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Foreword to Second Edition

As the data science domain and educational landscape continues to evolve, there is an
increasing need to train individuals to critically consider data both holistically and logically.
Each year, given the advancement in computational power, magnitude of data, and
data-informed decisions to make, more and more individuals are dipping their toes in the
water of data science—and most are not aware of how messy their data sets are. Working
with messy data is challenging, confusing, and not necessarily exciting, especially for
newcomers. To continue to use data for informed decision-making, it is important to
introduce concepts in data logic, planning, and purpose early in the stages of training best
practices. The how, why, and lessons learned of teaching data science represent huge areas
of exploration given the exponential increase in learners. There are numerous resources,
MOOCs, Twitter threads, packages, cheat-sheets, and more out there for individuals
to learn data science, either on their own or in a class. However, what is effective and
what pathways are best for certain learner personas? Moreover, how does someone
new to the field choose which educational resources mesh with their needs and
background familiarity?

While spending many years as an educator for RStudio and The Carpentries,
Dr. Daniel Chen recognized this need, and it has become his passion to introduce learners
to core concepts to work with their data in more effective, reproducible, and reliable
methods in an environment matching their comfort level with the field. I met Dan by
semi-random chance and after a few conversations, we were well on our way with a
dissertation topic stemming from these interests. With a shared passion in educating others
in foundational data science methods and looking into those “hows” and “whys” of the
ways in which we were teaching, we sought to understand our learners first and then
create materials. It was a pleasure to work with Dan on his dissertation—and to see those
insights incorporated here in Pandas for Everyone, Second Edition.

In the second edition, Dan takes learners step-by-step through practical scratch code
examples for using Pandas. Using Pandas helps demystify Python data analysis, create
organized manageable data sets, and, most importantly, have tidy data sets! It takes a special
educator to get individuals (myself included!) excited about cleaning data, but that is what
Dan does for his learners in Pandas for Everyone. Visualizing and modeling data are taught
in easy-to-interpret style once learners become comfortable with manipulating and
transforming their data sets, all of which is covered in sequential order. It is this mindset
and presentation of materials that really makes this book for everyone—and aids the



xxiv Foreword to Second Edition

learner in best practices while working with example data sets that mimic data sets they
might use in real life. Pandas for Everyone, Second Edition, is a quick but detailed foray for
new data scientists, instructors, and more to experience best practices and the massive
potential of Pandas in a clear-cut format.

–Anne M. Brown, PhD (she/her)
Assistant Professor

Data Services—University Libraries
Department of Biochemistry

Virginia Tech, Blacksburg, VA 24061



Foreword to First Edition

With each passing year data becomes more important to the world, as does the ability to
compute on this growing abundance of data. When deciding how to interact with data,
most people make a decision between R and Python. This does not reflect a language war,
but rather a luxury of choice where data scientists and engineers can work in the language
with which they feel most comfortable. These tools make it possible for everyone to work
with data for machine learning and statistical analysis. That is why I am happy to see what
I started with R for Everyone extended to Python with Pandas for Everyone.

I first met Dan Chen when he stumbled into the “Introduction to Data Science”
course while working toward a master’s in public health at Columbia University’s Mailman
School of Public Health. He was part of a cohort of MPH students who cross-registered
into the graduate school course and quickly developed a knack for data science, embracing
statistical learning and reproducibility. By the end of the semester he was devoted to, and
evangelizing, the merits of data science.

This coincided with the rise of Pandas, improving Python’s use as a tool for data science
and enabling engineers already familiar with the language to use it for data science as well.
This fortuitous timing meant Dan developed into a true multilingual data scientist,
mastering both R and Pandas. This puts him in a great position to reach different
audiences, as shown by his frequent and popular talks at both R and Python conferences
and meetups. His enthusiasm and knowledge shine through and resonate in everything he
does, from educating new users to building Python libraries. Along the way he fully
embraces the ethos of the open-source movement.

As the name implies, this book is meant for everyone who wants to use Python for data
science, whether they are veteran Python users, experienced programmers, statisticians, or
entirely new to the field. For people brand new to Python the book contains a collection
of appendixes for getting started with the language and for installing both Python and
Pandas, and it covers the whole analysis pipeline, including reading data, visualization, data
manipulation, modeling, and machine learning.
Pandas for Everyone is a tour of data science through the lens of Python, and Dan Chen

is perfectly suited to guide that tour. His mixture of academic and industry experience
lends valuable insights into the analytics process and how Pandas should be used to greatest
effect. All this combines to make for an enjoyable and informative read for everyone.

–Jared Lander, series editor
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Preface

My foray into teaching was in 2013 when I attended my first Software-Carpentry
workshop, and I’ve been involved in teaching ever since. In 2019, I was lucky enough to
be one of the RStudio (now Posit, PBC) interns with the education group. By then, data
science education has already gained a tremendous amount of momentum. When I
finished my internship, I needed a dissertation topic for my degree, and wanted to
combine teaching with medicine. Luckily, I knew a librarian at the university, Andi Ogier,
who connected me with Anne Brown, who was also interested in teaching data literacy
skills in the health sciences. The rest is history. Anne became my PhD chair, and with the
rest of my committee, Dave Higdon, Alex Hanlon, and Nikki Lewis, I got to do research
on data science education in the medical and biomedical sciences.1 The first edition of the
book became a foundation for what data science topics were taught for the workshop
component of the dissertation. The second edition of Pandas for Everyone incorporates
many of the things I’ve learned while studying education and pedagogy.

Long story short, befriend a librarian. Their profession revolves around data.
In 2013, I didn’t even know the term “data science” existed. I was a master’s of public

health (MPH) student in epidemiology at the time and was already captivated with the
statistical methods beyond the t-test, ANOVA, and linear regression from my psychology
and neuroscience undergraduate background. It was also in the fall of 2013 that I attended
my first Software-Carpentry workshop and that I taught my first recitation section as a
teaching assistant for my MPH program’s Quantitative Methods course (essentially a
combination of a first-semester epidemiology and biostatistics course). I’ve been learning
and teaching ever since.

I’ve come a long way since taking my first Introduction to Data Science course, which
was taught by Rachel Schutt, PhD; Kayur Patel, PhD; and Jared Lander. They opened my
eyes to what was possible. Things that were inconceivable (to me) were actually common
practices, and anything I could think of was possible (although I now know that “possible”
doesn’t mean “performs well”). The technical details of data science—the coding
aspects—were taught by Jared in R. Jared’s friends and colleagues know how much of an
aficionado he is of the R language.

At the time, I had been meaning to learn R, but the Python/R language war never
breached my consciousness. On the one hand, I saw Python as just a programming
language; on the other hand, I had no idea Python had an analytics stack (I’ve come a long
way since then). When I learned about the SciPy stack and Pandas, I saw it as a bridge
between what I knew how to do in Python from my undergraduate and high school days
and what I had learned in my epidemiology studies and through my newly acquired data

1. You can learn more about my dissertation around data science education here: https://github.com/
chendaniely/dissertation

https://github.com/chendaniely/dissertation
https://github.com/chendaniely/dissertation
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science knowledge. As I became more proficient in R, I saw the similarities to Python. I
also realized that a lot of the data cleaning tasks (and programming in general) involve
thinking about how to get what you need—the rest is more or less syntax. It’s important to
try to imagine what the steps are and not get bogged down by the programming details.
I’ve always been comfortable bouncing around the languages and never gave too much
thought to which language was “better.” Having said that, this book is geared toward a
newcomer to the Python data analytics world.

This book encapsulates all the people I’ve met, events I’ve attended, and skills I’ve
learned over the past few years. One of the more important things I’ve learned (outside of
knowing what things are called so Google can take me to the relevant StackOverflow
page) is that reading the documentation is essential. As someone who has worked on
collaborative lessons and written Python and R libraries, I can assure you that a lot of time
and effort go into writing documentation. That’s why I constantly refer to the relevant
documentation page throughout this book. Some functions have so many parameters used
for varying use cases that it’s impractical to go through each of them. If that were the focus
of this book, it might as well be titled Loading Data Into Python. But, as you practice
working with data and become more comfortable with the various data structures, you’ll
eventually be able to make educated guesses about what the output of something will be,
even though you’ve never written that particular line of code before. I hope this book
gives you a solid foundation to explore on your own and be a self-guided learner.

