visiting the siblings of this file:
FileVisitResult.SKIP_SIBLINGS

• Terminate the walk: FileVisitResult.TERMINATE

If any of the methods throws an exception, the walk is also terminated, and
that exception is thrown from the walkFileTree method.

The SimpleFileVisitor class implements this interface, continuing the iteration
at each point and rethrowing any exceptions.

Here is how you can delete a directory tree:

Chapter 9 Processing Input and Output318

Files.walkFileTree(root, new SimpleFileVisitor<Path>() {
 public FileVisitResult visitFile(Path file,
 BasicFileAttributes attrs) throws IOException {
 Files.delete(file);
 return FileVisitResult.CONTINUE;
 }
 public FileVisitResult postVisitDirectory(Path dir,
 IOException ex) throws IOException {
 if (ex != null) throw ex;
 Files.delete(dir);
 return FileVisitResult.CONTINUE;
 }
});

9.2.5 ZIP File Systems

The Paths class looks up paths in the default file system—the files on the user’s
local disk. You can have other file systems. One of the more useful ones is a
ZIP file system. If zipname is the name of a ZIP file, then the call

FileSystem zipfs = FileSystems.newFileSystem(Path.of(zipname));

establishes a file system that contains all files in the ZIP archive. It’s an easy
matter to copy a file out of that archive if you know its name:

Files.copy(zipfs.getPath(sourceName), targetPath);

Here, zipfs.getPath is the analog of Path.of for an arbitrary file system.

To list all files in a ZIP archive, walk the file tree:
Files.walk(zipfs.getPath("/")).forEach(p -> {

Process p
});

You have to work a bit harder to create a new ZIP file. Here is the magic
incantation:

Path zipPath = Path.of("myfile.zip");
var uri = new URI("jar", zipPath.toUri().toString(), null);
 // Constructs the URI jar:file://myfile.zip
try (FileSystem zipfs = FileSystems.newFileSystem(uri,
 Collections.singletonMap("create", "true"))) {
 // To add files, copy them into the ZIP file system
 Files.copy(sourcePath, zipfs.getPath("/").resolve(targetPath));
}

NOTE: There is an older API for working with ZIP archives, with classes
ZipInputStream and ZipOutputStream, but it’s not as easy to use as the one
described in this section.

3199.2 Paths, Files, and Directories

9.3 HTTP Connections

You can read from a URL by using the input stream returned from
URL.getInputStream method. However, if you want additional information about
a web resource, or if you want to write data, you need more control over
the process than the URL class provides. The URLConnection class was designed
before HTTP was the universal protocol of the Web. It provides support for
a number of protocols, but its HTTP support is somewhat cumbersome. When
the decision was made to support HTTP/2, it became clear that it would be
best to provide a modern client interface instead of reworking the existing
API. The HttpClient provides a more convenient API and HTTP/2 support.

In the following sections, I provide a cookbook for using the HttpURLConnection
class, and then give an overview of the API.

9.3.1 The URLConnection and HttpURLConnection Classes

To use the URLConnection class, follow these steps:

1. Get an URLConnection object:
URLConnection connection = url.openConnection();

For an HTTP URL, the returned object is actually an instance of
HttpURLConnection.

2. If desired, set request properties:
connection.setRequestProperty("Accept-Charset", "UTF-8, ISO-8859-1");

If a key has multiple values, separate them by commas.

3. To send data to the server, call
connection.setDoOutput(true);
try (OutputStream out = connection.getOutputStream()) {
 // Write to out
}

4. If you want to read the response headers and you haven’t called
getOutputStream, call

connection.connect();

Then query the header information:
Map<String, List<String>> headers = connection.getHeaderFields();

For each key, you get a list of values since there may be multiple header
fields with the same key.

Chapter 9 Processing Input and Output320

5. Read the response:
try (InputStream in = connection.getInputStream()) {
 // Read from in
}

A common use case is to post form data. The URLConnection class automatically
sets the content type to application/x-www-form-urlencoded when writing data to a
HTTP URL, but you need to encode the name/value pairs:

URL url = ...;
URLConnection connection = url.openConnection();
connection.setDoOutput(true);
try (var out = new OutputStreamWriter(
 connection.getOutputStream(), StandardCharsets.UTF_8)) {
 Map<String, String> postData = ...;
 boolean first = true;
 for (Map.Entry<String, String> entry : postData.entrySet()) {
 if (first) first = false;
 else out.write("&");
 out.write(URLEncoder.encode(entry.getKey(), "UTF-8"));
 out.write("=");
 out.write(URLEncoder.encode(entry.getValue(), "UTF-8"));
 }
}
try (InputStream in = connection.getInputStream()) {
 ...
}

9.3.2 The HTTP Client API

The HTTP client API provides another mechanism for connecting to a web
server which is simpler than the URLConnection class with its rather fussy set of
stages. More importantly, the implementation supports HTTP/2.

An HttpClient can issue requests and receive responses. You get a client by
calling

HttpClient client = HttpClient.newHttpClient();

Alternatively, if you need to configure the client, use a builder API like this:
HttpClient client = HttpClient.newBuilder()
 .followRedirects(HttpClient.Redirect.ALWAYS)
 .build();

That is, you get a builder, call methods to customize the item that is going
to be built, and then call the build method to finalize the building process.
This is a common pattern for constructing immutable objects.

Follow the same pattern for formulating requests. Here is a GET request:

3219.3 HTTP Connections

HttpRequest request = HttpRequest.newBuilder()
 .uri(new URI("https://horstmann.com"))
 .GET()
 .build();

The URI is the “uniform resource identifier” which is, when using HTTP, the
same as a URL. However, in Java, the URL class has methods for actually
opening a connection to a URL, whereas the URI class is only concerned with
the syntax (scheme, host, port, path, query, fragment, and so on).

When sending the request, you have to tell the client how to handle the
response. If you just want the body as a string, send the request with a
HttpResponse.BodyHandlers.ofString(), like this:

HttpResponse<String> response
 = client.send(request, HttpResponse.BodyHandlers.ofString());

The HttpResponse class is a template whose type denotes the type of the body.
You get the response body string simply as

String bodyString = response.body();

There are other response body handlers that get the response as a byte array
or a file. One can hope that eventually the JDK will support JSON and provide
a JSON handler.

With a POST request, you similarly need a “body publisher” that turns the re-
quest data into the data that is being posted. There are body publishers for
strings, byte arrays, and files. Again, one can hope that the library designers
will wake up to the reality that most POST requests involve form data or JSON
objects, and provide appropriate publishers.

In the meantime, to send a form post, you need to URL-encode the request
data, just like in the preceding section.

Map<String, String> postData = ...;
boolean first = true;
var body = new StringBuilder();
for (Map.Entry<String, String> entry : postData.entrySet()) {
 if (first) first = false;
 else body.append("&");
 body.append(URLEncoder.encode(entry.getKey(), "UTF-8"));
 body.append("=");
 body.append(URLEncoder.encode(entry.getValue(), "UTF-8"));
}
HttpRequest request = HttpRequest.newBuilder()
 .uri(httpUrlString)
 .header("Content-Type", "application/x-www-form-urlencoded")
 .POST(HttpRequest.BodyPublishers.ofString(body.toString()))
 .build();

Chapter 9 Processing Input and Output322

https://horstmann.com"

Note that, unlike with the URLConnection class, you need to specify the content
type for forms.

Similarly, for posting JSON data, you specify the content type and provide a
JSON string.

The HttpResponse object also yields the status code and the response headers.
int status = response.statusCode();
HttpHeaders responseHeaders = response.headers();

You can turn the HttpHeaders object into a map:
Map<String, List<String>> headerMap = responseHeaders.map();

The map values are lists since in HTTP, each key can have multiple values.

If you just want the value of a particular key, and you know that there won’t
be multiple values, call the firstValue method:

Optional<String> lastModified = headerMap.firstValue("Last-Modified");

You get the response value or an empty optional if none was supplied.

TIP: To enable logging for the HttpClient, add this line to net.properties
in your JDK:

jdk.httpclient.HttpClient.log=all

Instead of all, you can specify a comma-separated list of headers, requests,
content, errors, ssl, trace, and frames, optionally followed by :control, :data,
:window, or :all. Don’t use any spaces.

Then set the logging level for the logger named jdk.httpclient.HttpClient
to INFO, for example by adding this line to the logging.properties file in
your JDK:

jdk.httpclient.HttpClient.level=INFO

9.4 Regular Expressions

Regular expressions specify string patterns. Use them whenever you need to
locate strings that match a particular pattern. For example, suppose you want
to find hyperlinks in an HTML file. You need to look for strings of the pattern
. But wait—there may be extra spaces, or the URL may be enclosed
in single quotes. Regular expressions give you a precise syntax for specifying
what sequences of characters are legal matches.

In the following sections, you will see the regular expression syntax used by
the Java API, and how to put regular expressions to work.

3239.4 Regular Expressions

9.4.1 The Regular Expression Syntax

In a regular expression, a character denotes itself unless it is one of the
reserved characters

. * + ? { | () [\ ^ $

For example, the regular expression Java only matches the string Java.

The symbol . matches any single character. For example, .a.a matches Java
and data.

The * symbol indicates that the preceding constructs may be repeated 0 or
more times; for a +, it is 1 or more times. A suffix of ? indicates that a con-
struct is optional (0 or 1 times). For example, be+s? matches be, bee, and bees.
You can specify other multiplicities with { } (see Table 9-4).

A | denotes an alternative: .(oo|ee)f matches beef or woof. Note the parenthe-
ses—without them, .oo|eef would be the alternative between .oo and eef.
Parentheses are also used for grouping—see Section 9.4.4, “Groups” (page 330).

A character class is a set of character alternatives enclosed in brackets, such
as [Jj], [0-9], [A-Za-z], or [^0-9]. Inside a character class, the - denotes a range
(all characters whose Unicode values fall between the two bounds). However,
a - that is the first or last character in a character class denotes itself. A ^ as
the first character in a character class denotes the complement (all characters
except those specified).

There are many predefined character classes such as \d (digits) or \p{Sc} (Unicode
currency symbols). See Tables 9-4 and 9-5.

The characters ^ and $ match the beginning and end of input.

If you need to have a literal . * + ? { | () [\ ^ $, precede it by a backslash.
Inside a character class, you only need to escape [and \, provided you are
careful about the positions of] - ^. For example, []^-] is a class containing
all three of them.

Alternatively, surround a string with \Q and \E. For example, \(\$0\.99\) and
\Q($0.99)\E both match the string ($0.99).

TIP: If you have a string that may contain some of the many special
characters in the regular expression syntax, you can escape them all by
calling Parse.quote(str). This simply surrounds the string with \Q and \E,
but it takes care of the special case where str may contain \E.

Chapter 9 Processing Input and Output324

Table 9-4 Regular Expression Syntax

ExampleDescriptionExpression

Characters

JThe character c.c, not one of . * + ? { |
() [\ ^ $

Any character except
line terminators, or any
character if the DOTALL
flag is set.

.

\x{1D546}The Unicode code point
with hex code p.

\x{p}

\uFEFFThe UTF-16 code unit
with the given hex or
octal value.

\uhhhh, \xhh, \0o, \0oo,
\0ooo

\nAlert (\x{7}), escape
(\x{1B}), form feed
(\x{B}), newline (\x{A}),
carriage return (\x{D}),
tab (\x{9}).

\a, \e, \f, \n, \r, \t

\cH is a backspace (\x{8}).The control character
corresponding to the
character c.

\cc, where c is in [A-Z]
or one of @ [\] ^ _ ?

\\The character c.\c, where c is not in
[A-Za-z0-9]

\Q(...)\E matches the
string (...).

Everything between the
start and the end of
the quotation.

\Q ... \E

Character Classes

[0-9+-]Any of the characters
represented by C1,
C2, . . .

[C1C2...], where Ci are
characters, ranges c-d, or
character classes

[^\d\s]Complement of a
character class.

[^...]

[\p{L}&&[^A-Za-z]]Intersection of character
classes.

[...&&...]

(Continues)

3259.4 Regular Expressions

Table 9-4 Regular Expression Syntax (Continued)

ExampleDescriptionExpression

\p{L} matches a Unicode
letter, and so does
\pL—you can omit braces
around a single letter.

A predefined character
class (see Table 9-5); its
complement.

\p{...}, \P{...}

\d+ is a sequence of
digits.

Digits ([0-9], or
\p{Digit} when the
UNICODE_CHARACTER_CLASS
flag is set); the
complement.

\d, \D

Word characters
([a-zA-Z0-9_], or Unicode
word characters when
the UNICODE_CHARACTER_CLASS
flag is set); the
complement.

\w, \W

\s*,\s* is a comma
surrounded by optional
white space.

Spaces ([\n\r\t\f\x{B}],
or \p{IsWhite_Space} when
the UNICODE_CHARACTER_CLASS
flag is set); the
complement.

\s, \S

Horizontal whitespace,
vertical whitespace, their
complements.

\h, \v, \H, \V

Sequences and Alternatives

[1-9][0-9]* is a positive
number without leading
zero.

Any string from X,
followed by any string
from Y.

XY

http|ftpAny string from X or Y.X|Y

Grouping

'([^']*)' captures the
quoted text.

Captures the match of X.(X)

(['"]).*\1 matches 'Fred'
or "Fred" but not "Fred'.

The nth group.\n

(Continues)

Chapter 9 Processing Input and Output326

Table 9-4 Regular Expression Syntax (Continued)

ExampleDescriptionExpression

'(?<id>[A-Za-z0-9]+)'
captures the match with
name id.

Captures the match of X
with the given name.

(?<name>X)

\k<id> matches the group
with name id.

The group with the
given name.

\k<name>

In (?:http|ftp)://(.*), the
match after :// is \1.

Use parentheses without
capturing X.

(?:X)

(?i:jpe?g) is a
case-insensitive match.

Matches, but does not
capture, X with the
given flags on or off
(after -).

(?f1f2...:X),
(?f1...-fk...:X), with fi in
[dimsuUx]

See the Pattern API
documentation.

Other (?...)

Quantifiers

\+? is an optional + sign.Optional X.X?

[1-9][0-9]+ is an integer
≥ 10.

0 or more X, 1 or
more X.

X*, X+

[0-7]{1,3} are one to three
octal digits.

n times X, at least n
times X, between m and
n times X.

X{n}, X{n,}, X{m,n}

.*(<.+?>).* captures the
shortest sequence
enclosed in angle
brackets.

Reluctant quantifier,
attempting the shortest
match before trying
longer matches.

Q?, where Q is a
quantified expression

'[^']*+' matches strings
enclosed in single quotes
and fails quickly on
strings without a closing
quote.

Possessive quantifier,
taking the longest match
without backtracking.

Q+, where Q is a
quantified expression

Boundary Matches

^Java$ matches the input
or line Java.

Beginning, end of input
(or beginning, end of
line in multiline mode).

^ $

(Continues)

3279.4 Regular Expressions

Table 9-4 Regular Expression Syntax (Continued)

ExampleDescriptionExpression

Beginning of input, end
of input, absolute end of
input (unchanged in
multiline mode).

\A \Z \z

\bJava\b matches the word
Java.

Word boundary,
nonword boundary.

\b \B

A Unicode line break.\R

The end of the previous
match.

\G

Table 9-5 Predefined Character Classes \p{...}

DescriptionName

posixClass is one of Lower, Upper, Alpha,
Digit, Alnum, Punct, Graph, Print, Cntrl,
XDigit, Space, Blank, ASCII, interpreted as
POSIX or Unicode class, depending on
the UNICODE_CHARACTER_CLASS flag.

posixClass

A script accepted by
Character.UnicodeScript.forName.

IsScript, sc=Script, script=Script

A block accepted by
Character.UnicodeBlock.forName.

InBlock, blk=Block, block=Block

A one- or two-letter name for a
Unicode general category.

Category, InCategory, gc=Category,
general_category=Category

Property is one of Alphabetic, Ideographic,
Letter, Lowercase, Uppercase, Titlecase,
Punctuation, Control, White_Space, Digit,
Hex_Digit, Join_Control,
Noncharacter_Code_Point, Assigned.

IsProperty

Invokes the method Character.isMethod
(must not be deprecated).

javaMethod

Chapter 9 Processing Input and Output328

9.4.2 Testing a Match

Generally, there are two ways to use a regular expression: Either you want
to test whether a string conforms to the expression, or you want to find all
matches of the expressions in a string.

In the first case, simply use the static matches method:
String regex = "[+-]?\\d+";
CharSequence input = ...;
if (Pattern.matches(regex, input)) {
 ...
}

If you need to use the same regular expression many times, it is more efficient
to compile it. Then, create a Matcher for each input:

Pattern pattern = Pattern.compile(regex);
Matcher matcher = pattern.matcher(input);
if (matcher.matches()) ...

If the match succeeds, you can retrieve the location of matched groups—see
Section 9.4.4, “Groups” (page 330).

If you want to test whether the input contains a match, use the find method
instead:

if (matcher.find()) ...

You can turn the pattern into a predicate:
Pattern digits = Pattern.compile("[0-9]+");
List<String> strings = List.of("December", "31st", "1999");
List<String> matchingStrings = strings.stream()
 .filter(digits.asMatchPredicate())
 .toList(); // ["1999"]

The result contains all strings that match the regular expression.

Use the asPredicate method to test whether a string contains a match:
List<String> sringsContainingMatch = strings.stream()
 .filter(digits.asPredicate())
 .toList(); // ["31st", "1999"]

9.4.3 Finding All Matches

In this section, we consider the other common use case for regular
expressions—finding all matches in an input. Use this loop:

3299.4 Regular Expressions

String input = ...;
Matcher matcher = pattern.matcher(input);
while (matcher.find()) {
 String match = matcher.group();
 int matchStart = matcher.start();
 int matchEnd = matcher.end();
 ...
}

In this way, you can process each match in turn. As shown in the code
fragment, you can get the matched string as well as its position in the input
string.

