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Foreword

In the last decade we have witnessed a dramatic shift in the way organizations have 
harnessed technology to completely reinvent and transform how they do business.  
Recent global challenges and unpredictable far-reaching events have only accelerated 
that change, and organizations have had to pivot and adapt to meet their customer and 
employee needs and ensure business resilience. 

This digital transformation has been made possible in part by technology advance-
ments and hyperscale cloud providers like Microsoft Azure that provide organizations 
ith the agility to realize ne  efficiencies and capabilities.   o ever, as  e continue 

through this era of unprecedented transformation, including migration to the cloud, we 
are also experiencing new threats and requirements to ensure security and privacy. 

hen people thin  of security, they often thin  of endpoint protection, fire alls, and 
anti-malware tools, which are critically important, but architects and developers can’t 
ignore application security during design and development.  This book — Designing 
and Developing Secure Azure Solutions — is a necessary resource to understanding the 
essential elements of end-to-end secure software design and development on Azure. 
It addresses two areas I care about deeply – the security of Azure and software 
development.

The  icrosoft  loud has many reliability and security benefits compared to on-prem-
ises solutions, but architects and developers cannot ignore fundamental security practices 
when they deploy on Azure.  Cloud-based solutions have a shared responsibility model, 
and some of the security onus is on the tenant as well as the cloud provider.  Designing and 
Developing Secure Azure Solutions provides a holistic and approachable resource for any-
one building secure workloads running on Azure.  Readers working on Azure solutions will 
gain a contemporary understanding of secure development, design, and implementation.

The authors Michael, Heinrich, and Simone have decades of application security 
experience between them.  They have worked with governments and companies — large 
and small — enabling each to design, develop, deploy, and manage secured solutions on 
Azure.  I know the authors to be dedicated to helping anyone designing and developing 
on Azure achieve the reliability, scalability, and security demanded by their organizations 
and end users.

This book is an essential guide for every architect and developer deploying secure, 
business-critical solutions on Azure.

Scott Guthrie
Executive Vice President 

Cloud + AI Group, Microsoft
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Introduction

In mid-2021, during a recording of the Azure Security Podcast, Azure security expert 
and author Yuri Diogenes asked Michael if he planned to write an update to his book, 
The Security Development Lifecycle. Without hesitation, Michael responded, “No!”

But that wasn’t the end of the matter.

The question Yuri asked planted a seed. Over the next few weeks, the three of us—
Michael, Heinrich, and Simone—assembled a plan to write this book. Between us, we 
have worked with hundreds of customers to help them deploy business-critical solutions 
on  zure  ith confidence. This boo  is the culmination of that real- orld e perience.

The reason we wrote this book was not only to help you understand how to design 
and develop secure solutions running on Azure but to offer you pragmatic advice. The 
enn diagram sho n in  igure  -  re ects ho   e see this boo .

This
Book

Azure

Real-Word
Experience

Secure Desig
n

Se
cu

re So
�ware

Deve
lopment

FIGURE I-1 The Intersection of this book’s areas of coverage.

We do not cover some areas within Azure; otherwise, this book would be quite a 
tome. Most notably, we do not cover topics such as the following:

■ Privileged access workstations (PAWs) A PAW is a workstation designed for 
administrative tasks only. It does not have access to email, general web browsing, 
and other productivity tasks. PAWs are used by elevated accounts to perform 
actions in high-risk environments, such as production, account administration, 
and more. You can learn more about PAWs here: https://azsec.tech/irb.

https://azsec.tech/irb
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■ Conditional access and multifactor authentication (MFA) These are often 
handled by an identity team, and the infrastructure should already be in place. 
With that said, conditional access and MFA are critical to securing an Azure-
based solution. Learn more here: https://azsec.tech/59d.

■ Privacy This is a book on security. Although security and privacy do overlap, 
security is mainly about fortifying a system and its data against unauthorized 
use, while privacy is about handling personal data. You can have security without 
privacy, but you cannot have privacy without security.

We’ve kept things relatively brief by including lots of links to outside information 
rather than covering some topics in depth in this book.

Organization of this book

This book is not designed to be read from cover to cover. You can do that, of course, 
but we have tried to make the chapters as independent as possible so they can be read 
individually. With that said, there are cross-references between chapters, and you might 
sometimes need to read a section of a different chapter to get the big picture.

The book also covers multiple ways to achieve a task, such as the following:

■ Using the Azure Portal (although it’s not common to use the Azure Portal in 
production systems because deploying in the real world usually uses a pipeline to 
push resources)

■ Using the Azure command-line Interface (CLI) 

■ Using PowerShell code

■ Using more complete code examples in different languages such as C#, Python, 
JavaScript, and more

Tip We have uploaded code samples and snippets to our GitHub repository at 
https://github.com/AzureDevSecurityBook/, so please make a point of visiting 
regularly.

https://azsec.tech/59d
https://github.com/AzureDevSecurityBook/
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Who should read this book

Just who is this book for? It’s for anyone deploying solutions on Azure—whether 
they’re architects, developers, or testers—who might not know a great deal about 
security but who want to make sure their design and code are as secure as possible. 
We cover a lot of ground in the book, but we also cover many complex topics in depth.

ne final point  if you use the  T  ybersecurity  rame or   T  , then you re 
familiar with its core components: identify, protect, detect, respond, and recover. The 
material in this book focuses primarily on the protect component and some aspects 
of the detect component. Rolling out industry-grade solutions on Azure requires your 
organization to cover the other four components of the NIST CSF. You can read more 
about the NIST CSF in Chapter 8, “Compliance and risk programs,” and on the NIST 
website, at https://azsec.tech/81t.

Thanks for reading!

Conventions and features in this book

This book presents information using conventions designed to make the information 
readable and easy to follow:

■ Boxed elements with labels such as “Note” provide additional information

■ Text that you type (apart from code blocks) appears in bold

■ A plus sign (+) between two key names means that you must press those keys at 
the same time. For example, “Press Alt+Tab” means that you hold down the Alt 
key while you press the Tab key

■ A vertical bar between two or more menu items (e.g. File | Close), means that you 
should select the first menu or menu item, then the ne t, and so on

System requirements

Examples and scenarios in the book require access to a Microsoft Azure subscription and 
a computer that can connect to Azure. You can learn more about a trial subscription at 
this site: 

azure.microsoft.com/en-us/free



GitHub Repo

The book's GitHub repository includes sample code and code snippets, and the authors 
will update this over time. The repo is github.com/AzureDevSecurityBook/. 

The download content will also be available on the book's product page: 
MicrosoftPressStore.com/SecureAzureSolutions/downloads

Errata, updates, & book support

We’ve made every effort to ensure the accuracy of this book and its companion content. 
You can access updates to this book—in the form of a list of submitted errata and their 
related corrections—at:  

MicrosoftPressStore.com/SecureAzureSolutions/errata 

If you discover an error that is not already listed, please submit it to us at the same 
page.

For additional book support and information, please visit MicrosoftPressStore.com/
Support.

