
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780138050955
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780138050955
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780138050955

Praise for Learn Enough Tutorials

“Just started the #100DaysOfCode journey. Today marks day 1. I have completed
@mhartl’s great Ruby tutorial at @LearnEnough and am looking forward to starting
on Ruby on Rails from tomorrow. Onwards and upwards.”

—Optimize Prime (@_optimize), Twitter post

“Ruby and Sinatra and Heroku, oh my! Almost done with this live web application. It
may be a simple palindrome app, but it’s also simply exciting! #100DaysOfCode #ruby
@LearnEnough #ABC #AlwaysBeCoding #sinatra #heroku”

—Tonia Del Priore (@toninjaa), Twitter post; Software Engineer for a FinTech
Startup for 3+ years

“I have nothing but fantastic things to say about @LearnEnough courses. I am just
about finished with the #javascript course. I must say, the videos are mandatory because
@mhartl will play the novice and share in the joy of having something you wrote
actually work!”

—Claudia Vizena

“I must say, this Learn Enough series is a masterpiece of education. Thank you for this
incredible work!”

—Michael King

“I want to thank you for the amazing job you have done with the tutorials. They are
likely the best tutorials I have ever read.”

—Pedro Iatzky

This page intentionally left blank

LEARN ENOUGH

PYTHON

TO BEDANGEROUS

http://informit.com/learn-enough
http://twitter.com/informit

LEARN ENOUGH

PYTHON

TO BEDANGEROUS

Software Development, Flask Web Apps,
and Beginning Data Science with Python

Michael Hartl

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town

Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Cover image: Alexey Boldin/Shutterstock
Figure 1.4: The Pallets Projects
Figures 1.6-1.8, 9.3: Amazon Web Services, Inc.
Figures 1.9, 1.10, 8.2: GitHub, Inc.
Figures 1.11, 1.12, 10.2, 10.3: Fly.io
Figure 2.9: Python Software Foundation
Figures 4.4, 4.5, 4.10, 8.8: Regex101
Figures 5.6, 9.5: Google LLC
Figures 9.4, 9.7: The Wikimedia Foundation
Figures 11.1-11.5, 11.23: Jupyter

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or
consequential damages in connection with or arising out of the use of the information or programs contained
herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include
electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus,
or branding interests), please contact our corporate sales department at corpsales@pearsoned.com or
(800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2023935869

Copyright © 2023 Softcover Inc.

All rights reserved. This publication is protected by copyright, and permission must be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any
means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions,
request forms and the appropriate contacts within the Pearson Education Global Rights & Permissions
Department, please visit www.pearson.com/permissions.

ISBN-13: 978-0-13-805095-5
ISBN-10: 0-13-805095-3

ScoutAutomatedPrintCode

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearson.com/permissions

Contents

Preface xiii

Acknowledgments xvii

About the Author xix

Chapter 1 Hello, World! 1

1.1 Introduction to Python 6
1.1.1 System Setup and Installation 9

1.2 Python in a REPL 11
1.2.1 Exercises 12

1.3 Python in a File 13
1.3.1 Exercise 15

1.4 Python in a Shell Script 16
1.4.1 Exercise 17

1.5 Python in a Web Browser 18
1.5.1 Deployment 22
1.5.2 Exercises 33

Chapter 2 Strings 35

2.1 String Basics 35
2.1.1 Exercises 38

vii

viii Contents

2.2 Concatenation and Interpolation 38
2.2.1 Formatted Strings 41
2.2.2 Raw Strings 42
2.2.3 Exercises 44

2.3 Printing 44
2.3.1 Exercises 46

2.4 Length, Booleans, and Control Flow 46
2.4.1 Combining and Inverting Booleans 51
2.4.2 Boolean Context 54
2.4.3 Exercises 56

2.5 Methods 56
2.5.1 Exercises 61

2.6 String Iteration 62
2.6.1 Exercises 66

Chapter 3 Lists 69

3.1 Splitting 69
3.1.1 Exercises 71

3.2 List Access 71
3.2.1 Exercises 73

3.3 List Slicing 74
3.3.1 Exercises 76

3.4 More List Techniques 77
3.4.1 Element Inclusion 77
3.4.2 Sorting and Reversing 77
3.4.3 Appending and Popping 80
3.4.4 Undoing a Split 81
3.4.5 Exercises 82

3.5 List Iteration 83
3.5.1 Exercises 85

3.6 Tuples and Sets 86
3.6.1 Exercises 89

Chapter 4 Other Native Objects 91

4.1 Math 91
4.1.1 More Advanced Operations 92

Contents ix

4.1.2 Math to String 93
4.1.3 Exercises 97

4.2 Times and Datetimes 97
4.2.1 Exercises 102

4.3 Regular Expressions 103
4.3.1 Splitting on Regexes 107
4.3.2 Exercises 108

4.4 Dictionaries 109
4.4.1 Dictionary Iteration 112
4.4.2 Merging Dictionaries 113
4.4.3 Exercises 114

4.5 Application: Unique Words 115
4.5.1 Exercises 119

Chapter 5 Functions and Iterators 121

5.1 Function Definitions 121
5.1.1 First-Class Functions 126
5.1.2 Variable and Keyword Arguments 127
5.1.3 Exercises 129

5.2 Functions in a File 130
5.2.1 Exercise 138

5.3 Iterators 138
5.3.1 Generators 143
5.3.2 Exercises 146

Chapter 6 Functional Programming 149

6.1 List Comprehensions 150
6.1.1 Exercise 156

6.2 List Comprehensions with Conditions 156
6.2.1 Exercise 159

6.3 Dictionary Comprehensions 159
6.3.1 Exercise 163

6.4 Generator and Set Comprehensions 163
6.4.1 Generator Comprehensions 163
6.4.2 Set Comprehensions 164
6.4.3 Exercise 164

x Contents

6.5 Other Functional Techniques 165
6.5.1 Functional Programming and TDD 166
6.5.2 Exercise 168

Chapter 7 Objects and Classes 169

7.1 Defining Classes 169
7.1.1 Exercises 175

7.2 Custom Iterators 176
7.2.1 Exercise 179

7.3 Inheritance 179
7.3.1 Exercise 183

7.4 Derived Classes 183
7.4.1 Exercises 188

Chapter 8 Testing and Test-Driven Development 191

8.1 Package Setup 192
8.1.1 Exercise 197

8.2 Initial Test Coverage 197
8.2.1 A Useful Passing Test 202
8.2.2 Pending Tests 206
8.2.3 Exercises 207

8.3 Red 209
8.3.1 Exercise 214

8.4 Green 214
8.4.1 Exercise 220

8.5 Refactor 220
8.5.1 Publishing the Python Package 224
8.5.2 Exercises 227

Chapter 9 Shell Scripts 231

9.1 Reading from Files 231
9.1.1 Exercises 238

9.2 Reading from URLs 240
9.2.1 Exercises 245

9.3 DOM Manipulation at the Command Line 245
9.3.1 Exercises 254

Contents xi

Chapter 10 A Live Web Application 255

10.1 Setup 256
10.1.1 Exercise 262

10.2 Site Pages 263
10.2.1 Exercises 270

10.3 Layouts 271
10.3.1 Exercises 280

10.4 Template Engine 280
10.4.1 Variable Titles 281
10.4.2 Site Navigation 287
10.4.3 Exercises 292

10.5 Palindrome Detector 293
10.5.1 Form Tests 302
10.5.2 Exercises 313

10.6 Conclusion 316

Chapter 11 Data Science 319

11.1 Data Science Setup 320
11.2 Numerical Computations with NumPy 327

11.2.1 Arrays 327
11.2.2 Multidimensional Arrays 330
11.2.3 Constants, Functions, and Linear Spacing 333
11.2.4 Exercises 337

11.3 Data Visualization with Matplotlib 338
11.3.1 Plotting 339
11.3.2 Scatter Plots 347
11.3.3 Histograms 350
11.3.4 Exercises 352

11.4 Introduction to Data Analysis with pandas 353
11.4.1 Handcrafted Examples 355
11.4.2 Exercise 361

11.5 pandas Example: Nobel Laureates 361
11.5.1 Exercises 377

11.6 pandas Example: Titanic 377
11.6.1 Exercises 385

xii Contents

11.7 Machine Learning with scikit-learn 386
11.7.1 Linear Regression 387
11.7.2 Machine-Learning Models 392
11.7.3 k-Means Clustering 400
11.7.4 Exercises 402

11.8 Further Resources and Conclusion 403

Index 405

Preface

Learn Enough Python to Be Dangerous teaches you to write practical and modern pro-
grams using the elegant and powerful Python programming language. You’ll learn
how to use Python for both general-purpose programming and for beginning web-
application development. Although mastering Python can be a long journey, you
don’t have to learn everything to get started . . . you just have to learn enough to be
dangerous.

You’ll begin by exploring the core concepts of Python programming using a
combination of the interactive Python interpreter and text files run at the command
line. The result is a solid understanding of both object-oriented programming and func-
tional programming in Python. You’ll then build on this foundation to develop and
publish a simple self-contained Python package. You’ll then use this package in a sim-
ple dynamic web application built using the Flask web framework, which you’ll also
deploy to the live Web. As a result, Learn Enough Python to Be Dangerous is especially
appropriate as a prerequisite to learning web development with Python.

In addition to teaching you specific skills, Learn Enough Python to Be Dangerous
also helps you develop technical sophistication—the seemingly magical ability to solve
practically any technical problem. Technical sophistication includes concrete skills like
version control and coding, as well as fuzzier skills like Googling the error message
and knowing when to just reboot the darn thing. Throughout Learn Enough Python
to Be Dangerous, we’ll have abundant opportunities to develop technical sophistication
in the context of real-world examples.

xiii

xiv Preface

Chapter by Chapter
In order to learn enough Python to be dangerous, we’ll begin at the beginning with a
series of simple “hello, world” programs using several different techniques (Chapter 1),
including an introduction to the Python interpreter, an interactive command-line
program for evaluating Python code. In line with the Learn Enough philosophy of
always doing things “for real”, even as early as Chapter 1 we’ll deploy a (very simple)
dynamic Python application to the live Web. This chapter also includes pointers to
the latest setup and installation instructions via Learn Enough Dev Environment to Be
Dangerous (https://www.learnenough.com/dev-environment), which is available for
free online and as a free downloadable ebook.

After mastering “hello, world”, we’ll take a tour of some Python objects, including
strings (Chapter 2), lists (Chapter 3), and other native objects like dates, dictionaries,
and regular expressions (Chapter 4). Taken together, these chapters constitute a gentle
introduction to object-oriented programming with Python.

In Chapter 5, we’ll learn the basics of functions, an essential subject for virtu-
ally every programming language. We’ll then apply this knowledge to an elegant and
powerful style of coding known as functional programming, including an introduction
to comprehensions (Chapter 6).

Having covered the basics of built-in Python objects, in Chapter 7 we’ll learn
how to make objects of our own. In particular, we’ll define an object for a phrase, and
then develop a method for determining whether or not the phrase is a palindrome (the
same read forward and backward).

Our initial palindrome implementation will be rather rudimentary, but we’ll
extend it in Chapter 8 using a powerful technique called test-driven development (TDD).
In the process, we’ll learn more about testing generally, as well as how to create and
publish a Python package.

In Chapter 9, we’ll learn how to write nontrivial shell scripts, one of Python’s
biggest strengths. Examples include reading from both files and URLs, with a final
example showing how to manipulate a downloaded file as if it were an HTML web
page.

In Chapter 10, we’ll develop our first full Python web application: a site for detect-
ing palindromes. This will give us a chance to learn about routes, layouts, embedded
Python, and form handling, together with a second application of TDD. As a capstone
to our work, we’ll deploy our palindrome detector to the live Web.

