ENGINEERING DESIGN AND GRAPHICS WITH SOLIDWORKS ${ }^{\circ}$ 2023

Engineering Design and Graphics with SolidWorks 2023
 James D. Bethune
 Nathan Brovnn

Engineering Design and Graphics with SolidWorks® 2023

Copyright © 2023 by Pearson Education, Inc., publishing as Peachpit Press. All rights reserved. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, request forms, and the appropriate contacts within the Pearson Education Global Rights \& Permissions Department, please visit www. pearson.com/permissions. No patent liability is assumed with respect to the use of the information contained herein. Although every precaution has been taken in the preparation of this book, the publisher and author assume no responsibility for errors or omissions. Nor is any liability assumed for damages resulting from the use of the information contained herein.

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on the appropriate page within the text. Unless otherwise stated, all artwork has been provided by the author.

Images courtesy of Dassault Systèmes SolidWorks Corporation. SolidWorks ${ }^{\circledR}$ is a registered trademark of Dassault Systèmes SolidWorks Corp. All rights reserved.

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. Que Publishing cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no warranty or fitness is implied. The information provided is on an "as is" basis. The authors and the publisher shall have neither liability nor responsibility to any person or entity with respect to any loss or damages arising from the information contained in this book.

Special Sales

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.
For government sales inquiries, please contact governmentsales@pearsoned.com.
For questions about sales outside the U.S., please contact intlcs@pearson.com.

Acquisitions Editor: Anshul Sharma
Senior Production Editor: Tonya Simpson
Cover Designer: Chuti Prasertsith
Developmental Editor: Patrice Rutledge

Full-Service Project Management: codeMantra
Composition: codeMantra
Proofreader: Jen Hinchliffe
Indexer: Timothy Wright

ScoutAutomatedPrintCode

Library of Congress Control Number: 2022951068

ISBN 10: 0-13-789952-1
ISBN 13: 978-0-13789952-4

Pearson's Commitment to Diversity, Equity, and Inclusion

Pearson is dedicated to creating bias-free content that reflects the diversity of all learners. We embrace the many dimensions of diversity, including but not limited to race, ethnicity, gender, socioeconomic status, ability, age, sexual orientation, and religious or political beliefs.
Education is a powerful force for equity and change in our world. It has the potential to deliver opportunities that improve lives and enable economic mobility. As we work with authors to create content for every product and service, we acknowledge our responsibility to demonstrate inclusivity and incorporate diverse scholarship so that everyone can achieve their potential through learning. As the world's leading learning company, we have a duty to help drive change and live up to our purpose to help more people create a better life for themselves and to create a better world.

Our ambition is to purposefully contribute to a world where:

- Everyone has an equitable and lifelong opportunity to succeed through learning.
- Our educational products and services are inclusive and represent the rich diversity of learners.
- Our educational content accurately reflects the histories and experiences of the learners we serve.
- Our educational content prompts deeper discussions with learners and motivates them to expand their own learning (and worldview).
While we work hard to present unbiased content, we want to hear from you about any concerns or needs with this Pearson product so that we can investigate and address them.
Please contact us with concerns about any potential bias at https://www.pearson.com/report-bias.html.

This page intentionally left blank

This book shows and explains how to use SolidWorks ${ }^{\circledR} 2023$ to create engineering designs and drawings. Emphasis is placed on creating engineering drawings including dimensions and tolerances and using standard parts and tools. Each chapter contains step-by-step sample problems that show how to apply the concepts presented in the chapter.

The book contains hundreds of projects of various degrees of difficulty specifically designed to reinforce the chapter's content. The idea is that students learn best by doing. In response to reviewers' requests, some more difficult projects have been included.

Chapters 1 and 2 show how to set up a part document and how to use the SolidWorks Sketch tools. Sketch tools are used to create 2D part entities that can then be extruded into 3D solid models. The chapters contain an explanation of how SolidWorks' colors are used and of how shapes can be fully defined. The usage of mouse gestures, S key, and origins is also included. The two chapters include 44 exercise problems (18 in Ch1 and 26 in Ch2) using both inches and millimeters so that students can practice applying the various Sketch tools.

Chapter 3 shows how to use the Features tools. Features tools are used to create and modify 3D solid models. In addition, reference planes are covered, and examples of how to edit existing models are given.

Chapter 4 explains how to create and interpret orthographic views. Views are created using third-angle projection in compliance with ANSI standards and conventions. The differences between first-angle and thirdangle projections are demonstrated. Seven exercise problems (P4-142 to P4-149) are included to help students learn to work with the two different standards. Also included are section views, auxiliary views, and broken views. Several of the projects require that a 3D solid model be drawn from a given set of orthographic views to help students develop visualization skills.

Chapter 5 explains how to create assembly drawings using the Assembly tools (Mate, Exploded View) and how to document assemblies using the Drawing Documents tools. Topics include assembled 3D solid models, exploded isometric drawings, and bills of materials (BOMs). Assembly numbers and part numbers are discussed. Both the Animate Collapse/Explode and Motion Study tools are demonstrated. In addition, the title, release, and revision blocks are discussed. An explanation of how to use Interference Detection is given.

Chapter 6 shows how to create and design with threads and fasteners. Both ANSI inch and ANSI metric threads are covered. The Design Library is presented, and examples are used to show how to select and size screws and other fasteners for assembled parts.

Chapter 7 covers dimensioning and is in compliance with ANSI standards and conventions. There are extensive visual examples of dimensioned shapes and features that serve as references for various dimensioning applications.

Chapter 8 covers tolerances. Both linear and geometric tolerances are included. This is often a difficult topic to understand, so there are many examples of how to apply and how to interpret the various types of tolerances. Standard tolerances as presented in the title block are demonstrated.

Chapter 9 explains bearings and fit tolerances. The Design Library is used to create bearing drawings, and examples show how to select the correct interference tolerance between bearings and housing, and clearance tolerances between bearings and shafts.

Chapter 10 presents gears. Gear terminology, gear formulas, gear ratios, and gear creation using the SolidWorks Toolbox are covered. The chapter relies heavily on the Design Library. Keys, keyways, and set screws are discussed. Both English and metric units are covered. There is an extensive sample problem that shows how to draw a support plate for mating gears and how to create an assembly drawing for gear trains. The projects at the end of the chapter include two large gear assembly exercises.

Chapter 11 will help students prepare for the CSWA certification exam. There are many sample questions and examples. Students should time how long it takes them to do each problem. This will help them get used to working under time pressure.

The Appendix includes fit tables for use with projects in the text. Clearance, locational, and interference fits are included for both inch and millimeter values.

Download Instructor Resources from the Instructor Resource Center

Instructor materials are available from Pearson's Instructor Resource Center. Go to https://www.pearson.com/en-us/highered-educators.html to register, or to sign in if you already have an account.

Acknowledgments

I would like to acknowledge the reviewers of this text: Peggy Condon-Vance, Penn State Berks; Lisa Richter, Macomb Community College; Julie Korfhage, Clackamas Community College; Max P. Gassman, Iowa State University; Paul E. Lienard, Northeastern University; and Hossein Hemati, Mira Costa College.

Thanks to my family-David, Maria, Randy, Sandra, Hannah, Will, Madison, Jack, Luke, Sam, and Ben.

A special thanks to Cheryl.
James D. Bethune
I would like to acknowledge the editors of this edition: Anshul Sharma, Patrice Rutledge, and Tonya Simpson. Thanks to my family: Amanda, Jovie, and Iris. And thanks to my mentor: Gina Bertocci.