Please note that product support for Microsoft software and hardware is not offered 
through the previous addresses. For help with Microsoft software or hardware, go to 
support.microsoft.com.

Stay in touch

Let’s keep the conversation going! We’re on Twitter: twitter.com/MicrosoftPress

xxviii  Introduction

http://github.com/AzureDevSecurityBook/
http://MicrosoftPressStore.com/SecureAzureSolutions/downloads
http://MicrosoftPressStore.com/SecureAzureSolutions/errata
http://MicrosoftPressStore.com/
http://support.microsoft.com
http://twitter.com/MicrosoftPress
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C H A P T E R  3

Security patterns

After completing this chapter, you will be able to:

■ Adopt the proposed patterns to improve how you securely design your solutions.

■ Identify even more Azure security patterns, further improving your understanding of Azure.

What is a pattern?

Design patterns are not new to information technology, but they still play a fundamental role. 
Design patterns were conceived by a British-American architect of Austrian origins named Christopher 
Alexander. In 1977, Alexander wrote a book about recurring solutions to common problems related to 
building physical structures.  o ever, this boo  became in uential beyond its original field.  ndeed, 
Alexander’s work inspired four computer scientists and researchers—Erich Gamma, Richard Helm, 
Ralph Johnson, and John Vlissides—to apply the same concepts to software design. The result was 
a book titled Design Patterns: Elements of Reusable Object-Oriented Software, which is still widely 
used today.

n his boo ,  hristopher  le ander defines patterns as follo s

“Each pattern describes a problem which occurs over and over again in our environment, 
and then describes the core of the solution to that problem, in such a way that you can use 
this solution a million times over, without ever doing it the same way twice.”

The point here is that patterns represent a structured approach to address common problems. They 
are a way to collect and share know-how that has consistently provided value to many disciplines, in-
cluding software design. Given that this book relates to the development of secure solutions on Azure, 
we focus here on design patterns in that context.

Our take on Azure security patterns

zure uses design patterns e tensively.  ou can find them almost every here such as  hen dealing 
with data protection at rest, implementing user authentication, and too many other scenarios to in-
clude here. Instead of reinventing the wheel, Azure adopts the same patterns and sometimes even the 
same services to provide critical capabilities and address common problems.
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It is essential to know Azure’s security patterns because they represent the best way to address 
common security problems. They may even enable you to design secure solutions without adopting 
more sophisticated approaches, like threat modeling, discussed in Chapter 4, “Threat modeling.” This 
chapter introduces some of these patterns and includes the following information about each one:

■ The name of the pattern

■ The intent of and motivation behind the pattern

■ A description of the pattern

■ Examples of the pattern’s implementation in Azure

■ Related security principles (discussed in Chapter 2, “Secure design”)

■ Related patterns

urthermore, the patterns are split into categories to simplify their identification

■ Authentication These patterns deal with the authentication of the counterparts of an inter-
action.

■ Authorization These patterns focus on controlling access to resources.

■ Secrets management These patterns deal with how the solution manages the secrets.

■ Sensitive information management These patterns focus on how to manage sensitive 
information.

■ Availability These patterns deal with ensuring that resources are accessible by legitimate 
users.

In the following pages, we describe a few patterns, sorting them by alphabetical order within each 
category. This is not an exhaustive list by any means. It simply includes some of the most common 
patterns we have seen in our practice that focus solely on solution design. This chapter does not cover 
implementation and deployment patterns, like those related to the supply chain. Considerations 
that relate to those patterns are covered elsewhere in the book, in Chapter 9, “Secure coding."
By discussing some of the most important patterns here and clearly stating why you need to adopt 
them, we aim to provide you with a consistent view.

Note For a more complete list of patterns, see https://azsec.tech/kph. 

Once you know about patterns and their importance in Azure, you might be able to identify other 
patterns in the services you use. This understanding of design decisions empowers you to design better 
solutions by adopting the same concepts and by using Azure Services correctly.

https://azsec.tech/kph
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The Azure Well-Architected Framework
Microsoft has published a set of guidelines on implementing sound architectures on Azure. These 
guidelines are available as part of the Azure Well-Architected Framework, which is available here: 
https://azsec.tech/dm8. These guidelines cover multiple aspects of implementing architectures, 
including reliability, security, cost optimization, operational e cellence, performance efficiency, 
workloads, and services. For our purposes, the section on security is the most interesting. It covers 
topics like governance, landing zones, identity and access management, and much more. Many 
concepts within the Azure Well-Architected Framework can be mapped to the design patterns 
discussed in this chapter, but it goes well beyond our scope. Therefore, our recommendation is to 
take a look at it.

Authentication pattern

Authentication is an essential property of any solution. It pertains to identifying your counterpart in a 
conversation with some certainty. 

We typically refer to the degree of certainty as the authentication strength. For example, suppose 
someone declares who they are without providing any proof. This would not be an authentication, but 
rather an identification.  f they do a little better and provide a pass ord, this  ould be  ea  authenti-
cation. Of course, you can impose restrictions to ensure an attacker cannot easily guess user passwords, 
but this has a limited effect on security.

Authentication typically involves the use of one, two, or all of the following parameters:

■ Something you know This might be a password.

■ Something you have This could be your phone or a physical token.

■ Something you are This might be biometric information.

If you base authentication only on the password—that is, something you know—you have single-
factor authorization, which can easily be compromised. To increase security, you should pair it with a 
second factor—for example, your username and password (things you know) and your phone (some-
thing you have). The idea here is that although an attacker might easily compromise any one of them, 
compromising them both at the same time would be much more challenging. Finally, you could add 
the third factor—something you are—to improve security even more. This approach is typically called 
multifactor authentication (MFA) because it relies on more than one factor.

Note Chapter 5, “Identity, authentication, and authorization,” contains more information 
about this topic.

https://azsec.tech/dm8
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Authentication does not represent a value per se, but it is instrumental in securing your application 
and data. 

This section focuses on one common pattern for securing your solution through authentication: 
using a centralized identify provider for authentication.

Use a centralized identity provider for authentication

Intent and motivation
The cloud is a convenient platform for hosting applications—so much so that you might host many ap-
plications on it, all of which require authentication. It is only natural for organizations to seek a central-
ized approach for managing identity to access all different services with a single set of credentials. This 
requirement is not only for simplicity but also to retain control and visibility.

Centralizing identity allows for the adoption of tools like user and entity behavior analytics (UEBA). 
These tools enable you to determine whether any account or system represents a potential risk for 
the organization by analyzing its behavior, often adopting artificial intelligence   algorithms able to 
identify changes in usage patterns.

Another advantage of centralized identity systems is they provide a single location for managing 
identities and grants. They also allow you to integrate identity management with HR processes—for 
example, to remove or disable a user’s account as soon as that user ceases their relationship with the 
organization. Finally, these identity systems enable you to review assigned rights and remove them 
when necessary.