Finally, in Chapter 11, we’ll get an introduction to Python tools used in the
booming field of data science. Topics include numerical calculations with NumPy, data

https://en.wikipedia.org/wiki/%22Hello,_World!%22_program
https://www.learnenough.com/dev-environment
https://www.learnenough.com/dev-environment

Preface xv

visualization with Matplotlib, data analysis with pandas, and machine learning with
scikit-learn.

Additional Features
In addition to the main tutorial material, Learn Enough Python to Be Dangerous includes
a large number of exercises to help you test your understanding and to extend the
material in the main text. The exercises include frequent hints and often include
the expected answers, with community solutions available by separate subscription
at www.learnenough.com.

Final Thoughts
Learn Enough Python to Be Dangerous gives you a practical introduction to the funda-
mentals of Python, both as a general-purpose programming language and as a specialist
language for web development and data science. After learning the techniques cov-
ered in this tutorial, and especially after developing your technical sophistication,
you’ll know everything you need to write shell scripts, publish Python packages,
deploy dynamic web applications, and use key Python data-science tools. You’ll also
be ready for a huge variety of other resources, including books, blog posts, and online
documentation.

Learn Enough Scholarships
Learn Enough is committed to making a technical education available to as wide a
variety of people as possible. As part of this commitment, in 2016 we created the Learn
Enough Scholarship program.1 Scholarship recipients get free or deeply discounted
access to the Learn Enough All Access subscription, which includes all of the Learn
Enough online book content, embedded videos, exercises, and community exercise
answers.

As noted in a 2019 RailsConf Lightning Talk,2 the Learn Enough Scholarship
application process is incredibly simple: Just fill out a confidential text area telling us
a little about your situation. The scholarship criteria are generous and flexible—we
understand that there are an enormous number of reasons for wanting a scholarship,
from being a student, to being between jobs, to living in a country with an unfavorable

1. https://www.learnenough.com/scholarship

2. https://www.learnenough.com/scholarship-talk

https://www.learnenough.com/scholarship
https://www.learnenough.com/scholarship
https://youtu.be/AI5wmnzzBqc?t=1076
https://www.learnenough.com/scholarship
https://www.learnenough.com/scholarship-talk

xvi Preface

exchange rate against the U.S. dollar. Chances are that, if you feel like you’ve got a
good reason, we’ll think so, too.

So far, Learn Enough has awarded more than 2,500 scholarships to aspiring devel-
opers around the country and around the world. To apply, visit the Learn Enough
Scholarship page at www.learnenough.com/scholarship. Maybe the next scholarship
recipient could be you!

https://www.learnenough.com/scholarship

Acknowledgments

Thanks to Paul Logston, Tom Repetti, and Ron Lee for their helpful comments on
drafts of Learn Enough Python to Be Dangerous. Thanks also to Prof. Jetson Leder-Luis
of Boston University and data scientist Amadeo Bellotti for their helpful feedback and
assistance in preparing Chapter 11. Any errors that remain in the text are entirely the
fault of these fine gentlemen.

As always, thanks to Debra Williams Cauley for shepherding the production
process at Pearson.

xvii

This page intentionally left blank

About the Author

Michael Hartl (www.michaelhartl.com) is the creator of the Ruby on RailsTM Tutorial
(www.railstutorial.org), one of the leading introductions to web development, and
is cofounder and principal author at Learn Enough (www.learnenough.com). Previ-
ously, he was a physics instructor at the California Institute of Technology (Caltech),
where he received a Lifetime Achievement Award for Excellence in Teaching. He is a
graduate of Harvard College, has a Ph.D. in Physics from Caltech, and is an alumnus
of the Y Combinator entrepreneur program.

xix

https://www.michaelhartl.com
https://www.railstutorial.org
https://www.learnenough.com

This page intentionally left blank

CHAPTER 8
Testing and Test-Driven
Development

Although rarely covered in introductory programming tutorials, automated testing is
one of the most important subjects in modern software development. Accordingly,
this chapter includes an introduction to testing in Python, including a first look at
test-driven development, or TDD.

Test-driven development came up briefly in Section 6.5.1, which promised that
we would use testing techniques to add an important capability to finding palindromes,
namely, being able to detect complicated palindromes such as “A man, a plan, a canal—
Panama!” (Figure 6.5) or “Madam, I’m Adam.” (Figure 8.11). This chapter fulfills that
promise.

As it turns out, learning how to write Python tests will also give us a chance
to learn how to create (and publish!) a Python package, another exceptionally useful
Python skill rarely covered in introductory tutorials.

Here’s our strategy for testing the current palindrome code and extending it to
more complicated phrases:

1. Set up our initial package (Section 8.1).

2. Write automated tests for the existing ispalindrome() functionality
(Section 8.2).

3. Write a failing test for the enhanced palindrome detector (RED) (Section 8.3).

1. “The Temptation of Adam” by Tintoretto. Image courtesy of Album/Alamy Stock Photo.

191

192 Chapter 8: Testing and Test-Driven Development

Figure 8.1: The Garden of Eden had it all—even palindromes.

4. Write (possibly ugly) code to get the test passing (GREEN) (Section 8.4).

5. Refactor the code to make it prettier, while ensuring that the test suite stays GREEN

(Section 8.5).

8.1 Package Setup
We saw as early as Section 1.5 that the Python ecosystem includes a large number
of self-contained software packages. In this section, we’ll create a package based on
the palindrome detector developed in Chapter 7. As part of this, we’ll set up the
beginnings of a test suite to test our code.

Python packages have a standard structure that can be visualized as shown in List-
ing 8.1 (which contains both generic elements like pyproject.toml and non-generic
elements like palindrome_YOUR_USERNAME_HERE). The structure includes some
configuration files (discussed in just a moment) and two directories: a src (source)
directory and a tests directory. The src directory in turn contains a directory for
the palindrome package, which includes a special required file called __init__.py

https://en.wikipedia.org/wiki/Garden_of_Eden

8.1 Package Setup 193

and the palindrome_YOUR_USERNAME_HERE module itself.2 (It is possible to flatten
the directory structure by eliminating the package directory, but the structure in
Listing 8.1 is fairly standard and is designed to mirror the official Packaging Python
Projects documentation.) The result of the structure in Listing 8.1 will be the ability
to include the Phrase class developed in Chapter 7 using the code

from palindrome_mhartl.phrase import Phrase

Listing 8.1: File and directory structure for a sample Python package.

python_package_tutorial/
├── LICENSE
├── pyproject.toml
├── README.md
├── src/
│ └── palindrome_YOUR_USERNAME_HERE/
│ ├── __init__.py
│ └── phrase.py
└── tests/

└── test_phrase.py

We can create the structure in Listing 8.1 by hand using a combination of mkdir
and touch, as shown in Listing 8.2.

Listing 8.2: Setting up a Python package.

$ cd ~/repos # Use ~/environment/repos on Cloud9
$ mkdir python_package_tutorial
$ cd python_package_tutorial
$ touch LICENSE pyproject.toml README.md
$ mkdir -p src/palindrome_YOUR_USERNAME_HERE
$ touch src/palindrome_YOUR_USERNAME_HERE/__init__.py
$ touch src/palindrome_YOUR_USERNAME_HERE/phrase.py
$ mkdir tests
$ touch tests/test_phrase.py

2. Technically, there are various distinctions between packages and modules in Python, but they are
rarely important. See this Stack Overflow comment (https://stackoverflow.com/questions/7948494/whats-
the-difference-between-a-python-module-and-a-python-package/49420164#49420164) for some of the
minutiae on the subject.

https://packaging.python.org/en/latest/tutorials/packaging-projects/
https://packaging.python.org/en/latest/tutorials/packaging-projects/
https://stackoverflow.com/questions/7948494/whats-the-difference-between-a-python-module-and-a-python-package/49420164#49420164
https://stackoverflow.com/questions/7948494/whats-the-difference-between-a-python-module-and-a-python-package/49420164#49420164
https://stackoverflow.com/questions/7948494/whats-the-difference-between-a-python-module-and-a-python-package/49420164#49420164

194 Chapter 8: Testing and Test-Driven Development

At this point, we’ll fill in a few of the files with more information, includ-
ing the project configuration file pyproject.toml (Listing 8.3), a README file
README.md (Listing 8.4), and a LICENSE file (Listing 8.5).3 Some of these files are
only templates, so you should replace things like <username> in pyproject.toml
with your own username, the url field with the planned URL for your project, etc.
(Being able to do things like this is an excellent application of technical sophisti-
cation.) To see a concrete example of the files in this section, see the GitHub repo
(https://github.com/mhartl/python_package_tutorial) for my version of this package.

Listing 8.3: The project configuration for a Python package.
~/python_package_tutorial/project.toml

[build-system]
requires = ["hatchling"]
build-backend = "hatchling.build"

[project]
name = "example_package_YOUR_USERNAME_HERE"
version = "0.0.1"
authors = [
{ name="Example Author", email="author@example.com" },

]
description = "A small example package"
readme = "README.md"
requires-python = ">=3.7"
classifiers = [

"Programming Language :: Python :: 3",
"License :: OSI Approved :: MIT License",
"Operating System :: OS Independent",

]

[project.urls]
"Homepage" = "https://github.com/pypa/sampleproject"
"Bug Tracker" = "https://github.com/pypa/sampleproject/issues"

3. Don’t worry about the details of files like pyproject.toml; I don’t understand them either. I just copied
them from the documentation (Box 1.2).

https://github.com/mhartl/python_package_tutorial
https://github.com/mhartl/python_package_tutorial
https://packaging.python.org/en/latest/tutorials/packaging-projects/

8.1 Package Setup 195

Listing 8.4: A README file for the package.
~/python_package_tutorial/README.md

Palindrome Package

This is a sample Python package for
[*Learn Enough Python to Be Dangerous*](https://www.learnenough.com/python)
by [Michael Hartl](https://www.michaelhartl.com/).

Listing 8.5: A license template for a Python package.
~/python_package_tutorial/LICENSE

Copyright (c) YYYY Your Name

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

With all that configuration done, we’re now ready to configure the environment
for development and testing. As in Section 1.3, we’ll use venv for the virtual envi-
ronment. We’ll also be using pytest for testing, which we can install using pip. The
resulting commands are shown in Listing 8.6.

196 Chapter 8: Testing and Test-Driven Development

Listing 8.6: Setting up the package environment (including testing).

$ deactivate # just in case a virtual env is already active
$ python3 -m venv venv
$ source venv/bin/activate
(venv) $ pip install --upgrade pip
(venv) $ pip install pytest==7.1.3

At this point, as in Section 1.5.1, it’s a good idea to create a .gitignore file
(Listing 8.7), put the project under version control with Git (Listing 8.8), and create
a repository at GitHub (Figure 8.2). This last step will also give you URLs for the
configuration file in Listing 8.3.

Listing 8.7: Ignoring certain files and directories.
.gitignore

venv/

*.pyc
__pycache__/

instance/

.pytest_cache/

.coverage
htmlcov/

dist/
build/
*.egg-info/

.DS_Store

Listing 8.8: Initializing the package repository.

$ git init
$ git add -A
$ git commit -m "Initialize repository"

8.2 Initial Test Coverage 197

Figure 8.2: The package repository and README at GitHub.

8.1.1 Exercise

1. If you haven’t already, update Listing 8.3 with the right package name and fill the
url and Bug Tracker fields with the corresponding GitHub URLs (the tracker
URL is just the base URL plus /issues). Likewise, update the license template in
Listing 8.5 with your name and the current year. Commit and push your changes
up to GitHub.

8.2 Initial Test Coverage
Now that we’ve set up our basic package structure, we’re ready to get started testing.
Because the necessary pytest package has already been installed (Listing 8.6), we can
actually run the (nonexistent) tests immediately:

198 Chapter 8: Testing and Test-Driven Development

(venv) $ pytest
============================= test session starts =============================
platform darwin -- Python 3.10.6, pytest-7.1.3, pluggy-1.0.0
rootdir: /Users/mhartl/repos/python_package_tutorial
collected 0 items

============================ no tests ran in 0.00s ============================

Exact details will differ (and will be omitted in future examples for that reason), but
your results should be similar.