I met a lot of people and learned a lot from them during the time I was putting this
book together. A lot of the things I learned dealt with best practices, writing vectorized
statements instead of loops, formally testing code, organizing project folder structures, and
so on. I also learned lot about teaching from actually teaching. Teaching really is the best
way to learn material. Many of the things I’ve learned in the past few years have come to
me when I was trying to figure them out to teach others. Once you have a basic
foundation of knowledge, learning the next bit of information is relatively easy. Repeat the
process enough times, and you’ll be surprised how much you actually know. That includes
knowing the terms to use for Google and interpreting the StackOverflow answers. The
very best of us all search for our questions. Whether this is your first language or your
fourth, I hope this book gives you a solid foundation to build upon and learn as well as a
bridge to other analytics languages.

Breakdown of the Book
This book is organized into multiple parts plus a set of appendices.

Part I
Part I aims to be an introduction to Pandas using a realistic data set.

. Chapter 1: Starts by using Pandas to load a data set and begin looking at various
rows and columns of the data. Here you will get a general sense of the syntax of
Python and Pandas. The chapter ends with a series of motivating examples that
illustrate what Pandas can do.
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. Chapter 2: Dives deeper into what the Pandas 'DataFrame' and 'Series' objects
are. This chapter also covers boolean subsetting, dropping values, and different ways
to import and export data.. Chapter 3: Covers plotting methods using 'matplotlib', 'seaborn', and 'pandas'

to create plots for exploratory data analysis.. Chapter 4: Discusses Hadley Wickham’s “Tidy Data” paper, which deals with
reshaping and cleaning common data problems.. Chapter 5: Focuses on applying functions over data, an important skill that
encompasses many programming topics. Understanding how '.apply()' works will
pave the way for more parallel and distributed coding when your data manipulations
need to scale.

Part II
Part II focuses on what happens after you load data and need to further process your data.

. Chapter 6: Focuses on combining data sets, either by concatenating them together
or by merging disparate data.. Chapter 7: Normalizes data for more robust data storage.. Chapter 8: Describes '.groupby()' operations (i.e., split-apply-combine). These
powerful concepts, like '.apply()', are often needed to scale data. They are also
great ways to efficiently aggregate, transform, or filter your data.

Part III
Part III covers the types of data stored in columns.

. Chapter 9: Covers what happens when there is missing data, how data are created to
fill in missing data, and how to work with missing data, especially what happens
when certain calculations are performed on them.. Chapter 10: Deals with data types and how to convert from different types within
'DataFrame' columns.. Chapter 11: Introduces string manipulation, which is frequently needed as part of
the data cleaning task because data are often encoded as text.. Chapter 12: Explores Pandas’s powerful date and time capabilities.

Part IV
With the data all cleaned and ready, the next step is to fit some models. Models can be
used for exploratory purposes, not just for prediction, clustering, and inference. The goal
of Part IV is not to teach statistics (there are plenty of books in that realm), but rather to
show you how these models are fit and how they interface with Pandas. Part IV can be
used as a bridge to fitting models in other languages.

. Chapter 13: Linear models are the simpler models to fit. This chapter covers fitting
these models using the 'statsmodels' and 'sklean' libraries.. Chapter 14: Generalized linear models, as the name suggests, are linear models
specified in a more general sense. They allow us to fit models with different response
variables, such as binary data or count data.



xxx Preface

. Chapter 15: Covers survival models, which is what you use when you have data
censoring.. Chapter 16: Since we have a core set of models that we can fit, the next step is
to perform some model diagnostics to compare multiple models and pick the
“best” one.. Chapter 17: Regularization is a technique used when the models we are fitting are
too complex or overfit our data.. Chapter 18: Clustering is a technique we use when we don’t know the actual answer
within our data, but we need a method to cluster or group “similar” data points
together.

Part V
The book concludes with a few points about the larger Python ecosystem, and additional
references.

. Chapter 19: Quickly summarizes the computation stack in Python, and starts down
the path to code performance and scaling.. Chapter 20: Provides some links and references on learning beyond the book.

Appendices
The appendices can be thought as a primer to Python programming. While they are not a
complete introduction to Python, the various appendixes do supplement some of the
topics throughout the book.

. Appendix A: Provides concept maps for the introductory chapters to help
breakdown and relate concepts to one another.. Appendixes B–J: These appendices cover all the tasks related to running Python
code—from installing Python, to using the command line to execute your scripts,
and to organizing your code. They also cover creating Python environments and
installing libraries.. Appendixes K–Y: These appendices cover general programming concepts that are
relevant to Python and Pandas. They are supplemental references to the main part of
the book.. Appendix Z: Replicates some of the modeling code in R as a reference to compare
similar results.

How to Read This Book
Whether you are a newcomer to Python or a fluent Python programmer, this book is
meant to be read from the beginning. Educators, or people who plan to use the book for
teaching, may also find the order of the chapters to be suitable for a workshop or class.

Newcomers
Absolute newcomers are encouraged to first look through Appendix A - Appendix J as
they explain how to install Python and get it working. After taking these steps, readers will
be ready to jump into the main body of the book. The earlier chapters make references to
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the relevant appendixes as needed. The concept maps and learning objectives found at the
beginning of the earlier chapters help organize and prepare the reader for what will be
covered in the chapter, as well as point to the relevant appendixes to be read before
continuing.

Fluent Python Programmers
Fluent Python programmers may find the first two chapters to be sufficient to get started
and grasp the syntax of Pandas; they can then use the rest of the book as a reference. The
objectives at the beginning of the earlier chapters point out which topics are covered in the
chapter. The chapter on “tidy data” in Part I, and the chapters in Part III, will be
particularly helpful in data manipulation.

Instructors
Instructors who want to use the book as a teaching reference may teach each chapter in
the order presented. It should take approximately 45 minutes to 1 hour to teach each
chapter. I have sought to structure the book so that chapters do not reference future
chapters, so as to minimize the cognitive overload for students—but feel free to
shuffle the chapters as needed.

The concept maps in Appendix A and the learning objectives provided in the earlier
chapters should help contextualize how concepts are related to one another.

Setup
Everyone will have a different setup, so the best way to get the most updated set of
instructions on setting up an environment to code through the book would be on the
accompanying GitHub repository:

https://github.com/chendaniely/pandas_for_everyone

Otherwise, see Appendix B for information on how to install Python on your
computer.

Get the Data
The easiest way to get all the data to code along the book is to download the ZIP file of
the book’s repository here:

https://github.com/chendaniely/pandas_for_everyone

The book’s repository will have the latest instructors on how to download the book’s
data, and more detailed instructors for how to get the book can be found in Appendix B.3.

Set Up Python
Appendix G and Appendix H cover environments and installing packages, respectively.
There you will find the URLs and commands on how to setup Python to code along the
book. Again, the book’s repository will always contain the latest set of instructions.

https://github.com/chendaniely/pandas_for_everyone
https://github.com/chendaniely/pandas_for_everyone
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Feedback, Please!
Thank you for taking the time to go through this book. If you find any problems, issues,
or mistakes within the book, please send me feedback! GitHub issues may be the best place
to provide this information, but you can also email me at chendaniely@gmail.com. Just be
sure to use the PFE or P4E tag in the beginning of the subject line so I can make sure your
emails do not get flooded by various listserv emails. If there are topics that you feel should
be covered in the book, please let me know. I will try my best to put up a notebook in the
GitHub repository and to get it incorporated in a later printing or edition of the book.

Words of encouragement are appreciated.

Register your copy of Pandas for Everyone, Second Edition, on the InformIT site for
convenient access to updates and/or corrections as they become available. To start the
registration process, go to informit.com/register and log in or create an account. Enter
the product ISBN (9780137891153) and click Submit. Look on the Registered
Products tab for an Access Bonus Content link next to this product, and follow that
link to access any available bonus materials. If you would like to be notified of
exclusive offers on new editions and updates, please check the box to receive email
from us.

mailto:chendaniely@gmail.com
http://informit.com/register
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Changes in the Second Edition

The second edition mainly updates all the code and libraries to the latest versions at the
time of writing. Most of the code form the first edition was unaffected. Bits of the plotting
code and machine learning data modeling code ended up changing over the years and
were updated.

From a pedagogical perspective, the main Pandas chapters have also been updated with
proper learning objectives, and the introductory chapters have accompanying concept
maps to help educators plan a learning path, and for learners to visualize how concepts are
related to one another. These were all topics I’ve learned about while doing my
dissertation, and I hope they become useful for learners and educators. The book also
includes access to online bonus chapters on geopandas, Dask, and creating interactive
graphics with Altair.

I’ve also rearranged the chapters in the second edition based on my experiences when
I teach workshops. Part I of the book contains the most important bits of information
that I aim to cover in my workshops. The rest of the book can be thought of as data
processing details after the more fundamental topics are covered. The chapters that have
big changes from the first edition have a section in the chapter’s introduction on the
details of what has changed.