Description
zure   represents a complete and unified approach to identity management on  zure.  t provides 

fundamental capabilities, like managed identities and access reviews, and can be extended with ad-
ditional services to increase security. These services include:

■ Azure AD Identity Protection This service determines which identities are at risk by analyz-
ing signals from many sources, such as threat intelligence, leaked credentials, and Microsoft 
Defender for Cloud Apps (Microsoft’s Cloud Access Service Broker, or CASB).

■ Microsoft Defender for Cloud Apps You can use this service to control and limit the adop-
tion of applications and to detect the presence of shadow IT in your organization.

■ Microsoft Defender for Endpoints This is a user and entity behavior analytics (UEBA) solu-
tion that can be integrated with Windows 10, Windows 11, and various devices.

■ Azure AD Privileged Identity Management (PIM) This service enables you to assign access 
rights when required, eventually requiring approval from a third party before executing the 
assignment.
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Azure AD also provides zero-trust security for the implementation of identities through the use 
of conditional access. This defines policies to prevent access to services by users  ho are not trusted 
enough.  or e ample, suppose  zure    dentity  rotection has identified a potential security ris  re-
lated to a particular user. It can then force that user to authenticate with MFA when accessing sensitive 
resources.

Note Azure AD is not your only option for identity management. You could use a third-
party tool instead. Indeed, there are various reasons to use a third-party identity provider. 
For example, your organization might have already adopted one for your on-premises 
environment or to support different clouds, like AWS or GCP.

Examples
■ Adopt conditional access to require MFA for privileged users such as the solution administra-

tors.

■ se  zure   to define custom application roles to control ho  the solution is used.  ou can 
find out more about these here  https://azsec.tech/0g6.

■ Although some services—like Azure SQL Database, SQL Managed Instances, Cosmos DB, and 
Azure Storage—provide different ways to authenticate, including using Azure AD credentials, 
you should use Azure AD credentials whenever possible, because they can be better controlled 
from a central location. Using Azure AD credentials also enables the adoption of the whole set 
of capabilities offered to secure these identities.

Related security principles
■ Zero trust

■ Complete mediation

■ Defense in depth

■ Economy of mechanisms

■ Least privilege

■ Leveraging existing components

Related patterns
■ Adopt just-in-time administration

■ Use role-based access control (RBAC)

■ Use managed identities

https://azsec.tech/0g6
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Authorization patterns

Authorization is another fundamental property of any secure solution. It comes after authentication. 
Authorization focuses on allowing users to perform actions they are entitled to perform and on pre-
venting them from performing actions they are not entitled to perform. This section focuses on some 
common patterns for securing your solution through authorization.

We mentioned that authentication does not represent a value per se, but it is instrumental in secur-
ing your application and data. The same applies to authorization.

Adopt just-in-time administration

Intent and motivation
Accounts are not all equal. Some have considerable privileges assigned to them, making them a juicy 
target for malicious actors. For example, highly privileged administrators, like those assigned the roles 
of  lobal  dministrator or  ser  dministrator, are po erful, and it  ould cause significant damage to 
the organization if their user accounts were abused. For this reason, the most common recommenda-
tion is to apply the principle of least privilege by assigning the various roles only to those users who 
require them for a legitimate business reason and only when there is no other alternative that would 
allow for the assignment of fewer rights. For example, suppose one user needs to read security reports 
because she works on the security team. In that case, you should assign her the Security Reader role 
instead of Secure Administrator or Global Administrator.

This approach is a critical best practice, so there is a good chance your organization already applies 
it.  till, too many organizations struggle to adopt this approach due to the many roles defined in  zure 
AD and Azure Services. That is to say, sometimes the “best” role for a user—the one that most closely 
meets that user’s needs—is not the most secure one. This pattern ensures that no unnecessary rights 
are assigned that could be exploited by an attacker or a malicious insider. Still, the rights that are as-
signed could be enough to cause significant losses. 

A study by IBM Security and ObserveIT, published in 2020, found that the average cost of a security 
breach caused by an insider was $11.45 million. The study also found that, on average, the companies 
interviewed during the course of the study experienced 3.2 such incidents per year. Finally, the study 
determined that it’s possible to reduce these losses by about $ 3 million by adopting a privileged ac-
cess management (PAM) tool. 

Note You can download the study mentioned here from https://azsec.tech/56t. For a dis-
cussion of the study, see https://azsec.tech/au8. 

The idea behind PAM tools is that users do not need privileges 24×7. Rather, they need them for 
only a limited time. So, a privileged account represents a potential risk only when someone uses it to 

https://azsec.tech/56t.For
https://azsec.tech/au8
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perform necessary actions. Outside that period, a PAM tool can revoke the rights, such that the user in 
question has no assigned privileges. PAM tools also deter malicious use because they require users to 
specify a business reason to obtain a particular privilege. They can also be used to require the approval 
for a third party to assign a particular right, in accordance with the separation of duties principle.

Description
Azure AD PIM is the primary tool within Azure for just-in-time administration. This tool extends how 
you assign roles to users or groups.  ith plain  zure  , you assign roles globally or  ithin a specific 
context, depending on the scope of the role. The role is then assigned forever. With Azure AD PIM, you 
can mark a role as eligible and then assign policies to that role. An eligible role remains dormant until 
it is activated. Activation can be subject to approval and could require additional authentication with 

 as  ell as the specification of a business reason.  ctivation can also be temporary and automati-
cally removed after a set time.

Tip Azure AD PIM is not something you implement for the purposes of application de-
velopment. It is part of a broader initiative that is typically the responsibility of those who 
manage your Azure AD tenant. If you decide you need Azure AD PIM to limit the exposure 
of privileged accounts for your application, you might want to ask the owners of the tenant 
to adopt it.  f your organization has already adopted it, you can as  to define the rules you 
require for your application.

Example
Sometimes developers need access to production data to troubleshoot problems. While this is under-
standable, you should try to avoid it. That being said, in an emergency, you might not be able to avoid 
this, as developers will need to access this data to quickly identify a solution. The best way to handle 
these types of situations is to plan for them.  n this effort,  zure     may play a significant role by 
enabling you to define an authorization process that requires a valid reason and approval by a third 
party.

Related security principles
■ Attack surface reduction

■ Defense in depth

■ Least privilege

■ Leveraging existing components

■ Separation of duties
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Related patterns
■ Use a centralized identity provider for authentication

■ Use role-based access control (RBAC)

Assign roles to groups

Intent and motivation
Let’s face it: determining what access rights are required is not always a trivial matter. In many cases, 
identifying the right blend of rights is a matter of trial and error. It’s very tempting to assign full rights 
and call it a day!

This behavior is a consequence of many factors, not least of which is the number of built-in roles 
provided with Azure. There are currently more than 80 built-in roles for Azure AD and more than 240 
built-in roles for  zure services   o  onder it is so difficult to find the right roles to assign.

Still, it is imperative to identify a feasible approach to guarantee that users are assigned the most 
limited rights possible. Focusing on feasibility might be the difference between having an academic 
requirement and effectively making a difference.

Description
The critical point here is to apply least privilege  ithout sacrificing manageability.  ne  ay to achieve 
this is by using groups. The idea is to define  hatever usage scenarios you need and then create groups 
to support them. Once that’s done, you can assign the required roles to each group and then assign 
users to groups as needed.

