
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780138049843
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780138049843
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780138049843

Praise for Michael Hartl’s
Books and Videos
on Ruby on Rails

“My former company (CD Baby) was one of the first to loudly switch to Ruby on
Rails, and then even more loudly switch back to PHP. (Google me to read about the
drama.) This book by Michael Hartl came so highly recommended that I had to try it,
and the Ruby on RailsTM Tutorial is what I used to switch back to Rails again.”

—From the Foreword by Derek Sivers (sivers.org)
Formerly: founder of CD Baby
Currently: founder of Thoughts Ltd.

“I started working on a project but didn’t quite understand some rails concepts. Needed
a good tutorial and found lots of recommendations for @mhartl’s rails tutorial . . . and
man it’s so good. The hype def matches the product.”

—Pratik Tamang, https://twitter.com/codingkrazy

“The rails tutorial by @mhartl is the best web dev resource ever written.”
—Daniel Gamboa, Product Manager, Figment

“My first programming book was the Ruby on Rails Tutorial from @mhartl. The best
part was it taught me general skills to be an effective developer.”

—Jack Gray, staknine.com

“Michael Hartl’s Rails Tutorial book is the #1 (and only, in my opinion) place to start
when it comes to books about learning Rails. . . . It’s an amazing piece of work and,
unusually, walks you through building a Rails app from start to finish with testing. If
you want to read just one book and feel like a Rails master by the end of it, pick the
Ruby on RailsTM Tutorial.”

—Peter Cooper, editor, Ruby Inside

“Michael Hartl’s Ruby on RailsTM Tutorial seamlessly taught me about not only Ruby
on Rails, but also the underlying Ruby language, HTML, CSS, a bit of JavaScript, and
even some SQL—but most importantly it showed me how to build a web application
(Twitter) in a short amount of time.”

—Mattan Griffel, cofounder & CEO of One Month

http://sivers.org
https://twitter.com/codingkrazy
http://staknine.com

“Although I’m a Python/Django developer by trade, I can’t stress enough how much
this book has helped me. As an undergraduate, completely detached from industry,
this book showed me how to use version control, how to write tests, and, most
importantly—despite the steep learning curve for setting up and getting stuff running—
how the end result of perseverance is extremely gratifying. It made me fall in love with
technology all over again. This is the book I direct all my friends to who want to start
learning programming/building stuff. Thank you, Michael!”

—Prakhar Srivastav, software engineer, Xcite.com, Kuwait

“It has to be the best-written book of its type I’ve ever seen, and I can’t recommend it
enough.”

—Daniel Hollands, administrator of Birmingham.IO

“For those wanting to learn Ruby on Rails, Hartl’s Ruby on RailsTM Tutorial is (in my
opinion) the best way to do it.”

—David Young, software developer and author at deepinthecode.com

“This is a great tutorial for a lot of reasons, because aside from just teaching Rails, Hartl
is also teaching good development practices.”

—Michael Denomy, full-stack web developer

“Without a doubt, the best way I learned Ruby on Rails was by building an actual
working app. I used Michael Hartl’s Ruby on RailsTM Tutorial, which showed me how
to get a very basic Twitter-like app up and running from scratch. I cannot recommend
this tutorial enough; getting something up and going fast was key; it beats memorization
by a mile.”

—James Fend, serial entrepreneur, JamesFend.com

“The book gives you the theory and practice, while the videos focus on showing you
in person how it’s done. Highly recommended combo.”

—Antonio Cangiano, software engineer, IBM

“The author is clearly an expert at the Ruby language and the Rails framework,
but more than that, he is a working software engineer who introduces best practices
throughout the text.”

—Gregory Charles, principal software developer at Fairway Technologies

http://Xcite.com
http://deepinthecode.com
http://JamesFend.com

RUBY ON RAILS
TM TUTORIAL

Seventh Edition

This page intentionally left blank

RUBY ON RAILS
TM TUTORIAL

Learn Web Development with Rails

Seventh Edition

Michael Hartl

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town

Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

S o Paulo • Sydney • Hong ong • Seoul • Singapore • Taipei • Tokyo

Cover image: elen_studio/Shutterstock

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or
consequential damages in connection with or arising out of the use of the information or programs contained
herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include
electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus,
or branding interests), please contact our corporate sales department at corpsales@pearsoned.com or (800)
382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2022942536

Copyright © 2023 Softcover Inc.

All rights reserved. This publication is protected by copyright, and permission must be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any
means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions,
request forms and the appropriate contacts within the Pearson Education Global Rights & Permissions
Department, please visit www.pearson.com/permissions.

The source code in Ruby on RailsTM Tutorial, Seventh Edition, is released under the MIT License.

ISBN-13: 978-0-13-804984-3
ISBN-10: 0-13-804984-X

ScoutAutomatedPrintCode

mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearson.com/permissions

Contents

Foreword xvii

Preface xix

Acknowledgments xxv

About the Author xxvii

Chapter 1 From Zero to Deploy 1

1.1 Up and Running 5
1.1.1 Development Environment 7
1.1.2 Installing Rails 11

1.2 The First Application 14
1.2.1 Bundler 17
1.2.2 rails server 25
1.2.3 Model-View-Controller (MVC) 28
1.2.4 Hello, World! 30

1.3 Version Control with Git 35
1.3.1 Git Setup 36
1.3.2 What Good Does Git Do You? 41
1.3.3 GitHub 42
1.3.4 Branch, Edit, Commit, Merge 47

vii

viii Contents

1.4 Deploying 52
1.4.1 Heroku Setup and Deployment 54
1.4.2 Heroku Commands 59

1.5 Conclusion 61
1.5.1 What We Learned in This Chapter 62

1.6 Conventions Used in This Book 62

Chapter 2 A Toy App 65

2.1 Planning the Application 66
2.1.1 A Toy Model for Users 70
2.1.2 A Toy Model for Microposts 71

2.2 The Users Resource 71
2.2.1 A User Tour 73
2.2.2 MVC in Action 77
2.2.3 Weaknesses of This Users Resource 86

2.3 The Microposts Resource 87
2.3.1 A Micropost Microtour 87
2.3.2 Putting the micro in Microposts 91
2.3.3 A User has_many Microposts 93
2.3.4 Inheritance Hierarchies 98
2.3.5 Deploying the Toy App 102

2.4 Conclusion 104
2.4.1 What We Learned in This Chapter 106

Chapter 3 Mostly Static Pages 107

3.1 Sample App Setup 107
3.2 Static Pages 115

3.2.1 Generated Static Pages 116
3.2.2 Custom Static Pages 124

3.3 Getting Started with Testing 126
3.3.1 Our First Test 128
3.3.2 Red 130
3.3.3 Green 131
3.3.4 Refactor 134

Contents ix

3.4 Slightly Dynamic Pages 135
3.4.1 Testing Titles (Red) 136
3.4.2 Adding Page Titles (Green) 138
3.4.3 Layouts and Embedded Ruby (Refactor) 142
3.4.4 Setting the Root Route 149

3.5 Conclusion 152
3.5.1 What We Learned in This Chapter 153

3.6 Advanced Testing Setup 153
3.6.1 Minitest Reporters 154
3.6.2 Automated Tests with Guard 154

Chapter 4 Rails-Flavored Ruby 159

4.1 Motivation 159
4.1.1 Built-in Helpers 160
4.1.2 Custom Helpers 161

4.2 Strings and Methods 165
4.2.1 Strings 167
4.2.2 Objects and Message Passing 170
4.2.3 Method Definitions 174
4.2.4 Back to the Title Helper 176

4.3 Other Data Structures 177
4.3.1 Arrays and Ranges 177
4.3.2 Blocks 181
4.3.3 Hashes and Symbols 185
4.3.4 CSS Revisited 190

4.4 Ruby Classes 192
4.4.1 Constructors 192
4.4.2 Class Inheritance 193
4.4.3 Modifying Built-in Classes 197
4.4.4 A Controller Class 199
4.4.5 A User Class 202

4.5 Conclusion 204
4.5.1 What We Learned in This Chapter 205

x Contents

Chapter 5 Filling in the Layout 207

5.1 Adding Some Structure 207
5.1.1 Site Navigation 209
5.1.2 Bootstrap and Custom CSS 217
5.1.3 Partials 226

5.2 Sass and the Asset Pipeline 232
5.2.1 The Asset Pipeline 232
5.2.2 Syntactically Awesome Stylesheets 235

5.3 Layout Links 242
5.3.1 Contact Page 243
5.3.2 Rails Routes 245
5.3.3 Using Named Routes 248
5.3.4 Layout Link Tests 251

5.4 User Signup: A First Step 255
5.4.1 Users Controller 255
5.4.2 Signup URL 257

5.5 Conclusion 260
5.5.1 What We Learned in This Chapter 262

Chapter 6 Modeling Users 263

6.1 User Model 264
6.1.1 Database Migrations 265
6.1.2 The Model File 271
6.1.3 Creating User Objects 272
6.1.4 Finding User Objects 276
6.1.5 Updating User Objects 277

6.2 User Validations 279
6.2.1 A Validity Test 280
6.2.2 Validating Presence 282
6.2.3 Length Validation 286
6.2.4 Format Validation 288
6.2.5 Uniqueness Validation 294

6.3 Adding a Secure Password 303
6.3.1 A Hashed Password 303
6.3.2 User Has Secure Password 306

Contents xi

6.3.3 Minimum Password Standards 308
6.3.4 Creating and Authenticating a User 310

6.4 Conclusion 313
6.4.1 What We Learned in This Chapter 314

Chapter 7 Sign Up 315

7.1 Showing Users 316
7.1.1 Debug and Rails Environments 316
7.1.2 A Users Resource 322
7.1.3 Debugger 328
7.1.4 A Gravatar Image and a Sidebar 330

7.2 Signup Form 337
7.2.1 Using form_with 337
7.2.2 Signup Form HTML 342

7.3 Unsuccessful Signups 346
7.3.1 A Working Form 346
7.3.2 Strong Parameters 350
7.3.3 Signup Error Messages 353
7.3.4 A Test for Invalid Submission 358

7.4 Successful Signups 361
7.4.1 The Finished Signup Form 362
7.4.2 The Flash 365
7.4.3 The First Signup 368
7.4.4 A Test for Valid Submission 369

7.5 Professional-Grade Deployment 374
7.5.1 SSL in Production 374
7.5.2 Production Web Server 376
7.5.3 Production Database Configuration 377
7.5.4 Production Deployment 378

7.6 Conclusion 380
7.6.1 What We Learned in This Chapter 380

Chapter 8 Basic Login 381

8.1 Sessions 381
8.1.1 Sessions Controller 382

xii Contents

8.1.2 Login Form 386
8.1.3 Finding and Authenticating a User 389
8.1.4 Rendering with a Flash Message 393
8.1.5 A Flash Test 394

8.2 Logging In 398
8.2.1 The log_in Method 399
8.2.2 Current User 402
8.2.3 Changing the Layout Links 406
8.2.4 Menu Toggle 410
8.2.5 Mobile Styling 415
8.2.6 Testing Layout Changes 427
8.2.7 Login Upon Signup 433

8.3 Logging Out 437
8.4 Conclusion 443

8.4.1 What We Learned in This Chapter 443

Chapter 9 Advanced Login 445

9.1 Remember Me 445
9.1.1 Remember Token and Digest 446
9.1.2 Login with Remembering 453
9.1.3 Forgetting Users 462
9.1.4 Two Subtle Bugs 465

9.2 “Remember Me” Checkbox 470
9.3 Remember Tests 476

9.3.1 Testing the “Remember Me” Box 476
9.3.2 Testing the Remember Branch 483

9.4 Conclusion 489
9.4.1 What We Learned in This Chapter 490

Chapter 10 Updating, Showing, and Deleting Users 493

10.1 Updating Users 493
10.1.1 Edit Form 494
10.1.2 Unsuccessful Edits 501
10.1.3 Testing Unsuccessful Edits 503
10.1.4 Successful Edits (with TDD) 505

Contents xiii

10.2 Authorization 509
10.2.1 Requiring Logged-in Users 509
10.2.2 Requiring the Right User 515
10.2.3 Friendly Forwarding 521

10.3 Showing All Users 526
10.3.1 Users Index 526
10.3.2 Sample Users 533
10.3.3 Pagination 535
10.3.4 Users Index Test 539
10.3.5 Partial Refactoring 542

10.4 Deleting Users 544
10.4.1 Administrative Users 544
10.4.2 The destroy Action 549
10.4.3 User Destroy Tests 552

10.5 Conclusion 556
10.5.1 What We Learned in This Chapter 557

Chapter 11 Account Activation 559

11.1 Account Activations Resource 560
11.1.1 Account Activations Controller 561
11.1.2 Account Activation Data Model 562

11.2 Account Activation Emails 568
11.2.1 Mailer Templates 569
11.2.2 Email Previews 574
11.2.3 Email Tests 577
11.2.4 Updating the Users create Action 581

11.3 Activating the Account 585
11.3.1 Generalizing the authenticated? Method 585
11.3.2 Activation edit Action 590
11.3.3 Activation Tests and Refactoring 594

11.4 Email in Production 610
11.5 Conclusion 619

11.5.1 What We Learned in This Chapter 619

xiv Contents

Chapter 12 Password Reset 621

12.1 Password Resets Resource 623
12.1.1 Password Resets Controller 624
12.1.2 New Password Resets 627
12.1.3 Password Reset create Action 630

12.2 Password Reset Emails 634
12.2.1 Password Reset Mailer and Templates 634
12.2.2 Email Tests 640

12.3 Resetting the Password 641
12.3.1 Reset edit Action 641
12.3.2 Updating the Reset 645
12.3.3 Password Reset Test 651

12.4 Email in Production (Take 2) 658
12.5 Conclusion 659

12.5.1 What We Learned in This Chapter 659
12.6 Proof of Expiration Comparison 661

Chapter 13 User Microposts 663

13.1 A Micropost Model 663
13.1.1 The Basic Model 664
13.1.2 Micropost Validations 666
13.1.3 User/Micropost Associations 670
13.1.4 Micropost Refinements 674

13.2 Showing Microposts 679
13.2.1 Rendering Microposts 680
13.2.2 Sample Microposts 685
13.2.3 Profile Micropost Tests 690

13.3 Manipulating Microposts 693
13.3.1 Micropost Access Control 694
13.3.2 Creating Microposts 697
13.3.3 A Proto-Feed 705
13.3.4 Destroying Microposts 716
13.3.5 Micropost Tests 720

13.4 Micropost Images 726
13.4.1 Basic Image Upload 726

Contents xv

13.4.2 Image Validation 733
13.4.3 Image Resizing 738
13.4.4 Image Upload in Production 742

13.5 Conclusion 752
13.5.1 What We Learned in This Chapter 754

Chapter 14 Following Users 755

14.1 The Relationship Model 756
14.1.1 A Problem with the Data Model (and a Solution) 757
14.1.2 User/Relationship Associations 763
14.1.3 Relationship Validations 766
14.1.4 Followed Users 767
14.1.5 Followers 771

14.2 A Web Interface for Following Users 774
14.2.1 Sample Following Data 774
14.2.2 Stats and a Follow Form 775
14.2.3 Following and Followers Pages 785
14.2.4 A Working Follow Button the Standard Way 794
14.2.5 A Working Follow Button with Hotwire 797
14.2.6 Following Tests 803

14.3 The Status Feed 805
14.3.1 Motivation and Strategy 806
14.3.2 A First Feed Implementation 808
14.3.3 Subselects and Eager Loading 812

14.4 Conclusion 821
14.4.1 Guide to Further Resources 821
14.4.2 What We Learned in This Chapter 822

Index 825

This page intentionally left blank

Foreword

My former company (CD Baby) was one of the first to loudly switch to Ruby on
Rails, and then even more loudly switch back to PHP (Google me to read about the
drama). This book by Michael Hartl came so highly recommended that I had to try
it, and the Ruby on Rails Tutorial is what I used to switch back to Rails again.

Though I’ve worked my way through many Rails books, this is the one that finally
made me “get” it. Everything is done very much “the Rails way”—a way that felt very
unnatural to me before, but now after doing this book finally feels natural. This is also
the only Rails book that does test-driven development the entire time, an approach
highly recommended by the experts but which has never been so clearly demonstrated
before. Finally, by including Git, GitHub, and Heroku in the demo examples, the
author really gives you a feel for what it’s like to do a real-world project. The tutorial’s
code examples are not in isolation.

The linear narrative is such a great format. Personally, I powered through the Rails
Tutorial in three long days doing all the examples and challenges at the end of each
chapter. [This is not typical! Most readers take much longer to finish the tutorial.
—Michael] Do it from start to finish, without jumping around, and you’ll get the
ultimate benefit.

Enjoy!

—Derek Sivers (sivers.org)
Founder, CD Baby

xvii

https://sivers.org/
https://sivers.org/

This page intentionally left blank

Preface

Since its initial publication in 2010, the Ruby on RailsTM Tutorial has been one of
the leading introductions to web development. In this best-selling tutorial, you’ll
learn how to develop and deploy real, industrial-strength web applications with Ruby
on Rails, the open-source web framework that powers top websites such as Hulu,
GitHub, Shopify, and Airbnb. Newly updated for Rails 7, the Ruby on Rails Tutorial
covers both specific aspects of Rails and general principles of web development, so
what you learn here can be applied to a wide variety of different situations.

In the Ruby on Rails Tutorial, you’ll learn by doing through three applications
of increasing sophistication. The first application follows a long-standing tradition in
programming by developing (and deploying!) a simple app that displays the phrase
“hello, world!” The second, a simplified “toy app”, develops an application consisting
of users and posts, including a database to store user information.

Finally, the full sample app develops a professional-grade web application, includ-
ing systems for user registration, login and authentication, account activation and
password resets, and a follow/unfollow social layer inspired by Twitter. In the course
of developing the main sample app, the Ruby on Rails Tutorial does everything “for
real”, with good software-development practices throughout. This includes version
control, testing and test-driven development, and deployment to production.

In addition to teaching you specific skills, the Ruby on Rails Tutorial also helps you
develop technical sophistication—the seemingly magical ability to solve practically any

xix

xx Preface

technical problem. Technical sophistication includes concrete skills like version control
and coding, as well as fuzzier skills like Googling the error message and knowing
when to just reboot the darn thing. Throughout the Ruby on Rails Tutorial, we’ll have
abundant opportunities to develop technical sophistication in the context of real-world
examples.

Chapter by Chapter
Chapter 1 begins with a self-contained introduction to the basics of Ruby on Rails
web development, including setting up a development environment, using Git and
GitHub, and deploying to Heroku. The result is a simple but real “hello, world”
application deployed to the live Web.

Chapter 2 uses a technique called “scaffolding” to make a rudimentary database-
backed web application consisting of users and short (“micro”) posts. Although simple,
the resulting “toy app” covers several key aspects of modern web development, includ-
ing using databases to persist user data and following the model-view-controller
(MVC) pattern to separate components of the application for maintainability and
convenience.

Chapter 3 through Chapter 14 develop the tutorial’s full, professional-grade sam-
ple application. In Chapter 3, we’ll learn how to use Rails to create both static HTML
pages and pages with a small amount of dynamic content. Along the way, we’ll get
our first taste of automated testing, including an introduction to refactoring (changing
the code’s form without changing its function).

Chapter 4 explores some elements of the Ruby programming language that are
important for Rails, whether or not you have prior experience in the language. Topics
include data structures, functions, blocks, and classes.

Chapter 5 starts filling in the layout defined in Chapter 3, including an intro-
duction to Cascading Style Sheets (CSS) in Rails. Along the way, we’ll learn about
partials, Rails routes, and the asset pipeline, including an introduction to Syntactically
Awesome Style Sheets (Sass). Finally, this chapter adds an integration test to check that
the links on the final layout are correct.

In Chapter 6, we’ll take the first step toward letting users sign up by creating a
data model for users of our site, together with a way to store that data. The resulting
users have names, email addresses, and secure passwords, as well as validations and tests
for all of those attributes.

Chapter 7 uses an HTML form to submit user signup information to our applica-
tion, which will then be used to create a new user and save its attributes to the database.

Preface xxi

At the end of the signup process, it’s important to render a profile page with the newly
created user’s information, so we’ll begin by making a page for showing users, which
will serve as the first step toward a full user profile page. Along the way, we’ll build
on the work in previous chapters to write succinct and expressive integration tests.

In Chapter 8, we’ll implement a basic but still fully functional login system that
maintains the logged-in state until the browser is closed by the user. The result-
ing authentication system will allow us to customize the site and implement an
authorization model based on login status and identity of the current user.