Nathan Brown
Preface v
CHAPTER 1 Getting Started
Chapter Objectives
1-1 Introduction1
1-2 Starting a New Document1
Starting a New Part Document 2
Selecting a Sketch Plane 3
1-3 SolidWorks Colors 8
1-4 Creating a Fully Defined Circle 8
Changing an Existing Dimension 10
Fully Defined Entities 11
1-5 Units 14
Changing Units 15
1-6 Rectangle 15
Sketching a Rectangle 15
Exiting the Sketch Mode 17
Reentering the Sketch Mode 17
1-7 Moving Around the Drawing Screen 18
Zooming the Rectangle 19
Moving the Rectangle 19
Reorientating the Rectangle 19
1-8 Orientation 19
Returning to the Top View Orientation-View Selector 19
Returning to the Top View Orientation-Top View 20
Returning to the Top View Orientation-Orientation Triad 20
1-9 Sample Problem SP1-1 20
Fixing a Line in Place 23
Sketch Relations 24
1-10 Creating 3D Models 25
Creating a 3D Model 25
1-11 Saving Documents 27
Saving a Document 27
1-12 Sample Problem SP1-2 28
1-13 Holes 32
Creating a Hole 32
Chapter Project 37
CHAPTER 2 Sketch Entities and Tools 43
Chapter Objectives 43
2-1 Introduction 43
2-2 Mouse Gestures and the S Key 44
Mouse Gestures 44
Using Mouse Gestures 44
Accessing Mouse Gestures Settings 45
Adding a Tool to a Mouse Gestures Wheel 46
S Key 47
Activating the S Key 48
Customizing the S Key Shortcut Toolbar 49
Removing a Tool from the S Key Toolbar 51
2-3 Origins 51
Showing the Origin 51
2-4 Circle 52
Sketching a Circle 52
Sketching a Perimeter Circle Using Three Points 54
Sketching a Perimeter Circle Tangent to Three Lines 55
2-5 Rectangle 56
Sketching a Center Rectangle 56
Sketching a 3 Point Corner Rectangle 57
Sketching a 3 Point Center Rectangle 58
Sketching a Parallelogram 59
2-6 Slots 61
Sketching a Straight Slot 62
Sketching a Centerpoint Straight Slot 63
Sketching a 3 Point Arc Slot 64
Sketching a Centerpoint Arc Slot 65
2-7 Perimeter Circle 66
Sketching a Perimeter Circle 66
2-8 Arcs 67
Sketching a Centerpoint Arc 67
Sketching a Tangent Arc 68
Sketching a 3 Point Arc 69
2-9 Polygons 70
Sketching a Hexagon 70
2-10 Spline 72
Sketching a Spline 72
Editing a Spline 73
2-11 Ellipse 73
Sketching an Ellipse 74
Sketching a Partial Ellipse 75
Sketching a Parabola 76
Conic Section 77
Sketching a Conic 79
2-12 Fillets and Chamfers 80
Sketching a Fillet 81
Sketching a Chamfer 82
Sketching a Chamfer Using Distance-Distance-Equal Distance 82
Sketching a Chamfer Using Angle-Distance 83
Sketching a Chamfer Using Distance-Distance- Not Equal Distance 84
2-13 Sketch Text 84
Adding Text 85
Changing the Font and Size of Text 85
Adding Text to a Feature 86
Creating Text that Wraps Around Two Features 87
2-14 Point 87
2-15 Trim Entities 88
Trimming Entities 88
2-16 Extend Entities 89
Extending Entities in a Sketch 89
2-17 Offset Entities 90
Sketching an Offset Line 91
2-18 Mirror Entities 92
Creating a Mirror Entity 92
2-19 Linear Sketch Pattern 95Creating a Linear Sketch Pattern97
2-20 Circular Sketch Pattern 97
Creating a Circular Sketch Pattern 98
2-21 Move Entities 99
Moving an Entity 100
2-22 Copy Entities 100
Copying an Entity 102
2-23 Rotate Entities 102
Rotating an Entity 103
2-24 Scale Entities 103
Scaling an Entity 103
2-25 Stretch Entities 104
Stretching an Entity 105
2-26 Split Entities 106
Splitting an Entity 106
2-27 Jog Lines 109
Using the Jog Line Tool 110
2-28 Centerline 110
Using the Centerline Tool 111
2-29 Sample Problem SP2-1 111
2-30 Sample Problem SP2-2 114
2-31 Sample Problem SP2-3 116
Chapter Projects 119
CHAPTER 3 Features 129
Chapter Objectives 129
3-1 Introduction 129
3-2 Extruded Boss/Base 129
Using the Extruded Boss/Base Tool 130
Creating Inward Draft Sides 132
Creating an Outward Draft 133
3-3 Sample Problem SP3-1 134
3-4 Extruded Cut 137
3-5 Hole Wizard 138
3-6 Creating a Hole with the Circle and Extruded Cut Tools 141
3-7 Blind Holes 143
Creating a Blind Hole-Inches 143
Creating a Blind Hole-Metric 145
3-8 Fillet 146
Creating a Fillet with a Variable Radius 148
Creating a Fillet Using the Face Fillet Option 150
Creating a Fillet Using the Full Round Fillet Option 151
3-9 Chamfer 153
Defining a Chamfer Using an Angle and a Distance 153
Defining a Chamfer Using Two Distances 154
Defining a Vertex Chamfer 155
3-10 Revolved Boss/Base 156
3-11 Revolved Cut 159
3-12 Reference Planes 160
Creating a Reference Plane 161
3-13 Lofted Boss/Base 165
3-14 Shell 168
3-15 Swept Boss/Base 170
3-16 Draft 172
3-17 Linear Sketch Pattern 174
3-18 Circular Sketch Pattern 176
3-19 Mirror 177
3-20 Helix Curves and Springs 179
Drawing a Helix 179
Drawing a Spring From the Given Helix 180
3-21 Compression Springs 181
Creating Ground Ends 183
3-22 Torsional Springs 184
Drawing a Torsional Spring 184
3-23 Extension Springs 187
Drawing an Extension Spring 188
3-24 Wrap 191
Creating Debossed Text 191
3-25 Editing Features 195
Editing the Hole 195
Editing the Cutout 196
3-26 Sample Problem SP3-2 197
Drawing a Cylinder 198
Creating a Slanted Surface on the Cylinder 200
Adding the Vertical Slot 201
Adding the Ø8 Hole 203
3-27 Sample Problem SP3-3 205
3-28 Curve Driven Patterns 208
Using the Curve Driven Pattern Tool—Example 1 208
Using the Curve Driven Pattern Tool—Example 2 211
Chapter Projects 214
CHAPTER 4 Orthographic Views 229
Chapter Objectives 229
4-1 Introduction 229
4-2 Third- and First-Angle Projections 231
4-3 Fundamentals of Orthographic Views 232
Normal Surfaces 233
Hidden Lines 234
Precedence of Lines 235
Slanted Surfaces 236
Compound Lines 237
Oblique Surfaces 238
Rounded Surfaces 238
4-4 Drawing Orthographic Views 240
Moving Orthographic Views 249
Creating Other Views 249
4-5 Section Views 250
4-6 Drawing a Section View 252
Changing the Style of a Section View 257
4-7 Aligned Section Views 258
4-8 Broken Views 259
Creating a Broken View 260
4-9 Detail Views 261
Drawing a Detail View 261
4-10 Auxiliary Views 262
Drawing an Auxiliary View 263
4-11 First-Angle Projection 266
Creating Three Orthographic Views Using First-Angle Projection 266
Chapter Projects 269
CHAPTER 5 Assemblies 305
Chapter Objectives 305
5-1 Introduction 305
5-2 Starting an Assembly 305
5-3 Move Component 308
5-4 Rotate Component 309
5-5 Mouse Gestures for Assemblies 310
5-6 Mate 311
Creating the First Assembly Using Mates 311
Creating a Second Assembly 313
Creating a Third Assembly 315
5-7 Bottom-up Assemblies 316
5-8 Creating an Exploded Isometric Assembly 321
5-9 Creating an Exploded Isometric Drawing 324
5-10 Assembly Numbers 326
5-11 Bill of Materials (BOM or Parts List) 328
Editing the BOM 330
Adding Columns to the BOM 332
Changing the Width of a Column 333
Changing the Width of Rows and Columns 334
Changing the BOM's Font 334
5-12 Title Blocks 335
Revision Letters 336
Editing a Title Block 336
Release Blocks 338
Tolerance Blocks 339
Application Blocks 339
5-13 Animate Collapse 339
5-14 Sample Problem SP5-1 341
5-15 Using the Motion Study Tool 344
Viewing the Assembly Motion 346
5-16 Editing a Part Within an Assembly 347
5-17 Interference Detection/Clearance Verification 349
Interference Detection 349
Detecting an Interference 350
Verifying the Clearance 353
Removing the Interference 353
Verifying that a Clearance Exists 355
Chapter Projects 357
CHAPTER 6 Threads and Fasteners 381
Chapter Objectives 381
6-1 Introduction 381
6-2 Thread Terminology 381
Pitch 382
6-3 Thread Callouts-ANSI Metric Units 382
6-4 Thread Callouts—ANSI Unified Screw Threads 383
6-5 Thread Representations 384
6-6 Internal Threads-Inches 384
6-7 Threaded Blind Holes-Inches 387
6-8 Internal Threads-Metric 388
6-9 Accessing the Design Library 390
6-10 Thread Pitch 392
6-11 Determining an External Thread
Length-Inches 392
6-12 Smart Fasteners 398
6-13 Determining an Internal Thread Length 401
6-14 Set Screws 404
6-15 Drawing a Threaded Hole in the Side of a Cylinder 405
6-16 Adding Set Screws to the Collar 409
Chapter Projects 411
CHAPTER 7 Dimensioning 447
Chapter Objectives 447
7-1 Introduction 447
7-2 Terminology and Conventions-ANSI 448
Common Terms 448
Dimensioning Conventions 449
Common Errors to Avoid 449
7-3 Adding Dimensions to a Drawing 450
Controlling Dimensions 454
Dimensioning Short Distances 455
Autodimension Tool 457
Creating Baseline Dimensions 459
Creating Ordinate Dimensions 460
7-4 Drawing Scale 460
7-5 Units 461
Aligned Dimensions 462
Hole Dimensions 462
7-6 Dimensioning Holes and Fillets 466
Dimensioning a Blind Hole 466
Dimensioning Hole Patterns 468
7-7 Dimensioning Counterbored and Countersunk Holes 469
Counterbored Hole with Threads 473
Dimensioning Countersink Holes 479
Dimensioning the Block 480
7-8 Angular Dimensions 480
Dimensioning an Evenly Spaced Hole Pattern 484
7-9 Ordinate Dimensions 485
Creating Ordinate Dimensions 486
7-10 Baseline Dimensions 488
Creating Baseline Dimensions 488
Hole Tables 490
7-11 Locating Dimensions 492
7-12 Fillets and Rounds 493
7-13 Rounded Shapes-Internal 493
7-14 Rounded Shapes-External 494
7-15 Irregular Surfaces 495
7-16 Polar Dimensions 496
7-17 Chamfers 497
7-18 Symbols and Abbreviations 498
7-19 Symmetrical and Centerline Symbols 499
7-20 Dimensioning to a Point 500
7-21 Dimensioning Section Views 501
7-22 Dimensioning Orthographic Views 501
Dimensions Using Centerlines 502
Chapter Projects 503
CHAPTER 8 Tolerancing 519
Chapter Objectives 519
8-1 Introduction 519
8-2 Direct Tolerance Methods 519
8-3 Tolerance Expressions 521
8-4 Understanding Plus and Minus Tolerances 522
8-5 Creating Plus and Minus Tolerances 522
Adding Plus and Minus Symmetric Tolerances Using the Dimension Text Box 524
8-6 Creating Limit Tolerances 525
8-7 Creating Angular Tolerances 526
8-8 Standard Tolerances 528
8-9 Double-Dimensioning Errors 528
8-10 Chain Dimensions and Baseline Dimensions 530
Baseline Dimensions 531
8-11 Tolerance Studies 532
Calculating the Maximum Length of A 532
Calculating the Minimum Length of A 533
8-12 Rectangular Dimensions 533
8-13 Hole Locations 533
8-14 Choosing a Shaft for a Toleranced Hole 535
For Linear Dimensions and Tolerances 536
8-15 Sample Problem SP8-1 537
8-16 Sample Problem SP8-2 538
8-17 Nominal Sizes 538
8-18 Standard Fits (Metric Values) 539
Clearance Fits 539
Transitional Fits 539
Interference Fits 540
8-19 Standard Fits (Inch Values) 540
Adding a Fit Callout to a Drawing 540
Reading Fit Tables 542
8-20 Preferred and Standard Sizes 543
8-21 Surface Finishes 544
8-22 Surface Control Symbols 545
8-23 Applying Surface Control Symbols 547
Adding a Lay Symbol to a Drawing 548
8-24 Design Problems 549
Floating Condition 550
Fixed Condition 551
Designing a Hole Given a Fastener Size 553
8-25 Geometric Tolerances 554
8-26 Tolerances of Form 554
8-27 Flatness 554
8-28 Straightness 555
8-29 Straightness (RFS and MMC) 556
8-30 Circularity 559
8-31 Cylindricity 560
8-32 Geometric Tolerances Using SolidWorks 561
8-33 Datums 561
Adding a Datum Indicator 563
Defining a Perpendicular Tolerance 564
Defining a Straightness Value for Datum Surface A 565
8-34 Tolerances of Orientation 566
8-35 Perpendicularity 566
8-36 Parallelism 569
8-37 Angularity 569
8-38 Profiles 570
8-39 Runouts 572
8-40 Positional Tolerances 573
8-41 Creating Positional Tolerances 575
Creating the Positional Tolerance 575
8-42 Virtual Condition 578
Calculating the Virtual Condition for a Shaft 579
Calculating the Virtual Condition for a Hole 579
8-43 Floating Fasteners 579
8-44 Sample Problem SP8-3 581
8-45 Sample Problem SP8-4 582
8-46 Fixed Fasteners 582
8-47 Sample Problem SP8-5 583
8-48 Design Problems 584
Chapter Projects 588
CHAPTER 9 Bearings and Fit
Tolerances 619
Chapter Objectives 619
9-1 Introduction 619
9-2 Sleeve Bearings 620
Drawing a Sleeve Bearing 620
Using a Sleeve Bearing in an Assembly Drawing 621
9-3 Bearings from the Toolbox 623
9-4 Ball Bearings 626
9-5 Fits and Tolerances for Bearings 628
9-6 Fits-Inches 628
9-7 Clearance Fits 628
9-8 Hole Basis 629
9-9 Shaft Basis 629
9-10 Sample Problem SP9-1 629
9-11 Interference Fits 630
9-12 Manufactured Bearings 631
Clearance for a Manufactured Bearing 632
Applying a Clearance Fit Tolerance 632
Interference for a Manufactured Bearing 633
Applying an Interference Fit Tolerance 633
Applying Standard Fit Tolerances to an Assembly Drawing 634
9-13 Fit Tolerances-Millimeters 635
Chapter Projects 636
CHAPTER 10 Gears 653
Chapter Objectives 653
10-1 Introduction 653
10-2 Gear Terminology 654
10-3 Gear Formulas 655
10-4 Creating Gears 656
Creating a Gear Assembly 657
Animating the Gears 661
10-5 Gear Ratios 663
10-6 Gears and Bearings 663
Adding Bearings 663
10-7 Power Transmission-Shaft to Gear 666
10-8 Set Screws and Gear Hubs 666
Adding a Threaded Hole to the Gear's Hub 668
10-9 Keys, Keyseats, and Gears 671
Defining and Creating Keyseats in Gears 671
Returning to the Assembly Drawing 674
Defining and Creating a Parallel Key 675
Creating a Keyseat in the Shaft 676
Creating the Keyseat 678
Creating the Arc-Shaped End of a Keyseat 679
10-10 Sample Problem SP10-1 681
Determining the Pitch Diameter 681
Editing the Bill of Materials 683
10-11 Rack and Pinion Gears 687
Animating the Rack and Pinion 689
10-12 Metric Gears 690
Creating a Metric Gear 690
Chapter Projects 692
CHAPTER 11 CSWA Preparation 715
Chapter Objectives 715
11-1 Introduction 715
11-2 Working with Cubes 716
Problem 11-1 716
11-3 Drawing Profiles 717
Problem 11-2 717
Problem 11-3 718
Problem 11-4 719
Problem 11-5 719
Problem 11-6 721
11-4 Drawing Small 3D Objects 721
Problem 11-7 722
Problem 11-8 722
Problem 11-9 723
Problem 11-10 724
Problem 11-11 725
Problem 11-12 726
11-5 Drawing Larger Objects 727
Problem 11-13 727
Problem 11-14
Problem 11-15 729
Problem 11-16 730
Problem 11-17 731
Problem 11-18 732
Problem 11-19 733
Problem 11-20 734
11-6 Drawing Auxiliary Views 735
Problem 11-21 735
Problem 11-22 736
Problem 11-23 737
11-7 Drawing Break Views 737
Problem 11-24 738
Problem 11-25 738
11-8 Drawing Section Views 739
Problem 11-26 739
Problem 11-27 740
Problem 11-28 741
11-9 Drawing Detail Views 742
Problem 11-29 742
Problem 11-30 743
11-10 Drawing Lines and Views 744
Problem 11-31 744
Problem 11-32 745
Problem 11-33 746
11-11 Creating Assemblies 747
Problem 11-34 747
Problem 11-35 749
11-12 Problem Answers 750
APPENDIX 751
Index 763

CHAPTER OBJECTIVES

- Dimension objects
- Learn ANSI standards and conventions
- Dimension different shapes and features
- Learn fundamentals of 3D dimensioning

7-1 Introduction

Dimensions are added to SolidWorks on Drawing documents. Dimensions will appear in Part documents, but these are construction dimensions. These sketch dimensions are used to create a part and are used when a sketch is edited. They may be modified as the part is being created using the Smart Dimension tool. They will not appear on the finished model or in Assembly documents.