This approach is helpful for two reasons:

■ It minimizes management because it aligns groups according to how the organization works.

■ It enables you to minimize the number of role assignments. This is essential because 
Azure restricts you to 2,000 role assignments per subscription. For more on this, see 
https://azsec.tech/ad8.

Common exceptions to this rule are service principals and managed identities, which are typically 
assigned the required roles directly.

Tip Designing a suitable authorization model is a matter of business requirements, which 
must be agreed upon in advance among business, architecture, and operations stakehold-
ers, per the organization’s current policies and with requirements from security and opera-
tion. Many aspects are common to all projects, but the details will depend on your solution.

https://azsec.tech/ad8
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Example
If you have a data lake, you might want to guarantee different levels of visibility, depending on your area. 
You can address this requirement by assigning the required permissions. The easiest way to do this is to 
define a group for each category of users li e  , research, and mar eting and then assign the required 
rights to various branches in the data lake, based on the desired visibility. You can even reuse the same 
groups for many applications simply by assigning additional rights to them when required.

Related security principles
■ Least privilege

Related patterns
■ Use a centralized identity provider for authentication

■ Use role-based access control (RBAC)

Isolate from the internet

Intent and motivation
Chapter 2 showed that zero trust has been designed to address the many shortcomings of walled-in 
defenses. For example, suppose that for your security, you rely only on controls blocking external users 
from accessing the internals of your solution. In that case, you could be compromised as soon as some-
one figures out ho  to circumvent your layer of protection.

So, the answer would be to not rely on fire alls and similar protections, right   rong  The defense-
in-depth principle states that every single control you can put in place can be circumvented. This 
principle doesn’t imply, however, that you should give up your hopes of protecting your solution or 
that you should ditch controls li e fire alls because they can t fully protect you on their o n.  t simply 
means that you need to integrate them with other controls to make your solution more secure. The 
bottom line is that net or  isolation still plays a significant role in  zure.

Description
o, ho  can you protect your solution using net or  defenses  The first step is to identify the parts 

of your solution that you must expose to the internet, as well as the parts of your solution that must 
remain internal. Then, you need to focus on these parts that should not be exposed to ensure that no 
unauthorized entities can reach them from the internet.

There are a couple of ways to achieve that:

■ Define firewall rules ost services can define fire all rules.  nce these rules are defined, 
you can use them to block access from the internet. This approach is simple and requires mini-
mal configuration.  ut it has a do nside  your resource or service is e posed.  n other  ords, 
the fire all rules bloc ing un anted traffic are your only protection against e ternal malicious 
actors.
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■ Define private endpoints s  ith fire all rules, most services can define private endpoints. 
With private endpoints, there is no exposure over the internet, because the endpoint gets a 
private   address.  ou can then connect to the private endpoint using private lin s.  onfigur-
ing private endpoints and private lin s requires more  or  than configuring fire all rules, but it 
is more secure.

Note Chapter 15, “Network security,” includes additional information and details on imple-
menting this pattern and on networking in general.

Examples
■ If you have a web application or a web API that is internal to your organization and you do not 

want to expose it on the internet, you can host it with App Service Environment (ASE). An ASE 
is a high-performance isolated environment to host your web applications and APIs. ASE is the 
only way to deploy web applications and APIs based on App Service to a VNet.

■ ou can configure  zure    ith fire all rules to prevent direct access from the internet as a 
hole but still allo  access from specific   addresses.  f you instead  ant to prevent all access 

from the internet, you might want to use a private endpoint.

Related security principles
■ Attack surface reduction

■ Defense in depth

Related patterns
■ Create secure channels

■ Isolate with an identity perimeter

Isolate with an identity perimeter

Intent and motivation
You learned from the preceding pattern, isolate from the internet, that network isolation is a key miti-
gation that you should not disregard. The same goes for identity. Both should be applied simultane-
ously, per the defense-in-depth principle.

Note This pattern is specular and complementary to the previous one.
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Description
Identity can represent a perimeter that a user must cross to access protected resources. In this way, it is 
similar to net or ing.  ith net or ing, you can use rules to allo  specific   addresses to access your 
solution but not others. Similarly, you can use identity authentication and authorization to control who 
can access your resources and what they can do with them.

These approaches are both different and complementary, providing different capabilities due to 
their respective limitations.  or e ample,  ith   filtering, you can allo  requests from specific geog-
raphies or buildings and deny everything else.  ith authentication and authorization, you can define 
rules for a specific user or account and establish its rights  ith regard to your solution or its compo-
nents.

Example
Azure Front Door, App Gateway, and API Management Gateway are three network virtual appliances 

s  that you can configure to provide net or  perimeter defenses via private net or ing. The 
private networking approach is often considered enough for many solutions, but is that really so? As 
usual, the defense-in-depth principle says no. Rather, the recommendation is to add an identity perim-
eter defense as an additional layered defense. Adding an identity perimeter is typically achieved with 
T  mutual authentication.  ith this approach, the   presents its client certificate to the bac  end. 
n turn, the bac  end verifies the certificate and its validity to ensure that the connection comes from 

the expected NVA and not from a malicious or accidental source.

Related security principles
■ Zero trust

■ Defense in depth

Related patterns
■ Use a centralized identity provider for authentication

■ Isolate from the internet

Use role-based access control (RBAC)

Intent and motivation
Managing authorization can be complicated. There are many resources and applications, and each of 
them defines multiple actions that must be authorized.  ith thousands of actions that can be autho-
rized, you need some way to group and manage them. Moreover, you need a mechanism for use with 
custom solutions. The idea is that by taking a widely used approach, you can have a more reliable and 
secure method for authorization than what you could have with a custom authorization process.
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Description
Azure RBAC is a common approach that you can use for Azure AD and Azure Services. It provides a 
structured way to assign users prebuilt sets of rights designed to address everyday needs. Azure AD 
currently provides more than 120 built-in roles you can choose from. For example, the Reader role al-
lo s the user to read the configuration of a service but typically not its data.  n contrast, the  ontribu-
tor role allo s the user to change the configuration of a service or create ne  resources, depending on 
where the role is assigned. You can also create custom roles, but these are rarely necessary and often 
create management issues.

A fundamental advantage of using Azure RBAC is that it allows for a centralized view of all the rights 
assigned to users. This is essential in the event of a compromise because it enables you to browse for 
affected user accounts to grasp the security implications of their compromise. If you instead use cre-
dentials local to the resources and assign rights without using RBAC, you must inspect each resource to 
obtain the same information. Using RBAC also enables the execution of access reviews to periodically 
verify that the granted access is still required. And adopting Azure AD credentials and RBAC allows you 
to leverage a growing set of tools to analyze identities, like Azure AD Identity Protection and Sentinel.

Tip Azure RBAC is not the only approach to authorization. Sometimes you might need 
something different, like a custom database representing your authorization matrix. Before 
searching for an alternative solution, however, you should determine whether you can lever-
age Azure RBAC to achieve the desired result.