In Chapter 9, we’ll build on the basic login system developed in Chapter 8 to add
“remember me” functionality to our site. This involves using permanent cookies, first
to automatically remember users when they log in, and then to optionally remember
users with a “remember me” checkbox.

Chapter 10 starts by giving users the ability to update their profiles, which will also
provide a natural opportunity to enforce an authorization model. Then we’ll make
a listing of all users using sample data and pagination. Finally, we’ll add the ability
to destroy users, wiping them clear from the database. Since we can’t allow just any
user to have such dangerous powers, we’ll take care to create a privileged class of
administrative users authorized to delete other users.

Chapter 11 adds an account-activation step to verify that the user controls the
email address they used to sign up. This will involve associating an activation token
and digest with a user, sending the user an email with a link including the token, and
activating the user upon clicking the link. In the process, we’ll also have a chance to
learn how to send email in Rails, both in development and in production.

Chapter 12 implements a password-reset option to handle the case of users for-
getting their passwords. In addition to following similar steps to those covered in
Chapter 11, implementing this feature will also require a web interface for sending
the password-reset email and actually resetting the password.

Chapter 13 adds small posts, or “microposts”, to the sample application. The
result is a full-strength version of the sketch from Chapter 2: a Micropost data model,
associations with the User model, and the pages needed to manipulate and display the
results. This includes the ability to include images in microposts, thereby constituting
an introduction to image uploading and storage on Amazon S3.

In Chapter 14, we’ll complete the Ruby on Rails Tutorial sample application by
adding a social layer that allows users to follow and unfollow other users, resulting
in each user’s Home page displaying a status feed of the followed users’ microp-
osts. Topics include modeling relationships between users, building the corresponding

xxii Preface

web interface (with an introduction to responsive web applications using Hotwire),
and making a status feed. To help with the transition from tutorial to independent
development, we’ll end with some pointers to more advanced resources.

Additional Features
The Ruby on Rails Tutorial includes a large number of exercises to help you test your
understanding and to extend the material in the main text. The exercises include
frequent hints and often include the expected answers, with exercise solutions available
by separate subscription at www.railstutorial.org.

Final Thoughts
The Ruby on Rails Tutorial gives you a thorough and practical introduction to modern
web development with Ruby on Rails. After learning the techniques covered in this
tutorial, and especially after developing your technical sophistication, you’ll know
everything you need to develop custom database-backed web applications and deploy
them to the live Web. You’ll also be ready for a huge variety of other resources,
including books, blogs, and online documentation. The resulting skillset will put you
in a great position to get a job as a web developer, start a career as a freelancer, or even
found a company of your own.

Learn Enough Scholarships
The Ruby on Rails Tutorial is part of Learn Enough, which is committed to making a
technical education available to as wide a variety of people as possible. As part of this
commitment, in 2016 Learn Enough created the Learn Enough Scholarship program.1

Scholarship recipients get free or deeply discounted access to the Learn Enough All
Access subscription, which includes online book content, embedded videos, exercises,
and community exercise answers for all of the Learn Enough courses (including the
full Ruby on Rails Tutorial).

As noted in a 2019 RailsConf Lightning Talk,2 the Learn Enough Scholarship
application process is incredibly simple: Just fill out a confidential text area telling us
a little about your situation. The scholarship criteria are generous and flexible—we
understand that there are an enormous number of reasons for wanting a scholarship,

1. https://www.learnenough.com/scholarship

2. https://www.learnenough.com/scholarship-talk

https://youtu.be/AI5wmnzzBqc?t=1076
http://www.railstutorial.org
https://www.learnenough.com/scholarship
https://www.learnenough.com/scholarship-talk

Preface xxiii

from being a student, to being between jobs, to living in a country with an unfavorable
exchange rate against the U.S. dollar. Chances are that if you feel like you’ve got a good
reason, we’ll think so, too.

So far, Learn Enough has awarded more than 2,500 scholarships to aspiring devel-
opers around the country and around the world. To apply, visit the Learn Enough
Scholarship page at www.learnenough.com/scholarship. Maybe the next scholarship
recipient could be you!

Register your copy of Ruby on RailsTM Tutorial, Seventh Edition, on the InformIT
site for convenient access to updates and/or corrections as they become available.
To start the registration process, go to informit.com/register and log in or create
an account. Enter the product ISBN (9780138049843) and click Submit. Look on
the Registered Products tab for an Access Bonus Content link next to this product,
and follow that link to access any available bonus materials. If you would like to be
notified of exclusive offers on new editions and updates, please check the box to
receive email from us.

http://www.learnenough.com/scholarship
http://informit.com/register

This page intentionally left blank

Acknowledgments

The Ruby on RailsTM Tutorial owes a lot to my previous Rails book, RailsSpace, and
hence to my coauthor Aurelius Prochazka. I’d like to thank Aure both for the work he
did on that book and for his support of this one. I’d also like to thank Debra Williams
Cauley, my editor on both RailsSpace and the Ruby on Rails Tutorial.

I’d like to acknowledge a long list of Rubyists who have taught and inspired
me over the years: David Heinemeier Hansson, Yehuda Katz, Carl Lerche,
Jeremy Kemper, Xavier Noria, Ryan Bates, Geoffrey Grosenbach, Peter Cooper,
Matt Aimonetti, Mark Bates, Gregg Pollack, Wayne E. Seguin, Amy Hoy, Dave
Chelimsky, Pat Maddox, Tom Preston-Werner, Chris Wanstrath, Chad Fowler, Josh
Susser, Obie Fernandez, Ian McFarland, Steph Bristol, Pratik Naik, Sarah Mei, Sarah
Allen, Wolfram Arnold, Alex Chaffee, Giles Bowkett, Evan Dorn, Long Nguyen,
James Lindenbaum, Adam Wiggins, Tikhon Bernstam, Ron Evans, Wyatt Greene,
Miles Forrest, Sandi Metz, Ryan Davis, Aaron Patterson, Aja Hammerly, Richard
“Schneems” Schneeman, the good people at Pivotal Labs, the Heroku gang, the
thoughtbot folks, and the GitHub crew.

I’d like to thank technical reviewer Andrew Thai for his careful reading of the
original manuscript and for his helpful suggestions. I’d also like to thank my cofounders
at Learn Enough (https://www.learnenough.com/), Nick Merwin and Lee Donahoe,
for all their help in preparing this tutorial.

Finally, many, many readers—far too many to list—have contributed a huge num-
ber of bug reports and suggestions during the writing of this book, and I gratefully
acknowledge their help in making it as good as it can be.

xxv

http://aure.com/
https://www.learnenough.com/

This page intentionally left blank

About the Author

Michael Hartl (https://www.michaelhartl.com/) is the creator of the Ruby on
Rails Tutorial (https://www.railstutorial.org/), one of the leading introductions
to web development, and is cofounder and principal author at Learn Enough
(https://www.learnenough.com/). Previously, he was a physics instructor at the Cal-
ifornia Institute of Technology (Caltech), where he received a Lifetime Achievement
Award for Excellence in Teaching. He is a graduate of Harvard College, has a Ph.D. in
Physics from Caltech, and is an alumnus of the Y Combinator entrepreneur program.

xxvii

https://www.michaelhartl.com/
https://www.railstutorial.org/
https://www.railstutorial.org/
https://www.learnenough.com/
https://www.caltech.edu/
https://www.caltech.edu/
https://www.michaelhartl.com/ascit/awards2000.html
https://www.michaelhartl.com/ascit/awards2000.html
https://college.harvard.edu/
https://thesis.library.caltech.edu/1940/
https://thesis.library.caltech.edu/1940/
https://www.caltech.edu/
https://www.ycombinator.com/
https://www.michaelhartl.com/
https://www.railstutorial.org/
https://www.learnenough.com/

This page intentionally left blank

CHAPTER 7
Sign Up

Now that we have a working User model, it’s time to add an ability few websites can
live without: letting users sign up. We’ll use an HTML form to submit user signup
information to our application (Section 7.2), which will then be used to create a new
user and save its attributes to the database (Section 7.4). At the end of the signup pro-
cess, it’s important to render a profile page with the newly created user’s information,
so we’ll begin by making a page for showing users, which will serve as the first step
toward implementing the REST architecture for users (Section 2.2.2). Along the way,
we’ll build on our work in Section 5.3.4 to write succinct and expressive integration
tests.

In this chapter, we’ll rely on the User model validations from Chapter 6 to
increase the odds of new users having valid email addresses. In Chapter 11, we’ll
make sure of email validity by adding a separate account activation step to user
signup.

Although this tutorial is designed to be as simple as possible while still being
professional-grade, web development is a complicated subject, and Chapter 7 nec-
essarily marks a significant increase in the difficulty of the exposition. I recommend
taking your time with the material and reviewing it as necessary. (Some readers have
reported simply doing the chapter twice is a helpful exercise.) You might also con-
sider subscribing to the courses at Learn Enough (https://www.learnenough.com/)
to gain additional assistance, both with this tutorial and with related Learn Enough
titles (especially Learn Enough Ruby to Be Dangerous (https://www.learnenough.
com/ruby)).

315

https://www.learnenough.com/
https://www.learnenough.com/ruby
https://www.learnenough.com/ruby
https://www.learnenough.com/ruby

316 Chapter 7: Sign Up

Figure 7.1: A mockup of the user profile made in this section.

7.1 Showing Users
In this section, we’ll take the first steps toward the final profile by making a page to
display a user’s name and profile photo, as indicated by the mockup in Figure 7.1.1

Our eventual goal for the user profile pages is to show the user’s profile image, basic
user data, and a list of microposts, as mocked up in Figure 7.2.2 (Figure 7.2 includes
an example of lorem ipsum text, which has a fascinating story that you should definitely
read about some time.) We’ll complete this task, and with it the sample application,
in Chapter 14.

If you’re following along with version control, make a topic branch as usual:

$ git checkout -b sign-up

7.1.1 Debug and Rails Environments

The profiles in this section will be the first truly dynamic pages in our application.
Although the view will exist as a single page of code, each profile will be customized

1. Mockingbird doesn’t support custom images like the profile photo in Figure 7.1; I put that in by hand
using GIMP.

2. Hippo image courtesy of Eric Isselee/123RF.

http://www.straightdope.com/columns/read/2290/what-does-the-filler-text-lorem-ipsum-mean
https://gomockingbird.com/
https://www.gimp.org/
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/

7.1 Showing Users 317

Figure 7.2: A mockup of our best guess at the final profile page.

using information retrieved from the application’s database. As preparation for adding
dynamic pages to our sample application, now is a good time to add some debug
information to our site layout (Listing 7.1). This displays some useful information
about each page using the built-in debug method and params variable (which we’ll
learn more about in Section 7.1.2).

Listing 7.1: Adding some debug information to the site layout.
app/views/layouts/application.html.erb

<!DOCTYPE html>
<html>

.

.

.
<body>

<%= render 'layouts/header' %>
<div class="container">

318 Chapter 7: Sign Up

Since we don’t want to display debug information to users of a deployed
application, Listing 7.1 uses

if Rails.env.development?

to restrict the debug information to the development environment, which is one
of three environments defined by default in Rails (Box 7.1).3 In particular,
Rails.env.development? is true only in a development environment, so the
embedded Ruby

<%= debug(params) if Rails.env.development? %>

won’t be inserted into production applications or tests. (Inserting the debug informa-
tion into tests probably wouldn’t do any harm, but it probably wouldn’t do any good,
either, so it’s best to restrict the debug display to development only.)

Box 7.1: Rails environments

Rails comes equipped with three environments: test, development, and
production. The default environment for the Rails console is development:

$ rails console
Loading development environment
>> Rails.env
=> "development"
>> Rails.env.development?
=> true
>> Rails.env.test?
=> false

3. You can define your own custom environments as well; see the RailsCast on adding an environment
(http://railscasts.com/episodes/72-adding-an-environment) for details.

<%= yield %>
<%= render 'layouts/footer' %>
<%= debug(params) if Rails.env.development? %>

</div>
</body>

</html>

http://railscasts.com/episodes/72-adding-an-environment
http://railscasts.com/episodes/72-adding-an-environment

7.1 Showing Users 319

As you can see, Rails provides a Rails object with an env attribute and associated
environment boolean methods, so that, for example, Rails.env.test? returns
true in a test environment and false otherwise.

If you ever need to run a console in a different environment (to debug a test,
for example), you can pass the environment as an option to the console script:

$ rails console --environment test
Loading test environment
>> Rails.env
=> "test"
>> Rails.env.test?
=> true

As with the console, development is the default environment for the Rails
server, but you can also run it in a different environment:

$ rails server --environment production

If you view your app running in production, it won’t work without a production
database, which we can create by running rails db:migrate in production:

$ rails db:migrate RAILS_ENV=production

By the way, if you have deployed your sample app to Heroku, you can see its
environment using heroku run rails console:

$ heroku run rails console
>> Rails.env
=> "production"
>> Rails.env.production?
=> true

Naturally, since Heroku is a platform for production sites, it runs each application
in a production environment.

To make the debug output look nicer, we’ll add some rules to the custom
stylesheet created in Chapter 5, as shown in Listing 7.2.4

4. The exact appearance of the Rails debug information is slightly version-dependent. For example, as of
Rails 5 the debug information shows the permitted status of the information, a subject we’ll cover in
Section 7.3.2. Use your technical sophistication (Box 1.2) to resolve such minor discrepancies.

320 Chapter 7: Sign Up

The result is shown in Figure 7.3.
The debug output in Figure 7.3 gives potentially useful information about the

page being rendered:

Figure 7.3: The sample application Home page with debug information.

Listing 7.2: Adding code for a prettier debug box.
app/assets/stylesheets/custom.scss

@import "bootstrap-sprockets";
@import "bootstrap";
.
.
.
/* miscellaneous */

.debug_dump {
clear: both;
float: left;
width: 100%;
margin-top: 45px;

}

7.1 Showing Users 321

#<ActionController::Parameters {"controller"=>"static_pages", "action"=>"home"}
permitted: false>

This is a literal representation of params, which is basically a hash, and in this
case identifies the controller and action for the page. We’ll see another example in
Section 7.1.2.

The specific representation of the debug information is exactly the kind of
thing that might depend on the exact version of Rails, and in fact prior to Rails 7
debug(params) was displayed in the so-called YAML format.5 Because Rails has
generally been stable at the level of this tutorial for many years now, some of the
screenshots still show this earlier representation (Figure 7.4). Being able to handle
such minor discrepancies is a hallmark of technical sophistication (Box 1.2).

Figure 7.4: The debug information in an earlier version of Rails.

5. YAML is a friendly data format designed to be both machine- and human-readable. (Its name is a recursive
acronym standing for “YAML Ain’t Markup Language”.)

http://www.yaml.org/
http://catb.org/jargon/html/R/recursive-acronym.html

322 Chapter 7: Sign Up

Exercises

To see other people’s answers and to record your own, subscribe to the Rails Tuto-
rial course (https://www.railstutorial.org/) or to the Learn Enough All Access
Subscription (https://www.learnenough.com/all-access).

1. Visit /about in your browser and use the debug information to determine the
controller and action of the params hash.

2. In the Rails console, pull the first user out of the database and assign it to the vari-
able user. What is the output of puts user.attributes.to_yaml? Compare
this to using the y method via y user.attributes.

7.1.2 A Users Resource

In order to make a user profile page, we need to have a user in the database, which
introduces a chicken-and-egg problem: How can the site have a user before there is a
working signup page? Happily, this problem has already been solved—in Section 6.3.4,
we created a User record by hand using the Rails console, so there should be one user
in the database:

$ rails console
>> User.count
=> 1
>> User.first
=> #<User id: 1, name: "Michael Hartl", email: "mhartl@example.com",
created_at: "2022-03-11 03:15:38", updated_at: "2022-03-11 03:15:38",
password_digest: [FILTERED]>

(If you don’t currently have a user in your database, you should visit Section 6.3.4 now
and complete it before proceeding.) We see from the console output above that the
user has id 1, and our goal now is to make a page to display this user’s information.
We’ll follow the conventions of the REST architecture favored in Rails applications
(Box 2.2), which means representing data as resources that can be created, shown,
updated, or destroyed—four actions corresponding to the four fundamental operations
POST, GET, PATCH, and DELETE defined by the HTTP standard (Box 3.2).

When following REST principles, resources are typically referenced using the
resource name and a unique identifier. What this means in the context of users—
which we’re now thinking of as a Users resource—is that we should view the user with

https://www.railstutorial.org/
https://www.railstutorial.org/
https://www.learnenough.com/all-access
https://www.learnenough.com/all-access
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

7.1 Showing Users 323

Figure 7.5: The current state of /users/1.

id 1 by issuing a GET request to the URL /users/1. Here the show action is implicit
in the type of request—when Rails’ REST features are activated, GET requests are
automatically handled by the show action.

We saw in Section 2.2.1 that the page for a user with id 1 has URL
/users/1. Unfortunately, visiting that URL right now just gives an error
(Figure 7.5).

We can get the routing for /users/1 to work by adding a single line to our routes
file (config/routes.rb):

resources :users

The result appears in Listing 7.3.

324 Chapter 7: Sign Up

Table 7.1: RESTful routes provided by the Users resource in Listing 7.3.
HTTP
request
method URL Action Named route Purpose

GET /users index users_path page to list all users
GET /users/1 show user_path(user) page to show user
GET /users/new new new_user_path page to make a

new user (signup)
POST /users create users_path create a new user
GET /users/1/edit edit edit_user_path(user) page to edit user

with id 1
PATCH /users/1 update user_path(user) update user
DELETE /users/1 destroy user_path(user) delete user

Although our immediate motivation is making a page to show users, the single
line resources :users doesn’t just add a working /users/1 URL; it endows our
sample application with all the actions needed for a RESTful Users resource,6 along
with a large number of named routes (Section 5.3.3) for generating user URLs. The
resulting correspondence of URLs, actions, and named routes is shown in Table 7.1.
(Compare to Table 2.2.) Over the course of the next three chapters, we’ll cover all of
the other entries in Table 7.1 as we fill in all the actions necessary to make Users a
fully RESTful resource.

6. This means that the routing works, but the corresponding pages don’t necessarily work at this point. For
example, /users/1/edit gets routed properly to the edit action of the Users controller, but since the edit
action doesn’t exist yet actually hitting that URL will return an error.

Listing 7.3: Adding a Users resource to the routes file.
config/routes.rb

Rails.application.routes.draw do
root "static_pages#home"
get "/help", to: "static_pages#help"
get "/about", to: "static_pages#about"
get "/contact", to: "static_pages#contact"
get "/signup", to: "users#new"
resources :users

end

7.1 Showing Users 325

Figure 7.6: The URL /users/1 with routing but no page.

With the code in Listing 7.3, the routing works, but there’s still no page there
(Figure 7.6). To fix this, we’ll begin with a minimalist version of the profile page,
which we’ll flesh out in Section 7.1.4.

We’ll use the standard Rails location for showing a user, which is app/views/-
users/show.html.erb. Unlike the new.html.erb view, which we created with
the generator in Listing 5.38, the show.html.erb file doesn’t currently exist, so
you’ll have to create it by hand,7 and then fill it with the content shown in
Listing 7.4.

7. Using, e.g., touch app/views/users/show.html.erb.

326 Chapter 7: Sign Up

This view uses embedded Ruby to display the user’s name and email address, assuming
the existence of an instance variable called @user. Of course, eventually the real user
show page will look very different (and won’t display the email address publicly).

In order to get the user show view to work, we need to define an @user variable
in the corresponding show action in the Users controller. As you might expect, we
use the find method on the User model (Section 6.1.4) to retrieve the user from the
database, as shown in Listing 7.5.

Here we’ve used params to retrieve the user id. When we make the appropriate
request to the Users controller, params[:id] will be the user id 1, so the effect
is the same as the find method User.find(1) we saw in Section 6.1.4. (Techni-
cally, params[:id] is the string "1", but find is smart enough to convert this to an
integer.)

With the user view and action defined, the URL /users/1 works perfectly, as
seen in Figure 7.7. (If you haven’t restarted the Rails server since adding bcrypt, you
may have to do so at this time. This sort of thing is a good application of technical
sophistication (Box 1.2).) Note that the debug information in Figure 7.7 confirms the
value of params[:id]:

{"controller"=>"users", "action"=>"show", "id"=>"1"}

Listing 7.4: A stub view for showing user information.
app/views/users/show.html.erb

<%= @user.name %>, <%= @user.email %>

Listing 7.5: The Users controller with a show action.
app/controllers/users_controller.rb

class UsersController < ApplicationController

def show
@user = User.find(params[:id])

end

def new
end

end

7.1 Showing Users 327

Figure 7.7: The user show page after adding a Users resource.