More elegantly, you can call the results method to get a Stream<MatchResult>. The
MatchResult interface has methods group, start, and end, just like Matcher. (In fact,
the Matcher class implements this interface.) Here is how you get a list of all
matches:

List<String> matches = pattern.matcher(input)
 .results()
 .map(Matcher::group)
 .toList();

If you have the data in a file, then you can use the Scanner.findAll method to
get a Stream<MatchResult>, without first having to read the contents into a string.
You can pass a Pattern or a pattern string:

var in = new Scanner(path, StandardCharsets.UTF_8);
Stream<String> words = in.findAll("\\pL+")
 .map(MatchResult::group);

9.4.4 Groups

It is common to use groups for extracting components of a match. For exam-
ple, suppose you have a line item in the invoice with item name, quantity,
and unit price such as

Blackwell Toaster USD29.95

Here is a regular expression with groups for each component:
(\p{Alnum}+(\s+\p{Alnum}+)*)\s+([A-Z]{3})([0-9.]*)

After matching, you can extract the nth group from the matcher as
String contents = matcher.group(n);

Groups are ordered by their opening parenthesis, starting at 1. (Group 0 is
the entire input.) In this example, here is how to take the input apart:

Chapter 9 Processing Input and Output330

Matcher matcher = pattern.matcher(input);
if (matcher.matches()) {
 item = matcher.group(1);
 currency = matcher.group(3);
 price = matcher.group(4);
}

We aren’t interested in group 2; it only arose from the parentheses that were
required for the repetition. For greater clarity, you can use a noncapturing
group:

(\p{Alnum}+(?:\s+\p{Alnum}+)*)\s+([A-Z]{3})([0-9.]*)

Or, even better, capture by name:
(?<item>\p{Alnum}+(\s+\p{Alnum}+)*)\s+(?<currency>[A-Z]{3})(?<price>[0-9.]*)

Then, you can retrieve the items by name:
item = matcher.group("item");

With the start and end methods, you can get the group positions in the input:
int itemStart = matcher.start("item");
int itemEnd = matcher.end("item");

NOTE: Retrieving groups by name only works with a Matcher, not with
a MatchResult.

NOTE: When you have a group inside a repetition, such as
(\s+\p{Alnum}+)* in the example above, it is not possible to get all of its
matches. The group method only yields the last match, which is rarely
useful. You need to capture the entire expression with another group.

9.4.5 Splitting along Delimiters

Sometimes, you want to break an input along matched delimiters and keep
everything else. The Pattern.split method automates this task. You obtain an
array of strings, with the delimiters removed:

String input = ...;
Pattern commas = Pattern.compile("\\s*,\\s*");
String[] tokens = commas.split(input);
 // "1, 2, 3" turns into ["1", "2", "3"]

3319.4 Regular Expressions

If there are many tokens, you can fetch them lazily:
Stream<String> tokens = commas.splitAsStream(input);

If you don’t care about precompiling the pattern or lazy fetching, you can
just use the String.split method:

String[] tokens = input.split("\\s*,\\s*");

If the input is in a file, use a scanner:
var in = new Scanner(path, StandardCharsets.UTF_8);
in.useDelimiter("\\s*,\\s*");
Stream<String> tokens = in.tokens();

9.4.6 Replacing Matches

If you want to replace all matches of a regular expression with a string, call
replaceAll on the matcher:

Matcher matcher = commas.matcher(input);
String result = matcher.replaceAll(",");
 // Normalizes the commas

Or, if you don’t care about precompiling, use the replaceAll method of the
String class.

String result = input.replaceAll("\\s*,\\s*", ",");

The replacement string can contain group numbers $n or names ${name}. They
are replaced with the contents of the corresponding captured group.

String result = "3:45".replaceAll(
 "(\\d{1,2}):(?<minutes>\\d{2})",
 "$1 hours and ${minutes} minutes");
 // Sets result to "3 hours and 45 minutes"

You can use \ to escape $ and \ in the replacement string, or you can call
the Matcher.quoteReplacement convenience method:

matcher.replaceAll(Matcher.quoteReplacement(str))

If you want to carry out a more complex operation than splicing in group
matches, then you can provide a replacement function instead of a replacement
string. The function accepts a MatchResult and yields a string. For example, here
we replace all words with at least four letters with their uppercase version:

String result = Pattern.compile("\\pL{4,}")
 .matcher("Mary had a little lamb")
 .replaceAll(m -> m.group().toUpperCase());
 // Yields "MARY had a LITTLE LAMB"

The replaceFirst method replaces only the first occurrence of the pattern.

Chapter 9 Processing Input and Output332

9.4.7 Flags

Several flags change the behavior of regular expressions. You can specify them
when you compile the pattern:

Pattern pattern = Pattern.compile(regex,
 Pattern.CASE_INSENSITIVE | Pattern.UNICODE_CHARACTER_CLASS);

Or you can specify them inside the pattern:
String regex = "(?iU:expression)";

Here are the flags:

• Pattern.CASE_INSENSITIVE or i: Match characters independently of the letter
case. By default, this flag takes only US ASCII characters into account.

• Pattern.UNICODE_CASE or u: When used in combination with CASE_INSENSITIVE, use
Unicode letter case for matching.

• Pattern.UNICODE_CHARACTER_CLASS or U: Select Unicode character classes instead
of POSIX. Implies UNICODE_CASE.

• Pattern.MULTILINE or m: Make ^ and $ match the beginning and end of a line,
not the entire input.

• Pattern.UNIX_LINES or d: Only '\n' is a line terminator when matching ^ and
$ in multiline mode.

• Pattern.DOTALL or s: Make the . symbol match all characters, including line
terminators.

• Pattern.COMMENTS or x: Whitespace and comments (from # to the end of a
line) are ignored.

• Pattern.LITERAL: The pattern is taking literally and must be matched exactly,
except possibly for letter case.

• Pattern.CANON_EQ: Take canonical equivalence of Unicode characters into
account. For example, u followed by ¨ (diaeresis) matches ü.

The last two flags cannot be specified inside a regular expression.

9.5 Serialization

In the following sections, you will learn about object serialization—a mecha-
nism for turning an object into a bunch of bytes that can be shipped some-
where else or stored on disk, and for reconstituting the object from those
bytes.

3339.5 Serialization

Serialization is an essential tool for distributed processing, where objects are
shipped from one virtual machine to another. It is also used for fail-over and
load balancing, when serialized objects can be moved to another server. If
you work with server-side software, you will often need to enable serialization
for classes. The following sections tell you how to do that.

9.5.1 The Serializable Interface

In order for an object to be serialized—that is, turned into a bunch of bytes—it
must be an instance of a class that implements the Serializable interface. This
is a marker interface with no methods, similar to the Cloneable interface that
you saw in Chapter 4.

For example, to make Employee objects serializable, the class needs to be
declared as

public class Employee implements Serializable {
 private String name;
 private double salary;
 ...
}

It is appropriate for a class to implement the Serializable interface if all instance
variables have primitive or enum type, or contain references to serializable ob-
jects. Many classes in the standard library are serializable. Arrays and the
collection classes that you saw in Chapter 7 are serializable provided their
elements are.

In the case of the Employee class, and indeed with most classes, there is no
problem. In the following sections, you will see what to do when a little extra
help is needed.

To serialize objects, you need an ObjectOutputStream, which is constructed with
another OutputStream that receives the actual bytes.

var out = new ObjectOutputStream(Files.newOutputStream(path));

Now call the writeObject method:
var peter = new Employee("Peter", 90000);
var paul = new Manager("Paul", 180000);
out.writeObject(peter);
out.writeObject(paul);

To read the objects back in, construct an ObjectInputStream:
var in = new ObjectInputStream(Files.newInputStream(path));

Chapter 9 Processing Input and Output334

Retrieve the objects in the same order in which they were written, using the
readObject method.

var e1 = (Employee) in.readObject();
var e2 = (Employee) in.readObject();

When an object is written, the name of the class and the names and values
of all instance variables are saved. If the value of an instance variable belongs
to a primitive type, it is saved as binary data. If it is an object, it is again
written with the writeObject method.

When an object is read in, the process is reversed. The class name and the
names and values of the instance variables are read, and the object is
reconstituted.

There is just one catch. Suppose there were two references to the same object.
Let’s say each employee has a reference to their boss:

var peter = new Employee("Peter", 90000);
var paul = new Manager("Barney", 105000);
var mary = new Manager("Mary", 180000);
peter.setBoss(mary);
paul.setBoss(mary);
out.writeObject(peter);
out.writeObject(paul);

When reading these two objects back in, both of them need to have the same
boss, not two references to identical but distinct objects.

In order to achieve this, each object gets a serial number when it is saved.
When you pass an object reference to writeObject, the ObjectOutputStream checks
if the object reference was previously written. In that case, it just writes out
the serial number and does not duplicate the contents of the object.

In the same way, an ObjectInputStream remembers all objects it has encountered.
When reading in a reference to a repeated object, it simply yields a reference
to the previously read object.

NOTE: If the superclass of a serializable class is not serializable, it must
have an accessible no-argument constructor. Consider this example:

class Person // Not serializable
class Employee extends Person implements Serializable

When an Employee object is deserialized, its instance variables are read
from the object input stream, but the Person instance variables are set
by the Person constructor.

3359.5 Serialization

9.5.2 Transient Instance Variables

Certain instance variables should not be serialized—for example, database
connections that are meaningless when an object is reconstituted. Also, when
an object keeps a cache of values, it might be better to drop the cache and
recompute it instead of storing it.

To prevent an instance variable from being serialized, simply tag it with the
transient modifier. Always mark instance variables as transient if they hold
instances of nonserializable classes. Transient instance variables are skipped
when objects are serialized.

9.5.3 The readObject and writeObject Methods

In rare cases, you need to tweak the serialization mechanism. A serializable
class can add any desired action to the default read and write behavior, by
defining methods with the signature

@Serial private void readObject(ObjectInputStream in)
 throws IOException, ClassNotFoundException
@Serial private void writeObject(ObjectOutputStream out)
 throws IOException

Then, the object headers continue to be written as usual, but the instance
variables fields are no longer automatically serialized. Instead, these methods
are called.

Note the @Serial annotation. The methods for tweaking serialization don’t be-
long to interfaces. Therefore, you can’t use the @Override annotation to have
the compiler check the method declarations. The @Serial annotation is meant
to enable the same checking for serialization methods. Up to Java 17, the
javac compiler doesn’t do that checking, but it might happen in the future.
Some IDEs check the annotation.

A number of classes in the java.awt.geom package, such as Point2D.Double, are not
serializable. Now, suppose you want to serialize a class LabeledPoint that stores
a String and a Point2D.Double. First, you need to mark the Point2D.Double field as
transient to avoid a NotSerializableException.

public class LabeledPoint implements Serializable {
 private String label;
 private transient Point2D.Double point;
 ...
}

In the writeObject method, first write the object descriptor and the String field,
label, by calling the defaultWriteObject method. This is a special method of the
ObjectOutputStream class that can only be called from within a writeObject method

Chapter 9 Processing Input and Output336

of a serializable class. Then we write the point coordinates, using the standard
DataOutput calls.

@Serial before private void writeObject(ObjectOutputStream out) throws IOException {
 out.defaultWriteObject();
 out.writeDouble(point.getX());
 out.writeDouble(point.getY());
}

In the readObject method, we reverse the process:
@Serial before private void readObject(ObjectInputStream in)
 throws IOException, ClassNotFoundException {
 in.defaultReadObject();
 double x = in.readDouble();
 double y = in.readDouble();
 point = new Point2D.Double(x, y);
}

Another example is the HashSet class that supplies its own readObject and
writeObject methods. Instead of saving the internal structure of the hash table,
the writeObject method simply saves the capacity, load factor, size, and elements.
The readObject method reads back the capacity and load factor, constructs a
new table, and inserts the elements.

The readObject and writeObject methods only need to save and load their
data. They do not concern themselves with superclass data or any other class
information.

The Date class uses this approach. Its writeObject method saves the milliseconds
since the “epoch” (January 1, 1970). The data structure that caches calendar
data is not saved.

CAUTION: Just like a constructor, the readObject method operates on
partially initialized objects. If you call a non-final method inside readObject
that is overridden in a subclass, it may access uninitialized data.

NOTE: If a serializable class defines a field

@Serial private static final ObjectStreamField[] serialPersistentFields

then serialization uses those field descriptors instead of the non-transient
non-static fields. There is also an API for setting the field values before
serialization or reading them after deserialization. This is useful for
preserving a legacy layout after a class has evolved. For example, the
BigDecimal class uses this mechanism to serialize its instances in a format
that no longer reflects the instance fields.

3379.5 Serialization

9.5.4 The readExternal and writeExternal Methods

Instead of letting the serialization mechanism save and restore object data,
a class can define its own mechanism. For example, you can encrypt the data
or use a format that is more efficient than the serialization format.

To do this, a class must implement the Externalizable interface. This, in turn,
requires it to define two methods:

public void readExternal(ObjectInputStream in)
 throws IOException
public void writeExternal(ObjectOutputStream out)
 throws IOException

Unlike the readObject and writeObject methods, these methods are fully respon-
sible for saving and restoring the entire object, including the superclass data.
When writing an object, the serialization mechanism merely records the class
of the object in the output stream. When reading an externalizable object,
the object input stream creates an object with the no-argument constructor
and then calls the readExternal method.

In this example, the LabeledPixel class extends the serializable Point class, but
it takes over the serialization of the class and superclass. The fields of the
object are not stored in the standard serialization format. Instead, the data
are placed in an opaque block.

public class LabeledPixel extends Point implements Externalizable {
 private String label;

 public LabeledPixel() {} // required for externalizable class

 @Override public void writeExternal(ObjectOutput out)
 throws IOException {
 out.writeInt((int) getX());
 out.writeInt((int) getY());
 out.writeUTF(label);
 }

 @Override public void readExternal(ObjectInput in)
 throws IOException, ClassNotFoundException {
 int x = in.readInt();
 int y = in.readInt();
 setLocation(x, y);
 label = in.readUTF();
 }
 ...
}

Chapter 9 Processing Input and Output338

NOTE: The readExternal and writeExternal methods should not be
annotated with @Serial. Since they are defined in the Externalizable
interface, you can simply annotate them with @Override.

CAUTION: Unlike the readObject and writeObject methods, which are
private and can only be called by the serialization mechanism, the
readExternal and writeExternal methods are public. In particular, readExternal
potentially permits modification of the state of an existing object.

9.5.5 The readResolve and writeReplace Methods

We take it for granted that objects can only be constructed with the construc-
tor. However, a deserialized object is not constructed. Its instance variables are
simply restored from an object stream.

This is a problem if the constructor enforces some condition. For example, a
singleton object may be implemented so that the constructor can only be
called once. As another example, database entities can be constructed so that
they always come from a pool of managed instances.

You shouldn’t implement your own mechanism for singletons. If you need a
singleton, make an enumerated type with one instance that is, by convention,
called INSTANCE.

public enum PersonDatabase {
 INSTANCE;

 public Person findById(int id) { ... }
 ...
}

This works because enum are guaranteed to be deserialized properly.

Now let’s suppose that you are in the rare situation where you want to control
the identity of each deserialized instance. As an example, suppose a Person
class wants to restore its instances from a database when deserializing. Then
don’t serialize the object itself but some proxy that can locate or construct
the object. Provide a writeReplace method that returns the proxy object:

public class Person implements Serializable {
 private int id;
 // Other instance variables
 ...

3399.5 Serialization

 @Serial private Object writeReplace() {
 return new PersonProxy(id);
 }
}

When a Person object is serialized, none of its instance variables are saved.
Instead, the writeReplace method is called and its return value is serialized and
written to the stream.

The proxy class needs to implement a readResolve method that yields a Person
instance:

class PersonProxy implements Serializable {
 private int id;

 public PersonProxy(int id) {
 this.id = id;
 }

 @Serial private Object readResolve() {
 return PersonDatabase.INSTANCE.findById(id);
 }
}

When the readObject method finds a PersonProxy in an ObjectInputStream, it
deserializes the proxy, calls its readResolve method, and returns the result.

NOTE: Unlike the readObject and writeObject methods, the readResolve and
writeReplace methods need not be private.

NOTE: With enumerations and records, readObject/writeObject or
readExternal/writeExternal methods are not used for serialization. With
records, but not with enumerations, the writeReplace method will be used.

9.5.6 Versioning

Serialization was intended for sending objects from one virtual machine to
another, or for short-term persistence of state. If you use serialization for
long-term persistence, or in any situation where classes can change between
serialization and deserialization, you will need to consider what happens
when your classes evolve. Can version 2 read the old data? Can the users
who still use version 1 read the files produced by the new version?

The serialization mechanism supports a simple versioning scheme. When an
object is serialized, both the name of the class and its serialVersionUID are

Chapter 9 Processing Input and Output340

written to the object stream. That unique identifier is assigned by the
implementor, by defining an instance variable

@Serial private static final long serialVersionUID = 1L; // Version 1

When the class evolves in an incompatible way, the implementor should
change the UID. Whenever a deserialized object has a nonmatching UID, the
readObject method throws an InvalidClassException.

If the serialVersionUID matches, deserialization proceeds even if the implemen-
tation has changed. Each non-transient instance variable of the object to be
read is set to the value in the serialized state, provided that the name and
type match. All other instance variables are set to the default: null for object
references, zero for numbers, and false for boolean values. Anything in the
serialized state that doesn’t exist in the object to be read is ignored.

Is that process safe? Only the implementor of the class can tell. If it is,
then the implementor should give the new version of the class the same
serialVersionUID as the old version.

If you don’t assign a serialVersionUID, one is automatically generated by hashing
a canonical description of the instance variables, methods, and supertypes.
You can see the hash code with the serialver utility. The command

serialver ch09.sec05.Employee

displays
private static final long serialVersionUID = -4932578720821218323L;

When the class implementation changes, there is a very high probability that
the hash code changes as well.

If you need to be able to read old version instances, and you are certain that
is safe to do so, run serialver on the old version of your class and add the
result to the new version.

NOTE: If you want to implement a more sophisticated versioning scheme,
override the readObject method and call the readFields method instead of
the defaultReadObject method. You get a description of all fields found
in the stream, and you can do with them what you want.

NOTE: Enumerations and records ignore the serialVersionUID field. An
enumeration always has a serialVersionUID of 0L. You can declare the
serialVersionUID of a record, but the IDs don’t have to match for
deserialization.

3419.5 Serialization

NOTE: In this section, you saw what happens when the reader’s version
of a class has instance variables that aren’t present in the object stream.
It is also possible during class evolution for a superclass to be added.
Then a reader using the new version may read an object stream in which
the instance variables of the superclass are not set. By default, those
instance fields are set to their 0/false/null default. That may leave the
superclass in an unsafe state. The superclass can defend against that
problem by defining an initialization method

@Serial private void readObjectNoData() throws ObjectStreamException

The method should either set the same state as the no-argument
constructor or throw an InvalidObjectException. It is only called in the
unusual circumstance where an object stream is read that contains an
instance of a subclass with missing superclass data.

9.5.7 Deserialization and Security

During deserialization of a serializable class, objects are created without in-
voking any constructor of the class. Even if the class has a no-argument
constructor, it is not used. The field values are set directly from the values
of the object input stream.