Figure 7-1 shows a dimensioned shape. The drawing on the left in Figure 7-1 shows the sketch dimensions that were used as the part was being created. The drawing on the right in Figure 7-1 shows dimensions that were created using the Smart Dimension tool in a Drawing document. These are defining dimensions and will appear on the working drawings. This chapter will show how to apply these types of dimensions.

SolidWorks has ANSI Inch and ANSI Metric dimensions available. Other dimensioning systems such as ISO also are available. This text is in compliance with ANSI standards.

Figure 7-1

7-2 Terminology and Conventions-ANSI

Dimensions are added to drawings to define the part and guide manufacturing. General rules and conventions are used to dimension a drawing in a complete, orderly, and succinct manner.

Common Terms

Figure 7-2 shows both ANSI- and ISO-style dimensions. The terms apply to both styles.

Figure 7-2

Dimension lines: In mechanical drawings, lines between extension lines that end with an arrowhead and include a numerical dimensional value located within the line.

Extension lines: Lines that extend away from an object and allow dimensions to be located off the surface of an object.

Leader lines: Lines drawn at an angle, not horizontal or vertical, that are used to dimension specific shapes such as holes. The start point of a leader line includes an arrowhead. Numerical values are drawn at the end opposite the arrowhead.

Linear dimensions: Dimensions that define the straight-line distance between two points.

Angular dimensions: Dimensions that define the angular value, measured in degrees, between two straight lines.

Dimensioning Conventions

Figure 7-3

Figure 7-4
There are general guidelines you should follow when dimensioning drawings. Figure $7-3$ shows some of the following guidelines applied to a dimensioned part.

- Dimension lines should be drawn evenly spaced; that is, the distance between dimension lines should be uniform. A general rule of thumb is to locate dimension lines about $1 / 2 \mathrm{in}$. or 15 mm apart.
- There should be a noticeable gap between the edge of a part and the beginning of an extension line. This serves as a visual break between the object and the extension line. The visual difference between the line types can be enhanced by using different colors for the two types of lines.
- Leader lines are used to define the size of holes and should be positioned so that the arrowhead points toward the center of the hole.
- Centerlines may be used as extension lines. No gap is used when a centerline is extended beyond the edge lines of an object.
- Align dimension lines whenever possible to give the drawing a neat, organized appearance.

Common Errors to Avoid

See Figure 7-4.
Some common errors

- Avoid crossing extension lines. Place longer dimensions farther away from the object than shorter dimensions.
- Do not locate dimensions within cutouts; always use extension lines.
- Do not locate any dimension close to the object. Dimension lines should be at least $1 / 2 \mathrm{in}$. or 15 mm from the edge of the object.
- Avoid long extension lines. Locate dimensions in the same general area as the feature being defined.

7-3 Adding Dimensions to a Drawing

Figure 7-5 shows a part that includes two holes. This section will explain how to add dimensions to the part. The part was drawn as a Part document and saved as BLOCK, 2 HOLES. See Figure 7-10 for the part's dimensions. The part is 0.50 thick. Save the part and start a new Drawing document.

Figure 7-5

Figure 7-6

1 Click New, Drawing, and OK to start a new drawing. Use a B (ANSI) Landscape sheet size.
? Click the View Layout tab, Model View, and create a top view of the BLOCK, 2 HOLES part.

In this example we will work with only one view. See Figure 7-6.

Extend the horizontal center mark from the left hole to the horizontal centerline of the right hole.

3 Click the horizontal centerline of the left hole. Small blue boxes will appear on the center mark.
4. Click and drag the horizontal centerline from the left hole to the right hole.

The holes now have the same horizontal centerline so only one vertical dimension can be used to define the hole's location. See Figure 7-7.

Figure 7-7

TIP
Centerlines can be extended by first clicking them and then dragging an endpoint to a new location.

5 Use the Smart Dimension tool and add the horizontal and vertical dimensions as shown.

See Figure 7-8.

Figure 7-8

Note that the dimension values for the vertical dimensions are written horizontally. This is in compliance with ANSI standards. For this example, the Century Gothic font was made bold with 14-point height.

RULE

Keep dimension lines aligned and evenly spaced.

E Click the Hole Callout tool located on the Annotation panel, click the edge of the left hole, and move the cursor away from the hole.

Note that the leader arrow always points to the center of the hole.
7 Select a location off the surface of the part and click the mouse.

RULE

Never locate dimensions on the surface of the part.

See Figure 7-9. The word THRU is optional. Some companies require it and some do not.

Figure 7-9

E Go to the Dimension PropertyManager at the left of the screen, locate the cursor in the Dimension Text box, and delete the word THRU.

The text already in the box defines the hole's diameter.
E Move the cursor to the end of the existing text line, and type - 2 HOLES.

10 Click the green OK check mark.
Move the dimensions if needed to create neat, uniform dimensions.
See Figure 7-10.
11 Save the drawing.

Figure 7-10

Font is Century Gothic

Controlling Dimensions

Various aspects of dimensions can be edited, such as text height, arrow location, and text values.

1 Click the Options tool at the top of the screen.
The Documents Properties - Drafting Standard dialog box will appear. See Figure 7-11.

2 Click the Document Properties tab.

3 Click the Dimensions option.
The Document Properties - Dimensions dialog box can be used to edit the style and form of dimensions. It can also be used to change the way arrows are applied.

4 Click the Font option.
The Choose Font dialog box will appear. See Figure 7-11. This dialog box can be used to change the font, font style, and height of dimension text. The height of text can be measured in inches, millimeters, or points. A point refers to a space that equals about $1 / 72$ of an inch. (There are 12 points to a pica.)

Figure 7-11

An example of Times New Roman font

5 Click the Height: Units radio button and change the height to 0.250 in.

Note that the SolidWorks default font is Century Gothic.
E Click $\mathbf{O K}$, then $\mathbf{O K}$.
Figure 7-11 shows dimensions created using the Times New Roman font. Fonts for drawings should always be easy to read and not too stylistic.

Dimensioning Short Distances

Figure 7-12 shows an object that includes several short distances. We will start by using the standard dimensions settings and show how to edit them for a particular situation.
1 Use the Smart Dimension tool and add dimensions to the drawing.
Note that the arrows for the .50 dimension are aligned with the arrows for the 1.00 dimensions. Dimensions that are aligned in a single row are called chain dimensions. Note that the .25 dimension is crowded between the two extension lines.

RULE

Never squeeze dimension values. Dimension values should always be presented clearly and legible.

There are several possible solutions to the crowded .25 value.
Click and drag the .25 dimension to the right outside the extension lines.

3 Add the $\mathbf{4 . 0 0}$ overall dimension.
Dimensions that define the total length and width of an object are called overall dimensions. In this example the dimension 4.00 defines the total length of the part, so it is an overall dimension. Overall dimensions are located farthest away from the edge of the part.

The right edge of the part, the section below the .25 , does not need a dimension. The reason for this will be discussed in the next chapter on tolerancing.

TIP
To delete an existing dimension, click the dimension and press the key.

Figure 7-12 shows two other options for dimensioning. The first is the baseline method, in which all dimensions are taken from the same datum line. The second method is a combination of chain and baseline dimensions.

Figure 7-12
Dimension this shape

RULE

Never dimension the same distance twice. This is called double dimensioning.

Figure 7-13 shows an example of double dimensioning. The top edge distance is dimensioned twice: once using the $1.00+.50+1.00+.25+$ 1.25 dimensions, and a second time using the 4.00 dimension. One of the dimensions must be omitted. Double dimensioning will be explained in more detail in Chapter 8.

Figure 7-13
ERROR—double dimensions

The top edqe is dimensioned twice

Autodimension Tool

The Autodimension tool will automatically add dimensions to a drawing.

WARNING

The dimensions created using the Autodimension tool are not always in the best locations. The dimensions must be relocated to be in compliance with ANSI conventions.

Figure 7-14 shows a shape to be dimensioned using the Autodimension tool.

1 Click the Annotation tab, click the Smart Dimension tool, and click the Autodimension tab.

2 Select the Chain Scheme, define Edge 1 and Edge 2, click the Apply box, and click the OK check mark.

SolidWorks will automatically pick edges 1 and 2. If it does not, or the edges selected are not the ones you want, click the Edge box, then click the edge. The word Edge<1> should appear in the box.

Figure 7-14 shows the dimensions applied using the Autodimension tool. They are not in acceptable positions.
[3] Rearrange the dimensions to comply with standard conventions.

Figure 7-14

Chain dimensions created using the Autodimension tool

Chain dimensions in compliance with ANSI

Figure 7-15 shows the shape shown in Figure 7-14 dimensioned using the baseline scheme, which is created as follows.

Figure 7-15

Creating Baseline Dimensions

1 Access the Autodimension tool and select the Baseline Scheme.
\geq Select Edge 1 and Edge 2.
\square Click Apply.
4 Click the green OK check mark.
Figure 7-15 shows the dimensions created by the Autodimension tool and how the dimensions can be rearranged.

Creating Ordinate Dimensions

Figure 7-16
Figure 7-16 shows the object dimensioned using the Ordinate Scheme of the Autodimension tool. The Autodimension tool did better placing the ordinate dimensions in this instance, but if some of the created dimensions are located on the surface of the part, this would be a violation of the convention that dimensions should never be located on the surface of the part. Figure 7-16 shows how the ordinate dimensions were rearranged.

Ordinate dimensions in compliance with ANSI

7-4 Drawing Scale

Drawings are often drawn "to scale" because the actual part is either too big to fit on a sheet of drawing paper or too small to be seen. For example, a microchip circuit must be drawn at several thousand times its actual size to be seen.

Drawing scales are written using the following formats:
SCALE: $1=1$
SCALE: FULL
SCALE: $1000=1$
SCALE: $.25=1$

In each example the value on the left indicates the scale factor. A value greater than 1 indicates that the drawing is larger than actual size. A value smaller than 1 indicates that the drawing is smaller than actual size.

Regardless of the drawing scale selected, the dimension values must be true size. Figure $7-17$ shows the same rectangle drawn at two different scales. The top rectangle is drawn at a scale of $1=1$, or its true size. The bottom rectangle is drawn at a scale of $2=1$, or twice its true size. In both examples the 3.00 dimension remains the same.

Figure 7-17
SCALE: FULL

Figure 7-18
TOLERANCES UNLESS OTHERWISE STATED

$$
\begin{aligned}
X & \pm 1 \\
. X & \pm .1 \\
. X X & \pm .01 \\
. X X X & \pm .005 \\
X^{\circ} & \pm 1^{\circ} \\
. X^{\circ} & \pm .1^{\circ}
\end{aligned}
$$

7-5 Units

It is important to understand that dimension values are not the same as mathematical units. Dimension values are manufacturing instructions and always include a tolerance, even if the tolerance value is not stated. Manufacturers use a predefined set of standard dimensions that are applied to any dimensional value that does not include a written tolerance. Standard tolerance values differ from organization to organization. Figure 7-18 shows a chart of standard tolerances.

In Figure 7-19 a distance is dimensioned twice: once as 5.50 and a second time as 5.5000. Mathematically these two values are equal, but they are not the same manufacturing instruction. The 5.50 value could, for example, have a standard tolerance of $\pm .01$, whereas the 5.5000 value could have a standard tolerance of $\pm .0005$. A tolerance of $\pm .0005$ is more difficult and therefore more expensive to manufacture than a tolerance of $\pm .01$.

Figure 7-20 shows examples of units expressed in millimeters and in decimal inches. A zero is not required to the left of the decimal point for decimal inch values less than one. Millimeter values do not require zeros to the right of the decimal point. Millimeter and decimal inch values never include symbols; the units will be defined in the title block of the drawing.