Now let’s write a minimal failing test and then get it to pass. Because we’ve already
created a tests directory with the test file test_phrase.py (Listing 8.2), we can
begin by adding the code shown in Listing 8.9.

Listing 8.9: The initial test suite. RED
test/test_phrase.py

def test_initial_example():
assert False

Listing 8.9 defines a function containing one assertion, which asserts that something
has a boolean value of True, in which case the assertion passes, and fails otherwise.
Because Listing 8.9 literally asserts that False is True, it fails by design:

Listing 8.10: RED

(venv) $ pytest
============================= test session starts ==============================
collected 1 item

tests/palindrome_test.py F [100%]

=================================== FAILURES ===================================
_____________________________ test_non_palindrome ______________________________

def test_non_palindrome():
> assert False
E assert False

tests/palindrome_test.py:4: AssertionError
=========================== short test summary info ============================
FAILED tests/palindrome_test.py::test_non_palindrome - assert False
============================== 1 failed in 0.01s ===============================

8.2 Initial Test Coverage 199

Figure 8.3: The RED state of the initial test suite.

By itself, this test isn’t useful, but it demonstrates the concept, and we’ll add a useful
test in just a moment.

Many systems, including mine, display failing tests in the color red, as shown in
Figure 8.3. Because of this, a failing test (or collection of tests, known as a test suite) is
often referred to as being RED. To help us keep track of our progress, the captions of
code listings corresponding to a failing test suite are labeled RED, as seen in Listing 8.9
and Listing 8.10.

To get from a failing to a passing state, we can change False to True in Listing 8.9,
yielding the code in Listing 8.11.

200 Chapter 8: Testing and Test-Driven Development

Listing 8.11: A passing test suite. GREEN
test/test_phrase.py

def test_initial_example():
assert True

As expected, this test passes:

Listing 8.12: GREEN

(venv) $ pytest
============================= test session starts ==============================
collected 1 item

tests/test_phrase.py . [100%]

============================== 1 passed in 0.00s ===============================

Because many systems display passing tests using the color green (Figure 8.4), a
passing test suite is often referred to as GREEN. As with RED test suites, the captions of
code listings corresponding to passing tests will be labeled GREEN (as seen in Listing 8.11
and Listing 8.12).

In addition to asserting that true things are True, it is often convenient to assert
that false things are not False, which we can accomplish using not (Section 2.4.1),
as shown in Listing 8.13.

Listing 8.13: A different way to pass. GREEN
test/test_phrase.py

def test_initial_example():
assert not False

8.2 Initial Test Coverage 201

Figure 8.4: A GREEN test suite.

As before, this test is GREEN:

Listing 8.14: GREEN

(venv) $ pytest
============================= test session starts ==============================
collected 1 item

tests/test_phrase.py . [100%]

============================== 1 passed in 0.00s ===============================

202 Chapter 8: Testing and Test-Driven Development

8.2.1 A Useful Passing Test

Having learned the basic mechanics of GREEN and RED tests, we’re now ready to write
our first useful test. Because we mainly want to test the Phrase class, our first step is
to fill in phrase.py with the source code for defining phrases. We’ll start with just
Phrase itself (without TranslatedPhrase), as shown in Listing 8.15. Note that for
brevity we’ve also omitted the iterator code from Section 5.3.

Listing 8.15: Defining Phrase in a package.
~/src/palindrome/phrase.py

class Phrase:
"""A class to represent phrases."""

def __init__(self, content):
self.content = content

def processed_content(self):
"""Process the content for palindrome testing."""
return self.content.lower()

def ispalindrome(self):
"""Return True for a palindrome, False otherwise."""
return self.processed_content() == reverse(self.processed_content())

def reverse(string):
"""Reverse a string."""
return "".join(reversed(string))

At this point, we’re ready to try importing Phrase into our test file. With the
package structure as in Listing 8.1, the Phrase class should be importable from
the palindrome package, which in turn should be available using palindrome.-
phrase.4 The result appears in Listing 8.16, which also replaces the example test from
Listing 8.13.

4. You wouldn’t necessarily have been able to guess this; it’s just the way Python packages work based on the
directory structure shown in Listing 8.1 (i.e., the phrase.py file is in a directory called palindrome).

8.2 Initial Test Coverage 203

Listing 8.16: Importing the palindrome package. RED
test/test_phrase.py

from palindrome_mhartl.phrase import Phrase

Unfortunately, the test suite doesn’t pass even though there’s no longer even a test that
could fail:

Listing 8.17: RED

(venv) $ pytest
============================= test session starts ==============================
collected 0 items / 1 error

==================================== ERRORS ====================================
__________________ ERROR collecting tests/test_phrase.py ___________________
ImportError while importing test module
'/Users/mhartl/repos/python_package_tutorial/tests/test_phrase.py'.
Hint: make sure your test modules/packages have valid Python names.
Traceback:
lib/python3.10/importlib/__init__.py:126: in import_module

return _bootstrap._gcd_import(name[level:], package, level)
tests/test_phrase.py:1: in <module>

from palindrome_mhartl.phrase import Phrase
E ImportError: cannot import name 'Phrase' from 'palindrome.palindrome'
(/Users/mhartl/repos/python_package_tutorial/src/palindrome/phrase.py)
=========================== short test summary info ============================
ERROR tests/test_phrase.py
!!!!!!!!!!!!!!!!!!!! Interrupted: 1 error during collection !!!!!!!!!!!!!!!!!!!!
=============================== 1 error in 0.03s ===============================

The issue is that our package needs to be installed in the local environment in order
to perform the import in Listing 8.16. Because it hasn’t been installed yet, the test
suite is in an error state. Although this is technically not the same as a failing state, an
error state is still often called RED.

To fix the error, we need to install the palindrome package locally, which we
can do using the command shown in Listing 8.18.

Listing 8.18: Installing an editable package locally.

(venv) $ pip install -e .

204 Chapter 8: Testing and Test-Driven Development

As you can learn from running pip install --help (or by viewing the pytest
documentation), the -e option installs the package in editable mode, so it will update
automatically when we edit the files. The location of the installation is in the current
directory, as indicated by the . (dot).

At this point, the test suite should be, if not quite GREEN, at least no longer RED:

(venv) $ pytest
============================= test session starts =============================
collected 0 items

============================ no tests ran in 0.00s ============================

Now we’re ready to start making some tests to check that the code in Listing 8.15
is actually working. We’ll start with a negative case, checking that a non-palindrome
is correctly categorized as such:

def test_non_palindrome():
assert not Phrase("apple").ispalindrome()

Here we’ve used assert to assert that "apple" should not be a palindrome
(Figure 8.55).

In similar fashion, we can test a literal palindrome (one that’s literally the same
forward and backward) with another assert:

def test_literal_palindrome():
assert Phrase("racecar").ispalindrome()

Combining the code from the above discussion gives us the code shown in
Listing 8.19.

Listing 8.19: An actually useful test suite.
test/test_phrase.py

from palindrome_mhartl.phrase import Phrase

def test_non_palindrome():
assert not Phrase("apple").ispalindrome()

5. Image courtesy of Glayan/Shutterstock.

https://docs.pytest.org/en/7.1.x/explanation/goodpractices.html
https://docs.pytest.org/en/7.1.x/explanation/goodpractices.html

8.2 Initial Test Coverage 205

Figure 8.5: The word “apple”: not a palindrome.

def test_literal_palindrome():
assert Phrase("racecar").ispalindrome()

Now for the real test (so to speak):

Listing 8.20: GREEN

(venv) $ pytest
============================= test session starts ==============================
platform darwin -- Python 3.10.6, pytest-7.1.3, pluggy-1.0.0
rootdir: /Users/mhartl/repos/python_package_tutorial
collected 2 items

tests/test_phrase.py .. [100%]

============================== 2 passed in 0.00s ===============================

The tests are now GREEN, indicating that they are in a passing state. That means our
code is working!

206 Chapter 8: Testing and Test-Driven Development

8.2.2 Pending Tests

Before moving on, we’ll add a couple of pending tests, which are placeholders/
reminders for tests we want to write. The way to write a pending test is to use the
skip() function, which we can include directly from the pytest package, as shown
in Listing 8.21.

Listing 8.21: Adding two pending tests. YELLOW

test/test_phrase.py

from pytest import skip

from palindrome_mhartl.phrase import Phrase

def test_non_palindrome():
assert not Phrase("apple").ispalindrome()

def test_literal_palindrome():
assert Phrase("racecar").ispalindrome()

def test_mixed_case_palindrome():
skip()

def test_palindrome_with_punctuation():
skip()

We can see the result of Listing 8.21 by rerunning the test suite:

Listing 8.22: YELLOW

(venv) $ pytest
============================= test session starts ==============================
collected 4 items

tests/test_phrase.py ..ss [100%]

========================= 2 passed, 2 skipped in 0.00s =========================

Note how the test runner displays the letter s for each of the two “skips”. Sometimes
people speak of a test suite with pending tests as being YELLOW, in analogy with the

8.2 Initial Test Coverage 207

Figure 8.6: A YELLOW (pending) test suite.

red-yellow-green color scheme of traffic lights (Figure 8.6), although it’s also common
to refer to any non-RED test suite as GREEN.

Filling in the test for a mixed-case palindrome is left as an exercise (with a solution
shown in Listing 8.25), while filling in the second pending test and getting it to pass
is the subject of Section 8.3 and Section 8.4.

8.2.3 Exercises

1. By filling in the code in Listing 8.23, add a test for a mixed-case palindrome like
“RaceCar”. Is the test suite still GREEN (or YELLOW)?

208 Chapter 8: Testing and Test-Driven Development

2. In order to make 100% sure that the tests are testing what we think they’re testing,
it’s a good practice to get to a failing state (RED) by intentionally breaking the tests.
Change the application code to break each of the existing tests in turn, and then
confirm that they are GREEN again once the original code has been restored. An
example of code that breaks the test in the previous exercise (but not the other
tests) appears in Listing 8.24. (One advantage of writing the tests first is that this
RED–GREEN cycle happens automatically.)

Listing 8.23: Adding a test for a mixed-case palindrome.
test/test_phrase.py

from pytest import skip

from palindrome_mhartl.phrase import Phrase

def test_non_palindrome():
assert not Phrase("apple").ispalindrome()

def test_literal_palindrome():
assert Phrase("racecar").ispalindrome()

def test_mixed_case_palindrome():
FILL_IN

def test_palindrome_with_punctuation():
skip()

Listing 8.24: Intentionally breaking a test. RED
src/palindrome/phrase.py

class Phrase:
"""A class to represent phrases."""

def __init__(self, content):
self.content = content

def processed_content(self):
"""Process the content for palindrome testing."""
return self.content#.lower()

8.3 Red 209

def ispalindrome(self):
"""Return True for a palindrome, False otherwise."""
return self.processed_content() == reverse(self.processed_content())

def reverse(string):
"""Reverse a string."""
return "".join(reversed(string))

8.3 Red
In this section, we’ll take the important first step toward being able to detect more
complex palindromes like “Madam, I’m Adam.” and “A man, a plan, a canal—
Panama!”. Unlike the previous strings we’ve encountered, these phrases—which
contain both spaces and punctuation—aren’t strictly palindromes in a literal sense,
even if we ignore capitalization. Instead of testing the strings as they are, we have to
figure out a way to select only the letters, and then see if the resulting letters are the
same forward and backward.

The code to do this is fairly tricky, but the tests for it are simple. This is one of
the situations where test-driven development particularly shines (Box 8.1). We can
write our simple tests, thereby getting to RED, and then write the application code any
way we want to get to GREEN (Section 8.4). At that point, with the tests protecting
us against undiscovered errors, we can change the application code with confidence
(Section 8.5).