Many of the libraries and tools mentioned in the conclusion chapters of the book
will also have freely available chapters to accompany this book to help you extend
your learning.
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4
Tidy Data

Hadley Wickham, PhD,1 one of the more prominent members of the R community,
introduced the concept of tidy data in a Journal of Statistical Software paper.2 Tidy data is a
framework to structure data sets so they can be easily analyzed and visualized. It can be
thought of as a goal one should aim for when cleaning data. Once you understand what
tidy data is, that knowledge will make your data analysis, visualization, and collection
much easier.

What is tidy data? Hadley Wickham’s paper defines it as meeting the following criteria:
(1) Each row is an observation, (2) Each column is a variable, and (3) Each type of
observational unit forms a table.

The newer definition from the R4DS book3 focuses on an individual data set (i.e.,
table):

1. Each variable must have its own column.
2. Each observation must have its own row.
3. Each value must have its own cell.

This chapter goes through the various ways to tidy data using examples from
Wickham’s paper.

Learning Objectives
The concept map for this chapter can be found in Figure A.4.

. Identify the components of tidy data. Identify common data errors. Use functions and methods to process and tidy data

Note About This Chapter
Data used in this chapter will have NaN missing values when they are loaded into Pandas
(Chapter 9). In the raw CSV files, they will appear as empty values. I typically try to avoid

1. Hadley Wickham, PhD: http://hadley.nz
2. Tidy Data paper: http://vita.had.co.nz/papers/tidy-data.pdf
3. R For Data Science Book: https://r4ds.had.co.nz/tidy-data.html

http://hadley.nz
http://vita.had.co.nz/papers/tidy-data.pdf
https://r4ds.had.co.nz/tidy-data.html
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forward referencing in the book, but I felt that the concept of tidy data warranted a much
earlier place in the book because it is so fundamental to how we should be thinking about
data technically (as opposed to ethically), that the chapter was moved toward the front of
the book without having to cover more detailed data processing steps first. I could have
changed the data sets such that there were no missing values, but opted not to do so
because (1) it would no longer follow the data used in Wickam’s “Tidy Data” paper, and
(2) it would be a less realistic data set.

4.1 Columns Contain Values, Not Variables
Data can have columns that contain values instead of variables. This is usually a convenient
format for data collection and presentation.

4.1.1 Keep One Column Fixed
We’ll use data on income and religion in the United States from the Pew Research Center
to illustrate how to work with columns that contain values, rather than variables.

import pandas as pd
pew = pd.read_csv('data/pew.csv')

When we look at this data set, we can see that not every column is a variable. The
values that relate to income are spread across multiple columns. The format shown is a
great choice when presenting data in a table, but for data analytics, the table should be
reshaped so that we have religion, income, and count variables.

# show only the first few columns
print(pew.iloc[:, 0:5])

religion <$10k $10-20k $20-30k $30-40k
0 Agnostic 27 34 60 81
1 Atheist 12 27 37 52
2 Buddhist 27 21 30 34
3 Catholic 418 617 732 670
4 Don’t know/refused 15 14 15 11
.. ... ... ... ... ...
13 Orthodox 13 17 23 32
14 Other Christian 9 7 11 13
15 Other Faiths 20 33 40 46
16 Other World Religions 5 2 3 4
17 Unaffiliated 217 299 374 365

[18 rows x 5 columns]

This view of the data is also known as “wide” data. To turn it into the “long” tidy data
format, we will have to unpivot/melt/gather (depending on which statistical programming
language we use) our dataframe.
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Note
I usually use the terminology from the R world of using “pivot” to refer to going from
wide data to long data and vice versa. I usually will specify the direction with “pivot
longer” to go from wide data to long data, and “pivot wider” to go from long data to wide
data.

In this chapter “pivot longer” will refer to the dataframe .melt() method, and “pivot
wider” will refer to the dataframe .pivot() method.

Pandas DataFrames have a method called .melt() that will reshape the dataframe into a
tidy format and it takes a few parameters:

. id_vars is a container (list, tuple, ndarray) that represents the variables that will
remain as is.. value_vars identifies the columns you want to melt down (or unpivot). By default,
it will melt all the columns not specified in the id_vars parameter.. var_name is a string for the new column name when the value_vars is melted
down. By default, it will be called variable.. value_name is a string for the new column name that represents the values for the
var_name. By default, it will be called value.

# we do not need to specify a value_vars since we want to pivot
# all the columns except for the 'religion' column
pew_long = pew.melt(id_vars='religion')

print(pew_long)

religion variable value
0 Agnostic <$10k 27
1 Atheist <$10k 12
2 Buddhist <$10k 27
3 Catholic <$10k 418
4 Don't know/refused <$10k 15
.. ... ... ...
175 Orthodox Don't know/refused 73
176 Other Christian Don't know/refused 18
177 Other Faiths Don't know/refused 71
178 Other World Religions Don't know/refused 8
179 Unaffiliated Don't know/refused 597

[180 rows x 3 columns]

Note
The .melt() method also exists as a pandas function, pd.melt()

The below two lines of code are equivalent:
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# melt method
pew_long = pew.melt(id_vars='religion')

# melt function
pew_long = pd.melt(pew, id_vars='religion')

Internally, the .melt() method redirects the function call to the Pandas pd.melt()
function. The .melt() method notation is there to make the Pandas API more consistent,
and also allows us to method-chain (Appendix U).

We can change the defaults so that the melted/unpivoted columns are named.

pew_long = pew.melt(
id_vars="religion", var_name="income", value_name="count"

)

print(pew_long)

religion income count
0 Agnostic <$10k 27
1 Atheist <$10k 12
2 Buddhist <$10k 27
3 Catholic <$10k 418
4 Don't know/refused <$10k 15
.. ... ... ...
175 Orthodox Don't know/refused 73
176 Other Christian Don't know/refused 18
177 Other Faiths Don't know/refused 71
178 Other World Religions Don't know/refused 8
179 Unaffiliated Don't know/refused 597

[180 rows x 3 columns]

4.1.2 Keep Multiple Columns Fixed
Not every data set will have one column to hold still while you unpivot the rest of the
columns. As an example, consider the Billboard data set.

billboard = pd.read_csv('data/billboard.csv')

# look at the first few rows and columns
print(billboard.iloc[0:5, 0:16])

year artist track time date.entered \
0 2000 2 Pac Baby Don't Cry (Keep... 4:22 2000-02-26
1 2000 2Ge+her The Hardest Part Of ... 3:15 2000-09-02
2 2000 3 Doors Down Kryptonite 3:53 2000-04-08
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3 2000 3 Doors Down Loser 4:24 2000-10-21
4 2000 504 Boyz Wobble Wobble 3:35 2000-04-15

wk1 wk2 wk3 wk4 wk5 wk6 wk7 wk8 wk9 wk10 wk11
0 87 82.0 72.0 77.0 87.0 94.0 99.0 NaN NaN NaN NaN
1 91 87.0 92.0 NaN NaN NaN NaN NaN NaN NaN NaN
2 81 70.0 68.0 67.0 66.0 57.0 54.0 53.0 51.0 51.0 51.0
3 76 76.0 72.0 69.0 67.0 65.0 55.0 59.0 62.0 61.0 61.0
4 57 34.0 25.0 17.0 17.0 31.0 36.0 49.0 53.0 57.0 64.0

You can see here that each week has its own column. Again, there is nothing wrong
with this form of data. It may be easy to enter the data in this form, and it is much quicker
to understand what it means when the data is presented in a table. However, there may be
a time when you will need to melt the data. For example, if you wanted to create a faceted
plot of the weekly ratings, the facet variable would need to be a column in the
dataframe.