Figure 7-19
These dimensions are not the same. They have different tolerance requirements.

Figure 7-20
Millimeters

Aligned Dimensions

Aligned dimensions are dimensions that are parallel to a slanted edge or surface. They are not horizontal or vertical. The units for aligned dimensions should be written horizontally. This is called unidirectional dimensioning.

Figure 7-21 shows the front, right-side, and isometric views of a part with a slanted surface. The dimensions were applied using the Smart Dimension tool. Note that the slanted dimension, aligned with the slanted surface, has unidirectional (horizontal) text. The hole dimension was created using the Note tool from the Annotation tab.

Hole Dimensions

Figure 7-22 shows an object that has two holes, one blind and one completely through. The object has filleted corners. In this section we will add dimensions to the views.

Figure 7-21

Dimensions were created using the Smart Dimension tool

Figure 7-22

Fillet radius $=15 R$

Dimension these views.

The holes were drawn using the Hole Wizard tool. The Hole Wizard tool will automatically create a conical point to a blind hole.

1 Use the Smart Dimension tool and locate the two holes.
See Figure 7-23. In general, dimensions are applied from the inside out; that is, starting with the features in the middle of the part and working out to the overall dimensions. Leader lines are generally applied last, as they have more freedom of location.
\geq Use the Linear Center Mark tool to draw a centerline between the two holes and use the Centerline tool to add the vertical centerline in the front and side views.

The centerline between the two holes indicates that the vertical 30 dimension applies to both holes.

NOTE

Centerlines should extend beyond the edges of the part. Centerlines can be extended by first clicking the centerline. Blue end boxes will appear. Click and drag the blue end boxes to a point beyond the edges of the part.

Figure 7-23

Figure 7-24

Use the Smart Dimension tool and add a dimension to one of the filleted corners.

See Figure 7-24.

TIP

The dimension options found on the Document PropertyManager will change all dimensions. Clicking a dimension and using the Dimension PropertyManager allows you to change just that dimension.

4 Click the fillet dimension again, go to the Dimension Text block on the Dimension PropertyManager, and type - 4 CORNERS as shown in Figure 7-25.

Figure 7-25

E Click OK, Apply, and OK.
E Use the Hole Callout tool on the Annotation panel and dimension the Ø16 hole.

The Ø16 hole goes completely through the part, so no depth specification is required. See Figure $7-26$. The word THRU is optional and may be removed.

7 Use the Hole Callout tool and Dimension the $\varnothing 25$ hole.

Figure 7-26

The hole callout will include the depth symbol (see Figure 7-27) and a depth value of $\mathbf{3 0}$ (see Figure 7-28).

Complete the dimensions.
See Figure 7-29.

Figure 7-28
Figure 7-27

Figure 7-29

NOTE

If the Smart Dimension tool had been used, the dimension would have to be edited in the Dimension Text area and the depth symbol and a numerical value added.

7-6 Dimensioning Holes and Fillets

A blind hole is a hole that does not go completely through an object. It has a depth requirement. Figure $7-30$ shows a $2.00 \times 2.00 \times 2.00$ cube with a blind $\varnothing .50 \times 1.18$ DEEP hole. It was created as follows.

Dimensioning a Blind Hole

1 Draw the block.
E Click the Hole Wizard tool.
See Figure 7-30.

Figure 7-30

Use the Smart Dimension tool to locate the hole

This dimension is not needed. It is included here to verify that the stated hole depth does not include the conical point.

3 Click the Hole tool in the Hole Type box. Define the hole using the ANSI Inch standard with a Size of 1/2 and a Blind Hole Depth of 1.18in.
(4) Click the Positions tab.

5 Locate the hole as shown.
The initial location is an approximation. Use the Smart Dimension tool to specify the exact location of the hole's centerpoint.
E Click the green OK check mark.
7 Save the drawing as Block, Blind.
3 Start a new Drawing document and create a front and a top orthographic view of the Block, Blind.
E Add dimensions to the views.
T0 Click the Annotation tab and click the Hole Callout option.
11 Click the edge of the hole, move the cursor away from the hole, define a location for the hole callout, and click the mouse. The hole callout dimension will initially appear as a rectangular box.

Change the height of the text font if necessary.
田 Save the drawing.
Note that the hole includes a conical point. Holes manufactured using twist drills will have conical points. The conical point is not included in the hole's depth dimension. A special drill bit can be used to create a flat-bottomed hole.

Figure 7-31 shows three different methods that can be used to dimension a blind hole.

Figure 7-31
Dimensions for holes with depth

Figure 7-32
Section views of holes with depth

Figure 7-32 shows three methods of dimensioning holes in section views. The single line note version is the preferred method.

Dimensioning Hole Patterns

Figure 7-33 shows two different hole patterns dimensioned. The circular pattern includes the note $\varnothing \mathbf{1 0}$ - $\mathbf{4}$ HOLES. This note serves to define all four holes within the object.

Figure 7-33 also shows a rectangular object that contains five holes of equal diameter, equally spaced from one another. The notation $\mathbf{5} \times \boldsymbol{\varnothing} \mathbf{1 0}$ specifies five holes of 10 diameter. The notation $\mathbf{4} \times \mathbf{2 0}(=\mathbf{8 0})$ means four equal spaces of 20 . The notation $(=\mathbf{8 0})$ is a reference dimension and is included for convenience. Reference dimensions are explained in Chapter 9.

Figure 7-33

Figure 7-34 shows two additional methods for dimensioning repeating hole patterns. Figure $7-35$ shows a circular hole pattern that includes two different hole diameters. The hole diameters are not noticeably different and could be confused. One group is defined by indicating letter \mathbf{A}; the other is dimensioned in a normal manner.

Figure 7-34

Figure 7-35

7-7 Dimensioning Counterbored and Countersunk Holes

Counterbored holes are dimensioned in the sequence of their manufacture. First the hole's diameter is given, then the counterbore diameter, then the depth of the counterbore.

Figure 7-36 shows a part that contains two counterbored holes; one goes completely through and the other is blind. Dimensions will be applied to both.

1 Create a $\mathbf{3 . 0 0} \times \mathbf{4 . 0 0} \times \mathbf{1 . 7 5}$ block.
E Click the Hole Wizard tool, click the Counterbore option, and insert the counterbored hole that goes completely through.
B Specify the Standard as ANSI Inch, the Type as Hex Screw, the Size as a 3/8 diameter, and the End Condition as Through All.

See Figure 7-37. SolidWorks will automatically select the diameter for the counterbored hole that will accommodate a Ø3/8 Hex Head Screw.

Depending on your default settings, the counterbored hole may have a small chamfer added. The countersink can be removed by removing the check mark in the Options box on the Hole Specification manager.

Figure 7-36

Figure 7-37

Locate the counterbore hole

Figure 7-37
(Continued)

Position the second hole

4. Position the hole using the given dimensions.

5 Add the second hole, setting the End Condition to Blind and $\mathbf{1 . 0 0}$ deep.
E. Position the hole using the given dimensions.

7 Save the block as Block, Cbore.
3 Start a new Drawing document and create a front and a top orthographic view of the Block, Cbore.
E. Click the Annotation tab and add all dimensions and centerlines other than the hole dimensions.

10 Click the Hole Callout tool.

See Figure 7-38.
11 Click the edge of each hole, move the cursor away from the hole, and click the mouse when a suitable location is found.

The counterbored hole's dimension note is interpreted as shown in Figure 7-38.

Figure 7-39 shows the Block, Cbore assembled with hex head screws inserted into the counterbored holes. SolidWorks will automatically generate the correct size counterbored hole for a specified screw. The counterbore depth will align the top of the screw head with the top surface of the part and will define a hole diameter that includes clearance between the fastener and the hole. In this example a clearance hole with a diameter of $\boldsymbol{\varnothing} .40$ was generated. The hole is . 02 larger than the specified .38 fastener diameter.

If clearance is required between the top of the screw and the top surface of the part, check the Head clearance box under Options in the Hole Specification section of the Hole Wizard PropertyManager. See Figure 7-40.

Figure 7-40
Click Hole Wizard and Hole Specification

The diameter of the counterbored hole can be made larger than the clearance generated by SolidWorks to allow for tool clearance. Tool clearance allowance increases the diameter of the counterbore so that it is large enough to allow a socket wrench to fit over the head of the fastener and still fit within the hole.

Counterbored Hole with Threads

Figure $7-41$ shows a $3.00 \times 4.00 \times 2.00$ block with two counterbored holes. Both holes are threaded.

1 Create the block.
E Click the Hole Wizard tool, select the Straight Tap option, and specify a 3/8-16 UNC thread that goes completely through.
[3 Click the Positions tab and locate the hole.
4 Click the green $\mathbf{O K}$ check mark.
This will locate a 3/8-16 UNC thread hole in the block. Now, we add the counterbore.

5 Click the top surface of the block and click the Sketch option.
E. Click the Circle tool and draw a $\varnothing .88$ circle on the top surface centered on the same centerpoint as the $\varnothing 3 / 8-16$ hole.

The dimensions for this example came from Figure 7-38.

Figure 7-41
(Continued)

Figure 7-41 (Continued)

Click the Features tab, click the Extruded Cut tool, and specify a cut depth of 0.27.

B Click the green OK check mark.

- Repeat the procedure, adding a second hole with a thread to a depth of $\mathbf{0 . 8 5}$.

TIP

For an internal thread, the thread depth is measured from the top surface of the part.

See Figure 7-42.

Figure 7-42

TD Save the block as Block, Threads.
11 Create a new Drawing document and create front and top orthographic views of the Block, Threads.

1 Add centerlines to the front view and add dimensions as shown.
See Figure 7-43.
$[6$ Use the Hole Callout tool and click the left threaded hole.
Do not click the outside of the counterbored hole. This will generate a note that includes only the counterbore. In Figure 7-42 the callouts 3/8-16 Tapped Hole appear on the front view. Remove the callouts from view by right-clicking the callouts and selecting the Hide option. The thread information will be included in the counterbore hole callout.

14 Locate the text and click the mouse.
The initial note may show the counterbore callout above the thread callout. Convention calls for the note to read in the sequence of manufacture. The threaded hole is cut first and then the counterbore is added; therefore, the thread callout should come before the counterbore callout.

15 Modify the callout to list the thread callout above the counterbore callout.

Access the Dimension Text box on the Dimension Manager by clicking the . 31 THRU ALL dimension, delete the first line of text, and replace the dimension with a new dimension, 3/8-16 UNC THRU.

Click the green OK check mark.
Click the threaded portion of the right hole.Locate the text and click the mouse.
19 Modify the callout as shown.
Figure 7-44 shows dimensioned counterbored holes using metric units. The Hole Callout tool was used to dimension the counterbored holes. Note that the hole's diameter is listed as $\varnothing 11$. The fastener size was specified as M10, and the $\varnothing 11$ hole is a clearance hole.

Figure 7-44

Dimensioning Countersink Holes

Countersink holes are used with flat head screws to create assemblies in which the fasteners do not protrude above the surfaces．

Figure 7－45 shows a part with two countersunk holes；one goes com－ pletely through，the other has a depth specification．

Figure 7－45

Hole Specification				（？）
险 Type		凹1 Positions		
ravorite				\checkmark
Hole Type				ヘ
Standard：				
ANSI Metric			\checkmark	
Type：				
Flat Head Screw－ANSI B18．6．7M			\checkmark	
Hole Specifications Size：				\wedge
M10			\checkmark	
Fit：				
Normal			\checkmark	
\square Show custom sizing				
End Condition				\wedge
	Thro	gh All	\checkmark	
Options				\wedge
\checkmark Head clearance				
皿年	2.00		$\stackrel{-1}{*}$	

Two countersunk holes

Draw a $40 \times 80 \times 60$ block．
Use the Hole Wizard tool，click the Countersink type，specify the ANSI Metric standard，select an M10 size for a flat head screw，and specify a hole that goes all the way through．Define a head clearance of $\mathbf{2 . 0 0 m m}$ ．

B Click the Positions tab and position the countersunk hole＇s center－ point as shown using the Smart Dimension tool．

4 Click the green $\mathbf{O K}$ check mark．
5 Click the Hole Wizard tool，click the Countersink type，specify the ANSI Metric standard，select an M10 size for a flat head screw，and specify a depth requirement of $\mathbf{2 5 . 0 0} \mathbf{m m}$ for a Blind hole．Define a head clearance of $\mathbf{2 . 0 0} \mathbf{m m}$ ．

E Click the Positions tab and locate the hole as shown.
7 Click the green OK check mark.
B Save the drawing as Block, CSink.