NOTE: For serializable records, deserialization calls the canonical
constructor, passing it the values of the components from the object
input stream. (As a consequence, cyclic references in records are not
restored.)

Bypassing construction is a security risk. An attacker can craft bytes describing
an invalid object that could have never been constructed. Suppose, for exam-
ple, that the Employee constructor throws an exception when called with
a negative salary. We would like to think that no Employee object can have a
negative salary as a result. But it is not difficult to inspect the bytes for a se-
rialized object and modify some of them. This way, one can craft bytes for
an employee with a negative salary and then deserialize them.

A serializable class can optionally implement the ObjectInputValidation interface
and define a validateObject method to check whether its objects are properly
deserialized. For example, the Employee class can check that salaries are not
negative:

Chapter 9 Processing Input and Output342

public void validateObject() throws InvalidObjectException {
 System.out.println("validateObject");
 if (salary < 0)
 throw new InvalidObjectException("salary < 0");
}

Unfortunately, the method is not invoked automatically. To invoke it, you
also must provide the following method:

@Serial private void readObject(ObjectInputStream in)
 throws IOException, ClassNotFoundException {
 in.registerValidation(this, 0);
 in.defaultReadObject();
}

The object is then scheduled for validation, and the validateObject method is
called when this object and all dependent objects have been loaded. The
second parameter lets you specify a priority. Validation requests with higher
priorities are done first.

There are other security risks. Adversaries can create data structures that
consume enough resources to crash a virtual machine. More insidiously, any
class on the class path can be deserialized. Hackers have been devious about
piecing together “gadget chains”—sequences of operations in various utility
classes that use reflection and culminate in calling methods such as Runtime.exec
with a string of their choice.

Any application that receives serialized data from untrusted sources over a
network connection is vulnerable to such attacks. For example, some servers
serialize session data and deserialize whatever data are returned in the HTTP
session cookie.

You should avoid situations in which arbitrary data from untrusted sources
are deserialized. In the example of session data, the server should sign the
data, and only deserialize data with a valid signature.

A serialization filter mechanism can harden applications from such attacks. The
filters see the names of deserialized classes and several metrics (stream size,
array sizes, total number of references, longest chain of references). Based
on those data, the deserialization can be aborted.

In its simplest form, you provide a pattern describing the valid and invalid
classes. For example, if you start our sample serialization demo as

java -Djdk.serialFilter='serial.*;java.**;!*' serial.ObjectStreamTest

then the objects will be loaded. The filter allows all classes in the serial
package and all classes whose package name starts with java, but no others.
If you don’t allow java.**, or at least java.util.Date, deserialization fails.

3439.5 Serialization

You can place the filter pattern into a configuration file and specify multiple
filters for different purposes. You can also implement your own filters. See
https://docs.oracle.com/en/java/javase/17/core/serialization-filtering1.html for details.

Exercises

1. Write a utility method for copying all of an InputStream to an OutputStream,
without using any temporary files. Provide another solution, without a
loop, using operations from the Files class, using a temporary file.

2. Write a program that reads a text file and produces a file with the same
name but extension .toc, containing an alphabetized list of all words in
the input file together with a list of line numbers in which each word
occurs. Assume that the file’s encoding is UTF-8.

3. Write a program that reads a file containing text and, assuming that most
words are English, guesses whether the encoding is ASCII, ISO 8859-1,
UTF-8, or UTF-16, and if the latter, which byte ordering is used.

4. Using a Scanner is convenient, but it is a bit slower than using a
BufferedReader. Read in a long file a line at a time, counting the number of
input lines, with (a) a Scanner and hasNextLine/nextLine, (b) a BufferedReader and
readLine, (c) a BufferedReader and lines. Which is the fastest? The most
convenient?

5. When an encoder of a Charset with partial Unicode coverage can’t encode
a character, it replaces it with a default—usually, but not always, the en-
coding of "?". Find all replacements of all available character sets that
support encoding. Use the newEncoder method to get an encoder, and call
its replacement method to get the replacement. For each unique result, report
the canonical names of the charsets that use it.

6. The BMP file format for uncompressed image files is well documented
and simple. Using random access, write a program that reflects each row
of pixels in place, without writing a new file.

7. Look up the API documentation for the MessageDigest class and write a
program that computes the SHA-512 digest of a file. Feed blocks of bytes
to the MessageDigest object with the update method, then display the result
of calling digest. Verify that your program produces the same result as the
sha512sum utility.

8. Write a utility method for producing a ZIP file containing all files from
a directory and its descendants.

Chapter 9 Processing Input and Output344

https://docs.oracle.com/en/java/javase/17/core/serialization-filtering1.html

9. Using the URLConnection class, read data from a password-protected web
page with “basic” authentication. Concatenate the user name, a colon,
and the password, and compute the Base64 encoding:

String input = username + ":" + password;
String encoding = Base64.getEncoder().encodeToString(
 input.getBytes(StandardCharsets.UTF_8));

Set the HTTP header Authorization to the value "Basic " + encoding. Then read
and print the page contents.

10. Using a regular expression, extract all decimal integers (including negative
ones) from a string into an ArrayList<Integer> (a) using find, and (b) using
split. Note that a + or - that is not followed by a digit is a delimiter.

11. Using regular expressions, extract the directory path names (as an array
of strings), the file name, and the file extension from an absolute or
relative path such as /home/cay/myfile.txt.

12. Come up with a realistic use case for using group references in
Matcher.replaceAll and implement it.

13. Implement a method that can produce a clone of any serializable object
by serializing it into a byte array and deserializing it.

14. Implement a serializable class Point with instance variables for x and y.
Write a program that serializes an array of Point objects to a file, and
another that reads the file.

15. Continue the preceding exercise, but change the data representation of
Point so that it stores the coordinates in an array. What happens when
the new version tries to read a file generated by the old version? What
happens when you fix up the serialVersionUID? Suppose your life depended
upon making the new version compatible with the old. What could
you do?

16. Which classes in the standard Java library implement Externalizable? Which
of them use writeReplace/readResolve?

17. Unzip the API source and investigate how the LocalDate class is serialized.
Why does the class define writeExternal and readExternal methods even
though it doesn’t implement Externalizable? (Hint: Look at the Ser class.
Why does the class define a readObject method? How could it be invoked?

345Exercises

Symbols and Numbers
- (minus sign)

flag (for output), 38
in dates, 434
in regular expressions, 324
operator, 18–19

--
in command-line options, 85
operator, 18, 20

-= operator, 18–19
->, in lambda expressions, 122, 125
-∞, in string templates, 454
_ (underscore)

in number literals, 12
in variable names, 15, 69

, (comma)
flag (for output), 38
in numbers, 442, 448, 453
normalizing, 332
trailing, in arrays, 48

; (semicolon)
in Java vs. JavaScript, 470
path separator (Windows), 86, 260

: (colon)
in assertions, 204–205

in dates, 434
in switch statement, 40
path separator (Unix), 86, 260

:: operator, 125, 150
! (exclamation sign)

in property files, 259
operator, 18, 23

!= operator, 18, 22–23
for wrapper classes, 50

? (quotation mark)
in regular expressions, 324–325, 327
replacement character, 309, 458
wildcard, for types, 224–228, 239

? : operator, 18, 23
/ (slash)

file separator (Unix), 260, 313
in javac path segments, 5
operator, 18–19
root component, 312

//, /*...*/ comments, 3
/**...*/ comments, 95
/= operator, 18
. (period)

in method calls, 6
in numbers, 442, 448, 453

501

Index

in package names, 5, 83
in regular expressions, 324–325, 333
operator, 18

.., parent directory, 313

... (ellipsis), for varargs, 57
^ (caret)

for function parameters, 122
in regular expressions, 324–327, 333
operator, 18, 23

^= operator, 18
~ (tilde), operator, 18, 23
'...' (single quotes)

for character literals, 14
in JavaScript, 470
in string templates, 454

"..." (double quotes)
for strings, 6
in javadoc hyperlinks, 98
in text blocks, 34

"" (empty string), 27–28, 159
""", for text boxes, 33–34
((left parenthesis), in formatted output,

38
(...) (parentheses)

empty, for anonymous classes, 138
for casts, 22, 110
in regular expressions, 324–326,

330–331
operator, 18

[...] (square brackets)
for arrays, 46–47, 53
in regular expressions, 324–325
operator, 18

{...} (curly braces)
in annotation elements, 399
in lambda expressions, 122
in regular expressions, 324–327, 332
in string templates, 453
with arrays, 47

{{...}}, double brace initialization, 149
@ (at)

in java command, 492–493
in javadoc comments, 95

$ (dollar sign)
currency symbol, 453
flag (for output), 38

in regular expressions, 324–325, 327,
332–333

in variable names, 15
€ currency symbol, 448, 453
* (asterisk)

for annotation processors, 413
in documentation comments, 96
in regular expressions, 324–327, 331
operator, 18–19
wildcard:

in class path, 86
in imported classes, 88–89

*= operator, 18
\ (backslash)

character literal, 14
file separator (Windows), 260, 313
in option files, 493
in regular expressions, 324–325, 332
in text blocks, 34

& (ampersand), operator, 18, 23–24
&& (double ampersand)

in regular expressions, 325
operator, 18, 23

&= operator, 18
(number sign)

flag (for output), 38
in javadoc hyperlinks, 98
in option files, 493
in property files, 259
in string templates, 454

% (percent sign)
conversion character, 37
operator, 18–19

%% pattern variable, 213
%= operator, 18
+ (plus sign)

flag (for output), 38
in regular expressions, 324–327
operator, 18–19

for strings, 25, 28, 159
++ operator, 18, 20
+= operator, 18
< (left angle bracket)

flag (for output), 38
in shell syntax, 36
in string templates, 454

Index502

operator, 22
<< operator, 18, 23–24
<<= operator, 18
<= operator, 18, 22
<%...%>, <%=...%> delimiters (JSP), 472
≤, in string templates, 454
<> (diamond syntax)

for constructors of generic classes, 221
<...> (angle brackets)

for element types, in array lists, 48
for type parameters, 117, 220
in javadoc hyperlinks, 98
in regular expressions, 327

= operator, 18–19
== operator, 18, 22–23, 161

for class objects, 172
for enumerations, 166
for strings, 26
for wrapper classes, 50

> (right angle bracket)
in shell syntax, 36
operator, 22

>=, >>, >>> operators, 18, 22–23
>>=, >>>= operators, 18
| (vertical bar)

in regular expressions, 324–326
in string templates, 454
operator, 18, 23–24

|= operator, 18
|| operator, 18, 23
0 (zero)

as default value, 73, 76
flag (for output), 38
formatting symbol (date/time), 436
prefix (for octal literals), 12

0b prefix, 12
0x prefix, 12, 38
0xFEFF byte order mark, 305
\0, in regular expressions, 325

A
a formatting symbol (date/time), 436
a, A conversion characters, 37
\a, \A, in regular expressions, 325, 328
abstract classes, 151–152
abstract methods, 123

abstract modifier, 109, 151–152
AbstractCollection class, 114
AbstractMethodError, 115
AbstractProcessor class, 413
accept methods (Consumer, XxxConsumer),

129–130, 277
acceptEither method (CompletableFuture),

357–358
AccessibleObject class

setAccessible method, 181, 183
trySetAccessible method, 181

accessors, 64
accumulate method (LongAccumulator), 374
accumulateAndGet method (AtomicXxx), 373
accumulator functions, 293
ActionListener interface, 120
add method

of ArrayDeque, 262
of ArrayList, 49, 64
of BlockingQueue, 371
of Collection, 249
of List, 250
of ListIterator, 253
of LongAdder, 374

addAll method
of Collection, 226, 249
of Collections, 251
of List, 250

addExact method (Math), 20
addition, 19

identity for, 292
addSuppressed method (IOException), 199
aggregators, 494
allMatch method (Stream), 280
allOf method

of CompletableFuture, 357–358
of EnumSet, 262

allProcesses method (ProcessHandle), 389
and, andNot methods (BitSet), 261
and, andThen methods (functional

interfaces), 129
Android, 121, 359
AnnotatedConstruct interface, 414
AnnotatedElement interface, 411–413
annotation interfaces, 403–406
annotation processors, 413

503Index

annotations
accessing, 404, 494
applicability of, 406–407
container, 409, 412
declaration, 400–401
documented, 407–408
generating source code with, 415–417
inherited, 407–408, 411
key/value pairs in, 398–399, 405
meta, 404–410
modifiers and, 402
multiple, 400
processing:

at runtime, 410–413
source-level, 413–417

repeatable, 400, 407, 409–410, 412
standard, 406–410
type use, 401–402

anonymous classes, 138
anyMatch method (Stream), 280
anyOf method (CompletableFuture), 357–358
Apache Commons CSV, 490
API documentation, 29–31

generating, 95
Applet class, 174
applications. See programs
apply, applyAsXxx methods (functional

interfaces), 129–130
applyToEither method (CompletableFuture),

357–358
arithmetic operations, 17–24
Array class, 185–186
array lists, 48–49

anonymous, 149
checking for nulls, 227
constructing, 49
converting between, 224
copying, 51
elements of, 49–50
filling, 52
instantiating with type variables, 234
size of, 49
sorting, 52
variables of, 49

array variables
assigning values to, 48

copying, 51
declaring, 46–47
initializing, 46

ArrayBlockingQueue class, 371
ArrayDeque class, 262
ArrayIndexOutOfBoundsException, 47
ArrayList class, 48–49, 248

add method, 49, 64
clone method, 165–166
forEach method, 125
get, remove methods, 49
removeIf method, 124
set, size methods, 49

arrays, 46–48
accessing nonexisting elements in,

47
allocating, 234
annotating, 401
casting, 185
checking, 185
comparing, 161
computing values of, 367
constructing, 46–47
constructor references with, 126
converting:

to a reference of type Object, 157
to/from streams, 286, 296, 368

copying, 51
covariant, 223
filling, 47, 52
generating Class objects for, 171
growing, 185–186
hash codes of, 163
length of, 47–48, 134
multidimensional, 53–55, 159
of bytes, 302–303
of generic types, 126, 235
of objects, 47, 367
of primitive types, 367
of strings, 331
passing into methods, 56
printing, 52, 55, 159
serializable, 334
sorting, 52, 117–119, 367–368
superclass assignment in, 148
using class literals with, 171

Index504

Arrays class
asList method, 265
copyOf method, 51, 186
deepToString method, 159
equals method, 161
fill method, 52
hashCode method, 163
parallelXxx methods, 52, 367
setAll method, 127
sort method, 52, 119, 123–124
stream method, 274, 294
toString method, 52, 159

ArrayStoreException, 148, 223, 235
ASCII (American Standard Code for

Information Interchange), 31–32,
305

for property files, 457
for source files, 458

ASM tool, 417
asMatchPredicate, asPredicate methods

(Pattern), 329
assert statement, 204–205
AssertionError, 204
assertions, 204–206

checking, 401
enabling/disabling, 205–206

assignment operators, 18–19
associative operations, 292
asSubclass method (Class), 239
asynchronous computations,

353–359
AsyncTask class (Android), 359
atomic operations, 364, 369, 373–375,

379
performance and, 374

AtomicXxx classes, 373
atZone method (LocalDateTime), 430
@author tag (javadoc), 96, 99
autoboxing, 50, 131
AutoCloseable interface, 197, 222

close method, 198
automatic modules, 489–491
availableCharsets method (Charset), 306
availableProcessors method (Runtime),

349
average method (XxxStream), 295

B
b, B conversion characters, 37
\b (backspace), 14
\b, \B, in regular expressions, 328
BasicFileAttributes class, 317
BeanInfo class, 184
between method (Duration), 423
BiConsumer interface, 129
BiFunction interface, 129, 131
BigDecimal class, 14, 24, 337
big-endian format, 305, 310–311
BigInteger class, 12, 24
binary data, reading/writing, 310
binary numbers, 12, 14
binary trees, 254
BinaryOperator interface, 129
binarySearch method (Collections), 252
bindings, 469
Bindings interface, 469
BiPredicate interface, 129
BitSet class, 260–261

collecting streams into, 293
methods of, 261

bitwise operators, 23–24
block statement, labeled, 44
blocking queues, 370–372
BlockingQueue interface, 371
Boolean class, 49
boolean type, 14

default value of, 73, 76
formatting for output, 37
reading/writing, 310
streams of, 294

BooleanSupplier interface, 130
bootstrap class loader, 174
boxed method (XxxStream), 294
branches, 38–39
break statement, 40–41, 43–44
bridge methods, 230–231

clashes of, 237
BufferedReader class, 308
build method (HttpClient), 321
bulk operations, 370
Byte class, 49

MAX_VALUE, MIN_VALUE constants, 11
toUnsignedInt method, 12

505Index

byte codes, 4
writing to memory, 466–467

byte order mark, 305
byte type, 11–12, 303

streams of, 294
type conversions of, 21

ByteArrayClass class, 466
ByteArrayClassLoader class, 467
ByteArrayXxxStream classes, 302–303
ByteBuffer class, 311
bytes

arrays of, 302–303
converting to strings, 307
reading, 303
skipping, writing, 304

C
c, C conversion characters, 37
C:\ root component, 312
C/C++ programming languages

#include directive in, 89
allocating memory in, 364
integer types in, 12
pointers in, 65

C# programming language, 227
\c, in regular expressions, 325
CachedRowSetImpl class, 492
calculators, 168–169
Calendar class, 421

getFirstDayOfWeek method, 451
weekends in, 427

calendars, 62
call by reference, 71
call method (CompilationTask), 465
Callable interface, 120

call method, 351
extending, 465

callbacks, 120–121, 355
registering, 353

camel case, 16
cancel method

of CompletableFuture, 355
of Future, 351

cancellation requests, 382
CancellationException, 355
cardinality method (BitSet), 261

carriage return, 14
case label, 39–41
cast method (Class), 239
cast operator, 22
casts, 22, 110–111, 148

annotating, 402
generic types and, 232
inserting, 229–230

catch statement, 196–197
annotating parameters of, 400
in try-with-resources, 199
no type variables in, 237

ceiling method (NavigableSet), 255
Channel interface, 112
channels, 311
char type, 14

streams of, 294
type conversions of, 21

Character class, 49
character classes, 324
character encodings, 305–307

detecting, 306
localizing, 458
partial, 306, 309
platform, 306, 458

character literals, 14
characters, 302

combined, 452
formatting for output, 37
normalized, 452–453
reading/writing, 310

charAt method (String), 32
CharSequence interface, 29, 275

chars, codePoints methods, 294
Charset class

availableCharsets method, 306
defaultCharset method, 306, 458
displayName method, 458
forName method, 307

checked exceptions, 194–196
combining in a superclass, 195
declaring, 195–196
documenting, 196
generic types and, 238
in lambda expressions, 196
no-argument constructors and, 182