Box 8.1: When to test

When deciding when and how to test, it’s helpful to understand why to test. In my
view, writing automated tests has three main benefits:

1. Tests protect against regressions, where a functioning feature stops working for
some reason.

2. Tests allow code to be refactored (i.e., changing its form without changing its
function) with greater confidence.

3. Tests act as a client for the application code, thereby helping determine its
design and its interface with other parts of the system.

210 Chapter 8: Testing and Test-Driven Development

Although none of the above benefits require that tests be written first, there
are many circumstances where test-driven development (TDD) is a valuable tool to
have in your kit. Deciding when and how to test depends in part on how comfort-
able you are writing tests; many developers find that, as they get better at writing
tests, they are more inclined to write them first. It also depends on how difficult
the test is relative to the application code, how precisely the desired features are
known, and how likely the feature is to break in the future.

In this context, it’s helpful to have a set of guidelines on when we should test
first (or test at all). Here are some suggestions based on my own experience:

• When a test is especially short or simple compared to the application code it
tests, lean toward writing the test first.

• When the desired behavior isn’t yet crystal clear, lean toward writing the
application code first, then write a test to codify the result.

• Whenever a bug is found, write a test to reproduce it and protect against
regressions, then write the application code to fix it.

• Write tests before refactoring code, focusing on testing error-prone code
that’s especially likely to break.

We’ll start by writing a test for a palindrome with punctuation, which just parallels
the tests from Listing 8.19:

def test_palindrome_with_punctuation():
assert palindrome.ispalindrome("Madam, I'm Adam.")

The updated test suite appears in Listing 8.25, which also includes the solution to a
couple of exercises in Listing 8.23 (Figure 8.76).

Listing 8.25: Adding a test for a punctuated palindrome. RED
test/test_phrase.py

from pytest import skip

from palindrome_mhartl.phrase import Phrase

def test_non_palindrome():
assert not Phrase("apple").ispalindrome()

6. Image courtesy of Msyaraafiq/Shutterstock.

8.3 Red 211

Figure 8.7: “RaceCar” is still a palindrome (ignoring case).

def test_literal_palindrome():
assert Phrase("racecar").ispalindrome()

def test_mixed_case_palindrome():
assert Phrase("RaceCar").ispalindrome()

def test_palindrome_with_punctuation():
assert Phrase("Madam, I'm Adam.").ispalindrome()

As required, the test suite is now RED (output somewhat streamlined):

Listing 8.26: RED

(venv) $ pytest
============================= test session starts ==============================
collected 4 items

tests/test_phrase.py ...F [100%]

=================================== FAILURES ===================================
_______________________ test_palindrome_with_punctuation _______________________

def test_palindrome_with_punctuation():
> assert Phrase("Madam, I'm Adam.").ispalindrome()
E assert False

212 Chapter 8: Testing and Test-Driven Development

tests/test_phrase.py:14: AssertionError
=========================== short test summary info ============================
FAILED tests/test_phrase.py::test_palindrome_with_punctuation - assert False
========================= 1 failed, 3 passed in 0.01s ==========================

At this point, we can start thinking about how to write the application code and
get to GREEN. Our strategy will be to write a letters() method that returns only the
letters in the content string. In other words, the code

Phrase("Madam, I'm Adam.").letters()

should evaluate to this:

"MadamImAdam"

Getting to that state will allow us to use our current palindrome detector to determine
whether the original phrase is a palindrome or not.

Having made this specification, we can now write a simple test for letters()
by asserting that the result is as indicated:

assert Phrase("Madam, I'm Adam.").letters() == "MadamImAdam"

The new test appears with the others in Listing 8.27.

Listing 8.27: Adding a test for the letters() method. RED
test/test_phrase.py

from pytest import skip

from palindrome_mhartl.phrase import Phrase

def test_non_palindrome():
assert not Phrase("apple").ispalindrome()

def test_literal_palindrome():
assert Phrase("racecar").ispalindrome()

def test_mixed_case_palindrome():
assert Phrase("RaceCar").ispalindrome()

8.3 Red 213

def test_palindrome_with_punctuation():
assert Phrase("Madam, I'm Adam.").ispalindrome()

def test_letters():
assert Phrase("Madam, I'm Adam.").letters() == "MadamImAdam"

Meanwhile, although we aren’t yet ready to define a working letters()method,
we can add a stub: a method that doesn’t work, but at least exists. For simplicity, we’ll
simply return nothing (using the special pass keyword), as shown in Listing 8.28.

Listing 8.28: A stub for the letters() method. RED
src/palindrome/phrase.py

class Phrase:
"""A class to represent phrases."""

def __init__(self, content):
self.content = content

def ispalindrome(self):
"""Return True for a palindrome, False otherwise."""
return self.processed_content() == reverse(self.processed_content())

def processed_content(self):
"""Return content for palindrome testing."""
return self.content.lower()

def letters(self):
"""Return the letters in the content."""
pass

def reverse(string):
"""Reverse a string."""
return "".join(reversed(string))

The new test for letters() is RED as expected (which also shows that the pass
in Listing 8.28 just returns None):

214 Chapter 8: Testing and Test-Driven Development

Listing 8.29: RED

(venv) $ pytest
============================= test session starts ==============================
collected 5 items

tests/test_phrase.py ...FF [100%]

=================================== FAILURES ===================================
_______________________ test_palindrome_with_punctuation _______________________

def test_palindrome_with_punctuation():
> assert Phrase("Madam, I'm Adam.").ispalindrome()
E assert False

tests/test_phrase.py:14: AssertionError
_________________________________ test_letters _________________________________

def test_letters():
> assert Phrase("Madam, I'm Adam.").letters() == "MadamImAdam"
E assert None == 'MadamImAdam'
tests/test_phrase.py:17: AssertionError
=========================== short test summary info ============================
FAILED tests/test_phrase.py::test_palindrome_with_punctuation - assert False
FAILED tests/test_phrase.py::test_letters - assert None == 'MadamImAdam'
========================= 2 failed, 3 passed in 0.01s ==========================

With our two RED tests capturing the desired behavior, we’re now ready to move
on to the application code and try getting it to GREEN.

8.3.1 Exercise

1. Confirm that commenting out the letters() stub in Listing 8.28 yields a failing
state rather than an error state. (This behavior is relatively unusual, with many
other languages distinguishing between a non-working method and one that’s
missing altogether. In Python, though, the result is the same failing state in either
case.)

8.4 Green
Now that we have RED tests to capture the enhanced behavior of our palindrome
detector, it’s time to make them GREEN. Part of the philosophy of TDD is to get them

8.4 Green 215

passing without worrying too much at first about the quality of the implementation.
Once the test suite is GREEN, we can polish it up without introducing regressions
(Box 8.1).

The main challenge is implementing letters(), which returns a string of the
letters (but not any other characters) making up the content of the Phrase. In other
words, we need to select the characters that match a certain pattern. This sounds like
a job for regular expressions (Section 4.3).

At times like these, using an online regex matcher with a regex reference like the
one shown in Figure 4.5 is an excellent idea. Indeed, sometimes they make things a
little too easy, such as when the reference has the exact regex you need (Figure 8.8).

Figure 8.8: The exact regex we need.

https://regex101.com/

216 Chapter 8: Testing and Test-Driven Development

Let’s test it in the console to make sure it satisfies our criteria (using the
re.search() method introduced in Section 4.3):7

$ source venv/bin/activate
(venv) $ python3
>>> import re
>>> re.search(r"[a-zA-Z]", "M")
<re.Match object; span=(0, 1), match='M'>
>>> bool(re.search(r"[a-zA-Z]", "M"))
True
>>> bool(re.search(r"[a-zA-Z]", "d"))
True
>>> bool(re.search(r"[a-zA-Z]", ","))
False

Lookin’ good!
We’re now in a position to build up an array of characters that matches upper- or

lowercase letters. The most straightforward way to do this is with the for loop method
we first saw in Section 2.6. We’ll start with an array for the letters, and then iterate
through the content string, pushing each character onto the array (Section 3.4.3) if
it matches the letter regex:

Works but not Pythonic
the_letters = []
for character in self.content:

if re.search(r"[a-zA-Z]", character):
the_letters.append(character)

At this point, the_letters is an array of letters, which can be joined to form a
string of the letters in the original string:

"".join(the_letters)

Putting everything together gives the letters() method in Listing 8.30 (with a
highlight added to indicate the beginning of the new method).

7. Note that this won’t work for non-ASCII characters. If you need to match words containing such char-
acters, the Google search python unicode letter regular expression might be helpful. Thanks to reader Paul
Gemperle for pointing out this issue.

https://en.wikipedia.org/wiki/ASCII
https://www.google.com/search?q=python+unicode+letter+regular+expression

8.4 Green 217

Listing 8.30: A working letters() method (but with full suite still RED).
src/palindrome/phrase.py

import re

class Phrase:
"""A class to represent phrases."""

def __init__(self, content):
self.content = content

def ispalindrome(self):
"""Return True for a palindrome, False otherwise."""
return self.processed_content() == reverse(self.processed_content())

def processed_content(self):
"""Return content for palindrome testing."""
return self.content.lower()

def letters(self):
"""Return the letters in the content."""
the_letters = []
for character in self.content:

if re.search(r"[a-zA-Z]", character):
the_letters.append(character)

return "".join(the_letters)

def reverse(string):
"""Reverse a string."""
return "".join(reversed(string))

Although the full test suite is still RED, our letters() test should now be GREEN,
as indicated by the number of failing tests changing from 2 to 1:

Listing 8.31: RED

(venv) $ pytest
============================= test session starts ==============================
platform darwin -- Python 3.10.6, pytest-7.1.3, pluggy-1.0.0
rootdir: /Users/mhartl/repos/python_package_tutorial
collected 5 items

tests/test_phrase.py ...F. [100%]

=================================== FAILURES ===================================

218 Chapter 8: Testing and Test-Driven Development

_______________________ test_palindrome_with_punctuation _______________________

def test_palindrome_with_punctuation():
> assert Phrase("Madam, I'm Adam.").ispalindrome()
E assert False

tests/test_phrase.py:14: AssertionError
=========================== short test summary info ============================
FAILED tests/test_phrase.py::test_palindrome_with_punctuation - assert False
========================= 1 failed, 4 passed in 0.01s ==========================

We can get the final RED test to pass by replacing self.content with self.
letters() in the processed_content()method. The result appears in Listing 8.32.

Listing 8.32: A working ispalindrome() method. GREEN
src/palindrome/phrase.py

import re

class Phrase:
"""A class to represent phrases."""

def __init__(self, content):
self.content = content

def ispalindrome(self):
"""Return True for a palindrome, False otherwise."""
return self.processed_content() == reverse(self.processed_content())

def processed_content(self):
"""Return content for palindrome testing."""
return self.letters().lower()

def letters(self):
"""Return the letters in the content."""
the_letters = []
for character in self.content:

if re.search(r"[a-zA-Z]", character):
the_letters.append(character)

return "".join(the_letters)

def reverse(string):
"""Reverse a string."""
return "".join(reversed(string))

8.4 Green 219

Figure 8.9: Our detector finally understands Adam’s palindromic nature.

The result of Listing 8.32 is a GREEN test suite (Figure 8.98):

Listing 8.33: GREEN

(venv) $ pytest
============================= test session starts ==============================
collected 5 items

tests/test_phrase.py [100%]

============================== 5 passed in 0.00s ===============================

It may not be the prettiest code in the world, but this GREEN test suite means our code
is working!

8. Image courtesy of Album/Alamy Stock Photo.

220 Chapter 8: Testing and Test-Driven Development

8.4.1 Exercise

1. Using the same code shown in Listing 8.16, import the Phrase class into the
Python REPL and confirm directly that ispalindrome() can successfully detect
palindromes of the form “Madam, I’m Adam.”

8.5 Refactor
Although the code in Listing 8.32 is now working, as evidenced by our GREEN test
suite, it relies on a rather cumbersome for loop that appends to a list rather than
creating it all at once. In this section, we’ll refactor our code, which is the process of
changing the form of code without changing its function.