This is why the code

User.find(params[:id])

in Listing 7.5 finds the user with id 1.

Exercises

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Subscription.

1. Using embedded Ruby, add the created_at and updated_at “magic column”
attributes to the user show page from Listing 7.4.

2. Using embedded Ruby, add Time.now to the user show page. What happens
when you refresh the browser?

https://www.railstutorial.org/
https://www.railstutorial.org/
https://www.learnenough.com/all-access

328 Chapter 7: Sign Up

7.1.3 Debugger

We saw in Section 7.1.2 how the information from the debug method could help us
understand what’s going on in our application, but there’s also a more direct way to
get debugging information. To see how it works, we just need to add a line consisting
of debugger to our application, as shown in Listing 7.6.

Now, when we visit /users/1, the Rails server shows an rdbg (Ruby debugger)
prompt (Figure 7.8):

Figure 7.8: The debugger prompt in the Rails server.

Listing 7.6: The Users controller with a debugger.
app/controllers/users_controller.rb

class UsersController < ApplicationController

def show
@user = User.find(params[:id])
debugger

end

def new
end

end

(rdbg)

7.1 Showing Users 329

We can treat the debugger like a Rails console, issuing commands to figure out
the state of the application:

To release the prompt and continue execution of the application, press Ctrl-D, then
remove the debugger line from the show action (Listing 7.7).

Whenever you’re confused about something in a Rails application, it’s a good
practice to put debugger close to the code you think might be causing the trouble.
Inspecting the state of the system using byebug is a powerful method for tracking
down application errors and interactively debugging your application.

Exercises

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Subscription.

1. With the debugger in the show action as in Listing 7.6, hit /users/1. Use puts
to display the value of the YAML form of the params hash. Hint: Refer to the
relevant exercise in Section 7.1.1. How does it compare to the debug information
shown by the debug method in the site template?

(rdbg) @user.name
"Michael Hartl"
(rdbg) @user.email
"michael@example.com"
(rdbg) params[:id]
"1"

Listing 7.7: The Users controller with the debugger line removed.
app/controllers/users_controller.rb

class UsersController < ApplicationController

def show
@user = User.find(params[:id])

end

def new
end

end

https://www.railstutorial.org/
https://www.railstutorial.org/
https://www.learnenough.com/all-access

330 Chapter 7: Sign Up

2. Put the debugger in the User new action and hit /users/new. What is the value
of @user?

7.1.4 A Gravatar Image and a Sidebar

Having defined a basic user page in the previous section, we’ll now flesh it out a little
with a profile image for each user and the first cut of the user sidebar. We’ll start by
adding a “globally recognized avatar”, or Gravatar, to the user profile.8 Gravatar is a
free service that allows users to upload images and associate them with email addresses
they control. As a result, Gravatars are a convenient way to include user profile images
without going through the trouble of managing image upload, cropping, and storage;
all we need to do is construct the proper Gravatar image URL using the user’s email
address and the corresponding Gravatar image will automatically appear. (We’ll learn
how to handle custom image upload in Section 13.4.)

Our plan is to define a gravatar_for helper function to return a Gravatar image
for a given user, as shown in Listing 7.8.

By default, methods defined in any helper file are automatically available in any
view, but for convenience we’ll put the gravatar_for method in the file for helpers
associated with the Users controller. As noted in the Gravatar documentation, Gravatar
URLs are based on an MD5 hash of the user’s email address. In Ruby, the MD5
hashing algorithm is implemented using the hexdigest method, which is part of the
Digest library:

8. In Hinduism, an avatar is the manifestation of a deity in human or animal form. By extension, the term
avatar is commonly used to mean some kind of personal representation, especially in a virtual environment.
(In the context of Twitter and other social media, the term avi (usually pronounced “ay-vee-eye”) has gained
currency, which is likely a mutated form of avatar.)

Listing 7.8: The user show view with name and Gravatar.
app/views/users/show.html.erb

<% provide(:title, @user.name) %>
<h1>
<%= gravatar_for @user %>
<%= @user.name %>

</h1>

https://gravatar.com/
http://en.gravatar.com/site/implement/hash/
https://en.wikipedia.org/wiki/MD5

7.1 Showing Users 331

Since email addresses are case-insensitive (Section 6.2.4) but MD5 hashes are not,
we’ve used the downcasemethod to ensure that the argument to hexdigest is all low-
ercase. (Because of the email downcasing callback in Listing 6.32, this will never make
a difference in this tutorial, but it’s a good practice in case the gravatar_for method
ever gets used on email addresses from other sources.) The resulting gravatar_for
helper appears in Listing 7.9.

The code in Listing 7.9 returns an image tag for the Gravatar with a gravatar CSS
class and alt text equal to the user’s name (which is especially convenient for visually
impaired users using a screen reader).

The resulting profile page should appear as in Figure 7.9. The displayed Gra-
vatar image is a generic default because michael@example.com isn’t a real email
address and hence can’t be associated with a custom Gravatar. (In fact, as you
can see by visiting it, the example.com domain is reserved for examples just
like this one.) By the way, if you completed the exercises in Section 5.1.2, be
sure to remove the CSS from Listing 5.11 so that the gravatar image displays
correctly.

Listing 7.9: Defining a gravatar_for helper method.
app/helpers/users_helper.rb

module UsersHelper

Returns the Gravatar for the given user.
def gravatar_for(user)

gravatar_id = Digest::MD5::hexdigest(user.email.downcase)
gravatar_url = "https://secure.gravatar.com/avatar/#{gravatar_id}"
image_tag(gravatar_url, alt: user.name, class: "gravatar")

end
end

>> email = "MHARTL@example.COM"
>> Digest::MD5::hexdigest(email.downcase)
=> "1fda4469bcbec3badf5418269ffc5968"

https://www.example.com/

332 Chapter 7: Sign Up

Figure 7.9: The user profile page with the default Gravatar.

To get our application to display a custom Gravatar, we’ll use the update method
(Section 6.1.5) to change the user’s email to something I control:9

9. The password confirmation isn’t technically necessary here because has_secure_password (Section 6.3.1)
actually allows the confirmation to be nil. The reason is so that apps that don’t need password confirmation
can simply omit the confirmation field. We do want a confirmation, though, so we’ll include such a field in
Listing 7.15.

$ rails console
>> user = User.first
>> user.update(name: "Example User",

email: "example@railstutorial.org",?>
?>
?>

password: "foobar",
password_confirmation: "foobar")

=> true

7.1 Showing Users 333

Figure 7.10: The user show page with a custom Gravatar.

Here we’ve assigned the user the email address example@railstutorial.org, which
I’ve associated with the Rails Tutorial logo, as seen in Figure 7.10.

The last element needed to complete the mockup from Figure 7.1 is the initial
version of the user sidebar. We’ll implement it using the aside tag, which is used for
content (such as sidebars) that complements the rest of the page but can also stand
alone. We include row and col-md-4 classes, which are both part of Bootstrap. The
code for the modified user show page appears in Listing 7.10.

Listing 7.10: Adding a sidebar to the user show view.
app/views/users/show.html.erb

<% provide(:title, @user.name) %>
<div class="row">

<aside class="col-md-4">

mailto:example@railstutorial.org
http://app/views/users/show.html.erb

334 Chapter 7: Sign Up

With the HTML elements and CSS classes in place, we can style the profile page
(including the sidebar and the Gravatar) with the SCSS shown in Listing 7.11.10 (Note
the nesting of the table CSS rules, which works only because of the Sass engine used
by the asset pipeline.) The resulting page is shown in Figure 7.11.

Figure 7.11: The user show page with a sidebar and CSS.

10. Listing 7.11 includes the .gravatar_edit class, which we’ll put to work in Chapter 10.

<section class="user_info">
<h1>
<%= gravatar_for @user %>
<%= @user.name %>

</h1>
</section>

</aside>
</div>

7.1 Showing Users 335

Exercises

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Subscription.

Listing 7.11: SCSS for styling the user show page, including the sidebar.
app/assets/stylesheets/custom.scss

.

.

.
/* sidebar */

aside {
section.user_info {

margin-top: 20px;
}
section {

padding: 10px 0;
margin-top: 20px;
&:first-child {
border: 0;
padding-top: 0;

}
span {
display: block;
margin-bottom: 3px;
line-height: 1;

}
h1 {
font-size: 1.4em;
text-align: left;
letter-spacing: -1px;
margin-bottom: 3px;
margin-top: 0px;

}
}

}

.gravatar {
float: left;
margin-right: 10px;

}

.gravatar_edit {
margin-top: 15px;

}

https://www.railstutorial.org/
https://www.railstutorial.org/
https://www.learnenough.com/all-access

336 Chapter 7: Sign Up

1. Associate a Gravatar with your primary email address if you haven’t already. What
is the MD5 hash associated with the image?

2. Verify that the code in Listing 7.12 allows the gravatar_for helper defined
in Section 7.1.4 to take an optional size parameter, allowing code like gra-
vatar_for user, size: 50 in the view. (We’ll put this improved helper to use
in Section 10.3.1.)

3. The options hash used in the previous exercise is still commonly used, but as
of Ruby 2.0 we can use keyword arguments instead. Confirm that the code in
Listing 7.13 can be used in place of Listing 7.12. What are the diffs between the
two?

Listing 7.12: Adding an options hash in the gravatar_for helper.
app/helpers/users_helper.rb

module UsersHelper

Returns the Gravatar for the given user.
def gravatar_for(user, options = { size: 80 })

size = options[:size]
gravatar_id = Digest::MD5::hexdigest(user.email.downcase)
gravatar_url = "https://secure.gravatar.com/avatar/#{gravatar_id}?s=#{size}"
image_tag(gravatar_url, alt: user.name, class: "gravatar")

end
end

Listing 7.13: Using keyword arguments in the gravatar_for helper.
app/helpers/users_helper.rb

module UsersHelper

Returns the Gravatar for the given user.
def gravatar_for(user, size: 80)

gravatar_id = Digest::MD5::hexdigest(user.email.downcase)
gravatar_url = "https://secure.gravatar.com/avatar/#{gravatar_id}?s=#{size}"
image_tag(gravatar_url, alt: user.name, class: "gravatar")

end
end

7.2 Signup Form 337

7.2 Signup Form
Now that we have a working (though not yet complete) user profile page, we’re ready
to make a signup form for our site. We saw in Figure 5.11 (shown again in Figure 7.12)
that the signup page is currently blank: useless for signing up new users. The goal of
this section is to start changing this sad state of affairs by producing the signup form
mocked up in Figure 7.13.

7.2.1 Using form_with

The heart of the signup page is a form for submitting the relevant signup informa-
tion (name, email, password, confirmation). We can accomplish this in Rails with the

Figure 7.12: The current state of the signup page /signup.

338 Chapter 7: Sign Up

Figure 7.13: A mockup of the user signup page.

form_with helper method, which uses an Active Record object to build a form using
the object’s attributes.

Recalling that the signup page /signup is routed to the new action in the
Users controller (Listing 5.43), our first step is to create the User object required
as an argument to form_with. The resulting @user variable definition appears in
Listing 7.14.

Listing 7.14: Adding an @user variable to the new action.
app/controllers/users_controller.rb

class UsersController < ApplicationController

def show
@user = User.find(params[:id])

end

7.2 Signup Form 339

The form itself appears as in Listing 7.15. We’ll discuss it in detail in Section 7.2.2,
but first let’s style it a little.

To make the form look a little nicer, add the SCSS shown in Listing 7.16.

def new
@user = User.new

end
end

Listing 7.15: A form to sign up new users.
app/views/users/new.html.erb

<% provide(:title, 'Sign up') %>
<h1>Sign up</h1>

<div class="row">
<div class="col-md-6 col-md-offset-3">

<%= form_with(model: @user) do |f| %>
<%= f.label :name %>
<%= f.text_field :name %>

<%= f.label :email %>
<%= f.email_field :email %>

<%= f.label :password %>
<%= f.password_field :password %>

<%= f.label :password_confirmation, "Confirmation" %>
<%= f.password_field :password_confirmation %>

<%= f.submit "Create my account", class: "btn btn-primary" %>
<% end %>

</div>
</div>

Listing 7.16: CSS for the signup form (including a mixin).
app/assets/stylesheets/custom.scss

@import "bootstrap-sprockets";
@import "bootstrap";

/* mixins, variables, etc. */

340 Chapter 7: Sign Up

Listing 7.16 introduces the Sass mixin facility, in this case called box_sizing. A mixin
allows a group of CSS rules to be packaged up and used for multiple elements,
converting

$gray-medium-light: #eaeaea;

@mixin box_sizing {
-moz-box-sizing: border-box;
-webkit-box-sizing: border-box;
box-sizing: border-box;

}
.
.
.
/* forms */

input, textarea, select, .uneditable-input {
border: 1px solid #bbb;
width: 100%;
margin-bottom: 15px;
@include box_sizing;

}

input {
height: auto !important;

}

input, textarea, select, .uneditable-input {
.
.
.
@include box_sizing;

}

to

input, textarea, select, .uneditable-input {
.
.
.
-moz-box-sizing: border-box;
-webkit-box-sizing: border-box;
box-sizing: border-box;

}

7.2 Signup Form 341

Once the CSS rules in Listing 7.16 have been applied, the signup page appears as
in Figure 7.14.

Exercises

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Subscription.

1. Confirm by replacing all occurrences of f with foobar that the name of the
block variable is irrelevant as far as the result is concerned. Why might foobar
nevertheless be a bad choice?

Figure 7.14: The user signup form.

https://www.railstutorial.org/
https://www.railstutorial.org/
https://www.learnenough.com/all-access

342 Chapter 7: Sign Up

7.2.2 Signup Form HTML

To understand the form defined in Listing 7.15, it’s helpful to break it into smaller
pieces. We’ll first look at the outer structure, which consists of embedded Ruby
opening with a call to form_with and closing with end:

The presence of the do keyword indicates that form_with takes a block with one
variable, which we’ve called f (for “form”).

As is usually the case with Rails helpers, we don’t need to know any details about
the implementation, but what we do need to know is what the f object does: When
called with a method corresponding to an HTML form element—such as a text field,
radio button, or password field—f returns code for that element specifically designed
to set an attribute of the @user object. In other words,

creates the HTML needed to make a labeled text field element appropriate for setting
the name attribute of a User model.

If you look at the HTML for the generated form by Ctrl-clicking and using the
“inspect element” function of your browser, the page’s source should look something
like Listing 7.17. Let’s take a moment to discuss its structure.

<%= form_with(model: @user) do |f| %>
.
.
.

<% end %>

<%= f.label :name %>
<%= f.text_field :name %>

Listing 7.17: The HTML for the form in Figure 7.14.

<form accept-charset="UTF-8" action="/users" class="new_user"
id="new_user" method="post">

<input name="authenticity_token" type="hidden"
value="NNb6+J/j46LcrgYUC60wQ2titMuJQ5lLqyAbnbAUkdo=" />

<label for="user_name">Name</label>
<input id="user_name" name="user[name]" type="text" />

<label for="user_email">Email</label>
<input id="user_email" name="user[email]" type="email" />

http://www.w3schools.com/html/html_forms.asp

7.2 Signup Form 343

We’ll start with the internal structure of the document. Comparing Listing 7.15
with Listing 7.17, we see that the embedded Ruby

<label for="user_password">Password</label>
<input id="user_password" name="user[password]"

type="password" />

<label for="user_password_confirmation">Confirmation</label>
<input id="user_password_confirmation"

name="user[password_confirmation]" type="password" />

<input class="btn btn-primary" name="commit" type="submit"
value="Create my account" />

</form>

<%= f.label :name %>
<%= f.text_field :name %>

produces the HTML

<label for="user_name">Name</label>
<input id="user_name" name="user[name]" type="text" />

while

<%= f.label :email %>
<%= f.email_field :email %>

produces the HTML

<label for="user_email">Email</label>
<input id="user_email" name="user[email]" type="email" />

and

<%= f.label :password %>
<%= f.password_field :password %>

produces the HTML

<label for="user_password">Password</label>
<input id="user_password" name="user[password]" type="password" />

344 Chapter 7: Sign Up

As seen in Figure 7.15, text and email fields (type="text" and type="email") sim-
ply display their contents, whereas password fields (type="password") obscure the
input for security purposes. (The benefit of using an email field is that some sys-
tems treat it differently from a text field; for example, the code type="email" will
cause some mobile devices to display a special keyboard optimized for entering email
addresses.)

As we’ll see in Section 7.4, the key to creating a user is the special name attribute
in each input:

Figure 7.15: A filled-in form with text and password fields.

<input id="user_name" name="user[name]" - - - />
.
.
.
<input id="user_password" name="user[password]" - - - />

7.2 Signup Form 345

These name values allow Rails to construct an initialization hash (via the params
variable) for creating users using the values entered by the user, as we’ll see in
Section 7.3.

The second important element is the form tag itself. Rails creates the form
tag using the @user object: Because every Ruby object knows its own class (Sec-
tion 4.4.1), Rails figures out that @user is of class User; moreover, since @user is a
new user, Rails knows to construct a form with the post method, which is the proper
verb for creating a new object (Box 3.2):

(You may also have noticed the code that appears just inside the form tag:

This code, which isn’t displayed in the browser, is used internally by Rails, so it’s not
important for us to understand what it does. Briefly, it includes an authenticity token,
which Rails uses to thwart an attack called a cross-site request forgery (CSRF). Knowing
when it’s OK to ignore details like this is a good mark of technical sophistication
(Box 1.2).)11

Exercises

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Subscription.

1. Learn Enough HTML to Be Dangerous (https://www.learnenough.com/html), in
which all HTML is written by hand, doesn’t cover the form tag. Why not?

11. See the Stack Overflow entry on the Rails authenticity token (https://stackoverflow.
com/questions/941594/understanding-the-rails-authenticity-token) if you’re interested in the details
of how this works.

<form action="/users" class="new_user" id="new_user" method="post">

<input name="authenticity_token" type="hidden"
value="NNb6+J/j46LcrgYUC60wQ2titMuJQ5lLqyAbnbAUkdo=" />

Here the class and id attributes are largely irrelevant; what’s important is
action="/users" and method="post". Together, these constitute instructions to
issue an HTTP POST request to the /users URL. We’ll see in the next two sections
what effects this has.

https://www.railstutorial.org/
https://www.railstutorial.org/
https://www.learnenough.com/all-access
https://www.learnenough.com/html
https://stackoverflow.com/questions/941594/understand-rails-authenticity-token
https://stackoverflow.com/questions/941594/understand-rails-authenticity-token
https://www.learnenough.com/html

346 Chapter 7: Sign Up

Figure 7.16: A mockup of the signup failure page.

7.3 Unsuccessful Signups
Although we’ve briefly examined the HTML for the form in Figure 7.14 (shown in
Listing 7.17), we haven’t yet covered any details, and the form is best understood in
the context of signup failure. In this section, we’ll create a signup form that accepts an
invalid submission and re-renders the signup page with a list of errors, as mocked up
in Figure 7.16.

7.3.1 A Working Form

Recall from Section 7.1.2 that adding resources :users to the routes.rb file
(Listing 7.3) automatically ensures that our Rails application responds to the RESTful
URLs from Table 7.1. In particular, it ensures that a POST request to /users is handled
by the create action. Our strategy for the create action is to use the form submission
to make a new user object using User.new, try (and fail) to save that user, and then

7.3 Unsuccessful Signups 347

render the signup page for possible resubmission. Let’s get started by reviewing the
code for the signup form:

As noted in Section 7.2.2, this HTML issues a POST request to the /users URL.
Our first step toward a working signup form is adding the code in Listing 7.18.

This listing includes a second use of the render method, which we first saw in the
context of partials (Section 5.1.3); as you can see, render works in controller actions
as well. Note that we’ve taken this opportunity to introduce an if–else branching
structure, which allows us to handle the cases of failure and success separately based
on the value of @user.save, which (as we saw in Section 6.1.3) is either true or
false depending on whether or not the save succeeds.

Note the comment: This is not the final implementation. But it’s enough to get us
started, and we’ll finish the implementation in Section 7.3.2. Also note the use of
status: :unprocessable_entity (corresponding to the HTTP status code 422

Unprocessable Entity), which is necessary to render regular HTML when using
Turbo (which we’ll install in Section 8.2.4 and cover in more depth in Section 14.2.5).