Index506

not allowed in a method, 202
rethrowing, 201

checked views, 233, 266
checkedXxx methods (Collections), 252, 266
Checker Framework, 401
checkIndex method (Objects), 204
childrenNames method (Preferences), 460
choice indicator, in string templates, 454
Church, Alonzo, 122, 424
Class class, 170–173, 240

asSubclass, cast methods, 239
comparing objects of, 172
forName method, 171–172, 175–176,

194, 203, 467
generic, 239
getCanonicalName method, 171–172
getClassLoader method, 173
getComponentType method, 172, 185
getConstructor(s) methods, 173, 179,

182, 239
getDeclaredConstructor(s) methods, 173,

179, 239
getDeclaredField(s) methods, 173
getDeclaredMethod(s) methods, 173, 182
getDeclaringClass method, 172
getEnclosingXxx methods, 172
getEnumConstants method, 239
getField(s) methods, 173, 179
getInterfaces method, 172
getMethod(s) methods, 173, 179, 182
getModifiers method, 172
getName method, 171–172
getPackage method, 172
getPackageName method, 173
getPermittedSubclasses method, 172
getRecordComponents method, 173
getResource method, 174, 455
getResourceAsStream method, 173–174
getSimpleName method, 172
getSuperclass method, 172, 239
getTypeName method, 172
getTypeParameters method, 240
isXxx methods, 172–173, 185
newInstance method, 182, 239
toGenericString method, 172
toString method, 172

class declarations
annotations in, 400, 408
initialization blocks in, 74–75

class files, 4, 174
paths of, 84
processing annotations in, 417

class literals, 171
no annotations for, 402
no type variables in, 233

class loaders, 174–176, 467
class objects, 171
class path, 85, 477
.class suffix, 171–172
ClassCastException, 110, 232
classes, 2, 62

abstract, 109, 116, 151–152
accessing from a different module, 494
adding to packages, 88
anonymous, 138
companion, 114
compiling on the fly, 466
constructing objects of, 15
deprecated, 97, 406–407
deserialization of, 342–344
documentation comments for, 95–96
encapsulation of, 475–476
evolving, 340
extending, 144–150
fields of, 143
final, 150–151
generic, 48
immutable, 29, 365
implementing, 67–71, 164
importing, 88–89
inner, 91–93
instances of, 6, 67, 83
loading, 180
local, 137–138
members of, 143

enumerating, 169, 179–180
naming, 15–16, 83, 171
nested, 90–95, 402
not known at compile time, 171, 186
protected, 152–153
public, 88, 482
sealed, 154

507Index

serializable, 336–337
static initialization of, 175
static methods of, 82
system, 205
testing, 88
utility, 87, 176
wrapper, 49–50

classes win rule, 163
classifier functions, 289
ClassLoader class

defineClass method, 492
extending, 467
findClass, loadClass methods, 175
setXxxAssertionStatus methods, 206

classloader inversion, 176
ClassNotFoundException, 194
CLASSPATH environment variable, 87
clear method

of BitSet, 261
of Collection, 249
of Map, 257

clone method
of ArrayList, 165–166
of Enum, 167
of Message, 165–166
of Object, 153, 158, 163–166, 182
protected, 163

Cloneable interface, 165
CloneNotSupportedException, 165–167
cloning, 163–166
close method

of AutoCloseable, Closeable, 198
of PrintWriter, 197–198
throwing exceptions, 198

Closeable interface, 112
close method, 198

closures, 133
COBOL, scripting engine for, 468
code element (HTML), 96
code generator tools, 408
code points, 32, 276, 305
code units, 14, 32, 294

in regular expressions, 325
codePoints method

of CharSequence, 294
of String, 32–33, 276–278

codePointXxx methods (String), 32
Collator class, 28

methods of, 452
collect method (Stream), 286–287, 293
Collection interface, 114, 248

add method, 249
addAll method, 226, 249
clear, contains, containsAll methods, 249
isEmpty method, 249
iterator method, 249
parallelStream method, 249, 272–273,

295, 366
remove, removeXxx, retainAll methods, 249
size method, 249
spliterator method, 249
stream method, 249, 272–273
toArray method, 249

collections, 247–266
branching, 291
generic, 266
given elements of, 264
iterating over elements of, 272–273
mutable, 265
processing, 251
serializable, 334
threadsafe, 372
unmodifiable views of, 265–266
vs. streams, 273

Collections class, 114, 251
addAll method, 251
binarySearch method, 252
copy method, 251
disjoint method, 251
fill method, 52, 251
frequency method, 251
indexOfSubList, lastIndexOfSubList

methods, 251
nCopies method, 249, 251
replaceAll method, 251
reverse method, 52, 252
rotate method, 252
shuffle method, 52, 252
sort method, 52, 226–227, 241, 252
swap method, 252
synchronizedXxx methods, 252
unmodifiableXxx methods, 252

Index508

Collector interface, 286
Collectors class, 90

counting method, 290
filtering method, 291
flatMapping method, 291
groupingBy method, 289–292
groupingByConcurrent method, 289, 296
joining method, 286–287
mapping method, 290
maxBy, minBy methods, 290
partitioningBy method, 289, 292
reducing method, 291
summarizingXxx methods, 287, 291
summingXxx methods, 290
teeing method, 291
toCollection method, 286
toConcurrentMap method, 288
toMap method, 287–288
toSet method, 286, 290

command-line arguments, 52–53
comments, 3

documentation, 95–100
commonPool method (ForkJoinPool), 297,

353
companion classes, 114
Comparable interface, 117–119, 167, 226,

254
compareTo method, 117
priority queues with, 263
streams of, 279

Comparator interface, 90, 119–120,
135–137, 254

comparing, comparingXxx methods,
136–137

naturalOrder method, 136
nullsFirst, nullsLast methods, 136
priority queues with, 263
reversed method, 136
reverseOrder method, 137
streams of, 279
thenComparing method, 136–137

compare method (Integer, Double), 118
compareTo method

of Enum, 167
of Instant, 423
of String, 27–28, 117, 451

compareToIgnoreCase method (String), 124
compareUnsigned method (Integer, Long), 21
compatibility, drawbacks of, 228
Compilable interface, 471
compilation, 4
CompilationTask interface, 464

call method, 465
compile method (Pattern), 329, 333
compiler

instruction reordering in, 361
invoking, 464

compile-time errors, 16, 112
completable futures, 353–358

combining, 358
composing, 355–358
interrupting, 355

CompletableFuture class, 353–358
acceptEither method, 357–358
allOf, anyOf methods, 357–358
applyToEither method, 357–358
cancel method, 355
complete, completeExceptionally methods,

354
completeOnTimeout method, 357
exceptionally method, 356–357
exceptionallyCompose method, 357
handle method, 357
isDone method, 354
orTimeout method, 357
runAfterXxx methods, 357–358
supplyAsync method, 353–355
thenAccept method, 353, 357
thenAcceptBoth method, 357–358
thenApply, thenApplyAsync methods,

355–357
thenCombine method, 357–358
thenCompose method, 356–357
thenRun method, 357
whenComplete method, 354, 356–357

CompletionStage interface, 358
compose method (functional interfaces),

129
computations

asynchronous, 353–359
mutator, 64
precision of, 14

509Index

compute method
of ConcurrentHashMap, 369–370
of Map, 256

computeIfXxx methods
of ConcurrentHashMap, 369
of Map, 256–257

concat method (Stream), 278
concatenation, 25

objects with strings, 159
concurrent programming, 347–389

access errors in, 134
for scripts, 469
strategies for, 364

ConcurrentHashMap class, 369–370, 381
compute method, 369–370
computeIfXxx methods, 369
forEachXxx methods, 370
keySet method, 372
merge method, 369–370
newKeySet method, 372
no null values in, 258
putIfAbsent method, 369
reduceXxx methods, 370
searchXxx methods, 370
threadsafe, 377

ConcurrentModificationException, 253,
368

ConcurrentSkipListXxx classes, 372
conditional operator, 23
configuration files, 459–461

editing, 209–211
locating, 174
resolving paths for, 313

confinement, 364
connect method (URLConnection), 320
Console class, 36
console, displaying fonts on, 458
ConsoleHandler class, 211, 213
constants, 16–17, 113

naming, 16
static, 80–81
using in another class, 17

Constructor class, 179–180
getModifiers method, 179
getName method, 179
newInstance method, 182–183

constructor references, 126
annotating, 402

constructors, 71–76
abstract classes and, 152
annotating, 236, 400–401
canonical, compact, custom, 78–79
documentation comments for, 95
executing, 72
for subclasses, 147
implementing, 71–72
invoking another constructor from, 73
no-argument, 75, 147, 182
overloading, 72–73
public, 72, 179
references in, 366

Consumer interface, 129, 277
contains method

of String, 29
of Collection, 249

containsAll method (Collection), 249
containsXxx methods (Map), 257
Content-Type header, 306
context class loaders, 176–177
continue statement, 43–44
control flow, 38–46
conversion characters, 37
cooperative cancellation, 382
copy method

of Collections, 251
of Files, 304, 315–316, 319

copyOf method (Arrays), 51, 186
CopyOnWriteArrayXxx classes, 372
CORBA (Common Object Request

Broker Architecture), 476
count method (Stream), 273, 280
counters

atomic, 373–375
de/incrementing, 199

counting method (Collectors), 290
country codes, 289, 443–444
covariance, 223
createBindings method (ScriptEngine), 469
createDirectory, createDirectories, createFile

methods (Files), 314
createInstance method (Util), 176–177
createTempXxx methods (Files), 315

Index510

critical sections, 364, 375, 382
Crockford, Douglas, 471
currencies, 448–449

formatting, 453
Currency class, 448
current method

of ProcessHandlex, 389
of ThreadLocalRandomx, 384

D
d

conversion character, 37
formatting symbol (date/time), 436

D suffix, 13
\d, \D, in regular expressions, 326
daemon threads, 385
databases, 397

persisting objects in, 485
DataInput/Output interfaces, 310

read/writeXxx methods, 310–311
DataXxxStream classes, 310
Date class, 421, 436–437
DateFormat class, 449
dates

computing, 428–429
formatting, 433–436, 442, 449–451,

453
local, 424–427
nonexistent, 427, 431, 450
parsing, 435

datesUntil method (LocalDate), 426–427
DateTimeFormat class, 449–451
DateTimeFormatter class, 433–436

format method, 433, 450
legacy classes and, 437
ofLocalizedXxx methods, 433, 449
ofPattern method, 435
parse method, 435
toFormat method, 435
withLocale method, 434, 450

DateTimeParseException, 450
daylight savings time, 430–433
DayOfWeek enumeration, 63, 426–427, 432

getDisplayName method, 435, 450
dayOfWeekInMonth method (TemporalAdjusters),

428

deadlocks, 364, 376, 380, 382
debugging

messages for, 193
overriding methods for, 151
primary arrays for, 52
streams, 279
threads, 385
with anonymous subclasses, 149–150
with assertions, 204

DecimalFormat class, 83
number format patterns of, 453

declaration-site variance, 227
decomposition

of characters, 452
of classes, 56–57

decrement operator, 20
decrementExact method (Math), 20
deep copies, 164
deepToString method (Arrays), 159
default label (in switch), 39–41
default methods, 114–116

conflicts of, 115–116, 157
in interfaces, 163

default modifier, 114, 405
defaultCharset method (Charset), 306, 458
defaultReadObject method

(ObjectInputStream), 337, 341
defaultWriteObject method

(ObjectOutputStream), 336–337
defensive programming, 204
deferred execution, 127–128
defineClass method (ClassLoader), 492
delete method (Files), 315
deleteIfExists method (Files), 315
delimiters, for scanners, 308
@Deprecated annotation, 97, 406–407
@deprecated tag (javadoc), 97, 407
Deque interface, 250, 262
destroy, destroyForcibly methods

of Process, 389
of ProcessHandle, 390

DiagnosticCollector class, 465
DiagnosticListener interface, 465
diamond syntax (<>)

for array lists, 49
for constructors of generic classes, 221

511Index

directories, 312
checking for existence, 314, 316
creating, 314–316
deleting, 315, 318–319
moving, 315
temporary, 315
user, 314
visiting, 316–319
working, 386

directory method (ProcessBuilder), 386
disjoint method (Collections), 251
displayName method (Charset), 458
distinct method (Stream), 279, 296
dividedBy method (Duration), 424
divideUnsigned method (Integer, Long), 21
division, 19
do statement, 42
doc-files directory, 96
documentation comments, 95–100
@Documented annotation, 407–408
domain names

for modules, 478
for packages, 83

dot notation, 6, 17
double brace initialization, 149
Double class, 49

compare method, 118
equals method, 161
isFinite, isInfinite methods, 13
NaN, NEGATIVE_INFINITY, POSITIVE_INFINITY

values, 13
parseDouble method, 28
toString method, 28

double type, 13–14
atomic operations on, 375
functional interfaces for, 130
streams of, 294
type conversions of, 21–22

DoubleAccumulator, DoubleAdder classes, 375
DoubleConsumer, DoubleXxxOperator,

DoublePredicate, DoubleSupplier,
DoubleToXxxFunction interfaces, 130

DoubleFunction interface, 130, 232
doubles method (RandomGenerator), 294
DoubleStream class, 294–295
DoubleSummaryStatistics class, 287, 295

doubleValue method (Number), 448
downstream collectors, 289–292, 296
Driver.parentLogger method, 494
dropWhile method (Stream), 278
Duration class

between method, 423
dividedBy method, 424
immutability of, 365, 424
isNegative, isZero methods, 424
minus, minusXxx, multipliedBy, negated

methods, 424
ofXxx methods, 423–424, 426, 431
plus, plusXxx methods, 424
toXxx methods, 423

dynamic method lookup, 148, 230–231

E
E constant (Math), 20
e, E

conversion characters, 37
formatting symbols (date/time), 436

\e, \E, in regular expressions, 324–325
Eclipse IDE, 5
effectively final variables, 133–134
efficiency, and final modifier, 151
Element interface, 414
element method (BlockingQueue), 371
elements (in annotations), 398–399, 405
else statement, 39
em element (HTML), 96
empty method

of Optional, 284
of Stream, 274

empty string, 27, 159
concatenating, 28

encapsulation, 62, 475–477, 485
encodings. See character encodings
end method (Matcher, MatchResult), 330–331
endsWith method (String), 29
engine scope, 469
enhanced for loop, 50, 55, 134

for collections, 253
for enumerations, 167
for iterators, 178
for paths, 314

Entry class, 229

Index512

entrySet method (Map), 257–258
Enum class, 166–167
enum instances

adding methods to, 168–169
construction, 168
referred by name, 170

enum keyword, 17, 166
enumeration sets, 262
enumerations, 166–170

annotating, 400
comparing, 166–167
constructing, 168
defining, 17
nested inside classes, 169
serialization of, 339
static members of, 169
traversing instances of, 167
using in switch, 170

EnumMap, EnumSet classes, 262
environment variables, 387
epoch, 422
equality, testing for, 22–23
equals method

final, 162
null-safe, 161
of Arrays, 161
of Double, 161
of Instant, 423
of Object, 158–162
of Objects, 161
of records, 77
of String, 26–27
of subclasses vs. superclass, 161
of wrapper classes, 50
overriding, 160–162
symmetric, 161
values from different classes and, 161

equalsIgnoreCase method (String), 27
Error class, 193
error messages, for generic methods, 222
errorReader method (Process), 387
errors

AbstractMethodError, 115
AssertionError, 204

eval method (ScriptEngine), 468–471
even numbers, 19

Exception class, 194
exceptionally method (CompletableFuture),

356–357
exceptionallyCompose method

(CompletableFuture), 357
exceptions, 192–204

annotating, 402
ArrayIndexOutOfBoundsException, 47
ArrayStoreException, 148, 223, 235
CancellationException, 355
catching, 196–200
chaining, 201–202
checked, 182, 194–196
ClassCastException, 110, 232
ClassNotFoundException, 194
CloneNotSupportedException, 165–167
combining in a superclass, 195
ConcurrentModificationException, 253, 368
creating, 194–195
DateTimeParseException, 450
documenting, 196
ExecutionException, 351
FileNotFoundException, 194
generic types and, 237–238
hierarchy of, 193–195
IllegalArgumentException, 204
IllegalStateException, 287, 371
InaccessibleObjectException, 181, 486
IndexOutOfBoundsException, 204
InterruptedException, 381, 383
InvalidClassException, 341
InvalidPathException, 313
IOException, 194, 199, 308
NoSuchElementException, 283, 371
NullPointerException, 27, 48, 66, 74, 194,

203, 256, 280
NumberFormatException, 194
ParseException, 448
ReflectiveOperationException, 171
rethrowing, 199–202
RuntimeException, 194
SecurityException, 181
ServletException, 201–202
suppressed, 199
throwing, 192–193
TimeoutException, 351

513Index

uncaught, 202
unchecked, 194
UncheckedIOException, 308

exec method (Runtime), 386
Executable class

getModifiers method, 183
getName method, 183
getParameters method, 180, 183

ExecutableElement interface, 414
ExecutionException, 351
Executor interface, 356
executor services, 349, 353
ExecutorCompletionService class, 352
Executors class, 349
ExecutorService interface, 465

execute method, 349
invokeAll, invokeAny methods, 352

exists method (Files), 314, 316
exitValue method (Process), 389
exports keyword, 479, 482–485

qualified, 495
exportSubtree method (Preferences), 460
extends keyword, 112, 145, 222–226
Externalizable interface, read/writeExternal

methods, 338–339

F
f conversion character, 37
F suffix, 13
\f, in regular expressions, 325
factory methods, 72, 83
failures, logging, 201
false value (boolean), 14

as default value, 73, 76
Field class, 179–180

get method, 181, 183
getBoolean, getByte, getChar, getDouble,

getFloat, getInt, getLong methods,
181, 183

getModifiers, getName methods, 179, 183
getShort method, 181, 183
getType method, 179
set, setXxx methods, 183

fields (instance and static variables), 143
enumerating, 179–180
final, 362

provided, 153
public, 179
retrieving values of, 180–181
setting, 181
transient, 336

file attributes
copying, 315
filtering paths by, 317

File class, 314
file handlers, 211–212
file managers, 466
file pointers, 311
file.encoding system property, 306
file.separator system property, 260
FileChannel class

get, getXxx methods, 311
lock method, 312
open method, 311
put, putXxx methods, 311
tryLock method, 312