Dimensioning the Block

1 Create a new Drawing document with a front and a top orthographic view of the Block, CSink.
\geq Use the Smart Dimension tool and add the appropriate dimensions.
3 Use the Center Mark tool to add a centerline between the two holes indicating they are aligned.

4 Click the Annotation tab, click the Hole Callout tool, and dimension the two countersunk holes.

See Figure 7-46.

Figure 7-46

7-8 Angular Dimensions

Figure 7-47 shows a model that includes a slanted surface and dimensioned orthographic views of the model. The dimension values are located beyond the model between two extension lines. Locating dimensions between extension lines is preferred to locating the value between an extension line and the edge of the model.

Figure 7-47

Figure 7-48 shows a shape that includes a slanted surface dimensioned in two different ways. The shape on the left uses an angular dimension; the one on the right does not. Both are acceptable.
Figure 7-48

There are different ways to dimension the same model. Do not include more dimensions than are needed.

Figure 7-49 shows two objects dimensioned using angular dimensions. One has an evenly spaced hole pattern; the other has an uneven hole pattern.

Figure 7-49

Figure 7-49
(Continued)

Click and hide the center marks

Figure 7-49
(Continued)

Dimensioning an Evenly Spaced Hole Pattern

1 Start a new drawing of the object and create a view as shown in Figure 7-49.

The object will automatically include circular centerlines. The circular centerline is called a bolt circle. Note that the center marks are not horizontal and vertical but point at the centerpoint of the pattern.

Circular centerlines and center marks can be created using the Manual Insert Options located on the Center Mark PropertyManager.
E Add dimensions to the pattern and the object.
The six holes are evenly spaced and are all the same size, so only one angular dimension and a note are needed, as shown. All the holes are the same distance from the centerpoint, so the circular centerline needs only one dimension that will include the six holes.

The size and text position of the angular dimension can be edited using the System tool, Document Properties, Dimensions, Angle, and entering edits.

Figure 7-49 shows a similar object but with an uneven hole pattern. Each hole must be dimensioned separately.

When the drawing view first appears on the screen, all the center marks are horizontal and vertical. A circular centerline pattern is preferred. Click each center mark and Hide the mark. Click the Center Mark tool and the Circular Center Mark tool located under the Manual Insert Options, and click each hole. A circular centerline pattern will appear. The shape can then be dimensioned using the circular pattern.

7-9 Ordinate Dimensions

Ordinate dimensions are dimensions based on an XY coordinate system. Ordinate dimensions do not include extension lines, dimension lines, or arrowheads but simply horizontal and vertical leader lines drawn directly from the features of the object. Ordinate dimensions are particularly useful when dimensioning an object that includes many small holes.

Figure 7-50 shows a part that is to be dimensioned using ordinate dimensions. Ordinate dimensions' values are calculated from the XY origin, which, in this example, is the lower-left corner of the front view of the model.

Figure 7-50

Creating Ordinate Dimensions

See Figure 7-51.
1 Start a new Drawing document and create a top orthographic view of the part.

Use the dimensions shown in Figure 7-52 to create the drawing.
\geq Click and extend the center marks and draw centerlines between the four corner holes.

Figure 7-51

5 Click the arrowhead located under the Smart Dimension tool and click the Horizontal Ordinate Dimension option.

4 Click the lower-left corner of the part to establish the origin for the dimensions.

5 Move the cursor away from the origin and define a location for the " 0 " dimension.

All other horizontal dimensions will align with this location.
E. Click the lower portion of each hole's vertical centerline and the lower-right corner of the part.

7 Click the arrowhead located under the Smart Dimension tool and click the Vertical Ordinate Dimension option.

3 Click the lower-left corner of the part to establish the origin for the dimensions.
E. Click the left portion of each hole's horizontal centerline and the upper-left corner of the part.
10 Add dimensions for the holes.
Figure 7-52 shows the dimensioned part.
Figure 7-52

7-10 Baseline Dimensions

Baseline dimensions are a series of dimensions that originate from a common baseline or datum line. Baseline dimensions are very useful because they help eliminate the tolerance buildup that is associated with chain-type dimensions.

Creating Baseline Dimensions

See Figure 7-53.
1 Start a new Drawing document and create a top orthographic view of the part.
? Use the Linear Center Mark tool and add connection centerlines between the four corner holes.

3 Click the arrowhead under the Smart Dimension tool and click the Baseline Dimension option.

4 Click the left vertical edge of the part and the lower portion of the first vertical centerline.

This will establish the baseline.
E. Click the lower portion of each vertical centerline and the right vertical edge line and locate the dimensions.

Figure 7-53

NOTE

The distance between the dimension lines can be changed in the Offset distances box under Dimensions on the Document Properties tab of the Options tool.

E Click the arrowhead under the Smart Dimension tool and click the Baseline Dimension option.

7 Click the lower horizontal edge of the part and the left end of the first horizontal centerline.

3 Click the left end of each horizontal centerline and the right top horizontal edge line.

The alignment of the vertical dimension lines can be changed by right-clicking the individual dimension and selecting the Break Alignment option.
g Add the hole dimensions.

Hole Tables

Hole tables are a method for dimensioning parts that have large numbers of holes where standard dimensioning may be cluttered and difficult to read. See Figure 7-54.

Figure 7-54

1 Start a new Drawing document and create a top orthographic view of the part.
? Use the Linear Center Mark tool and add connection centerlines between the four corner holes.

3 Click the Annotation tab, click Tables, and click Hole Table.
4 Click the lower-left corner of the part to establish an origin.
E Click each hole.
As the holes are clicked they should be listed in the Holes box located in the Hole Table PropertyManager.
E Click the green $\mathbf{O K}$ check mark and locate the hole table.
7 Add the overall dimensions.
3 Move the hole tags as needed to present a clear, easy-to-read drawing.
In this example all tags were located to the upper-right of the holes they define. Tables can be edited using the instructions presented in Section 5-11 for BOMs.

7-11 Locating Dimensions

There are eight general rules concerning the location of dimensions. See Figure 7-55.
Figure 7-55

DO NOT LOCATE DIMENSIONS ON THE SURFACE OF THE OBJECT

Align groups of dimensions
 farthest away from the object

1 Locate dimensions near the features they are defining.
E Do not locate dimensions on the surface of the object.
3 Align and group dimensions so that they are neat and easy to understand.

4 Avoid crossing extension lines.
Sometimes it is impossible not to cross extension lines because of the complex shape of the object, but whenever possible, avoid crossing extension lines.

5 Do not cross dimension lines.
E Locate shorter dimensions closer to the object than longer dimensions.
7 Always locate overall dimensions the farthest away from the object.
3 Do not dimension the same distance twice. This is called double dimensioning and will be discussed in Chapter 8 in association with tolerancing.

7-12 Fillets and Rounds

Fillets and rounds may be dimensioned individually or by a note. In many design situations all the fillets and rounds are the same size, so a note as shown in Figure 7-56 is used. Any fillets or rounds that have a different radius from that specified by the note are dimensioned individually.

Figure 7-56

7-13 Rounded Shapes-Internal

Internal rounded shapes are called slots. Figure 7-57 shows three different methods for dimensioning slots. The end radii are indicated by the note $\mathbf{R - 2}$ PLACES, but no numerical value is given. The width of the slot is dimensioned, and it is assumed that the radius of the rounded ends is exactly half of the stated width.

Figure 7-57

7-14 Rounded Shapes-External

Figure 7-58 shows two shapes with external rounded ends. As with internal rounded shapes, the end radii are indicated, but no value is given. The width of the object is given, and the radius of the rounded end is assumed to be exactly half of the stated width.

Figure 7-58

The second example shown in Figure 7-58 shows an object dimensioned using the object's centerline. This type of dimensioning is done when the distance between the holes is more important than the overall length of the object; that is, the tolerance for the distance between the holes is more exact than the tolerance for the overall length of the object.

The overall length of the object is given as a reference dimension (100). This means the object will be manufactured based on the other dimensions, and the 100 value will be used only for reference.

Objects with partially rounded edges should be dimensioned as shown in Figure $7-58$. The radii of the end features are dimensioned. The centerpoint of the radii is implied to be on the object centerline. The overall dimension is given; it is not referenced unless specific radii values are included.

7-15 Irregular Surfaces

There are three different methods for dimensioning irregular surfaces: tabular, baseline, and baseline with oblique extension lines. Figure 7-59 shows an irregular surface dimensioned using the tabular method. An XY axis is defined using the edges of the object. Points are then defined relative to the XY axis. The points are assigned reference numbers, and the reference numbers and XY coordinate values are listed in chart form as shown.

Figure 7-59

STATION	1	2	3	4	5	6
X	0	20	40	55	62	70
Y	40	38	30	16	10	0

Figure 7-60

Figure 7-61

It is considered poor practice to use a centerline as a baseline. Centerlines are imaginary lines that do not exist on the object and would make it more difficult to manufacture and inspect the finished objects.

Baseline dimensioning is very common because it helps eliminate tolerance buildup and is easily adaptable to many manufacturing processes.

7-16 Polar Dimensions

Polar dimensions are similar to polar coordinates. A location is defined by a radius (distance) and an angle. Figure 7-61 shows an object that includes polar dimensions. The holes are located on a circular centerline, and their positions from the vertical centerline are specified using angles.

Figure 7-62 shows an example of a hole pattern dimensioned using polar dimensions.

Figure 7-62

7-17 Chamfers

Chamfers are angular cuts made on the edges of objects. They are usually used to make it easier to fit two parts together. They are most often made at 45° angles but may be made at any angle. Figure $7-63$ shows two objects with chamfers between surfaces 90° apart and two examples between surfaces that are not 90° apart. Either of the two types of dimensions shown for the 45° dimension may be used. If an angle other than 45° is used, the angle and setback distance must be specified.

Figure 7-63

Figure 7-64 shows two examples of internal chamfers. Both define the chamfer using an angle and diameter. Internal chamfers are very similar to countersunk holes.

7-18 Symbols and Abbreviations

Symbols are used in dimensioning to help accurately display the meaning of the dimension. Symbols also help eliminate language barriers when reading drawings.

Abbreviations should be used very carefully on drawings. Whenever possible, write out the full word, including correct punctuation. The Dimension PropertyManager Value tab includes a group of symbols and words commonly used on technical drawings. Figure 7-65 lists several standard abbreviations used on technical drawings.

Figure 7-65

$$
\begin{aligned}
\text { AL } & =\text { Aluminum } \\
\text { CBORE } & =\text { Counterbore } \\
\text { CRS } & =\text { Cold Rolled Steel } \\
\text { CSK } & =\text { Countersink } \\
\text { DIA } & =\text { Diameter } \\
\text { EQ } & =\text { Equal } \\
\text { HEX } & =\text { Hexagon } \\
\text { MAT'L } & =\text { Material } \\
\text { R } & =\text { Radius } \\
\text { SAE } & =\text { Society of Automotive } \\
& \text { Engineers } \\
\text { SFACE } & =\text { Spotface } \\
\text { ST } & \text { Steel } \\
\text { SQ } & \text { Square } \\
\text { REQD } & =\text { Required }
\end{aligned}
$$

Figure 7-66 shows a list of symbols available in the Dimension PropertyManager Value tab.

Figure 7-66

TIP
To access the Dimension PropertyManager Value tab, click an existing dimension.

More symbols are available by clicking the More box. A list of available symbols will appear. Click a new symbol. A preview of the selected symbol will appear. Click OK and the symbol will appear on the drawing next to the existing symbol.

7-19 Symmetrical and Centerline Symbols

An object is symmetrical about an axis when one side is the exact mirror image of the other. Figure $7-67$ shows a symmetrical object. The symbol of two short parallel lines or the note OBJECT IS SYMMETRICAL ABOUT THIS AXIS (centerline) may be used to designate symmetry.

If an object is symmetrical, only half the object needs to be dimensioned. The other dimensions are implied by the symmetry note or symbol.

Figure 7-67

Figure 7-68

The centerline is slightly different from the axis of symmetry. An object may or may not be symmetrical about its centerline. See Figure 7-67. Centerlines are used to define the center of both individual features and entire objects. Use the centerline symbol when a line is a centerline, but do not use it in place of the symmetry symbol.