<form action="/users" class="new_user" id="new_user" method="post">

Listing 7.18: A create action that can handle signup failure.
app/controllers/users_controller.rb

class UsersController < ApplicationController

def show
@user = User.find(params[:id])

end

def new
@user = User.new

end

def create
Not the final implementation!@user = User.new(params[:user])

if @user.save

else
Handle a successful save.

render 'new', status: :unprocessable_entity
end

end
end

348 Chapter 7: Sign Up

The form will work anyway as long as you included --skip-bundle as in Listing 3.1,
but it would fail in Section 8.2.4 after installing Turbo, and it does no harm to include
it now.12

The best way to understand how the code in Listing 7.18 works is to submit the
form with some invalid signup data. The result appears in Figure 7.17, and the full
debug information appears in Figure 7.18.

Figure 7.17: Signup failure upon submitting invalid data.

12. When developing a Rails 7 version of the sample application without including the --skip-bundle
option to rails new, I was initially baffled by the failure of a plain render 'new', which had never failed
in any previous version of Rails. After some unsuccessful Googling, I tracked down the issue by looking
at some scaffold code similar to the code developed in Chapter 2 but in a project likewise omitting the
--skip-bundle option. The scaffold code included the crucial use of status: :unprocessable_entity,
which I had never even heard of before but worked like a charm when I included it in the main sample
app. In other words, I used Rails itself to figure out the right way to handle form submission when using
Hotwire and Turbo. This is technical sophistication in action.

7.3 Unsuccessful Signups 349

Figure 7.18: Signup failure debug information.

To get a better picture of how Rails handles the submission, let’s take a
closer look at the user part of the parameters hash from the debug information
(Figure 7.18):

This hash gets passed to the Users controller as part of params, and we saw starting in
Section 7.1.2 that the params hash contains information about each request. In the
case of a URL like /users/1, the value of params[:id] is the id of the corresponding
user (1 in this example). In the case of posting to the signup form, params instead con-
tains a hash of hashes, a construction we first saw in Section 4.3.3, which introduced
the strategically named params variable in a console session. The debug information
above shows that submitting the form results in a user hash with attributes corre-
sponding to the submitted values, where the keys come from the name attributes of
the input tags seen in Listing 7.17. For example, the value of

with name "user[email]" is precisely the email attribute of the user hash.
Although the hash keys appear as strings in the debug output, we can access

them in the Users controller as symbols, so that params[:user] is the hash of user
attributes—in fact, exactly the attributes needed as an argument to User.new, as first
seen in Section 4.4.5 and appearing in Listing 7.18. This means that the line

"user" => { "name" => "Foo Bar",
"email" => "foo@invalid",
"password" => "[FILTERED]",
"password_confirmation" => "[FILTERED]"

}

<input id="user_email" name="user[email]" type="email" />

@user = User.new(params[:user])

350 Chapter 7: Sign Up

is mostly equivalent to

@user = User.new(name: "Foo Bar", email: "foo@invalid",
password: "foo", password_confirmation: "bar")

In previous versions of Rails, using

@user = User.new(params[:user])

actually worked, but it was insecure by default and required a careful and error-
prone procedure to prevent malicious users from potentially modifying the application
database. In Rails versions later than 4.0, this code raises an error (as seen in Figure 7.17
and Figure 7.18), which means it is secure by default.

7.3.2 Strong Parameters

We mentioned briefly in Section 4.4.5 the idea of mass assignment, which involves
initializing a Ruby variable using a hash of values, as in

@user = User.new(params[:user]) # Not the final implementation!

The comment included in Listing 7.18 and reproduced above indicates that this is
not the final implementation. The reason is that initializing the entire params hash is
extremely dangerous—it arranges to pass to User.new all data submitted by a user. In
particular, suppose that, in addition to the current attributes, the User model included
an admin attribute used to identify administrative users of the site. (We will implement
just such an attribute in Section 10.4.1.) The way to set such an attribute to true is to
pass the value admin='1' as part of params[:user], a task that is easy to accomplish
using a command-line HTTP client such as curl. The result would be that, by passing
in the entire params hash to User.new, we would allow any user of the site to gain
administrative access by including admin='1' in the web request.

Previous versions of Rails used a method called attr_accessible in the model
layer to solve this problem, and you may still see that method in legacy Rails appli-
cations, but as of Rails 4.0 the preferred technique is to use so-called strong parameters
in the controller layer. This allows us to specify which parameters are required and
which ones are permitted. In addition, passing in a raw params hash as above will cause
an error to be raised, so that Rails applications are now immune to mass assignment
vulnerabilities by default.

7.3 Unsuccessful Signups 351

In the present instance, we want to require the params hash to have a :user
attribute, and we want to permit the name, email, password, and password confirma-
tion attributes (but no others). We can accomplish this as follows:

params.require(:user).permit(:name, :email, :password, :password_confirmation)

This code returns a version of the params hash with only the permitted attributes
(while raising an error if the :user attribute is missing).

To facilitate the use of these parameters, it’s conventional to introduce an auxiliary
method called user_params (which returns an appropriate initialization hash) and use
it in place of params[:user]:

@user = User.new(user_params)

Since user_params will only be used internally by the Users controller and need not
be exposed to external users via the Web, we’ll make it private using Ruby’s pri-
vate keyword, as shown in Listing 7.19. (We’ll discuss private in more detail in
Section 9.1.)

Listing 7.19: Using strong parameters in the create action.
app/controllers/users_controller.rb

class UsersController < ApplicationController
.
.
.
def create

@user = User.new(user_params)
if @user.save
Handle a successful save.

else
render 'new', status: :unprocessable_entity

end
end

private

def user_params
params.require(:user).permit(:name, :email, :password,

:password_confirmation)
end

end

352 Chapter 7: Sign Up

Figure 7.19: The signup form submitted with invalid information.

By the way, the extra level of indentation on the user_params method is designed
to make it visually apparent which methods are defined after private. (Experience
shows that this is a wise practice; in classes with a large number of methods, it is easy
to define a private method accidentally, which leads to considerable confusion when
it isn’t available to call on the corresponding object.)

At this point, the signup form is working, at least in the sense that it no
longer produces an error upon submission. On the other hand, as seen in Fig-
ure 7.19, it doesn’t display any feedback on invalid submissions (apart from the
development-only debug area), which is potentially confusing. It also doesn’t actu-
ally create a new user. We’ll fix the first issue in Section 7.3.3 and the second in
Section 7.4.

7.3 Unsuccessful Signups 353

Exercises

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Subscription.

1. By hitting the URL /signup?admin=1, confirm that the admin attribute appears
in the params debug information.

7.3.3 Signup Error Messages

As a final step in handling failed user creation, we’ll add helpful error messages to indi-
cate the problems that prevented successful signup. Conveniently, Rails automatically
provides such messages based on the User model validations. For example, consider
trying to save a user with an invalid email address and with a password that’s too short:

Here the errors.full_messages object (which we saw briefly before in Sec-
tion 6.2.2) contains an array of error messages.

As in the console session above, the failed save in Listing 7.18 generates a list
of error messages associated with the @user object. To display the messages in the
browser, we’ll render an error-messages partial on the user new page while adding
the CSS class form-control (which has special meaning to Bootstrap) to each entry
field, as shown in Listing 7.20. It’s worth noting that this error-messages partial is only
a first attempt; the final version appears in Section 13.3.2.

$ rails console
>> user = User.new(name: "Foo Bar", email: "foo@invalid",
?> password: "dude", password_confirmation: "dude")
>> user.save
=> false
>> user.errors.full_messages
=> ["Email is invalid", "Password is too short (minimum is 6 characters)"]

Listing 7.20: Code to display error messages on the signup form.
app/views/users/new.html.erb

<% provide(:title, 'Sign up') %>
<h1>Sign up</h1>

<div class="row">

https://www.railstutorial.org/
https://www.railstutorial.org/
https://www.learnenough.com/all-access

354 Chapter 7: Sign Up

Notice here that we render a partial called 'shared/error_messages'; this reflects
the common Rails convention of using a dedicated shared/ directory for partials
expected to be used in views across multiple controllers. (We’ll see this expectation
fulfilled in Section 10.1.1.)

This means that we have to create a new app/views/shared directory using
mkdir and an error-messages partial using (Table 1.1):

$ mkdir app/views/shared

We then need to create the _error_messages.html.erb partial file using touch or
the text editor as usual. The contents of the partial appear in Listing 7.21.

Listing 7.21: A partial for displaying form submission error messages.
app/views/shared/_error_messages.html.erb

<% if @user.errors.any? %>
<div id="error_explanation">

<div class="alert alert-danger">
The form contains <%= pluralize(@user.errors.count, "error") %>.

</div>

<% @user.errors.full_messages.each do |msg| %>

<%= msg %>

<div class="col-md-6 col-md-offset-3">
<%= form_with(model: @user) do |f| %>

<%= render 'shared/error_messages' %>

<%= f.label :name %>
<%= f.text_field :name, class: 'form-control' %>

<%= f.label :email %>
<%= f.email_field :email, class: 'form-control' %>

<%= f.label :password %>
<%= f.password_field :password, class: 'form-control' %>

<%= f.label :password_confirmation, "Confirmation" %>
<%= f.password_field :password_confirmation, class: 'form-control' %>

<%= f.submit "Create my account", class: "btn btn-primary" %>
<% end %>

</div>
</div>

7.3 Unsuccessful Signups 355

This partial introduces several new Rails and Ruby constructs, including two methods
for Rails error objects. The first method is count, which simply returns the number
of errors:

>> user.errors.count
=> 2

The other new method is any?, which (together with empty?) is one of a pair of
complementary methods:

>> user.errors.empty?
=> false
>> user.errors.any?
=> true

We see here that the empty? method, which we first saw in Section 4.2.2 in the con-
text of strings, also works on Rails error objects, returning true for an empty object
and false otherwise. The any? method is just the opposite of empty?, returning
true if there are any elements present and false otherwise. (By the way, all of these
methods—count, empty?, and any?—work on Ruby arrays as well. We’ll put this
fact to good use starting in Section 13.2.)

The other new idea is the pluralize text helper, which is available in the console
via the helper object:

>> helper.pluralize(1, "error")
=> "1 error"
>> helper.pluralize(5, "error")
=> "5 errors"

We see here that pluralize takes an integer argument and then returns the number
with a properly pluralized version of its second argument. Underlying this method is
a powerful inflector that knows how to pluralize a large number of words, including
many with irregular English plurals:

<% end %>

</div>
<% end %>

356 Chapter 7: Sign Up

returns "0 errors", "1 error", "2 errors", and so on, depending on how many
errors there are, thereby avoiding ungrammatical phrases such as "1 errors" (a
distressingly common mistake in both web and desktop applications).

Note that Listing 7.21 includes the CSS id error_explanation for use in styling
the error messages. (Recall from Section 5.1.2 that CSS uses the pound sign # to style
ids.) In addition, after an invalid submission Rails automatically wraps the fields with
errors in divs with the CSS class field_with_errors. These labels then allow us
to style the error messages with the SCSS shown in Listing 7.22, which makes use of
Sass’s @extend function to include the functionality of the Bootstrap class has-error.

>> helper.pluralize(2, "woman")
=> "2 women"
>> helper.pluralize(3, "erratum")
=> "3 errata"

As a result of its use of pluralize, the code

<%= pluralize(@user.errors.count, "error") %>

Listing 7.22: CSS for styling error messages.
app/assets/stylesheets/custom.scss

.

.

.
/* forms */
.
.
.
#error_explanation {
color: red;
ul {

color: red;
margin: 0 0 30px 0;

}
}

.field_with_errors {
@extend .has-error;
.form-control {

color: $state-danger-text;
}

}

7.3 Unsuccessful Signups 357

Figure 7.20: Failed signup with error messages.

With the code in Listing 7.20 and Listing 7.21 and the SCSS from Listing 7.22,
helpful error messages now appear when submitting invalid signup information, as
seen in Figure 7.20. Because the messages are generated by the model validations,
they will automatically change if you ever change your mind about, say, the format
of email addresses, or the minimum length of passwords. (Note: Because both the
presence validation and the has_secure_password validation catch the case of empty
(nil) passwords, the signup form currently produces duplicate error messages when
the user submits empty passwords. We could manipulate the error messages directly
to eliminate such duplicates, but luckily this issue will be fixed automatically by the
addition of allow_nil: true in Section 10.1.4.)

Exercises

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Subscription.

https://www.railstutorial.org/
https://www.railstutorial.org/
https://www.learnenough.com/all-access

358 Chapter 7: Sign Up

1. Confirm by changing the minimum length of passwords to 5 that the error
message updates automatically as well.

2. How does the URL on the unsubmitted signup form (Figure 7.14) com-
pare to the URL for a submitted signup form (Figure 7.20)? Why don’t they
match?

7.3.4 A Test for Invalid Submission

In the days before powerful web frameworks with automated testing capabilities,
developers had to test forms by hand. For example, to test a signup page manually, we
would have to visit the page in a browser and then submit alternately invalid and valid
data, verifying in each case that the application’s behavior was correct. Moreover, we
would have to remember to repeat the process any time the application changed. This
process was painful and error-prone.

Happily, with Rails we can write tests to automate the testing of forms. In this
section, we’ll write one such test to verify the correct behavior upon invalid form
submission; in Section 7.4.4, we’ll write a corresponding test for valid submission.

To get started, we first generate an integration test file for signing up users, which
we’ll call users_signup (adopting the controller convention of a plural resource
name):

$ rails generate integration_test users_signup
invoke test_unit
create test/integration/users_signup_test.rb

(We’ll use this same file in Section 7.4.4 to test a valid signup.)
The main purpose of our test is to verify that clicking the signup button results in

not creating a new user when the submitted information is invalid. (Writing a test for
the error messages is left as an exercise (Section 7.3.4).) The way to do this is to check
the count of users, and under the hood our tests will use the count method available
on every Active Record class, including User:

$ rails console
>> User.count
=> 1

7.3 Unsuccessful Signups 359

(Here User.count is 1 because of the user created in Section 6.3.4, though it may
differ if you’ve added or deleted any users in the interim.) As in Section 5.3.4, we’ll use
assert_select to test HTML elements of the relevant pages, taking care to check
only elements unlikely to change in the future.

We’ll start by visiting the signup path using get:

get signup_path

In order to test the form submission, we need to issue a POST request to the
users_path (Table 7.1), which we can do with the post function:

Here we’ve included the params[:user] hash expected by User.new in the create
action (Listing 7.27). (In versions of Rails before 5, params was implicit, and only the
user hash would be passed. This practice was deprecated in Rails 5.0, and now the
recommended method is to include the full params hash explicitly.)

By wrapping the post in the assert_no_difference method with the string
argument 'User.count', we arrange for a comparison between User.count before
and after the contents inside the assert_no_difference block. This is equiva-
lent to recording the user count, posting the data, and verifying that the count is
the same:

before_count = User.count
post users_path, ...
after_count = User.count
assert_equal before_count, after_count

Although the two are equivalent, using assert_no_difference is cleaner and is
more idiomatically correct Rails.

It’s worth noting that the get and post steps above are technically unrelated,
and it’s actually not necessary to get the signup path before posting to the users path.
I prefer to include both steps, though, both for conceptual clarity and to double-check
that the signup form renders without error.

assert_no_difference 'User.count' do
post users_path, params: { user: { name: "",

email: "user@invalid",
password: "foo",
password_confirmation: "bar" } }

end

360 Chapter 7: Sign Up

We’ll also include assertions to verify that the right response code is returned and
the right template rendered, which we can do as follows:

assert_response :unprocessable_entity
assert_template 'users/new'

Compare the first line with assert_response :success in Listing 3.14 and related
tests. This line is useful to verify that the right status is returned by Listing 7.18 and
to protect against regressions (Box 3.3).

Putting the above ideas together leads to the test in Listing 7.23. Adding lines to
check for the appearance of error messages is left as an exercise (Section 7.3.4).

Because we wrote the application code before the integration test, the test suite should
be GREEN:

Listing 7.24: GREEN

$ rails test

Listing 7.23: A test for an invalid signup. GREEN

test/integration/users_signup_test.rb

require "test_helper"

class UsersSignupTest < ActionDispatch::IntegrationTest

test "invalid signup information" do
get signup_path
assert_no_difference 'User.count' do

post users_path, params: { user: { name: "",
email: "user@invalid",
password: "foo",
password_confirmation: "bar" } }

end
assert_response :unprocessable_entity
assert_template 'users/new'

end
end

7.4 Successful Signups 361

Exercises

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Subscription.

1. Write a test for the error messages implemented in Listing 7.20. How detailed
you want to make your tests is up to you; a suggested template appears in
Listing 7.25.

7.4 Successful Signups
Having handled invalid form submissions, now it’s time to complete the signup form
by actually saving a new user (if valid) to the database. First, we try to save the user;
if the save succeeds, the user’s information gets written to the database automatically,
and we then redirect the browser to show the user’s profile (together with a friendly

Listing 7.25: A template for tests of the error messages.
test/integration/users_signup_test.rb

require "test_helper"

class UsersSignupTest < ActionDispatch::IntegrationTest

test "invalid signup information" do
get signup_path
assert_no_difference 'User.count' do
post users_path, params: { user: { name: "",

email: "user@invalid",
password: "foo",
password_confirmation: "bar" } }

end
assert_response :unprocessable_entity
assert_template 'users/new'
assert_select 'div#<CSS id for error explanation>'
assert_select 'div.<CSS class for field with error>'

end
.
.
.

end

https://www.railstutorial.org/
https://www.railstutorial.org/
https://www.learnenough.com/all-access

362 Chapter 7: Sign Up

Figure 7.21: A mockup of successful signup.

greeting), as mocked up in Figure 7.21. If it fails, we simply fall back on the behavior
developed in Section 7.3.

7.4.1 The Finished Signup Form

To complete a working signup form, we need to fill in the commented-out section
in Listing 7.19 with the appropriate behavior. Currently, the form simply freezes on
valid submission, as indicated by the subtle color change in the submission button
(Figure 7.22), although this behavior may be system-dependent. This is because the
default behavior for a Rails action is to render the corresponding view, and there isn’t
a view template corresponding to the create action (Figure 7.23).

Although it’s possible to render a template for the create action, the usual practice
is to redirect to a different page instead when the creation is successful. In particular,
we’ll follow the common convention of redirecting to the newly created user’s profile,
although the root path would also work. The application code, which introduces the
redirect_to method, appears in Listing 7.26.

7.4 Successful Signups 363

Figure 7.22: The frozen page on valid signup submission.

Figure 7.23: The create template error in the server log.

Listing 7.26: The user create action with a save and a redirect.
app/controllers/users_controller.rb

class UsersController < ApplicationController
.
.
.

364 Chapter 7: Sign Up

def create
@user = User.new(user_params)
if @user.save

redirect_to @user
else

render 'new', status: :unprocessable_entity
end

end

private

def user_params
params.require(:user).permit(:name, :email, :password,

:password_confirmation)
end

end

Note that we’ve written

redirect_to @user

where we could have used the equivalent

redirect_to user_url(@user)

This is because Rails automatically infers from redirect_to @user that we want to
redirect to user_url(@user). (The name @user is incidental; it could be @foo and
the redirect would still work as long as the object has class User.)

Exercises

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Subscription.

1. Using the Rails console, verify that a user is in fact created when submitting valid
information.

2. Confirm by updating Listing 7.26 and submitting a valid user that redirect_to
user_url(@user) has the same effect as redirect_to @user.

https://www.railstutorial.org/
https://www.railstutorial.org/
https://www.learnenough.com/all-access

7.4 Successful Signups 365

7.4.2 The Flash

With the code in Listing 7.26, our signup form is actually working, but before submit-
ting a valid registration in a browser we’re going to add a bit of polish common in web
applications: a message that appears on the subsequent page (in this case, welcoming
our new user to the application) and then disappears upon visiting a second page or
on page reload.

The Rails way to display a temporary message is to use a special method called
the flash, which we can treat like a hash. Rails adopts the convention of a :success
key for a message indicating a successful result (Listing 7.27).

Listing 7.27: Adding a flash message to user signup.
app/controllers/users_controller.rb

class UsersController < ApplicationController
.
.
.
def create

@user = User.new(user_params)
if @user.save
flash[:success] = "Welcome to the Sample App!"
redirect_to @user

else
render 'new', status: :unprocessable_entity

end
end

private

def user_params
params.require(:user).permit(:name, :email, :password,

:password_confirmation)
end

end

By assigning a message to the flash, we are now in a position to display the
message on the first page after the redirect. Our method is to iterate through the
flash and insert all relevant messages into the site layout. You may recall the console
example in Section 4.3.3, where we saw how to iterate through a hash using the
strategically named flash variable (Listing 7.28).