FileFilter class, 128
FileHandler class, 211–213
FileNotFoundException, 194
files

archiving, 319
channels to, 311
checking for existence, 194, 314–316
closing, 197
copying, 315–316
creating, 313–316
deleting, 315
empty, 314
encoding of, 305
locking, 312
memory-mapped, 297, 311
missing, 465
moving, 315–316
random-access, 310–311
reading from/writing to, 36, 194, 303
temporary, 315

Files class
copy method, 304, 315–316, 319
createTempXxx methods, 315
createXxx methods, 314
delete, deleteIfExists methods, 315
exists method, 314, 316

Index514

find method, 316–317
isDirectory, isRegularFile methods, 314,

316
lines method, 275, 297, 307
list method, 316–317
move method, 315–316
newBufferedReader method, 308, 468
newBufferedWriter method, 308, 316
newXxxStream methods, 302, 316, 334
read method, 304
readAllBytes method, 303, 307
readAllLines method, 307
readNBytes method, 303
skipNBytes method, 304
walk method, 316–319
walkFileTree method, 316, 318
write method, 309, 316

FileSystem, FileSystems classes, 319
FileTime class, 437
FileVisitor interface, 318
fill method

of Arrays, 52
of Collections, 52, 251

Filter interface, 213
filter method

of Optional, 282
of Stream, 273–276, 280

filtering method (Collectors), 291
final fields, 362
final methods, 366
final modifier, 16, 75, 150
final variables, 361, 365
finalize method (Object), 158
finally statement, 199–200

for locks, 376
return statements in, 199

financial calculations, 14
find method (Files), 316–317
findAll method (Scanner), 330
findAny method (Stream), 280
findClass method (ClassLoader), 175
findFirst method (Stream), 179, 280
first day of week, 451
first method (SortedSet), 255
firstDayOfXxx methods (TemporalAdjusters),

428

flag bits, sequences of, 260
flatMap method

of Optional, 284–285
of Stream, 277

flatMapping method (Collectors), 291
flip method (BitSet), 261
Float class, 49
float type, 13–14

streams of, 294
type conversions of, 21–22

floating-point types, 13–14
binary number system and, 14
comparing, 118
division of, 19
formatting for output, 37
in hexadecimal notation, 13
type conversions of, 21–22

floor method (NavigableSet), 255
floorMod method (Math), 20
fonts, displaying, 458
for statement, 42–43

declaring variables for, 45
enhanced, 50, 55, 134, 167, 253, 314
multiple variables in, 43

forEach method
of ArrayList, 125
of Map, 257
of Stream, 286

forEachOrdered method (Stream), 286
forEachXxx methods (ConcurrentHashMap),

370
ForkJoinPool class, 356

commonPool method, 297, 353
forLanguageTag method (Locale), 446
Format class, 437
format method

of DateTimeFormatter, 433, 450
of MessageFormat, 453–454
of String, 447

format specifiers, 37
formatted method (String), 38
formatted output, 36–38
Formatter class, 213
formatters, for date/time values,

434–435
forms, posting data from, 321–323

515Index

forName method
of Charset, 307
of Class, 171–172, 175–176, 194, 203,

467
frequency method (Collections), 251
from method (Instant, ZonedDateTime), 436
full indicator, in string templates, 453
Function interface, 129, 287
function types, 121, 128
functional interfaces, 123–124, 406, 408

as method parameters, 225–226
common, 129
contravariant in parameter types, 225
for primitive types, 130
implementing, 130–131

@FunctionalInterface annotation, 131, 406,
408

functions, 62
higher-order, 135–137

Future interface, 352
cancel, isCancelled, isDone methods, 351
get method, 351, 353

futures, 351–353
completable, 353–358

G
g, G

conversion characters, 37
formatting symbols (date/time), 436

\G, in regular expressions, 328
%g pattern variable, 213
gadget chains, 343
garbage collector, 263
generate method (Stream), 274, 294
@Generated annotation, 406, 408
generators, converting to streams, 296
generic classes, 48, 220–221

constructing objects of, 221
information available at runtime, 239
instantiating, 221

generic collections, 266
generic constructors, 240
generic methods, 221–222

calling, 221
declaring, 221
information available at runtime, 239

generic type declarations, 240–241
generic types, 118

annotating, 401
arrays of, 126
casting, 232
exceptions and, 237–238
in JVM, 228–231
invariant, 223, 225
lambda expressions and, 225
reflection and, 238–241
restrictions on, 231–238

GenericArrayType interface, 240
get method

of Array, 186
of ArrayList, 49
of BitSet, 261
of Field, 181, 183, 311
of Future, 351, 353
of List, 250
of LongAccumulator, 374
of Map, 255–256
of Optional, 283–285
of Path, 314
of Preferences, 460
of ServiceLoader.Provider, 178
of Supplier, 129

GET requests, 321
getAndXxx methods (AtomicXxx), 373
getAnnotation, getAnnotationsByType methods

of AnnotatedConstruct, 414
of AnnotatedElement, 411–413

getAsXxx methods
of OptionalXxx, 295
of XxxSupplier, 130

getAudioClip method (Applet), 174
getAvailableCurrencies method (Currency),

448
getAvailableIds method (ZoneId), 430
getAvailableLocales method (Locale), 445
getAverage method (XxxSummaryStatistics),

287
getBoolean method

of Array, 186
of Field, 181, 183
of FileChannel, 311
of Preferences, 460

Index516

getBundle method (ResourceBundle), 456–458
getByte method

of Array, 186
of Field, 181, 183
of FileChannel, 311

getByteArray method (Preferences), 460
getCanonicalName method (Class),

171–172
getChar method

of Array, 186
of Field, 181, 183
of FileChannel, 311

getClass method (Object), 151, 158, 160,
170, 233, 239

getClassLoader method (Class), 173
getComponentType method (Class), 172,

185
getConstructor(s) methods (Class), 173,

179, 182, 239
getContents method (ListResourceBundle),

457
getContextClassLoader method (Thread),

176–177
getCountry method (Locale), 289
getCurrencyInstance method (NumberFormat),

83, 447
getDayOfXxx methods

of LocalDate, 63, 425–427
of ZonedDateTime, 432

getDeclaredAnnotationXxx methods
(AnnotatedElement), 411–413

getDeclaredConstructor(s) methods (Class),
173, 179, 239

getDeclaredField(s) methods (Class), 173
getDeclaredMethod(s) methods (Class), 173,

182
getDeclaringClass method

of Class, 172
of Enum, 167

getDefault method (Locale), 445–446
getDisplayDefault method (Locale), 456
getDisplayName method

of Currency, 449
of DayOfWeek, 435, 450
of Locale, 446
of Month, 435, 450

getDouble method
of Array, 186
of Field, 181, 183
of FileChannel, 311
of Preferences, 460

getElementsAnnotatedWith method
(RoundEnvironment), 414

getEnclosedElements method (TypeElement),
414

getEnclosingXxx methods (Class), 172
getEngineXxx methods (ScriptEngineManager),

468
getEnumConstants method (Class), 239
getErrorStream method (Process), 386–387
getFactory method (ScriptEngine), 469
getField(s) methods (Class), 173, 179
getFileName method (Path), 314
getFilePointer method (RandomAccessFile),

311
getFirstDayOfWeek method (Calendar), 451
getFloat method

of Array, 186
of Field, 181, 183
of FileChannel, 311
of Preferences, 460

getHead method (Formatter), 214
getHeaderFields method (URLConnection), 320
getInputStream method

of Process, 386
of URL, 320
of URLConnection, 321

getInstance method
of Collator, 452
of Currency, 448

getInstant method (LogRecord), 214
getInt method

of Array, 186
of Field, 181, 183
of FileChannel, 311
of Preferences, 460

getInterfaces method (Class), 172
getISOXxx methods (Locale), 445
getLength method (Array), 186
getLevel method (LogRecord), 214
getLogger method (System), 207–208
getLoggerName method (LogRecord), 214

517Index

getLong method
of Array, 186
of Field, 181, 183
of FileChannel, 311
of Preferences, 460

getLongThreadID method (LogRecord), 214
getMax method (XxxSummaryStatistics),

287
getMessage method (LogRecord), 214
getMethod(s) methods (Class), 173, 179,

182
getMethodCallSyntax method

(ScriptEngineFactory), 471
getMinute method

of LocalTime, 429
of ZonedDateTime, 432

getModifiers method
of Class, 172
of Constructor, 179
of Executable, 183
of Field, 179, 183
of Method, 179

getMonth method
of LocalDate, 426
of ZonedDateTime, 432

getMonthValue method
of LocalDate, 63, 426
of ZonedDateTime, 432

getName method
of Class, 171–172
of Constructor, 179
of Executable, 183
of Field, 179, 183
of Method, 179
of Parameter, 183
of Path, 314
of PropertyDescriptor, 184
of System.Logger, 209

getNano method
of LocalTime, 429
of ZonedDateTime, 432

getNumberInstance method (NumberFormat),
447

getObject method (ResourceBundle), 457
getOffset method (ZonedDateTime), 433
getOrDefault method (Map), 256

getOutputStream method
of Process, 386
of URLConnection, 320

getPackage method (Class), 172
getPackageName method (Class), 173
getParameters method

of Executable, 180, 183
of LogRecord, 214

getParent method (Path), 314
getPath method (FileSystem), 319
getPercentInstance method (NumberFormat),

83, 447
getPermittedSubclasses method (Class), 172
getProperties method (System), 260
getProperty method (System), 175, 204, 259
getPropertyDescriptors method (BeanInfo),

184
getPropertyType, getReadMethod methods

(PropertyDescriptor), 184
getQualifiedName method (TypeElement), 414
getRecordComponents method (Class), 173
getResource method (Class), 174, 455
getResourceAsStream method

of Class, 173–174
of Module, 487

getResourceBundle, getResourceBundleName
methods (LogRecord), 214

getRoot method (Path), 314
getSecond method

of LocalTime, 429
of ZonedDateTime, 432

getSequenceNumber method (LogRecord), 214
getShort method

of Array, 186
of Field, 181, 183
of FileChannel, 311

getSimpleName method
of Class, 172
of Element, 414

getSourceXxxName methods (LogRecord), 214
getString method (ResourceBundle), 456
getSuperclass method (Class), 172, 239
getSuppressed method (IOException), 199
getSymbol method (Currency), 449
getSystemJavaCompiler method (ToolProvider),

464

Index518

getTail method (Formatter), 214
getTask method (JavaCompiler),

464–465
getThrown method (LogRecord), 214
getType method

of Field, 179
of Parameter, 183

getTypeName method (Class), 172
getTypeParameters method (Class), 240
getURLs method (URLClassLoader), 175
getValue method (LocalDate), 63
getWriteMethod method (PropertyDescriptor),

184
getYear method

of LocalDate, 426
of LocalTime, 429
of ZonedDateTime, 432

Goetz, Brian, 347
Gregorian calendar reform, 426
GregorianCalendar class, 436–437

toZonedDateTime method, 436–437
group method (Matcher, MatchResult),

330–331
grouping, 289

classifier functions of, 289
reducing to numbers, 290

groupingBy method (Collectors), 289–292
groupingByConcurrent method (Collectors),

289, 296
GUI (graphical user interface)

callbacks in, 120–121
long-running tasks in, 358–359
missing fonts in, 458

H
H formatting symbol (date/time),

436
h, H conversion characters, 37
\h, \H, in regular expressions, 326
%h pattern variable, 213
handle method (CompletableFuture), 357
Hansen, Per Brinch, 379
hash codes, 162–163

computing in String class, 162
formatting for output, 37

hash functions, 162–163, 254

hash maps
concurrent, 369–370
weak, 263

hash method (Object), 163
hash tables, 254
hashCode method

of Arrays, 163
of Enum, 167
of Object, 158, 160, 162–163
of records, 77

HashMap class, 255
null values in, 258

HashSet class, 254
readObject, writeObject methods, 337

Hashtable class, 378
hasNext method

declaring, 107
of Iterator, 252
of Scanner, 35, 308

hasNextXxx methods (Scanner), 35, 308
headMap method (SortedMap), 265
headSet method

of NavigableSet, 255
of SortedSet, 255, 265

heap pollution, 232–233, 266
Hello, World! program, 2

modular, 478–480
helper methods, 228
hexadecimal numbers, 12–13

formatting for output, 37
higher method (NavigableSet), 255
higher-order functions, 135–137
hn, hr elements (HTML), 96
Hoare, Tony, 379
HTML (HyperText Markup Language)

generating documentation in, 417
including code in, 34

HTTP connections, 320–323
HTTP/2 support, 320
HttpClient class, 320–323

enabling logging for, 323
newBuilder, newHttpClient methods, 321,

353
HttpHeaders class, 323
HttpResponse class, 322–323
HttpURLConnection class, 320–321

519Index

hyperlinks
in documentation comments, 98
regular expressions for, 323

I
[I prefix, 159, 171
IANA (Internet Assigned Numbers

Authority), 430
IDE (integrated development

environment), 4–5
identity method

of Function, 129, 287
of UnaryOperator, 129

identity values, 292
if statement, 38–39
ifPresent, ifPresentOrElse methods

(Optional), 281
IllegalArgumentException, 204
IllegalStateException, 287, 371
ImageIcon class, 174
images, locating, 174
img element (HTML), 96
immutability, 364
immutable classes, 365
implements keyword, 108
import statement, 7, 88–89

no annotations for, 402
static, 89–90

import static statement, 170
importPreferences method (Preferences), 461
InaccessibleObjectException, 181, 486
increment method (LongAdder), 374
increment operator, 20
incrementAndGet method (AtomicXxx), 373
incrementExact method (Math), 20
indexOf method

of List, 250
of String, 29

indexOfSubList method (Collections), 251
IndexOutOfBoundsException, 204
info method (ProcessHandle), 390
inheritance, 144–166

classes win rule, 157, 163
default methods and, 157

@Inherited annotation, 407–408
initCause method (Throwable), 202

initialization blocks, 74–75
static, 81

inlining, 151
inner classes, 91–93

anonymous, 138
capturing this references in, 126
invoking methods of outer classes, 93
local, 133, 137–138
syntax for, 94

input
reading, 35–36, 307–308
redirecting, 469
setting locales for, 447
splitting along delimiters, 331

input prompts, 36
input streams, 302

copying, 304
obtaining, 302
reading from, 303

inputReader method (Process), 387
InputStream class, 303

transferTo method, 304
InputStreamReader class, 307
INSTANCE instance (enum types), 339
instance methods, 6, 68–69
instance variables, 67, 69

abstract classes and, 152
annotating, 400
comparing, 161
default values of, 73–74
final, 75
in records, 77–78
initializing, 74–75, 147
not accessible from static methods, 82
of deserialized objects, 339–341
protected, 152
setting, 72
transient, 336
vs. local, 74

instanceof operator, 110, 149, 160–161
annotating, 402
with pattern matching, 111–112

instances, 2, 6
Instant class, 422

compareTo method, 423
equals method, 423

Index520

from method, 436
immutability of, 365, 424
legacy classes and, 437
minus, minusXxx methods, 424
now method, 423
plus, plusXxx methods, 424

instruction reordering, 361
int type, 11–12

functional interfaces for, 130
processing values of, 128
random number generator for, 7, 41
streams of, 294
type conversions of, 21–22
using class literals with, 171

IntBinaryOperator interface, 130
IntConsumer interface, 128, 130
Integer class, 49

compare method, 118
MAX_VALUE, MIN_VALUE constants, 11
parseInt method, 28, 194
toString method, 28
unsigned division in, 12
xxxUnsigned methods, 21

integer indicator, in string templates, 453
integer types, 11–12

comparing, 118
computing, 19–20
formatting for output, 37
in hexadecimal notation, 12
reading/writing, 310–311
type conversions of, 21–22
values of:

even/odd, 19
signed, 12

@interface declaration, 404–405
interface keyword, 107

sealed, 154
interface methods, 114–116
interfaces, 106–113

annotating, 400–401
compatibility of, 115
declarations of, 107–108
defining variables in, 113
documentation comments for, 95
evolution of, 114
extending, 112

functional, 123–124, 406, 408
implementing, 108–109

in scripting engines, 471
multiple, 113

methods of, 108–109
nested, enumerating, 179–180
no instance variables in, 113
no redefining methods of the Object

class in, 163
views of, 264

Internet Engineering Task Force, 444
interrupted method (Thread), 382
interrupted status, 382
InterruptedException, 381, 383
intersects method (BitSet), 261
IntFunction interface, 130, 232
IntPredicate interface, 130
intrinsic locks, 377–379
ints method (RandomGenerator), 294
IntSequence interface, 109, 137
IntStream class, 294–295

mapToObj method, 277
parallel method, 295

IntSummaryStatistics class, 287, 295
IntSupplier, IntToXxxFunction,

IntUnaryOperator interfaces, 130
InvalidClassException, 341
InvalidPathException, 313
Invocable interface, 470
InvocationHandler interface, 186
invoke method (Method), 182–183
invokeAll, invokeAny methods

(ExecutorService), 352
IOException, 194, 308

addSuppressed, getSuppressed methods, 199
isAbstract method (Modifier), 173, 179
isAfter method

of LocalDate, 426
of LocalTime, 429
of ZonedDateTime, 433

isAlive method
of Process, 389
of ProcessHandle, 390

isAnnotation method (Class), 172
isAnonymousClass method (Class), 172
isArray method (Class), 172, 185

521Index

isAssignableFrom method (Class), 173
isBefore method

of LocalDate, 426
of LocalTime, 429
of ZonedDateTime, 433

isCancelled method (Future), 351
isDirectory method (Files), 314, 316
isDone method

of CompletableFuture, 354
of Future, 351

isEmpty method
of BitSet, 261
of Collection, 249
of Map, 257

isEnum method (Class), 172
isEqual method (Predicate), 129–130
isFinite, isInfinite methods (Double), 13
isInstance method (Class), 173
isInterface method (Modifier), 173, 179
isInterrupted method (Thread), 382
isLeapYear method (LocalDate), 426
isLocalClass method (Class), 172
isLoggable method

of Filter, 213
of System.Logger, 209

isMemberClass method (Class), 172
isNamePresent method (Parameter), 183
isNative method (Modifier), 173, 179
isNegative method (Duration), 424
isNull method (Objects), 125
ISO 8601 format, 408
ISO 8859-1 encoding, 306, 309
isPresent method (Optional), 283–285
isPrimitive method (Class), 172
isPrivate, isProtected, isPublic methods