7-20 Dimensioning to a Point

Curved surfaces can be dimensioned using theoretical points. See Figure 7-68. There should be a small gap between the surface of the object and the lines used to define the theoretical point. The point should be defined by the intersection of at least two lines.

There should also be a small gap between the extension lines and the theoretical point used to locate the point.

7-21 Dimensioning Section Views

Section views are dimensioned. See Figure 7-69. The section lines should be drawn at an angle that allows the viewer to clearly distinguish between the section lines and the extension lines.

Figure 7-69

SECTION C-C

7-22 Dimensioning Orthographic Views

Dimensions should be added to orthographic views where the features appear in contour. Holes should be dimensioned in their circular views. Figure 7-70 shows three views of an object that has been dimensioned.

Figure 7-70

The hole dimensions are added to the top view, where the hole appears circular. The slot is also dimensioned in the top view because it appears in contour. The slanted surface is dimensioned in the front view.

The height of surface A is given in the side view rather than run along extension lines across the front view. The length of surface A is given in the front view. This is a contour view of the surface.

It is considered good practice to keep dimensions in groups. This makes it easier for the viewer to find dimensions.

Be careful not to double dimension a distance. A distance should be dimensioned only once. If a 30 dimension were added above the 25 dimension on the right-side view, it would be an error. The distance would be
double dimensioned: once with the $25+30$ dimension, and again with the 55 overall dimension. The $25+30$ dimensions are mathematically equal to the 55 overall dimension, but there is a distinct difference in how they affect the manufacturing tolerances. Double dimensions are explained more fully in Chapter 8.

Dimensions Using Centerlines

Figure 7-71 shows an object dimensioned from its centerline. This type of dimensioning is used when the distance between the holes relative to each other is critical.

Figure 7-71

Chapter Projects

Project 7-1:

Measure and redraw the shapes in Figures P7-1 through P7-24. The dotted grid background has either .50in. or 10 mm spacing. All holes are through holes. Specify the units and scale of the drawing. Use the Part template to create a model. Use the grid background pattern to determine the dimensions. Use the Drawing template to create the orthographic view shown. Use the Smart Dimension tool to dimension the view.
A. Measure using millimeters.
B. Measure using inches.

All dimensions are within either .25 in . or 5 mm . All fillets and rounds are R.50in., R.25in. or R10mm, R5mm.

Figure P7-1

THICKNESS: 40 mm 1.50in.

Figure P7-2

THICKNESS:
20 mm
.75 in .

Figure P7-4

Figure P7-3

THICKNESS:
35mm
1.25 in .

Figure P7-5

THICKNESS:
10 mm
.50in.

THICKNESS:
15 mm
.50 in .

Figure P7-6

THICKNESS:
5 mm
.25in.

Figure P7-7

THICKNESS:
12 mm
.50 in .

Figure P7-8

THICKNESS:
25mm
1.00 in .

Figure P7-9

Figure P7-10

THICKNESS:
20 mm
.75 in .

THICKNESS:
5 mm
.25in.

Figure P7-11

THICKNESS:
18 mm
.625in.

Figure P7-12

Figure P7-13

THICKNESS:
10 mm
.25in.

Figure P7-14

THICKNESS:
8mm
.25in.

Figure P7-15

THICKNESS:
20 mm
.75 in .

Figure P7-16

THICKNESS:
20mm
.75 in .

Figure P7-17

THICKNESS:
20 mm
.75 in .

Figure P7-18

THICKNESS:
30 mm
1.375 in .

Figure P7-19

THICKNESS:
12 mm
.30in.

Figure P7-20

THICKNESS:
5mm
.125 in .

Figure P7-21

Figure P7-22

Figure P7-23

Figure P7-24

THICKNESS:
15 mm
.625in

Project 7-2:

Use the Part template to draw models of the objects shown in Figures P7-25 through P7-42.

1. Create orthographic views of the objects. Dimension the orthographic views.
2. Create 3D models of the objects. Dimension the 3D models.

Figure P7-25
MILLIMETERS
SPLIT BLDCK

Figure P7-26
MILLIMETERS

Figure P7-27
INCHES

Figure P7-29
MILLIMETERS

Figure P7-31
MILLIMETERS

Figure P7-28
MILLIMETERS

Figure P7-30
INCHES

Figure P7-32
INCHES

Figure P7-33
MILLIMETERS

Figure P7-35
MILLIMETERS

Figure P7-36
MILLIMETERS
Figure P7-34
INCHES

Figure P7-37
INCHES

Figure P7-38
MILLIMETERS

NOTE: ALL FILLETS AND ROUNDS: R3

Figure P7-39
MILLIMETERS

Figure P7-40 MILLIMETERS

Figure P7-41
MILLIMETERS

Figure P7-42
MILLIMETERS

Project 7-3:

1. Draw a 3D model from the given top orthographic and section views in Figure P7-43.
2. Draw a top orthographic view and a section view of the object and add dimensions.

Figure P7-43
MILLIMETERS

Figure P7-44
MILLIMETERS

Project 7-4:

1. Draw a 3D model from the given top orthographic and section views in Figure P7-44.
2. Draw a top orthographic view and a section view of the object and add dimensions.

Project 7-5:

1. Draw a 3D model from the given top orthographic and section views in Figure P7-45.
2. Draw a top orthographic view and a section view of the object and add dimensions.

Project 7-6:

1. Draw a 3D model from the given top orthographic and section views in Figure P7-46.
2. Draw a top orthographic view and a section view of the object and add dimensions.

Figure P7-45
INCHES

Figure P7-46
INCHES

Project 7-7:

Figure P7-47
MILLIMETERS
Redraw the given shapes in Figures P7-47 through P7-49 and dimension them using the following dimension styles.

1. Baseline
2. Ordinate
3. Hole Table

Figure P7-48 MILLIMETERS

Figure P7-49
INCHES

Numerics

2D shape
creating, 28-31
drawing, 20-23
3 point arc, sketching, 69-70
3 point arc slot, sketching, 64
3 Point Arc Slot tool, 64
3 point center rectangle, sketching, 58-59
3 point corner rectangle, sketching, 57-58
3D model, creating, 25-26

A

abbreviations, 498-499
accessing
Design Library, 390-392
Mouse Gestures settings, 45-46
activating, S Key, 48
addendum, 655
adding
columns to a BOM (bill of materials), 332-333
datum indicator, 563-564
dimensions to a drawing, 450-454
plus and minus tolerances, 524-525
screw sets to a collar, 409-410
text, 85
text to a feature, 86
aligned dimensions, 462
aligned section view, 258-259
angular dimensions, 448, 480-484
angular tolerance, creating, 526-528
angularity tolerances, 569-570
Animate Collapse tool, 339-340
animating, gears, 661-662, 689-690
Annotation tools
Auto Balloon, 327
Autodimension, 457-459 creating baseline dimensions, 459 creating ordinate dimensions, 460
Balloon, 326-328
Datum Feature, 563, 564
Geometric Tolerance, 565-566
Note tool, 337-338
Smart Dimension, 6, 8, 11-12, 17, 23, 387, 451, 457
ANSI (American National Standards Institute). See also English units; inch values; metric units
dimensioning terminology and conventions, 448-449
orthographic view standards, 229
thread standards, 383-384
threads, 381, 392
application blocks, 339
applying, surface control symbols, 547-549
arcs

3 point, sketching, 69-70
centerpoint, sketching, 67-68
tangent, sketching, 68-69
Assembly tools
Animate Collapse, 339-340
Clearance Verification, 353, 355-356
Exploded View, 321-324
Interference Detection, 349-350
Mate, 311-316, 318-320
Motion Study, 344-346
Mouse Gestures, 310-311
Move Component, 308-309
Rotate Component, 309-310
assembly/ies
application blocks, 339
BOM (bill of materials), 328-329
adding columns, 332-333
changing the font, 334-335
changing the width of columns and
rows, 333-334
editing, 330-331
bottom-up, 316-321
exploded isometric, creating, 321-324
Fix option, 308
gear, 674-675
adding bearings, 663-666
animating the gears, 661-662
creating, 657-661
interference
detecting, 350-352
removing, 353-355
motion, viewing, 346
numbers, 326-328
origin, 307
parts, editing, 347-349
release block, 338
revision letters, 336
Rotator, 341-344
sleeve bearings, 621-622
standard fit tolerance, applying, 634-635
starting, 305-308
title block, 335, 336-338
assigning
tolerances, 549-550
tools to the Mouse Gestures wheel, 46-47
Auto Balloon tool, 327
Autodimension tool, 457-459
auxiliary views, drawing, 262-266

B

backlash, 655
ball bearings, 619, 626-628
Balloon tool, 326-328
baseline dimensions, 459, 488-490, 529-532
basic dimensions, 574
bearings, 628
adding to gear assemblies, 663-666
applying a clearance fit tolerance, 632-633
ball, 619, 626-628
clearance fits, 628-629
fits, 628
hole basis, 629
interference fit, 630-631
manufactured, 631-632
clearance fit, 632
interference fit, 633
shaft basis, 629-630
sleeve, 619, 620 drawing, 620-621
using in an assembly drawing, 621-622
from the Toolbox, 623-626
bilateral tolerance, 519-520
blind holes, 205, 466
creating, 143-146
dimensioning, 466-471
threaded, inch values, 387-388
bolt threads, 396
BOM (bill of materials), 328-329
adding columns, 332-333
changing the font, 334-335
changing the width of columns and rows, 333
editing, 330-331, 683-686
bottom-up assemblies, 316-321
broken views, 259-261

C

callouts
ball bearings, 626
fit, 540-541
thread, 382-383
CD (center distance), 655
center rectangle, sketching, 56-57
Centerline tool, 110-111
centerlines
dimensions, 502
extending, 463
symbol, 500
centerpoint arc, sketching, 67-68
centerpoint arc slot, sketching, 65-66
centerpoint straight slot, sketching, 63
Centerpoint Straight Slot tool, 63
chain dimensions, 529-531
Chamfer tool, 153
defining a chamfer using an angle and a distance, 153-154
defining a chamfer using two distances, 154-155
defining a vertex chamfer, 155-156
chamfer/s
dimensioning, 497-498
sketching, 82
using angle-distance, 83
using distance-distance - equal distance, 82
using distance-distance - not equal distance, 84
vertex, 155-156
changing
existing dimension, 10-11
style of a section view, 257
text font and size, 85-86
units, 15
Circle tool, 9, 52-54, 141-142
circle/s
changing an existing dimension, 10-11
under defined, 11
defining the diameter, 53-54
fully defined, creating, 8-10
locational value, 11
perimeter
sketching, 66-67
sketching tangent to three lines, 55-56
sketching using three points, 54-55
sketching, 52-54
circular pitch, 655
Circular Sketch Pattern tool, 176-177
circular sketch patterns, creating, 97-99
circular thickness, 655
circularity tolerance, 559-560
class, threads, 383-384
clearance, 655
clearance fit, 539, 628-629, 632-633
Clearance Verification tool, 353, 355-356
closed spline, 72
Coincident relation icon, 5
colors, 8
Column Width dialog box, 333
column/s
adding to BOM (bill of materials), 332-333
width, changing on a BOM (bill of materials), 333
compound lines, 237
compression springs, 181-182
Concentric relation icon, 23
conic section, sketching, 79-80
controlling, dimensions, 454-455
copying, entities, 100-102
counterbored holes, dimensioning, 469-478
countersink holes, dimensioning, 479-480
creating
2D shapes, 28-31
3D models, 25-26
angular tolerances, 526-528
baseline dimensions, 459, 488-490
broken views, 260-261
exploded isometric drawings, 324-326
fillets, with variable radius, 148-149
gears, 656-657, 690-691
ground ends, 183-184
holes, 32-36, 141-142
blind, 143-146
inward draft sides, 132-133
keyseats, 671-674, 678-679
limit tolerances, 525-526
linear sketch pattern, 95-97
mirror entities, 92-94
ordinate dimensions, 460, 486-488
outward draft, 133-134
plus and minus tolerances, 522-523
positional tolerance, 575-578
reference plane, 161-165
crest, 381
Curve Driven Pattern tool, 208-213
curved surfaces, dimensioning to a point, 500
Customize dialog box, 45, 49
customizing, S Key toolbar, 49-51
cutout, editing, 196-197
cylinders. See also sleeve bearings
creating a slanted surface, 200
drawing, 198-200
hole, adding, 203-205
straightness tolerance, 556
threaded holes, adding, 405-409
vertical slot, adding, 201-203
cylindricity tolerance, 560

