
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780137908752
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780137908752
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780137908752

Designing and
Developing Secure
Azure Solutions

Michael Howard
Heinrich Gantenbein
Simone Curzi

Designing and Developing Secure Azure Solutions
Published with the authorization of Microsoft Corporation by:
Pearson Education, Inc.

Copyright © 2023 by Pearson Education.

All rights reserved. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form
or by any means, electronic, mechanical, photocopying, recording, or
likewise. For information regarding permissions, request forms, and
the appropriate contacts within the Pearson Education Global Rights &
Permissions Department, please visit www.pearson.com/permissions.

No patent liability is assumed with respect to the use of the information
contained herein. Although every precaution has been taken in the
preparation of this book, the publisher and author assume no responsibility
for errors or omissions. Nor is any liability assumed for damages resulting
from the use of the information contained herein.

ISBN-13: 978-0-13-790875-2
ISBN-10: 0-13-790875-X
Library of Congress Control Number: 2022947556

ScoutAutomatedPrintCode

Trademarks

Microsoft and the trademarks listed at http://www.microsoft.com on the
“Trademarks” webpage are trademarks of the Microsoft group of companies.
All other marks are property of their respective owners.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate
as possible, but no  arranty or fitness is implied. The information provided 
is on an “as is” basis. The author, the publisher, and Microsoft Corporation
shall have neither liability nor responsibility to any person or entity with
respect to any loss or damages arising from the information contained in
this book or from the use of the programs accompanying it.

Special Sales

For information about buying this title in bulk quantities, or for special
sales opportunities (which may include electronic versions; custom cover
designs; and content particular to your business, training goals, marketing
focus, or branding interests), please contact our corporate sales department
at corpsales@pearsoned.com or (800) 382-3419.
For government sales inquiries, please contact
governmentsales@pearsoned.com.
For questions about sales outside the U.S., please contact
intlcs@pearson.com.

CREDITS

Editor-in-Chief:
Brett Bartow

Executive Editor:
Loretta Yates

Sponsoring Editor:
Charvi Aora

Development Editor:
Kate Shoup

Managing Editor:
Sandra Schroeder

Senior Project Editor:
Tracey Croom

Copy Editor:
Kim Wimpsett

Indexer:
Ken Johnson

Proofreader:
Barbara Mack

Technical Editors:
Jonathan Davis, Mike
Becker, Rick Alba, Altaz
Valani, Hasan Yasar

Editorial Assistant:
Cindy Teeters

Cover Designer:
Twist Creative, Seattle

Compositor:
codeMantra

Art:
Cover illustration:
Valex/Shutterstock

Figure 10-37:
Gordon Lyon

http://www.pearson.com/permissions
http://www.microsoft.comon
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com

Pearson’s Commitment to Diversity,
Equity, and Inclusion
earson is dedicated to creating bias-free content that re ects the diversity of all learners.  e 

embrace the many dimensions of diversity, including but not limited to race, ethnicity, gender,
socioeconomic status, ability, age, sexual orientation, and religious or political beliefs.

Education is a powerful force for equity and change in our world. It has the potential to deliver
opportunities that improve lives and enable economic mobility. As we work with authors to
create content for every product and service, we acknowledge our responsibility to dem-
onstrate inclusivity and incorporate diverse scholarship so that everyone can achieve their
potential through learning. As the world’s leading learning company, we have a duty to help
drive change and live up to our purpose to help more people create a better life for themselves
and to create a better world.

Our ambition is to purposefully contribute to a world where:

■ Everyone has an equitable and lifelong opportunity to succeed through learning.

■ Our educational products and services are inclusive and represent the rich diversity of
learners.

■ ur educational content accurately re ects the histories and e periences of the learners 
we serve.

■ Our educational content prompts deeper discussions with learners and motivates them
to expand their own learning (and worldview).

While we work hard to present unbiased content, we want to hear from you about any
concerns or needs with this Pearson product so that we can investigate and address them.

■ Please contact us with concerns about any potential bias at
https://www.pearson.com/report-bias.html.

https://www.pearson.com/report-bias.html

For my family, who had patience with me as I wrote another book.
—MICHAEL

With love to my wife Denyse, thanking her for the support she
provides.

—HEINRICH

With gratitude and love to my family, Silvia, Alice, and Viola, who
endure and support me tirelessly.

—SIMONE

Contents at a glance

Acknowledgments xxi

About the Authors xxiii

Foreword xxiv

Introduction xxv

PART I SECURITY PRINCIPLES

CHAPTER 1 Secure development lifecycle processes 3

CHAPTER 2 Secure design 23

CHAPTER 3 Security patterns 51

CHAPTER 4 Threat modeling 79

CHAPTER 5 Identity, authentication, and authorization 123

CHAPTER 6 Monitoring and auditing 171

CHAPTER 7 Governance 201

CHAPTER 8 Compliance and risk programs 213

PART II SECURE IMPLEMENTATION

CHAPTER 9 Secure coding 237

CHAPTER 10 Cryptography in Azure 285

CHAPTER 11 Confidential computing 359

CHAPTER 12 Container security 373

CHAPTER 13 Database security 391

CHAPTER 14 CI/CD security 435

CHAPTER 15 Network security 443

Appendix A: Core cryptographic techniques 461

Index 469

Contents

Acknowledgments .xxi

Foreword .xxiii

About the Authors .xxiv

Introduction . xxv

PART I SECURITY PRINCIPLES

Chapter 1 Secure development lifecycle processes 3
Developers are the number-one source of compromises 3

Introducing the Microsoft Security Development Lifecycle 4

uality   security . 4

Securing features vs. security features . 5

SDL components . 5

Security training . 6

efining your bug bar . 7

Attack surface analysis . 10

Threat modeling . 10

efining your toolchain .11

Avoiding banned functionality . 12

Using static analysis tools . 13

Using dynamic analysis tools . 16

Security code review . 17

Having an incident response plan . 18

Performing penetration tests . 19

SDL tasks by sprint . 20

The human element . 21

Summary . 21

Chapter 2 Secure design 23
The cloud, DevOps, and security . 23

IaaS vs. PaaS vs. SaaS, and the shared responsibility . 24

Zero trust for developers . 27 ix

x Contents

Thinking about secure design . 31

Security design principles applied to Azure . 32

Attack surface reduction . 32

Complete mediation . 33

Defense in depth .34

Economy of mechanisms . 37

Fail-safe defaults . 38

Fail safe and fail secure . 39

Least common mechanism .40

Least privilege . 41

Leveraging existing components .42

Open design .43

Psychological acceptability . 45

Separation of duties . 45

Single point of failure .46

Weakest link . 47

Summary .48

Chapter 3 Security patterns 51
What is a pattern? . 51

Our take on Azure security patterns . 51

Authentication pattern . 53

Use a centralized identity provider for authentication 54

Authorization patterns . 56

Adopt just-in-time administration . 56

Assign roles to groups . 58

Isolate from the internet . 59

Isolate with an identity perimeter . 60

Use role-based access control (RBAC) . 61

Secrets management patterns .64

Use managed identities .64

Protect secrets with Azure Key Vault . 66

Sensitive information management patterns . 69

Create secure channels . 69

Encrypt data client-side . 71

Contents xi

Use bring your own key (BYOK) . 73

Availability pattern . 74

Design for denial of service . 75

Summary . 77

Chapter 4 Threat modeling 79
TL;DR . 79

What is threat modeling? . 80

The four main phases of threat modeling . 81

T s threat-classification approach . 85

The trouble with threat modeling . 86

Searching for a better threat modeling process . 88

 better  ay to perform threat modeling  The five factors 90

Threat-modeling tools . 91

ssessing the five factors . 92

CAIRIS . 93

Microsoft Threat Modeling Tool .94

OWASP Threat Dragon . 96

pytm . 97

Threagile . 98

Threats Manager Studio . 99

How to threat model: A real-life example . 101

nalyzing the solution  The first meeting . 102

Analyzing the solution: The second meeting . 104

dentifying specific threats and mitigations . 108

Automatically identifying additional threats and mitigations 113

Creating the roadmap . 115

Using the dashboard . 118

Pushing selected mitigations into the backlog. 119

Summary . 122

Chapter 5 Identity, authentication, and authorization 123
Identity, authentication, and authorization through a security lens 123

Authentication vs. authorization vs. identity . 124

xii Contents

Modern identity and access management . 125

Identity: OpenID Connect and OAuth2 fundamentals 125

OpenID Connect and OAuth2 . 128

Application registration . 129

Microsoft Authentication Library . 130

OAuth2 roles . 134

Flows . 134

Client types . 137

Tokens . 138

Scopes, permissions, and consent . 138

Anatomy of a JWT . 142

Using OAuth2 in your Azure applications . 146

Authentication . 150

Something you know . 151

Something you have . 151

Something you are . 152

Multifactor authentication . 153

Who is authenticating whom? . 154

Creating your own authentication solution . 155

The role of single sign-on . 156

Getting access without authenticating . 157

Authenticating applications . 159

Authorization . 161

Azure AD roles and scopes . 162

Azure control plane built-in RBAC roles . 163

Azure data plane built-in RBAC roles . 164

Managing role assignments . 164

ustom role definitions . 165

Denying assignments . 167

Role assignment best practices . 167

Azure AD Privileged Identity Management . 168

Azure attribute-based access control . 168

Summary . 170

Contents xiii

Chapter 6 Monitoring and auditing 171
Monitoring, auditing, logging, oh my! . 171

Leveraging the Azure platform . 172

Diagnostic settings . 173

Log categories and category groups . 175

Log Analytics . 176

Kusto queries . 176

Raising alerts . 181

Protecting audit logs . 186

Using policy to add logs . 189

Taming costs . 189

The need for intentional security monitoring and auditing 190

The role of threat modeling . 190

Custom events . 193

Alerts from custom events on Azure Sentinel . 197

Summary . 199

Chapter 7 Governance 201
Governance and the developer . 201

Azure Security Benchmark version 3 .202

Network security .202

Identity management .203

Privileged access .203

Data protection .203

Asset management .204

Logging and threat detection .204

Incident response .204

Posture and vulnerability management .204

Endpoint security .205

Backup and recovery .205

DevOps security .205

Governance and strategy .205

xiv Contents

Governance enforcement .206

Enforcement through processes .206

Governance documentation and security education206

Role-based access control .206

Automated enforcement during deployment 206

Microsoft Defender for Cloud .207

Secure Score .207

Reviewing compliance state for solution .208

Azure Policy .209

Azure Initiatives and compliance frameworks 210

Azure Policy effects . 210

Enforcement (effects) levels and RBAC by environment 210

Policy Assignments . 211

Policy as code . 212

Summary . 212

Chapter 8 Compliance and risk programs 213
Something important to get out of way . 213

What is compliance? . 213

HIPAA . 215

HITRUST . 216

GDPR . 216

PCI DSS . 217

FedRAMP . 218

NIST SP 800-53 . 219

NIST Cybersecurity Framework .220

FIPS 140 . 221

SOC .224

ISO/IEC 27001 .225

ISO/IEC 27034 .226

Center for Internet Security Benchmarks .226

Azure Security Benchmark .227

OWASP .229

MITRE .229

Compliance synopsis .232

Contents xv

Using threat models to drive compliance artifacts .233

Summary .234

PART II SECURE IMPLEMENTATION

Chapter 9 Secure coding 237
Insecure code .237

Rule #1: All input is evil .238

Verify explicitly .242

Determine correctness .243

Reject known bad data. .253

Encode data .256

Common vulnerabilities .256

A01: Broken access control .257

A02: Cryptographic failures .257

A03: Injection .258

A04: Insecure design .259

  ecurity misconfiguration .259

A06: Vulnerable and outdated components .264

  dentification and authentication failures264

A08: Software and data integrity failures .266

A09: Security logging and monitoring failures269

A10: Server-side request forgery (SSRF) .269

Comments about using C++ .270

on t  rite glorified  .270

Use compiler and linker defenses .270

Use analysis tools . 271

Security code review .273

Keeping developers honest with fuzz testing . 274

Generating totally random data .276

Mutating existing data .277

Intelligently manipulating data knowing its format280

Fuzzing APIs .280

Summary .283

xvi Contents

Chapter 10 Cryptography in Azure 285
A truth about security .286

Securing keys .287

Access control and Azure Key Vault .288

Use Key Vault Premium in production. .299

Enable logging and auditing . 301

Network isolation .304

Use Microsoft Defender for Key Vault .306

Back up your Key Vault assets .306

Managed HSM and Azure Key Vault .308

Secure keys with Key Vault summary . 312

Cryptographic agility . 312

How to achieve crypto agility. 314

Implement crypto agility . 315

The Microsoft Data Encryption SDK. .324

Optional parameters .326

Managing SDK keys in Key Vault .327

Azure services and cryptography .329

Server-side encryption with platform-managed keys 329

Server-side encryption with customer-managed keys 330

Client-side encryption . 331

Azure Storage cryptography . 331

Azure VM cryptography .335

Azure SQL Database and Cosmos DB cryptography 337

Key rotation .337

Azure Key Vault key rotation .339

Protecting data in transit . 341

TLS and crypto agility .343

Ciphersuites .343

TLS in Azure PaaS .345

Setting ciphersuites .346

TLS in Azure IaaS .350

A common TLS mistake in .NET code .354

Testing TLS .354

Contents xvii

Debugging TLS errors. .354

Unsecure use of SSH .357

Summary .357

Chapter 11 Confidential computing 359
hat is confidential computing .359

onfidential computing processors . 361

Intel Software Guard Extensions . 361

AMD Secure Encrypted Virtualization-Secure
Nested Paging .362

Arm TrustZone .363

DCsv3-series VMs, SGX, Intel Total Memory Encryption,
and Intel Total Memory Encryption Multi-Key 363

Attestation .364

Trusted launch for Azure VMs .366

zure  ervices that use confidential computing .367

Summary . 371

Chapter 12 Container security 373
What are containers? .373

You do not need containers for that! . 374

How to proceed from here .375

Container-related services on Azure .375

Using containers on IaaS offerings . 376

Comparing Azure container services . 376

Problems with containers . 381

Complexity . 381

Immaturity .383

Fragmentation .383

Securing container services .383

Development and deployment .384

The container registry .385

The cluster .386

The nodes .387

xviii Contents

The pods and containers .387

The application .388

Summary .389

Chapter 13 Database security 391
Why database security? . 391

Which databases? .392

Thinking about database security .392

The SQL Server Family .394

SQL Server .394

Azure SQL Database .394

Azure SQL Managed Instance .395

Security in the SQL Server family .395

Control plane authentication .396

Control plane authorization .398

Control plane auditing .399

Control plane crypto on the wire . 400

Control plane network isolation . 401

Data plane authentication .402

Data plane authorization .403

Data plane auditing . 404

Data plane crypto on the wire .405

Data plane network isolation .405

Cryptographic controls for data at rest . 406

Miscellaneous .408

Cosmos DB security . 411

Control plane authentication . 412

Control plane authorization . 413

Control plane auditing . 414

Control plane network isolation . 414

Data plane authentication . 414

Data plane authorization . 415

Data plane auditing . 419

Data plane crypto on the wire .420

Contents xix

Data plane network isolation .420

Cryptographic controls for data at rest . 421

Miscellaneous . 421

Encryption of data in use: Always Encrypted .422

Always Encrypted .423

Always Encrypted with secure enclaves .429

Cosmos DB and Always Encrypted . 431

SQL injection .433

Summary .434

Chapter 14 CI/CD security 435
What is CI/CD? .435

CI/CD tools .435

Source control systems and supply chain attacks .436

Security tooling .436

Protecting your developers .436

Pull request approvals and PR hygiene .437

Separation of duties, least privilege overview 437

Secrets and service connections .438

Protecting the main branch in Azure DevOps and GitHub.438

Protecting the PROD deployment in Azure DevOps and GitHub.439

Securing deployment agents . 440

Securing Azure DevOps agents . 440

Securing GitHub agents . 441

Summary . 441

Chapter 15 Network security 443
Azure networking primer . 443

IPv4, IPv6 in Azure .445

IPv4 concepts .445

IPv4 addresses in Azure and CIDR .445

outing and user-defined routes  . 446

Network security groups . 446

Application security groups .447

xx Contents

Landing zones, hubs, and spokes .447

Hub and spoke and segmentation .447

Environment segregation, VNets, and allowed
communications . 448

Ingress and egress controls. 449

NVAs and gateways . 449

Azure Firewall . 449

Azure Firewall Premium SKU .450

zure  eb application fire alls .450

API Management Gateway . 451

Azure Application Proxy . 451

PaaS and private networking . 451

Private shared PaaS .452

Dedicated PaaS instances .456

Managed VNets .456

Agent-based network participation .456

Azure Kubernetes Service networking .457

Ingress controls .457

Egress controls with UDR .457

Private endpoints for Kubernetes API server .457

Cluster network policies .457

The dangling DNS problem .459

An example .459

Fixing dangling DNS .460

Summary .460

Appendix A: Core cryptographic techniques 461

Index 469

xxi

Acknowledgments

This book covers a diverse and complex set of security-related topics. When writing a
book like this, we as authors must make sure our facts are straight and our guidance is
correct. We can do this only by asking questions of and obtaining assistance from people
in the  zure product groups and people  ho are e perts in their respective fields. To 
this end, we’d like to graciously acknowledge the help and assistance from the following
people at Microsoft:

Amar Gowda, Amaury Chamayou, Anthony Nevico, Antoine Delignat-Lavaud,
Barry Dorrans, Ben Co, Ben Hanson, Ben Oberhaus, Bhuvaneshwari Krishnamurthi,
Dan Simon, David Nunez Tejerina, Dhruv Iyer, Eric Beauchesne, Eustace Asang-
hanwa, Hannah Hayward, Jack Richins, Jakub Szymaszek, Jenny Hunter, Joachim
Hammer, Jon Lange, John Lambert, Josh Brown-White, Ken St. Cyr, Kozeta Garrett,
Luciano Raso, Mark Simos, Michael McReynolds, Michael Withrow, Mirek Sztajno,
Nicholas Kondamudi, Niels Ferguson, Panagiotis Antonopoulos, Pieter Vanhove,
Prasad Nelabhotla, Rafael Pazos Rodriguez, Robert Jarret, Rohit Nayak, Run Cai,
ameer  er hed ar,  hubhra  inha,  r an  o ovi ,  teven  ott,  ylvan  lebsch, 

Taylor Bianchi, Thomas Weiss, Vikas Bhatia, and Yuri Diogenes

Other Microsoft colleagues acted in a consulting capacity, spending hours helping with
some of the more complex parts of the book. They are:

Kyle Marsh, Mark Morowczynski, and Bailey Bercik (for identity); Dave Thaler,
raham  erry, and  i as  hatia  for confidential computing  and  ervey  ilson 

(for Key Vault)

e also got feedbac  from people outside of  icrosoft for their specific e pertise

Arun Prabhakar (Boston Consulting Group), Avi Douglen (Bounce Security), Brook
.  .  choenfield  True  ositives,  ,  ave  aplan  ,  avid  itchfield  pple , 
onna  c ally  T T ,  zar Tarandach  quarespace ,  otfi  en  thmane  o a 

State University), Mark Bode (AMD), Mark Cox (RedHat), Mark Curphey (Crash
Override), Matthew Coles (Dell Technologies), Michael F. Angelo (Micro Focus),
Mike Dietz and Robert Seacord (Woven Planet), and Shane Gashette and Steve
Christey Coley (MITRE)

xxii Acknowledgments

We’d like to thank our technical reviewers, who scrutinized every aspect of our drafts.
The technical reviewers were:

Altaz Valani (Security Compass), Hasan Yasar (Software Engineering Institute,
Carnegie Mellon), Jonathan Davis (Microsoft), Mike Becker (Microsoft), and Rick
Alba (Microsoft)

This book would not have been possible without the folks at Pearson/Microsoft Press:
Loretta Yates for saying “yes”; Charvi Arora, who kept us marching forward to hit our
dates  and finally,  ate  houp,  ho did a magnificent  ob editing our te t and yet main-
taining our tone and technical intent.