366 Chapter 7: Sign Up

Listing 7.28: Iterating through a flash hash in the console.

$ rails console
>> flash = { success: "It worked!", danger: "It failed." }
=> {:success=>"It worked!", danger: "It failed."}
>> flash.each do |key, value|
?> puts "#{key}"
?> puts "#{value}"
>> end
success
It worked!
danger
It failed.

By following this pattern, we can arrange to display the contents of the flash site-wide
using code like this:

(This code is a particularly ugly and difficult-to-read combination of HTML and ERb;
making it prettier is left as an exercise (Section 7.4.4).) Here the embedded Ruby

alert-<%= message_type %>

makes a CSS class corresponding to the type of message, so that for a :success
message the class is

alert-success

(The key :success is a symbol, but embedded Ruby automatically converts it to
the string "success" before inserting it into the template.) Using a different class for
each key allows us to apply different styles to different kinds of messages. For exam-
ple, in Section 8.1.4 we’ll use flash[:danger] to indicate a failed login attempt.13

13. Actually, we’ll use the closely related flash.now, but we’ll defer that subtlety until we need it.

<% flash.each do |message_type, message| %>
<div class="alert alert-<%= message_type %>"><%= message %></div>

<% end %>

7.4 Successful Signups 367

(In fact, we’ve already used alert-danger once, to style the error-message div in
Listing 7.21.) Bootstrap CSS supports styling for four such flash classes for increas-
ingly urgent message types (success, info, warning, and danger), and we’ll find
occasion to use all of them in the course of developing the sample application
(info in Section 11.2, warning in Section 11.3, and danger for the first time in
Section 8.1.4).

Because the message is also inserted into the template, the full HTML result for

flash[:success] = "Welcome to the Sample App!"

appears as follows:

Putting the embedded Ruby discussed above into the site layout leads to the code
in Listing 7.29.

<div class="alert alert-success">Welcome to the Sample App!</div>

Listing 7.29: Adding the contents of the flash variable to the site layout.
app/views/layouts/application.html.erb

<!DOCTYPE html>
<html>

.

.

.
<body>

<%= render 'layouts/header' %>
<div class="container">
<% flash.each do |message_type, message| %>

<div class="alert alert-<%= message_type %>"><%= message %></div>
<% end %>
<%= yield %>
<%= render 'layouts/footer' %>
<%= debug(params) if Rails.env.development? %>

</div>
.
.
.

</body>
</html>

http://app/views/layouts/application.html.erb

368 Chapter 7: Sign Up

Exercises

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Subscription.

1. In the console, confirm that you can use interpolation (Section 4.2.1) to interpo-
late a raw symbol. For example, what is the return value of "#{:success}"?

2. How does the previous exercise relate to the flash iteration shown in Listing 7.28?

7.4.3 The First Signup

We can see the result of all this work by signing up the first user for the sample app.
Even though previous submissions didn’t work properly (as shown in Figure 7.22),
the user.save line in the Users controller still works, so users might still have been
created. To clear them out, we’ll reset the database as follows:

$ rails db:migrate:reset

On some systems, you might have to restart the web server (using Ctrl-C) for the
changes to take effect (Box 1.2).

We’ll create the first user with the name “Rails Tutorial” and email address “exam-
ple@railstutorial.org”, as shown in Figure 7.24. The resulting page (Figure 7.25)
shows a friendly flash message upon successful signup, including nice green styling for
the success class, which comes included with the Bootstrap CSS framework from
Section 5.1.2. Then, upon reloading the user show page, the flash message disappears
as promised (Figure 7.26).

Exercises

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Subscription.

1. Using the Rails console, find by the email address to double-check that the new
user was actually created. The result should look something like Listing 7.30.

2. Create a new user with your primary email address. Verify that the Gravatar
correctly appears.

https://www.railstutorial.org/
https://www.railstutorial.org/
https://www.learnenough.com/all-access
https://www.railstutorial.org/
https://www.railstutorial.org/
https://www.learnenough.com/all-access

7.4 Successful Signups 369

Figure 7.24: Filling in the information for the first signup.

Listing 7.30: Finding the newly created user in the database.

$ rails console
>> User.find_by(email: "example@railstutorial.org")
=> #<User id: 1, name: "Rails Tutorial", email: "example@railstutorial.
org", created_at: "2016-05-31 17:17:33", updated_at: "2016-05-31 17:17:33",
password_digest: "$2a$10$8MaeHdnOhZvMk3GmFdmpPOeG6a7u7/k2Z9TMjOanC9G...">

7.4.4 A Test for Valid Submission

Before moving on, we’ll write a test for valid submission to verify our application’s
behavior and catch regressions. As with the test for invalid submission in Section 7.3.4,
our main purpose is to verify the contents of the database. In this case, we want to

370 Chapter 7: Sign Up

Figure 7.25: The results of a successful user signup, with flash message.

submit valid information and then confirm that a user was created. In analogy with
Listing 7.23, which used

assert_no_difference 'User.count' do
post users_path, ...

end

here we’ll use the corresponding assert_difference method:

assert_difference 'User.count', 1 do
post users_path, ...

end

As with assert_no_difference, the first argument is the string 'User.count',
which arranges for a comparison between User.count before and after the contents

7.4 Successful Signups 371

Figure 7.26: The flash-less profile page after a browser reload.

of the assert_difference block. The second (optional) argument specifies the size
of the difference (in this case, 1).

Incorporating assert_difference into the file from Listing 7.23 yields the test
shown in Listing 7.31. Note that we’ve used the follow_redirect! method after
posting to the users path. This simply arranges to follow the redirect after submission,
resulting in a rendering of the 'users/show' template. (It’s probably a good idea to
write a test for the flash as well, which is left as an exercise (Section 7.4.4).)

Listing 7.31: A test for a valid signup. GREEN

test/integration/users_signup_test.rb

require "test_helper"

class UsersSignupTest < ActionDispatch::IntegrationTest

372 Chapter 7: Sign Up

.

.

.
test "valid signup information" do

assert_difference 'User.count', 1 do
post users_path, params: { user: { name: "Example User",

end
follow_redirect!
assert_template 'users/show'

end
end

Note that Listing 7.31 also verifies that the user show template renders following
successful signup. For this test to work, it’s necessary for the Users routes (Listing 7.3),
the Users show action (Listing 7.5), and the show.html.erb view (Listing 7.8) to
work correctly. As a result, the one line

assert_template 'users/show'

is a sensitive test for almost everything related to a user’s profile page. This sort
of end-to-end coverage of important application features illustrates one reason why
integration tests are so useful.

Exercises

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Subscription.

1. Write a test for the flash implemented in Section 7.4.2. How detailed you want
to make your tests is up to you; a suggested ultra-minimalist template appears in
Listing 7.32, which you should complete by replacing FILL_IN with the appro-
priate code. (Even testing for the right key, much less the text, is likely to be
brittle, so I prefer to test only that the flash isn’t empty.)

2. As noted above, the flash HTML in Listing 7.29 is ugly. Verify by running the
test suite that the cleaner code in Listing 7.33, which uses the Rails content_tag
helper, also works.

email: "user@example.com",
password: "password",
password_confirmation: "password" } }

https://www.railstutorial.org/
https://www.railstutorial.org/
https://www.learnenough.com/all-access

7.4 Successful Signups 373

3. Verify that the test fails if you comment out the redirect line in Listing 7.26.

4. Suppose we changed @user.save to false in Listing 7.26. How does this change
verify that the assert_difference block is testing the right thing?

Listing 7.32: A template for a test of the flash.
test/integration/users_signup_test.rb

require "test_helper"

class UsersSignupTest < ActionDispatch::IntegrationTest
.
.
.
test "valid signup information" do

assert_difference 'User.count', 1 do
post users_path, params: { user: { name: "Example User",

end
follow_redirect!
assert_template 'users/show'
assert_not flash.FILL_IN

end
end

email: "user@example.com",
password: "password",
password_confirmation: "password" } }

Listing 7.33: The flash ERb in the site layout using content_tag.
app/views/layouts/application.html.erb

<!DOCTYPE html>
<html>

.

.

.
<% flash.each do |message_type, message| %>
<%= content_tag(:div, message, class: "alert alert-#{message_type}") %>

<% end %>
.
.
.

</html>

374 Chapter 7: Sign Up

7.5 Professional-Grade Deployment
Now that we have a working signup page, it’s time to deploy our application and get it
working in production. Although we started deploying our application in Chapter 3,
this is the first time it will actually do something, so we’ll take this opportunity to
make the deployment professional-grade. In particular, we’ll add an important feature
to the production application to make signup secure, we’ll replace the default web
server with one suitable for real-world use, and we’ll add some configuration for our
production database.

As preparation for the deployment, you should merge your changes into the main
branch at this point:

$ git add -A
$ git commit -m "Finish user signup"
$ git checkout main
$ git merge sign-up

7.5.1 SSL in Production

When submitting the signup form developed in this chapter, the name, email address,
and password get sent over the network, and hence are vulnerable to being intercepted
by malicious users. This is a potentially serious security flaw in our application, and the
way to fix it is to use Secure Sockets Layer (SSL)14 to encrypt all relevant information
before it leaves the local browser. Although we could use SSL on just the signup
page, it’s actually easier to implement it site-wide, which has the additional benefits
of securing user login (Chapter 8) and making our application immune to the critical
session hijacking vulnerability discussed in Section 9.1.

Although Heroku now uses SSL for all connections, it’s more secure not to rely
on the web host for such behavior. Indeed, Heroku didn’t used to forward “http” to
“https”, leading to insecure behavior by default (Figure 7.27).

We can control our app’s security ourselves by forcing all browsers to use SSL,
which is as easy as uncommenting a single line in production.rb, the configuration
file for production applications. As shown in Listing 7.34, all we need to do is set
config.force_ssl to true.

14. Technically, SSL is now TLS, for Transport Layer Security, but everyone I know still says “SSL”.

https://en.wikipedia.org/wiki/Transport_Layer_Security

7.5 Professional-Grade Deployment 375

Figure 7.27: Heroku’s former behavior using an insecure http URL in production.

Listing 7.34: Configuring the application to use SSL in production.
config/environments/production.rb

Rails.application.configure do
.
.
.
Force all access to the app over SSL, use Strict-Transport-Security,
and use secure cookies.
config.force_ssl = true
.
.
.

end

At this stage, we need to set up SSL on the remote server. Setting up a production
site to use SSL involves purchasing and configuring an SSL certificate for your domain.
That’s a lot of work, though, and luckily we won’t need it here: For an application
running on a Heroku domain (such as the sample application), we can piggyback on
Heroku’s SSL certificate. As a result, when we deploy the application in Section 7.5.2,
SSL will automatically be enabled.

Note: If you’re using Cloudflare to handle SSL on a custom domain (as described
in Learn Enough Custom Domains to Be Dangerous (https://www.learnenough.
com/custom-domains)), you shouldn’t force SSL in the Rails app. Instead, you should

https://www.learnenough.com/custom-domains
https://www.learnenough.com/custom-domains
https://www.learnenough.com/custom-domains

376 Chapter 7: Sign Up

keep the config.force_ssl line in production.rb commented out (which is the
default), or else set it to false as in Listing 7.35.

Listing 7.35: Configuring a custom domain not to use SSL in production.
config/environments/production.rb

Rails.application.configure do
.
.
.
Force all access to the app over SSL, use Strict-Transport-Security,
and use secure cookies.
config.force_ssl = false
.
.
.

end

7.5.2 Production Web Server

Having added SSL, we now need to configure our application to use a web server
suitable for production applications. Following Heroku’s recommendation, we’ll use
Puma, an HTTP server that is capable of handling a large number of incoming requests.

To add the new web server, we simply follow the Heroku Puma documen-
tation (https://devcenter.heroku.com/articles/deploying-rails-applications-with-the-
puma-web-server). The first step is to include the puma gem in our Gemfile, but as
of Rails 5 Puma is included by default (Listing 3.2). This means we can skip right to
the second step, which is to replace the default contents of the file config/puma.rb
with the configuration shown in Listing 7.36. The code in Listing 7.36 comes straight
from the Heroku documentation,15 and there is no need to understand it (Box 1.2).

Listing 7.36: The configuration file for the production web server.
config/puma.rb

Puma configuration file.
max_threads_count = ENV.fetch("RAILS_MAX_THREADS") { 5 }
min_threads_count = ENV.fetch("RAILS_MIN_THREADS") { max_threads_count }

15. Listing 7.36 changes the formatting slightly so that the code fits in the standard 80 columns.

https://devcenter.heroku.com/articles/deploying-rails-applications-with-the-puma-web-server
https://devcenter.heroku.com/articles/deploying-rails-applications-with-the-puma-web-server
https://devcenter.heroku.com/articles/deploying-rails-applications-with-the-puma-web-server
https://devcenter.heroku.com/articles/deploying-rails-applications-with-the-puma-web-server
https://devcenter.heroku.com/articles/deploying-rails-applications-with-the-puma-web-server

7.5 Professional-Grade Deployment 377

threads min_threads_count, max_threads_count
port ENV.fetch("PORT") { 3000 }
environment ENV.fetch("RAILS_ENV") { ENV['RACK_ENV'] || "development" }
pidfile ENV.fetch("PIDFILE") { "tmp/pids/server.pid" }
workers ENV.fetch("WEB_CONCURRENCY") { 2 }
preload_app!
plugin :tmp_restart

We also need to make a so-called Procfile to tell Heroku to run a Puma process
in production, as shown in Listing 7.37. The Procfile should be created in your
application’s root directory (i.e., in the same directory as the Gemfile).

Listing 7.37: Defining a Procfile for Puma.
./Procfile

web: bundle exec puma -C config/puma.rb

7.5.3 Production Database Configuration

The final step in our production deployment is properly configuring the production
database, which (as mentioned briefly in Section 2.3.5) is PostgreSQL. My testing
indicates that PostgreSQL actually works on Heroku without any configuration, but
the official Heroku documentation recommends explicit configuration nonetheless,
so we’ll err on the side of caution and include it.

The actual change is easy: All we have to do is update the production section of
the database configuration file, config/database.yml. The result, which I adapted
from the Heroku docs, is shown in Listing 7.38.

Listing 7.38: Configuring the database for production.
config/database.yml

SQLite version 3.x
gem install sqlite3
#
Ensure the SQLite 3 gem is defined in your Gemfile
gem 'sqlite3'
#
default: &default
adapter: sqlite3

https://www.postgresql.org/
https://devcenter.heroku.com/articles/getting-started-with-rails5

378 Chapter 7: Sign Up

7.5.4 Production Deployment

With the production web server and database configuration completed, we’re ready
to commit and deploy:16

$ rails test
$ git add -A
$ git commit -m "Use SSL and the Puma web server in production"
$ git push && git push heroku
$ heroku run rails db:migrate

We can also reset the production database (never do this with a real app’s database!) as
we did with the development database in Section 7.4.3:

$ heroku pg:reset DATABASE
$ heroku run rails db:migrate

16. We haven’t changed the data model in this chapter, so running the migration at Heroku shouldn’t be
necessary, but this is true only if you followed the steps in Section 6.4. Because several readers reported
having trouble, I’ve added heroku run rails db:migrate as a final step just to be safe.

pool: 5
timeout: 5000

development:
<<: *default
database: db/development.sqlite3

Warning: The database defined as "test" will be erased and
re-generated from your development database when you run "rake".
Do not set this db to the same as development or production.
test:
<<: *default
database: db/test.sqlite3

production:
adapter: postgresql
encoding: unicode
For details on connection pooling, see Rails configuration guide
https://guides.rubyonrails.org/configuring.html#database-pooling
pool: <%= ENV.fetch("RAILS_MAX_THREADS") 5 %>
database: sample_app_production
username: sample_app
password: <%= ENV['SAMPLE_APP_DATABASE_PASSWORD'] %>

7.5 Professional-Grade Deployment 379

Figure 7.28: Signing up on the live Web.

The signup form is now live, and the result of a successful signup is shown in
Figure 7.28. Note the presence of a lock icon in the address bar of Figure 7.28, which
indicates that SSL is working.

Exercises

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Subscription.

1. Confirm on your browser that the SSL lock and https appear.

2. Create a user on the production site using your primary email address. Does your
Gravatar appear correctly?

https://www.railstutorial.org/
https://www.railstutorial.org/
https://www.learnenough.com/all-access

380 Chapter 7: Sign Up

7.6 Conclusion
Being able to sign up users is a major milestone for our application. Although the sam-
ple app has yet to accomplish anything useful, we have laid an essential foundation for
all future development. In Chapter 8 and Chapter 9, we will complete our authenti-
cation machinery by allowing users to log in and out of the application (with optional
“remember me” functionality). In Chapter 10, we will allow all users to update their
account information, and we will allow site administrators to delete users, thereby
completing the full suite of Users resource REST actions from Table 7.1.

7.6.1 What We Learned in This Chapter

• Rails displays useful debug information via the debug method.

• Sass mixins allow a group of CSS rules to be bundled and reused in multiple
places.

• Rails comes with three standard environments: development, test, and pro-
duction.

• We can interact with users as a resource through a standard set of REST URLs.

• Gravatars provide a convenient way of displaying images to represent users.

• The form_with helper is used to generate forms for interacting with Active
Record objects.

• Signup failure renders the new user page and displays error messages automatically
determined by Active Record.

• Rails provides the flash as a standard way to display temporary messages.

• Signup success creates a user in the database and redirects to the user show page,
and displays a welcome message.

• We can use integration tests to verify form submission behavior and catch
regressions.

• We can configure our production application to use SSL for secure communica-
tions and Puma for high performance.