# use a list to reference more than 1 variable
billboard_long = billboard.melt(
id_vars=["year", "artist", "track", "time", "date.entered"],
var_name="week",
value_name="rating",

)

print(billboard_long)

year artist track time \
0 2000 2 Pac Baby Don't Cry (Keep... 4:22
1 2000 2Ge+her The Hardest Part Of ... 3:15
2 2000 3 Doors Down Kryptonite 3:53
3 2000 3 Doors Down Loser 4:24
4 2000 504 Boyz Wobble Wobble 3:35
... ... ... ... ...
24087 2000 Yankee Grey Another Nine Minutes 3:10
24088 2000 Yearwood, Trisha Real Live Woman 3:55
24089 2000 Ying Yang Twins Whistle While You Tw... 4:19
24090 2000 Zombie Nation Kernkraft 400 3:30
24091 2000 matchbox twenty Bent 4:12

date.entered week rating
0 2000-02-26 wk1 87.0
1 2000-09-02 wk1 91.0
2 2000-04-08 wk1 81.0
3 2000-10-21 wk1 76.0
4 2000-04-15 wk1 57.0
... ... ... ...
24087 2000-04-29 wk76 NaN
24088 2000-04-01 wk76 NaN
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24089 2000-03-18 wk76 NaN
24090 2000-09-02 wk76 NaN
24091 2000-04-29 wk76 NaN

[24092 rows x 7 columns]

4.2 Columns Contain Multiple Variables
Sometimes columns in a data set may represent multiple variables. This format is
commonly seen when working with health data, for example. To illustrate this situation,
let’s look at the Ebola data set.

ebola = pd.read_csv('data/country_timeseries.csv')
print(ebola.columns)

Index(['Date', 'Day', 'Cases_Guinea', 'Cases_Liberia',
'Cases_SierraLeone', 'Cases_Nigeria', 'Cases_Senegal',
'Cases_UnitedStates', 'Cases_Spain', 'Cases_Mali',
'Deaths_Guinea', 'Deaths_Liberia', 'Deaths_SierraLeone',
'Deaths_Nigeria', 'Deaths_Senegal', 'Deaths_UnitedStates',
'Deaths_Spain', 'Deaths_Mali'],
dtype='object')

# print select rows and columns
print(ebola.iloc[:5, [0, 1, 2,10]])

Date Day Cases_Guinea Deaths_Guinea
0 1/5/2015 289 2776.0 1786.0
1 1/4/2015 288 2775.0 1781.0
2 1/3/2015 287 2769.0 1767.0
3 1/2/2015 286 NaN NaN
4 12/31/2014 284 2730.0 1739.0

The column names Cases_Guinea and Deaths_Guinea actually contain two variables.
The individual status (cases and deaths, respectively) as well as the country name, Guinea.
The data is also arranged in a wide format that needs to be reshaped (with the .melt()

method).
First, let’s fix the problem we know how to fix, by melting the data into long format.

ebola_long = ebola.melt(id_vars=['Date', 'Day'])

print(ebola_long)

Date Day variable value
0 1/5/2015 289 Cases_Guinea 2776.0
1 1/4/2015 288 Cases_Guinea 2775.0
2 1/3/2015 287 Cases_Guinea 2769.0
3 1/2/2015 286 Cases_Guinea NaN
4 12/31/2014 284 Cases_Guinea 2730.0
... ... ... ... ...
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1947 3/27/2014 5 Deaths_Mali NaN
1948 3/26/2014 4 Deaths_Mali NaN
1949 3/25/2014 3 Deaths_Mali NaN
1950 3/24/2014 2 Deaths_Mali NaN
1951 3/22/2014 0 Deaths_Mali NaN

[1952 rows x 4 columns]

Conceptually, the column of interest can be split based on the underscore in the
column name, _. The first part will be the new status column, and the second part will be
the new country column. This will require some string parsing and splitting in Python
(more on this in Chapter 11). In Python, a string is an object, similar to how Pandas has
Series and DataFrame objects. Chapter 2 showed how Series can have methods such as
.mean(), and DataFrames can have methods such as .to_csv(). Strings have methods as
well. In this case, we will use the .split() method that takes a string and “splits” it up
based on a given delimiter. By default, .split() will split the string based on a space, but
we can pass in the underscore, _, in our example. To get access to the string methods, we
need to use the .str. attribute. .str. is a special type of attribute that Pandas calls an
“accessor” because it can “access” string methods (see Chapter 11 for more on strings).
Access to the Python string methods and allow us to work across the entire column. This
will be the key to parting out the multiple bits of information stored in each value.

4.2.1 Split and Add Columns Individually
We can use the .str accessor to make a call to the .split() method and pass in the
_ understore.

# get the variable column
# access the string methods
# and split the column based on a delimiter
variable_split = ebola_long.variable.str.split('_')

print(variable_split[:5])

0 [Cases, Guinea]
1 [Cases, Guinea]
2 [Cases, Guinea]
3 [Cases, Guinea]
4 [Cases, Guinea]
Name: variable, dtype: object

After we split on the underscore, the values are returned in a list. We can tell it’s a list by:

1. Knowing about the .split() method on base Python string objects4

2. Visually seeing the square brackets in the output, [ ]

3. Getting the type() of one of the items in the Series

4. String .split() documentation: https://docs.python.org/3/library/stdtypes.html#str.
split

https://docs.python.org/3/library/stdtypes.html#str.split
https://docs.python.org/3/library/stdtypes.html#str.split
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# the entire container
print(type(variable_split))

<class 'pandas.core.series.Series'>

# the first element in the container
print(type(variable_split[0]))

<class 'list'>

Now that the column has been split into various pieces, the next step is to assign those
pieces to a new column. First, however, we need to extract all the 0-index elements for
the status column and the 1-index elements for the country column. To do so, we need
to access the string methods again, and then use the .get() method to “get” the index we
want for each row.

status_values = variable_split.str.get(0)
country_values = variable_split.str.get(1)

print(status_values)

0 Cases
1 Cases
2 Cases
3 Cases
4 Cases

...
1947 Deaths
1948 Deaths
1949 Deaths
1950 Deaths
1951 Deaths
Name: variable, Length: 1952, dtype: object

Now that we have the vectors we want, we can add them to our dataframe.

ebola_long['status'] = status_values
ebola_long['country'] = country_values

print(ebola_long)

Date Day variable value status country
0 1/5/2015 289 Cases_Guinea 2776.0 Cases Guinea
1 1/4/2015 288 Cases_Guinea 2775.0 Cases Guinea
2 1/3/2015 287 Cases_Guinea 2769.0 Cases Guinea
3 1/2/2015 286 Cases_Guinea NaN Cases Guinea
4 12/31/2014 284 Cases_Guinea 2730.0 Cases Guinea
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... ... ... ... ... ... ...
1947 3/27/2014 5 Deaths_Mali NaN Deaths Mali
1948 3/26/2014 4 Deaths_Mali NaN Deaths Mali
1949 3/25/2014 3 Deaths_Mali NaN Deaths Mali
1950 3/24/2014 2 Deaths_Mali NaN Deaths Mali
1951 3/22/2014 0 Deaths_Mali NaN Deaths Mali

[1952 rows x 6 columns]

4.2.2 Split and Combine in a Single Step
We can actually do the above steps in a single step. If we look at the .str.split() method
documentation (you can find this by looking by going to the Pandas API documentation
> Series > String Handling (.str.) > .split() method5), there is a parameter named
expand that defaults to False, but when we set it to True, it will return a DataFrame where
each result of the split is in a separate column, instead of a Series of list containers.

# reset our ebola_long data
ebola_long = ebola.melt(id_vars=['Date', 'Day'])

# split the column by _ into a dataframe using expand
variable_split = ebola_long.variable.str.split('_', expand=True)

print(variable_split)

0 1
0 Cases Guinea
1 Cases Guinea
2 Cases Guinea
3 Cases Guinea
4 Cases Guinea
... ... ...
1947 Deaths Mali
1948 Deaths Mali
1949 Deaths Mali
1950 Deaths Mali
1951 Deaths Mali

[1952 rows x 2 columns]

From here, we can actually use the Python and Pandas multiple assignment feature
(Appendix Q), to directly assign the newly split columns into the original DataFrame.
Since our output variable_split returned a DataFrame with two columns, we can assign
two new columns to our ebola_long DataFrame.

5. Series.str.split() method documentation: https://pandas.pydata.org/docs/reference/
api/pandas.Series.str.split.html#pandas.Series.str.split

https://pandas.pydata.org/docs/reference/api/pandas.Series.str.split.html#pandas.Series.str.split
https://pandas.pydata.org/docs/reference/api/pandas.Series.str.split.html#pandas.Series.str.split
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ebola_long[['status', 'country']] = variable_split

print(ebola_long)

Date Day variable value status country
0 1/5/2015 289 Cases_Guinea 2776.0 Cases Guinea
1 1/4/2015 288 Cases_Guinea 2775.0 Cases Guinea
2 1/3/2015 287 Cases_Guinea 2769.0 Cases Guinea
3 1/2/2015 286 Cases_Guinea NaN Cases Guinea
4 12/31/2014 284 Cases_Guinea 2730.0 Cases Guinea
... ... ... ... ... ... ...
1947 3/27/2014 5 Deaths_Mali NaN Deaths Mali
1948 3/26/2014 4 Deaths_Mali NaN Deaths Mali
1949 3/25/2014 3 Deaths_Mali NaN Deaths Mali
1950 3/24/2014 2 Deaths_Mali NaN Deaths Mali
1951 3/22/2014 0 Deaths_Mali NaN Deaths Mali

[1952 rows x 6 columns]

You can also opt to do this as a concatenation (pd.concat()) function call as well
(Chapter 6).