Finally, we’d like to thank Scott Guthrie for writing the foreword and for leading the
magnificent team that is  icrosoft  zure.

Michael Howard
Austin, Texas

Heinrich Gantenbein
St. Paul, Minnesota

Simone Curzi
Perugia, Italy

xxiii

About the Authors

Michael Howard
Michael Howard is a 30-year Microsoft veteran and is currently a
Principal Security Program Manager in the Azure Data Platform team,
working on security engineering. He is one of the original architects of
the Microsoft Security Development Lifecycle and has helped diverse
customers such as government, military, education, finance, and 
healthcare secure their Azure workloads. He was the application secu-
rity lead for the Rio 2016 Olympic games, which were hosted on Azure.

Heinrich Gantenbein
Heinrich Gantenbein is a Senior Principal Consultant on Cybersecurity
in Microsoft’s Industry Solutions Delivery. With 30+ years of experience
in software engineering and more than 30 years of experience in
consulting, he brings a wealth of practical know-how to his role.
Heinrich specializes in Azure security, threat modeling, and DevSecOps.

Simone Curzi
Simone Curzi is a Principal Consultant from Microsoft’s Industry
Solutions Delivery. He has 20+ years of experience covering various
technical roles in Microsoft and has fully devoted himself to security
for more than 10 years. A renowned threat modeling and Microsoft
Security Development Lifecycle expert, Simone is a regular speaker at
international conferences such as Microsoft Ready, Microsoft Spark,
(ISC)2 Security Congress, Carnegie Mellon’s SEI DevOps Days, and Se-
curity Compass Equilibrium. Simone is also author of an open source
threat modeling tool, Threats Manager Studio.

xxiv

Foreword

In the last decade we have witnessed a dramatic shift in the way organizations have
harnessed technology to completely reinvent and transform how they do business.
Recent global challenges and unpredictable far-reaching events have only accelerated
that change, and organizations have had to pivot and adapt to meet their customer and
employee needs and ensure business resilience.

This digital transformation has been made possible in part by technology advance-
ments and hyperscale cloud providers like Microsoft Azure that provide organizations
ith the agility to realize ne  efficiencies and capabilities.   o ever, as  e continue 

through this era of unprecedented transformation, including migration to the cloud, we
are also experiencing new threats and requirements to ensure security and privacy.

hen people thin  of security, they often thin  of endpoint protection, fire alls, and 
anti-malware tools, which are critically important, but architects and developers can’t
ignore application security during design and development. This book — Designing
and Developing Secure Azure Solutions — is a necessary resource to understanding the
essential elements of end-to-end secure software design and development on Azure.
It addresses two areas I care about deeply – the security of Azure and software
development.

The  icrosoft  loud has many reliability and security benefits compared to on-prem-
ises solutions, but architects and developers cannot ignore fundamental security practices
when they deploy on Azure. Cloud-based solutions have a shared responsibility model,
and some of the security onus is on the tenant as well as the cloud provider. Designing and
Developing Secure Azure Solutions provides a holistic and approachable resource for any-
one building secure workloads running on Azure. Readers working on Azure solutions will
gain a contemporary understanding of secure development, design, and implementation.

The authors Michael, Heinrich, and Simone have decades of application security
experience between them. They have worked with governments and companies — large
and small — enabling each to design, develop, deploy, and manage secured solutions on
Azure. I know the authors to be dedicated to helping anyone designing and developing
on Azure achieve the reliability, scalability, and security demanded by their organizations
and end users.

This book is an essential guide for every architect and developer deploying secure,
business-critical solutions on Azure.

Scott Guthrie
Executive Vice President

Cloud + AI Group, Microsoft

xxvxxv

Introduction

In mid-2021, during a recording of the Azure Security Podcast, Azure security expert
and author Yuri Diogenes asked Michael if he planned to write an update to his book,
The Security Development Lifecycle. Without hesitation, Michael responded, “No!”

But that wasn’t the end of the matter.

The question Yuri asked planted a seed. Over the next few weeks, the three of us—
Michael, Heinrich, and Simone—assembled a plan to write this book. Between us, we
have worked with hundreds of customers to help them deploy business-critical solutions
on  zure  ith confidence. This boo  is the culmination of that real- orld e perience.

The reason we wrote this book was not only to help you understand how to design
and develop secure solutions running on Azure but to offer you pragmatic advice. The
enn diagram sho n in  igure  -  re ects ho   e see this boo .

This
Book

Azure

Real-Word
Experience

Secure Desig
n

Se
cu

re So
�ware

Deve
lopment

FIGURE I-1 The Intersection of this book’s areas of coverage.

We do not cover some areas within Azure; otherwise, this book would be quite a
tome. Most notably, we do not cover topics such as the following:

■ Privileged access workstations (PAWs) A PAW is a workstation designed for
administrative tasks only. It does not have access to email, general web browsing,
and other productivity tasks. PAWs are used by elevated accounts to perform
actions in high-risk environments, such as production, account administration,
and more. You can learn more about PAWs here: https://azsec.tech/irb.

https://azsec.tech/irb

xxvi Introduction

■ Conditional access and multifactor authentication (MFA) These are often
handled by an identity team, and the infrastructure should already be in place.
With that said, conditional access and MFA are critical to securing an Azure-
based solution. Learn more here: https://azsec.tech/59d.

■ Privacy This is a book on security. Although security and privacy do overlap,
security is mainly about fortifying a system and its data against unauthorized
use, while privacy is about handling personal data. You can have security without
privacy, but you cannot have privacy without security.

We’ve kept things relatively brief by including lots of links to outside information
rather than covering some topics in depth in this book.

Organization of this book

This book is not designed to be read from cover to cover. You can do that, of course,
but we have tried to make the chapters as independent as possible so they can be read
individually. With that said, there are cross-references between chapters, and you might
sometimes need to read a section of a different chapter to get the big picture.

The book also covers multiple ways to achieve a task, such as the following:

■ Using the Azure Portal (although it’s not common to use the Azure Portal in
production systems because deploying in the real world usually uses a pipeline to
push resources)

■ Using the Azure command-line Interface (CLI)

■ Using PowerShell code

■ Using more complete code examples in different languages such as C#, Python,
JavaScript, and more

Tip We have uploaded code samples and snippets to our GitHub repository at
https://github.com/AzureDevSecurityBook/, so please make a point of visiting
regularly.

https://azsec.tech/59d
https://github.com/AzureDevSecurityBook/

Introduction xxvii

Who should read this book

Just who is this book for? It’s for anyone deploying solutions on Azure—whether
they’re architects, developers, or testers—who might not know a great deal about
security but who want to make sure their design and code are as secure as possible.
We cover a lot of ground in the book, but we also cover many complex topics in depth.

ne final point  if you use the  T  ybersecurity  rame or   T  , then you re 
familiar with its core components: identify, protect, detect, respond, and recover. The
material in this book focuses primarily on the protect component and some aspects
of the detect component. Rolling out industry-grade solutions on Azure requires your
organization to cover the other four components of the NIST CSF. You can read more
about the NIST CSF in Chapter 8, “Compliance and risk programs,” and on the NIST
website, at https://azsec.tech/81t.

Thanks for reading!

Conventions and features in this book

This book presents information using conventions designed to make the information
readable and easy to follow:

■ Boxed elements with labels such as “Note” provide additional information

■ Text that you type (apart from code blocks) appears in bold

■ A plus sign (+) between two key names means that you must press those keys at
the same time. For example, “Press Alt+Tab” means that you hold down the Alt
key while you press the Tab key

■ A vertical bar between two or more menu items (e.g. File | Close), means that you
should select the first menu or menu item, then the ne t, and so on

System requirements

Examples and scenarios in the book require access to a Microsoft Azure subscription and
a computer that can connect to Azure. You can learn more about a trial subscription at
this site:

azure.microsoft.com/en-us/free

GitHub Repo

The book's GitHub repository includes sample code and code snippets, and the authors
will update this over time. The repo is github.com/AzureDevSecurityBook/.

The download content will also be available on the book's product page:
MicrosoftPressStore.com/SecureAzureSolutions/downloads

Errata, updates, & book support

We’ve made every effort to ensure the accuracy of this book and its companion content.
You can access updates to this book—in the form of a list of submitted errata and their
related corrections—at:

MicrosoftPressStore.com/SecureAzureSolutions/errata

If you discover an error that is not already listed, please submit it to us at the same
page.

For additional book support and information, please visit MicrosoftPressStore.com/
Support.

Please note that product support for Microsoft software and hardware is not offered
through the previous addresses. For help with Microsoft software or hardware, go to
support.microsoft.com.

Stay in touch

Let’s keep the conversation going! We’re on Twitter: twitter.com/MicrosoftPress

xxviii Introduction

http://github.com/AzureDevSecurityBook/
http://MicrosoftPressStore.com/SecureAzureSolutions/downloads
http://MicrosoftPressStore.com/SecureAzureSolutions/errata
http://MicrosoftPressStore.com/
http://support.microsoft.com
http://twitter.com/MicrosoftPress

51

C H A P T E R 3

Security patterns

After completing this chapter, you will be able to:

■ Adopt the proposed patterns to improve how you securely design your solutions.

■ Identify even more Azure security patterns, further improving your understanding of Azure.

What is a pattern?

Design patterns are not new to information technology, but they still play a fundamental role.
Design patterns were conceived by a British-American architect of Austrian origins named Christopher
Alexander. In 1977, Alexander wrote a book about recurring solutions to common problems related to
building physical structures.  o ever, this boo  became in uential beyond its original field.  ndeed, 
Alexander’s work inspired four computer scientists and researchers—Erich Gamma, Richard Helm,
Ralph Johnson, and John Vlissides—to apply the same concepts to software design. The result was
a book titled Design Patterns: Elements of Reusable Object-Oriented Software, which is still widely
used today.

n his boo ,  hristopher  le ander defines patterns as follo s

“Each pattern describes a problem which occurs over and over again in our environment,
and then describes the core of the solution to that problem, in such a way that you can use
this solution a million times over, without ever doing it the same way twice.”

The point here is that patterns represent a structured approach to address common problems. They
are a way to collect and share know-how that has consistently provided value to many disciplines, in-
cluding software design. Given that this book relates to the development of secure solutions on Azure,
we focus here on design patterns in that context.

Our take on Azure security patterns

zure uses design patterns e tensively.  ou can find them almost every here such as  hen dealing 
with data protection at rest, implementing user authentication, and too many other scenarios to in-
clude here. Instead of reinventing the wheel, Azure adopts the same patterns and sometimes even the
same services to provide critical capabilities and address common problems.

52 PART I Security principles

It is essential to know Azure’s security patterns because they represent the best way to address
common security problems. They may even enable you to design secure solutions without adopting
more sophisticated approaches, like threat modeling, discussed in Chapter 4, “Threat modeling.” This
chapter introduces some of these patterns and includes the following information about each one:

■ The name of the pattern

■ The intent of and motivation behind the pattern

■ A description of the pattern

■ Examples of the pattern’s implementation in Azure

■ Related security principles (discussed in Chapter 2, “Secure design”)

■ Related patterns

urthermore, the patterns are split into categories to simplify their identification

■ Authentication These patterns deal with the authentication of the counterparts of an inter-
action.

■ Authorization These patterns focus on controlling access to resources.

■ Secrets management These patterns deal with how the solution manages the secrets.

■ Sensitive information management These patterns focus on how to manage sensitive
information.

■ Availability These patterns deal with ensuring that resources are accessible by legitimate
users.

In the following pages, we describe a few patterns, sorting them by alphabetical order within each
category. This is not an exhaustive list by any means. It simply includes some of the most common
patterns we have seen in our practice that focus solely on solution design. This chapter does not cover
implementation and deployment patterns, like those related to the supply chain. Considerations
that relate to those patterns are covered elsewhere in the book, in Chapter 9, “Secure coding."
By discussing some of the most important patterns here and clearly stating why you need to adopt
them, we aim to provide you with a consistent view.

Note For a more complete list of patterns, see https://azsec.tech/kph.

Once you know about patterns and their importance in Azure, you might be able to identify other
patterns in the services you use. This understanding of design decisions empowers you to design better
solutions by adopting the same concepts and by using Azure Services correctly.

https://azsec.tech/kph

CHAPTER 3 Security patterns 53

The Azure Well-Architected Framework
Microsoft has published a set of guidelines on implementing sound architectures on Azure. These
guidelines are available as part of the Azure Well-Architected Framework, which is available here:
https://azsec.tech/dm8. These guidelines cover multiple aspects of implementing architectures,
including reliability, security, cost optimization, operational e cellence, performance efficiency, 
workloads, and services. For our purposes, the section on security is the most interesting. It covers
topics like governance, landing zones, identity and access management, and much more. Many
concepts within the Azure Well-Architected Framework can be mapped to the design patterns
discussed in this chapter, but it goes well beyond our scope. Therefore, our recommendation is to
take a look at it.

Authentication pattern

Authentication is an essential property of any solution. It pertains to identifying your counterpart in a
conversation with some certainty.

We typically refer to the degree of certainty as the authentication strength. For example, suppose
someone declares who they are without providing any proof. This would not be an authentication, but
rather an identification.  f they do a little better and provide a pass ord, this  ould be  ea  authenti-
cation. Of course, you can impose restrictions to ensure an attacker cannot easily guess user passwords,
but this has a limited effect on security.

Authentication typically involves the use of one, two, or all of the following parameters:

■ Something you know This might be a password.

■ Something you have This could be your phone or a physical token.

■ Something you are This might be biometric information.

If you base authentication only on the password—that is, something you know—you have single-
factor authorization, which can easily be compromised. To increase security, you should pair it with a
second factor—for example, your username and password (things you know) and your phone (some-
thing you have). The idea here is that although an attacker might easily compromise any one of them,
compromising them both at the same time would be much more challenging. Finally, you could add
the third factor—something you are—to improve security even more. This approach is typically called
multifactor authentication (MFA) because it relies on more than one factor.

Note Chapter 5, “Identity, authentication, and authorization,” contains more information
about this topic.

https://azsec.tech/dm8

54 PART I Security principles

Authentication does not represent a value per se, but it is instrumental in securing your application
and data.

This section focuses on one common pattern for securing your solution through authentication:
using a centralized identify provider for authentication.

Use a centralized identity provider for authentication

Intent and motivation
The cloud is a convenient platform for hosting applications—so much so that you might host many ap-
plications on it, all of which require authentication. It is only natural for organizations to seek a central-
ized approach for managing identity to access all different services with a single set of credentials. This
requirement is not only for simplicity but also to retain control and visibility.

Centralizing identity allows for the adoption of tools like user and entity behavior analytics (UEBA).
These tools enable you to determine whether any account or system represents a potential risk for
the organization by analyzing its behavior, often adopting artificial intelligence   algorithms able to 
identify changes in usage patterns.

Another advantage of centralized identity systems is they provide a single location for managing
identities and grants. They also allow you to integrate identity management with HR processes—for
example, to remove or disable a user’s account as soon as that user ceases their relationship with the
organization. Finally, these identity systems enable you to review assigned rights and remove them
when necessary.

Description
zure   represents a complete and unified approach to identity management on  zure.  t provides 

fundamental capabilities, like managed identities and access reviews, and can be extended with ad-
ditional services to increase security. These services include:

■ Azure AD Identity Protection This service determines which identities are at risk by analyz-
ing signals from many sources, such as threat intelligence, leaked credentials, and Microsoft
Defender for Cloud Apps (Microsoft’s Cloud Access Service Broker, or CASB).

■ Microsoft Defender for Cloud Apps You can use this service to control and limit the adop-
tion of applications and to detect the presence of shadow IT in your organization.

■ Microsoft Defender for Endpoints This is a user and entity behavior analytics (UEBA) solu-
tion that can be integrated with Windows 10, Windows 11, and various devices.

■ Azure AD Privileged Identity Management (PIM) This service enables you to assign access
rights when required, eventually requiring approval from a third party before executing the
assignment.

CHAPTER 3 Security patterns 55

Azure AD also provides zero-trust security for the implementation of identities through the use
of conditional access. This defines policies to prevent access to services by users  ho are not trusted 
enough.  or e ample, suppose  zure    dentity  rotection has identified a potential security ris  re-
lated to a particular user. It can then force that user to authenticate with MFA when accessing sensitive
resources.

Note Azure AD is not your only option for identity management. You could use a third-
party tool instead. Indeed, there are various reasons to use a third-party identity provider.
For example, your organization might have already adopted one for your on-premises
environment or to support different clouds, like AWS or GCP.

Examples
■ Adopt conditional access to require MFA for privileged users such as the solution administra-

tors.

■ se  zure   to define custom application roles to control ho  the solution is used.  ou can 
find out more about these here  https://azsec.tech/0g6.

■ Although some services—like Azure SQL Database, SQL Managed Instances, Cosmos DB, and
Azure Storage—provide different ways to authenticate, including using Azure AD credentials,
you should use Azure AD credentials whenever possible, because they can be better controlled
from a central location. Using Azure AD credentials also enables the adoption of the whole set
of capabilities offered to secure these identities.