This page intentionally left blank

Index

Symbols
-v flag, 13
@user variables, 338, 387, 388
<title> tag, 135
& (ampersands), 809
, (commas), 290
@ signs, 290, 573
@import function, 219
@session variable, 387
\ (backslash), 169, 170
&& statements, 405
(pound sign), 166
== operator, 254
>= notation, 21
||= (“or equals”) assignment operator, 404
~> notation, 21, 22

A
About page

HTML (Hypertext Markup Language), 148
testing, 131
views, 140, 145

acceptance tests, 505, 506
accessing

access control tests, 795
activation tokens, 563
friendly forwarding, 521
login, 381 (see also login)
microposts, 96, 694–697

programmatic access, 746
protected pages, 512
synonyms, 178
user administrative, 747

account activation, 559–560
activating accounts, 585–610
activation edit action, 590–594
adding, 602
authenticated? method, 585–590
broken-up activation tests, 600–603
controllers, 561–562
data models, 562–568
email, 568–585 (see also email)
refactoring, 594–610
refactoring activation code, 604–610
resources, 560–568
sending email, 618
testing, 594–610
token callbacks, 564–566

Account dropdown menus, 413
actions, 81, 115

adding, 245
controllers, 30, 79, 83
create, 346, 362, 382, 383, 391, 401, 493,

525, 581–585, 630–633, 696, 697,
698, 797

destroy, 382, 383, 549–552, 696, 719, 797
edit, 324, 494, 495, 561, 590–594, 623,

641–644

825

826 Index

followers, 776, 788
following, 776, 788
hello, 80, 113
help, 120
home, 120, 709
index, 80, 84, 85, 527, 529
new, 338, 382, 383, 493, 623
show, 83, 326
update, 83, 501, 507, 561, 646

activated users, displaying, 608
activating Turbo, 800
Active Record, 98, 265, 273, 560

associations, 667
commands, 274
finding objects, 276–277
uniqueness validations, 297
where method, 808

active relationships, 759, 760, 761
implementation, 764

Active Storage, 726, 727, 749
interfaces, 728
validations, 733

active users, 607. See also users
Add user pages, navigating, 746
adding

account activation, 602
actions, 245
Amazon AWS storage, 749
authenticated? method, 456
authorization, 697
belongs_to method, 765
Bootstrap CSS, 219
code, 210, 320
CSS (Cascading Style Sheets), 219, 223, 224
debug information, 317–318
delete links, 716
digest method, 429
dynamic content, 107
extra size to cloud IDEs, 14
faker gem, 533
feed instance variables, 709
files, 117
flash messages, 365–368
follow forms, 783
following association, 768

following/follower relationships, 774
footers, 229, 230
forget method, 463
gems, 218, 733, 740
gravatar_for helper, 530
images, 217, 728, 730
inactive users, 609
indices, 762
irb configuration, 165
JavaScript, 413
length validations, 287
links, 209, 626
log_in_as helpers, 478–479
logged_in_user method, 510
logos, 224
mailers, 560, 568
markup, 421
microposts, 683, 685, 699, 701, 721
options hashes, 335
password reset methods, 648
passwords, 306, 307
relationship model validations, 767
remember me checkboxes, 471, 472
remember method, 451
repositories, 46
resized display images, 741
resources, 384, 625
root routes for users, 81
routes, 562, 782
routes to Contact pages, 244
secure passwords, 303–313
session token methods on users, 488, 520
sidebars, 333–334
spacing, 221
statistics, 779, 783
status feeds, 710
store_location method, 523
structure to layouts, 207–232
styles, 209, 221, 223
titles, 138–142
URLs (Uniform Resource Locators), 498,

530
users, 74, 214, 516, 540
Users resources, 324, 327
@user variables, 338

Index 827

validations to images, 734
viewport meta tags, 420

addresses array, 288
admin attribute, 545, 546, 548
administrative users, 544–548
advanced login, 445. See also login

bugs, 465–470
forgetting users, 462–464
login with remembering, 453–462
remember digests, 446–453
remember me behavior, 445–470
remember me branches, 483–489
remember me checkboxes, 470–476
remember tokens, 446–453
testing remember me, 476–489

alert method, 735
alerts, JavaScript, 737
allowing

connections, 113
empty passwords, 507
valid image formats, 736

Amazon Web Services. See AWS (Amazon Web
Services)

ampersands (&), 809
annotations, comments, 176
anonymous functions, 677
API keys, 612, 616, 617
Application controllers, 31

Sessions helper module in, 399
Application helper, 254
ApplicationController class, 101
applications (apps), 1, 2

applying bundler, 17–28
deploying Rails, 52–61
design, 218
hello, 3
hello, world!, 30–35
Heroku setup, 54–59
layouts, 160 (see also layouts)
mailers, 570, 571
MVC (model-view-controller), 28–30
opening, 30
previewing, 26
profiles, 316 (see also profiles)
pushing, 114

sample app, 5, 208
setup, 107–115
site layouts, 146
starting, 14–35
strings, 167–174 (see also strings)
toy, 4
toy demo, 65–66 (see also toy demo

application)
viewing, 30

applying
Bundler, 17–28
flash, 74
form_with, 337–341
Gemfiles, 23
key–value pairs, 812
MiniMagick, 740
named routes, 248–251
SendGrid, 611
SQLite, 110
version control, 41–42

architecture
MVC (model-view-controller), 32
REST (REpresentational State Transfer), 65,

83 (see also REST [REpresentational
State Transfer])

arguments, 174
command-line, 119
defaults, 174
keywords, 336

arrays, 177–181
addresses, 288

mutating, 179
ascending order, 676
assert_difference method, 553, 554
assert_match method, 579, 793
assert_select method, 252, 253
assert_template method, 251
asset pipeline, 232–235
assigns method, 601
associations, 93, 95

Active Record, 667
following, 768, 770
has_many :through, 767, 768
has_many relationship, 764
microposts, 670–674, 791

828 Index

searching microposts, 718
user/relationship, 763–766

associative arrays, 185. See also hashes
at (@) signs, 290, 573
attach method, 729
attacks, sessions replay, 400
attributes

accessors, 202
adding activation, 563
admin, 545, 546, 548
email, 284, 285, 287, 301
hover, 236, 237
microposts, 664–666
name, 344, 345, 349
password reset, 628
password_digest, 539
remember_digest, 447, 448

authenticate method, 304, 447
authenticated? method, 456, 468, 469,

585–590
authentication, 87, 263, 310–313

code, 432
before filters, 493
login, 389–393
sessions, 382
users, 303

authorization, 509–526
adding, 697
friendly forwarding, 521–526
microposts, 694
models, 381
requiring logged-in users, 509–515
requiring the right user, 515–521
testing, 786

automated testing, 107, 126
automatic destruction, 663
AWS (Amazon Web Services), 7, 8, 743, 744

adding, 749
buckets, 748
configuration, 744–748, 750
creating environments, 8
interfaces, 745
naming environments, 9
production, 748–752
regions, 749
signup, 745

B
backslash (\), 169, 170
base titles, 161
bcrypt function, 305, 306, 455
before filters, 493, 509, 517
before_action command, 509
before_save callback, 564, 565
behavior, remember me, 445–470
belongs_to method, 663, 670, 672, 765
BitBucket, 446
body tag, 145
Bootstrap CSS, 213, 239, 333
branches

configuring names, 38
GitHub, 48–49

breaking up long tests, 595–600
broken-up activation tests, 600–603
browser reload-page button, 47
browsers. See also interfaces

loading pages, 215
redirecting, 361
remember token cookies, 461, 462
remember where I left off feature, 437

buckets, AWS
Budri, Abdullah, 672
built-in classes, modifying, 197–199
built-in helpers, 160–161
bundle command, 16
bundle config command, 55
bundle install command, 25
bundler gem, 13
Bundler, applying, 17–28
buttons

follow, 755 (see also following users)
unfollow, 759

C
caches, GitHub, 42
callbacks

before_save, 564, 565
defining, 300
implementation, 303
tokens, 564–566

capybara gem, 21

Index 829

Cascading Style Sheets. See CSS (Cascading
Style Sheets)

case sensitivity, testing, 296
cd command, 14
CGI module escapes, 574
chaining methods, 172
change method, 268
checkboxes

nesting, 470
remember me, 445, 470–476
testing, 476–483

checkout command, 38, 42
classes, 81, 123, 192–204

ApplicationController, 101
constructors, 192–193
container, 214
controllers, 199–201
CSS (Cascading Style Sheets), 211
defining, 195
hierarchies, 193
inheritance, 193–197, 271
inheritance hierarchies, 196
instances, 193
methods, 193, 428
MicropostController, 101
modifying built-in, 197–199
TestCase, 477
User, 202–204
UsersController, 100
ValidLogin, 597

clicking menus, 424
clients, 121, 769
closures, 183. See also blocks
cloud IDEs (Integrated Development

Environments), 5, 107, 108
defaults, 12
downloading files, 269
login, 416
sizing, 14

Cloud9, 8. See also AWS (Amazon Web
Services)

creating environments, 8
naming environments, 9

code
adding, 210, 320
authentication, 432

avoiding repetition, 696
building microposts, 673
clients, 769
comments, 226
executing, 144
for failed logins, 397
generated code, 66
generating, 118
JavaScript, 414, 422
login forms, 387–388, 628
refactoring, 107
refactoring activation, 604–610
technical sophistication and, 6
templates, 607
testing, 127 (see also testing)
undoing, 118
URLs (uniform resource locators)

forwarding, 523
viewing error messages, 353
writing small code, 66

collaboration, 2, 9
colors

modifying, 225
synonyms, 225

columns, 265
command-line

arguments, 119
heroku command-line interface, 56
Rails consoles, 165
terminals, 7
Unix, 2

commands
Active Record, 274
before_action, 509
bundle, 16
bundle config, 55
bundle install, 25
cd, 14
checkout, 38, 42
commit, 40
config:set, 614
gem, 12, 21
generate, 665
git branch, 49, 51, 52
git push, 46

830 Index

Heroku, 59–61
installation, 411, 412
ls, 41
mkdir, 14
rails, 13, 17, 129
rails new, 14, 16, 66, 136
rails server, 25–27
SQL (Structured Query Language), 274
which, 739

commas (,), 290
comments

annotations, 176
authentication code, 432

code, 226
failing email tests, 582
filters, 513
moving, 167
Ruby, 166
uncommenting, 515

commit command, 40
commit sequences, 117
compatibility, 23, 24
config directory, 120
config:set command, 614
configuration, 5

applications (apps), 107–115, 611
AWS (Amazon Web Services), 744–748, 750
branch names, 38
email, 574
first-time repository setup, 39–41
first-time system setup, 37–39
Git, 36–41
indentation, 13
irb, 165
native systems, 6
production database, 377–378
root routes, 114, 149–152
saving passwords, 39
session tokens on login, 488
site navigation, 209–217
SSL (Secure Sockets Layer), 375
test domain hosts, 580

confirmation, 279
passwords, 303, 332

connections

allowing, 25, 113
SSL (Secure Sockets Layer), 374–376

consoles
defining classes, 195
navigating, 165, 166
Rails, 95, 165

constructors, 192–193
Contact page links, 243–245
container class, 214
Content Security Policy. See CSP (Content

Security Policy)
contents, listing, 41
control

flow, 171
versions, 35–36, 265

controllers, 81, 82, 115
Account Activation, 561–562
actions, 30, 79, 83
application, 31
classes, 199–201
debuggers, 328
generating, 116, 118
Micropost resource, 89
microposts, 694
password reset, 624–627
rails, 29
Relationship, 796
relationship between models and, 84
sessions, 382–386
show action, 326
static pages, 122
testing, 128, 129
Users, 82–83, 255–257

conventions. See also guidelines
extra spaces, 186
names, 267

convert command-line utility, 739, 740
cookies

encryption, 454
expiration, 454
sessions, 398
stealing, 446
temporary, 400

cookies method, 446
copying comments, 167

Index 831

correct_user method, 517, 518, 519
cost parameters, 428
count method, 683
create action, 346, 362, 382, 383, 391, 401,

493, 696, 697, 698, 797
friendly forwarding, 525
password reset, 630–633
updating, 581–585

create_activation_digest method, 564
create_table method, 268
create! method, 534
created_at method, 676
creating. See formatting
cross-site request forgery. See CSRF (cross-site

request forgery)
cross-site scripting. See XSS (cross-site scripting)
cryptography, 446
CSP (Content Security Policy), 147
CSRF (cross-site request forgery), 147
CSS (Cascading Style Sheets), 2, 190–191, 207

adding, 219, 223, 224
Bootstrap CSS, 213, 217–226
classes, 211
custom CSS, 217–226
error messages, 356
footers updating, 425
microposts, 687
remember me checkboxes, 473
rules, 208, 222
Sass language (see Sass language)
sidebars, 334
signup forms, 339 (see also forms; signup)
users index, 530

curl utility, 215
current users, login, 402–406
current_user method, 402, 459, 460, 483,

484, 487
custom helpers, 161–165
customization

Bootstrap CSS, 239
fixtures, 428
Gravatar (globally recognized avatar)

images, 333
HTML (Hypertext Markup Language), 124
JavaScript, 415

rules, 222
static pages, 124–126

D
data definition language. See DDL (data

definition language)
data models

account activation, 562–568
implementing, 87, 88
toy demo application, 70–71
troubleshooting, 757–763

data structures, 177–191
arrays, 177–181
blocks, 181–185
hashes, 185–190
ranges, 177–181
symbols, 185–190

data validation, 86
data, showing, 777
databases, 82, 265

communicating with objects, 99
ignoring files, 130
indices, 297–298
migrating, 73, 267
migrations, 265–271, 727
password resets, 622 (see also password reset)
production database configuration, 377–378
remember digests, 450
reset, 568
seeding, 533, 534

DB Browser, 270
DDL (data definition language), 265
debug environments, 316–322
debug methods, 328
debugging

login, 390
signup, 328–330, 349

decryption, 455
default_scope method, 676
defaults

arguments, 174
cloud IDEs (Integrated Development

Environments), 12
databases, 265
environments, 318

832 Index

Gemfile directory, 19
ordering, 663
Rails page, 31
README file, 48
routing files, 33
scope, 674–678
values, 193, 203

defining
callbacks, 300
classes, 195
gravatar_for helper function, 330,

331, 336
methods, 174–176
relationship models, 760
root routes, 245
titles, 162
tokens, 452, 453
user actions/views, 326
variables, 238

delete links
adding, 716
Home pages, 721
mockups, 717

DELETE requests, 121, 122, 382, 383, 408, 549
deleting, 544–555

administrative users, 544–548
destroy action, 549–552
exceptions, 486
microposts, 718
posts, 722
relationship fixtures, 767
user destroy tests, 552–555
user mismatches, 723

deployment
Heroku, 54–59
production database configuration, 377–378
production deployment, 378–379
production web servers, 376–377
professional-grade, 374–379
Rails, 52–61
SSL (Secure Sockets Layer), 374–376
toy demo application, 102–104
users, 81

design. See also layouts
applications (apps), 218

encryption, 304
destroy action, 382, 383, 549–552, 696, 719,

797
destroying

automatic destruction, 663
microposts, 716–720
relationships, 759, 783, 801
sessions, 438
users, 678–679

developer tools, Safari, 417, 418, 419
development, 2. See also web development

email settings in, 574
environments, 7, 166 (see also IDEs

[Integrated Development
Environments])

native systems, 6
RESTful style of, 84
tools, 8 (see also tools)

Devise gem, 263
digest method, 428, 429, 449
digests

password resets, 627, 657
passwords, 456

directories
asset pipeline, 232–233
config, 120
environment, 14
gemfile, 18–21
hello_app, 18–21
structures, 17, 18

displaying. See also viewing
activated users, 608
error messages, 353
sizing, 739
users, 316 (see also signup)

div tag, 211, 212, 213
do keyword, 342
doctypes, 210
documents

Active Storage, 727
types, 137

domain hosts, 580
Don’t Repeat Yourself principle. See DRY

(Don’t Repeat Yourself) principle
downcase method, 331, 393

Index 833

downcasing email, 302
downloading

files, 269
fixture images, 732
images, 217

dropdown menus, 413, 416
DRY (Don’t Repeat Yourself) principle, 142,

422
duck typing, 277
duplicate email addresses, 294
duplicate feed items, testing, 819
dynamic content

adding, 107
profiles, 316 (see also profiles)
slightly dynamic pages, 135–142

E
each method, 182, 188, 288
eager loading, 812–821
edit action, 324, 494, 495, 561, 623

account activation, 590–594
password reset, 641–644

edit forms, 494–501
editing. See also updating users

Gravatar (globally recognized avatar) images,
505

README file, 49–51
successful edits (with TDD), 505–509
unsuccessful edits, 501–504
users, 703

editors, text, 7, 19
efficiency in production, 234
elements, synonyms, 178
email attribute, 284, 285, 287, 301
emails. See also uniqueness validations

account activation, 568–585
configuration, 574
downcasing, 302
duplicate email addresses, 294
indexes, 298
invalid addresses, 633
mailer templates, 569–574
password reset, 634–641
password resets, 622 (see also password reset)
previews, 574–577

in production, 610–618, 658–659
sending, 604
testing case sensitivity, 296
testing valid user, 432
tests, 577–581
tests, password resets, 640–641
updating create action, 581–585
validation, 289

embedded Ruby. See ERb (embedded Ruby)
empty (nil) passwords, 357
empty passwords, updating, 507
empty? method, 171, 355
encryption. See also security

cookies, 454
passwords, 304

environment directory, 14
environments. See also cloud IDEs (Integrated

Development Environments)
creating, 8
debug, 316–322
defaults, 318
development, 166
naming, 9
Rails, 316–322

ERb (embedded Ruby), 142–149, 234, 539,
788

flash messages, 373
templates, 680
views, 142, 143

error messages, 94, 284, 502
login, 393–398
microposts, 702
unsuccessful signups, 353–358

errors
refreshing, 715
routing, 714
updating, 703

escape method, 574
escaping emails, 574
evaluation, short-circuit, 405
exceptions, 276

deleting, 486
untested branches, 484

executing code, 144
expiration

834 Index

cookies, 454
password resets, 627

explicit calls, 788
explicit versions, 22. See also versions
expressions

regular, 290
Rublar regular expression editor, 292

extra spaces, conventions, 186
Ezeilo, Sunday Uche, 769

F
Fahnestock, Jack, 461
failures. See also troubleshooting

login, 386, 390, 394
microposts, 710
password reset, 649
signup (see unsuccessful signups)

faker gem, 533
feed method, 706
feeds

adding instance variables, 709
microposts, 706
proto-feeds, 717 (see also proto-feeds)
status, 693, 707, 709, 710, 805–821 (see also

status feeds)
Fielding, Roy, 83
fields, hidden, 642
files, 19. See also directories

adding, 117
adding JavaScript, 413
adding Users resources, 324
downloading, 269
fixtures, 516 (see also fixtures)
helper, 162
ignoring database, 130
layouts, 146
LICENSE, 110
manifest, 233–235, 412
migrations, 267
missing, 42
models, 271–272
README, 110, 111 (see README file)
routes, 119
routing, 33

filesystem navigators, 7

filters
before, 493, 509, 517
comments, 513
uncommenting, 515

Find in Files global search, 7
finding. See searching
finished signup forms, 362–364
first signups, 368–369
first-time repository setup, 39–41
first-time system setup, 37–39
fixations, sessions, 400, 518
fixtures, 427, 428

activating users, 567
adding users, 516, 540
downloading images, 732

following/follower tests, 792
microposts, 667, 675
testing user logins, 429

flash
applying, 74
login, 393–398
messages, 365–368
persistence, 396, 397
testing, 394–398

follow buttons, 755
working follow buttons, 794–802

follow forms, 775–785
follow method, 796
followers action, 776, 788
followers tables, 758
following action, 776, 788
following association, 768, 770
following users, 755–756

adding statistics, 779
followed users, 767–771
followers, 771–773
following tests, 803–805
following/followers pages, 785–794
relationship models, 756–773 (see also

relationship models)
sample following data, 774–775
statistics, 775–785
status feeds, 805–821
testing authorization, 786
user/relationship associations, 763–766

Index 835

users to follow, 757
validations, 766–767
web interfaces, 774–805
working follow buttons, 794–802

following_ids method, 810
foo, 167, 169
footers

adding, 229, 230
mobile styles, 426
partials, 228, 249
updating, 425

foreign keys, 764
forget method, 463
forgetting users, 462–464
forgot passwords, 621–623, 630, 633. See also

password reset; passwords
form tag, 345
form_with, 337–341
format validations, 279, 288–294
formatting

microposts, 697–705
mockups (see mockups)
relationships, 759
repositories, 43, 112
signup pages, 255–260
static pages, 115
titles, 161
users, 746
working follow buttons, 794–802

forms
adding images, 728
adding remember me checkboxes, 471, 472
creating microposts, 700
creating new password resets, 624
edit forms, 494–501
errors, 706
finished signup forms, 362–364
follow, 775–785
forgot password, 623, 624, 630, 633
form_with, 337–341
HTML (Hypertext Markup Language),

342–346
login, 386–389, 512, 628
microposts, 705
mockups (see mockups)

password reset, 642, 644
passwords, 344
signup, 315, 337–346 (see also signup)
unfollow, 782
unsuccessful signups, 346–361
viewing, 339

forwarding
friendly, 521–526
URLs (uniform resource locators), 523, 524

frameworks
Bootstrap CSS (see Bootstrap CSS)
CSS (Cascading Style Sheets), 207 (see also

CSS [Cascading Style Sheets])
friendly forwarding, 521–526
full-table scans, 298
functionality, 123
functions, 123. See also methods

anonymous, 677
bcrypt, 305, 306, 455
gravatar_for helper function, 330,

331, 336
helpers (see helpers)
@import, 219
provide, 143

G
gem command, 12, 21
Gemfile directory, 18–21
Gemfile versions, 22
Gemfiles, applying, 23
gems

adding, 218, 733, 740
bundler, 13
bundling without, 56
capybara, 21
Devise, 263
faker, 533
installing, 24–25
updating, 110
versions, 22
will_paginate, 536, 538

generalizing authenticated? method, 585–590
generate command, 665
generated code, 66
generated migrations, 448

836 Index

generated static pages, 116–124
generating

code, 118
controllers, 116, 118
Micropost models, 664, 665
sessions controllers, 383
tokens, 449
User mailer, 569–574
User mailer previews, 575
User models, 267

GET request, 121, 122, 323, 383, 625
get rules, 246
getter methods, 202
Git

applying version control, 41–42
configuration, 36–41
first-time repository setup, 39–41
first-time system setup, 37–39
settings, 36–41
toy demo application, 68 (see also toy demo

application)
upgrading, 37
version control, 35–36

git branch command, 49, 51, 52
git push command, 46
GitHub, 2, 446

branches, 48–49
browser reload-page button, 47
navigating, 42–47
passwords, 45
private repositories, 45
push templates, 44
README file, 47–52
repositories, 46 (see also repositories)

globally recognized avatar, 328. See Gravatar
(globally recognized avatar) images

Gómez, Jose Carlos Montero, 500
graphical user interfaces. See GUIs
Gravatar (globally recognized avatar) images,