(Modifier), 173, 179
isRecord method (Class), 172
isRegularFile method (Files), 314, 316
isSealed method (Class), 172
isStatic, isStrict, isSynchronized methods

(Modifier), 173, 179
isSynthetic method (Class), 172
isVolatile method (Modifier), 173, 179
isZero method (Duration), 424
Iterable interface, 252–253, 314

iterator method, 252

iterate method (Stream), 274, 279, 294,
367

Iterator interface
next, hasNext methods, 252
remove, removeIf methods, 253

iterator method
of Collection, 249
of ServiceLoader, 178
of Stream, 286

iterators, 252–253, 286
converting to streams, 275, 296
invalid, 253
traversing, 178
weakly consistent, 368

J
j.u.l. See java.util.logging package
JAR files, 85

dependencies in, 497
for split packages, 488
manifest for, 490
modular, 488–489
processing order of, 87
resources in, 174, 455
scanning for deprecated elements, 407

jar program, 85
-C option, 488
-d option, 488
--module-version option, 488

Java EE platform, 353
Java Persistence Architecture, 397
Java Platform Module System, 475

layers in, 489
migration to, 489–491
no support for versioning in, 477, 480,

488
service loading in, 496–497

java program, 4
--add-exports, --add-opens options, 492
--add-module option, 489
-cp (--class-path, -classpath) option,

86–87
-da (-disableassertions) option, 205
-ea (-enableassertions) option, 205
-esa (-enablesystemassertions) option, 205
--illegal-access option, 492

Index522

-m, -p (--module, --module-path) options,
479, 488

option files for, 492–493
option names in, 85
specifying locales in, 446

Java programming language
compatibility with older versions of,

156–157, 228
online API documentation on, 29–31
strongly typed, 15
Unicode support in, 31–33
uniformity of, 3, 116

java.awt package, 88, 477
java.awt.geom package, 336
java.base module, 481
java.class.path system property, 260
java.desktop module, 480
java.home system property, 260
java.io.tmpdir system property, 260
java.lang, java.lang.annotation packages,

406
java.lang.reflect package, 179
java.logging module, 494
java.sql package, 437
java.time package, 421–437
java.util package, 7, 368
java.util.concurrent package, 368, 371
java.util.concurrent.atomic package, 373
java.util.logging package, 206–211
java.util.random package, 106
java.version system property, 260
JavaBeans, 183–184
javac program, 4

-author option, 99
-cp (--class-path, -classpath) option, 86
-d option, 85, 99
-encoding option, 458
-link, -linksource options, 99
-parameters option, 180
-processor option, 413
-version option, 99
-XprintRounds option, 417

JavaCompiler.getTask method, 464–465
javadoc program, 95–100

including annotations in, 408
JavaFileObject interface, 464

JavaFX platform, 121, 359
javan.log files, 211
JavaScript programming language

accessing classes of, from Java, 471
delimiters in, 470
semicolons in, 470

JavaServer Faces framework, 258
javax.annotation package, 406
javax.swing package, 480
JAXB (Java Architecture for XML

Binding), 485
jconsole program, 211
jdeprscan program, 407
jdeps program, 497
JDK (Java Development Kit), 4

obsolete features in, 476
JEP 246 (platform logging API), 206
jlink program, 498
jmod program, 499
job scheduling, 263
join method

of String, 25
of Thread, 381

joining method (Collectors), 286–287
JPA (Java Persistence API), 485
JShell (Java Shell tool), 7–11

imported packages in, 10–11
loading modules into, 489

JSON (JavaScript Object Notation),
153–156

JSP (JavaServer Pages), 472
JSR 223 support, 468
JUnit framework, 397–398

K
K formatting symbol (date/time), 436
\k, in regular expressions, 327
key/value pairs

adding new keys to, 255
in annotations, 398–399, 405
removed by garbage collector, 263
values of, 255

keys method (Preferences), 460
keySet method

of ConcurrentHashMap, 372
of Map, 257, 264

523Index

http://java.io.tmpdir

keywords, 15
contextual, 156

L
L suffix, 12
[L prefix, 171
L64X128MixRandom algorithm, 106
lambda expressions, 121–124

annotating targets for, 408
capturing variables in, 132–134
executing, 127
for loggers, 208
generic types and, 225
parameters of, 122
processing, 127–131
return type of, 123
scope of, 131–132
this reference in, 132
throwing exceptions in, 196
using with streams, 276, 366

language codes, 289, 443–444
language model API, 414–415
last method (SortedSet), 255
lastDayOfXxx methods (TemporalAdjusters),

428
lastIndexOf method

of List, 250
of String, 29

lastIndexOfSubList method (Collections),
251

lastInMonth method (TemporalAdjusters), 428
lazy operations, 273, 276, 279, 332
leap seconds, 422
leap years, 426
legacy code, 436–437
length method

of arrays, 47
of RandomAccessFile, 311
of String, 6, 32

.level suffix, 210
lib/modules file, 499
limit method (Stream), 278, 296
line feed, 34

character literal for, 14
formatting for output, 37
in regular expressions, 328

line.separator system property, 260
lines method

of BufferedReader, 308
of Files, 275, 297, 307

@link tag (javadoc), 98
linked lists, 248, 253
LinkedBlockingQueue class, 371, 381
LinkedHashMap class, 258
LinkedList class, 248
List interface, 226, 248–249

add, addAll, get, indexOf, lastIndexOf,
listIterator methods, 250

of method, 49, 51, 250, 264
remove, replaceAll, set, sort methods, 250
subList method, 250, 265

list method (Files), 316–317
ListIterator interface, 253
ListResourceBundle class, 457
lists

converting to streams, 296
mutable, 265
printing elements of, 125
removing null values from, 125
sublists of, 265
unmodifiable views of, 266

literals
character, 14
floating-point, 13
integer, 12
string, 26–27, 33

little-endian format, 305
load balancing, 334
load method (ServiceLoader), 178, 497
loadClass method (ClassLoader), 175
local classes, 137–138
local date/time, 424–430
local variables, 45–46

annotating, 400–401
vs. instance, 74

LocalDate class, 63
datesUntil method, 426–427
getXxx methods, 63, 425–427
isXxx methods, 426
legacy classes and, 437
minus, minusXxx methods, 425, 427
now method, 72, 82, 425

Index524

of method, 63, 72, 425–426
ofInstant method, 425
parse method, 450
plus, plusXxx methods, 63–64, 66, 425,

427
toEpochSecond method, 426
until method, 426–427
withXxx methods, 425

LocalDateTime class, 430
atZone method, 430
legacy classes and, 437
parse method, 450

Locale class, 288
forLanguageTag method, 446
getAvailableLocales method, 445
getCountry method, 289
getDefault method, 445–446
getDisplayDefault method, 456
getDisplayName method, 446
getISOXxx methods, 445
predefined fields, 445
setDefault method, 445–446

locales, 287–291, 442–447
date/time formatting for, 449–451
default, 434, 445–446, 449–450, 456
displaying names of, 446
first day of week in, 451
for template strings, 453–454
formatting styles for, 435, 450
sorting words for, 451–452
specifying, 443–445
weekdays and months in, 435

LocalTime class, 429–430
final, 151
getXxx, isXxx methods, 429
legacy classes and, 437
minus, minusXxx, now, of, ofInstant

methods, 429
parse method, 450
plus, plusXxx, toXxx, withXxx methods, 429

lock method
of FileChannel, 312
of ReentrantLock, 376

locks, 364
error-prone, 365
intrinsic, 377–379

reentrant, 375–377
releasing, 199, 362

log handlers, 211–213
default, 211
filtering/formatting, 213
levels of, 211

Log4j framework, 206
Logback framework, 206
Logger class (java.util.logging), 494
Logger interface (System), 207–209

getName method, 209
isLoggable method, 209
log method, 207–209

loggers
filtering/formatting, 213
hierarchy of, 210
naming, 207

logging, 206–214
configuring, 209–211
failures, 201
levels of, 208–211
overriding methods for, 151

LogRecord class, methods of, 214
Long class, 49

MAX_VALUE, MIN_VALUE constants, 11
unsigned division in, 12
xxxUnsigned methods, 21

long indicator, in string templates, 453
long type, 11–12

atomic operations on, 374–375
functional interfaces for, 130
streams of, 294
type conversions of, 21–22

LongAccumulator class, 374
accumulate, get methods, 374

LongAdder class, 374–375
add, increment, sum methods, 374
threadsafe, 377

LongConsumer, LongXxxOperator, LongPredicate,
LongSupplier, LongToXxxFunction
interfaces, 130

LongFunction interface, 130, 232
longs method (RandomGenerator), 294
LongStream class, 294–295
LongSummaryStatistics class, 287, 295
long-term persistence, 340

525Index

Lookup class, 487
lookup method (MethodHandles), 487
loops, 41–43

exiting, 43–44
infinite, 43

lower method (NavigableSet), 255

M
m, M formatting symbols (date/time), 436
main method, 2, 6

decomposing, 56–57
string array parameter of, 52

ManagedExecutorService class, 353
Map interface, 250

clear method, 257
compute method, 256
computeIfXxx methods, 256–257
containsXxx methods, 257
entrySet method, 257–258
forEach method, 257
get, getOrDefault methods, 255–256
isEmpty method, 257
keySet method, 257, 264
merge method, 256
of method, 257, 264
ofEntries method, 264
put method, 255–256
putAll method, 257
putIfAbsent method, 256
remove method, 257
replace, replaceAll methods, 257
size method, 257
values method, 257, 264

map method
of Optional, 282
of Stream, 276

mapMulti method (Stream), 278
mapping method (Collectors), 290
maps, 255–258

concurrent, 257, 288
empty, 257
iterating over, 258
of stream elements, 287–288, 296
order of elements in, 258
views of, 257

unmodifiable, 266

mapToInt method (Stream), 293
mapToObj method (IntStream), 277
mapToXxx methods (XxxStream), 294
marker interfaces, 165
Matcher class, 329–331

methods of, 332
matcher, matches methods (Pattern), 329
MatchResult interface, 330–332
Math class

E constant, 20
floorMod method, 20
max, min methods, 20
PI constant, 20, 80, 89
pow method, 20, 81, 89
round method, 22
sqrt method, 20
xxxExact methods, 20, 22

max method
of Stream, 280
of XxxStream, 295

MAX_VALUE constant (integer classes), 11
maxBy method

of BinaryOperator, 129
of Collectors, 290

medium indicator, in string templates, 453
memory

allocating, 364
caching, 361
concurrent access to, 361

memory-mapped files, 311
merge method

of ConcurrentHashMap, 369–370
of Map, 256

Message class, 165–166
MessageFormat class, 453–454
meta-annotations, 404–410
META-INF/MANIFEST.MF file, 490
META-INF/services directory, 496
method calls, 6

receiver of, 69
Method class, 179–180

getModifiers, getName methods, 179
invoke method, 182–183

method expressions, 124, 150
method references, 124–126, 233

annotating, 402

Index526

MethodHandles.lookup method, 487
methods, 2

abstract, 123, 151–152
accessor, 64, 77
annotating, 236, 400
atomic, 369
body of, 68
chaining calls of, 64
clashes of, 236–237
compatible, 162
declarations of, 67
default, 114–116
deprecated, 97, 406–407
documentation comments for, 95, 97
enumerating, 179–180
factory, 72, 83
final, 150, 366
for throwing exceptions, 203–204
header of, 67
inlining, 151
instance, 68–69
invoking, 182
modifying functions, 135
mutator, 64, 266, 366
naming, 15–16, 77
native, 81
overloading, 73, 125
overriding, 114, 145–147, 151,

195–196, 406–407
parameters of, 180

null checks for, 203
passing arrays into, 56
private, 117
proxied, 187
public, 108–109, 179
restricted to subclasses, 152–153
return value of, 2, 68
returning functions, 135
static, 56, 81–83, 90, 113–114
storing in variables, 7
symmetric, 161
synchronized, 377–380
used for serialization, 406–407
utility, 87
variable number of arguments of, 57

Microsoft Notepad, 306

Microsoft Windows
line ending in, 34
path separator in, 86, 260
registry in, 459

min method
of Math, 20
of Stream, 280
of XxxStream, 295

MIN_VALUE constant (integer classes), 11
minBy method

of BinaryOperator, 129
of Collectors, 290

minus, minusXxx methods
of Duration, 424
of Instant, 424
of LocalDate, 425, 427
of LocalTime, 429
of ZonedDateTime, 432

Modifier interface
isXxx methods, 173, 179
toString method, 173

modifiers, checking, 179
module keyword, 479
module path, 479, 488, 490–491
Module.getResourceAsStream method, 487
module-info.class file, 479, 488
module-info.java file, 479
modules, 475

aggregator, 494
annotating, 480
automatic, 489–491
bundling up the minimal set of, 498
declaration of, 478–479
documentation comments for, 95, 99
explicit, 491
illegal access to, 492
inspecting files in, 499
loading into JShell, 489
naming, 478, 490
open, 486
reflective access for, 180–181
required, 480–482, 493–495
tools for, 497–499
transitive, 493–495
unnamed, 491
versioning and, 477, 480, 488

527Index

monitors (classes), 379
Month enumeration, 425–426, 432

getDisplayName method, 435, 450
MonthDay class, 427
move method (Files), 315–316
multiplication, 19
multipliedBy method (Duration), 424
mutators, 64

unmodifiable views and, 266

N
n

conversion character, 37
formatting symbol (date/time), 436

\n (line feed)
for character literals, 14
in property files, 259–260
in regular expressions, 325–326, 333

name method (Enum), 167
NaN (not a number), 13
native methods, 81
naturalOrder method (Comparator), 136
navigable maps/sets, 266
NavigableMap interface, 372
NavigableSet interface, 249, 254, 265

methods of, 255
nCopies method (Collections), 249, 251
negate method (Predicate, BiPredicate), 129
negated method (Duration), 424
negateExact method (Math), 20
NEGATIVE_INFINITY value (Double), 13
negative values, 11
nested classes, 90–95

annotating, 402
enumerating, 179–180
inner, 91–93
public, 91
static, 90–91

new operator, 7, 15, 18, 72
as constructor reference, 126
for anonymous classes, 138
for arrays, 46–47, 54

newBufferedReader method (Files), 308, 468
newBufferedWriter method (Files), 308, 316
newBuilder method (HttpClient), 321, 353
newCachedThreadPool method (Executors), 349

newFileSystem method (FileSystems), 319
newHttpClient method (HttpClient), 321, 353
newInputStream method (Files), 302, 316,

334
newInstance method

of Array, 186
of Class, 182, 239
of Constructor, 182–183

newKeySet method (ConcurrentHashMap), 372
newline. See line feed
newOutputStream method (Files), 302, 316,

334
newProxyInstance method (Proxy), 187
next method

declaring, 107
of Iterator, 252
of Scanner, 35
of TemporalAdjusters, 428

nextClearBit method (BitSet), 261
nextDouble method

common for all generators, 106
of Scanner, 35, 308

nextInt method
common for all generators, 106
of Random, 7, 41
of Scanner, 35

nextLine method (Scanner), 35
nextOrSame method (TemporalAdjusters), 428
nextSetBit method (BitSet), 261
nominal typing, 128
noneMatch method (Stream), 280
noneOf method (EnumSet), 262
noninterference, of stream operations,

275
@NonNull annotation, 401
non-sealed modifier, 156
normalize method (Path), 313
Normalizer class, 453
NoSuchElementException, 283, 371
notify, notifyAll methods (Object),

380–381
now method

of Instant, 423
of LocalDate, 72, 82, 425
of LocalTime, 429
of ZonedDateTime, 432

Index528

null value, 27, 66
as default value, 73, 76
checking parameters for, 203
comparing against, 160
converting to strings, 159

NullPointerException, 27, 48, 66, 74, 194,
203, 256

vs. Optional, 280
nullsFirst, nullsLast methods (Comparator),

136
Number class, 448
number indicator, in string templates, 453
NumberFormat class

getXxxInstance methods, 83, 447
parse method, 448
setCurrency method, 448

NumberFormatException, 194
numbers

average of, 108–109
big, 24
comparing, 118
converting to strings, 28
default value of, 73, 76
even or odd, 19
formatting, 37, 442, 447, 453
from grouped elements, 290
in regular expressions, 326
non-negative, 205, 260
printing, 36
random, 7, 41, 106, 274, 278, 294, 384
reading/writing, 308, 310–311
rounding, 14, 22
type conversions of, 21–22
unsigned, 12, 21
with fractional parts, 13–14

O
o conversion character, 37
Object class, 157–166

clone method, 153, 158, 163–166, 182
equals method, 158–162
finalize method, 158
getClass method, 151, 158, 160, 170,

233, 239
hashCode method, 158, 160, 162–163
notify, notifyAll methods, 380–381

toString method, 158–159
wait method, 379–381

object references, 65–66
attempting to change, 71
comparing, 159
default value of, 73, 76
null, 66
passed by value, 71
serialization and, 335

ObjectInputStream class, 334–335
defaultReadObject method, 337, 341
readDouble method, 337
readFields method, 341
readObject method, 335–343

ObjectInputValidation interface, 342–343
object-oriented programming, 61–102

encapsulation in, 475–476
ObjectOutputStream class, 334

defaultWriteObject method, 336–337
writeDouble method, 337
writeObject method, 334–337

object-relational mappers, 485
objects, 2, 62–66

calling methods on, 7
casting, 110–111
cloning, 163–166
comparing, 50, 159–162
constructing, 7, 71–76, 182–183
converting:

to JSON, 486
to strings, 158–159

deep/shallow copies of, 164–165
deserialized, 339–341
immutable, 64
initializing variables with, 15
inspecting, 180–181
invoking static methods on, 82
mutable, 75
serializable, 334–335
sorting, 117–119
state of, 62

Objects class
checkIndex method, 204
converting to streams, 274
equals method, 161
hash method, 163