Related security principles
■ Zero trust

■ Complete mediation

■ Defense in depth

■ Economy of mechanisms

■ Least privilege

■ Leveraging existing components

Related patterns
■ Adopt just-in-time administration

■ Use role-based access control (RBAC)

■ Use managed identities

https://azsec.tech/0g6

56 PART I Security principles

Authorization patterns

Authorization is another fundamental property of any secure solution. It comes after authentication.
Authorization focuses on allowing users to perform actions they are entitled to perform and on pre-
venting them from performing actions they are not entitled to perform. This section focuses on some
common patterns for securing your solution through authorization.

We mentioned that authentication does not represent a value per se, but it is instrumental in secur-
ing your application and data. The same applies to authorization.

Adopt just-in-time administration

Intent and motivation
Accounts are not all equal. Some have considerable privileges assigned to them, making them a juicy
target for malicious actors. For example, highly privileged administrators, like those assigned the roles
of  lobal  dministrator or  ser  dministrator, are po erful, and it  ould cause significant damage to 
the organization if their user accounts were abused. For this reason, the most common recommenda-
tion is to apply the principle of least privilege by assigning the various roles only to those users who
require them for a legitimate business reason and only when there is no other alternative that would
allow for the assignment of fewer rights. For example, suppose one user needs to read security reports
because she works on the security team. In that case, you should assign her the Security Reader role
instead of Secure Administrator or Global Administrator.

This approach is a critical best practice, so there is a good chance your organization already applies
it.  till, too many organizations struggle to adopt this approach due to the many roles defined in  zure 
AD and Azure Services. That is to say, sometimes the “best” role for a user—the one that most closely
meets that user’s needs—is not the most secure one. This pattern ensures that no unnecessary rights
are assigned that could be exploited by an attacker or a malicious insider. Still, the rights that are as-
signed could be enough to cause significant losses. 

A study by IBM Security and ObserveIT, published in 2020, found that the average cost of a security
breach caused by an insider was $11.45 million. The study also found that, on average, the companies
interviewed during the course of the study experienced 3.2 such incidents per year. Finally, the study
determined that it’s possible to reduce these losses by about $ 3 million by adopting a privileged ac-
cess management (PAM) tool.

Note You can download the study mentioned here from https://azsec.tech/56t. For a dis-
cussion of the study, see https://azsec.tech/au8.

The idea behind PAM tools is that users do not need privileges 24×7. Rather, they need them for
only a limited time. So, a privileged account represents a potential risk only when someone uses it to

https://azsec.tech/56t.For
https://azsec.tech/au8

CHAPTER 3 Security patterns 57

perform necessary actions. Outside that period, a PAM tool can revoke the rights, such that the user in
question has no assigned privileges. PAM tools also deter malicious use because they require users to
specify a business reason to obtain a particular privilege. They can also be used to require the approval
for a third party to assign a particular right, in accordance with the separation of duties principle.

Description
Azure AD PIM is the primary tool within Azure for just-in-time administration. This tool extends how
you assign roles to users or groups.  ith plain  zure  , you assign roles globally or  ithin a specific 
context, depending on the scope of the role. The role is then assigned forever. With Azure AD PIM, you
can mark a role as eligible and then assign policies to that role. An eligible role remains dormant until
it is activated. Activation can be subject to approval and could require additional authentication with

 as  ell as the specification of a business reason.  ctivation can also be temporary and automati-
cally removed after a set time.

Tip Azure AD PIM is not something you implement for the purposes of application de-
velopment. It is part of a broader initiative that is typically the responsibility of those who
manage your Azure AD tenant. If you decide you need Azure AD PIM to limit the exposure
of privileged accounts for your application, you might want to ask the owners of the tenant
to adopt it.  f your organization has already adopted it, you can as  to define the rules you 
require for your application.

Example
Sometimes developers need access to production data to troubleshoot problems. While this is under-
standable, you should try to avoid it. That being said, in an emergency, you might not be able to avoid
this, as developers will need to access this data to quickly identify a solution. The best way to handle
these types of situations is to plan for them.  n this effort,  zure     may play a significant role by 
enabling you to define an authorization process that requires a valid reason and approval by a third 
party.

Related security principles
■ Attack surface reduction

■ Defense in depth

■ Least privilege

■ Leveraging existing components

■ Separation of duties

58 PART I Security principles

Related patterns
■ Use a centralized identity provider for authentication

■ Use role-based access control (RBAC)

Assign roles to groups

Intent and motivation
Let’s face it: determining what access rights are required is not always a trivial matter. In many cases,
identifying the right blend of rights is a matter of trial and error. It’s very tempting to assign full rights
and call it a day!

This behavior is a consequence of many factors, not least of which is the number of built-in roles
provided with Azure. There are currently more than 80 built-in roles for Azure AD and more than 240
built-in roles for  zure services   o  onder it is so difficult to find the right roles to assign.

Still, it is imperative to identify a feasible approach to guarantee that users are assigned the most
limited rights possible. Focusing on feasibility might be the difference between having an academic
requirement and effectively making a difference.

Description
The critical point here is to apply least privilege  ithout sacrificing manageability.  ne  ay to achieve 
this is by using groups. The idea is to define  hatever usage scenarios you need and then create groups 
to support them. Once that’s done, you can assign the required roles to each group and then assign
users to groups as needed.

This approach is helpful for two reasons:

■ It minimizes management because it aligns groups according to how the organization works.

■ It enables you to minimize the number of role assignments. This is essential because
Azure restricts you to 2,000 role assignments per subscription. For more on this, see
https://azsec.tech/ad8.

Common exceptions to this rule are service principals and managed identities, which are typically
assigned the required roles directly.

Tip Designing a suitable authorization model is a matter of business requirements, which
must be agreed upon in advance among business, architecture, and operations stakehold-
ers, per the organization’s current policies and with requirements from security and opera-
tion. Many aspects are common to all projects, but the details will depend on your solution.

https://azsec.tech/ad8

CHAPTER 3 Security patterns 59

Example
If you have a data lake, you might want to guarantee different levels of visibility, depending on your area.
You can address this requirement by assigning the required permissions. The easiest way to do this is to
define a group for each category of users li e  , research, and mar eting and then assign the required 
rights to various branches in the data lake, based on the desired visibility. You can even reuse the same
groups for many applications simply by assigning additional rights to them when required.

Related security principles
■ Least privilege

Related patterns
■ Use a centralized identity provider for authentication

■ Use role-based access control (RBAC)

Isolate from the internet

Intent and motivation
Chapter 2 showed that zero trust has been designed to address the many shortcomings of walled-in
defenses. For example, suppose that for your security, you rely only on controls blocking external users
from accessing the internals of your solution. In that case, you could be compromised as soon as some-
one figures out ho  to circumvent your layer of protection.

So, the answer would be to not rely on fire alls and similar protections, right   rong  The defense-
in-depth principle states that every single control you can put in place can be circumvented. This
principle doesn’t imply, however, that you should give up your hopes of protecting your solution or
that you should ditch controls li e fire alls because they can t fully protect you on their o n.  t simply 
means that you need to integrate them with other controls to make your solution more secure. The
bottom line is that net or  isolation still plays a significant role in  zure.

Description
o, ho  can you protect your solution using net or  defenses  The first step is to identify the parts 

of your solution that you must expose to the internet, as well as the parts of your solution that must
remain internal. Then, you need to focus on these parts that should not be exposed to ensure that no
unauthorized entities can reach them from the internet.

There are a couple of ways to achieve that:

■ Define firewall rules ost services can define fire all rules.  nce these rules are defined, 
you can use them to block access from the internet. This approach is simple and requires mini-
mal configuration.  ut it has a do nside  your resource or service is e posed.  n other  ords, 
the fire all rules bloc ing un anted traffic are your only protection against e ternal malicious 
actors.

60 PART I Security principles

■ Define private endpoints s  ith fire all rules, most services can define private endpoints. 
With private endpoints, there is no exposure over the internet, because the endpoint gets a
private   address.  ou can then connect to the private endpoint using private lin s.  onfigur-
ing private endpoints and private lin s requires more  or  than configuring fire all rules, but it 
is more secure.

Note Chapter 15, “Network security,” includes additional information and details on imple-
menting this pattern and on networking in general.

Examples
■ If you have a web application or a web API that is internal to your organization and you do not

want to expose it on the internet, you can host it with App Service Environment (ASE). An ASE
is a high-performance isolated environment to host your web applications and APIs. ASE is the
only way to deploy web applications and APIs based on App Service to a VNet.

■ ou can configure  zure    ith fire all rules to prevent direct access from the internet as a 
hole but still allo  access from specific   addresses.  f you instead  ant to prevent all access 

from the internet, you might want to use a private endpoint.

Related security principles
■ Attack surface reduction

■ Defense in depth

Related patterns
■ Create secure channels

■ Isolate with an identity perimeter

Isolate with an identity perimeter

Intent and motivation
You learned from the preceding pattern, isolate from the internet, that network isolation is a key miti-
gation that you should not disregard. The same goes for identity. Both should be applied simultane-
ously, per the defense-in-depth principle.

Note This pattern is specular and complementary to the previous one.

CHAPTER 3 Security patterns 61

Description
Identity can represent a perimeter that a user must cross to access protected resources. In this way, it is
similar to net or ing.  ith net or ing, you can use rules to allo  specific   addresses to access your 
solution but not others. Similarly, you can use identity authentication and authorization to control who
can access your resources and what they can do with them.

These approaches are both different and complementary, providing different capabilities due to
their respective limitations.  or e ample,  ith   filtering, you can allo  requests from specific geog-
raphies or buildings and deny everything else.  ith authentication and authorization, you can define 
rules for a specific user or account and establish its rights  ith regard to your solution or its compo-
nents.

Example
Azure Front Door, App Gateway, and API Management Gateway are three network virtual appliances

s  that you can configure to provide net or  perimeter defenses via private net or ing. The 
private networking approach is often considered enough for many solutions, but is that really so? As
usual, the defense-in-depth principle says no. Rather, the recommendation is to add an identity perim-
eter defense as an additional layered defense. Adding an identity perimeter is typically achieved with
T  mutual authentication.  ith this approach, the   presents its client certificate to the bac  end. 
n turn, the bac  end verifies the certificate and its validity to ensure that the connection comes from 

the expected NVA and not from a malicious or accidental source.

Related security principles
■ Zero trust

■ Defense in depth

Related patterns
■ Use a centralized identity provider for authentication

■ Isolate from the internet

Use role-based access control (RBAC)

Intent and motivation
Managing authorization can be complicated. There are many resources and applications, and each of
them defines multiple actions that must be authorized.  ith thousands of actions that can be autho-
rized, you need some way to group and manage them. Moreover, you need a mechanism for use with
custom solutions. The idea is that by taking a widely used approach, you can have a more reliable and
secure method for authorization than what you could have with a custom authorization process.

62 PART I Security principles

Description
Azure RBAC is a common approach that you can use for Azure AD and Azure Services. It provides a
structured way to assign users prebuilt sets of rights designed to address everyday needs. Azure AD
currently provides more than 120 built-in roles you can choose from. For example, the Reader role al-
lo s the user to read the configuration of a service but typically not its data.  n contrast, the  ontribu-
tor role allo s the user to change the configuration of a service or create ne  resources, depending on 
where the role is assigned. You can also create custom roles, but these are rarely necessary and often
create management issues.

A fundamental advantage of using Azure RBAC is that it allows for a centralized view of all the rights
assigned to users. This is essential in the event of a compromise because it enables you to browse for
affected user accounts to grasp the security implications of their compromise. If you instead use cre-
dentials local to the resources and assign rights without using RBAC, you must inspect each resource to
obtain the same information. Using RBAC also enables the execution of access reviews to periodically
verify that the granted access is still required. And adopting Azure AD credentials and RBAC allows you
to leverage a growing set of tools to analyze identities, like Azure AD Identity Protection and Sentinel.

Tip Azure RBAC is not the only approach to authorization. Sometimes you might need
something different, like a custom database representing your authorization matrix. Before
searching for an alternative solution, however, you should determine whether you can lever-
age Azure RBAC to achieve the desired result.

Roles for applications
You might want to apply something similar to RBAC for your applications. For example, if you
are creating a web portal and you want some users to provide content, it would be great if you
could define a role called  ditor and then have that role sent bac  to the application as part of the 
authentication token.

Of course, you could use an Azure group to do that, but this might not provide you with the
right granularity. For example, maybe you want to have multiple distinct groups of users with the
ditor role, one for each structure in your company. This is  here defining a role  ould come in

handy because it allows you to create as many groups as you want and then assign the role to all
of them. Your application could then check if the role is present, not whether the user belongs to
one of the groups.

Azure provides this capability through the app roles. App roles can be assigned to users and
groups and are sent to the application when a user accesses it. App roles can also be assigned to
client applications to access your application. App roles are a great way to structure access control
for applications, using a secure approach that is integrated  ith the platform.  ou can find ad-
ditional information about app roles here: https://azsec.tech/0g6.

https://azsec.tech/0g6

CHAPTER 3 Security patterns 63

Example
Suppose you need to create a multilevel authorization hierarchy. Your organization has multiple de-
partments, including one called the Commercial department. The top level of this department is Global
Commercial, which controls various regions. For example, as shown in Figure 3-1, there’s a region called
ATZ, another called Europe, and others. Several countries comprise each region. So, for instance, ATZ
includes the USA, Canada, Mexico, and other countries. Each user in Global Commercial has complete
visibility; each user associated with a particular region can see everything within that region; and users
associated with a particular country can see only the information pertaining to that country.

Global
Commercial

ATZ Europe …

CanadaUSA … … …

FIGURE 3-1 The hierarchy of the Commercial department.

How might you handle this scenario with Azure RBAC? At a minimum, you would need to rely on
a database to represent the hierarchy and on custom code to enforce it. But you can do better. For
example, you could do the following (see Figure 3-2):

1. Create a group for each country, a group for each region, and a group for the “global” level.

2. Make the group for a particular region a member of each country group within that region.

3. Make the global group a member of each region group.

4. Use RBAC to assign the required rights to each country and region group, as well as to the
global group. This way, each region group will inherit the rights of the country groups within it,
and the global group will inherit the rights of each region group.

CanadaUSA
ATZ

Global
Commercial

ATZ

Global
Commercial

FIGURE 3-2 How the groups must be nested: Global Commercial is a member of ATZ, which is a member of both
USA and Canada.

64 PART I Security principles

Related security principles
■ Leveraging existing components

Related patterns
■ Use a centralized identity provider for authentication

■ Assign roles to groups

Secrets management patterns

Secrets are important because they are the keys for accessing services and data. Protecting secrets is
therefore essential. You could have the most secure authentication mechanism, but if you do not pro-
tect the credentials, then you could be compromised.

Unfortunately, protecting your secrets can be complicated. At a certain point, you need them, and
that is exactly when a malicious actor could attack you. Therefore, this is one of those situations where
sticking with known secure patterns is most important.

Use managed identities

Intent and motivation
Most applications contain multiple components and require some type of interaction among them.
This communication typically involves some form of credentials or sensitive information.

For example, suppose you connect to a database. In that case, you need a connection string specify-
ing the name of the server or of the cluster exposing the database and the credentials to access it. Here
is the problem: how can you store these credentials securely?

ne obvious ans er is to store them in configuration files.  nfortunately, this is not secure, because 
someone could steal them.  f course, you could encrypt the files, but then you have the problem of 
protecting the encryption key, and so on.

Alternatively, with an IaaS, you could use Data Protection API to encrypt the configuration file. 
Unfortunately, this approach has a couple of drawbacks, too. First, DPAPI provides only partial security
because users with enough rights access secrets protected by DPAPI. Second, it does not protect the
secrets in memory.

If you base your solution on App Services, you could use the application settings. These provide
some protection and eliminate the need to store secrets in configuration files.  till, they do not protect 
the secrets in memory. And again, users who have enough rights can read the secrets—for example
from the Azure Portal.

CHAPTER 3 Security patterns 65

Description
A better way to store secrets is to use managed identities. These are service accounts that are entirely
managed by Azure AD.

With managed identities, you have no access to the password, and your application doesn’t either.
The platform automatically injects it when you send out a request using the managed identity.

Not all possible callers on Azure support managed identities, nor do all possible callees. For a list of
callers and callees that do, see https://azsec.tech/hia. This list is updated continuously, so you’ll want to
check it often. For example, Azure Cosmos DB didn’t support managed identities until recently.

Note See https://azsec.tech/laf and https://azsec.tech/akg for information on using RBAC
and managed identities with Cosmos DB.

Managed identities can be system-assigned or user-assigned. The main difference is that system-
assigned managed identities are dedicated to the service, while user-assigned managed identities
can be shared with various services. Therefore, if you want to minimize management and have many
instances of the same application, you can simply assign the same user-assigned managed identity to
all of them.

Tip There is one scenario in which system-assigned managed identities are preferable to
user-assigned managed identities: for root cause analysis after an incident. That’s because
system-assigned managed identities are specific to an instance of a service,  hich ma es it 
easier to identify the instance affected by the attack.

You can assign managed identities to virtual machines (VMs). This doesn’t mean that all applications
hosted by the VM can automatically access resources using the assigned managed identity, however.
You must write code to leverage this possibility. This typically involves sending a request to the Azure
Instance Metadata Service to obtain a token for the required resource. See https://azsec.tech/dff for
details on using managed identities with Azure VMs.

Note The URL to call to obtain a token from the Azure Instance Metadata Service is
http://169.254.169.254/metadata/identity/oauth2/token. The Azure infrastructure automati-
cally injects the assigned managed identity, without ever exposing them, even in the mes-
sage metadata.

Examples
■ Suppose your code can use managed identities and needs to access a resource that supports

managed identities. In this case, you should not store the credentials anywhere. Instead, it
would be best to directly use the managed identity to access said resource.

https://azsec.tech/hia
https://azsec.tech/laf
https://azsec.tech/akg
https://azsec.tech/dff
http://169.254.169.254/metadata/identity/oauth2/token

66 PART I Security principles

■ If your code supports managed identities but not the resource, check whether the resource
at least supports managed identities for administrative purposes. If so, you might still be able
to use managed identities to retrieve some credentials that grant access to the data from the
resource. Therefore, it might be possible to have an initialization phase to gather the credentials
from the service with your managed identity via the control plane and then use them for any
ensuing calls. For example, Microsoft recommended this approach for accessing Cosmos DB
data before it introduced support for managed identities.