330–336, 505
customization, 333
profiles, 332

gravatar_for helper, 330, 331, 336, 530
grep utility, 611

guidelines
testing, 127, 128
titles, 161

GUIs (graphical user interfaces), 15, 29.
See also interfaces

H
Hansson, David Heinemeier, 2, 65
has_many :through association, 767, 768
has_many relationships, 663, 670, 673, 756, 763
has_secure_password method, 303, 306–308,

310, 312
hash mark (#), 166
hashed passwords, 303–306
hashes, 185–190

adding options, 530
nested, 188

header tag, 211, 212
headers, partials, 226, 228, 249
hello action, 80, 113
hello app, 3
hello_app directory, 18–21
hello, world!, 30–35
help action, 120
Help page

custom HTML (Hypertext Markup
Language), 125

views, 124, 140, 144
helpers, 342

Application, 254
built-in, 160–161
custom, 161–165
files, 162
gravatar_for, 330, 331, 336, 530
image_tag, 214
log_in_as, 478–479
pluralize text, 355, 356
render, 227, 228, 231
sessions, 399
testing, 164
titles, 176–177

Heroku, 616, 658
commands, 59–61
setup, 54–59
SSL (Secure Sockets Layer), 374, 375

Index 837

heroku command-line interface, 56
hexdigest method, 330
hidden fields, 642
hiding images, 226
hierarchies

classes, 193
inheritance, 98–104, 196, 201

hijacking sessions, 374, 446
home action, 120, 709
Home pages

activation messages, 583
adding microposts, 699
adding statistics, 779
custom HTML (Hypertext Markup

Language), 124
debug information, 320
delete links, 721
form errors, 706
HTML (Hypertext Markup Language),

136, 147
micropost forms, 705
Next links, 713
proto-feeds, 711
root routes, 150
status feeds, 710, 806, 816
titles, 139, 163, 164
views, 123, 143

hosts, domains, 580
Hotwire, 2, 348, 411, 755, 778

working follow buttons, 797–802
hover attribute, 236, 237
HTML (Hypertext Markup Language), 115

About page, 148
account activation, 573
customization, 124
Home pages, 136, 147
login forms, 389
password reset, 635, 636
previews, 577
signup forms, 342–346
stylesheets, 227
testing, 818
web pages, 136–138

HTML5, 210, 218

HTTP (Hypertext Transfer Protocol), 121, 381,
382

operations, 122
verbs, 120

HTTP_REFERER, 719
Hypertext Markup Language. See HTML

(Hypertext Markup Language)
Hypertext Transfer Protocol. See HTTP

(Hypertext Transfer Protocol)

I
IAM (Identity and Access Management), 9, 744
id (identification), 212, 222
Identity and Access Management. See also IAM

(Identity and Access Management)
IDEs (Integrated Development Environments),

5
provisioning, 11

IE (Microsoft Internet Explorer), 211
image_tag helper, 214
images

adding, 217, 728, 730
allowing valid formats, 736
downloading fixtures, 732
Gravatar, 330–336
Gravatar (globally recognized avatar), 505
hiding, 226
importing, 736
microposts, 726–752
processing, 740
resizing, 738–742, 743
searching, 215
upload in production, 742–752
uploading, 726–733, 735
validation, 733–738

implementation
active relationships, 764
callbacks, 303
Hotwire, 778
models, 87, 88
secure passwords, 309–310
status feeds, 808–811
user following, 761

implicit returns, 175

838 Index

importing
images, 736
JavaScript, 415

inactive users, adding, 609
includes method, 814
incompatibilities, 24
indentation, configuring, 13
index action, 80, 84, 85, 527, 529
indices

adding, 762
databases, 297–298
index pages user resource, 75
Micropost model migrations, 665
microposts, 91
multiple key indexes, 666
with pagination, 537
refactoring, 542
testing, 539–542
user, 526–532
users, 86

inheritance, 81, 123
classes, 193–197, 271
hierarchies, 98–104, 196, 201

initialization
hashes, 273
objects, 273

injection, SQL (Structured Query Language),
708

input tag, 783
inspect method, 188, 190, 289
installation, 5

confirmation, 13
gems, 24–25
installation commands, 411, 412
Rails, 11–14

instances
classes, 193
variables, 202

Integrated Development Environments. See
IDEs (Integrated Development
Environments)

integration
password reset tests, 652–654
testing, 128, 207, 251, 505, 554, 724, 790
troubleshooting, 113

interfaces
Active Storage, 728
AWS (Amazon Web Services), 745
following tests, 803–805
following users, 774–805 (see also following

users)
following/followers pages, 785–794
Gravatar (globally recognized avatar) images,

505
GUIs (graphical user interfaces), 15, 29
heroku command-line, 56
microposts, 724
working follow buttons, 794–802

internals links, 229
Internet, downloading images from, 217
interpolation, 167
invalid email addresses, 633
invalid images, uploading, 735
invalid information, submitting, 352
invalid input, login, 389
invalid login, 439
invalid submissions, 358–361, 723
invalidity, 290. See also validity
irb configuration, 165

J
JavaScript, 2

adding, 210, 413
alerts, 737
code, 414, 422
customizing, 415
importing, 415
menu toggles, 410–415, 422
preventing uploading of images, 736
refactoring code, 427

join method, 809, 819

K
key–value pairs, 812
keys, 185

API, 612, 616, 617
foreign, 764
multiple key indexes, 666
symbols as, 187

Index 839

keywords
arguments, 336
do, 342
private, 565
return, 469

L
lambdas, 677
languages, Sass. See Sass language
large files, JavaScript alerts for, 737
layouts, 87

adding structure, 207–232
applications (apps), 160
asset pipeline, 232–235
Bootstrap CSS, 217–226
custom CSS, 217–226
debugging, 317–318
files, 146
footers, 426
links, 242–255
modifying links, 406–410
navigating, 207
partials, 226–232
Sass language, 235–242
site navigation, 209–217
static pages, 142–149
testing changes, 427–433
testing links, 251–255
updating, 209

length
minimum standards for passwords, 308–310
of posts, 91–93
validations, 279, 286–288

length method, 586
LICENSE file, 110
limitations of Ruby, 159–165
line continuations, 564
links

adding, 209
adding delete, 716
adding URLs (Uniform Resource Locators),

530
Contact pages, 243–245
footer partials with, 249
forgot password, 622

header partials with, 249
internals, 229
layouts, 242–255
mailing account activation, 571
mapping routes/URLs, 243
microposts, 690
modifying layout, 406–410
named routes, 248–251
Next, 713
pagination, 715
Rails routes, 245–248
signup pages, 214, 255–260
testing, 251–255

lists
contents, 41
ordered, 681
unordered, 213

literal constructors, 192
literal strings, 167. See also strings
local variables, 450
local web servers, allowing connections, 113
locks, 181–185
log_in method, 399–402, 434
log_in_as method, 478–479, 516
log_out method, 438, 465
logged_in_user method, 510, 695, 696
logged_in? method, 407, 408
logged-in users, requiring, 509–515, 528
logging out

if logged in, 468
testing, 466–467

login, 381, 560
account activation, 559–560 (see also account

activation)
authentication, 389–393
bugs, 465–470
cloud IDEs (Integrated Development

Environments), 416
current users, 402–406
debugging, 390
failures, 386, 390, 394
flash messages, 393–398
forgetting users, 462–464
forgot password links, 627
forms, 386–389, 512, 628

840 Index

HTML (Hypertext Markup Language), 389
invalid, 439
invalid input, 389
log_in method, 399–402
logging in, 398–436
logging out, 437–443
login with remembering, 453–462
menu toggles, 410–415
mobile styling, 415–427
modifying layout links, 406–410
with new navigation links, 411
preventing inactivated users, 593
redirecting, 524
refactoring tests, 597
remember digests, 446–453
remember me behavior, 445–470
remember me branches, 483–489
remember me checkboxes, 470–476
remember tokens, 446–453
remember where I left off feature, 437
remembering users, 457
Safari developer tools, 417, 418, 419
safe navigation, 433
searching users, 389–393
session tokens, 488
sessions, 381–398
status, 435
test users, 512
testing, 436
testing layout changes, 427–433
testing remember me, 476–489
upon signup, 433–436
user profile mockups, 407
validity, 389

logos
adding, 224
styles, 225

lorem ipsum text, 316
Lorem.sentence method, 685
ls command, 41

M
mail method, 571
mailers

adding, 560, 568

applications (apps), 570, 571
password reset, 634–640
templates, 569–574

manifest files, 233–235, 412
map method, 183, 809
mapping

routes, 243
URLs (uniform resource locators), 79, 243

markup, adding, 421
matching patterns, 290
:member method, 776
menus

Account dropdown, 413
adding JavaScript, 413
clicking, 424
dropdown, 416
toggles, 410–415, 422

merging README files, 51–52
messages. See also email

activation, 583
error, 94, 284 (see also error messages)
flash, 365–368, 393–398
passing, 170–173
sending, 586
warning, 593

meta tag, 147, 419
metaprogramming, 586
methods, 123, 776

adding session token methods to users,
488, 520

alert, 735
assert_difference, 553, 554
assert_match, 579, 793
assert_select, 252, 253
assert_template, 251
assigns, 601
attach, 729
authenticate, 304, 447
authenticated?, 456, 468, 469, 585–590
belongs_to, 663, 765
built-in Rails, 160
chaining, 172
classes, 193, 428
cookies, 446
correct_user, 517, 518, 519

Index 841

count, 683
create_activation_digest, 564
create_table, 268
create!, 534
created_at, 676
current_user, 402, 459, 460, 483, 484, 487
debug, 328
default_scope, 676
definitions, 174–176
digest, 428, 429, 449
downcase, 331, 393
each, 182, 188, 288
empty?, 171, 355
feed, 706
follow, 796
following_ids, 810
forget, 463
getter, 202
has_secure_password, 303, 306–308, 310,

312
hexdigest, 330
includes, 814
inspect, 188, 189, 289
join, 809, 819
length, 586
log_in, 399–402, 434
log_in_as, 478–479, 516
log_out, 438, 465
logged_in_user, 510, 695, 696
logged_in?, 407, 408
login status, 435
Lorem.sentence, 685
mail, 571
map, 183, 809
microposts, 672
paginate, 537
passing messages, 171
password reset, 631
password_reset, 569
password_reset_expired?, 648
patch, 504
PATCH, 493
permanent, 453, 455
pluralize, 700
push, 179

puts, 168
redirect_to, 362
references, 300, 564
referrer, 719
remember, 451, 458
respond_to, 799, 803, 804
root, 246
save, 273
send, 586
session, 400, 446, 477, 478
setter, 202
setup, 281, 307, 514, 595, 596, 597, 600,

601, 667, 668, 673
show_follow, 789
split, 177
store_location, 523
turbo_stream.update, 800, 802
unfollow, 796
upcase, 296
update, 278, 332
update_columns, 655–656
user_params, 352, 647
User.digest, 560
user.forget, 462
User.new_token, 560
user.remember, 453
user/active relationship association, 765
utility, 770
valid?, 273, 284
validates, 283, 294
variant, 741
where, 706, 808, 812

Micropost resource, 87–104. See also microposts
controllers, 89
inheritance hierarchies, 98–104
length of posts, 91–93
Restful routes, 89
User models, 93–98

MicropostController class, 101
microposts, 65, 70, 663

access control, 694–697
accessing, 96
adding, 683, 685, 699, 701, 721
associations, 95, 670–674, 791
attributes, 664–666

842 Index

authorization, 694
controllers, 694
creating, 697–705
CSS (Cascading Style Sheets), 687
default scope, 674–678
deleting, 718
destroying, 716–720
destroying users, 678–679
error messages, 94, 702
failures, 710
feeds, 706
fixtures, 667, 675
forms, 705
generating, 664, 665
image upload in production, 742–752
image validation, 733–738
images, 726–752 (see also images)
indexes, 91
interfaces, 724
length of posts, 91–93 (see also mic)
methods, 672
Micropost models, 663–679
modifying, 693–726
navigating, 87–91
ordering, 677
pagination links, 690
partials, 716
profile tests, 690–693
profiles, 686, 688, 689
proto-feeds, 705–716
refactoring, 673
refinements, 674–679
rendering, 680–685
resizing images, 738–742
Restful routes, 694
samples, 685–690
searching, 718
showing, 679–693
testing, 667, 668, 690–693, 720–726
toy demo application, 71
uploading images, 726–733
validations, 666–670

:microposts symbol, 763
microposts table, 808
Microsoft Internet Explorer. See IE (Microsoft

Internet Explorer)

migrations, 265, 546
account activation, 564
databases, 73, 265–271, 727
email uniqueness, 298
files, 267
generated, 448
Micropost models, 665
password reset attributes, 628
passwords, 305
relationships tables, 762
running, 269
undoing, 119
User model, 268

MiniMagick, 740
minimum standards for passwords, 308–310
mismatches, users, 723
missing files, 42
mixin facility (Sass language), 340
mkdir command, 14
mobile styling, login, 415–427
mockups

creating microposts, 698
delete links, 717
forgot password forms, 623, 624
forgot password link, 622
login failures, 386
login forms, 383
profile pages with microposts, 680
profiles, 315, 316, 407 (see also profiles)
proto-feeds, 707
remember me checkboxes, 471
results of visiting protected pages, 510
signup, 338
stats partials, 776
status feeds, 806
uploading images, 727
user edit pages, 494
user followers pages, 787
user following pages, 786
user index pages, 527
users index with delete links, 545

model-view-controller. See MVC
(model-view-controller)

modeling users, 263–364
adding secure passwords, 303–313
authentication, 310–313

Index 843

creating user objects, 272–275
database migrations, 265–271
finding user objects, 276–277
format validations, 288–294
length validations, 286–288
model files, 271–272
presence validations, 282–285
uniqueness validations, 294–303
updating user objects, 277–279
user models, 264–279
user validations, 279–303

models, 29, 82
authorization, 381
data, 70–71 (see also data models)
implementing, 87, 88
inheritance, 98 (see also inheritance)

Microposts, 663–679 (see also microposts)
relationship, 84, 756–773 (see also relationship

models)
security, 513
troubleshooting, 757–763
User, 84, 85

modifying
built-in classes, 197–199
colors, 225
layout links, 406–410
microposts, 693–726
root routes, 36

modules, 399
Moor, Andrew, 518
moving comments, 167
multiple key indexes, 666
mutating arrays, 179
MVC (model-view-controller), 28–30

architecture, 32
in Rails, 82
toy demo application, 77–86

N
name attribute, 344, 345, 349
named routes, 212, 248–251
names

conventions, 267
environments, 9

nano text editors, 165

native system configuration, 6
navigating

Add user pages, 746
consoles, 165, 166
GitHub, 42–47
layouts, 207
microposts, 87–91
safe navigation, 433
site navigation, 209–217

navigators
cloud IDEs (Integrated Development

Environments), 7
filesystems, 7
Find in Files global search, 7

nested hashes, 188
nesting

checkboxes, 470
Sass language, 235–238

new action, 338, 382, 383, 493, 623
new hotness problems, 2
new password resets, 627–630. See also password

reset
new_token method, 572
Next links, 713
nil (empty) passwords, 357
notation

>, 21, 22
>=, 21

numbers
Gemfile versions, 22
versions, 12, 13

O
object-oriented programming. See OOP

(object-oriented programming)
objects, 29

communicating with databases, 99
creating user, 272–275
initializing, 273
strings, 170–173
user (see user objects)

OOP (object-oriented programming), 98
opening

applications (apps), 30
terminal tabs, 27

844 Index

operators
==, 254
or equals (||=) assignment, 404
ternary, 428, 474, 475

options hashes, adding, 335, 530
or equals (||=) assignment operator, 404
ordered lists, 681
ordering

ascending order, 676
defaults, 663
microposts, 677
testing, 675

output
debug, 319, 320
paginating user, 526, 535–539

P
paginate method, 537
pagination

links, 715
microposts, 690
user output, 526, 535–539

palindromes, 176, 197
panes, splitting, 280
parameters

cost, 428
queries, 572
strong, 547
unsuccessful signups, 350–353

params hash, 349, 351
partials, 226–232

footers, 228, 249
headers, 228, 249
microposts, 716
refactoring, 542–544

passing messages, 170–173
passive relationships, 759, 760
password reset, 560, 621–623

attributes, 628
controllers, 624–627
create action, 630–633
digests, 657
edit action, 641–644
email in production, 658–659
email tests, 640–641
emails, 634–641

failures, 649
forms, 642, 644
HTML (Hypertext Markup Language),

635, 636
invalid email addresses, 633
links, 626
mailers, 634–640
methods, 631
new password resets, 627–630
plain-text email templates, 635
previewing, 635–636, 637
requests, 627
resetting passwords, 641–657
resources, 623–633
submitting, 638
templates, 634–640
testing, 651–657
updating, 645–651, 704
views, 629

password_digest attribute, 539
password_reset method, 569
password_reset_expired? method, 648
passwords

adding, 306, 307
adding secure, 303–313
authentication, 310–313
bcrypt, 455
confirmation, 303, 332
digests, 456
empty (nil), 357
encryption, 304
fixtures, 428
GitHub, 45
hashed, 303–306
migrations, 305
minimum standards for, 308–310
remember tokens, 449
reset (see password reset)
saving, 39
signup forms, 344
testing, 308
updating, 507
user has secure, 306–308

pasting comments, 167
PATCH, 121, 122

Index 845

patch method, 504
PATCH method, 493, 561, 625
patterns, matching, 290
permanent method, 453, 455
persistence, 265, 396, 397
persistent sessions

logging out, 464
testing, 485

Philips, Andy, 304
pipeline, asset, 232–235
placeholders, views as, 124
plain-text email templates, 635
planning toy demo applications, 66–70
pluralize method, 700
pluralize text helper, 355, 356
POST request, 121, 122, 346, 359, 383, 493, 625
PostgreSQL, 110, 265, 377
posts, deleting, 722
pound sign (#), 166
prefills, edit pages, 497
preprocessor engines, 234
presence validations, 99, 279, 282–285
previewing

applications (apps), 26
email, 574–577
HTML (Hypertext Markup Language), 577
password reset, 635–636, 637

primary keys, 73
printing strings, 168–169
private keyword, 565
private repositories, 45
Proc (procedure), 677
processing images, 740
production, 166

AWS (Amazon Web Services), 748–752
database configuration, 377–378
deployment, 378–379
efficiency in, 234
email in, 610–618, 658–659
images upload in, 742–752
web servers, 376–377

professional-grade deployment, 374–379
production database configuration, 377–378
production deployment, 378–379

production web servers, 376–377
SSL (Secure Sockets Layer), 374–376

profiles, 316. See also signup
account activation, 592
adding statistics, 783
follow buttons, 784
Gravatar (globally recognized avatar) images,

332
microposts, 686, 688, 689
mockups, 407
sidebars, 700
unfollow buttons, 785
users, 756
viewing, 420

programmatic access, 746
protected pages, accessing, 512
proto-feeds, 705–716, 717
protocols

HTTP (Hypertext Transfer Protocol), 120,
121, 122, 381, 382

stateless, 381
provide function, 143
provisioning IDEs (Integrated Development

Environments), 11
Puma, 376–377
push method, 179
push sequences, 117
push templates, 44
push, README files, 52
pushing applications (apps), 114
puts method, 168

Q
queries

parameters, 572
problems, 814

R
Rails

activating Turbo, 800
consoles, 95, 165
controllers, 29
debugger prompt in, 328
deploying, 52–61
directory structures, 18

846 Index

environments, 316–322
hello, world!, 30–35
Heroku setup, 54–59
installing, 11–14
MVC (model-view-controller), 28–30, 82
routers, 33, 79, 82
routes, 245–248
running servers, 25–27, 28
shortcuts, 117
toy demo application, 65–66 (see also toy

demo application)
rails command, 13, 17, 129
rails new command, 14, 16, 66, 136
rails server command, 25–27
rails test, running, 164
Rails-flavored Ruby, 159

built-in helpers, 160–161
CSS (Cascading Style Sheets), 190–191
custom helpers, 161–165
data structures, 177–191
limitations of Ruby, 159–165
method definitions, 174–176
Ruby classes, 192–204
strings, 165–174 (see also strings)
title helpers, 176–177

ranges, 177–181
raw home view, 121
rdbg (Ruby debugger), 328
README file, 110, 111

defaults, 48
editing, 49–51
GitHub, 47–52
merging, 51–52
push, 52

record, Active Record, 98, 265, 273, 274,
276–277, 560. See also Active Record

Red, Green, Refactor cycle, 130–135, 136
redirect_to method, 362
redirecting

browsers, 361
index action, 527
login, 524

redundancy, data models and, 758
refactoring, 107

account activation, 594–610

activation code, 604–610
embedded Ruby, 142–149
JavaScript, 427
microposts, 673
partial, 542–544
Red, Green, Refactor cycle, 130–135
testing logout, 441

references, methods, 564
referrer method, 719
refreshing errors, 715
regex validations, 291
regions, AWS (Amazon Web Services), 749
regressions, 127
regular expressions, 290