4.3 Variables in Both Rows and Columns
At times, data will be formatted so that variables are in both rows and columns – that is, in
some combination of the formats described in previous sections of this chapter. Most of
the methods needed to tidy up such data have already been presented (.melt() and some
string parsing with the .str. accessor attribute). What is left to show is what happens if a
column of data actually holds two variables instead of one variable. In this case, we will
have to “pivot” the variable into separate columns, i.e., go from long data to wide data.

weather = pd.read_csv('data/weather.csv')
print(weather.iloc[:5, :11])

id year month element d1 d2 d3 d4 d5 d6 d7
0 MX17004 2010 1 tmax NaN NaN NaN NaN NaN NaN NaN
1 MX17004 2010 1 tmin NaN NaN NaN NaN NaN NaN NaN
2 MX17004 2010 2 tmax NaN 27.3 24.1 NaN NaN NaN NaN
3 MX17004 2010 2 tmin NaN 14.4 14.4 NaN NaN NaN NaN
4 MX17004 2010 3 tmax NaN NaN NaN NaN 32.1 NaN NaN

The weather data include minimum (tmin) and maximum (tmax) temperatures recorded
for each day (d1, d2, …, d31) of the month (month). The element column contains
variables that need to be pivoted wider to become new columns, and the day variables
need to be melted into row values.
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Again, there is nothing wrong with the data in the current format. It is simply not in a
shape amenable to analysis, although this kind of formatting can be helpful when
presenting data in reports. Let’s first fix the day values.

weather_melt = weather.melt(
id_vars=["id", "year", "month", "element"],
var_name="day",
value_name="temp",

)

print(weather_melt)

id year month element day temp
0 MX17004 2010 1 tmax d1 NaN
1 MX17004 2010 1 tmin d1 NaN
2 MX17004 2010 2 tmax d1 NaN
3 MX17004 2010 2 tmin d1 NaN
4 MX17004 2010 3 tmax d1 NaN
.. ... ... ... ... ... ...
677 MX17004 2010 10 tmin d31 NaN
678 MX17004 2010 11 tmax d31 NaN
679 MX17004 2010 11 tmin d31 NaN
680 MX17004 2010 12 tmax d31 NaN
681 MX17004 2010 12 tmin d31 NaN

[682 rows x 6 columns]

Next, we need to pivot up the variables stored in the element column.

weather_tidy = weather_melt.pivot_table(
index=['id', 'year', 'month', 'day'],
columns='element',
values='temp'

)

print(weather_tidy)

element tmax tmin
id year month day
MX17004 2010 1 d30 27.8 14.5

2 d11 29.7 13.4
d2 27.3 14.4
d23 29.9 10.7
d3 24.1 14.4

... ... ...
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11 d27 27.7 14.2
d26 28.1 12.1
d4 27.2 12.0

12 d1 29.9 13.8
d6 27.8 10.5

[33 rows x 2 columns]

Looking at the pivoted table, we notice that each value in the element column is now a
separate column. We can leave this table in its current state, but we can also flatten the
hierarchical columns.

weather_tidy_flat = weather_tidy.reset_index()
print(weather_tidy_flat)

element id year month day tmax tmin
0 MX17004 2010 1 d30 27.8 14.5
1 MX17004 2010 2 d11 29.7 13.4
2 MX17004 2010 2 d2 27.3 14.4
3 MX17004 2010 2 d23 29.9 10.7
4 MX17004 2010 2 d3 24.1 14.4
.. ... ... ... ... ... ...
28 MX17004 2010 11 d27 27.7 14.2
29 MX17004 2010 11 d26 28.1 12.1
30 MX17004 2010 11 d4 27.2 12.0
31 MX17004 2010 12 d1 29.9 13.8
32 MX17004 2010 12 d6 27.8 10.5

[33 rows x 6 columns]

Likewise, we can apply these methods without the intermediate dataframe:

weather_tidy = (
weather_melt
.pivot_table(
index=['id', 'year', 'month', 'day'],
columns='element',
values='temp')

.reset_index()
)

print(weather_tidy)

element id year month day tmax tmin
0 MX17004 2010 1 d30 27.8 14.5
1 MX17004 2010 2 d11 29.7 13.4
2 MX17004 2010 2 d2 27.3 14.4
3 MX17004 2010 2 d23 29.9 10.7
4 MX17004 2010 2 d3 24.1 14.4
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.. ... ... ... ... ... ...
28 MX17004 2010 11 d27 27.7 14.2
29 MX17004 2010 11 d26 28.1 12.1
30 MX17004 2010 11 d4 27.2 12.0
31 MX17004 2010 12 d1 29.9 13.8
32 MX17004 2010 12 d6 27.8 10.5

[33 rows x 6 columns]

Conclusion
This chapter explored how we can reshape data into a format that is conducive to data
analysis, visualization, and collection. We applied the concepts in Hadley Wickham’s
“Tidy Data” paper to show the various functions and methods to reshape our data. This is
an important skill because some functions need data to be organized into a certain shape,
tidy or not, to work. Knowing how to reshape your data is an important skill for both the
data scientist and the analyst.



This page intentionally left blank 



Index

Symbols

* operator, specifying model
interactions, 324

{}(curly brackets), dictionary syntax, 397
% (percent) operator, calling magic
commands, 427

+ (plus) operator, adding covariates to linear
models, 324

() (round brackets)
line breaks, 393–394
tuple syntax, 396

[] (square brackets)
dictionary values, 397
getting first character of string, 230
list syntax, 395–396

Numbers

2D density plot, 88–89

A
Aggregation (or aggregate)

of built-in methods, 178–179
of calculations, 23
of functions, 179–182
multiple functions simultaneously,
182–184

one-variable grouped aggregation,
176–177

options for applying functions in and
aggregate methods, 182–184

overview of, 176
saving groupby object without running
aggregate, transform, or filter,
190–191

AIC (Akaike information criteria), 327, 329
Alignment

DataFrame, 44–45
Series, 39–42

Anaconda
command prompt, 381–382
installers for, 373–374
Miniconda, 374
package installation, 389–390
Python distribution, 385
Spyder IDE, 382
uninstalling, 374

AnacondaCon conference, 364
ANOVA (analysis of variance), 326–327
Anscombe’s quartet

for data visualization, 65–66, 70–71
plotting with facets, 99–100

Apache Arrow, 58, 280
apply

concept map for, 372
creating/using functions, 131–132
functions across rows or columns of data,
133

lambda functions, 141–142
numba library and, 140–141
over a DataFrame, 135–138
over a Series, 133–135
overview of, 131
primer on, 131–132
summary/conclusion, 142
vectorized functions, 138–141

∗args, function parameter, 408
Arrays

scientific computing stack, 359
sklearn library and, 286–287
working with, 415–416



452 Index

Arrow, 58
for dates and times, 280

assert, checking data assembly with,
166

assign, modifying columns with, 50–52
Assignment

multiple, 413–414
passing/reassigning values, 395–396

astype method
converting column to categorical type,
225–226

converting to numeric values, 221–222
converting values to strings, 220

Attributes
class, 417
dot notation and, 10–11
Series, 35

Average cluster algorithm, in hierarchical
clustering, 353–354

Axes, plotting, 67–71

B
Bar plots, 89–91
Bash shell, 377–378
BIC (Bayesian information criteria), 327,
329

“The Big Book of Python,” 365
“The Big Book of R,” 365
Binary

feather format for saving, 56–57
logistic regression for binary response
variable, 297

serialize and save data in binary format, 53
Bivariate statistics

in matplotlib, 74–76
in seaborn, 83–94

Booleans (bool)
subsetting DataFrame, 43
subsetting Series, 36–39

Boxplots
for bivariate statistics, 75–76

creating, 114–115
Broadcasting, Pandas support for, 40–41,
44–45

C
Calculations

datetime, 257–258
involving multiple variables, 191
with missing data (values), 215–216
of multiple functions simultaneously,
182–184

timing execution of, 360, 427–428
Carpentries, 364
CAS (computer algebra systems), 359
category

converting column to, 225–226
manipulating categorical data, 226
overview of, 225
representing categorical variables, 221
sklearn library used with categorical
variables, 291–293

statsmodels library used with
categorical variables, 289–291

Centroid cluster algorithm, in hierarchical
clustering, 353–354

Chaining methods, 423–425
Characters

formatting strings of, 430
getting first character of string, 230
getting last character of string, 231–233
slicing multiple letters of string, 230
strings as series of, 229

Classes, 417–418
Clustering

average cluster algorithm, 353–354
centroid cluster algorithm, 353–354
complete cluster algorithm, 352
dimension reduction using PCA, 347–351
hierarchical clustering, 351–356
k-means, 345–351
manually setting threshold for, 355–356
overview of, 345