Note You might prefer this option to the alternative, which is to store the credentials in
zure  ey  ault, because it reduces the e posure of the credentials and simplifies 

management.

Related security principles
■ Attack surface reduction

■ Economy of mechanisms

■ Leveraging existing components

Related patterns
■ Use a centralized identity provider for authentication

■ Protect secrets with Azure Key Vault

Protect secrets with Azure Key Vault

Intent and motivation
As discussed with the previous pattern, you need some place to store your secrets. For example, you
might need to store a private  ey associated  ith a certificate instead of a username and pass ord.   
typical example is a bring-your-own-key (BYOK) scenario, where you provide a key to be used in some
way, like for encrypting an SQL Database using Transparent Data Encryption (TDE).

You cannot always use managed identities to achieve this. For example, a compute service or called
resource might not support managed identities. Or if you have an off-the-shelf application hosted in
aa , it might not have been modified to support managed identities, and therefore it cannot use them. 

For example, it sometimes takes Microsoft some time to implement support for managed identities in
open source solutions, like Redis Cache, that are incorporated as Azure Services.

So, what to do?

CHAPTER 3 Security patterns 67

Description
Whatever your situation, if you cannot use managed identities to access a resource directly, the best
approach is to use Azure Key Vault—a secure and centralized storage for secrets and encryption keys.
Azure Key Vault is more secure than the alternatives because it can be isolated and made inaccessible
from the internet, even if your application needs to be exposed using private links. You can rely on vari-
ous services to secure Azure Key Vault, like Microsoft Defender for Key Vault, which—among its other
capabilities—can help identify anomalous interactions. It is also more secure than many alternatives
because the Premium SKU provides hardware security module (HSM) capabilities to prevent attackers
from stealing private keys.

Leveraging Azure Key Vault is not enough to make your solution secure. For example, as discussed
in our coverage of the prefer managed identity principle, if you host code in an environment support-
ing managed identities, like a VM or an App Service, you should use a managed identity to call Azure
Key Vault. If you need a key to access Key Vault, you have the problem of protecting that key, which be-
comes very difficult.  ith  s, you can use  , but this is not possible  ith a  aa  solution, because 
they might be occasionally moved to other servers by the Azure infrastructure, rendering your secrets
inaccessible.

Another critical decision you need to make is how many Azure Key Vault instances to use. Micro-
soft recommends dedicating multiple instances for your application—one for each environment. Our
recommendation is to have even more of them, particularly for production environments. If your ap-
plication has multiple layers, you might dedicate an Azure Key Vault to each of them to ensure that an
attacker can get hold of only a few secrets in the event of a compromise. (See Figure 3-3.)

FIGURE 3-3 An example of a system with two Key Vaults: one for the front end and one for the back end.

This approach might seem radical and sometimes unnecessary. After all, having multiple Azure Key
Vaults results in a more complex solution, introducing additional management burdens and increas-
ing the possibility of mistakes by expanding the attack surface. So, the approach you decide to adopt
depends on the characteristics of your solution.

68 PART I Security principles

Azure Key Vault for microservices
Microservices architectures present an interesting scenario. They are characterized by many
small applications interacting with each other. If you had to apply a Key Vault for each microser-
vice, the system would quickly become unmanageable. In this case, it might be best to avoid the
fragmentation of the AKVs and dedicate just a single instance. Remember, per the economy of
mechanisms principle, simpler is typically better.

e a are that you might achieve significant compartmentalization even  ithout dedicated instances. 
This is typically achieved by leveraging authorization. Azure Key Vault supports two authorization
models: access policies and RBAC. With access policies, you assign access rights to whole categories
of objects, like secrets or private keys. This means you cannot discriminate between secrets; you can
read all of them or none of them. In contrast, with RBAC, you can assign roles even at a single object
level. You can then have a single instance, because the object-level RBAC role assignment provides the
granularity needed to determine what anyone can access.

Important The ability to assign access rights so granularly is e cellent, but it has one signifi-
cant downside: Azure supports up to 2,000 role assignments per subscription. So, it might
be best to adopt    because it provides the greatest  e ibility and control , but use it 
sparingly.

As discussed with our coverage of the use RBAC principle, you should use RBAC because it enables
you to verify and manage role assignments centrally. Moreover, this comprehensive visibility enables
you to adopt tools to identify potential risks and processes to manage role assignments more or less
automatically.

Note Chapter 10, “Cryptography in Azure,” has more details on Azure Key Vault.

Examples
Azure Key Vault is great for storing secrets to access resources that don’t support managed identities, like
Azure Cache for Redis. Azure Key Vault is also effective for storing secrets that you cannot replace with man-
aged identities, like connection strings or private keys. When you store private keys, you should choose the
Premium SKU to leverage its HSM capabilities. The Standard SKU is enough for all other scenarios.

Related security principles
■ Fail secure

■ Least privilege

■ Leveraging existing components

CHAPTER 3 Security patterns 69

Related patterns
■ Use role-based access control (RBAC)

■ Use managed identities

■ Use bring your own key (BYOK)

Sensitive information management patterns

Secrets are important, but the information they protect is even more critical. There are many options
for securing your data, but not all options are born equal, and it can be tricky to choose the right ones.
Consider, for example, data protection at rest: all storage options from Azure allow or even enforce
encryption of data at rest. For example, Azure encrypts Azure Managed Disks automatically. You have
only a few options to determine how they are protected and who provides the encryption key. But do
you need this type of encryption? Of course, the answer is yes, but things aren’t so simple. You have to
satisfy multiple needs for encryption, and this sort of protection addresses just a few of them. Again,
relying on patterns is important to correctly address the most significant problems.

Create secure channels

Intent and motivation
Communications are usually the main risk for a solution. If you have a closed box that does not receive
any input and does not provide any output, it is fully protected and will not be attacked. Unfortunately,
such an isolated system makes sense only as an intellectual exercise.

All practical applications of technology are connected to something. It could be the internet, a local
network, or even just a power outlet. Even devices that aren’t connected to anything, because they
use a battery and have their Wi-Fi connectivity disabled, still send out information through screens or
simply through the electromagnetic field emitted by their electronics.

In Chapter 2, you learned that the Azure security model assigns customers partial responsibility for the
security of the solutions it hosts. But whatever model you choose—IaaS, PaaS, or SaaS—it is Microsoft’s
responsibility to protect the physical devices. Good news, then: you do not need to be concerned about
po er connections and electromagnetic fields   till, all the other concerns are  ell  ithin your scope.

Description
What does it mean to create secure channels? Or better, how can you determine whether a channel is
secure  There are a fe  requirements that must be satisfied

■ Confidentiality The channel must preserve data confidentiality. Transmission over the 
internet moves through many systems, and each of these systems could potentially read and
disclose the contents of the communication. To preserve confidentiality, you must  rap the 
content such that unauthorized parties cannot read it, typically through encryption.

70 PART I Security principles

■ Authentication The channel must authenticate with certainty all parties that are privy to the
communication. In most situations, the main concern is the authentication of the caller, but this
should not be the case. You also need to ensure that the called service authenticates itself. Fortu-
nately, the adoption of TLS provides the authentication of the service implicitly. Still, you might need
to ensure that your callers perform additional chec s on the provided certificate for e ample, 
chec ing  hether the certificate has been issued by the e pected certification authority.

■ Integrity ou must confirm the integrity of transmitted information.  n other  ords, those 
ho receive it must chec   hether it has been modified by some third party  hile in transit. 

Transmission protocols usually split big messages into multiple packets. Therefore, some of
these packets may be lost in transit or received in a different order than expected. To preserve
integrity, you must ensure that what is received matches what has been sent.

Azure addresses some of these requirements by imposing channel encryption for most communica-
tions. ith channel cryptography, li e T , you can provide confidentiality, integrity and server authen-
tication. But you still have to address client authentication, which is optional in TLS..

There are various ways to authenticate the client—too many to include them all here. But it might
be helpful to tal  about one of them in particular  client certificates. These establish a strong con-
nection that prevents man-in-the-middle attac s.  f you don t use client certificates, an attac er can 
intercept a communication, terminate the TLS channel at its end, and create a new, false one directed
toward the server. If you do use client certificates  ith T , however, this would not be possible because
the man in the middle  ould not present your certificate to the target server.  dmittedly,  e rarely use 
client certificates because they involve a high cost.

Another approach is to create secure channels and isolate them from the internet. You can then use
these secure channels to prevent the exposure of your resources and services over the internet. You can
typically achieve this by using VPNs or ExpressRoute.

The likelihood of interception
o  li ely is it that an attac er  ill intercept your traffic   fter all, the internet is vast,  ith 

billions of messages sent every second. Intercepting your traffic isn t li e finding a needle in a 
haystack; it’s harder! So, how big of a problem is it, really?

The truth is, there are a couple situations in  hich the chances of your traffic being intercepted 
raise significantly

■ The attacker might just be in the right place at the right moment, and you might unknow-
ingly send your traffic their  ay. This could happen if you use an easily intercepted channel, 
like Wi-Fi, when the attacker is near you. This type of attack occurs more frequently than
you might imagine particularly in specific situations, li e at security conferences. 

■ ou might un no ingly send your traffic through malicious nodes.   typical e ample of 
this situation is when you use Tor or some free VPN. Malicious actors host many of these
resources, and they use them to tap into your traffic and potentially perform malicious 
actions.

CHAPTER 3 Security patterns 71

Examples
■ onfigure end-to-end T   ith  zure  pplication  ate ay to ensure that T  encryption is 

provided internally between Application Gateway and the target service or resource.

■ Use a point-to-site VPN to connect a single workstation to resources on Azure to avoid expos-
ing them over the internet.

■ se a site-to-site   to connect a site,  hich could be your office, to cloud resources not 
exposed over the internet. This typically requires the installation of VPN gateways to collect the
traffic on both sides.

■ Use ExpressRoute to connect a site similarly to the site-to-site VPN. The main difference is that
ExpressRoute is based on a dedicated infrastructure, so the connection is typically faster and
more reliable.

Related security principles
■ Defense in depth

Related patterns
■ Encrypt data client-side

■ Use bring your own key (BYOK)

Encrypt data client-side

Intent and motivation
As discussed at the beginning of this section, Azure uses encryption to protect all storage. This is obvi-
ously a great feature, but does it address all your needs  To ans er this question, you must first identify 
exactly what needs this sort of encryption does address.

The encryption at rest provided by Azure for most storage options falls under the category of trans-
parent encryption. In other words, it ensures that if you access the storage using one of the sanctioned
channels, data will be available in unencrypted form. If you access the storage using any other means,
however, the data will unreadable. For example, if you try to access the data by stealing the virtual
or physical disks, you will wind up with encrypted content that is not readable, even if you have the
required rights.

So, transparent encryption increases the isolation of the customer data from Microsoft manage-
ment environments.  ore specifically, it ma es it more difficult for  icrosoft s administrators to get to 
your data. However, there are other needs that transparent encryption does not address. For example,
data in memory remains unencrypted.

72 PART I Security principles

Data can assume three states, and you have to protect all three of them:

■ At rest This is when the data is stored somewhere.

■ In transit This happens when you transmit the data between two locations.

■ In memory This is when the data is temporarily stored in computer memory, ready for pro-
cessing.

Transparent encryption only protects data at rest. When you use transparent encryption, the data
is unencrypted in memory for both the database or storage server and the client. So, you typically
protect data in transit by adopting TLS, which Azure enables by default.

Still, if a malicious actor manages to get hold of some authentication material, that person could
access the data stored in some repository. Of course, there are a few conditions for this to happen. For
example, the malicious actor must have access to the repository. But when these conditions are met,
the malicious actor can read the data. This is a scenario that, in most cases, could be safely considered
“already mitigated.” Still, if your solution requires a higher level of security assurances, you need to
consider something else, like client-side encryption.

Description
The idea behind client-side encryption is that you encrypt the data on the client before sending it to
the storage system. This ensures that the data is encrypted from that point on, including in the reposi-
tory memory. Of course, the application must decrypt the data to consume it. At that point, the data
would be potentially at risk.

If your storage system is a database server, things become interesting. Because the client-side
encrypted data is not readable by the logic executed on the database server, it would be impossible
to perform typical activities like searching its content. Still, with some implementation of client-side
encryption, like Cosmos DB and SQL Server Always Encrypted, it is possible to perform limited
comparisons.

The implementation of client-side encryption is possible when the platform supports it, and it might
still be achievable as a custom activity. But in that case, it should be treated as a delicate task, requiring
thorough testing and in-depth validation by experts, because it is possible to make fatal mistakes. And
even under the best conditions, client-side encryption can have a significant impact on the perfor-
mance of the system, due to computational costs and because it may be impossible to index data to
improve search speed.

TIP When you implement client-side encryption, a typical pattern is to consider adopting
Azure Key Vault for storing the cryptographic keys.

CHAPTER 3 Security patterns 73

Examples
■ Cosmos DB and SQL Server Always Encrypted provides a way to encrypt data client-side. It

includes a mode called deterministic encryption, which allows to search for records having some
specific value.  or e ample, if you encrypt a ta  code  ith deterministic encryption, you can get 
all ro s in a table  here a field has the same ta  code.

Note The very characteristic that makes deterministic encryption worthwhile is also its main
weakness. For example, an attacker could group all the records associated with the same tax
code, which could provide them with enough information to identify a person from the oth-
er metadata. For this reason, consider randomized encryption as the first option and revert to 
deterministic encryption if necessary.

■ Some libraries that provide programmatic access to Azure Storage implement the necessary
logic to perform client-side encryption for Azure Storage. For examples of this with .NET, Java,
and Python code, see https://azsec.tech/ci5.

Related security principles
■ Defense in depth

■ Fail secure

■ Leveraging existing components

Related patterns
■ Protect secrets with Azure Key Vault

Use bring your own key (BYOK)

Intent and motivation
Data encryption has multiple roles. One of the least commonly considered is crypto-shredding.
Crypto-shredding involves deliberately deleting or overwriting encryption keys used to secure sensitive
data. In this way, you can ensure that nobody can read the data you no longer need, or you can block
data e filtration in an emergency.  ith crypto-shredding, you can make it impossible for anyone to
access your data.

Description
One of the best ways to do this is to use BYOK. With this approach, Azure Key Vault stores the key,
which is under your control. So, to crypto-shred your data, you simply purge your key from its Key
Vault. When you do, all that data becomes immediately unrecoverable.

https://azsec.tech/ci5

74 PART I Security principles

More on BYOK
One of the primary purposes of BYOK is to increase users’ control over their keys. The idea is that
by introducing their own keys, users make it harder for the cloud service provider to access their
data. Unfortunately, that’s not why BYOK is useful. If you do not trust Microsoft with your data,
why should you trust it to handle your key securely? You are storing it in its systems. In other words,
if you assume that a malicious administrator could access your data, you should also assume that
person could access your keys, too. Fortunately, Azure includes many other controls to prevent
this from happening, including strong physical controls and various isolation layers that require
escalation paths under the control of the customer to access the data.

Of course, this is a two-edged sword, because a malicious actor could leverage this approach to
cause a denial of service. Some SaaS solutions like Microsoft 365 implement mechanisms to prevent
losses due to the destruction of the BYOK. One such feature is called Availability Key and is discussed
here: https://azsec.tech/89t.

Example
If you have an Azure SQL or Azure Storage and have used BYOK to encrypt them at rest, you can re-
move the key from Azure Storage to crypto-shred the content.

Related security principles
■ Defense in depth

■ Leveraging existing components

■ Separation of duties

Related patterns
■ Protect secrets with Azure Key Vault

Availability pattern

Availability is often considered a given. You expect your solution to be there when needed and provide
its services to every user. Unfortunately, it is not so automatic to achieve this, and you have to work
hard to guarantee that your solution is up and running.

In the cloud, the situation is even worse, if possible. When you develop a complex system integrat-
ing many services, you rely on all of them to be available. The unavailability of any service may cause
your solution to be partially or entirely unavailable. When each of these systems is managed at least in
part by a third party, you lack control over the maintenance activities. Therefore, you have to design
your solution to be more resilient than you used to do with on-prem solutions.

https://azsec.tech/89t

CHAPTER 3 Security patterns 75

Important  t  ould be a mista e to thin  that this problem is specific to the cloud or to 
Azure. On the contrary, the pervasive adoption of automation you have with these plat-
forms has dramatically reduced the prevalence of the incidents compared to on-prem. Still,
incidents are a possibility and maintenance a necessity. The new approach gives you this
awareness and the tools to design and implement your solutions in a resilient way to meet
your availability requirements.

Let’s see what you can do to improve the availability of your solution.

Design for denial of service

Intent and motivation
Denial-of-service (DoS) attacks are common occurrences. They happen when someone creates the
conditions for your solution to fail by bombarding it with more requests than it can handle or by
sending artfully crafted messages causing your solution to crash. In any case, these attacks cause the
unavailability of your service. A variant of DoS attacks is called distributed DoS (DDoS). DDoS attacks
are characterized by the generation of the attack from multiple points, sometimes in the order of the
thousands or tens of thousands.

DoS and DDoS are some of the easiest attacks to execute. Some organizations even provide DDoS
attacks as a service. You tell them who the target is, you pay them, and they do the rest! Very conve-
nient and powerful.

You can address this problem in various ways, but the easiest is to simply add more resources to
your application. One of the characteristics of the cloud is elasticity, which means you can allocate
resources dynamically, as you need them. However, although this is easy and fast, it can be expensive
and unfeasible in the long run. Here is where this pattern becomes useful.

Description
All public cloud platforms, including Azure, offer a base level of protection from DoS attacks. Azure
also offers Azure DDoS Protection Standard (https://azsec.tech/s1h), designed to protect public
IP addresses from potentially massive DDoS attacks.

The documentation for this service uses some specific  ording that you should be a are of

“Azure DDoS Protection Standard, combined with application design best practices,
provides enhanced DDoS mitigation.”

Note that it says enhanced, not complete. In other words, as with any other anti-DDoS system, Azure
cannot represent your only line of defense against DDoS attacks. These systems complement a more
comprehensive strategy, which starts with the design of your solution. For this reason, you should not
design a system without thinking about how your architecture might respond to a DDoS attack.

https://azsec.tech/s1h

76 PART I Security principles

Consider this real-life example: a customer with nearly 100 public IP addresses protected by the
Azure DDoS Protection Standard service suffered severe service degradation. This was due to a DDoS
attack, but it went undetected because the attack was “low and slow.” That is, it fell below the trigger-
ing threshold for Azure DDoS Protection Standard, so none of the service’s mitigation policies were
triggered.  s a result, the combined traffic  o  across all   addresses overloaded the bac -end  s, 
hich forced them to drop part of the traffic. The security anti-pattern in this design ta es data from 

multiple untrusted sources and concentrates that traffic on a single, internal endpoint.  n this case, all 
that data was concentrated on a single VM running the NVA, which is where the impact of the attack
became evident. The customer quickly applied the NVA’s built-in auto-scaling capabilities to bring
more network bandwidth and compute online. In this scenario, a range of one to three NVAs mitigated
the attack.