529Index

isNull method, 125
requireNonNull, requireNonNullXxx

methods, 203–204
ObjXxxConsumer interfaces, 130
octal numbers, 12

formatting for output, 37
octonions, 32
odd numbers, 19
of method

of EnumSet, 262
of IntStream, 294
of List, 49, 51, 250, 264
of LocalDate, 63, 72, 425–426
of LocalTime, 429
of Map, 257, 264
of Optional, 284
of Path, 312, 314, 319
of ProcessHandle, 389
of Set, 264
of Stream, 273–274
of ZonedDateTime, 430–432

ofDateAdjuster method (TemporalAdjusters),
428

ofDays method
of Duration, 423–424, 426, 431
of Period, 431

ofEntries method (Map), 264
offer method (BlockingQueue), 371
offsetByCodePoints method (String), 33
OffsetDateTime class, 433
ofHours method (Duration), 423–424
ofInstant method

of LocalDate, 425
of LocalTime, 429
of ZonedDateTime, 432

ofLocalizedXxx methods (DateTimeFormatter),
433, 449

ofMillis, ofMinutes, ofNanos methods
(Duration), 423–424

ofNullable method
of Optional, 284
of Stream, 274, 286

ofPattern method (DateTimeFormatter), 435
ofSeconds method (Duration), 423–424
ofString method (HttpResponse), 322
ofYears method (Period), 426

onExit method
of Process, 389
of ProcessHandle, 390

open keyword, 487
open method (FileChannel), 311
openConnection method (URL), 320
opens keyword, 486

qualified, 495
openStream method (URL), 302
Operation interface, 169
operations

associative, 292
atomic, 364, 369, 373–375, 379
bulk, 370
lazy, 273, 276, 279, 332
parallel, 366–368
performed optimistically, 374
stateless, 295
threadsafe, 368–372

operators, 17–24
cast, 22
precedence of, 18

option files, 492–493
Optional class, 280–285

creating values of, 284
empty method, 284
filter method, 282
flatMap method, 284–285
for empty streams, 292
for processes, 390
get method, 283–285
ifPresent method, 281
ifPresentOrElse method, 281
isPresent method, 283–285
map method, 282
of, ofNullable methods, 284
or method, 282
orElse method, 280
orElseThrow method, 281, 283
proper usage of, 283
stream method, 285–286

OptionalXxx classes, 295
or method

of BitSet, 261
of Predicate, BiPredicate, 129

Oracle JDK, 468

Index530

order method (ByteBuffer), 311
ordinal method (Enum), 167
orElseThrow method (Optional), 281, 283
org.omg.corba package, 476
orTimeout method (CompletableFuture), 357
os.arch, os.name, os.version system

properties, 260
OSGi (Open Service Gateway Initiative),

477
output

formatted, 36–38
redirecting, 469
setting locales for, 447
writing, 308–310

output streams, 302
closing, 304
obtaining, 302
writing to, 304

OutputStream class, 334
write method, 304

OutputStreamWriter class, 308
outputWriter method (Process), 387
@Override annotation, 146, 336, 339,

406–407
overriding, 145–147

for logging/debugging, 151
overview.html file, 99

P
\p, \P, in regular expressions, 326
package declarations, 83–85
package statement, 84
package-info.java file, 99, 400
packages, 3, 83–90

accessing, 87–88, 153, 476, 483–484,
486, 490

adding classes to, 88
annotating, 400–401
default, 84
documentation comments for, 95, 99
exporting, 482–485, 487
naming, 83
not nesting, 84
split, 488

parallel method (XxxStream), 295
parallel streams, 366–367

parallelStream method (Collection), 249,
272–273, 295, 366

parallelXxx methods (Arrays), 52, 367
@param tag (javadoc), 97
Parameter class, 183
parameter variables, 70

annotating, 400
scope of, 45

ParameterizedType interface, 240
parentLogger method (Driver), 494
parse method

of DateTimeFormatter, 435
of LocalXxx, ZonedDateTime, 450
of NumberFormat, 448

Parse.quote method, 324
parseDouble method (Double), 28
ParseException, 448
parseInt method (Integer), 28, 194
partitioning, 365
partitioningBy method (Collectors), 289,

292
Pascal triangle, 54
passwords, 36
Path interface, 114, 312–314

get method, 314
getXxx methods, 314
normalize method, 313
of method, 312, 314, 319
relativize method, 313
resolve, resolveSibling methods, 313
subpath method, 314
toAbsolutePath method, 314
toFile method, 314

path separators, 313
path.separator system property, 260
paths, 312

absolute vs. relative, 312–314
combining, 314
filtering, 317
resolving, 313
taking apart, 314

Paths class, 114
Pattern class

asMatchPredicate, asPredicate methods,
329

compile method, 329, 333

531Index

http://overview.html

flags, 333
matcher, matches methods, 329
split method, 331
splitAsStream method, 275, 332

pattern variables, 213
PECS (producer extends, consumer super),

226
peek method

of BlockingQueue, 371
of Stream, 279

percent indicator, in string templates, 453
performance

atomic operations and, 374
big numbers and, 24
combined operators and, 20
memory caching and, 361

Period class
ofDays method, 431
ofYears method, 426
plusYears method, 426

permits keyword, 155–156
@Persistent annotation, 409
PHP, scripting engine for, 468
PI constant (Math), 20, 80, 89
placeholders, 453–454
platform class loader, 174
platform encoding, 306, 458
platform logging API, 206–210
plugins, loading, 175
plus, plusXxx methods

of Duration, 424
of Instant, 424
of LocalDate, 63–64, 66, 425, 427
of LocalTime, 429
of ZonedDateTime, 431–432

plusYears method (Period), 426
Point class, 158–159
poll method (BlockingQueue), 371
pollXxx methods (NavigableSet), 255
pools, for parallel streams, 297
pop method (ArrayDeque), 262
POSITIVE_INFINITY value (Double), 13
POST requests, 322
postVisitDirectory method (FileVisitor),

318
pow method (Math), 20, 81, 89

predefined character classes, 324, 326,
328

predicate functions, 289
Predicate interface, 124, 129

and method, 129
isEqual method, 129–130
or, negate methods, 129
test method, 129, 225

Preferences class, 459–461
childrenNames method, 460
exportSubtree method, 460
get, getXxx methods, 460
importPreferences method, 461
keys method, 460
put, putXxx methods, 460
remove, removeNode methods, 460
systemXxx methods, 459–460
userXxx methods, 459–460

previous method
of ListIterator, 253
of TemporalAdjusters, 428

previousClearBit method (BitSet), 261
previousOrSame method (TemporalAdjusters),

428
previousSetBit method (BitSet), 261
preVisitDirectory method (FileVisitor), 318
primitive types, 11–14

comparing, 161
converting to strings, 159
functions interfaces for, 130
passed by value, 71
streams of, 293–294
type parameters and, 231
variables of, no updating for, 70
wrapper classes for, 49–50

printStackTrace method (Throwable), 203
PrintStream class, 6, 159, 309

print method, 6, 36, 206, 309
printf method, 36–37, 57, 309
println method, 6, 35–36, 52, 125, 309

PrintWriter class, 309
close method, 197–198
print method, 309
printf method, 309, 447
println method, 309

priority queues, 263

Index532

private modifier, 3, 87
for enum constructors, 168

Process class, 386–390
destroy, destroyForcibly methods, 389
errorReader method, 387
exitValue method, 389
getErrorStream method, 386–387
getInputStream, getOutputStream methods,

386
inputReader method, 387
isAlive method, 389
onExit method, 389
outputWriter method, 387
supportsNormalTermination method, 389
toHandle method, 389
waitFor method, 388–389

ProcessBuilder class, 386–390
directory method, 386
redirectXxx methods, 387
start, startPipeline methods, 388

processes, 386–390
building, 386–388
getting info about, 389–390
killing, 389
running, 388–389

ProcessHandle interface, 389–390
allProcesses method, 389
current method, 389
destroy, destroyForcibly methods, 390
info method, 390
isAlive method, 390
of method, 389
onExit method, 390
supportsNormalTermination method, 390

processing pipeline, 355, 388
Processor interface, 413
Programmer’s Day, 426
programming languages

functional, 105
object-oriented, 2
scripting, 467

programs
compiling, 4
configuration options for, 259
localizing, 441–461
packaging, 499

responsive, 358
running, 4
testing, 204

promises (in concurrent libraries), 354
properties, 183–184

loading from file, 259
naming, 184
read-only/write-only, 184
testing for, 225

Properties class, 259–260
.properties extension, 455
property files

encoding, 259, 457
generating, 417
localizing, 455–457

protected modifier, 152–153
Provider.get, Provider.type methods, 178
provides keyword, 496
Proxy class, 186–188

newProxyInstance method, 187
public modifier, 3, 87

for interface methods, 108–109
method overriding and, 147

push method (ArrayDeque), 262
put method

of BlockingQueue, 371
of FileChannel, 311
of Map, 255–256
of Preferences, 460

putAll method (Map), 257
putBoolean method

of FileChannel, 311
of Preferences, 460

putByte method (FileChannel), 311
putByteArray method (Preferences), 460
putChar method (FileChannel), 311
putDouble, putFloat methods

of FileChannel, 311
of Preferences, 460

putIfAbsent method
of ConcurrentHashMap, 369
of Map, 256

putInt, putLong methods
of FileChannel, 311
of Preferences, 460

putShort method (FileChannel), 311

533Index

Q
\Q, in regular expressions, 324–325
qualified exports, 495
Queue interface, 250, 262

synchronizing methods in, 379
using ArrayDeque with, 262

quote method (Parse), 324
quoteReplacement method (Matcher), 332

R
R language, scripting engine for, 468
\r (carriage return)

for character literals, 14
in property files, 260

\r, \R, in regular expressions, 325, 328
race conditions, 295, 362–364
Random class, 7, 106

nextInt method, 7, 41
threadsafe, 384

random numbers, 7, 41, 106
in multiple threads, 384
streams of, 274, 278, 294

RandomAccess interface, 249
RandomAccessFile class, 310–311

getFilePointer method, 311
length method, 311
seek method, 310–311

RandomGenerator interface, 107
methods of, 294

RandomNumbers class, 82
range method

of EnumSet, 262
of XxxStream, 294

rangeClosed method (XxxStream), 294
ranges, 265

converting to streams, 296
raw types, 229, 232–233
read method

of Files, 304
of InputStream, 303
of InputStreamReader, 307

readAllXxx methods (Files), 303, 307
readByte, readChar methods (DataInput), 310
readDouble method

of DataInput, 310
of ObjectInputStream, 337

Reader class, 307
readers, 302
readExternal method (Externalizable),

338–339
readFields method (ObjectInputStream), 341
readFloat, readFully methods (DataInput),

310
readInt method (DataInput), 310–311
readLine method

of BufferedReader, 308
of Console, 36

readLong method (DataInput), 310
readNBytes method (Files), 303
readObject method

of HashSet, 337
of ObjectInputStream, 335–343

readPassword method (Console), 36
readResolve method (Serializable), 339–340
readShort method (DataInput), 310
readUnsignedXxx, readUTF methods

(DataOutput), 310
receiver parameters, 69, 403
records, 76–79

serializable, 342
redirection syntax, 36
redirectXxx methods (ProcessBuilder), 387
reduce method (Stream), 292–293
reduceXxx methods (ConcurrentHashMap), 370
reducing method (Collectors), 291
reductions, 280, 292–293
ReentrantLock class, 375–377

lock, unlock methods, 376
reflection, 179–188

generic types and, 234, 238–241
module system and, 180–181, 485,

492
processing annotations with, 410–413
security and, 343

ReflectiveOperationException, 171
regular expressions, 323–333

flags for, 333
groups in, 330–331
replacing matches with, 332
splitting input with, 331
testing matches of, 329–330
turning into predicates, 329

Index534

relational operators, 22–23
relativize method (Path), 313
remainderUnsigned method (Integer, Long),

21
remove method

of ArrayDeque, 262
of ArrayList, 49
of BlockingQueue, 371
of Collection, 249
of Iterator, 253
of List, 250
of Map, 257
of Preferences, 460

removeAll method (Collection), 249
removeIf method

of ArrayList, 124
of Collection, 249
of Iterator, 253

removeNode method (Preferences), 460
@Repeatable annotation, 407, 409–410
replace method

of Map, 257
of String, 29

replaceAll method
of Collections, 251
of List, 250
of Map, 257
of Matcher, 332
of String, 332

replaceFirst method (Matcher), 332
requireNonNull, requireNonNullXxx methods

(Objects), 203–204
requires keyword, 479, 482–485, 490,

493–495
resolve, resolveSibling methods (Path), 313
resource bundles, 455–458
ResourceBundle class

extending, 457
getBundle method, 456–458
getObject method, 457
getString method, 456

resources, 170–179
loading, 174, 487
managing, 197

resume method (Thread, deprecated), 382
retainAll method (Collection), 249

@Retention annotation, 404, 407
return statement, 56, 68

in finally blocks, 199
in lambda expressions, 122

@return tag (javadoc), 97
return types, covariant, 147, 231
return values

as arrays, 56
missing, 280
providing type of, 56

reverse domain name convention, 83,
478

reverse method (Collections), 52, 252
reversed method (Comparator), 136
reverseOrder method (Comparator), 137
RFC 822, RFC 1123 formats, 434
Rhino JavaScript engine, 468, 470
rotate method (Collections), 252
round method (Math), 22
RoundEnvironment interface, 414
roundoff errors, 14
RowSetProvider class, 492
rt.jar file, 499
Ruby, scripting engine for, 468
runAfterXxx methods (CompletableFuture),

357–358
Runnable interface, 120, 129, 349, 351

executing on the UI thread, 359
run method, 129, 348, 381, 383
using class literals with, 171

runtime
raw types at, 232–233
safety checks at, 229

Runtime class
availableProcessors method, 349
exec method, 386

runtime image file, 499
RuntimeException, 194

S
s formatting symbol (date/time), 436
s, S conversion characters, 37
\s, \S, in regular expressions, 326
safety checks, as runtime, 229
@SafeVarargs annotation, 236, 406, 408
sample code, 5

535Index

Scala programming language, 227
Scanner class, 35

findAll method, 330
hasNext, hasNextXxx methods, 35, 308
next, nextXxx methods, 35, 308
tokens method, 275, 308
useLocale method, 447

scheduling applications
computing dates for, 428–429
time zones and, 425, 430

Scheme, scripting engine for, 468
ScriptContext interface, 469
ScriptEngine interface

createBindings method, 469
eval method, 468–471
getFactory method, 469

ScriptEngineFactory interface, 471
ScriptEngineManager class

getEngineXxx methods, 468
visibility of bindings in, 469

scripting engines, 468
compiling code in, 471
implementing Java interfaces in, 471

scripting languages, 467
invoking functions in, 470

scripts
compiling, 471
evaluating, 468

sealed modifier, 154–156
sealed types, 153–156
searchXxx methods (ConcurrentHashMap),

370
security, 88, 342–344
SecurityException, 181
@see tag (javadoc), 98
seek method (RandomAccessFile), 311
sequences, producing, 274
@Serial annotation, 336, 339, 406–407
serial numbers, 335
Serializable interface, 334–335

readResolve, writeReplace methods,
339–340

serialization, 333–344
filters for, 343

serialVersionUID instance variable, 341
server-side software, 334

ServiceLoader class, 177–179, 496
iterator method, 178
load method, 178, 497

ServiceLoader.Provider interface, 178
services

configurable, 177
loading, 177–179, 496–497

ServletException, 201–202
Set interface, 249, 372

of method, 264
working with EnumSet, 262

set method
of Array, 186
of ArrayList, 49
of BitSet, 261
of Field, 183
of List, 250
of ListIterator, 253

setAccessible method (AccessibleObject),
181, 183

setAll method (Arrays), 127
setBoolean, setByte, setChar methods

of Array, 186
of Field, 183

setClassAssertionStatus method
(ClassLoader), 206

setContextClassLoader method (Thread),
176–177

setCurrency method (NumberFormat), 448
setDaemon method (Thread), 385
setDecomposition method (Collator),

452
setDefault method (Locale), 445–446
setDefaultAssertionStatus method

(ClassLoader), 206
setDefaultUncaughtExceptionHandler method

(Thread), 202
setDoOutput method (URLConnection), 320
setDouble, setFloat, setInt, setLong methods

of Array, 186
of Field, 183

setOut method (System), 81
setPackageAssertionStatus method

(ClassLoader), 206
setProperty method (System), 210
setReader method (ScriptContext), 469

Index536

setRequestProperty method (URLConnection),
320

sets, 254–255
immutable, 365
threadsafe, 372
unmodifiable views of, 266

setShort method
of Array, 186
of Field, 183

setStrength method (Collator), 452
setUncaughtExceptionHandler method (Thread),

381
setWriter method (ScriptContext), 469
shallow copies, 164–165
shared variables, 362–365

atomic mutations of, 373–375
locking, 375–377

shell
redirection syntax of, 36
scripts for, generating, 417

shift operators, 23–24
Shift_JIS encoding, 306
short circuit evaluation, 23
Short class, 49

MAX_VALUE, MIN_VALUE constants, 11
short indicator, in string templates, 453
short type, 11–12

streams of, 294
type conversions of, 21

short-term persistence, 340
shuffle method (Collections), 52, 252
SimpleDateFormat class, 384–385
SimpleFileVisitor class, 318
SimpleJavaFileObject class, 466
@since tag (javadoc), 97
singletons, 339
size method

of ArrayList, 49
of Collection, 249
of Map, 257

skip method (Stream), 278
skipNBytes method (Files), 304
sleep method (Thread), 381, 383
SLF4J (Simple Logging Fasade for Java),

206, 478
SOAP protocol, 477

SocketHandler class, 211
sort method

of Arrays, 52, 119, 123–124
of Collections, 52, 226–227, 241, 252
of List, 250

sorted maps, 265–266
sorted method (Stream), 279
sorted sets, 249, 265

traversing, 254
unmodifiable views of, 266

sorted streams, 296
SortedMap interface, 265
SortedSet interface, 249, 254

first method, 255
headSet method, 255, 265
last method, 255
subSet, tailSet methods, 255, 265

sorting
array lists, 52
arrays, 52, 117–119
chaining comparators for, 136
changing order of, 135
streams, 279
strings, 27–28, 124, 451–452

source code, generating, 406, 408,
415–417

source files
documentation comments for, 99
encoding of, 458
placing, in a file system, 84
reading from memory, 465

space flag (for output), 38
spaces

in regular expressions, 326
removing, 29

split method
of Pattern, 331
of String, 26, 332

splitAsStream method (Pattern), 275, 332
spliterator method (Collection), 249
Spliterators.spliteratorUnknownSize

method, 275
SQL (Structured Query Language), 34
sqrt method (Math), 20
square root, computing, 284
Stack class, 262