Roles for applications
You might want to apply something similar to RBAC for your applications. For example, if you 
are creating a web portal and you want some users to provide content, it would be great if you 
could define a role called  ditor and then have that role sent bac  to the application as part of the 
authentication token.

Of course, you could use an Azure group to do that, but this might not provide you with the 
right granularity. For example, maybe you want to have multiple distinct groups of users with the 
ditor role, one for each structure in your company. This is  here defining a role  ould come in 

handy because it allows you to create as many groups as you want and then assign the role to all 
of them. Your application could then check if the role is present, not whether the user belongs to 
one of the groups. 

Azure provides this capability through the app roles. App roles can be assigned to users and 
groups and are sent to the application when a user accesses it. App roles can also be assigned to 
client applications to access your application. App roles are a great way to structure access control 
for applications, using a secure approach that is integrated  ith the platform.  ou can find ad-
ditional information about app roles here: https://azsec.tech/0g6.

https://azsec.tech/0g6
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Example
Suppose you need to create a multilevel authorization hierarchy. Your organization has multiple de-
partments, including one called the Commercial department. The top level of this department is Global 
Commercial, which controls various regions. For example, as shown in Figure 3-1, there’s a region called 
ATZ, another called Europe, and others. Several countries comprise each region. So, for instance, ATZ 
includes the USA, Canada, Mexico, and other countries. Each user in Global Commercial has complete 
visibility; each user associated with a particular region can see everything within that region; and users 
associated with a particular country can see only the information pertaining to that country.

Global
Commercial

ATZ Europe …

CanadaUSA … … …

FIGURE 3-1 The hierarchy of the Commercial department.

How might you handle this scenario with Azure RBAC? At a minimum, you would need to rely on 
a database to represent the hierarchy and on custom code to enforce it. But you can do better. For 
example, you could do the following (see Figure 3-2):

1. Create a group for each country, a group for each region, and a group for the “global” level. 

2. Make the group for a particular region a member of each country group within that region.

3. Make the global group a member of each region group.

4. Use RBAC to assign the required rights to each country and region group, as well as to the 
global group. This way, each region group will inherit the rights of the country groups within it, 
and the global group will inherit the rights of each region group.

CanadaUSA
ATZ

Global
Commercial

ATZ

Global
Commercial

FIGURE 3-2 How the groups must be nested: Global Commercial is a member of ATZ, which is a member of both 
USA and Canada.
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Related security principles
■ Leveraging existing components

Related patterns
■ Use a centralized identity provider for authentication

■ Assign roles to groups

Secrets management patterns

Secrets are important because they are the keys for accessing services and data. Protecting secrets is 
therefore essential. You could have the most secure authentication mechanism, but if you do not pro-
tect the credentials, then you could be compromised.

Unfortunately, protecting your secrets can be complicated. At a certain point, you need them, and 
that is exactly when a malicious actor could attack you. Therefore, this is one of those situations where 
sticking with known secure patterns is most important.

Use managed identities

Intent and motivation
Most applications contain multiple components and require some type of interaction among them. 
This communication typically involves some form of credentials or sensitive information. 

For example, suppose you connect to a database. In that case, you need a connection string specify-
ing the name of the server or of the cluster exposing the database and the credentials to access it. Here 
is the problem: how can you store these credentials securely? 

ne obvious ans er is to store them in configuration files.  nfortunately, this is not secure, because 
someone could steal them.  f course, you could encrypt the files, but then you have the problem of 
protecting the encryption key, and so on.

Alternatively, with an IaaS, you could use Data Protection API to encrypt the configuration file. 
Unfortunately, this approach has a couple of drawbacks, too. First, DPAPI provides only partial security 
because users with enough rights access secrets protected by DPAPI. Second, it does not protect the 
secrets in memory.

If you base your solution on App Services, you could use the application settings. These provide 
some protection and eliminate the need to store secrets in configuration files.  till, they do not protect 
the secrets in memory. And again, users who have enough rights can read the secrets—for example 
from the Azure Portal. 
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Description
A better way to store secrets is to use managed identities. These are service accounts that are entirely 
managed by Azure AD.

With managed identities, you have no access to the password, and your application doesn’t either. 
The platform automatically injects it when you send out a request using the managed identity.

Not all possible callers on Azure support managed identities, nor do all possible callees. For a list of 
callers and callees that do, see https://azsec.tech/hia. This list is updated continuously, so you’ll want to 
check it often. For example, Azure Cosmos DB didn’t support managed identities until recently.

Note See https://azsec.tech/laf and https://azsec.tech/akg for information on using RBAC 
and managed identities with Cosmos DB.

Managed identities can be system-assigned or user-assigned. The main difference is that system-
assigned managed identities are dedicated to the service, while user-assigned managed identities 
can be shared with various services. Therefore, if you want to minimize management and have many 
instances of the same application, you can simply assign the same user-assigned managed identity to 
all of them.

Tip There is one scenario in which system-assigned managed identities are preferable to 
user-assigned managed identities: for root cause analysis after an incident. That’s because 
system-assigned managed identities are specific to an instance of a service,  hich ma es it 
easier to identify the instance affected by the attack.

You can assign managed identities to virtual machines (VMs). This doesn’t mean that all applications 
hosted by the VM can automatically access resources using the assigned managed identity, however. 
You must write code to leverage this possibility. This typically involves sending a request to the Azure 
Instance Metadata Service to obtain a token for the required resource. See https://azsec.tech/dff for 
details on using managed identities with Azure VMs.

Note The URL to call to obtain a token from the Azure Instance Metadata Service is 
http://169.254.169.254/metadata/identity/oauth2/token. The Azure infrastructure automati-
cally injects the assigned managed identity, without ever exposing them, even in the mes-
sage metadata.

Examples
■ Suppose your code can use managed identities and needs to access a resource that supports 

managed identities. In this case, you should not store the credentials anywhere. Instead, it 
would be best to directly use the managed identity to access said resource.

https://azsec.tech/hia
https://azsec.tech/laf
https://azsec.tech/akg
https://azsec.tech/dff
http://169.254.169.254/metadata/identity/oauth2/token
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■ If your code supports managed identities but not the resource, check whether the resource 
at least supports managed identities for administrative purposes. If so, you might still be able 
to use managed identities to retrieve some credentials that grant access to the data from the 
resource. Therefore, it might be possible to have an initialization phase to gather the credentials 
from the service with your managed identity via the control plane and then use them for any 
ensuing calls. For example, Microsoft recommended this approach for accessing Cosmos DB 
data before it introduced support for managed identities.

Note You might prefer this option to the alternative, which is to store the credentials in 
zure  ey  ault, because it reduces the e posure of the credentials and simplifies 

management.

Related security principles
■ Attack surface reduction

■ Economy of mechanisms

■ Leveraging existing components

Related patterns
■ Use a centralized identity provider for authentication

■ Protect secrets with Azure Key Vault

Protect secrets with Azure Key Vault

Intent and motivation
As discussed with the previous pattern, you need some place to store your secrets. For example, you 
might need to store a private  ey associated  ith a certificate instead of a username and pass ord.   
typical example is a bring-your-own-key (BYOK) scenario, where you provide a key to be used in some 
way, like for encrypting an SQL Database using Transparent Data Encryption (TDE).