Index 453

Clustering (continued)
single cluster algorithm, 352–353
summary/conclusion, 356
ward cluster algorithm, 354–355

Code
profiling, 360
reuse, 405
style, 393–394
timing execution of, 360, 427–428

coerce, 224–225
Colon (:), use in slicing syntax, 15, 399–400
Colors, multivariate statistics in seaborn,
95–97

Columns
adding, 45–47
concatenation generally, 150–151
concatenation with different indices,
153–154

converting to category, 225–226
directly changing, 47–50
dot notation to pull values of, 10–11
dropping values, 52
methods of indexing, 11
modifying with assign, 50–52
rows and columns both containing
variables, 126–129

selecting, 15–16
single value returns, 8–9
slicing, 18–21
subsetting by name, 7–8
subsetting by range, 16–18
subsetting generally, 21–23
subsetting using slicing syntax, 15–16

Columns, with multiple variables
overview of, 122–123
split and add individually, 123–125
split and combine in single step, 125–126

Columns, with values not variables
keeping multiple columns fixed, 120–122
keeping one column fixed, 118–120
overview of, 118

Command line
basic commands, 378

Linux, 378
Mac, 377
overview of, 377
Windows, 377

Comma-separated values. See CSV
(comma-separated values)

compile, pattern compilation, 246–247
Complete cluster algorithm, in hierarchical
clustering, 352

Comprehensions
function comprehension, 403–404
list comprehension, 158–160
overview of, 401–402

Computer algebra systems (CAS), 359
Concatenation (concat)

adding columns, 150–151
adding rows, 147–150
dataframe parts and, 146–147
with different indices, 151–154
ignore_index parameter after, 149–150
observational units across multiple tables,
154–160

overview of, 146
split and combine in single step, 125–126

Concept maps, 369–372
concurrent.features, 360
conda

creating environments, 385–387
install, 374
managing packages, 389
update, 390

Conditional statements, 433–434
Conferences, 363–364
Confidence interval, in linear regression
example, 285

Containers
join method and, 234–235
looping over contents, 401–402
overview, 395
types of, 229

Conversion, of data types
to category, 225–226
to datetime, 250–253



454 Index

Conversion, of data types (continued)
to numeric, 221–225
to string, 220–221

Counting
groupby count, 197–199
missing data (values), 210–212
Poisson regression and, 304–308

Count (bar) plot, for univariate statistics,
81–83

Covariates
adding to linear models, 324
multiple linear regression with three
covariates, 320–322

Cox proportional hazards model
survival analysis, 314–316
testing assumptions, 315–316

C printf style formatting, 429
cProfile, profiling code, 360
create (environments), 385–387
Cross-validation

model diagnostics, 329–333
regularization techniques, 341–343

cross_val_scores, 332–333
CSV (comma-separated values)

for data storage, 55
importing CSV files, 55
loading multiple files using list
comprehension, 158–160

Cumulative sum (cumsum), 199
cython, performance-related library, 360

D
Dash, 362
Dashboards, 362
Dask library, 360
Data assembly

adding rows, 147–150
checking your work on, 166
combining data sets, 145
concatenation, 146–154
concatenation with different indices,
151–154

dataframe parts and, 146–147
ignore_index parameter after
concatenation, 149–150

loading multiple files using list
comprehension, 158–160

loading multiple files using lit
comprehension, 158–160

many-to-many merges, 163–166
many-to-one merges, 163
merging multiple data sets, 160–166
observational units across multiple tables,
154–160

one-to-one merges, 162–163
overview of, 145
summary/conclusion, 167
tidy data, 167

DataFrame

adding columns, 45–47
aggregation, 182–183
alignment and vectorization, 44–45
apply function(s), 135–138
basic plots, 27–28
boolean subsetting, 43
as class, 417–418
concatenation, 149
concept map for basics in, 369
converting to Arrow objects, 58
converting to dicionary objects, 58–59
creating, 32–33
defined, 3
directly changing columns, 47–50
exporting, 56
grouped and aggregated calculations,
23–27

grouped frequency counts, 27
grouped means, 23–26
histogram, 111
loading first data set, 4–6
methods, 43
ndarray save method, 53
overview of, 3, 42
parts of, 42–43
single value returns, 8–9



Index 455

DataFrame (continued)
slicing columns, 18–21
subsetting columns by name, 7–8
subsetting columns by range, 16–18
subsetting columns using slicing syntax,
15–16

subsetting rows and columns, 21–23
subsetting rows by index label, 11–13
subsetting rows by row number, 13–14
summary/conclusion, 28–29
type function for checking, 5
writing CSV files (to_csv method), 55

Data models, 281–282
diagnostics (See Model diagnostics)
generalized linear (See GLM (generalized
linear models))

linear (See Linear models)
Data normalization

multiple observational units in a table,
169–170

overview, 169
Data sets

cleaning data, 416
combining, 145
downloading for this book, 375
equality tests for missing data, 203–204
exporting/importing data (See
Exporting/importing data)

Indemics (Interactive Epidemic
Simulation), 196

lists for data storage, 395–396
loading, 4–6
many-to-many merges, 163–166
many-to-one merges, 163
merging, 160–166
one-to-one merges, 162–163
tidy data, 117

Data structures
adding columns, 45–47
concept map for, 370
creating, 31–33
CSV (comma-separated values), 55
DataFrame alignment and vectorization,
44–45

DataFrame boolean subsetting, 43
DataFrame generally, 42–43
directly changing columns, 47–50
dropping values, 52
Excel and, 55–56
exporting/importing data, 52
feather format, 56–57
making changes to, 45
overview of, 31
pickle data, 53–54
Series alignment and vectorization,
39–42

Series boolean subsetting, 36–39
Series generally, 33–35
Series methods, 35–37
Series similarity with ndarray, 35–36
summary/conclusion, 63

Data types (dtype)
category dtype, 225
converting to category, 225–226
converting to datetime, 250–253
converting to numeric, 221–225
converting to string, 220–221
getting list of types stored in column,
225–226

manipulating categorical data, 226
overview of, 219
Series attributes, 35
specifying from numpy library, 221
summary/conclusion, 227
to_numeric function, 222–225
viewing list of, 219–220

date_range function, 266–269
datetime

adding columns to data structures,
45–47

Arrow with, 280
calculations, 257–258
converting to, 250–253
directly changing columns, 48–49
extracting date components (year, month,
day), 254–257

frequencies, 268



456 Index

datetime (continued)
getting stock-related data, 261–263
loading date related data, 253–254
methods, 259–261
object, 249–250
offsets, 268–269
overview of, 249
ranges, 266–269
resampling, 276–278
shifting values, 270–276
subsetting data based on dates, 263–266
summary/conclusion, 280
time zones, 278–279

DatetimeIndex, 263–265, 268
Day, extracting date components from
datetime object, 254–257

Daylight savings time, 278
def keyword, use with functions, 405–406
Density plots

2D density plot, 88–89
plot.kde function, 111–112
for univariate statistics, 80

Diagnostics. See Model diagnostics
Dictionaries (dict)

creating DataFrame, 32–33
objects to converting DataFrame objects
to, 58–59

overview of, 396–398
passing method to, 182–183

Directories, working, 383–384
distplot, creating histograms, 81–82
dmatrices function, patsy library,
331–333

Docstrings (docstring), function
documentation, 132, 405

Dot notation, to pull a column of values,
10–11

dropna parameter
counting missing values, 210–212
dropping missing values, 214–215

Dropping (drop)
data structure values, 52
missing data (values), 214–215

dtype. See Data types (dtype)

E
EAFP (easier to ask for forgiveness than for
permissions), 191

Elastic net, regularization technique,
340–341

elif, 433–434
else, 433–434
Environments

creating, 385–388
deleting, 387
Pipenv, 387–388
Pyenv, 387

Equality tests, for missing data, 203–204
errors parameter, numeric, 223–224
EuroSciPy conference, 364
Excel

DataFrame and, 56
Series and, 56

Exporting/importing data
Arrow, 58
CSV (comma-separated values), 55
dictionary, 58–59
Excel, 55–56
feather format, 56–57
JSON, 59–62
methods, 63
output types, 62–63
overview of, 52
pickle data, 53–54

F
Facets, plotting, 99–104
Feather format, interface with R language,
56–57

Files
loading multiple using list
comprehension, 158–160

working directories and, 383
fillna method, 212–213
Filter (filter), groupby operations,
188–189