By running our test suite after any significant changes, we’ll catch any regressions
quickly, thereby giving us confidence that the final form of the refactored code is still
correct. Throughout this section, I suggest making changes incrementally and running
the test suite after each change to confirm that the suite is still GREEN.

Per Chapter 6, a more Pythonic way of creating a list of the sort in Listing 8.32
is to use a list comprehension. In particular, the loop in Listing 8.32 bears a strong
resemblance to the imperative_singles() function from Listing 6.4:

states = ["Kansas", "Nebraska", "North Dakota", "South Dakota"]
.
.
.
singles: Imperative version
def imperative_singles(states):

singles = []
for state in states:

if len(state.split()) == 1:
singles.append(state)

return singles

As we saw in Listing 6.5, this can be replaced using a list comprehension with a
condition:

singles: Functional version
def functional_singles(states):

return [state for state in states if len(state.split()) == 1]

8.5 Refactor 221

Let’s drop into the REPL to see how to do the same thing in the present case:

>>> content = "Madam, I'm Adam."
>>> [c for c in content]

['M', 'a', 'd', 'a', 'm', ',', ' ', 'I', "'", 'm', ' ', 'A', 'd', 'a', 'm', '.']

>>> [c for c in content if re.search(r"[a-zA-Z]", c)]
['M', 'a', 'd', 'a', 'm', 'I', 'm', 'A', 'd', 'a', 'm']
>>> "".join([c for c in content if re.search(r"[a-zA-Z]", c)])
'MadamImAdam'

We see here how combining a list comprehension with a condition and a join()
lets us replicate the current functionality of letters(). In fact, inside the argu-
ment to join() we can omit the square brackets and use a generator comprehension
(Section 6.4) instead:

>>> "".join(c for c in content if re.search(r"[a-zA-Z]", c))
'MadamImAdam'

This leads to the updated method shown in Listing 8.34. As is so often the case
with comprehension solutions, we have been able to condense the imperative solution
down to a single line.

Listing 8.34: Refactoring letters() down to a single line. GREEN
src/palindrome/phrase.py

import re

class Phrase:
"""A class to represent phrases."""

def __init__(self, content):
self.content = content

def ispalindrome(self):
"""Return True for a palindrome, False otherwise."""
return self.processed_content() == reverse(self.processed_content())

def processed_content(self):
"""Return content for palindrome testing."""
return self.letters().lower()

def letters(self):
"""Return the letters in the content."""

222 Chapter 8: Testing and Test-Driven Development

return "".join(c for c in self.content if re.search(r"[a-zA-Z]", c))

def reverse(string):
"""Reverse a string."""
return "".join(reversed(string))

As noted in Chapter 6, functional programs are harder to build up incrementally,
which is one reason why it’s so nice to have a test suite to check that our changes had
their intended effect (that is, no effect at all):

Listing 8.35: GREEN

(venv) $ pytest
============================= test session starts ==============================
collected 5 items

tests/test_phrase.py [100%]

============================== 5 passed in 0.01s ===============================

Huzzah! Our test suite still passes, so our new one-line letters() method works.
This is a major improvement, but in fact there’s one more refactoring that repre-

sents a great example of the power of Python. Recall from Section 4.3 that regular
expressions have a findall() method that lets us select regex-matching characters
directly from a string:

>>> re.findall(r"[a-zA-Z]", content)
['M', 'a', 'd', 'a', 'm', 'I', 'm', 'A', 'd', 'a', 'm']
>>> "".join(re.findall(r"[a-zA-Z]", content))
'MadamImAdam'

By using findall() with the same regex we’ve been using throughout this section
and then joining on the empty string, we can simplify the application code even
further by eliminating the list comprehension, as shown in Listing 8.36.

https://en.wiktionary.org/wiki/huzzah

8.5 Refactor 223

Listing 8.36: Using re.findall. GREEN
src/palindrome/phrase.py

import re

class Phrase:
"""A class to represent phrases."""

def __init__(self, content):
self.content = content

def ispalindrome(self):
"""Return True for a palindrome, False otherwise."""
return self.processed_content() == reverse(self.processed_content())

def processed_content(self):
"""Return content for palindrome testing."""
return self.letters().lower()

def letters(self):
"""Return the letters in the content."""
return "".join(re.findall(r"[a-zA-Z]", self.content))

def reverse(string):
"""Reverse a string."""
return "".join(reversed(string))

One more run of the test suite confirms that everything is still copacetic
(Figure 8.109):

Listing 8.37: GREEN

(venv) $ pytest
============================= test session starts ==============================
collected 5 items

tests/test_phrase.py [100%]

============================== 5 passed in 0.01s ===============================

9. Image courtesy of Album/Alamy Stock Photo.

https://en.wiktionary.org/wiki/copacetic#English

224 Chapter 8: Testing and Test-Driven Development

Figure 8.10: Still a palindrome after all our work.

8.5.1 Publishing the Python Package

As a final step, and in line with our philosophy of shipping (Box 1.5), in this final
section we’ll publish our palindrome package to the Python Package Index, also
known as PyPI.

Unusually among programming languages, Python actually has a dedicated test
package index called TestPyPI, which means we can publish (and use) our test package
without uploading to a real package index. Before proceeding, you’ll need to register
an account at TestPyPI and verify your email address.

Once you’ve set up your account, you’ll be ready to build and publish your pack-
age. To do this, we’ll be using the build and twine packages, which you should
install at this time:

(venv) $ pip install build==0.8.0
(venv) $ pip install twine==4.0.1

https://packaging.python.org/en/latest/guides/using-testpypi/
https://packaging.python.org/en/latest/guides/using-testpypi/
https://test.pypi.org/account/register/
https://test.pypi.org/account/register/

8.5 Refactor 225

The first step is to build the package as follows:

(venv) $ python3 -m build

This uses the information in pyproject.toml (Listing 8.3) to create a dist (“distri-
bution”) directory with files based on the name and version number of your package.
For example, on my system the dist directory looks like this:

(venv) $ ls dist
palindrome_mhartl-0.0.1.tar.gz
palindrome_mhartl-0.0.1-py3-none-any.whl

These are a tarball and wheel file, respectively, but the truth is that you don’t need to
know anything about these files specifically; all you need to know is that the build
step is necessary to publish a package to TestPyPI. (Being comfortable with ignoring
these sorts of details is a good sign of technical sophistication.)

Actually publishing the package involves using the twine command, which looks
like this (and is just copied from the TestPyPI documentation):10

(venv) $ twine upload --repository testpypi dist/*

(For future uploads, you may need to remove older versions of your package using rm
because TestPyPI doesn’t let you reuse filenames.)

At this point, your package is published and you can test it by installing it on your
local system. Because we already have an editable and testable version of the package
in our main venv (Listing 8.18), it’s a good idea to spin up a new venv in a temp
directory:

$ cd
$ mkdir -p tmp/test_palindrome
$ cd tmp/test_palindrome
$ python3 -m venv venv
$ source venv/bin/activate
(venv) $

10. At this point, you will be prompted either for a username and password or for an API key. For the latter,
see the TestPyPI page on tokens for more information.

https://en.wikipedia.org/wiki/Tarball
https://realpython.com/python-wheels/
https://packaging.python.org/en/latest/guides/using-testpypi/
https://test.pypi.org/help/#file-name-reuse
https://test.pypi.org/manage/account/token/

226 Chapter 8: Testing and Test-Driven Development

Now you can install your package by using the --index-url option to tell pip to
use the test index instead of the real one:

(venv) $ pip install <package> --index-url https://test.pypi.org/simple/

For example, I can install my version of the test package, which is called
palindrome_mhartl, as follows:11

(venv) $ pip install palindrome_mhartl --index-url https://test.pypi.org/simple/

To test the installation, you can load the package in the REPL:

(venv) $ python3
>>> from palindrome_mhartl.phrase import Phrase
>>> Phrase("Madam, I'm Adam.").ispalindrome()
True

It works! (If it doesn’t work for you—which is a real possibility since so many things
can go wrong—the only recourse is to use your technical sophistication to resolve the
discrepancy.)

For a general Python package, you can continue adding features and making new
releases. All you need to do is increment the version number in pyproject.toml
to reflect the changes you’ve made. For more guidance on how to increment the
versions, I suggest learning a bit about the rules of so-called semantic versioning, or
semver (Box 8.2).

Box 8.2: Semver

You might have noticed in this section that we’ve used the version number 0.1.0 for
our new package. The leading zero indicates that our package is at an early stage,
often called “beta” (or even “alpha” for very early-stage projects).

11. The _mhartl part comes from the name setting in pyproject.toml, which for me is palindrome_-
mhartl. If you install my version of the package, you may notice that the version number is higher than
0.0.1, which is due to the aforementioned issue regarding package-name reuse. Because I’ve made quite a
few changes in the course of developing this tutorial, I’ve incremented the version number (version in
pyproject.toml) several times.

https://github.com/mhartl/python_package_tutorial/blob/main/pyproject.toml
https://test.pypi.org/help/#file-name-reuse
https://github.com/mhartl/python_package_tutorial/blob/main/pyproject.toml

8.5 Refactor 227

We can indicate updates by incrementing the middle number in the version,
e.g., from 0.1.0 to 0.2.0, 0.3.0, etc. Bugfixes are represented by incrementing the
rightmost number, as in 0.2.1, 0.2.2, etc., and a mature version (suitable for use by
others, and which may not be backward-compatible with prior versions) is indicated
by version 1.0.0.

After reaching version 1.0.0, further changes follow this same general pattern:
1.0.1 would represent minor changes (a “patch release”), 1.1.0 would represent
new (but backward-compatible) features (a “minor release”), and 2.0.0 would
represent major or backward-incompatible changes (a “major release”).

These numbering conventions are known as semantic versioning, or semver for
short. For more information, see semver.org.

Finally, if you ever go on to develop a package that isn’t just a test like the one
in this chapter, you can publish it to the real Python Package Index (PyPI). Although
there is ample PyPI documentation, there is little doubt in such a case that you will
also have ample opportunity to apply your technical sophistication.

8.5.2 Exercises

1. Let’s generalize our palindrome detector by adding the capability to detect integer
palindromes like 12321. By filling in FILL_IN in Listing 8.38, write tests for
integer non-palindromes and palindromes. Get both tests to GREEN using the code
in Listing 8.39, which adds a call to str to ensure the content is a string and
includes \d in the regex to match digits as well as letters. (Note that we have
updated the name of the letters() method accordingly.)

2. Bump the version number in pyproject.toml, commit and push your changes,
build your package with build, and upload it with twine. In your temp directory,
upgrade your package using the command in Listing 8.40 and confirm in the
REPL that integer-palindrome detection is working. Note: The backslash \ in
Listing 8.40 is a continuation character and should be typed literally, but the right
angle bracket > should be added by your shell program automatically and should
not be typed.

https://semver.org/
https://pypi.org/
https://packaging.python.org/en/latest/tutorials/installing-packages/

228 Chapter 8: Testing and Test-Driven Development

Listing 8.38: Testing integer palindromes. RED
tests/test_phrase.py

from pytest import skip

from palindrome_mhartl.phrase import Phrase

def test_non_palindrome():
assert not Phrase("apple").ispalindrome()

def test_literal_palindrome():
assert Phrase("racecar").ispalindrome()

def test_mixed_case_palindrome():
assert Phrase("RaceCar").ispalindrome()

def test_palindrome_with_punctuation():
assert Phrase("Madam, I'm Adam.").ispalindrome()

def test_letters_and_digits():
assert Phrase("Madam, I'm Adam.").letters_and_digits() == "MadamImAdam"

def test_integer_non_palindrome():
FILL_IN Phrase(12345).ispalindrome()

def test_integer_palindrome():
FILL_IN Phrase(12321).ispalindrome()

Listing 8.39: Adding detection of integer palindromes. GREEN
src/palindrome/phrase.py

import re

class Phrase:
"""A class to represent phrases."""

def __init__(self, content):
self.content = str(content)

def ispalindrome(self):
"""Return True for a palindrome, False otherwise."""
return self.processed_content() == reverse(self.processed_content())

8.5 Refactor 229

def processed_content(self):
"""Return content for palindrome testing."""
return self.letters_and_digits().lower()

def letters_and_digits(self):
"""Return the letters and digits in the content."""
return "".join(re.findall(r"[a-zA-Z]̣", self.content))

def reverse(string):
"""Reverse a string."""
return "".join(reversed(string))

Listing 8.40: Upgrading the test package.