Rublar regular expression editor, 292
Relationship controller, 796
relationship models, 84, 756–773

adding indices, 762
data model problems, 757–763
defining, 760
followed users, 767–771
followers, 771–773
testing, 766
user/relationship associations, 763–766
validations, 766–767

relationships
access control tests, 795
active, 759, 760, 761
adding following/follower, 774
belongs_to, 670, 672
destroying, 759, 783, 801
following/follower tests, 792
formatting, 759
has_many, 663, 670, 673, 756, 763, 764
passive, 759, 760
routes, 782
Turbo templates, 801
working follow buttons, 794–802

relationships tables, 762
remember me, 560

behavior, 445–470
branches, 483–489
bugs, 465–470
checkboxes, 445, 470–476
digests, 446–453

Index 847

forgetting users, 462–464
login with remembering, 453–462
testing, 476–489
tokens, 446–453

remember method, 451, 458
remember where I left off feature, 437
remember_digest attribute, 447, 448
remote origin, 43
render helper, 227, 228, 231
rendering

microposts, 680–685
README files, 48

user signup errors, 702
repositories

adding, 46
creating, 43, 112
first-time repository setup, 39–41
private, 45
toy demo application, 68 (see also toy demo

application)
viewing, 47

representational state transfers. See REST
requests

DELETE, 382, 383, 408, 549
GET, 121, 122, 323, 383, 625
password resets, 622, 627 (see also password

reset)
PATCH, 493, 561, 625
POST, 121, 122, 346, 359, 383, 493, 625
protocols, 381 (see also protocols)

requiring
logged-in users, 509–515, 528
the right user, 515–521

reset
databases, 568
passwords (see password reset)

resizing images, 738–742, 743
resources

account activation, 560–568
adding, 327, 384, 625
Micropost resource (see Micropost resource)
microposts (see microposts)
password reset, 623–633
REST (REpresentational State Transfer), 759
RESTful, 382

Users, 322–327 (see Users resource)
respond_to method, 799, 803, 804
REST (REpresentational State Transfer), 65,

83, 115, 122, 315, 322
resources, 759

RESTful resources, 382
RESTful routes, 84, 89, 324

Account Activation resource, 561
custom rules in resources, 777
microposts, 694
password resets, 625

resubmitting. See also forms; submitting
unsuccessful signups, 347

return keyword, 469
returns, implicit, 175
root method, 246
root routes

configuration, 114, 149–152
modifying, 36

root routes for users, adding, 81
root URLs, 33
routers, Rails, 33, 79, 82
routes

adding, 562
adding Users resources, 324
mapping, 243
named, 212, 248–251
Rails, 245–248
relationships, 782
RESTful, 84, 89, 324
root (see root routes)
session rules, 384
signup, 258
static pages, 247

routes files, updating, 119
routing, 324, 325

errors, 714
files, 33
modifying root routes, 36

Rublar regular expression editor, 292
Ruby

classes, 81, 192–204 (see also classes)
comments, 166
limitations of, 159–165

Ruby debugger (rdbg), 328

848 Index

Ruby Version Manager. See rvm (Ruby Version
Manager)

RubyGems package manager, 12
rules

CSS (Cascading Style Sheets), 208, 222
debug output, 319, 320
get, 246
sessions, 384
users resource, 79–80

running
migrations, 269
rails new command, 16
rails server command, 25–27
rails test, 164
servers, 25–27, 28

rvm (Ruby Version Manager), 10

S
S3 (Simple Storage Service), 743, 750
Safari developer tools, 417, 418, 419
safe navigation, 433
samples

app, 5, 208
following data, 774–775
microposts, 685–690
users, 533–534

sandboxes, 272
Sass language, 218, 235–242

mixin facility, 340
nesting, 235–238
variables, 238–242

save method, 273
saving

before_save callback, 564, 565
passwords, 39

scaffold generators, 65, 72
scaffolding, 65, 66, 81
scalability, 2
scope, defaults, 674–678
scripts, generating, 72
SCSS, 235, 237, 240, 334, 335

sidebars, 779
searching

Find in Files global search, 7
images, 215

microposts, 718
user objects, 276–277
users, 389–393
users to follow, 757

secure passwords, adding, 303–313
security

models, 513
sessions, 446, 447

seed users, activating, 566
seeding databases, 533, 534
selecting Ubuntu Servers, 10, 14
send method, 586
SendGrid, 611, 613, 614, 615, 616, 617
sending

email, 604
messages, 586

servers, 121
allowing connections, 113
production web, 376–377
running, 25–27, 28
sharing, 29
Ubuntu (see Ubuntu Servers)

session method, 400, 446, 477, 478
sessions

adding token methods on users, 488, 520
authentication, 382
controllers, 382–386
cookies, 398
create action, 391
destroying, 438
fixations, 400, 518
helpers, 399
hijacking, 374, 446
logging out from persistent, 464
login, 381–398
replay attacks, 400
security, 446, 447
simulating, 406
testing, 485
tokens, 488

setter methods, 202
settings. See also configuration

Git, 36–41
indentation, 13

Index 849

setup. See also configuration
applications (apps), 107–115
first-time repository, 39–41
first-time system, 37–39

setup method, 281, 307, 514, 595, 596, 597,
600, 601, 667, 668, 673

sharing servers, 29
shim stylesheets, 227
short-circuit evaluation, 405
shortcuts, Rails, 117
show action, 83, 326
show_follow method, 789
showing

all users, 526–544
data, 777
debug environments, 316–322
debugging, 328–330
Gravatar images, 330–336
index tests, 539–542
microposts, 679–693
paginating user output, 535–539
partial refactoring, 542–544
Rails environments, 316–322
sample users, 533–534
sidebars, 330–336
user indices, 526–532
users, 316–336 (see also users)
users following, 790, 791, 792
Users resources, 322–327

side effects, 168
sidebars, 330–336

adding, 333–334
CSS (Cascading Style Sheets), 334
SCSS, 779
styles, 335
templates, 725
user info, 700

signing cryptography, 446
signup, 214, 255–260

account activation, 581 (see also account
activation)

activation messages at, 583
AWS (Amazon Web Services), 745
debug environments, 316–322
debugging, 328–330, 349
finished signup forms, 362–364

first signups, 368–369
flash messages, 365–368
form_with, 337–341
forms, 337–346
Gravatar images, 330–336
HTML (Hypertext Markup Language),

342–346
login upon, 433–436
mockups, 264, 338
passwords, 344
production database configuration, 377–378
production deployment, 378–379
production web servers, 376–377
professional-grade deployment, 374–379
Rails environments, 316–322
rendering user errors, 702
SendGrid, 613
showing users, 316–336
sidebars, 330–336
SSL (Secure Sockets Layer), 374–376
successful, 361–373
testing for valid submission, 369–373
unsuccessful signups, 346–361
URLs (uniform resource locators), 257–260
Users resources, 322–327
views, 500

signups
error messages, 353–358
strong parameters, 350–353
testing for invalid submissions, 358–361

Simple Storage Service. See S3 (Simple Storage
Service)

simulating sessions, 406
single-quoted strings, 169–170
site layouts, applications (apps), 146
site navigation, 209–217
sizing

cloud IDEs (Integrated Development
Environments), 14

displaying, 739
slightly dynamic pages, 135–142
spacing, adding, 221
split method, 177
splitting panes, 280
Sprockets utility, 219, 233

850 Index

SQL (Structured Query Language), 96, 265
commands, 274
injection, 708

SQLite, 110, 265, 311
SSL (Secure Sockets Layer), 374–376
stabby lambdas, 677
staging areas, 40
starting

applications (apps), 14–35
GitHub, 42–47
hello, world!, 30–35
testing, 128–130

stateless protocols, 381
statements, &&, 405
static pages, 115–126

adding titles, 138–142
classes, 199
configuring root routes, 149–152
controllers, 122
customization, 124–126
embedded Ruby, 142–149
formatting, 115
generated static pages, 116–124
layouts, 142–149
Red, Green, Refactor cycle, 130–135
routes, 247
sample app setups, 107–115
slightly dynamic pages, 135–142
testing titles, 136–138
tests, 126–135
updating, 160

statistics
adding, 779, 783
following users, 775–785
viewing, 777

status feeds, 693, 707, 709, 710, 805–821
eager loading, 812–821
Home pages, 816
implementation, 808–811
strategies, 806–808
subselects, 812–821
testing, 807
testing duplicate feed items, 819
testing HTML, 818

status, login, 435

Stimulus, 411
storage

Active Storage, 749 (see also Active Storage)
adding Amazon AWS, 749
URLs (uniform resource locators)

forwarding, 523
store_location method, 523
strategies, status feeds, 806–808
strings

keys, 185
literals, 167
matching patterns, 290
objects, 170–173
printing, 168–169
Rails-flavored Ruby, 165–174
single-quoted, 169–170

strong parameters, 547
unsuccessful signups, 350–353

Structured Query Language. See SQL
(Structured Query Language)

structures
adding to layouts, 207–232
Bootstrap CSS, 217–226
custom CSS, 217–226
directories, 17, 18
partials, 226–232
site navigation, 209–217

styles, 87
adding, 209, 221, 223
footers, 426
login mobile styling, 415–427
logos, 225
sidebars, 335

stylesheets
HTML (Hypertext Markup Language), 227
partials, 226
subdirectories, 29. See also directories
valid submissions, 723

submitting
invalid information, 352
invalid submissions, 723
microposts with images, 731
password resets, 638
remember me checkboxes, 474
testing for invalid submissions, 358–361

Index 851

testing for valid submission, 369–373
unsuccessful signups, 346–361

subselects, 812–821
successful edits (with TDD), 505–509
successful signup

first signups, 368–369
flash messages, 365–368
testing for valid submission, 369–373

successful signups, 361–373
symbol-to-proc, 183
synonyms, 178

colors, 225
syntax, nesting, 236

T
tables, 266. See also databases

DB Browser, 270
followers, 758
microposts, 808
relationships, 762
users, 266

tabs, opening, 27
tags

body, 145
div, 211, 212, 213
form, 345
header, 211, 212
input, 783
meta, 147, 419
<title>, 135
users, 747

TDD (test-driven development), 2, 127, 207
split panes, 280
successful edits with, 505–509

Tech Support Cheat Sheet, 6
technical sophistication, 6, 18, 84, 307, 321
templates

code, 607
ERb (embedded Ruby), 680
errors, 363
instance variables, 482
mailers, 569–574
password reset, 634–640
push, 44
remember me tests, 483

sidebars, 725
testing, 251, 373, 608, 610
testing image uploads, 732
tests of error messages, 361
Turbo, 801
update_columns method, 655–656

temporary cookies, 400
terminal tabs, opening, 27
terminals, command-line, 7
ternary operators, 428, 474, 475
test suites, 126
test-driven development. See TDD
TestCase class, 477
testing, 87, 166

About page, 131
acceptance tests, 505, 506
access control tests, 795
account activation, 594–610
admin attribute, 548
authorization, 786
automated, 126
automated testing, 107
breaking up long, 595–600
broken-up activation tests, 600–603
case sensitivity, 296
Contact pages, 243, 244
controllers, 128, 129
duplicate email addresses, 294
duplicate feed items, 819
editing for wrong users, 516
email, 577–581
email formats, 289
flash, 394–398
following tests, 803–805
following/follower pages, 793
friendly forwarding, 522
guidelines, 127, 128
helpers, 164
HTML (Hypertext Markup Language), 818
index action, 527
indices, 539–542
integration, 128, 207, 251, 505, 554, 724,

790
invalid login, 439
for invalid submissions, 358–361

852 Index

layout changes, 427–433
links, 251–255
logging out, 466–467
login, 436
login status, 435
microposts, 667, 668, 690–693, 720–726
ordering, 675
palindromes, 176
password reset, 651–657
passwords, 308
persistent sessions, 485
refactoring activation code, 604–610
relationship models, 766
remember me, 476–489
remember me branches, 483–489
security models, 513
starting, 128–130
static pages, 126–135
status feeds, 807
templates, 373, 608, 610
titles, 136–138
unsuccessful edits, 503–504
user destroy tests, 552–555
user logout, 439
User model, 281
for valid submission, 369–373
valid user email, 432
validity, 280–282, 430

text
editors, 7, 19
Micropost models, 664 (see also microposts)
nano, 165

timestamps, account activation, 591
titles

base, 161
defining, 162
helpers, 176–177
Home pages, 139, 163, 164
testing, 136–138

toggles, menus, 410–415, 422
tokens

accessing activation, 563
adding session token methods to users,

488, 520
callbacks, 564–566

defining, 452, 453
generating, 449
password resets, 622 (see also password reset)
remember me, 446–453
sessions, 488

tools
command-line, 15 (see also command-line)
development, 8
indexes, 298
Safari developer, 417, 418, 419

touch trick, 219
toy app, 4
toy demo application, 65–66

data models, 70–71
deploying, 102–104
Micropost resource, 87–104 (see also

microposts)
microposts, 70, 71
MVC (model-view-controller), 77–86
planning, 66–70
repositories, 68
User model for, 85
user tours, 73–76
Users resource, 71–73
weaknesses of User resource, 86–87

tracking remember me behavior, 445–470
transactions, 381. See also protocols
transfers, representational state, 83
troubleshooting

data models, 757–763
integration, 113
unfollow buttons, 759

Turbo, 2, 348, 411
activating, 800
streams, 798, 799
templates, 801

turbo_stream.update method, 800, 802

U
Ubuntu Servers, 8

selecting, 10, 14
uncommenting, 515
undoing

code generation, 118
migrating, 119

Index 853

unfollow buttons, 759
unfollow method, 796
uniqueness validations, 279, 294–303

Active Record, 297
Unix command lines, 2
unordered lists, 213
unsuccessful edits

testing, 503–504
updating users, 501–503

unsuccessful signups, 346–361. See also signup
debugging, 349
error messages, 353–358
strong parameters, 350–353
testing for invalid submissions, 358–361

upcase method, 296
update action, 83, 501, 507, 561, 646
update method, 278, 332
update_columns method, 655–656
updating, 493–494

authenticated? method, 469
create action, 581–585
edit forms, 494–501
edit pages prefills, 497
empty passwords, 507
errors, 703
footers, 425
gems, 110
layouts, 209
password reset, 645–651, 704
passwords, 506
routes files, 119
session controllers, 384
static pages, 160
successful edits (with TDD), 505–509
testing unsuccessful edits, 503–504
unsuccessful edits, 501–503
user objects, 277–279
Users controllers, 258

upgrading Git, 36
upload fields, adding images to, 729
uploading images, 726–733, 735
URLs (uniform resource locators)

adding, 530
adding users, 74, 498
forwarding, 523, 524

mapping, 79, 243
root, 33
routing, 325
signup pages, 257–260
Users resource and, 73

user administrative access, 747
User class, 202–204
User mailer

generating, 569–574
previews, 575

User model, 84, 85, 267
account activation, 566
adding activation methods, 604
adding password reset methods, 648
authenticated? method, 456
following association, 768
forget method, 463
Micropost resource, 93–98
migrating, 268
password reset attributes, 628
password reset methods, 631
presence validations, 99
remember_digest attribute, 447
testing, 281
validations, 502

user objects
creating, 272–275
searching, 276–277

updating, 277–279
User resource, weaknesses of, 86–87
user tours, toy demo application, 73–76
user_params method, 352, 647
User.digest method, 560
user.forget method, 462
User.new_token method, 560
user.remember method, 453
users

account activation, 559–560 (see also account
activation)

activating fixtures, 567
activating seed, 566
adding, 74, 214, 516, 540
adding root routes for, 81
adding session token methods to, 488, 520
administrative, 544–548

854 Index

associations, 95, 670–674
authentication, 303
authorization, 509–526 (see also

authorization)
current, 402–406
deleting, 544–555 (see also deleting users)
deploying, 81
destroying, 678–679
edit pages, 78
editing, 703
finding to follow, 757
fixtures, 428
following, 755–756, 790, 791, 792 (see also

following users)
formatting, 746
inactive, 610
index page, 80
index tests, 539–542
indexes, 86
indices, 526–532
info sidebars, 700
login, 381, 401 (see also login)
microposts (see microposts)
mismatches, 723
modeling (see modeling users)
paginating user output, 526, 535–539
partial refactoring, 542–544
profiles, 316, 756 (see also profiles)
remembering, 457 (see also remember me)
requiring logged-in, 528
requiring the right user, 515–521
routes, 782
sample, 533–534
searching, 389–393
searching microposts, 718
showing all, 526–544
signup pages, 255–260, 264 (see also signup)
tags, 747
updating, 493–494 (see also updating users)
viewing, 322, 326

Users controllers, 82–83, 255–257
debuggers, 328, 329
show action, 326

Users resource, 322–327
adding, 327

index pages, 75
RESTful routes, 84
rules, 79–80
toy demo application, 71–73
URLs (uniform resource locators) and, 73

users tables, 266
UsersController class, 100
UsersLoginTest, 600
utilities. See also tools

convert command-line, 739, 740
curl, 215
grep, 611
Sprockets, 219, 233

utility methods, 770

V
valid image formats, allowing, 736
valid submissions, 723
valid user email, testing, 432
valid? method, 273, 284
validates method, 283, 294
validation

Active Storage, 733
adding to images, 734
data, 86
format, 279, 288–294
images, 733–738
length, 279, 286–288
microposts, 666–670
presence, 99, 279, 282–285
regex, 291
relationship models, 766–767
uniqueness, 279, 294–303
User model, 502
user validations, 279–303
validity tests, 280–282

validity, 273
login, 389
microposts, 667
testing, 280–282, 430

ValidLogin class, 597
values, 188

defaults, 193, 203
variables

adding feed instance, 709

Index 855

defining, 238
local, 450
Sass language, 238–242
@session, 387
@user, 338, 387, 388

variant method, 741
verbs, HTTP (Hypertext Transfer Protocol),

120
versions

applying version control, 41–42
control, 35–36, 265
gems, 22
installing Rails, 12
numbers, 12, 13

viewing
applications (apps), 30
error messages, 353
forms, 339
hello, world!, 34
repositories, 47
showing all users, 526–544
statistics, 777
user information, 326
users, 322

viewports, 419
views, 29, 82, 115

About page, 140, 145
account activation, 573
adding sidebars, 333–334
Contact pages, 245
ERb (embedded Ruby), 142, 143
Help page, 124, 140, 144
Home pages, 123, 143
password reset, 629
raw home, 121
signup, 500
user edit, 496

user profiles, 420
users index, 529

violations, 279

W
warning messages, 593
web applications, 1. See also applications

strings, 167–174 (see also strings)
web development, 1
web interfaces

following tests, 803–805
following users, 774–805 (see also following

users)
following/followers pages, 785–794
sample following data, 774–775
statistics, 775–785
working follow buttons, 794–802

web pages, HTML (Hypertext Markup
Language), 136–138

web servers
allowing connections, 113
production, 376–377

WebSockets, 798
where method, 706, 808, 812
which command, 739
will_paginate gem, 536, 538
wireframes, 208
working follow buttons, 794–802

X
XSS (cross-site scripting), 147, 446

Y
YAML (YAML Ain’t Markup Language), 321

Z
zero-offset, 178

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	Foreword
	Preface
	Acknowledgments
	About the Author
	Chapter 7 Sign Up
	7.1 Showing Users
	7.1.1 Debug and Rails Environments
	7.1.2 A Users Resource
	7.1.3 Debugger
	7.1.4 A Gravatar Image and a Sidebar

	7.2 Signup Form
	7.2.1 Using form_with
	7.2.2 Signup Form HTML

	7.3 Unsuccessful Signups
	7.3.1 A Working Form
	7.3.2 Strong Parameters
	7.3.3 Signup Error Messages
	7.3.4 A Test for Invalid Submission

	7.4 Successful Signups
	7.4.1 The Finished Signup Form
	7.4.2 The Flash
	7.4.3 The First Signup
	7.4.4 A Test for Valid Submission

	7.5 Professional-Grade Deployment
	7.5.1 SSL in Production
	7.5.2 Production Web Server
	7.5.3 Production Database Configuration
	7.5.4 Production Deployment

	7.6 Conclusion
	7.6.1 What We Learned in This Chapter

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