D

datum, 561-563
indicator, adding, 563-564
surfaces, 545
Datum Feature tool, 563, 564
debossed text, creating, 191-194
dedendum, 655
under defined entities, 11
Design Library, 381
accessing, 390-392
Limits and Fits option, 539
nuts, 394-396
threads, 383
washers, 393-394
detail view, drawing, 261-262
detailed representation, threads, 384
detecting, interference, 350-352
dialog box
Column Width, 333
Customize, 45, 49
Documents Properties - Drafting Standard, 454
Formatting, 330, 336
Make Dimension Driven?, 13
Modify, 10, 29
New SolidWorks Document, 240, 672
Properties/Geometric Tolerance, 564
S Key, 47
Smart Fastener, 399
diameter
calculating, 535-538
clearance fit, 539
defining, 53-54
fixed condition, 551-552
floating condition, 550-551
interference fit, 539, 540
major, 382
minor, 381
outside, 655
pitch, 655, 681-683
root, 655
transition fit, 539
diametral pitch, 655
Dimension Property Manager, 464
Dimension Text box, adding plus and minus symmetric tolerances, 524-525
dimensions and dimensioning, 1, 7 .
See also tolerances
adding to a drawing, 450-454
aligned, 462
angular, 448, 480-484
baseline, 459, 488-490, 529-532
basic, 574
blind holes, 466-471
chain, 529-531
chamfers, 497-498
changing, 10-11
circle, 12-13
common errors to avoid, 449-450
controlling, 454-455
conventions, 449
counterbored holes, 469-478
countersink holes, 479-480
datum, 561-563
designing a hole given a fastener size, 553
double, 457, 493, 528-529
drawing scale, 460-461
driving, 13
evenly spaced hole pattern, 484-485
extension lines, 448, 449
hole patterns, 468-469
hole tables, 490-491
holes, 462-466
irregular surfaces, 495-496
leader lines, 448, 449
linear, 448
lines, 448
locating, 492-493
nominal size, 535-537, 549
ordinate, 460, 485, 486-488
orthographic views, 501-502
overall, 455
to a point, 500
polar, 496-497, 535
rectangular, 533
reference, 13, 495
section views, 501
short distances, 455-457
slots, 493-494
standard tolerances, 461
symbols and abbreviations, 498-499
unidirectional, 462
units, 14-15, 461-462
using centerlines, 502
values, 455, 461
document/s
part
sketch plane, selecting, 3-8 starting, 2-3
saving, 27-28
Documents Properties - Drafting Standard dialog box, 454
double dimensioning, 457, 493, 528-529
Draft tool, 172-173
drawing/s. See also assembly/ies
2D shape, 20-23
abbreviations, 498-499
adding dimensions, 450-454
auxiliary view, 262-266
callouts, thread, 382-383
cylinders, 198-200
detail views, 261-262
fit callout, adding, 540-541
helix, 179-180
lay symbol, adding, 548-549
orthographic view, 240-248
scale, 460-461
section views, 252-257
sheet sizes, 241
sleeve bearings, 620-621
springs, 180-181
extension, 187-191
torsional, 184-187
symbols, 498-499
threads
blind holes, 387-388
internal, 384-387
driving dimension, 13

E

editing, 195
BOM (bill of materials), 330-331, 683-686
cutout, 196-197
dimensions, 454-455
holes, 195-196
parts within an assembly, 347-349
splines, 73
title block, 336-338
ellipse
conic section, sketching, 79-80
partial, sketching, 75-76
sketching, 74-75
English units, 14-15, 542. See also metric units
entities
center, 110-111
copying, 100-102
under defined, 11
extending, 89-90
fully defined, 11-13
mirror, creating, 92-94
moving, 18, 99-100
rotating, 102-103, 151-153
scaling, 103-104
Sketch Relations, 24-25
splitting, 106-109
stretching, 104-106
trimming, 88
evenly spaced hole pattern, dimensioning, 484-485
exam preparation, 715
creating assemblies, 747-749
drawing auxiliary views, 735-737
drawing break views, 737-738
drawing larger objects, 727-734
drawing lines and views, 744-747
drawing profiles, 717-721
drawing section views, 739-741, 742-743
drawing small 3D objects, 721-726
working with cubes, 716-717
Exit Sketch mode icon, 17
exploded isometric assembly, creating, 321-324
exploded isometric drawing, creating, 324-326
Exploded View tool, 321-324, 622
extending
centerlines, 463
entities, 89-90
extension lines, 448, 449
extension springs, drawing, 187-191
Extrude Boss/Base tool, 129-132, 134-136
creating an outward draft, 133-134
creating inward draft sides, 132-133
extrusion depth, defining, 132
Extruded Cut tool, 137-138, 141-142, 203

F
face width, 655
fasteners, 399-400, 553
fixed, 582-584
fixed condition, 551-552
floating, 579-582
floating condition, 550-551
screw sets, 404-405
features, text
adding, 86
wrapping, 87
Features tools, 3
Chamfer, 153
defining a vertex chamfer, 155-156
defining using an angle and a distance, 153-154
defining using two distances, 154-155
Circular Sketch Pattern, 176-177
Curve Driven Pattern, 208-213
Draft, 172-173
Extrude Boss/Base, 129-132, 134-136
creating an outward draft, 133-134
creating inward draft sides, 132-133
extrusion depth, defining, 132
Extruded Cut, 137-138, 203
Fillet, 146-148
creating a fillet with a variable radius, 148-149
Face Fillet option, 150-151
Full Round Fillet option, 151-153
Hole Wizard, 138-142, 462, 466-471 creating a blind hole, 143-146 dimensioning counterbored and countersunk holes, 469-480 internal threads, drawing, 384-387 threaded blind holes, drawing, 387-388
threaded hole, drawing on the side of a cylinder, 406-409
Linear Sketch Pattern, 174-175
Lofted Boss/Base, 165-168
Mirror, 177-179
Revolved Boss/Base, 156-159
Revolved Cut, 159-160
Shell, 168-169
Swept Boss/Base, 170-172
Wrap, 191-194
Fillet tool, 146-148
Face Fillet option, 150-151
Full Round Fillet option, 151-153
fillets, 146-148
creating with a variable radius, 148-149
dimensioning, 493
sketching, 81
first-angle projection, orthographic views, 229-230, 243, 266-268
fit/s, 628
callout, adding to a drawing, 540-541
clearance, 539, 628-629, 632-633
interference, 539, 540, 630-631
locational, 630
metric, 635
press, 633
standard, 540, 634-635
tables, 542
transition, 539
fixed condition, 551-552
fixed fasteners, 582-584
flatness tolerances, 554-555
floating condition, 550-551
floating fasteners, 579-582
font
changing, 85-86
changing on a BOM (bill of materials), 334-335
Formatting dialog box, 330, 336
formulas, gear, 655
fully defined entities, 8-10, 11-13

G

gear/s
addendum, 655
animating, 689-690
assemblies, 674-675
adding bearings, 663-666
animating the gears, 661-662
creating, 657-661
backlash, 655
CD (center distance), 655
circular pitch, 655
circular thickness, 655
clearance, 655
creating, 656-657
dedendum, 655
diametral pitch, 655
face width, 655
formulas, 655
hub
adding, 666-667
threaded hole, adding, 668-671
keyseat
creating, 671-674, 678-679
creating in the shaft, 676-678
creating the arc-shaped end,

679-680

metric, 690-691
module, 655
number of teeth, 655
outside diameter, 655
parallel keys, 675-676
pitch diameter, 655, 681-683
preferred pitch, 655
pressure angle, 655
rack and pinion, 687-689
ratios, 663
root diameter, 655
set screws, 666-667
spur, 681
train, 663
whole depth, 655
working depth, 655
Geometric Tolerance tool, 565-566
geometric tolerances, 554, 561, 584-587
ground ends, creating, 183-184

H

helix, drawing, 179-180
hexagon, sketching, 70-72
hidden lines, 234-235
Hole Callout tool, 477
Hole Wizard tool, 32, 138-142, 462, 466-471
internal threads, drawing, 384-387
threaded blind holes, inches, 387-388
threaded hole, drawing on the side of a cylinder, 406-409
hole/s, 32, 203-205
basis, 629-630
blind, 143, 205, 466 dimensioning, 466-471 threaded, 387-388
counterbored, dimensioning, 469-478
countersink, dimensioning, 479-480
creating, 32-36, 141-142
designing given a fastener size, 553
dimensions, 462-466
editing, 195-196
evenly spaced pattern, dimensioning, 484-485
locations, 533-535
patterns, dimensioning, 468-469
shaft tolerance, calculating, 535-537
tables, 490-491
threaded adding to a gear's hub, 668-671
adding to the side of a cylinder, 405-409
tolerance, calculating, 538
virtual condition, 579
hub, gear, 666-667, 668-671
I
icon/s
Coincident relation, 5
Concentric relation, 23
Design Library, 391
Exit Sketch mode, 17
Line, 6
origin, hiding/showing, 321
Sketch toolbar, 3
inch values
standard fits, 540
threaded blind holes, 387-388
zero limit, 521
interference
detecting, 350-352
fit, 539, 540, 630-631, 633
removing, 353-355
Interference Detection tool, 349-350
internal threads
inches, 384-388
length, 401-404
metric, 388-390
threaded blind holes, 387-388
irregular surfaces, dimensioning, 495-496
isometric drawing, creating, 324-326

J-K

Jog Line tool, 110
keys, 671, 675-676
keyseat, 671
creating, 671-674, 678-679
creating in the shaft, 676-678
creating the arc-shaped end, 679-680

L

lay symbol, adding to a drawing, 548-549
leader lines, 448, 449
length
internal thread, 401-404
thread, 392-397
limit tolerance, 525-526
Line tool, 5, 22, 28, 43-44
linear dimensions, 448
Linear Sketch Pattern tool, 174-175
linear sketch patterns, creating, 95-97
linear tolerance, 533
lines
compound, 237
hidden, 234-235
offset, sketching, 91-92
precedence, 235-236
locating dimensions, 492-493
locational fit, 630
locational tolerance, 567
locational value, 11
Lofted Boss/Base tool, 165-168

M

major diameter, 382
Make Dimension Driven? dialog box, 13
Make Fixed tool, 24
manufactured bearings, 631-632, 633
Mate tool, 311-316, 318-320
metric units, 14-15, 635
fit tables, 542
gears, 690-691
threads, 382, 388-390
minor diameter, 381
mirror entities, creating, 92-94
Mirror tool, 177-179
MMC (maximum material condition), 557-559
Model View tool, 252-253
Modify dialog box, 10, 29
module, 655
Motion Study tool, 344-346
Mouse Gestures, 44
accessing settings, 45-46
for assemblies, 310-311
assigning a tool to the wheel, 46-47
Move Component tool, 308-309
moving
entities, 18, 99-100
orthographic views, 249
rectangles, 19

New SolidWorks Document dialog box, 240, 672
nominal size, 549
non-parametric modeler, 1
normal surfaces, orthographic views, 233-234
Note tool, 337-338
numbers, assembly, 326-328
nuts, 394-396

0

oblique surfaces, 238
offset line, sketching, 91-92
open spline, 72
ordinate dimensions, 460, 485, 486-488
orientation
returning to original
using the Orientation Triad, 20
using the Top View tool, 20
using the View Selector, 19-20
tolerances, 566
Top view, 19
Orientation Triad, 20
origin, 5, 51
assembly, 307
icons, 321
showing, 51-52
orthographic views, 229
ANSI standards, 229
compound lines, 237
dimensioning, 501-502
drawing, 240-248
first-angle projection, 229-230, 243, 266-268
hidden lines, 234-235
moving, 249
normal surfaces, 233-234
oblique surfaces, 238
precedence of lines, 235-236
side view orientations, 231-232
slanted surfaces, 236-237
third-angle projections, 229-230, 231, 243
outside diameter, 655
overall dimensions, 455