(venv) $ pip install --upgrade your-package \
> --index-url https://test.pypi.org/simple/

This page intentionally left blank

Index

Symbols
_ (underscore), separating words, 170
!= (not equals/bang equals operator), 54
’ (single quotes), 36, 37
” (double quotes), 36, 37
\ (backslash character), 43
(hash symbol), 39
% (modulo operator), 157, 158
+ operator, 39
= (equal sign), 40
== (comparison operator), 47

A
About pages, 269, 270

base titles, 281
navigation menus, 292

About templates, 265
About view, 278
accessing

combining list access, 83
elements, 124
lists, 71–74

accuracy, machine learning, 397, 399
adding

annotations, 345, 346
assertions, 275, 282, 283
attributes, 171, 172
behaviors, 49
comments, 118

detection to integer palindromes, 228
forms, 296, 297, 308
functional techniques, 153
functions, 131
iterators, 178
labels, 344
layers, 240
navigation templates, 290
newlines, 49
objects, 117
palindrome packages, 283
pending tests, 206–209
regression lines, 392
requests, 294
sine, 345
site navigation, 287–292
tau, 93
Test Python Package Index, 294
testing, 210, 212
tests, 306, 307
text, 116
ticks to grids, 343
title variables, 284
variable components to titles, 285

algorithms
clustering, 387
k-means clustering, 400–402
predicting centers, 402

alpha transparency, 401

405

406 Index

analysis
data analysis, 353–361
pandas, 338

and operator, 51
angles, 335
annotate() method, 345
annotations, adding, 345, 346
append() function, 80–81, 151
appending lists, 80–81
applications (apps), 1

deleting, 261
deploying, 22–33
detecting palindromes, 293–316
installing, 273
layouts, 255, 271–280
previewing, 21
in production, 262
requirements, 28, 260
setup, 256–262
site navigation, 287–292
site pages, 263–271
starting, 30, 260
template engines, 280–293
variable titles, 281–286
viewing status of, 31

applying
CamelCase, 170, 171
multiple arguments, 15

arbitrary strings, splitting, 70
archives, tape, 268
arguments

applying multiple, 15
command-line, 250
function calls, 121 (see also functions)
keywords, 13, 45, 99, 127–129
splitting with no, 71
strings as, 44
variables, 127–129

arange() function, 328
arrays, 69

angles, 335
associative, 109, 110
building, 216
formatting, 333
multidimensional, 330–333
numerical computations, 327–329

assertions, 198, 200, 275, 282, 283
assigning

attributes, 172
lists, 78
values, 110
variables, 40

associative arrays, 109, 110
attributes

adding, 171, 172
assigning, 172
data, 171, 172

automating, testing, 167, 209, 255, 272
auxiliary functions, 154, 155
average values, 348
axis labels, 357

B
backslash character (\), 43
bang equals operator (!=), 54
Bardeen, John, 370
base titles, 281
base-ten logarithms, 93
Bash shell programs, 9, 11
Beautiful Soup package, 248
Beazley, David, 11
behaviors

adding, 49
strings, 63

bell curves, 348
Bethe, Hans, 372
blobs, random, 400, 401
bool() function, 54, 55
Boole, George, 47
booleans. See also searching

combining/inverting, 51–54
context, 54–56
methods, 56, 57
strings, 48
tuples, 89
values, 47
variables, 311

bracket notation, list access with, 71
browsers, Python in, 18–34

C
C code, 327, 329

Index 407

CamelCase, 170, 171
capitalization, separating words, 170
capitalize() method, 56, 57
Cascading Style Sheets. See CSS (Cascading

Style Sheets)
categorical variables, 359
cells, 322, 324
centers, predicting, 402
chaining methods, 152
change mode. See chmod command
characters

building arrays, 216
columns, 49
continuation, 268
sequences of, 35 (see also strings)
yielding, 143

checking versions, 9, 10
chmod command, 17
classes

defining, 169–176, 202
derived classes, 183–190
equivalence, 158
hierarchies, 179, 180
inheritance, 179–183
Phrase, 169–170, 171, 173, 202
superclasses, 180
TranslatedPhrase, 184, 185

classic interfaces, 324. See also interfaces
client objects, creating, 274
cloud IDEs, 21, 28, 325

hello, world!, 24
local servers, 22
Matplotlib, 339
running Jupyter, 325
viewing notebooks, 326

clustering algorithms, 387
k-means clustering, 400–402
predicting centers, 402

code, 2. See also programming
C, 327, 329
formatting, 48–49
hello, world!, 1–6, 19 (see also hello,

world!)
histograms, 376
limiting, 49

palindromes, 191, 300 (see also palindromes)
Pythonic programming, 2
refactoring, 192, 220–229, 279
sinusoidal plots, 347
test suites, 192
testing, 287

columns, 49, 378, 379
combining booleans, 51–54
command-line

DOM manipulation at, 245–254
programs, 1, 11
terminals, 8

commands. See also functions; methods
chmod, 17
flask, 20
flyctl, 29
flyctl open, 31
imperative programming, 150
pip, 18
python, 11, 17
python3, 19, 115
repr, 45
touch, 15

comments, 39, 118. See also words
comparison operator (==), 47
comparisons, equality/inequality, 79
compositions, 181, 182
comprehensions, 149

conditions (lists with), 156–159
dictionaries, 149, 159–163
generators, 149, 163–164
lists, 149, 150–156
sets, 149, 164

concatenating strings, 38–44
Conda, 13, 14, 321
conditional strings, 51
conditions, list comprehensions with,

156–159
configuring. See also formatting

custom index columns, 379
environments, 195, 196
Flask, 256
projects, 194 (see also packages)
system setup, 9–11

constants (NumPy), 333–337

408 Index

content
decoding, 243
printing, 250, 253

context (booleans), 54–56
continuation characters, 268
control flow, strings, 48–51
controllers, 264
converting

strings, 144
time, 97

Coordinated Universal Time (UTC), 98
correspondence, state-length, 161, 162
cos() function, 335
cosine functions, 342, 344
Counter() function, 118, 119
counting words, 118, 119
coverage, initial test, 197–209
crashes, debugging, 134
creating. See configuring; formatting;

programming
cross-validation, 396, 398–400
CSS (Cascading Style Sheets), 271
ctime() method, 97
Curie, Marie, 368, 369, 370
Curie, Pierre, 369
current directory (dot = .), 17
customizing

index columns, 379
iterators, 176–179
time, 101

cutting functions, 132, 133

D
data analysis

Nobel laureates example, 361–377
with pandas, 353–361 (see also pandas)
selecting dates, 371–377
Titanic example (pandas), 377–386

data attributes, 171, 172
data science, 319, 320

data analysis with pandas, 353–361 (see also
pandas)

data visualization (Matplotlib), 338–353 (see
also data visualization [Matplotlib])

installing packages, 321

numerical computations (NumPy), 327–337
(see also numerical computations
[NumPy])

scikit-learn, 386–402 (see also machine
learning)

setup, 320–326
data types

arrays, 69
lists, 69
ndarray, 69, 327, 328

data visualization (Matplotlib), 338–353
histograms, 350–352
plotting, 339–347
scatter plots, 347–350
viewing plots, 339

DataFrame object, 358–361
dates, selecting, 371–377
datetime objects, 374
dayname() function, 124
debugging, 134

crashes, 134
Python, 135, 136

Decision Tree, 393, 397, 398
decode() method, 242, 243
decompose() method, 249
def keyword, 122, 125
defining

auxiliary functions, 155
axis labels, 357
classes, 169–176, 202
functions, 121–130
passwords, 56
Phrase class, 169–170, 171, 173
raw strings, 44
strings, 37, 106
TranslatedPhrase class, 184, 185
tuples, 87
variables, 39, 390

deleting
applications, 261
newlines, 236

deploying applications, 22–33
derived classes, 183–190
describe() function, 360
design, compositions, 181, 182. See also

formatting

Index 409

detecting palindromes, 140, 142, 228, 233, 255,
293–316. See also palindromes

dictionaries, 89, 109–115
comprehensions, 149, 159–163
formatting, 299
iteration, 112–113
merging, 113–114

directories. See also files
current directory (dot = .), 17
formatting, 13, 256
ignoring, 25, 196, 259
python_tutorial(), 231
structures, 192, 193

distribution
generating values, 358
random values, 351

division
floating-point, 91
integers, 91

Django, 255
docstrings, 37, 125
documentation

Flask, 265
Matplotlib, 340, 351
Python Package Index (PyPI), 224, 227

DOM (Document Object Model)
manipulation at the command line, 245–254
removing elements, 250

dot = . (current directory), 17
dot notation, 172
double quotes (”), 36, 37
DRY (Don’t Repeat Yourself) principle,

308–309
dunder (double-underscore) methods, 171
duplication, eliminating, 142

E
editing

installing packages, 203
packages, 273

Einstein, Albert, 371
elements

accessing, 124
creating lists, 72
inclusion, 77
printing, 85

removing DOM, 250
eliminating duplication, 142
embedded Python, 5
empty strings, 35, 36
engines

Jinja template, 272, 277
templates, 280–293

entering long strings, 314, 315
enumerate() function, 84
environments

configuring, 195, 196
data science (see data science)

epochs, 97
equal sign (=), 40
equality comparisons, 79
equivalence classes, 158
errors, 23

changing tuples, 86
NoMethodError type, 134
roundoff, 96
searching, 135

evaluating layouts, 290
examples

Nobel laureates (pandas), 361–377
pandas, 355–356
Titanic (pandas), 377–386

exceptions, 134
executing Flask micro-environments, 20
expressions, 42, 71, 103–109. See also regular

expressions
external files, 137. See also files

F
f-strings (formatted strings), 41–42. See also

strings
failures, testing, 199
fetching tarballs, 267
Feynman, Richard, 363
files

formatting, 115
functions in, 130–138
.gitignore, 320, 321
ignoring, 25, 196, 259
manifest, 257
opening, 232
processing, 234

410 Index

Python in, 13–15
reading shell scripts from, 231–240
README, 195, 197
setup, 257
structures, 192, 193
unzipping, 268, 270
zipping, 268

filtering
troubleshooting, 157
values, 367

find() method, 60
findall() method, 107, 117
first-class functions, 126–127
Flask, 18, 19, 130, 255

configuring, 256
deploying, 26
documentation, 265
rendering templates, 263
running, 20, 258
sample programs, 20
writing hello, world!, 257–258

flask command, 20
float() function, 95
floating-point division, 91
Fly Control, installing, 28
Fly.io, 28, 29, 30, 33
flyctl command, 29
flyctl open command, 31
for loops, 63, 64, 65, 83, 84
formatting

arrays, 333
code, 48–49
dictionaries, 299
directories, 13, 256
files, 115
indenting spaces, 49
notebooks, 323
PEP (Python Enhancement Proposal), 2, 37
repositories, 26
strings, 41–42
subdirectories, 256
system setup, 9–11

forms
adding, 296, 297, 308
adding tests, 306, 307
handling, 5

partial, 309
submissions, 255, 298, 299, 301
testing, 302–313

frameworks, 1, 255. See also Flask
functional programming, 5, 149. See also

comprehensions
functional techniques, 165–166
list comprehensions, 150–156
TDD (test-driven development), 166–167

functions, 5, 37. See also commands
adding, 131
append(), 80–81, 151
arange(), 328
auxiliary, 154, 155
bool(), 54, 55
cos(), 335
cosine, 342, 344
Counter(), 118, 119
cutting/pasting, 132, 133
dayname(), 124
defining, 121–130
describe(), 360
enumerate(), 84
in files, 130–138
first-class, 126–127
float(), 95
help(), 126
imperative_singles(), 220
isclose(), 335, 336
islower(), 122
ispalindrome(), 174
iter(), 177
join(), 81
len(), 46, 56, 73
linespace(), 336
list(), 70
lower(), 153
map(), 150, 360
numerical computations (NumPy), 333–337
open(), 232
palindrome(), 167
pop(), 80–81
print(), 44, 45, 56
processed_content(), 183
range(), 145, 328
read(), 232