537Index

stack trace, 202–203
StackWalker class, 203
standard output, 3
StandardCharsets class, 306
StandardJavaFileManager interface, 464–466
start method

of Matcher, MatchResult, 330–331
of ProcessBuilder, 388
of Thread, 381

startPipeline method (ProcessBuilder), 388
startsWith method (String), 29
stateless operations, 295
statements, combining, 46
static constants, 80–81
static imports, 89–90
static initialization, 175
static methods, 56, 81–83

accessing static variables from, 82
importing, 90
in interfaces, 113–114

static modifier, 2, 16, 56, 79–83, 169
for modules, 494

static nested classes, 90–91
static variables, 79–80

accessing from static methods, 82
importing, 90
visibility of, 361

stop method (Thread, deprecated), 382
Stream interface

anyMatch method, 280
collect method, 286–287, 293
concat method, 278
count method, 273, 280
distinct method, 279, 296
dropWhile method, 278
empty method, 274
filter method, 273–276, 280
findAny method, 280
findFirst method, 179, 280
flatMap method, 277
forEach, forEachOrdered methods, 286
generate method, 274, 294
iterate method, 274, 279, 294, 367
iterator method, 286
limit method, 278, 296
map method, 276

mapMulti method, 278
mapToInt method, 293
max, min methods, 280
noneMatch method, 280
of method, 273–274
ofNullable method, 274, 286
peek method, 279
reduce method, 292–293
skip method, 278
sorted method, 279
takeWhile method, 278
toArray method, 126, 286
toList method, 275
unordered method, 296

stream method
of Arrays, 274, 294
of BitSet, 261
of Collection, 249, 272–273
of Optional, 285–286
of StreamSupport, 275

streams, 271–275
collecting elements of, 286–288
combining, 278
computing values from, 292–293
converting to/from arrays, 274, 286,

296, 368
creating, 273–276
debugging, 279
empty, 274, 280, 292
filtering, 285
finite, 274
flattening, 277, 285
infinite, 273–274, 278–279
intermediate operations for, 273
locating services with, 178
noninterference of, 275
of primitive type values, 293–294
of random numbers, 294
ordered, 296
parallel, 272, 280, 286, 288–289, 292,

295–297, 366–367
processed lazily, 273, 276, 279
reductions of, 280
removing duplicates from, 279
returned by Files.lines, 297
sorting, 279

Index538

splitting, 278
summarizing, 287, 295
terminal operation for, 273, 280
transformations of, 276–278, 294
vs. collections, 273

StreamSupport.stream method, 275
String class, 6, 28

charAt method, 32
codePoints method, 32–33,

276–278
codePointXxx methods, 32
compareTo method, 27–28, 117, 451
compareToIgnoreCase method, 124
contains method, 29
endsWith method, 29
equals method, 26–27
equalsIgnoreCase method, 27
final, 151
format method, 447
formatted method, 38
hash codes, 162
immutability of, 29, 365
indexOf, lastIndexOf methods, 29
join method, 25
length method, 6, 32
offsetByCodePoints method, 33
replace method, 29
replaceAll method, 332
split method, 26, 332
startsWith method, 29
strip method, 448
substring method, 26
toLowerCase method, 29, 276, 447
toUpperCase method, 29, 447

StringBuilder class, 25
strings, 6, 25–34

comparing, 26–28
concatenating, 25, 159
converting:

from byte arrays, 307
from objects, 158–159
to code points, 276
to numbers, 28

empty, 27–28, 159
formatting for output, 37
internal representation of, 33

normalized, 452
sorting, 27–28, 124, 451–452
splitting, 26, 275
templates for, 453–454
transforming to lower/uppercase, 276,

447
StringSource class, 465
StringWriter class, 309
strip method (String), 29, 448
strong element (HTML), 96
subclasses, 145

anonymous, 149–150, 169
calling toString method in, 158
constructors for, 147
inheriting annotations, 407
initializing instance variables in, 147
methods in, 145
preventing, 151
public, 147
superclass assignments in, 147

subList method (List), 250, 265
subMap method (SortedMap), 265
subpath method (Path), 314
subSet method

of NavigableSet, 255
of SortedSet, 255, 265

substring method (String), 26
subtractExact method (Math), 20
subtraction, 19

accurate, 24
not associative, 292

subtypes, 110
wildcards for, 224

sum method
of LongAdder, 374
of XxxStream, 295

summarizingXxx methods (Collectors), 287,
291

summaryStatistics method (XxxStream), 295
summingXxx methods (Collectors), 290
super keyword, 116, 146–147, 150,

225–227
superclasses, 145

annotating, 401
calling equals method on, 161
default methods of, 157

539Index

methods of, 145–147
public, 147
serializability of, 335

supertypes, 110, 113
wildcards for, 225–226

Supplier interface, 129, 354
supplyAsync method (CompletableFuture),

353–355
supportsNormalTermination method

of Process, 389
of ProcessHandle, 390

@SuppressWarnings annotation, 232, 406–408,
480

suspend method (Thread, deprecated), 382
swap method (Collections), 252
Swing GUI toolkit, 120–121, 359
SwingConstants interface, 113
SwingWorker class (Swing), 359
switch statement, 39–41

fall-through variant of, 40
using enumerations in, 170
with pattern matching, 154

symbolic links, 316–317
synchronized keyword, 376–380
synchronized views, 266
synchronizedXxx methods (Collections), 252
System class

getLogger method, 207–208
getProperties method, 260
getProperty method, 175, 204, 259
setOut method, 81
setProperty method, 210

system class loader, 174, 176
system classes, enabling/disabling

assertions for, 205
system properties, 260
System.err constant, 202, 211, 385, 464
System.in constant, 35
System.Logger interface, 207–209

getName method, 209
isLoggable method, 209
log method, 207–209

System.Logger.Level enumeration, 208
System.out constant, 6, 17, 35–38, 52, 57,

81, 125, 206, 309, 464
systemXxx methods (Preferences), 459–460

T
T, in dates, 434
t, T conversion characters, 37
\t

in regular expressions, 325
tab, for character literals, 14

%t pattern variable, 213
tab completion, 9–10
tagging interfaces, 165
tailMap method (SortedMap), 265
tailSet method

of NavigableSet, 255
of SortedSet, 255, 265

take method (BlockingQueue), 371
takeWhile method (Stream), 278
tar program, 85
@Target annotation, 404–406
tasks, 348–353

canceling, 351–352
combining results from, 351–353
computationally intensive, 349
coordinating work between, 370–372
defining, 120
executing, 120, 349
groups of, 385
long-running, 358–359
running, 348–350
short-lived, 349
submitting, 351
vs. threads, 349
working simultaneously, 354

teeing method (Collectors), 291
Temporal interface, 428
TemporalAdjuster.ofDateAdjuster

method, 428
TemporalAdjusters class, 428
terminal window, 4
test method

of BiPredicate, 129
of Predicate, 129, 225
of XxxPredicate, 130

@Test annotation, 398–399, 404
text blocks, 33–34
TextStyle enumeration, 451
thenAccept method (CompletableFuture), 353,

357

Index540

http://System.in

thenAcceptBoth method (CompletableFuture),
357–358

thenApply, thenApplyAsync methods
(CompletableFuture), 355–357

thenCombine method (CompletableFuture),
357–358

thenComparing method (Comparator), 136–137
thenCompose method (CompletableFuture),

356–357
thenRun method (CompletableFuture), 357
third-party libraries, 489–490
this reference, 69–70

annotating, 403
capturing, 125
in constructors, 73, 366
in lambda expressions, 132

Thread class
getContextClassLoader method, 176–177
interrupted, isInterrupted methods, 382
join method, 381
properties, 385
resume method (deprecated), 382
setContextClassLoader method, 176–177
setDaemon method, 385
setDefaultUncaughtExceptionHandler

method, 202
setUncaughtExceptionHandler method, 381
sleep method, 381, 383
start method, 381
stop, suspend methods (deprecated), 382

ThreadLocal class, 384–385
ThreadLocalRandom.current method, 384
threads, 349, 381–385

atomic mutations in, 373–375
creating, 120
daemon, 385
groups of, 385
interrupting, 351, 382–383
local variables in, 384–385
locking, 375–377
names of, 385
priorities of, 385
race conditions in, 295, 362–364
running tasks in, 120
starting, 381–382
states of, 385

temporarily inactive, 383
terminating, 349–350
uncaught exception handlers of, 385
visibility and, 360–362, 378
vs. tasks, 349
waiting on conditions, 379
worker, 358–359

throw statement, 193
Throwable class, 193

in assertions, 205
initCause method, 202
no generic subtypes for, 237
printStackTrace method, 203

throws keyword, 195
type variables in, 237–238

@throws tag (javadoc), 97, 196
time

current, 422
formatting, 433–436, 449–451
measuring, 423
parsing, 435

Time class, 436–437
time indicator, in string templates, 453
time zones, 430–433
TimeoutException, 351
Timestamp class, 162, 436–437
timestamps, 423, 433
TimeZone class, 437
™ (trademark symbol), 452–453
toAbsolutePath method (Path), 314
toArray method

of Collection, 249
of Stream, 126, 286
of XxxStream, 295

toByteArray method
of BitSet, 261
of ByteArrayOutputStream, 302–303

toCollection method (Collectors), 286
toConcurrentMap method (Collectors), 288
toDays method (Duration), 423
ToDoubleFunction interface, 130, 232
toEpochSecond method

of LocalDate, 426
of LocalTime, 429

toFile method (Path), 314
toFormat method (DateTimeFormatter), 435

541Index

toGenericString method (Class), 172
toHandle method (Process), 389
toHours method (Duration), 423
toInstant method

of Date, 436
of ZonedDateTime, 431, 433

toIntExact method (Math), 22
ToIntFunction interface, 130, 232
tokens method (Scanner), 275, 308
toList method (Stream), 275
toLocalXxx methods (ZonedDateTime), 433
toLongArray method (BitSet), 261
ToLongFunction interface, 130, 232
toLowerCase method (String), 29, 276, 447
toMap method (Collectors), 287–288
toMillis, toMinutes (Duration), 423
toNanoOfDay method (LocalTime), 429
toNanos method (Duration), 423
ToolProvider.getSystemJavaCompiler method,

464
toPath method (File), 314
toSecondOfDay method (LocalTime), 429
toSeconds method (Duration), 423
toSet method (Collectors), 286, 290
toString method

calling from subclasses, 158
of Arrays, 52, 159
of BitSet, 261
of Class, 172
of Double, 28
of Enum, 167
of Integer, 28
of Modifier, 173
of Object, 158–159
of Point, 158–159
of records, 77

toUnsignedInt method (Byte), 12
toUpperCase method (String), 29, 447
toZonedDateTime method (GregorianCalendar),

436–437
transferTo method (InputStream), 304
transient modifier, 336
transitive keyword, 493–495
TreeMap class, 255, 288
TreeSet class, 254
true value (boolean), 14

try statement, 196–200
for visiting directories, 316

tryLock method (FileChannel), 312
trySetAccessible method (AccessibleObject),

181
try-with-resources statement, 197–199

closing output streams with, 304
for file locking, 312

type bounds, 222–223, 241
annotating, 402

type erasure, 228–231, 236
clashes after, 236–237

Type interface, 240
type method (ServiceLoader.Provider), 178
type parameters, 117, 220–221

annotating, 400
primitive types and, 221, 231

type variables
exceptions and, 237–238
in static context, 236
no instantiating of, 233–235
wildcards with, 226–227

TypeElement interface, 414
TypeVariable interface, 240

U
U+, for code points, 32
\u

for character literals, 14, 457–458
in regular expressions, 325

%u pattern variable, 213
UnaryOperator interface, 129
uncaught exception handlers, 381, 385
unchecked exceptions, 194

documenting, 196
generic types and, 238

UncheckedIOException, 308
Unicode, 31–33, 294, 305

normalization forms in, 452
replacement character in, 309

unit tests, 397
Unix operating system

executable files in, 5
path separator in, 86, 260
specifying locales in, 446
wildcard in classpath in, 86

Index542

unlock method (ReentrantLock), 376
unmodifiableXxx methods (Collections),

252
unordered method (Stream), 296
until method (LocalDate), 426–427
updateAndGet method (AtomicXxx), 373
URI class, 322
URL class, 322

final, 151
getInputStream method, 320
openConnection method, 320
openStream method, 302

URLClassLoader class, 175
URLConnection class, 320–321

connect method, 320
getHeaderFields method, 320
getInputStream method, 321
getOutputStream method, 320
setDoOutput method, 320
setRequestProperty method, 320

URLs, reading from, 302, 320
useLocale method (Scanner), 447
user directory, 314
user interface. See GUI
user preferences, 459–461
user.dir, user.home, user.name system

properties, 260
userXxx methods (Preferences), 459–460
uses keyword, 497
UTC (coordinated universal time), 431
UTF-8 encoding, 305

for source files, 458
modified, 310

UTF-16 encoding, 14, 32, 294, 305
in regular expressions, 325

Util.createInstance method, 176–177
utility classes, 87, 176

V
V formatting symbol (date/time), 436
\v, \V, in regular expressions, 326
validateObject method

(ObjectInputValidation), 342–343
valueOf method

of BitSet, 261
of Enum, 166–167

values method
of Enum, 167
of Map, 257, 264

var keyword, 15–16
varargs parameters

declaring, 57
safety of, 406, 408

VarHandle class, 487
variable handles, 487
VariableElement interface, 414
variables, 7, 14–17

atomic mutations of, 373–375
capturing, in lambda expressions,

132–134
declaring, 15–16
defined in interfaces, 113
deprecated, 97, 406–407
documentation comments for, 95, 97
effectively final, 133–134
final, 361, 365
holding object references, 65–66
initializing, 15–17
instance, 67, 69, 72–75, 77–78, 82,

147, 152, 161, 336, 339–341
local, 45–46
naming, 15–16
parameter, 70
private, 67, 88
public static final, 113
redefining, 46
scope of, 45, 88
shared, 362–365, 375–377
static final. See constants
static, 79–80, 82, 90, 361
thread-local, 384–385
using an abstract class as type of,

152
visibility of, 360–362, 378
volatile, 361–362

@version tag (javadoc), 96, 99
versioning, 340–342
views, 264–266
virtual machine, 4

instruction reordering in, 361
visibility, 360–362

guaranteed with locks, 378

543Index

visitFile, visitFileFailed methods
(FileVisitor), 318

void keyword, 2, 56
using class literals with, 171

volatile modifier, 362

W
\w, \W, in regular expressions, 326
wait method (Object), 379–381
waitFor method (Process), 388–389
waiting on a condition, 380
walk method (Files), 316–319
walkFileTree method (Files), 316, 318
warning method (Logger), 406
warnings, suppressing, 232, 236, 407
weak references, 263
weaker access privilege, 147
WeakHashMap class, 263
weakly consistent iterators, 368
WeakReference class, 264
web pages

extracting links from, 355
reading, 356, 358

whenComplete method (CompletableFuture),
354, 356–357

while statement, 41–43
breaking/continuing, 43–44
declaring variables for, 45

white space
in regular expressions, 326
in text blocks, 34
removing, 29

wildcards
annotating, 402
capturing, 228
for annotation processors, 413
for types, 224–226
in class path, 86
unbounded, 227
with imported classes, 88–89
with type variables, 226–227

WildcardType interface, 240
Window class, 88
WindowAdapter class, 114
WindowListener interface, 114
with method (Temporal), 428

withDayOfXxx methods
of LocalDate, 425
of ZonedDateTime, 432

withHour method
of LocalTime, 429
of ZonedDateTime, 432

withLocale method (DateTimeFormatter), 434,
450

withMinute, withNano, withSecond methods
of LocalTime, 429
of ZonedDateTime, 432

withMonth method
of LocalDate, 425
of LocalTime, 429
of ZonedDateTime, 432

withYear method
of LocalDate, 425
of ZonedDateTime, 432

withZoneSameXxx methods (ZonedDateTime),
432

words
in regular expressions, 326
reading from a file, 308
sorting alphabetically, 451–452

working directory, 386
wrapper classes, 49–50
write method

of Files, 309, 316
of OutputStream, 304
of Writer, 308

writeByte, writeChar methods (DataOutput),
310

writeDouble method
of DataOutput, 310
of ObjectOutputStream, 337

writeExternal method (Externalizable),
338–339

writeFloat, writeFully methods (DataOutput),
310

writeInt method (DataOutput), 310–311
writeLong method (DataOutput), 310
writeObject method

of HashSet, 337
of ObjectOutputStream, 334–337

Writer class, 308–309
write method, 308

Index544

writeReplace method (Serializable),
339–340

writers, 302
writeShort, writeUnsignedXxx, writeUTF

methods (DataOutput), 310

X
x, X

conversion characters, 37
formatting symbols (date/time), 436

\x, in regular expressions, 325
XML descriptors, generating, 417
xor method (BitSet), 261
Xoroshiro128PlusPlus algorithm, 106

Y
y formatting symbol (date/time), 436
Year, YearMonth classes, 427
yield statement, 40–41

Z
z, Z formatting symbols (date/time), 434,

436
\z, \Z, in regular expressions, 328
ZIP file systems, 319
ZipInputStream, ZipOutputStream classes, 319
zoned time, 424–427, 430–433
ZonedDateTime class, 430–433

getXxx, isXxx methods, 432–433
legacy classes and, 437
minus, minusXxx, now methods, 432
of method, 430–432
ofInstant method, 432
parse method, 450
plus, plusXxx methods, 431–432
toInstant method, 431, 433
toLocalXxx methods, 433
withXxx methods, 432

ZoneId class, 430

545Index

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	Preface
	Acknowledgments
	About the Author
	9 PROCESSING INPUT AND OUTPUT
	9.1 Input/Output Streams, Readers, and Writers
	9.1.1 Obtaining Streams
	9.1.2 Reading Bytes
	9.1.3 Writing Bytes
	9.1.4 Character Encodings
	9.1.5 Text Input
	9.1.6 Text Output
	9.1.7 Reading and Writing Binary Data
	9.1.8 Random-Access Files
	9.1.9 Memory-Mapped Files
	9.1.10 File Locking

	9.2 Paths, Files, and Directories
	9.2.1 Paths
	9.2.2 Creating Files and Directories
	9.2.3 Copying, Moving, and Deleting Files
	9.2.4 Visiting Directory Entries
	9.2.5 ZIP File Systems

	9.3 HTTP Connections
	9.3.1 The URLConnection and HttpURLConnection Classes
	9.3.2 The HTTP Client API

	9.4 Regular Expressions
	9.4.1 The Regular Expression Syntax
	9.4.2 Testing a Match
	9.4.3 Finding All Matches
	9.4.4 Groups
	9.4.5 Splitting along Delimiters
	9.4.6 Replacing Matches
	9.4.7 Flags

	9.5 Serialization
	9.5.1 The Serializable Interface
	9.5.2 Transient Instance Variables
	9.5.3 The readObject and writeObject Methods
	9.5.4 The readExternal and writeExternal Methods
	9.5.5 The readResolve and writeReplace Methods
	9.5.6 Versioning
	9.5.7 Deserialization and Security

	Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