Index 457

Find
missing data (values), 210–212
patterns, 244–245

findall, patterns, 244–245
Fizz Buzz, 433–434
float/float64, 221
Folders

project organization, 379
working directories and, 383

for loop. See Loops (for loop)
format method, 236
Formats/formatting

date formats, 252
serialize and save data in binary format,
53

strings (string), 236–239, 429–431
Formatted literal strings (f-strings),
236–239

formula API, in statsmodels library,
284–285

freq parameter, 268
Frequency

datetime, 268
grouped frequency counts, 27
offsets, 268–269
resampling converting between, 276–278

f-strings, 236–238
f-strings (formatted literal strings),
236–239

Functions
across rows or columns of data, 133
aggregation, 179–182
apply over DataFrame, 135–138
apply over Series, 133–135
arbitrary parameters, 407–408
calculating multiple simultaneously,
182–184

comprehensions and, 403–404
creating/using, 131–132
custom, 180–181
default parameters, 407
groupby, 178
**kwargs, 408
lambda, 141–142

options for applying in and aggregate
methods, 182–184

overview of, 405–408
regular expressions (RegEx), 240
vectorized, 138–141
z-score example of transforming data,
184–186

G
Ganssle, Paul, 280
Gapminder data set, 4
Generalized linear models (GLM). See also
Linear regression models
logistic regression, 446–447
model diagnostics, 327–329
more GLM options, 308–309
negative binomial regression, 306–308,
448–449

overview of, 297
Poisson regression, 304–308, 447–449
sklearn library for logistic regression,
300–304

statsmodels library for logistic
regression, 299–300

statsmodels library for Poisson
regression, 304–306

summary/conclusion, 309
survival analysis, 311–317
testing Cox model assumptions,
315–316

Generators
converting to list, 16–17
overview of, 409–411

get

dictionary values with, 397–398
selecting groups, 191–192

Git for Windows, 377
github, 365
GLM (generalized linear models). See
Generalized linear models

glm function, in statsmodels library, 306,
308–309

Going it alone, 363–365



458 Index

Groupby (groupby)
aggregation, 176–184
aggregation functions, 179–182
applying functions in and aggregate
methods, 182–184

built-in aggregation methods, 178–179
calculations generally, 24–25
calculations involving multiple variables,
191

calculations of means, 23–26
compared with SQL, 175
filtering, 188–189
flattening results, 194–195
frequency counts, 27
iterating through groups, 192–194
methods and functions, 178
missing value example, 186–188
multiple groups, 194
one-variable grouped aggregation,
176–177

overview of, 175
saving without running aggregate,
transform, or filter methods, 190–191

selecting groups, 192
summary/conclusion, 199–200
transform, 184–188
working with multiIndex, 195–199
z-score example of transforming data,
184–186

Groups
iterating through, 192–194
selecting, 191–192
working with multiple, 194

Guido, Sarah, 241

H
Hendryx-Parker, Calvin, 387
hexbin plot

bivariate statistics in seaborn, 87–88
plt.hexbin function, 113–114

Hierarchical clustering
average cluster algorithm, 353–354

centroid cluster algorithm, 353–354
complete cluster algorithm, 352
manually setting threshold for, 355–356
overview of, 351–352
single cluster algorithm, 352–353
ward cluster algorithm, 354–355

Histograms
creating using plot.hist functions, 111
of model residuals, 323
for univariate statistics in matplotlib,
73–74

for univariate statistics in seaborn, 79–83

I
Ibis, 361
id, unique identifiers, 220
IDEs (integrated development
environments), Python, 382

if, 433–434
ignore_index parameter, after
concatenation, 149–150

iloc

indexing rows or columns, 11
Series attributes, 35
subsetting rows and columns, 21–23
subsetting rows by number, 13–14

Importing (import). See also
Exporting/importing data
itertools library, 410–411
libraries, 391–392
loading first data set, 4–5
matplotlib library, 66–72
pandas, 415

Indemics (Interactive Epidemic Simulation)
data set, 208

Indices
beginning and ending indices in ranges,
399

concatenate columns with different
indices, 153–154

concatenate rows with different indices,
151–153



Index 459

Indices (continued)
date ranges, 267–268
issues with absolute, 22
out of bounds notification, 138
reindexing as source of missing values,
209–210

subsetting columns by index position
break, 8

subsetting date based on, 263–266
subsetting rows by index label, 11–13
working with multiIndex, 195–199

inplace parameter, functions and methods,
49–50

Installation
of Anaconda, 373–374
from command line, 377–378
Python packages, 374

Integers (int/int64)
converting to string, 220–221
vectors with integers (scalars), 40

integrated development environments
(IDEs), 382

Interactive Epidemic Simulation (Indemics)
data set, 196

Interpolation, in filling missing data,
213–214

IPython (ipython)
ipython command, 381–382
magic commands, 427

Iteration. See Loops (for loop)
iTerm2, 377
itertools library, 410–411

J
JavaScript Objectd notation, 59–62
join

merges and, 160
string methods, 234–235

jointplot, creating seaborn scatterplot,
85–88

JSON data, 59–62
Jupyter, 360
jupyter command, 382

JupyterCon, 364
Jupyter Days, 364

K
KaplanMeierFitter, lifelines library,
312–313

KDE plot, of bivariate statistics, 89–90
keep_default_na parameter, specifying NaN
values, 205

Kelleher, Adam, 241
Kelleher, Andrew, 241
Keys, creating DataFrame, 32–33
Key–value pairs, 397–398
Key–value stores, 408
Keywords

lambda keyword, 142
passing keyword argument, 134–135

k-fold cross validation, 329–333
k-means

clustering, 345–351
using PCA, 349–351

**kwargs, 408

L
L1 regularization, 337–338, 341
L2 regularization, 338–341
lambda functions, applying, 141–142
Lander, Jared, 241
LASSO regression, 337–338, 341
Leap years/leap seconds, 278
Learning resources, for self-directed learners,
363–365

Libraries. See also by individual types
importing, 391–392
performance libraries, 360

lifelines library, 311–313
CoxPHFitter class, 314–315
KaplanMeierFitter class, 312–313

Linear regression models. See also GLM
(generalized linear models)
with categorical variables, 289–293
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Linear regression models. See also GLM
(generalized linear models) (continued)
cross-validation, 341–343
elastic net, 340–341
LASSO regression regularization,
337–338

model diagnostics, 324–327
multiple regression, 287–289
one-hot endocing in, 294–295
R2 (coefficient of determination)
regression score function, 332

reasons for regularization, 335–337
replicating results in R, 444–446
residuals, 320–322
restoring labels in sklearn models,
293

ridge regression, 338–340
simple linear regression, 283–287
sklearn library for multiple regression,
288–289

sklearn library for simple linear
regression, 285–287

statsmodels library for multiple
regression, 287–288

statsmodels library for simple linear
regression, 284–285

summary/conclusion, 296
Line breaks, 393–394
Linux

command line, 378
installing Anaconda, 373–374
running python and ipython commands,
382

viewing working directory, 383
List comprehension, 158–160
Lists (list)

comprehensions and, 403–404
converting generator to, 16–17, 409–410
creating Series, 31–32
of data types, 219–220
loading multiple files using
comprehension, 158–160

loading multiple files using list
comprehension, 158–160

looping, 401–402

multiple assignment, 413–414
overview of, 395–396
single value returns, 9–10

lmplot

creating scatterplots, 85
with hue parameter, 96–97

Loading data
datetime data, 253–254
as source of missing data, 205–206

loc

indexing rows or columns, 11–13
Series attributes, 35
subsetting rows and columns, 21–23
subsetting rows or columns, 15–16

Logic, three-valued, 203–204
Logistic regression

example of, 435–441
overview of, 297–304
replicating results in R, 446–447
sklearn library for, 300–304
statsmodels library for, 299–300
working with GLM models, 328–329

logit function, performing logistic
regression, 299–300

Loops (for loop)
comprehensions and, 403–404
overview of, 401–402
through groups, 192–194
through lists, 401–402

M
Mac

command line, 377–378
installing Anaconda, 373
pwd command for viewing working
directory, 383

running python and ipython commands,
382

Machine learning models, 285, 361–362
Machine Learning Operations (MLOps), 362
Many-to-many merges, 163–166
Many-to-one merges, 163
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Markham, Kevin, 422
match, pattern matching, 240–243
matplotlib library

axes subplots, 67–71
bivariate statistics, 74–76
figure anatomy, 71–72
figure objects, 67–71
multivariate statistics, 76–78
overview of, 66–72
statistical graphics, 72–73
univariate statistics, 73–74