Note To see Microsoft documentation on including DoS and DDoS protection support in
your designs, see https://azsec.tech/xin.

ne final note  many  zure services can throttle requests.  or e ample,  zure  ey  ault allo s 
4,000 secret transactions (for example, reading an SQL connection string) per 10 seconds. If your code
goes beyond this threshold, further requests are throttled and return a 429 (“Too Many Requests”)
response. To remedy this, cache data if possible. In the Key Vault example, you could cache the con-
nection string in memory for 15 minutes and read from Key Vault only four times per hour, which is way
under the threshold.  ou can find a list of  zure subscription and service limits, quotas, and constraints 
at https://azsec.tech/9it.

Examples
■ any services can be configured  ith net or ing rules or private endpoint connections.  ne 

such service is Azure Storage. If you opt to adopt the networking rules, the service itself is still
exposed and can receive requests; you just have a high-speed mechanism to reject the requests
because they are not from an acceptable IP address. While fast, this mechanism can still be
over helmed or bypassed for e ample, by an   spoofing attac . Therefore, it is typically bet-
ter to use private endpoints.

■ Consider the availability requirements of your solution. If you have strict availability require-
ments that do not allow for partial unavailability, it’s best to design the solution accordingly.
For example, you could use a content delivery network (CDN) to serve the static content and a
distributed and redundant architecture to provide the service to the relevant geographies.

Related security principles
■ Attack surface reduction

■ Defense in depth

https://azsec.tech/xin

CHAPTER 3 Security patterns 77

■ Single point of failure

■ Weakest link

Related patterns
■ Isolate from the internet

■ Isolate with an identity perimeter

Summary

This chapter introduced Azure security patterns. It started with a discussion of why the concept of pat-
terns is so essential. It then introduced a few of the most common patterns to secure your solution on
Azure.

This list is limited, and you might be able to identify one or t o significant ones that are missing. 
The intent here is not to be comprehensive but to introduce you to an approach for building secure
software on Azure based on the adoption of renowned patterns.

The next chapter goes beyond this to introduce a different way of thinking about security and
designing secure solutions: threat modeling.

469

Index

Numbers
429 (“Too Many Requests”) messages, 76

A
AAD (Azure Active Directory)

AAD Data Plane RBAC, 416–419
identity management, 203

ABAC (Attribute-Based Access Control), 168–170
acceptability, psychological, 45
accepting risk, PCI DSS, 218
access

ABAC, 168–170
AD Access Reviews, 42
Azure Key Vault, 288–290, 301
broken access control, 257
CAE, 131
Entra, 130
managing, modern identity, 125
PAM tool, 56–57
PAW, 42
privileged access, 203
RBAC, 61–62, 206, 210–211, 291–299
rights, limiting duration of, 28–29
SAS tokens, 158
tokens, 138
without authentication, 151–159

accounts, break-glass accounts, 298
ACI (Azure Container Instances), 377–378
ACR (Azure Container Registry), 385–386
action groups, 185–186
Active Directory Authentication Library (ADAL), 131

AD (Active Directory)
AAD, identity management, 203
Access Reviews, 42
ADAL, 131
PIM, 46, 168
roles, 162–164
scopes, 162
SecOps, 125

ADAL (Active Directory Authentication Library), 131
adding audit logs with Azure Policy, 189
Addiscott, Richard, threat modeling, 89
administration, just-in-time, 56–58
ADO SHA (Azure DevOps Self-Hosted Agents), 456
Agile development, characteristics of, 23
Agile SDL (Security Development Lifecycle)

attack surface analysis, 10
banned functionality, avoiding, 12–13
bug bars, defining, 
CVSS, 7
DTD bomb attacks, 13
dynamic analysis tools, 16–17
o  analysis, 
control- o  analysis, 
data- o  analysis, 

incident response plans, 18
overview, 20–21
penetration testing (pentests), 19
security training, 6
static analysis tools, 13–16, 17
tasks by sprint, 20–21
technical security debt, 19
threat modeling, 10
toolchains, defining, 

470

agility

agility, cryptographic, 312–313
CredScan, 313–314
delimiters, 323
implementing, 315–323
metadata, 316–317
nonclass factory cryptographic algorithms,

317–320
ffice   documents, 

process of, 314–315
real-world experience, 322–323
summary, 323–324
TLS, 343
version numbers, 320–322

AKS (Azure Kubernetes Services), 107,
378–380, 457

alerts, 197–199, 303
Alexander, Christopher, design patterns, 51
all input is evil, 238–239
allLogs, 175
allowed communications, VNets, 448
Always Encrypted, 422–426, 429–433
AMD, SEV-SNP, 362–363
analysis phase, threat modeling, 82
analyzing

attack surfaces, 10
dynamic analysis tools, 16–17
o  analysis, 
control- o  analysis, 
data- o  analysis, 

SCA tools, CI/CD, 436
static analysis tools, 13–16, 17
use analysis tools, 271–273

API (Application Programming Interface)
fuzz testing, 280–283
Management Gateways, 451
REST API security, 282–283

App Services, 47, 377
Application Programming Interface (API)

fuzz testing, 280–283
REST API security, 282–283

Application Security Groups (ASG), 447
applications

AppServiceAppLogs, 173
ASG, 447
authentication, 159–161
Azure Application Proxy, 451
Azure Container Apps, 378
DAST, 16–17
hosting, 133
OAuth2

o s, 
registration, 129

permissions, 138
roles, 62–64
shared app service plans, 455

AppServiceAppLogs, 173
AppServiceAuditLogs, 173
AppServiceConsoleLogs, 173
AppServiceHTTPLogs, 173
AppServiceIPSecAuditLogs, 173–174
AppServicePlatformLogs, 174
Arm TrustZone, 363
ASB (Azure Security Benchmark), 202, 227–228
ASG (Application Security Groups), 447
assessing risk, bug bars, 7–10
asset management, 204
assigning

Azure Policies, 211–212
roles

best practices, 167–168
Blueprints, 167
denying assignments, 167
managing assignments, 164–165
to groups, 58–59

assume-breach, 29
assumptions, mitigations, 113
ATT&CK, 231
attack surfaces

analysis, 10
reduction, 32–33

attacks. See also threat modeling
brute-force attacks, 350–351
DoS attacks, 75–77, 391
DTD bomb attacks, 13

471

authorization (AuthZ)

elevation of privileges attacks, 391
honeypots, 171
reconnaissance attacks, 171
repudiation attacks, 391
spoofing attac s, 
supply chain attacks, 436
tampering attacks, 391

attestation, remote, 360, 364–366, 431
Attribute-Based Access Control (ABAC), 168–170
audit logs, 175, 186–188
auditing

allLogs, 175
AppServiceAppLogs, 173
AppServiceAuditLogs, 173
AppServiceConsoleLogs, 173
AppServiceHTTPLogs, 173
AppServiceIPSecAuditLogs, 173–174
AppServicePlatformLogs, 174
audit logs, 175, 186–188
Azure Key Vault, 301–303
Azure Monitor

Azure Storage, 174, 187–188
diagnostic settings, 172–175
Event Hub, 174
Log Analytics workspaces, 174, 176
Log Analytics workspaces, action groups,

185–186
Log Analytics workspaces, KQL queries,

176–180
Log Analytics workspaces, protecting

audit logs, 186–188
Log Analytics workspaces, raising alerts,

181–185
Partner Solution, 174

Azure Policy, adding audit logs, 189
Azure Sentinel, 186
category groups, 175
CMK, 186–187
control (management) plane, 399–400
Cosmos DB Security, 414, 419–420
costs, 189–190
crypto-shredding, 186
data plane, 404

intentional security monitoring/auditing, 190
KQL queries, 176–180
logging for auditing, defined, 
SQL Server and database security, 395
threat modeling events, 190–199

authentication (authN), 123–124, 150–151, 154
access without authentication, 151–159
ADAL, 131
applications, 159–161
control (management) plane, 396–398
Cosmos DB Security, 411–412
data plane, 402–403, 414–415
defined, 
failures, 264–266
importance to developers, 155
keys, 338
MFA, 152–153
MSAL, 130–132

ADAL, 131
CAE, 131
debugging tools, 132–133

passwordless authentication, 152
personal solutions, creating, 155–156
SAML, 129
SAS tokens, 158
security patterns, 53–55

Azure AD, 54–55
centralized identity providers, 54–55

server authentication, 154
SMS-based authentication, 151–152
SQL Server, 395
SSO authentication, 156–157
threat modeling, 107
zero trust, 28
ZKPP, 151

authorization (AuthZ), 123–124, 161–162, 395,
403–404
code  o s, 
control (management) plane, 398–399
Cosmos DB Security, 413, 415–418
defined, 
FedRAMP, 218–219, 221
policy-based authorization, 28

472

authorization (AuthZ)

security patterns, 53–55
servers, OAuth2, 134

automation
container development/deployment, 384
deployments, governance, 206
threat identification, 
threat modeling, 91

availability patterns, 74–75
Azure

AD, 54–55
Access Reviews, 42
ADAL, 131
PIM, 46, 57, 168
roles, 162–168
scopes, 162
SecOps, 125

AKS, 107, 378–380
App Services, 47
App Services Web App Containers, 377
ASB, 202
Blueprints, 167
confidential containers, 
onfidential ledger, 

Container Apps, 378
container services, 375–376
cryptographic services (overview), 329
Customer Lockbox, 25–26, 46
Dedicated Hosts, 41
dedicated hosts, 27
Disk Encryption, 336
Function Cointainers, 377
Initiatives, 210
IPv4 addresses, 445–446
Key Vault, 66–69, 76

FIPS 140 and managed HSM, 224
PaaS, TLS, 345–346
Policy, 209

assigning policies, 211–212
effects, 210
effects, enforcing by environment, 210–211
policy as code, 212

Portal, compliance state, governance, 208–209
RBAC, 61–62, 291–299

rules of engagement, 275
secure design, 32
Security Benchmark, 80, 81
security patterns, 51–52
Sentinel, 186

alerts for custom events, 197–199
Shared Responsibility Model, 24–25
Storage, cryptography, 331–335
storage, redundancy levels, 47
Storage, Azure Monitor, 174

protecting audit logs, 187–188
Storage Keys, 107
VM

cryptography, 335–337
Intel SGX, 361–362, 363–364
Intel SGX, keys, 364
SEV-SNP, 362–363
trusted launches, 366–367

Well-Architected Framework, 53
Azure Active Directory (AAD), AAD Data Plane

RBAC, 416–419
Azure Application Proxy, 451
Azure Container Instances (ACI), 377–378
Azure Container Registry (ACR), 385–386
Azure DevOps Self-Hosted Agents

(ADO SHA), 456
Azure Firewall, 449–450
Azure Firewall Premium SKU, 450
Azure Key Vault, 66–69, 76, 288

access control, 288–290, 301
auditing, 301–303
backups, 306–307
break-glass accounts, 298
“bring your own key” strategy, 301
certificates, 
compound identities, 299
contributor permissions, 297
customer-managed keys, 306
elliptic-curve keys, 301
encrypting operations, 290
FIPS 140 and managed HSM, 224
get operations, 291–299
honey keys, 303

473

certificates

HSM
Dedicated HSM, 309
Managed HSM, 308–311
Payment HSM, 309

keys, 288, 301
logging, 301–303
Microsoft Defender, 306
network isolation, 304–305
permission models

selecting, 295
switching, 292

Premium edition, 299–301
RBAC, 291–299
restoring key versions, 307–308
rotating keys, 339–341
RSA, 301
secrets, 288
secure keys, 312
Standard edition, 299–300
templates, 300
verifying operations, 290
wrapping operations, 290

Azure Kubernetes Services (AKS),
378–380, 457

Azure Monitor
Azure Storage, 174, 187–188
diagnostic settings, 172–175
Event Hub, 174
Log Analytics workspaces, 174, 176

action groups, 185–186
KQL queries, 176–180
protecting audit logs, 186–188
raising alerts, 181–185

Partner Solution, 174
Azure Policy, adding audit logs, 189
Azure Security Baseline, 411, 421–422
Azure Security Benchmark (ASB), 227–228
Azure SQL Database, 394–395
Azure SQL Ledger, 409–410
Azure SQL Managed Instance, 395
Azure WAF (Web Application Firewalls),

450–451

B
backlogging, mitigations, 119–122
backups

Azure Key Vault assets, 306–307
governance, 205

bad data (known), rejecting, 253–255
banned functionality

avoiding, 12–13
examples of, 12

benchmarks
ASB, 202, 227–228
Azure Security Benchmark, 80, 81
CIS Benchmarks, 80–81, 226–227

binaries, signing, 268–269
Blueprints, 167
bomb attacks, DTD, 13
bounty programs, Hyper-V, 40–41
break-glass accounts, 298
breaking keys/passwords, cost of, 350–351
Britt, Jim, Azure Policy, 189
broken access control, 257
brute-force attacks, 350–351
bug bars, defining, 
BYOK (Bring Your Own Key), 73–74

C
C programming language, 270–271
C++ programming language, secure coding,

270–271
CAE (Continuous Access Elevation), 131
CAIRIS, threat modeling, 93–94
CAPEC (Common Attack Pattern Enumeration
and  lassification , 

Carielli, Sandy, threat modeling, 89
Carmack, John, static analysis tools, 14
Center of Internet Security (CIS), benchmarks,

80–81
centralized identity providers, authentication,

54–55
certificates,  eys, 

474

Chambers

Chambers, John T., hacks, 172
channels, secure, 69–70
CI/CD (Continuous Integration/Continuous

Deployment)
defined, 
deployment agents, 440–441
developers, specialized security, 436–437
main branch (trunk) security, 438–439
PR approvals, 437
PROD deployments, 439–440
SCA tools, 436
secrets and service connections, 438
separation of duties, 437–438
source control systems, 436
supply chain attacks, 436
tools (overview), 435–436
trunk (main branch) security, 438–439

CIDR, IPv4 addresses, 445–446
ciphersuites, 286, 343–344, 345, 346–349, 356
CIS (Center of Internet Security), benchmarks,

80–81, 226–227
classification, data discovery, 
clients
confidential clients, 
credential  o s, 
cryptography, 331
data encryption, 71–73
OAuth2, 134, 137
confidential clients, 
public clients, 137

cloud computing
Microsoft DFC, 207, 208
secure design, 23–24, 28–29

clusters
containers, 386
network policies, 457–458

CMK (Customer-Managed Keys), 186–187, 204, 330
CNAME (Canonical Names), 459–460
code security

all input is evil, 238–239
attackers

identity of, 240–241
what attackers control, 241–242

C programming language, 270–271
C++ programming language, 270–271
fuzz testing, 274, 275–276

API, 280–283
Azure rules of engagement, 275
generating random data, 276–277
manipulating data by format, 280
mutating existing data, 277–280

hashes in coding, 341
insecure coding, 237
reviewing, 273–274
revocation checking, 266
threat modeling, 239–242
use analysis tools, 271–273
verifying data, 242

determining correctness, 243–253
encoding data, 256
rejecting known bad data, 253–255

vulnerabilities, 256–257
authentication failures, 264–266
broken access control, 257
checking signatures, 268
cryptography failures, 257–258
data integrity failures, 266–269
debugging security headers, 264
identification failures, 
injection, 258
inline scripts/styles, 260–263
insecure design, 259
logging failures, 269
misconfigured security, 
monitoring failures, 269
signing binaries, 268–269
software failures, 266–269
SSRF, 269–270
vulnerable/outdated components, 264

code verifiers, 
Coles, Matthew J., threat modeling, 81
column encryption, 408
comment fields, validating, 
Common Attack Pattern Enumeration and

lassification  , 
common vulnerabilities, 256–257

475

consent

authentication failures, 264–266
binaries, signing, 268–269
broken access control, 257
cryptography failures, 257–258
data integrity failures, 266–269
debugging security headers, 264
identification failures, 
injection, 258
inline scripts/styles, 260–263
insecure design, 259
logging failures, 269
misconfigured security, 
monitoring failures, 269
signatures, checking, 268
software failures, 266–269
SSRF, 269–270
vulnerable/outdated components, 264

Common Vulnerabilities and Exposures
(CVE), 230

Common Vulnerability Scoring System
(CVSS), 7, 230

Common Weakness Enumeration (CWE), 231
communications (allowed), VNets, 448
compensating controls, 286
complete mediation, 33–34
complexity, containers, 381–382
compliance, 232–233

ASB, 227–228
ATT&CK, 231
CAPEC, 231
CIS benchmarks, 226–227
CVE, 230
CWE, 231
defined, 
FedRAMP, 218–219, 221
FIPS 140, 221–222

Azure Key Vault and managed HSM, 224
SHA-2 in .NET, 222–223

GDPR, 216–217
HIPPA, 215–216
HITRUST, 216
ISO/IEC 27001, 225–226
ISO/IEC 27034, 226

MITRE, 229–230
NIST Cybersecurity Framework,

220–221
NIST SP 800–53, 219–220, 221
NVD, 230
OWASP, 229
PCI DSS, 217–218
SOC, 224–225
threat modeling, 233–234

compliance state, reviewing, 208–209
components

leveraging existing components, 42–43
vulnerable/outdated, 264

compound identities, 299
compromises

developers, 3–4
reasons for, 171–172
sources of, 3–4

confidential clients,  ,  , 
confidential computing

adopting, 360
Arm TrustZone, 363
onfidential containers, 
onfidential ledger, 

DCsv3 VM, 363–364
defined, 
Intel SGX, 361–362, 363–364
Intel TME-MK, 363–364
memory isolation/encryption, 360
processors, 361
remote attestation, 360, 364–366
resources, 360
secure key management, 360
SEV-SNP, 362–363
TEE code, 361–362
trusted launches, 360, 366–367
VBS, 368

confidential containers,  , 
onfidential ledger, 

connection strings, SQL, 402
consent

incremental consent, 140
OAuth2, 139–140

476

containers

containers, 375, 388
ACI, 377–378
ACR, 385–386
AKS, 378–380
Azure App Services Web App Containers, 377
zure confidential containers, 