You cannot always use managed identities to achieve this. For example, a compute service or called 
resource might not support managed identities. Or if you have an off-the-shelf application hosted in 
aa , it might not have been modified to support managed identities, and therefore it cannot use them. 

For example, it sometimes takes Microsoft some time to implement support for managed identities in 
open source solutions, like Redis Cache, that are incorporated as Azure Services.

So, what to do?
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Description
Whatever your situation, if you cannot use managed identities to access a resource directly, the best 
approach is to use Azure Key Vault—a secure and centralized storage for secrets and encryption keys. 
Azure Key Vault is more secure than the alternatives because it can be isolated and made inaccessible 
from the internet, even if your application needs to be exposed using private links. You can rely on vari-
ous services to secure Azure Key Vault, like Microsoft Defender for Key Vault, which—among its other 
capabilities—can help identify anomalous interactions. It is also more secure than many alternatives 
because the Premium SKU provides hardware security module (HSM) capabilities to prevent attackers 
from stealing private keys.

Leveraging Azure Key Vault is not enough to make your solution secure. For example, as discussed 
in our coverage of the prefer managed identity principle, if you host code in an environment support-
ing managed identities, like a VM or an App Service, you should use a managed identity to call Azure 
Key Vault. If you need a key to access Key Vault, you have the problem of protecting that key, which be-
comes very difficult.  ith  s, you can use  , but this is not possible  ith a  aa  solution, because 
they might be occasionally moved to other servers by the Azure infrastructure, rendering your secrets 
inaccessible.

Another critical decision you need to make is how many Azure Key Vault instances to use. Micro-
soft recommends dedicating multiple instances for your application—one for each environment. Our 
recommendation is to have even more of them, particularly for production environments. If your ap-
plication has multiple layers, you might dedicate an Azure Key Vault to each of them to ensure that an 
attacker can get hold of only a few secrets in the event of a compromise. (See Figure 3-3.)

FIGURE 3-3 An example of a system with two Key Vaults: one for the front end and one for the back end.

This approach might seem radical and sometimes unnecessary. After all, having multiple Azure Key 
Vaults results in a more complex solution, introducing additional management burdens and increas-
ing the possibility of mistakes by expanding the attack surface. So, the approach you decide to adopt 
depends on the characteristics of your solution.
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Azure Key Vault for microservices
Microservices architectures present an interesting scenario. They are characterized by many 
small applications interacting with each other. If you had to apply a Key Vault for each microser-
vice, the system would quickly become unmanageable. In this case, it might be best to avoid the 
fragmentation of the AKVs and dedicate just a single instance. Remember, per the economy of 
mechanisms principle, simpler is typically better.

e a are that you might achieve significant compartmentalization even  ithout dedicated instances. 
This is typically achieved by leveraging authorization. Azure Key Vault supports two authorization 
models: access policies and RBAC. With access policies, you assign access rights to whole categories 
of objects, like secrets or private keys. This means you cannot discriminate between secrets; you can 
read all of them or none of them. In contrast, with RBAC, you can assign roles even at a single object 
level. You can then have a single instance, because the object-level RBAC role assignment provides the 
granularity needed to determine what anyone can access.

Important The ability to assign access rights so granularly is e cellent, but it has one signifi-
cant downside: Azure supports up to 2,000 role assignments per subscription. So, it might 
be best to adopt    because it provides the greatest  e ibility and control , but use it 
sparingly.

As discussed with our coverage of the use RBAC principle, you should use RBAC because it enables 
you to verify and manage role assignments centrally. Moreover, this comprehensive visibility enables 
you to adopt tools to identify potential risks and processes to manage role assignments more or less 
automatically.

Note Chapter 10, “Cryptography in Azure,” has more details on Azure Key Vault.

Examples
Azure Key Vault is great for storing secrets to access resources that don’t support managed identities, like 
Azure Cache for Redis. Azure Key Vault is also effective for storing secrets that you cannot replace with man-
aged identities, like connection strings or private keys. When you store private keys, you should choose the 
Premium SKU to leverage its HSM capabilities. The Standard SKU is enough for all other scenarios.

Related security principles
■ Fail secure

■ Least privilege

■ Leveraging existing components
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Related patterns
■ Use role-based access control (RBAC)

■ Use managed identities

■ Use bring your own key (BYOK)

Sensitive information management patterns

Secrets are important, but the information they protect is even more critical. There are many options 
for securing your data, but not all options are born equal, and it can be tricky to choose the right ones. 
Consider, for example, data protection at rest: all storage options from Azure allow or even enforce 
encryption of data at rest. For example, Azure encrypts Azure Managed Disks automatically. You have 
only a few options to determine how they are protected and who provides the encryption key. But do 
you need this type of encryption? Of course, the answer is yes, but things aren’t so simple. You have to 
satisfy multiple needs for encryption, and this sort of protection addresses just a few of them. Again, 
relying on patterns is important to correctly address the most significant problems.

Create secure channels

Intent and motivation
Communications are usually the main risk for a solution. If you have a closed box that does not receive 
any input and does not provide any output, it is fully protected and will not be attacked. Unfortunately, 
such an isolated system makes sense only as an intellectual exercise. 

All practical applications of technology are connected to something. It could be the internet, a local 
network, or even just a power outlet. Even devices that aren’t connected to anything, because they 
use a battery and have their Wi-Fi connectivity disabled, still send out information through screens or 
simply through the electromagnetic field emitted by their electronics.

In Chapter 2, you learned that the Azure security model assigns customers partial responsibility for the 
security of the solutions it hosts. But whatever model you choose—IaaS, PaaS, or SaaS—it is Microsoft’s 
responsibility to protect the physical devices. Good news, then: you do not need to be concerned about 
po er connections and electromagnetic fields   till, all the other concerns are  ell  ithin your scope.

Description
What does it mean to create secure channels? Or better, how can you determine whether a channel is 
secure  There are a fe  requirements that must be satisfied

■ Confidentiality The channel must preserve data confidentiality. Transmission over the 
internet moves through many systems, and each of these systems could potentially read and 
disclose the contents of the communication. To preserve confidentiality, you must  rap the 
content such that unauthorized parties cannot read it, typically through encryption.
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■ Authentication The channel must authenticate with certainty all parties that are privy to the 
communication. In most situations, the main concern is the authentication of the caller, but this 
should not be the case. You also need to ensure that the called service authenticates itself. Fortu-
nately, the adoption of TLS provides the authentication of the service implicitly. Still, you might need 
to ensure that your callers perform additional chec s on the provided certificate for e ample, 
chec ing  hether the certificate has been issued by the e pected certification authority.

■ Integrity ou must confirm the integrity of transmitted information.  n other  ords, those 
ho receive it must chec   hether it has been modified by some third party  hile in transit. 