Index 411

reduce(), 160
render_template(), 263
reshape(), 332
reverse(), 78
reversed(), 79, 139
set(), 144
skip(), 206
slice(), 74, 75
sort(), 77
sorted(), 79
split(), 81, 122
square(), 122, 126
str(), 93, 94
subplots(), 340
sum(), 165
trigonometric, 92, 334
type(), 89, 178
updating, 137
urlify(), 154
xrange(), 146

functools module, 160

G
generating values, 358
generators, 139, 143–146

comprehensions, 149, 163–164
random values, 349

GET requests, 273, 297
get() method, 241, 274
Git-Hub pages, 23, 25, 26, 33
GitHub README files, 197
.gitignore file, 320, 321
Google Translate, 245, 247, 254
GREEN, 214–220, 275, 276, 279, 306, 308,

312
grids, adding ticks to, 343
Gunicorn servers, installing, 260

H
hash symbol (#), 39
hashes, 109
Hawking, Stephen, 366
head() method, 362
hello, world!, 1–6, 8, 11, 12

cloud IDEs, 24
code, 19
deploying, 22–33

in files, 15
previewing, 23
REPL (Read-Eval-Print Loop), 11, 12
running, 32
writing, 257–258

help() function, 126
hierarchies

classes, 179, 180
inheritance, 187

higher-level languages, 1
histograms, 350–352

code, 376
series, 358

Home pages, 268, 271
base titles, 281
layouts, 28

Home view, 265, 278
Homebrew, installing Python, 10
HTML (HyperText Markup Language)

adding assertions, 275
layouts, 277
parsing, 248
returning to browsers, 264
structures, 272

hyperlinks, references, 265

I
identifiers, 39
IDEs (integrated development environments),

10, 13
cloud IDEs, 21 (see also cloud IDEs)
Matplotlib, 339
running Jupyter, 325
viewing notebooks, 326

ignoring
directories, 196, 259
files, 196, 259

imperative programming, 150, 157
imperative_singles() function, 220
importing

dictionaries, 113–114
items from modules, 96
learning models, 394
linear regression models, 390
modules, 136
packages, 203

in operator, 61

412 Index

inclusion, elements, 77
indenting spaces, 49
indices, 63

columns, 378, 379
printing list elements with, 85
Python Package Index (PyPI), 224, 227
Test Python Package Index, 294

inequality comparisons, 79
info() method, 362
inheritance, 179–183, 187
initial test coverage, 197–209
initializing

DataFrame objects, 359
repositories, 196

installing
applications, 273
Flask micro-environment, 19
Fly Control, 28
flyctl on Linux, 29
Gunicorn servers, 260
packages, 27, 203, 321
Python, 9–11

integers
detecting palindromes, 228
division, 91
summing, 165, 166

integrated development environments. See IDEs
interfaces

Jupyter, 324
notebooks, 322

interpolation, strings, 38–44
interpreters, 11, 17, 152
inverting booleans, 51–54
IPython, 320, 322
is-a relationships, 181
isclose() function, 335, 336
islower() function, 122
ispalindrome() function, 174
iter() function, 177
iteration

dictionaries, 112–113
lists, 83–86
strings, 62–66

iterators, 71, 138–147
adding, 178

customizing, 176–179
loops, 139

J
JavaScript, 64, 255
Jinja template engines, 272, 277, 280–293. See

also template engines
Jobs, Steve, 24
Johnson, Samuel, 159, 160
join() method, 81, 93
Jupyter, 320

interfaces, 324
notebooks, 322
plots, 341
running, 325
starting, 324
viewing notebooks, 326
viewing pandas, 364

JupyterLab, 322, 323

K
K-fold cross validation, 399
key-value pairs, 110
keys, 109

dictionaries, 111 (see also dictionaries)
ordering, 111

keys method, 177
keywords

arguments, 13, 45, 99, 127–129
def, 122, 125
method, 297
return, 122, 123

L
labels

adding, 344
axis, 357

languages
differences between Python and other, 5–6
higher-level, 1
HTML (see HTML [HyperText Markup

Language])
overview of, 6–11
Perl, 2

LATEX, 342, 343

Index 413

Latin palindromes, 304, 305
launching applications, 260. See also starting
layers, adding, 240
layouts, 5, 255

About view, 278
evaluating, 290
Home pages, 28
Home view, 278
HTML (HyperText Markup Language), 277
programming, 271–280
templates, 271

learning models, importing, 394
len() function, 46, 56, 73
lengths object, 161
lengths, strings, 46–47
letters() method, 212, 213, 221, 222
libraries, 1, 5. See also specific libraries

math, 333, 334
Matplotlib, 320
NumPy, 1, 69, 320 (see also NumPy)
pandas, 320
random, 349
scikit-learn, 320, 386–402
timeit, 329

licenses, templates, 195
limiting code, 49
linear regression, 387–392
linear spacing (NumPy), 333–337
linespace() function, 336
Linux

installing flyctl on, 29
installing Python, 10

list() function, 70
lists, 69

accessing, 71–74
appending, 80–81
assigning, 78
comprehensions, 149, 150–156
conditions (comprehensions with),

156–159
element inclusion, 77
iteration, 83–86
popping, 80–81
returning, 122
reversing, 77–80
sets, 86–89

slicing, 74–76
sorting, 77–80
splitting, 69–71
tuples, 86–89
undoing splits, 81–83
URLs (uniform resource locators), 152
zero-offset, 72, 73, 74

literals, strings, 35. See also strings
local servers, running, 22
locating data (pandas), 363–370
logarithms, 93, 334
Logistic Regression, 393, 396
long strings, entering, 314, 315
loops, 329. See also iteration

for, 63, 64, 65, 83, 84
iterators, 139
REPL (Read-Eval-Print Loop), 11–13
strings, 66

lower() function, 153

M
machine learning, 386–402

accuracy, 397, 399
cross-validation, 396, 398–400
K-fold cross validation, 399
k-means clustering, 400–402
linear regression, 387–392
models, 392–400
scatter plots, 389

main() method, 240
managing packages, 28, 321
manifest files, 257
map() function, 150, 360
matching words, 117
math, 91–92

modules, 92
to strings, 93–97

math library, 333, 334
math object, 92–93
MATLAB, 327, 331
Matplotlib, 320

data visualization, 338–353 (see also data
visualization [Matplotlib])

documentation, 340, 351
histograms, 350–352
scatter plots, 347–350

414 Index

matrices, multiplication, 331
Mayer, Maria Goeppert, 372, 373
merging dictionaries, 113–114
messages, errors, 134
method keyword, 297
methods. See also functions

annotate(), 345
booleans, 56, 57
capitalize(), 56, 57
chaining, 152
ctime(), 97
decode(), 242, 243
decompose(), 249
find(), 60
findall(), 107, 117
get(), 241, 274
head(), 362
info(), 362
join(), 81, 93
k-means clustering, 400–402
keys, 177
letters(), 212, 213, 221, 222
main(), 240
notna(), 383
overriding, 185, 186, 190
private, 189
processed_content() method, 187
programming, 8
readlines(), 235, 237
requests.get(), 244
resolution order, 179
score(), 391
search, 105
show(), 339, 340
sort_values(), 370
split(), 69, 93, 107–108
splitlines(), 70
strings, 56–62
subplots_adjust(), 382
time(), 97

mixed-case strings, 150
Model-View-Controller. See MVC

(Model-View-Controller)
models

importing learning, 394

linear regression, 387–392
machine learning, 392–400

modifying
dictionaries, 113–114
DOM manipulation at the command line,

245–254
values, 360

modules
datetime, 98
functools, 160
importing, 136
importing items from, 96
math, 92

modulo operator (%), 157, 158
moving

dictionaries, 113–114
functions, 132, 133

multidimensional arrays, 330–333
multilingual text-to-speech (TTS), 245
multiple arguments, applying, 15
multiplication, matrices, 331
MVC (Model-View-Controller), 264

N
Naive Bayes, 393
names

function calls, 121 (see also functions)
palindromes, 141

namespaces, 92
naming variables, 40
native objects, 91

datetimes, 97–103
dictionaries, 109–115
math, 91–92
math object, 92–93
regular expressions, 103–109
strings (math to), 93–97
time, 97–103
unique words, 115–120

navigation
site, 287–292
templates, 290
testing, 288–289

ndarray data types, 69, 327, 328

Index 415

newlines
adding, 49
deleting, 236
palindromes, 236
splitting, 70

NoMethodError type, 134
non-palindromes, 303
None object, 45
normal distribution, 348

generating values, 358
random values, 351

not equals/bang equals operator (!=), 54
not operator, 53
notation, dot, 172
notebooks

formatting, 323
interfaces, 322
plots in, 341
viewing, 326
viewing pandas, 364

notna() method, 383
numbers

random values, 349
references, 245
searching, 145, 163

numerical computations (NumPy), 327–337
arrays, 327–329
constants, 333–337
functions, 333–337
linear spacing, 333–337
multidimensional arrays, 330–333

NumPy, 1, 69, 320
numerical computations (NumPy), 327–337

(see also numerical computations
[NumPy])

random library, 349
support, 331

O
object-oriented programming (OOP), 5, 56
objects

adding, 117
assigning attributes, 172
DataFrame, 358–361
datetime, 374

first-class, 126
lengths, 161
math, 92–93
native, 91 (see also native objects)
None, 45

one-dimensional arrays, 333. See also arrays
online regex builders, 104
open() function, 232
opening files, 232
operations, math, 91–92
operators

and, 51
in, 61
+ operator, 39
comparison operator (==), 47
modulo operator (%), 157, 158
not, 53
not equals/bang equals (!=), 54
or, 51, 52

ordering keys, 111
overriding methods, 185, 186, 190

P
packages, 130, 191, 255

Beautiful Soup, 248
defining classes, 202
editing, 273
importing, 203
installing, 27, 203, 321
IPython, 320
Jupyter, 320
managing, 28, 321
palindromes, 272, 283
publishing, 224–227
README files, 195, 197
Requests, 241
setup, 192–197
templates, 195
Test Python Package Index, 294
updating, 229
venv, 13, 14
zeroes, 226

Palindrome Detector template, 266, 293–316.
See also applications; palindromes

base titles, 281

416 Index

views, 279
palindrome() function, 167
palindromes, 5, 139

code, 300
detecting, 140, 142, 228, 233, 255, 293–316
form submissions, 301
form tests, 302–313
GREEN, 214–220
importing packages, 203
Latin, 304, 305
names, 141
newlines, 236
non-palindromes, 303
packages, 272, 283
RED, 209–214
results, 300
searching, 222, 223
subdirectories, 256
TDD (test-driven development), 191 (see also

TDD [test-driven development])
testing, 140, 228
writing out, 237, 239

pandas, 320, 338
data analysis with, 353–361
DataFrame object, 358–361
examples, 355–356
locating data, 363–370
Nobel laureates example, 361–377
selecting dates, 371–377
series, 356–358
Titanic example, 377–386
viewing, 364

panel data. See pandas
paragraphs, printing, 250
parameters, random_state, 400
parsing