Azure Container Apps, 378
Azure container services, 375–376
Azure Function Containers, 377
clusters, 386
complexity, 381–382

confidential containers,  , 
defined, 
Docker, 373–374
fragmentation, 383
IaaS, 376
images, 385
immaturity, 383
K8s, 373–375
Managed OpenShift, 381
Microsoft Defender for Containers, 386
pods, 387–388
problems with, 381–383
resources, 375
service security

deployments, 384–385
development, 384–385
overview, 383–384

Content-Security-Policy (CSP), 260
Continuous Access Elevation (CAE), 131
Continuous Integration/Continuous

Deployment (CI/CD)
defined, 
deployment agents, 440–441
developers, specialized security, 436–437
main branch (trunk) security, 438–439
PR approvals, 437
PROD deployments, 439–440
SCA tools, 436
secrets and service connections, 438
separation of duties, 437–438
source control systems, 436
supply chain attacks, 436

tools (overview), 435–436
trunk (main branch) security, 438–439

contributor permissions, 297
control (management) plane, 392, 393

auditing, 399–400, 414
authentication, 396–398, 412–413
authorization, 398–399, 413
cryptography, 400–401
network isolation, 401–402, 414
permissions, 161

control- o  analysis, 
correctness (verifying data), determining, 243

error handling, 253
Greek question mark, 251–252
HTML, 251
names, security decisions based on, 253
namespace std, 245–246
real-world experience, 243–245
validating
comment fields, 
date and time, 247
high-level validation tools, 252
open spots, 248–249
vaccination center ID, 246
vaccination type, 248

Cosmos DB Security, 411–412
Always Encrypted, 431–433
auditing, 414
authentication, 412–413
authorization, 413
Azure Security Baseline, 422
cryptography, 414, 421
data plane

auditing, 419–420
cryptography, 420
network isolation, 420–421

data plane authentication, 414–415
Microsoft Defender for Cosmos DB, 421–422
network isolation, 414

CredScan, 313–314
Cross-Site Scripting (XSS), 30, 258
crypto shredding, 407

477

cryptography

cryptography, 391
agility, 312–313

CredScan, 313–314
delimiters, 323
implementing, 315–323
metadata, 316–317
nonclass factory cryptographic

algorithms, 317–320
ffice   documents, 

process of, 314–315
real-world experience, 322–323
summary, 323–324
TLS, 343
version numbers, 320–322

Azure Disk Encryption, 336
Azure Key Vault, 288

access control, 288–290, 301
auditing, 301–303
backups, 306–307
break-glass accounts, 298
“bring your own key” strategy, 301
certificates, 
compound identities, 299
contributor permissions, 297
customer-managed keys, 306
Dedicated HSM, 309
elliptic-curve keys, 301
encrypting operations, 290
get operations, 291–299
honey keys, 303
logging, 301–303
Managed HSM, 308–311
Microsoft Defender, 306
network isolation, 304–305
Payment HSM, 309
Premium edition, 299–301
RBAC, 291–299
restoring key versions, 307–308
RSA, 301
secrets, 288
secure keys, 312
selecting permission models, 295
Standard edition, 299–300

switching permission models, 292
templates, 300
verifying operations, 290
wrapping operations, 290

Azure services (overview), 329
Azure Storage, 331–335
Azure VM, 335–337
ciphersuites, 286, 343–344, 345,

346–349, 356
client-side cryptography, 331
compensating controls, 286
complexity, 286–287
control (management) plane, 400–401
Cosmos DB Security, 414, 421
CredScan, 313–314
data at rest, 406–407
data in transit, 341–343
data plane, 405, 420
database security, 393, 395–396
defined, 
DEK, 329
delimiters, 323
E@H, 336–337
ECDSA, 353
failures, 257–258
hashes in coding, 341
KEK, 329
keys

agreements, 344
certificates, 
defined, 
exchanges, 344
secrets, 288
security, 287

metadata, 316–317
Microsoft Data Encryption SDK, 324–329
nonclass factory cryptographic algorithms,

317–320
ffice   documents, 

PFS, 344–345
rotating keys, 337–341
RSA, 353
SQL Server and database security, 395–396

478

cryptography

SSE, 335–336
CMK, 330
PMK, 329–330

SSL, 342
TLS, 342, 345

.NET code, common mistakes, 354
cryptographic agility, 343
debugging, 354–356
IaaS, 350
Linux VM, 350–351
PaaS, 345–346
testing, 354
versions of, 342–343
Windows VM, 352–353

unsecured SSH, 357
version numbers, 320–322

crypto-shredding, 186
CSP (Content-Security-Policy), 260
custom events

alerts, 197–199
threat modeling, 193–197

custom role definitions, 
Customer Lockbox, 25–26, 46
Customer-Managed Keys (CMK), 186–187,

204, 330
CVE (Coimmon Vulnerabilities and

Exposures), 230
CVSS (Common Vulnerability Scoring System),

7, 230
CWE (Common Weakness Enumeration), 231
Cybersecurity Framework, NIST, 220–221

D
dashboard, Threats Manager Studio, 118–119
DAST (Dynamic Application Security Testing),

16–17
data at rest, cryptography, 406–407
data discovery classification, 
data encryption

Azure Disk Encryption, 336
client-side data encryption, 71–73
data in transit, 341–343
E@H, 336–337

Microsoft Data Encryption SDK, 324–329
SSE, 335–336

Data Encryption SDK (MS), 324–329
Data Flow Diagrams (DFD), threat modeling,

82–85
data in transit, encryption, 29, 341–343
data integrity failures, 266–269
data plane, 392, 393

auditing, 404, 419–420
authentication, 402–403, 414
authorization, 403–404, 415–418
cryptography, 405, 420
network isolation, 405–406, 420–421
permissions, 161

data protection
GDPR, 216–217
governance, 203–204

data recovery, governance, 205
data verification, 

determining correctness, 243
error handling, 253
Greek question mark, 251–252
high-level validation tools, 252
HTML, 251
namespace std, 245–246
real-world experience, 243–245
security decisions based on names, 253
validating comment fields, 
validating date and time, 247
validating open spots, 248–249
validating vaccination center ID, 246
validating vaccination type, 248

encoding data, 256
rejecting known bad data, determining

correctness, 253–255
database security

Always Encrypted, 429–433
auditing, Cosmos DB Security, 419–420
Azure Security Baseline, 411
Azure SQL Database, 394–395
Azure SQL Ledger, 409–410
Azure SQL Managed Instance, 395
control (management) plane, 392, 393

479

deployments

auditing, 399–400
authentication, 396–398
authorization, 398–399
cryptography, 400–401
network isolation, 401–402

Cosmos DB Security, 411–412
auditing, 414
authentication, 412–413, 414–415
authorization, 413, 415–418
Azure Security Baseline, 422
cryptography, 414, 421
data plane authentication, 414–415
Microsoft Defender for Cosmos DB, 421–422
network isolation, 414, 420–421

crypto shredding, 407
cryptographic controls, 393
data at rest, cryptography, 406–407
data discovery classification, 
data plane, 392, 393

auditing, 404
authentication, 402–403
authorization, 403–404
cryptography, 405, 421
network isolation, 405–406

dynamic data masking, 408
encryption, Always Encrypted, 422–426
golden rules, 394
immutable storage, 410–411
importance of, 391
managed identities, 407–408
Microsoft Defender for Cosmos DB, 421–422
NIN, 426–429
remote attestation, 431
secure enclaves, 431
security services, 393–394
SQL Injection, 433–434
SQL Server, 394, 395

auditing, 395
authentication, 395
authorization, 395
cryptography, 395–396
network isolation, 396

SQL Server family (overview), 394

SQL Server IaaS Agent, 411
SSN, 426–429
supported products, 392
TDE, 406–407
techniques (overview), 392

data- o  analysis, 
date and time validation, data verification, 
DCsv3 VM (Virtual Machines), 363–364
debt, technical security, 19
debugging

OAuth2, 132–133
OpenID Connect, 132–133
security headers, 264
TLS, 354–356

dedicated hosts, 27, 41
Dedicated HSM, Azure Key Vault, 309
dedicated PaaS instances, 456
Defender, Microsoft, Azure Key Vault, 306
Defender for Cloud (DFC), Microsoft, 207, 208
Defender for Containers, Microsoft, 386
Defender for Cosmos DB, Microsoft, 421–422
Defender for SQL, Microsoft, 410–411
defense in depth, 34–37
defining

bug bars, 7–10
fire all rules, 
mitigations, 110–112
private endpoints, 60
roles, custom definitions, 
toolchains, 11

DEK, 329, 338
delegated permissions, 138
delimiters, cryptographic agility, 323
Demilitarized Zones (DMZ), 34–35
Denial-of-Service (DOS) attacks, 75–77, 391
denying role assignments, 167
deployments

agents, 440–441
CI/CD
defined, 
deployment agents, 440–441
developers, specialized security, 436–437
main branch (trunk) security, 438–439

480

deployments

PR approvals, 437
PROD deployments, 439–440
SCA tools, 436
secrets and service connections, 438
separation of duties, 437–438
source control systems, 436
supply chain attacks, 436
tools (overview), 435–436
trunk (main branch) security, 438–439

PROD, 439–440
design patterns, 51. See also security patterns
design security

access rights, 28–29
AD Access Reviews, 42
AD PIM, 46
assume-breach, 29
attack surface reduction, 32–33
Azure security design principles, 32
cloud computing, 23–24, 28–29
complete mediation, 33–34
Customer Lockbox, 25–26
Dedicated Hosts, 41
dedicated hosts, 27
defense in depth, 34–37
DevOps, 23–24
DMZ, 34–35
economy of mechanisms, 37–38
encrypting data in transit, 29
fail-safe defaults, 38–40
FAIR, 31–32
fire alls, 
IaaS, 24–27
insecure design, 259
least common mechanism, 40–41
leveraging existing components, 42–43
micro-segmenting networks, 29
monitoring, 29
open design, 43–45
open source, 44–45
PaaS, 24–27
PAW, 42
PIM, 28
policy-based authorization, 28

principle of least privilege, 28, 41–42
prioritizing mitigations, 48
psychological acceptability, 45
residual risk, 37
SaaS, 24–27
scanning, 29
separation of duties, 45–46
Shared Responsibility Model, 24–25
shifting left, 31
single point of failure, 46–47
SQLMap, 30
thoughts on, 31–32
WAF, 30
weakest link, 47–48
zero trust, 27–31

determining correctness, verifying data, 243
error handling, 253
Greek question mark, 251–252
HTML, 251
names, security decisions based on, 253
namespace std, 245–246
real-world experience, 243–245
validating
comment fields, 
date and time, 247
high-level validation tools, 252
open spots, 248–249
vaccination center ID, 246
vaccination type, 248

deterministic encryption, 73
DEV environments, 448
developers

authentication, importance of, 155
CI/CD, 436–437
compromises, 3–4
fuzz testing, 274
governance, 201
specialized security, 436–437
zero trust, 27–31

development, logging for, 172
device code  o s, 
DEVINT environments, 448
DevOps

481

fail-safe defaults

ADO SHA, 456
deployment agents, 440–441
governance, 205
identity, 438
intentional security monitoring/auditing, 190
main branch (trunk) security, 438–439
PROD deployments, 439–440
secure design, 23–24
service connections, 438
trunk (main branch) security, 438–439

DFC (Defender for Cloud), Microsoft, 207, 208
DFD (Data Flow Diagrams), threat modeling,

82–85
disclosure attacks, information, 391
discovery classification, data, 
Disk Encryption, Azure, 336
DMZ (Demilitarized Zones), 34–35
DNS (Domain Name Systems), 454–455

CNAME, 459–460
dangling DNS, 459–460

Docker, containers, 373–374
documentation

governance, 206
ffice   documents, defined, 

Domain Name Systems (DNS), 454–455
CNAME, 459–460
dangling DNS, 459–460

domain security, 309–311
DoS (Denial-of-Service) attacks, 75–77, 391
DTD bomb attacks, 13
duties, separation of, 45–46, 437–438
dynamic analysis tools, 16–17
dynamic data masking, 408

E
E@H (Encryption at Host), 336–337
ECDSA (Elliptic Curve Digital Signature

Algorithm), 353
economy of mechanisms, 37–38
education (security), governance, 206
egress/ingress controls, 449, 457
elevation of privileges attacks, 391

elliptic-curve keys, 301
enclaves, secure, 431
encoding data, verifying data, 256
encryption

Always Encrypted, 422–426, 429–433
client-side data encryption, 71–73
column encryption, 408
data encryption

Azure Disk Encryption, 336
data in transit, 29, 341–343
E@H, 336–337
Microsoft Data Encryption SDK, 324–329
SSE, 335–336

database security, Always Encrypted, 422–426
deterministic encryption, 73
E@H, 336–337
Intel TME-MK, 363–364
KEK, 329, 338
memory, 360
operations, Azure Key Vault, 290–299
SQL Server Always Encrypted, 73
SSE

CMK, 330
PMK, 329–330

TDE, 406–407
Encryption at Host (E@H), 336–337
endpoints, 205
defining, 
private endpoints, 454–455, 457

Entra, 130
EPAC (Enterprise Policy as Code), 212
error handling, determining correctness by

verifying data, 253
Event Hub, Azure Monitor, 174
events

custom events, 193–199
threat modeling, m 190–199

existing data, mutating, 277–280

F
ahmy,  onia, fire alls, 

fail-safe defaults, 38–40

482

failure

failure, single point of failure, 46–47
FAIR, 31–32
Fair Institute, 32
FedRAMP (Federal Risk and Authorization

Management Program), 218–219, 221
FIPS 140 (Federal Information Processing

Standard 140), 221–222
Azure Key Vault and managed HSM, 224
SHA-2 in .NET, 222–223

fire alls, 
Azure Firewall, 449–450
Azure Firewall Premium SKU, 450
rules, defining, 
WAF, 30

e ibility, threat modeling, 
o s

analysis, 17
control- o  analysis, 
data- o  analysis, 

OAuth2, 127, 134
authorization code  o s, 
client credential  o s, 
device code  o s, 
implicit  o s, 

  o s, 
  o s, 

supported applications, 136–137
formatting data, manipulating by

format, 280
Forrester and Gartner, threat

modeling, 89
fragmentation, containers, 383
frameworks, Azure Well-Architected

Framework, 53
rantzen,  ichael, fire alls, 

Function Cointainers, Azure, 377
functionality, banned, 12–13
fuzz testing, 274, 275–276

API, 280–283
Azure rules of engagement, 275
generating random data, 276–277
manipulating data by format, 280
mutating existing data, 277–280

G
Gamma, Erich, design patterns, 51
gate tools, quality, 20
GDPR (General Data Protection Regulation),

216–217
Geo-Redundant Storage (GRS), 47
Geo-Zone-Redundant Storage (GZRS), 47
get operations, 291–299
GitHub

Azure Policy, 189
deployment agents, 441
main branch (trunk) security, 438–439
PROD deployments, 439–440
public repos, 441
service principal secrets, 438
trunk (main branch) security, 438–439

golden rules, 394
governance

ASB, 202
asset management, 204
automating deployments, 206
Azure Initiatives, 210
Azure Policy, 209

assigning policies, 211–212
effects, 210
effects, enforcing by environment, 210–211
policy as code, 212

Azure Portal, 208–209
backups, 205
compliance state, reviewing, 208–209
data protection, 203–204
data recovery, 205
developers, 201
DevOps, 205
documentation, 206
endpoint security, 205
enforcement, 206
identity management, 203
incident response plans, 204
logging, 204
Microsoft DFC, 207, 208
network security, 202

483

identity

posture management, 204–205
privileged access, 203
RBAC, 206, 210–211
Secure Score, 207–208
security education, 206
strategies, 205
vulnerability management, 204–205

grant  o s. See  o s
Greek question mark, determining correctness

by verifying data, 251–252
grouping actions, Log Analytics workspaces,

185–186
groups, role assignments, 58–59
GRS (Geo-Redundant Storage), 47
GUID, version numbers, 324
guidance, threat modeling, 91
GZRS (Geo-Zone-Redundant Storage), 47

H
hacks, reasons for, 171–172
hardware root of trust, 359
hashes in coding, 341
Health Information Trust (HITRUST), 216
Health Insurance Portability and Accountability

Act (HIPPA), 215–216
Helm, Richard, design patterns, 51
HIPPA (Health Insurance Portability and

Accountability Act), 215–216
HITRUST (Health Information Trust), 216
honey keys, 303
HoneyPi, 171
honeypots, 171
hosting, applications, 133
hosts

dedicated hosts, 27
E@H, 336–337

HSM (Hierarchical Storage Management)
Azure Key Vault

Dedicated HSM, 309
FIPS 140, 224

Managed HSM, 308–311
Payment HSM, 309

security domains, 309–311
HTML (Hypertext Markup Language),

determining correctness, verifying data, 251
HTTP (Hypertext Transfer Protocol),

AppServiceHTTPLogs, 173
hubs, 447
Hyper-V, bounty programs, 40–41

I
IaaS (Infrastructure as a Service), 24–27

containers, 376
SQL Server IaaS Agent, 411
TLS, 350

IaC (Infrastructure as Code), 443
ID tokens, 138
identification failures, 
identifying threats, 108–109, 113–115
identity, 123–124

of attackers, secure coding, 240–241
centralized identity providers,

authentication, 54–55
compound identities, 299
defined, 
DevOps, 438
Entra, 130
isolating identity perimeters, 60–61
managing

governance, 203
identities, 64–66, 403, 407–408

modern identity, access management, 125
NIN, 426–429
OAuth2, 125–129, 134, 146–150

application registration, 129
authorization servers, 134
clients, 134, 137–138
consent, 139–140
debugging, 132–133
o s,  , 

484

identity

JWT, 142–146
permissions, 138–140
resource owners, 127
resource servers, 134
roles, 134
scopes, 141
tokens, 138
tokens as credentials, 128
users vs. clients, 131
validation, 143–146

OpenID Connect, 125–129, 132–133
PIM, 28, 168
providers, 134
SSN, 426–429

images, containers, 385
immaturity, containers, 383
immutable storage, 410–411
implicit  o s, 
incident response plans, 18, 204
incremental consent, 140
information

disclosure attacks, 391
sensitive information, management

patterns, 69
Infrastructure as a Service (IaaS)

containers, 376
SQL Server IaaS Agent, 411
TLS, 350

Infrastructure as Code (IaC), 443
ingress/egress controls, 449, 457
Initiatives, Azure, 210
injection, 258
inline scripts/styles, 260–263
input, all input is evil, 238–239
insecure coding, 237
insecure design, 259
integration