P

parabola
conic section, sketching, 79-80
sketching, 76-77
parallel keys, 675-676
parallelism tolerances, 569
parallelogram, sketching, 59
Parallelogram tool, 59
parametric modeler, 1
part document
sketch plane, selecting, 3-8
starting, 2-3
partial ellipse, sketching, 75-76
parts list, 328-329
patterns
circular, 97-99
hole, dimensioning, 468-469
linear, 97
perimeter circle, sketching, 66-67
tangent to three lines, 55-56
using three points, 54-55
Perimeter Circle tool, 54-56, 66-67
perpendicular tolerance, 564-565
perpendicularity tolerances, 566-568
pitch, 382
circular, 655
diameter, 655
diametral, 655
preferred, 655
thread, 392
pitch diameter, 681-683
plane. See also sketch plane
conic section, 77-78
reference, creating, 161-165
selecting, 3-8
plus and minus tolerances, 519, 520, 522
adding, 524-525
creating, 522-523
points, 87
polar dimensions, 496-497, 535
polygons, hexagon, sketching, 70-72
positional tolerances, 573-575
creating, 575-578
design problems, 584-587
power transmission, 653. See also gear/s
shaft to gear, 666
adding a threaded hole to the gear's hub, 668-671
keys, 671
keyseat, creating, 676-680
keyseats, 671-674
parallel keys, 675-676
set screws and gear hubs, 666-667
precedence of lines, 235-236
preferred pitch, 655
preferred sizes, 543-544
press fit, 633
pressure angle, 655
profile tolerances, 570-572
Projected View tool, 249-250
Properties/Geometric Tolerance dialog box, 564

Q-R

rack and pinion gears, 687-689
rectangle/s, 15
3 point center, sketching, 58-59
3 point corner, sketching, 57-58
center, sketching, 56-57
dimensions, 533
hole locations, 533-535
moving, 19
reorienting, 19
sketching, 15-17
zooming, 19
reentering, Sketch mode, 17-18
reference dimension, 13, 495
Reference Geometry tool, 161, 168, 177, 183, 191, 200, 203, 208
reference plane, creating, 161-165
release block, 338
removing, interference, 353-355
reorienting, entities, 19
Revolved Boss/Base tool, 156-159

Revolved Cut tool, 159-160
RFS (regardless of feature size), 556-559
root, 381
root diameter, 655
Rotate Component tool, 309-310
rotating, entities, 102-103, 151-153
Rotator assembly, 341-344
rounded shapes
external, 494-495
internal, 493-494
rounded surfaces, 238-240
rows, width, changing on a BOM (bill of materials), 334
runout tolerance, 572-573

S

S Key, 47
activating, 48
dialog box, 47
toolbar customizing, 49-51 removing a tool from, 51
saving, documents, 27-28
scaling, entities, 103-104
schematic representation, thread/s, 384
screw sets, 404-405, 409-410
section views, 250-251
aligned, 258-259
changing the style, 257
dimensioning, 501
drawing, 252-257
set screws, 666-667
settings, Mouse Gestures, accessing, 45-46
shaft. See also gear/s; hole/s
basis, 629-630
clearance fit, 539
interference fit, 539, 540, 630-631
keyseat, creating, 676-678
MMC (maximum material condition), 557
nominal size, 535-537
tolerances, 535-537
transition fit, 539
virtual condition, calculating, 579
Shell tool, 168-169
short distances, dimensioning, 455-457
side view orientations, orthographic views, 231-232
simplified representation, threads, 384
Sketch mode
exiting, 17
reentering, 17-18
sketch plane
origin, 5
returning to original orientation, 19-20 using the Orientation Triad, 20 using the Top View tool, 20 using the View Selector, 19-20
selecting, 3-8
Sketch Relations, 24-25
Sketch toolbar, icons, 3
sketching
arcs
3 point, 69-70
centerpoint, 67-68
tangent, 68-69
chamfer, 82
using angle-distance, 83
using distance-distance - equal distance, 82
using distance-distance - not equal distance, 84
circles, perimeter, 66-67
conic section, 79-80
fillets, 81
hexagons, 70-72
parabolas, 76-77
parallelograms, 59
rectangles, 15-17
3 point center, 58-59
3 point corner, 57-58
center, 56-57
slots
3 point arc, 64
centerpoint arc, 65-66
centerpoint straight, 63
straight, 61-62
splines, 72-73
Sketching tools, 110-111
3 Point Arc Slot, 64
Centerline, 110-111
Centerpoint Arc, 67-68
Centerpoint Arc Slot, 65-66
Centerpoint Straight Slot, 63
Chamfer, 82, 83
Circle, 52-54
Circular Sketch Pattern, 97-99
Copy Entities, 102
Ellipse, 73
Extend Entities, 89-90
Fillet, 81
Jog Line, 110
Line, 5, 22, 28
Linear Sketch Pattern, 95-97
Mirror Entities, 92-94
Move Entities, 100
Offset Entities, 90-92
Parabola, 76-77
Parallelogram, 59
Partial Ellipse, 75-76
Perimeter Circle, 66-67
Point, 87
Polygon, 71-72
Rotate Entities, 103
Scale Entities, 103-104
Spline, 73
Split Entities, 106-109
Straight slot, 61-62
Stretch Entities, 104-106
Tangent Arc, 68-69
Text, 84-87
Trim Entities, 88
slanted surfaces, 236-237
sleeve bearings, 619, 620
drawing, 620-621
tolerances, 1
using in an assembly drawing,
621-622
slots

3 point arc, sketching, 64 centerpoint arc, sketching, 65-66 centerpoint straight, sketching, 63 dimensioning, 493-494 straight, sketching, 61-62
Smart Dimension tool, 6, 8, 11-12, 17, 23, 387, 451, 455-457
Smart Fastener dialog box, 399
Smart Fasteners tool, 398-400
solid modeler, 1
spline, 72
editing, 73
sketching, 72-73
splitting, entities, 106-109
springs
compression, 181-182
drawing, 180-181
extension, drawing, 187-191
ground ends, creating, 183-184
torsional, drawing, 184-187
spur gears, 681
Standard 3 View tool, 249
standard fit, 540, 634-635
standard sizes, 543-544
standard tolerances, 461, 528
starting
assemblies, 305-308
new part document, 2-3
straight slot, sketching, 61-62
Straight slot tool, 61-62
straightness
tolerances, 555-559
value, defining, 565-566
stretching, entities, 104-106
style, section views, changing, 257
surface/s
control symbols, 545-547
applying, 547-548
lay, 548-549
datum, 545, 565-566
finish, 544-545
hidden lines, 234-235
irregular, dimensioning, 495-496
lay, 545
normal, orthographic views, 233-234
oblique, 238
profile tolerances, 570-572
roughness, 545
rounded, 238-240
slanted, 236-237
texture, 545
Swept Boss/Base tool, 170-172
symbols, 498-499
centerline, 500
datum, 564
surface control, 545-547
applying, 547-548
lay, 548-549
symmetrical object, 499
symmetric tolerances, 524-525

T

tangent arc, sketching, 68-69
text
adding, 85
adding to a feature, 86
changing font and size, 85-86
debossed, creating, 191-194
wrapping, 87
third-angle projection, orthographic views, 229-230, 243
threaded hole, drawing on the side of a cylinder, 405-409
thread/s
ANSI callout, 383-384
bolt, 396
classes, 383
counterbored holes, dimensioning, 473-478
crest, 381
depth, 476
detailed representation, 384
display styles, 392
external length, inch values, 392-397
form specification, 383
internal, 384
inches, 384-388
length, 401-404
metric, 388-390
threaded blind holes, 387-388
length, 382
major diameter, 382
metric, 382
minor diameter, 381
pitch, 382, 392
preferred sizes, 383
root, 381
title block, 335, 336-338
tolerance/s, 519. See also fit/s
angular, 526-528
angularity, 569-570
assigning, 549-550
bilateral, 519-520
circularity, 559-560
cylindricity, 560
datum, 561-563
designing a hole given a fastener size, 553
double-dimensioning errors, 528-529
expressions, 521
fit, 628, 635
fixed condition, 551-552
fixed fasteners, 582-584
floating condition, 550-551
floating fasteners, 579-582
of form, 554
flatness, 554-555
straightness, 555-559
geometric, 554, 561, 584-587
hole, 538
hole locations, 533-535
interference fit, 633-634
limit, 525-526
linear, 533
locational, 567
manufactured bearings, 631-632
MMC (maximum material condition), 557-559
of orientation, 566
parallelism, 569
perpendicular, 564-565
perpendicularity, 566-568
plus and minus, $519,520,522$
adding, 524-525
creating, 522-523
positional, 573-578, 584-587
profile, 570-572
RFS (regardless of feature size),
556-559
runout, 572-573
shaft, 535-537
shaft basis, 629-630
standard, 528
standard fit, applying to an assembly drawing, 634-635
studies, 532
maximum length, calculating, 532
minimum length, calculating, 533
symmetric, 524-525
unilateral, 519-520
virtual condition, 578-579
calculating for the hole, 579
calculating for the shaft, 579
zero limit, 521
tolerances, bilateral, 520
toolbar, S Key
customizing, 49-51
removing a tool from, 51
Toolbox, bearings, 623-626
tool/s
Annotation
Auto Balloon, 327
Autodimension, 457-460
Balloon, 326-328
Datum Feature, 563, 564
Geometric Tolerance, 565-566
Note, 337-338
Smart Dimension, 6, 8, 11-12, 17, 23, 387, 451, 457
Assembly, 305
Animate Collapse, 339-340
Clearance Verification, 353, 355-356
Interference Detection, 349-350
Mate, 311-316, 318-320
Motion Study, 344-346
Move Component, 308-309
Rotate Component, 309-310
assigning to the Mouse Gestures
wheel, 46-47
Circle, 9
Exploded View, 321-324, 622
Features, 3, 129
Chamfer, 153-156
Circular Sketch Pattern, 176-177
Curve Driven Pattern, 208-213
Draft, 172-173
Extrude Boss/Base, 129-136
Extruded Cut, 137-138, 203
Fillet, 146-153
Hole Wizard, 138-142, 143-146, 384-387, 462, 466-471
Linear Sketch Pattern, 174-175
Lofted Boss/Base, 165-168
Mirror, 177-179
Revolved Boss/Base, 156-159
Revolved Cut, 159-160
Shell, 168-169
Swept Boss/Base, 170-172
Wrap, 191-194
Hole Callout, 477
Hole Wizard, 32

Line, 5, 22, 28
Make Fixed, 24
Model View, 252-253
Perimeter Circle, 54-56
Projected View, 249-250
Rectangle, 15-17
Sketching, 4, 110-111
3 Point Arc Slot, 64
Centerline, 110-111
Centerpoint Arc, 67-68
Centerpoint Arc Slot, 65-66
Centerpoint Straight Slot, 63
Chamfer, 82-83
Circle, 52-54
Circular Sketch Pattern, 97-99
Copy Entities, 102
Ellipse, 73
Extend Entities, 89-90
Fillet, 81
Jog Line, 110
Line, 5, 22, 28
Linear Sketch Pattern, 95-97
Mirror Entities, 92-94
Move Entities, 100
Offset Entities, 90-92
Parabola, 76-77
Parallelogram, 59
Partial Ellipse, 75-76
Perimeter Circle, 66-67
Point, 87
Polygon, 71-72
Rotate Entities, 103
Scale Entities, 103-104
Spline, 73

Split Entities, 106-109
Straight slot, 61-62
Stretch Entities, 104-106
Tangent Arc, 68-69
Text, 84-87
Trim Entities, 88
Smart Dimension, 6, 8, 11-12, 17, 23, 387, 451, 455-457
Smart Fasteners, 398-400
Standard 3 View, 249
Top View, 20
Undo, 23
View Orientation, 19-20, 33
Top sketch plane, 3, 4
Top View tool, 20
torsional springs, drawing, 184-187
transition fit, 539
trimming, entities, 88

U

Undo tool, 23
unidirectional dimensioning, 462
unilateral tolerance, 519-520
units, 14-15, 461-462. See also English units; metric units

v

vertex chamfer, 155-156
View Orientation tool, 19-20, 33
View Selector cube, 19-20
views
auxiliary, drawing, 262-266
broken, 259-261
detail, drawing, 261-262
orthographic, 229
ANSI standards, 229
compound lines, 237
first-angle projection, 229-230, 243, 266-268
hidden lines, 234-235
moving, 249
normal surfaces, 233-234
oblique surfaces, 238
precedence of lines, 235-236
side view orientations, 231-232
slanted surfaces, 236-237
third-angle projection, 229-230, 231, 243
section, 250-251
aligned, 258-259
changing the style, 257
drawing, 252-257
virtual condition, 556, 578-579
calculating for the hole, 579
calculating for the shaft, 579

w

washers, 393-394
whole depth, 655
working depth, 655
Wrap tool, 191-194
wrapping text, 87
$X-Y-Z$
zero limit, 521
zooming, rectangles, 19