Transmission protocols usually split big messages into multiple packets. Therefore, some of 
these packets may be lost in transit or received in a different order than expected. To preserve 
integrity, you must ensure that what is received matches what has been sent.

Azure addresses some of these requirements by imposing channel encryption for most communica-
tions. ith channel cryptography, li e T , you can provide confidentiality, integrity and server authen-
tication. But you still have to address client authentication, which is optional in TLS..

There are various ways to authenticate the client—too many to include them all here. But it might 
be helpful to tal  about one of them in particular  client certificates. These establish a strong con-
nection that prevents man-in-the-middle attac s.  f you don t use client certificates, an attac er can 
intercept a communication, terminate the TLS channel at its end, and create a new, false one directed 
toward the server. If you do use client certificates  ith T , however, this would not be possible because 
the man in the middle  ould not present your certificate to the target server.  dmittedly,  e rarely use 
client certificates because they involve a high cost.

Another approach is to create secure channels and isolate them from the internet. You can then use 
these secure channels to prevent the exposure of your resources and services over the internet. You can 
typically achieve this by using VPNs or ExpressRoute.

The likelihood of interception
o  li ely is it that an attac er  ill intercept your traffic   fter all, the internet is vast,  ith 

billions of messages sent every second. Intercepting your traffic isn t li e finding a needle in a 
haystack; it’s harder! So, how big of a problem is it, really?

The truth is, there are a couple situations in  hich the chances of your traffic being intercepted 
raise significantly

■ The attacker might just be in the right place at the right moment, and you might unknow-
ingly send your traffic their  ay. This could happen if you use an easily intercepted channel, 
like Wi-Fi, when the attacker is near you. This type of attack occurs more frequently than 
you might imagine particularly in specific situations, li e at security conferences. 

■ ou might un no ingly send your traffic through malicious nodes.   typical e ample of 
this situation is when you use Tor or some free VPN. Malicious actors host many of these 
resources, and they use them to tap into your traffic and potentially perform malicious 
actions.
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Examples
■ onfigure end-to-end T   ith  zure  pplication  ate ay to ensure that T  encryption is 

provided internally between Application Gateway and the target service or resource.

■ Use a point-to-site VPN to connect a single workstation to resources on Azure to avoid expos-
ing them over the internet.

■ se a site-to-site   to connect a site,  hich could be your office, to cloud resources not 
exposed over the internet. This typically requires the installation of VPN gateways to collect the 
traffic on both sides.

■ Use ExpressRoute to connect a site similarly to the site-to-site VPN. The main difference is that 
ExpressRoute is based on a dedicated infrastructure, so the connection is typically faster and 
more reliable.

Related security principles
■ Defense in depth

Related patterns
■ Encrypt data client-side

■ Use bring your own key (BYOK)

Encrypt data client-side

Intent and motivation
As discussed at the beginning of this section, Azure uses encryption to protect all storage. This is obvi-
ously a great feature, but does it address all your needs  To ans er this question, you must first identify 
exactly what needs this sort of encryption does address.

The encryption at rest provided by Azure for most storage options falls under the category of trans-
parent encryption. In other words, it ensures that if you access the storage using one of the sanctioned 
channels, data will be available in unencrypted form. If you access the storage using any other means, 
however, the data will unreadable. For example, if you try to access the data by stealing the virtual 
or physical disks, you will wind up with encrypted content that is not readable, even if you have the 
required rights.

So, transparent encryption increases the isolation of the customer data from Microsoft manage-
ment environments.  ore specifically, it ma es it more difficult for  icrosoft s administrators to get to 
your data. However, there are other needs that transparent encryption does not address. For example, 
data in memory remains unencrypted.
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Data can assume three states, and you have to protect all three of them:

■ At rest This is when the data is stored somewhere.

■ In transit This happens when you transmit the data between two locations.

■ In memory This is when the data is temporarily stored in computer memory, ready for pro-
cessing.

Transparent encryption only protects data at rest. When you use transparent encryption, the data 
is unencrypted in memory for both the database or storage server and the client. So, you typically 
protect data in transit by adopting TLS, which Azure enables by default.

Still, if a malicious actor manages to get hold of some authentication material, that person could 
access the data stored in some repository. Of course, there are a few conditions for this to happen. For 
example, the malicious actor must have access to the repository. But when these conditions are met, 
the malicious actor can read the data. This is a scenario that, in most cases, could be safely considered 
“already mitigated.” Still, if your solution requires a higher level of security assurances, you need to 
consider something else, like client-side encryption.

Description
The idea behind client-side encryption is that you encrypt the data on the client before sending it to 
the storage system. This ensures that the data is encrypted from that point on, including in the reposi-
tory memory. Of course, the application must decrypt the data to consume it. At that point, the data 
would be potentially at risk.

If your storage system is a database server, things become interesting. Because the client-side 
encrypted data is not readable by the logic executed on the database server, it would be impossible 
to perform typical activities like searching its content. Still, with some implementation of client-side 
encryption, like Cosmos DB and SQL Server Always Encrypted, it is possible to perform limited 
comparisons.

The implementation of client-side encryption is possible when the platform supports it, and it might 
still be achievable as a custom activity. But in that case, it should be treated as a delicate task, requiring 
thorough testing and in-depth validation by experts, because it is possible to make fatal mistakes. And 
even under the best conditions, client-side encryption can have a significant impact on the perfor-
mance of the system, due to computational costs and because it may be impossible to index data to 
improve search speed.

TIP When you implement client-side encryption, a typical pattern is to consider adopting 
Azure Key Vault for storing the cryptographic keys.
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Examples
■ Cosmos DB and SQL Server Always Encrypted provides a way to encrypt data client-side. It 

includes a mode called deterministic encryption, which allows to search for records having some 
specific value.  or e ample, if you encrypt a ta  code  ith deterministic encryption, you can get 
all ro s in a table  here a field has the same ta  code.

Note The very characteristic that makes deterministic encryption worthwhile is also its main 
weakness. For example, an attacker could group all the records associated with the same tax 
code, which could provide them with enough information to identify a person from the oth-
er metadata. For this reason, consider randomized encryption as the first option and revert to 
deterministic encryption if necessary.

■ Some libraries that provide programmatic access to Azure Storage implement the necessary 
logic to perform client-side encryption for Azure Storage. For examples of this with .NET, Java, 
and Python code, see https://azsec.tech/ci5.

Related security principles
■ Defense in depth

■ Fail secure

■ Leveraging existing components

Related patterns
■ Protect secrets with Azure Key Vault

Use bring your own key (BYOK)

Intent and motivation
Data encryption has multiple roles. One of the least commonly considered is crypto-shredding. 
Crypto-shredding involves deliberately deleting or overwriting encryption keys used to secure sensitive 
data. In this way, you can ensure that nobody can read the data you no longer need, or you can block 
data e filtration in an emergency.  ith crypto-shredding, you can make it impossible for anyone to 
access your data.