CI/CD
defined, 
deployment agents, 440–441
developers, specialized security, 436–437
main branch (trunk) security, 438–439
PR approvals, 437

PROD deployments, 439–440
SCA tools, 436
secrets and service connections, 438
separation of duties, 437–438
source control systems, 436
supply chain attacks, 436
tools (overview), 435–436
trunk (main branch) security, 438–439

threat modeling, 91
Intel

SGX, 361–362, 363–364
TME-MK, 363–364

intentional security monitoring/auditing, 190
interception, likelihood of, 70–71
International Organization for Standardization/

International Electrotechnical Commission
(ISO/IEC)
ISO/IEC 27001, 225–226
ISO/IEC 27034, 226

Internet
CIS Benchmarks, 80–81
isolating networks, 59–60

Internet Protocol version 6 (IPv6), 445
Investment (ROI), Return on, threat modeling, 88
IPv4 (Internet Protocol version 4), 445

addresses, 445–446
concepts, 445
routing, 446
UDR, 446

IPv6 (Internet Protocol version 6), 445
ISO/IEC (International Organization

for Standardization/International
Electrotechnical Commission)
ISO/IEC 27001, 225–226
ISO/IEC 27034, 226

isolating
identity perimeters, 60–61
memory, 360
networks, 59–60, 420–421
networks

Azure Key Vault, 304–305
control (management) plane, 401–402, 414
data plane, 405–406

485

Kusto Query Language (KQL) queries

J
Johnson, Ralph, design patterns, 51
just-in-time administration, 56–58
JWT (JSON Web Tokens), 142–146

K
K8s (Kubernetes), 373–375
amara,  eny, fire alls, 

KEK (Key Encryption Keys), 329, 338
Kerckhoff’s Principle, 44
erschbaum,  lorian, fire alls, 

Key Vault, Azure, 66–69, 76, 288
access control, 288–290, 301
auditing, 301–303
backups, 306–307
break-glass accounts, 298
“bring your own key” strategy, 301
certificates, 
compound identities, 299
contributor permissions, 297
customer-managed keys, 306
elliptic-curve keys, 301
encrypting operations, 290
FIPS 140 and managed HSM, 224
get operations, 291–299
honey keys, 303
HSM

Dedicated HSM, 309
Managed HSM, 308–311
Payment HSM, 309

keys, 288, 301
logging, 301–303
Microsoft Defender, 306
network isolation, 304–305
permission models

selecting, 295
switching, 292

Premium edition, 299–301
RBAC, 291–299
restoring key versions, 307–308
rotating keys, 339–341

RSA, 301
secrets, 288
secure keys, 312
Standard edition, 299–300
templates, 300
verifying operations, 290
wrapping operations, 290

keys
agreements, 344
authentication keys, 338
Azure Key Vault. See separate entry
Azure Storage Keys, 107
breaking, cost of, 350–351
“bring your own key” strategy, 301
BYOK, 73–74
certificates, 
CMK, 186–187, 204, 330
cryptography, defined, 
customer-managed keys, 306
DEK, 329, 338
elliptic-curve keys, 301
exchanges, 344
honey keys, 303
Intel SGX, 364
Intel TME-MK, 363–364
KEK, 329, 338
PKCE, 135
PMK, SSE, 329–330
restoring key versions, 307–308
rotating, 337–341
secrets, 288
secure keys, 287, 312, 360
signing keys, 338
storage account keys, misuse of,

158–159
known bad data, rejecting, 253–255
KQL (Kusto Query Language) queries,

176–180
Kubernetes

AKS, 107, 378–380, 457
K8s, 373–375

Kuriel, Maor, Kubernetes (AKS), 107
Kusto Query Language (KQL) queries, 176–180

486

landing zones

L
landing zones, 447
launches, trusted, 360, 366–367
least common mechanism, 40–41
least privilege, principle of, 28, 41–42
LeBlanc, David, Writing Secure Code, 6
leveraging existing components, 42–43
likelihood of interception, 70–71
limiting access rights, 28–29
links, private, 454–455
Linux VM (Virtual Machines), TLS, 350–351
itchfield,  avid, determining correctness, 

Local Redundant Storage (LRS), 47
Log Analytics workspaces, Azure Monitor, 176

action groups, 185–186
alerts, raising, 181–185
audit logs, protecting, 186–188
KQL queries, 176–180

logging
allLogs, 175
AppServiceAppLogs, 173
AppServiceAuditLogs, 173
AppServiceConsoleLogs, 173
AppServiceHTTPLogs, 173
AppServiceIPSecAuditLogs, 173–174
AppServicePlatformLogs, 174
audit logs, 175, 186–188
for auditing, defined, 
Azure Key Vault, 301–303
Azure Monitor

Azure Storage, 174, 187–188
diagnostic settings, 172–175
Event Hub, 174
Log Analytics workspaces, 174, 176
Log Analytics workspaces, action groups,

185–186
Log Analytics workspaces, KQL queries,

176–180
Log Analytics workspaces, protecting

audit logs, 186–188
Log Analytics workspaces, raising alerts,

181–185
Partner Solution, 174

Azure Policy, adding audit logs, 189
Azure Sentinel, 186
category groups, 175
CMK, 186–187
costs, 189–190
crypto-shredding, 186
defined, 
for development, defined, 
failures, 269
governance, 204
intentional security monitoring/auditing, 190
KQL queries, 176–180
monitoring, defined, 
threat detection, 204
threat modeling events, 190–199

login credentials, storage, SQL Server, 398
LRS (Local Redundant Storage), 47

M
main branch (trunk) security, 438–439
malware, TEE code, 362
Managed HSM

Azure Key Vault, 308–311
security domains, 309–311

managed identities, 64–66, 403, 407–408
Managed OpenShift, 381
management (control) plane, 392, 393

auditing, 399–400, 414
authentication, 396–398, 412–413
authorization, 398–399, 413
cryptography, 400–401
network isolation, 401–402, 414

managing
access, modern identity, 125
assets, 204
identities, 64–66

governance, 203
PIM, 28

PIM, 28, 168
posture, 204–205
resource management private links, 401–402
risk, threat modeling, 101
role assignments, 164–165

487

modeling threats

secrets management patterns, 64
secure key management, 360
sensitive information, 69
Threats Manager Studio, 99–101

dashboard, 118–119
roadmaps, 115–118

VNets, 456
vulnerabilities, 204–205

manipulating data by format, 280
masking dynamic data, 408
mechanisms

economy of mechanisms, 37–38
least common mechanism, 40–41

mediation, complete, 33–34
memory

Intel TME-MK, 363–364
isolation/encryption, 360

metadata, cryptographic, 316–317
MFA (Multifactor Authentication), 152–153
micro-segmenting networks, 29
microservices, Key Vault, 68–69
Microsoft

Data Encryption SDK, 324–329
Defender, Azure Key Vault, 306
Defender for Containers, 386
Defender for Cosmos DB, 421–422
Defender for SQL, 410–411
DfrC, 207, 208
Entra, 130
MSAL, 130–132

ADAL, 131
CAE, 131
debugging tools, 132–133
ffice   documents, defined, 

SDL
attack surface analysis, 10
banned functionality, avoiding, 12–13
bug bars, defining, 
components, 5–6
CVSS, 7
defined, 
DTD bomb attacks, 13
dynamic analysis tools, 16–17
features, 5

o  analysis, 
goals, 4
incident response plans, 18
overview, 20–21
penetration testing (pentests), 19
requirements, 4, 5–6
security training, 6
static analysis tools, 13–16, 17
tasks, 5–6
tasks by sprint, 20–21
technical security debt, 19
threat modeling, 10
toolchains, defining, 

Threat Modeling Tool, 94–95
misconfigured security, 
mitigation

assumptions, 113
backlogging, 119–122
creating, 111
defining, 
mitigation identification phase, threat 

modeling, 82
Mitigations Kanbnan, 122
prioritizing, 48
threat modeling, 91

MITRE, 229–230
modeling threats, 10, 32, 79. See also attacks

analysis phase, 82
authentication, 107
automation, 91
benchmarks

Azure Security Benchmark, 80, 81
CIS Benchmarks, 80–81

CAIRIS, 93–94
compliance, 233–234
defined, 
development vs. security, 90–91
DFD, 82–85
events, 190–199
example of, 101–102
first meeting, 
second meeting, 104–107

factors of, 92–93
e ibility, 

488

modeling threats

guidance, 91
identifying threats, 108–109

automation, 113–115
severity of threats, 110

integration, 91
Microsoft Threat Modeling Tool, 94–95
mitigation, 91

assumptions, 113
backlogging, 119–122
defining, 
mitigation identification phase, 

OWASP Threat Dragon, 96–97
phases of, 81–84
pytm, 97–98
risk management, 101
roadmaps, 115–118
ROI, 88
searching for better processes, 88–89
secure coding, 239–242
security champions, 88–89
T  threat-classification, 

Threagile, 92–93, 98–99
threat identification phase, 
Threat Modeling Manifesto, 80
Threats Manager Studio, 99–101

dashboard, 118–119
roadmaps, 115–118

tools (overview), 91–92
trouble with, 86–88
validation phase, 82

modern identity, access management, 125
monitoring

allLogs, 175
AppServiceAppLogs, 173
AppServiceAuditLogs, 173
AppServiceConsoleLogs, 173
AppServiceHTTPLogs, 173
AppServiceIPSecAuditLogs, 173–174
AppServicePlatformLogs, 174
audit logs, 175, 186–188
Azure Monitor

Azure Storage, 174, 187–188
diagnostic settings, 172–175

Event Hub, 174
Log Analytics workspaces, 174, 176
Log Analytics workspaces, action groups,

185–186
Log Analytics workspaces, KQL queries,

176–180
Log Analytics workspaces, protecting

audit logs, 186–188
Log Analytics workspaces, raising alerts,

181–185
Partner Solution, 174

Azure Policy, adding audit logs, 189
Azure Sentinel, 186
category groups, 175
CMK, 186–187
costs, 189–190
crypto-shredding, 186
defined, 
failures, 269
intentional security monitoring/auditing, 190
KQL queries, 176–180
secure design, 29
threat modeling events, 190–199

MSAL (Microsoft Authentication Library),
130–132
ADAL, 131
CAE, 131
debugging tools, 132–133

Mueller III, Robert S., hacks, 172
Multifactor Authentication (MFA), 152–153
mutating existing data, 277–280

N
names, security decisions based on, 253
namespace std, 245–246
National Identity Numbers (NIN), 426–429
National Institute of Standards and

Technology (NIST)
Cybersecurity Framework, 220–221
NIST SP 800–53, 219–220, 221

National Vulnerability Database (NVD), 230
.NET code, TLS, common mistakes, 354

489

OAuth2

.NET SHA-2 and FIPS 140, 222–223
Network Security Groups (NSG), 446–447
networks

ADO SHA, 456
agents, 456–458
AKS, 457
Azure networking primer, 443–445
cluster network policies, 457–458
control (management) plane isolation,

401–402, 414
data plane isolation, 405–406
fire alls,  zure  ire all, 
isolation, 59–60, 396

Azure Key Vault, 304–305
Cosmos DB Security, 420–421

micro-segmenting networks, 29
private networking, PaaS, 451–452
security, governance, 202
segmenting

networks, 29
VNets, 447–448

VNets, 443–445
ADO SHA, 456
agents, 456–458
AKS, 457
allowed communications, 448
API Management Gateways, 451
ASG, 447
Azure Application Proxy, 451
Azure Firewall, 449–450
Azure Firewall Premium SKU, 450
Azure WAF, 450–451
cluster network policies, 457–458
CNAME, 459–460
dedicated PaaS instances, 456
DEV environments, 448
DEVINT environments, 448
DNS, 454–455
hubs, 447
ingress/egress controls, 449, 457
IPv4, 445–446
IPv6, 445
landing zones, 447

managing, 456
NONPROD environments, 448
NSG, 446–447
NVA, 449
PaaS and private networking, 451–452
private endpoints, 454–455, 457
private shared PaaS, 452–455
PROD environments, 448
SANDBOX environments, 448
segmenting, 447–448
shared app service plans, 455
spokes, 447

NIN (National Identity Numbers), 426–429
NIST (National Institute of Standards and

Technology)
Cybersecurity Framework, 220–221
NIST SP 800–53, 219–220, 221

nodes, AKS, 387
nonclass factory cryptographic algorithms,

317–320
NONPROD environments, 448
NSG (Network Security Groups), 446–447
NVA (Network Virtual Appliances), 449
NVD (National Vulnerability Database), 230

O
OAuth2, 125–129, 146–150

applications, registration, 129
authorization servers, 134
clients, 134, 137
confidential clients, 
public clients, 137

consent, 139–140
debugging, 132–133
o s,  , 
authorization code  o s, 
client credential  o s, 
device code  o s, 
implicit  o s, 

  o s, 
  o s, 

supported applications, 136–137

490

OAuth2

permissions, 138–140
application permissions, 138
delegated permissions, 138

resource owners, 127, 134
resource servers, 134
roles, 134
scopes, 141
tokens

access tokens, 138
as credentials, 128
ID tokens, 138
JWT, 142–146
validation, 143–146

users vs. clients, 131
  n- ehalf- f   o s, 

ffice   documents, defined, 
n- ehalf- f    o s, 

open design, 43–45
open source, 44–45
Open Web Application Security Project

(OWASP), 229
OpenID Connect, 125–129, 132–133
OpenShift, Managed, 381
outdated components, 264
OWASP (Open Web Application Security

Project), 229
static analysis tools, 16
Threat Dragon, 96–97
XSS, 30

owners, resource, 127, 134

P
PaaS (Platform as a Service), 24–27

dedicated PaaS instances, 456
private networking, 451–452
private shared PaaS, 452–455
TLS, 345–346

PAM (Privileged Access Management) tool,
56–57

Partner Solution, Azure Monitor, 174
passwordless authentication, 152
passwords

breaking, cost of, 350–351
ZKPP, 151

patterns
availability patterns, 74–75
design patterns, 51
security patterns

application roles, 62–64
authentication patterns, 53–55
authorization patterns, 56
availability patterns, 74–75
Azure, 51–52
Azure AD PIM, 57
Azure Well-Architected Framework, 53
BYOK, 73–74
client-side data encryption, 71–73
DoS attacks, 75–77
isolating identity perimeters, 60–61
isolating networks, 59–60
just-in-time administration, 56–58
Key Vault, 66–69, 76
likelihood of interception, 70–71
list of, 52
managed identities, 64–66
PAM tool, 56–57
RBAC, 61–62
role assignments, 58–59
secrets management patterns, 64
secure channels, 69–70
sensitive information management

patterns, 69
Patterns and Practices Initiative, 42–43
PAW (Privileged Access Workstations), 42
Payment Card Industry Data Security Standard

(PCI DSS), 217–218
Payment HSM, 309
PCI DSS (Payment Card Industry Data Security

Standard), 217–218
penetration testing (pentests), 19
Perfect Forward Secrecy (PFS), 344–345
perimeter defenses, fire alls, 
permissions

contributor permissions, 297
control plane permissions, 161

491

resource tokens

data plane permissions, 161
OAuth2, 138–140

application permissions, 138
delegated permissions, 138

permission models
selecting, 295
switching, 292

PFS (Perfect Forward Secrecy), 344–345
PIM (Privileged Identity Management), 28, 168
PKCE (Proof of Key for Code Exchange), 135
planning, incident response plans, 18
Platform as a Service (PaaS), 24–27

dedicated PaaS instances, 456
private networking, 451–452
private shared PaaS, 452–455
TLS, 345–346

PMK (Platform-Managed Keys), SSE, 329–330
pods, containers, 387–388
Policy, Azure, 209

assigning policies, 211–212
audit logs, adding, 189
effects, 210–211
policy as code, 212

policy-based authorization, 28
Ponemon Institute, 27, 31
Portal, Azure, compliance state governance,

208–209
posture management, 204–205
PR (Pull Requests), approvals, 437
primary keys, data plane authorization, 415–416
principle of least privilege, 28, 41–42
prioritizing mitigations, 48
private endpoints, 60, 454–455, 457
private links, 454–455
private networking, PaaS, 451–452
private shared PaaS, 452–455
privileged access, 203
Privileged Access Management (PAM) tool, 56–57
Privileged Access Workstations (PAW), 42
Privileged Identity Management (PIM), 28, 168
privileges

elevation of privileges attacks, 391
principle of least privilege, 28

processors, confidential computing, 
PROD

deployments, 439–440
environments, 448

Proof of Key for Code Exchange (PKCE), 135
psychological acceptability, 45
public clients, 137
public repos, GitHub, 441
Pull Requests (PR), approvals, 437
pytm, threat modeling, 97–98

Q
quality gate tools, 20
quality versus security, 4–5
queries, KQL, 176–180
question mark (Greek), determining correctness

by verifying data, 251–252

R
random data, fuzz testing, 276–277
RBAC (Role-Based Access Control), 61–62,

163–164, 206, 210–211, 291–299, 416–419
Reagan, U.S. President Ronald, verifying

data, 242
reconnaissance attacks, 171
recovery, governance, 205
reducing attack surfaces, 32–33
redundancy levels, Azure storage, 47
Reed, Brian, threat modeling, 89
refresh tokens, 138
registration, OAuth2 applications, 129
rejecting known bad data, 253–255
remote attestation, 360, 364–366, 431
repudiation attacks, 391
requests, SSRF, 269–270
residual risk, 37
resource management private links, 401–402
Resource Owner Password Credentials (ROPC)

o s, 
resource owners, 127, 134
resource servers, 134

492

rest

resource tokens, data plane authorization,
Cosmos DB Security, 416

rest, data at, 406–407
REST API security, 282–283
restoring, key versions, 307–308
Return on Investment (ROI), threat modeling, 88
reviewing compliance state, governance, 208–209
revocation checking, 266
Richer, Justin, OAuth2, 129
risk

acceptance, PCI DSS, 218
assessments, bug bars, defining, 
managing, threat modeling, 101
programs/compliance, 232–233