HTML (HyperText Markup Language), 248
URLs (uniform resource locators), 251

partial forms, 309
partial templates, 287
passing

test suites, 200, 202–205
variables, 310

passwords, defining, 56
pasting functions, 132, 133

Pauling, Linus, 370
pending tests, 206–209
PEP (Python Enhancement Proposal),

2, 37, 80
Perceptron, 393, 397
perfect squares, 145
Perl, 2
Peters, Tim, 2, 12
Phrase class, 169–170, 171, 173, 202
phrases, 5
pip command, 18
placeholders, arrays, 333
plots

adding labels, 344
cosine functions, 342
Jupyter, 341
plotting, 339–347
scatter, 347–350, 389
sinusoidal, 347
stacking subplots, 353
titles, 344
viewing, 338, 339 (see also Matplotlib)

pop() function, 80–81
popping lists, 80–81
POST request, 297
predicting centers, 402
previewing

applications, 21
hello, world!, 23

print() function, 44, 45, 56
printing

content, 250, 253
elements, 85
hello, world!, 11, 12
REPL (Read-Eval-Print Loop), 11–13
strings, 44–45
testing, 46

private methods, 189
private repositories, 27
processed_content() function, 183, 187
processing files, 234
production, applications in, 262
programming, 1

applications, 255 (see also applications)
checking versions, 9, 10

Index 417

functional, 5 (see also functional
programming)

hello, world!, 1–6 (see also hello, world!)
imperative, 150, 157
layouts, 271–280
methods, 8
object-oriented programming, 5, 56
overview of, 6–11
Perl, 2
Python in files, 13–15
Pythonic, 2
REPL (Read-Eval-Print Loop), 11–13
setup, 256–262
site pages, 263–271
system setup, 9–11
template engines, 280–293

programs. See also applications (apps)
Bash shell, 9, 11
command-line, 1
sample, 20 (see also sample programs)
wikp, 246
Zsh (Z shell), 11

projects, configuring, 194. See also packages
prompts

starting, 11
strings, 45

proof-of-concept, 256
publishing packages, 224–227
Python. See also programming

debugging, 135, 136
in files, 13–15
libraries (see libraries)
overview of, 6–11
packages, 192 (see also packages)
in shell scripts, 16–17
in web browsers, 18–34

python command, 11, 17
Python Enhancement Proposal. See PEP
Python Package Index (PyPI), 224
python_tutorial() directory, 231
python3 command, 19, 115
Pythonic programming, 2

R
random blobs, 400, 401

Random Forest, 393, 397, 398
random library, 349
random values, 349, 351
random_state parameter, 400
range() function, 145, 328
raw strings, 42–44
Read-Eval-Print Loop. See REPL
read() function, 232
reading

data, 378
shell scripts from files, 231–240
shell scripts from URLs, 240–245

readlines() method, 235, 237
README files, 195, 197
real artists ship, 24
records, searching, 367
RED, 209–214, 289, 290, 307
reduce() function, 160
refactoring code, 192, 220–229, 279, 287
references

hyperlinks, 265
numbers, 245
regular expressions, 104
removing, 249, 252
viewing, 252

regression, linear, 387–392
regular expressions, 71, 103–109, 215

online regex builders, 104
splitting, 107–108

relationships, is-a, 181
removing. See also deleting

DOM elements, 250
newlines, 236
references, 249, 252

render_template() function, 263
rendering templates, 263, 264, 309, 310
repetitions, 149
REPL (Read-Eval-Print Loop), 11–13, 96

backslash character (\), 43
docstrings, 125
functions, 122 (see also functions)
opening files, 232
strings, 35, 36, 37

repositories
formatting, 26

418 Index

initializing, 196
private, 27

repr command, 45
requests

adding, 294
GET, 273, 297
POST, 297

Requests package, 241
requests.get() method, 244
requirements, applications, 28, 260
reshape() function, 332
resolution order, methods, 179
resources, 403–404
results

adding forms, 308
non-palindromes, 303
palindromes, 300
rendering templates, 309, 310

return keyword, 122, 123
returning lists of squares, 122
reverse() function, 78
reversed() function, 79, 139
reversing

lists, 77–80
strings, 139

roundoff errors, 96
routes, 5, 264
running

Flask, 20, 130, 258
hello, world!, 32
Jupyter, 325
local servers, 22
shell scripts, 234

S
sample programs (Flask), 20
Sanger, Frederick, 370
scatter plots, 347–350, 389
scikit-learn, 320, 386–402. See also machine

learning
score() method, 391
scripting, 1. See also shell scripts
search method, 105
searching

errors, 135

locating data (pandas), 363–370
numbers, 145, 163
palindromes, 222, 223
readlines() method, 235
records, 367

selecting
dates, 371–377
troubleshooting, 158
values, 383

separating words, 170
sequences

of characters, 35 (see also strings)
imperative programming, 150

series
histograms, 358
pandas, 356–358

servers, local, 22
set() function, 144
sets, 69, 86–89, 149, 164
setup. See also configuring

applications, 256–262
data science, 320–326
files, 257
packages, 192–197
system, 9–11

Sharpless, K. Barry, 370
shell scripts, 5, 11

DOM manipulation at the command line,
245–254

Python in, 16–17
reading from files, 231–240
reading from URLs, 240–245
running, 234
writing, 8

show() method, 339, 340
side effects, 44
sine, adding, 345
single quotes (’), 36, 37
sinusoidal plots, 347
site navigation, 287–292
site pages

About pages, 269, 270
About templates, 265
Home pages, 268, 271
Home view, 265

Index 419

programming, 263–271
skip() function, 206
slice() function, 74, 75
slicing lists, 74–76
snake case, 40, 41
sort_values() method, 370
sort() function, 77
sorted() function, 79
sorting, 74, 77–80
spaces, indenting, 49
split() function, 69, 81, 93, 107–108, 122
splitlines() method, 70
splitting

arbitrary strings, 70
lists, 69–71
newlines, 70
regular expressions, 107–108
undoing, 81–83

SQL (Structured Query Language), 353
square() function, 122, 126
squares, generating, 146
Stack Overflow, 339
stacking subplots, 353
standard normal distribution, 348
starting

applications, 30, 260
DataFrame objects, 359
Flask micro-environment, 20
Fly.io, 28, 29, 30
Jupyter, 324
JupyterLab, 323
prompts, 11

state-length correspondence, 161, 162
statements, with, 233
status of apps, viewing, 31
str() function, 93, 94
strings, 11

as arguments, 44
behaviors, 63
booleans, 48
combining/inverting booleans, 51–54
concatenation, 38–44
conditional, 51
context (booleans), 54–56
control flow, 48–51

converting, 144
defining, 37, 106
docstrings, 37
entering long, 314, 315
formatting, 41–42
interpolation, 38–44
iteration, 62–66
lengths, 46–47
literals, 35
loops, 66
math to, 93–97
methods, 56–62
mixed-case, 150
overview of, 35–38
printing, 44–45
prompts, 45
raw, 42–44
reversing, 139
splitting arbitrary, 70
stripping, 236
URLs (uniform resource locators), 152

stripping strings, 236
Structured Query Language. See SQL

(Structured Query Language)
structures (HTML), 272
styles (PEP), 2, 37
subdirectories, formatting, 256
submitting forms, 255, 298, 299, 301
subplots_adjust() method, 382
subplots, stacking, 353
subplots() function, 340
substrings, searching records, 367
sum() function, 165
summing, integers, 165, 166
superclasses, 180
support (NumPy), 331
switching, readlines() method, 235
system setup, 9–11

T
tables, truth, 51, 52, 53
tape archives, 268
tarballs, fetching, 267
tau, 94
TDD (test-driven development), 5, 191–192

420 Index

functional programming, 166–167
GREEN, 214–220
initial test coverage, 197–209
package setup, 192–197
pending tests, 206–209
RED, 209–214
refactoring code, 220–229

technical sophistication, 3–4, 106, 152
template engines, 280–293

Jinja, 272, 277
site navigation, 287–292
variable titles, 281–286

templates, 255, 263
About, 265
boolean variables, 311
layouts, 271
navigation, 290
packages, 195
Palindrome Detector, 293–316 (see also

applications; palindromes)
partial, 287
passing variables, 310
rendering, 263, 264, 309, 310

Test Python Package Index, 294
test suites, 192, 199. See also testing

initial test coverage, 198
passing, 200, 202–205
pending, 206–209

test-driven development. See TDD
testing, 191–192

adding, 210, 212, 306, 307
automating, 167, 209–210, 255, 272
failures, 199
forms, 302–313
initial test coverage, 197–209
navigation, 288–289
palindromes, 140, 228
pending tests, 206–209
phrases, 191
printing, 46
refactoring code, 287
TDD (test-driven development), 5
writing, 210

text-to-speech (TTS), 245
text, adding, 116

Thorne, Kip, 366
ticks, adding to grids, 343
time, 97–103
time() method, 97
timeit library, 329
Titanic example (pandas), 377–386
titles

adding assertions, 282, 283
base, 281
plots, 344
variables, 281–286

tools
Conda, 13, 14
data science (see data science)

touch command, 15
TranslatedPhrase class, 184, 185
translation, 185, 186
transparency, alpha, 401
trigonometric functions, 92, 334. See also math
troubleshooting

filtering, 157
selection, 158

truth tables, 51, 52, 53
tuples, 69, 86–89

booleans, 89
defining, 87
unpacking, 87

tutorials, 3
two-dimensional arrays, 332. See also arrays
type() function, 89, 178
types, values, 109

U
underscore (_), separating words, 170
undoing splits, 81–83
unique words, 115–120
unpacking tuples, 87
unzipping files, 268, 270
updating

dictionaries, 113–114
functions, 137
packages, 229

urlify() function, 154
URLs (uniform resource locators), 152

parsing, 251

Index 421

reading shell scripts from, 240–245
UTC (Coordinated Universal Time), 98

V
validation

cross-validation, 396, 398–400
K-fold cross validation, 399

values
assigning, 110
average, 348
booleans, 47
filtering, 367
generating, 358
histograms, 350
modifying, 360
random, 349, 351
selecting, 383
types, 109

van Rossum, Guido, 7
Vanier, Mike, 83, 84, 156
variables

arguments, 127–129
assigning, 40
booleans, 311
categorical, 359
defining, 39, 390
naming, 40
passing, 310
string concatenation and, 39
titles, 281–286

venv packages, 13, 14
versions, checking, 9, 10
viewing

notebooks, 326
palindrome results, 300
pandas, 364
plots, 338, 339 (see also Matplotlib)
references, 252
status of apps, 31

views, 265
About, 278
Home, 278
Palindrome Detector template, 279

virtual environments, 11
visualization libraries, 320. See also data

visualization (Matplotlib); libraries

W
web applications, 255. See also applications

detecting palindromes, 293–316
installing, 273
layouts, 271–280
setup, 256–262
site navigation, 287–292
site pages, 263–271
template engines, 280–293
variable titles, 281–286

web browsers, Python in, 18–34
whitespace, 71
wikp program, 246
with statement, 233
words. See also text

adding objects, 117
counting, 118, 119
separating, 170
unique, 115–120

writing. See also programming
code, 192 (see also code)
hello, world!, 257–258
layouts, 271–280
out palindromes, 237, 239
setup, 256–262
shell scripts, 8 (see also shell scripts)
site pages, 263–271
template engines, 280–293
tests, 210

X
xrange() function, 146

Y
yielding, characters, 143

Z
zero-offset lists, 72, 73, 74
zeroes

function calls, 121 (see also functions)
packages, 226, 227

zipping files, 268
Zsh (Z shell), 9, 11

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	Preface
	Acknowledgments
	About the Author
	Chapter 8 Testing and Test-Driven Development
	8.1 Package Setup
	8.1.1 Exercise

	8.2 Initial Test Coverage
	8.2.1 A Useful Passing Test
	8.2.2 Pending Tests
	8.2.3 Exercises

	8.3 Red
	8.3.1 Exercise

	8.4 Green
	8.4.1 Exercise

	8.5 Refactor
	8.5.1 Publishing the Python Package
	8.5.2 Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