Description
One of the best ways to do this is to use BYOK. With this approach, Azure Key Vault stores the key, 
which is under your control. So, to crypto-shred your data, you simply purge your key from its Key 
Vault. When you do, all that data becomes immediately unrecoverable.

https://azsec.tech/ci5
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More on BYOK
One of the primary purposes of BYOK is to increase users’ control over their keys. The idea is that 
by introducing their own keys, users make it harder for the cloud service provider to access their 
data. Unfortunately, that’s not why BYOK is useful. If you do not trust Microsoft with your data, 
why should you trust it to handle your key securely? You are storing it in its systems. In other words, 
if you assume that a malicious administrator could access your data, you should also assume that 
person could access your keys, too. Fortunately, Azure includes many other controls to prevent 
this from happening, including strong physical controls and various isolation layers that require 
escalation paths under the control of the customer to access the data.

Of course, this is a two-edged sword, because a malicious actor could leverage this approach to 
cause a denial of service. Some SaaS solutions like Microsoft 365 implement mechanisms to prevent 
losses due to the destruction of the BYOK. One such feature is called Availability Key and is discussed 
here: https://azsec.tech/89t.

Example
If you have an Azure SQL or Azure Storage and have used BYOK to encrypt them at rest, you can re-
move the key from Azure Storage to crypto-shred the content.

Related security principles
■ Defense in depth

■ Leveraging existing components

■ Separation of duties

Related patterns
■ Protect secrets with Azure Key Vault

Availability pattern

Availability is often considered a given. You expect your solution to be there when needed and provide 
its services to every user. Unfortunately, it is not so automatic to achieve this, and you have to work 
hard to guarantee that your solution is up and running. 

In the cloud, the situation is even worse, if possible. When you develop a complex system integrat-
ing many services, you rely on all of them to be available. The unavailability of any service may cause 
your solution to be partially or entirely unavailable. When each of these systems is managed at least in 
part by a third party, you lack control over the maintenance activities. Therefore, you have to design 
your solution to be more resilient than you used to do with on-prem solutions.

https://azsec.tech/89t
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Important  t  ould be a mista e to thin  that this problem is specific to the cloud or to 
Azure. On the contrary, the pervasive adoption of automation you have with these plat-
forms has dramatically reduced the prevalence of the incidents compared to on-prem. Still, 
incidents are a possibility and maintenance a necessity. The new approach gives you this 
awareness and the tools to design and implement your solutions in a resilient way to meet 
your availability requirements.

Let’s see what you can do to improve the availability of your solution.

Design for denial of service

Intent and motivation
Denial-of-service (DoS) attacks are common occurrences. They happen when someone creates the 
conditions for your solution to fail by bombarding it with more requests than it can handle or by 
sending artfully crafted messages causing your solution to crash. In any case, these attacks cause the 
unavailability of your service. A variant of DoS attacks is called distributed DoS (DDoS). DDoS attacks 
are characterized by the generation of the attack from multiple points, sometimes in the order of the 
thousands or tens of thousands.

DoS and DDoS are some of the easiest attacks to execute. Some organizations even provide DDoS 
attacks as a service. You tell them who the target is, you pay them, and they do the rest! Very conve-
nient and powerful.

You can address this problem in various ways, but the easiest is to simply add more resources to 
your application. One of the characteristics of the cloud is elasticity, which means you can allocate 
resources dynamically, as you need them. However, although this is easy and fast, it can be expensive 
and unfeasible in the long run. Here is where this pattern becomes useful.

Description
All public cloud platforms, including Azure, offer a base level of protection from DoS attacks. Azure 
also offers Azure DDoS Protection Standard (https://azsec.tech/s1h), designed to protect public 
IP addresses from potentially massive DDoS attacks. 

The documentation for this service uses some specific  ording that you should be a are of

“Azure DDoS Protection Standard, combined with application design best practices, 
provides enhanced DDoS mitigation.”

Note that it says enhanced, not complete. In other words, as with any other anti-DDoS system, Azure 
cannot represent your only line of defense against DDoS attacks. These systems complement a more 
comprehensive strategy, which starts with the design of your solution. For this reason, you should not 
design a system without thinking about how your architecture might respond to a DDoS attack.

https://azsec.tech/s1h


76 PART I Security principles

Consider this real-life example: a customer with nearly 100 public IP addresses protected by the 
Azure DDoS Protection Standard service suffered severe service degradation. This was due to a DDoS 
attack, but it went undetected because the attack was “low and slow.” That is, it fell below the trigger-
ing threshold for Azure DDoS Protection Standard, so none of the service’s mitigation policies were 
triggered.  s a result, the combined traffic  o  across all   addresses overloaded the bac -end  s, 
hich forced them to drop part of the traffic. The security anti-pattern in this design ta es data from 

multiple untrusted sources and concentrates that traffic on a single, internal endpoint.  n this case, all 
that data was concentrated on a single VM running the NVA, which is where the impact of the attack 
became evident. The customer quickly applied the NVA’s built-in auto-scaling capabilities to bring 
more network bandwidth and compute online. In this scenario, a range of one to three NVAs mitigated 
the attack.

Note To see Microsoft documentation on including DoS and DDoS protection support in 
your designs, see https://azsec.tech/xin.

ne final note  many  zure services can throttle requests.  or e ample,  zure  ey  ault allo s 
4,000 secret transactions (for example, reading an SQL connection string) per 10 seconds. If your code 
goes beyond this threshold, further requests are throttled and return a 429 (“Too Many Requests”) 
response. To remedy this, cache data if possible. In the Key Vault example, you could cache the con-
nection string in memory for 15 minutes and read from Key Vault only four times per hour, which is way 
under the threshold.  ou can find a list of  zure subscription and service limits, quotas, and constraints 
at https://azsec.tech/9it.

Examples
■ any services can be configured  ith net or ing rules or private endpoint connections.  ne 

such service is Azure Storage. If you opt to adopt the networking rules, the service itself is still 
exposed and can receive requests; you just have a high-speed mechanism to reject the requests 
because they are not from an acceptable IP address. While fast, this mechanism can still be 
over helmed or bypassed for e ample, by an   spoofing attac . Therefore, it is typically bet-
ter to use private endpoints.

■ Consider the availability requirements of your solution. If you have strict availability require-
ments that do not allow for partial unavailability, it’s best to design the solution accordingly. 
For example, you could use a content delivery network (CDN) to serve the static content and a 
distributed and redundant architecture to provide the service to the relevant geographies.

Related security principles
■ Attack surface reduction

■ Defense in depth

https://azsec.tech/xin
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■ Single point of failure

■ Weakest link

Related patterns
■ Isolate from the internet

■ Isolate with an identity perimeter

Summary

This chapter introduced Azure security patterns. It started with a discussion of why the concept of pat-
terns is so essential. It then introduced a few of the most common patterns to secure your solution on 
Azure. 

This list is limited, and you might be able to identify one or t o significant ones that are missing. 
The intent here is not to be comprehensive but to introduce you to an approach for building secure 
software on Azure based on the adoption of renowned patterns.

The next chapter goes beyond this to introduce a different way of thinking about security and 
designing secure solutions: threat modeling.
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