ASB, 227–228
ATT&CK, 231
CAPEC, 231
CIS benchmarks, 226–227
CVE, 230
CWE, 231
defined, 
FedRAMP, 218–219, 221
FIPS 140, 221–224
GDPR, 216–217
HIPPA, 215–216
HITRUST, 216
ISO/IEC 27001, 225–226
ISO/IEC 27034, 226
MITRE, 229–230
NIST Cybersecurity Framework, 220–221
NIST SP 800–53, 219–220, 221
NVD, 230
OWASP, 229
PCI DSS, 217–218
SOC, 224–225
threat modeling, 233–234

residual risk, 37
RiskLens, 32
roadmaps, 115–118
ROI (Return on Investment), threat modeling, 88
Role-Based Access Control (RBAC), 61–62,

163–164, 206, 210–211, 291–299, 416–419

roles
AD roles, 162–164
applications, 62–64
assigning

best practices, 167–168
Blueprints, 167
denying assignments, 167
managing assignments, 164–165

Blueprints, 167
custom definitions, 
group assignments, 58–59
OAuth2, 134

root of trust, hardware, 359
ROPC (Resource Owner Password Credentials)

o s, 
rotating keys, 337–341
routing

IPv4, 446
UDR, 446

RSA algorithm, 301, 353
rules

Azure rules of engagement, 275
fire alls, defining, 

S
SaaS (Software as a Service), 24–27
SAFECode, threat modeling, 89
Saltzer, Jerome

Azure security design principles, 32
complete mediation, 33–34
economy of mechanisms, 37–38
fail-safe defaults, 38–40
leveraging existing components, 42–43
open design, 43–44
psychological acceptability, 45

SAML (Security Assertion Markup Language), 129
SANDBOX environments, 448
Sanso, Antonio, OAuth2, 129
SAS (Shared Access Signature) tokens, 158
saving KQL queries, 180

493

secure coding

SCA (Software Component Analysis) tools,
CI/CD, 436

scanning, secure design, 29
Schoenfeld, Brook S. E., threat modeling, 81
Schroeder, Michael

Azure security design principles, 32
complete mediation, 33–34
economy of mechanisms, 37–38
fail-safe defaults, 38–40
leveraging existing components, 42–43
open design, 43–44
psychological acceptability, 45

chultz,  ugene, fire alls, 
scopes

AD scopes, 162
OAuth2, 141

scoring vulnerabilities (CVSS), 7
scripting

inline scripts/styles, 260–263
XSS, 30

SDL (Security Development Lifestyle)
attack surface analysis, 10
banned functionality, avoiding, 12–13
bug bars, defining, 
components, 5–6
CVSS, 7
defined, 
DTD bomb attacks, 13
dynamic analysis tools, 16–17
features, 5
o  analysis, 
control- o  analysis, 
data- o  analysis, 

goals, 4
incident response plans, 18
overview, 20–21
penetration testing (pentests), 19
requirements, 4, 5–6
security training, 6
static analysis tools, 13–16, 17
tasks, 5–6
tasks by sprint, 20–21
technical security debt, 19

threat modeling, 10
toolchains, defining, 

SecOps (Security Ops), 125
secrets, keys, cryptography, 288
secrets and service connections, CI/CD, 438
secrets management patterns, 64
secure channels, 69–70
secure coding

all input is evil, 238–239
attackers

identity of, 240–241
what attackers control, 241–242

C programming language, 270–271
C++ programming language, 270–271
fuzz testing, 274, 275–276

API, 280–283
Azure rules of engagement, 275
generating random data, 276–277
manipulating data by format, 280
mutating existing data, 277–280

hashes in coding, 341
insecure coding, 237
reviewing, 273–274
revocation checking, 266
threat modeling, 239–242
use analysis tools, 271–273
verifying data, 242

determining correctness, 243–253
encoding data, 256
rejecting known bad data, 253–255

vulnerabilities, 256–257
authentication failures, 264–266
broken access control, 257
checking signatures, 268
cryptography failures, 257–258
data integrity failures, 266–269
debugging security headers, 264
identification failures, 
injection, 258
inline scripts/styles, 260–263
insecure design, 259
logging failures, 269
misconfigured security, 

494

secure design

monitoring failures, 269
signing binaries, 268–269
software failures, 266–269
SSRF, 269–270
vulnerable/outdated components, 264

secure design
access rights, 28–29
AD Access Reviews, 42
AD PIM, 46
assume-breach, 29
attack surface reduction, 32–33
Azure security design principles, 32
cloud computing, 23–24, 28–29
complete mediation, 33–34
Customer Lockbox, 25–26
Dedicated Hosts, 41
dedicated hosts, 27
defense in depth, 34–37
DevOps, 23–24
DMZ, 34–35
economy of mechanisms, 37–38
encrypting data in transit, 29
fail-safe defaults, 38–40
FAIR, 31–32
fire alls, 
IaaS, 24–27
least common mechanism, 40–41
leveraging existing components, 42–43
micro-segmenting networks, 29
monitoring, 29
open design, 43–45
open source, 44–45
PaaS, 24–27
PAW, 42
PIM, 28
policy-based authorization, 28
principle of least privilege, 28, 41–42
prioritizing mitigations, 48
psychological acceptability, 45
residual risk, 37
SaaS, 24–27
scanning, 29
separation of duties, 45–46
Shared Responsibility Model, 24–25

shifting left, 31
single point of failure, 46–47
SQLMap, 30
thoughts on, 31–32
WAF, 30
weakest link, 47–48
zero trust, 27–31

secure enclaves, 431
Secure Encrypted Visualization-Secure Nested

Paging (SEV-SNP), AMD, 362–363
secure keys, 287, 312, 360
Secure Score, 207–208
Secure Sockets Layer (SSL), 342
security

champions, 21, 88–89
quality versus, 4–5
technical security debt, 19
training, SDL, 6

Security Assertion Markup Language (SAML), 129
Security Baseline, Azure, 411
Security Benchmark, 80, 81
security champions, 21, 88–89
security controls, types of, 36
security domains, 309–311
security headers, debugging, 264
security misconfigurations, 
security patterns. See also design patterns

application roles, 62–64
authentication patterns, 53–55

Azure AD, 54–55
centralized identity providers, 54–55

authorization patterns, 56
availability patterns, 74–75
Azure, 51–52
Azure AD PIM, 57
Azure Well-Architected Framework, 53
BYOK, 73–74
client-side data encryption, 71–73
DoS attacks, 75–77
isolating

identity perimeters, 60–61
networks, 59–60

just-in-time administration, 56–58
Key Vault, 66–69, 76

495

SQL Server

likelihood of interception, 70–71
list of, 52
managed identities, 64–66
PAM tool, 56–57
RBAC, 61–62
role assignments, 58–59
secrets management patterns, 64
secure channels, 69–70
sensitive information management

patterns, 69
segmenting networks, 29, 447–448
selecting permission models, 295
sensitive information, management patterns, 69
Sentinel, Azure, 186, 197–199
separation of duties, 45–46, 437–438
servers

authentication, 154
authorization servers, OAuth2, 134
encryption

CMK, 330
PMK, 329–330

resource servers, 134
SQL Server

IaaS Agent, 411
SQL Server Always Encrypted, 73, 368

SSE, 335–336
Server-Side Encryption (SSE), 335–336
Server-Side Request Forgery (SSRF), 269–270
service plans, shared app, 455
services

AKS, 107
App Services, 47
Azure container services, 375–376
container service security

deployments, 384–385
development, 384–385
overview, 383–384

DoS attacks, security patterns, 75–77
IaaS, 24–27

containers, 376
TLS, 350

microservices, Key Vault, 68–69
PaaS, 24–27, 345–346
principal secrets, GitHub, 438

SaaS, 24–27
secrets and service connections, CI/CD, 438

severity of threats, identifying, 110
SEV-SNP (Secure Encrypted Visualization-

Secure Nested Paging), AMD, 362–363
SGX (Software Guard Extensions), Intel,

361–362, 363–364
SHA-2, FIPS 140 and SHA-2 in .NET, 222–223
Shared Access Signature (SAS) tokens, 158
shared app service plans, 455
Shared Responsibility Model, 24–25
shifting left, 31
Shostack, Adam, threat modeling, 81
signatures, checking, 268
signing binaries, 268–269
signing keys, 338
single point of failure, 46–47
Single Sign-On (SSO) authentication, 156–157
SMS-based authentication, 151–152
SOC (System and Organization Controls), 224–225
Social Security Numbers (SSN), 426–429
software

failures, 266–269
Intel SGX, 361–362, 363–364
SaaS, 24–27
SCA tools, CI/CD, 436

Software Guard Extensions (SGX), Intel,
361–362

source control systems, 436
specialized security, 436–437
specifying, severity of threats, 110
spokes, 447
spoofing attac s, 
SQL (Structured Query Language)

connection strings, 402
Microsoft Defender for SQL, 410–411

SQL Database, Azure, 394–395
SQL Injection, 433–434
SQL Ledger, Azure, 409–410
SQL Managed Instance, Azure, 395
SQL Server

database security, 394, 395
auditing, 395
authentication, 395

496

SQL Server

authorization, 395
Azure SQL Database, 394–395
Azure SQL Managed Instance, 395
cryptography, 395–396
network isolation, 396

IaaS Agent, 411
login credentials, storage, 398

SQL Server Always Encrypted, 73, 368
SQLi (SQL injection), 258
SQLMap, 30
SSE (Server-Side Encryption), 335–336
SSH (Secure Shell), unsecured, 357
SSL (Secure Sockets Layer), 342
SSN (Social Security Numbers), 426–429
SSO (Single Sign-On) authentication,

156–157
SSRF (Server-Side Request Forgery), 269–270
static analysis tools, 13–16, 17
storage

Azure Storage, 174
cryptography, 331–335
protecting audit logs, 187–188
redundancy levels, 47

GRS, 47
GZRS, 47
HSM, Azure Key Vault

Dedicated HSM, 309
FIPS 140, 224
Managed HSM, 308–311
Payment HSM, 309

immutable storage, 410–411
login credentials, SQL Server, 398
LRS, 47
ZRS, 47

storage account keys, misuse of, 158–159
Storage Keys, 107
T  threat-classification, 

Structured Query Language. See SQL
styles, inline, 260–263
supply chain attacks, 436
switching, permission models, 292
System and Organization Controls (SOC),

224–225

T
tampering attacks, 391
Tarandach, Izar

pytm, 97
threat modeling, 81

TDE (Transparent Data Encryption), 406–407
technical security debt, 19
TEE code, 361–362
templates, Azure Key Vault, 300
testing

DAST, 16–17
fuzz testing, 274, 275–276

API, 280–283
Azure rules of engagement, 275
generating random data, 276–277
manipulating data by format, 280
mutating existing data, 277–280

penetration testing (pentests), 19
TLS, 354

Threagile, 92–93, 98–99
threat modeling, 10, 32, 79. See also threats

(separate entry)
analysis phase, 82
authentication, 107
automation, 91
benchmarks

Azure Security Benchmark, 80, 81
CIS Benchmarks, 80–81

CAIRIS, 93–94
compliance, 233–234
defined, 
development vs. security, 90–91
DFD, 82–85
events, 190–199
example of, 101–102
first meeting, 
second meeting, 104–107

factors of, 92–93
e ibility, 

guidance, 91
identifying threats, 108–109

automation, 113–115
severity of threats, 110

497

UUID

integration, 91
Microsoft Threat Modeling Tool, 94–95
mitigation, 82, 91

assumptions, 113
backlogging, 119–122
defining, 

OWASP Threat Dragon, 96–97
phases of, 81–84
pytm, 97–98
risk management, 101
roadmaps, 115–118
ROI, 88
searching for better processes, 88–89
secure coding, 239–242
security champions, 88–89
T  threat-classification, 

Threagile, 92–93, 98–99
threat identification phase, 
Threat Modeling Manifesto, 80
Threats Manager Studio, 99–101, 115–119
tools (overview), 91–92
trouble with, 86–88
validation phase, 82

threats
detection, logging, 204
DoS attacks, 391
elevation of privileges attacks, 391
identification,  ,  , 
information disclosure attacks, 391
monitoring. See separate threat monitoring

entry
repudiation attacks, 391
spoofing attac s, 
tampering attacks, 391

Threats Manager Studio, 99–101
dashboard, 118–119
roadmaps, 115–118

time and date validation, data verification, 
TLS (Transport Layer Security), 342

cryptographic agility, 343
debugging, 354–356
IaaS, 350
Linux VM, 350–351
.NET code, common mistakes, 354

PaaS, 345–346
testing, 354
TLS 1.3 ciphersuites, 345
versions of, 342–343
Windows VM, 352–353

TME-MK (Total Memory Encryption-Multi-Key),
Intel, 363–364

tokens
OAuth2, 128

access tokens, 138
ID tokens, 138
JWT, 142–146
validation, 143–146

SAS tokens, 158
“Too Many Requests” messages, 76
toolchains, defining, 
Total Memory Encryption-Multi-Key (TME-MK),

Intel, 363–364
training, security, 6
Transparent Data Encryption (TDE), 406–407
Transport Layer Security (TLS), 342

cryptographic agility, 343
debugging, 354–356
IaaS, 350
Linux VM, 350–351
.NET code, common mistakes, 354
PaaS, 345–346
testing, 354
TLS 1.3 ciphersuites, 345
versions of, 342–343
Windows VM, 352–353

trunk (main branch) security, 438–439
trust

boundaries, DFD, 84–85
hardware root of trust, 359
trusted launches, 360, 366–367

TrustZone, Arm, 363

U
  ser- efined  outing , 

unsecured SSH, 357
use analysis tools, 271–273
UUID, version numbers, 324

498

validation

V
validation

determining correctness, verifying data
high-level validation tools, 252
security decisions based on names, 253
validating comment fields, 
validating date and time, 247
validating open spots, 248–249
validating vaccination center ID, 246
validating vaccination type, 248

tokens, 143–146
validation phase, threat modeling, 82

variances, PCI DSS, 218
VBS (Virtualization-Based Security), 368
verifying data, 242
code verifiers, 
determining correctness, 243

error handling, 253
Greek question mark, 251–252
high-level validation tools, 252
HTML, 251
namespace std, 245–246
real-world experience, 243–245
security decisions based on names, 253
validating comment fields, 
validating date and time, 247
validating open spots, 248–249
validating vaccination center ID, 246
validating vaccination type, 248

encoding data, 256
operations, Azure Key Vault, 290
rejecting known bad data, determining

correctness, 253–255
version numbers

cryptographic agility, 320–322
GUID, 324
UUID, 324

Virtual Machine Scale Set (VMSS) agents, 440
Virtual Nets (VNets), 443–445

ADO SHA, 456
agents, 456–458
AKS, 457
allowed communications, 448

API Management Gateways, 451
ASG, 447
Azure Application Proxy, 451
Azure Firewall, 449–450
Azure Firewall Premium SKU, 450
Azure WAF, 450–451
cluster network policies, 457–458
CNAME, 459–460
DEV environments, 448
DEVINT environments, 448
DNS, 454–455
hubs, 447
ingress/egress controls, 449, 457
IPv4, 445

addresses, 445–446
concepts, 445
routing, 446
UDR, 445

IPv6, 445
landing zones, 447
managing, 456
NONPROD environments, 448
NSG, 446–447
NVA, 449
PaaS

dedicated PaaS instances, 456
private networking, 451–452
private shared PaaS, 452–455

private endpoints, 454–455, 457
PROD environments, 448
SANDBOX environments, 448
segmenting, 447–448
shared app service plans, 455
spokes, 447

Virtualization-Based Security (VBS), 368
Vlisside, John, design patterns, 51
VM (Virtual Machines)

Azure VM
cryptography, 335–337
Intel SGX, 361–362, 363–364
Intel SGX, keys, 364
SEV-SNP, 362–363
trusted launches, 366–367

DCsv3 VM, 363–364

499

ZRS (Zone-Redundant Storage)

managed identities, 403
TLS

Linux VM, 350–351
Windows VM, 352–353

VMSS (Virtual Machine Scale Set) agents, 440
VNets (Virtual Nets), 443–445

ADO SHA, 456
agents, 456–458
AKS, 457
allowed communications, 448
API Management Gateways, 451
ASG, 447
Azure Application Proxy, 451
Azure Firewall, 449–450
Azure Firewall Premium SKU, 450
Azure WAF, 450–451
cluster network policies, 457–458
CNAME, 459–460
DEV environments, 448
DEVINT environments, 448
DNS, 454–455
hubs, 447
ingress/egress controls, 449, 457
IPv4, 445

addresses, 445–446
concepts, 445
routing, 446
UDR, 446

IPv6, 445
landing zones, 447
managing, 456
NONPROD environments, 448
NSG, 446–447
NVA, 449
PaaS

dedicated PaaS instances, 456
private networking, 451–452
private shared PaaS, 452–455

private endpoints, 454–455, 457
PROD environments, 448
SANDBOX environments, 448
segmenting, 447–448
shared app service plans, 455
spokes, 447

vulnerabilities, 256–257
authentication failures, 264–266
binaries, signing, 268–269
broken access control, 257
components, 264
cryptography failures, 257–258
CVE, 230
CVSS, 230
data integrity failures, 266–269
debugging security headers, 264
identification failures, 
injection, 258
inline scripts/styles, 260–263
insecure design, 259
logging failures, 269
managing, 204–205
misconfigured security, 
monitoring failures, 269
NVD, 230
scoring (CVSS), 7
signatures, checking, 268
software failures, 266–269
SSRF, 269–270
vulnerable/outdated components, 264

W
WAF (Web Application Firewalls), 30, 450–451
weakest link, 47–48
Well-Architected Framework, Azure, 53
Wikipedia, DMZ, 34
Windows VM, TLS, 352–353
Wireshark, debugging TLS, 355–356
workstations, PAW, 42
wrapping operations, Azure Key Vault, 290
Writing Secure Code, 6

X - Y - Z
XSS (Cross-Site Scripting), 30, 258

zero trust, 27–31
ZKPP (Zero-Knowledge Password Proof), 151
ZRS (Zone-Redundant Storage), 47

	Cover
	Title Page
	Copyright Page
	Contents at a glance
	Contents
	Acknowledgments
	Foreword
	About the Authors
	Introduction
	Chapter 3 Security patterns
	What is a pattern?
	Our take on Azure security patterns
	Authentication pattern
	Use a centralized identity provider for authentication

	Authorization patterns
	Adopt just-in-time administration
	Assign roles to groups
	Isolate from the internet
	Isolate with an identity perimeter
	Use role-based access control (RBAC)

	Secrets management patterns
	Use managed identities
	Protect secrets with Azure Key Vault

	Sensitive information management patterns
	Create secure channels
	Encrypt data client-side
	Use bring your own key (BYOK)

	Availability pattern
	Design for denial of service

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