Matrices, 331–333, 415–416
Mean (mean)

custom functions, 180–181
group calculations involving multiple
variables, 191

grouped means, 23–26
numpy library, 179
Series in identifying, 37–38

Meetups, 363
melt function

converting wide data into tidy data,
118–120

line breaks, 393–394
rows and columns both containing
variables, 126–127

Merges (merge)
many-to-many, 163–166
many-to-one, 163
of multiple data sets, 160–166
one-to-one, 162–163
as source of missing data, 206–207

Methods
built-in aggregation methods, 178–179
chaining, 423–425
class, 418
datetime, 259–261
export, 62–63
Series, 35–37
string, 233–236

Miniconda, 374
Mirjalili, Vahid, 241
Missing data (NaN values)

built-in Na value, 218
calculations with, 215–216
cleaning, 212–215
concatenation and, 148–149, 153
date range for filling in, 272–273
dropping, 214–215
fill forward or fill backward, 212–213
finding and counting, 210–212
interpolation in filling, 213–214
loading data as source of, 205–206
merged data as source of, 206–207
overview of, 203
recoding or replacing (fillna method),
212

reindexing causing, 209–210
sources of, 205–210
specifying with na_values parameter,
205–206

summary/conclusion, 218
transform example, 186–188
user input creating, 207–208
what is a NaN value, 203–204
working with, 210–216

MLOps (Machine Learning Operations),
362

Model diagnostics
comparing multiple models, 324–329
k-fold cross validation, 329–333
overview of, 319
q-q plots, 322–324
residuals, 319–324
summary/conclusion, 334
working with GLM models, 327–329
working with linear models, 324–327

Models
data, 281–282
generalized linear (See GLM (generalized
linear models))

linear (See Linear models)
Month, extracting date components from
datetime object, 254–257

Müller, Andreas, 241
Multiple assignment, 413–414
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Multiple regression
with categorical variables, 289–293
overview of, 287
residuals, 320–322
sklearn library for, 288–289
statsmodels library for, 287–288

Multivariate statistics
in matplotlib, 76–78
in seaborn, 94–99

N
na_filter parameter, specifying NaN values,
205–206

Name, subsetting columns by, 7–8
NaN.See Missing data (NaN values)
Na value, missing data with built-in, 218
na_values parameter, specifying NaN values,
205–206

ndarray

restoring labels in sklearn models, 293
Series similarity with, 35–36
working with matrices and arrays,
415–416

Negative binomial regression, 306–308,
448–449
replicating results in R, 448–449

Negative numbers, slicing values from end of
container, 230–231

New York ACS logistic regression example,
435–441

Normal distribution
of data, 336
q-q plots and, 322–324

Normalization, data, 169–173
numba library

performance-related libraries, 360
timing execution of statements or
expressions, 360

vectorize decorator from, 140–141
Numbers (numeric)

converting variables to numeric values,
221–225

formatting number strings, 238–239,
430–431

negative numbers, 230–231
to_numeric function, 222–225

numpy library
broadcasting support, 44–45
exporting/importing data, 53–55
mean, 179
ndarray, 415–416
performance and, 360
restoring labels in sklearn models, 293
Series similarity with numpy.ndarray,
35

sklearn library taking numpy arrays,
286–287

specifying dtype from, 220–221
vectorize, 140

nunique method, grouped frequency counts,
27

O
Object-oriented languages, 417
Objects

classes, 417–418
converting to datetime, 250–253
datetime, 249–250
figure, plotting, 67–71
lists as, 395–396
plots and plotting using Pandas objects,
111–115

Observational units
across multiple tables, 154–160
in a table, 169–173

Odds ratios, performing logistic regression,
300

Offsets, frequency, 268–269
One-to-one merges, 162–163
OSX. See Mac
Overdispersion of data, negative binomial
regression for, 306–308, 448–449

P
Packages

benefits of isolated environments,
385–386
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Packages (continued)
Installing, 389–390
updating, 390

pairgrid, bivariate statistics, 93–94
Pairwise relationships (pairplot)

bivariate statistics, 93–94
with hue parameter, 98

pandera, 361
Panel, 362
Parameters

arbitrary function parameters, 407–408
default function parameters, 407
functions taking, 406–407

passing/reassigning values, 395–396
patsy library, 331–333
Patterns. See also Regular expressions (regex)

compiling, 246–247
matching, 240–243
substituting, 245–246

PCA (principal component analysis),
347–351

pd

alias for pandas, 5
reading pickle data, 53–54

PEP8 (Python Enhancement Proposal 8),
393

Performance
avoiding premature optimization, 360
profiling code, 360
timing your code, 360, 427–428

pickle data, 53–54
Pipeline, 294–295
Pipenv, 387–388
pip install, 374, 389–390
Pivot/unpivot

columns containing multiple variables,
122–126

converting wide data into tidy data,
119–120

keeping multiple columns fixed, 120–122
rows and columns both containing
variables, 127–128

Placeholders, formatting strings, 238, 430

Plots/plotting (plot)
basic plots, 27–28
bivariate statistics in matplotlib, 74–76
bivariate statistics in seaborn, 83–94
concept map for, 371
creating boxplots (plot.box), 113–115
creating density plots (plot.kde),
111–112

creating scatterplots (plot.scatter),
112–113

linear regression residuals, 320–322
matplotlib library, 66–72
multivariate statistics in matplotlib,
76–78

multivariate statistics in seaborn, 94–99
overview of, 65
Pandas objects and, 111–115
q-q plots, 322–324
seaborn library, 78
statistical graphics, 72–73
summary/conclusion, 115
themes and styles in seaborn, 105–108
univariate statistics in matplotlib,
73–74

univariate statistics in seaborn, 79–83
PLOT_TYPE functions, 111
plt.hexbin function, 113–114
Podcast resources, for self-directed learners,
364–365

Point representation, Anscombe’s data set, 67
poisson function, in statsmodels library,
304–306

Poisson regression
negative binomial regression as alternative
to, 306–308, 448–449

overview of, 304
replicating results in R, 447–449
statsmodels library for, 304–306

Polars, 360
Principal component analysis (PCA),
347–351

Project templates, 379, 383
Pryke, Bejamin, 422
PyCon conference, 364
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PyData, 364
pyenv, 374
Pyenv, 387–388
pyjanitor, 361
Python

Anaconda distribution, 385
assert, 166
command line and text editor, 381
comparing Pandas types with, 7
conferences, 364
enhanced features in Pandas, 3
IDEs (integrated development
environments), 382

ipython command, 381–382
jupyter command, 382
as object-oriented languages, 417
running from command line, 377–378
scientific computing stack, 350
ways to use, 381–382
working with objects, 5
as zero-indexed languages, 399

Python Enhancement Proposal 8
(PEP8), 393

Q

q-q plots, model diagnostics, 322–324

R
random--state method, directly changing
columns, 47–48

range, 409–410
Ranges (range)

beginning and ending indices, 399
date ranges, 266–269
filling in missing values, 272–273
overview of, 409–411
passing range of values, 395–396
subsetting columns, 16–18

Raschka, Sebastian, 241
R ecosystem, 362

replicating results in, 443–449

Regex.See Regular expressions (regex)
regplot, creating scatterplot, 83–85
Regression

keeping labels in sklearn models, 293
LASSO regression regularization,
337–338

logistic regression, 297–304, 446–447
more GLM options, 308–309
multiple regression, 287–289
negative binomial regression, 306–308,
448–449

New York ACS example, 435–441
Poisson regression, 304–308, 447–449
reasons for regularization, 335–337
ridge regression regularization,
338–340

simple linear regression, 283–287
sklearn library for logistic regression,
300–304

sklearn library for multiple regression,
288–289

sklearn library for simple linear
regression, 285–287

statsmodels library for logistic
regression, 299–300

statsmodels library for multiple
regression, 287–288

statsmodels library for Poisson
regression, 304–306

statsmodels library for simple linear
regression, 284–285

Regular expressions (RegEx)
functions in re, 240
overview of, 239
pattern compilation, 246–247
pattern matching, 240–243
pattern substitution, 245–246
regex library, 247
special characters, 240
syntax, special characters, and functions,
240

Regularization
cross-validation, 341–343
elastic net, 340–341
LASSO regression, 337–338
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Regularization (continued)
overview of, 335
reasons for, 335–337
ridge regression, 338–340
summary/conclusion, 343

reindex method, reindexing as source of
missing values, 209–210

re module, 240–243, 247
Resampling, datetime, 276–278
Residuals, model diagnostics, 319–324
Residual sum of squares (RSS), 326–327
Resources, 363–365
Ridge

regression elastic net and, 341
regularization techniques, 338–340

R language, interface with (to_feather
method), 56–57

Rows
concatenation generally, 145–147
concatenation with different indices,
151–153

methods of indexing, 11
multiple observational units in a table,
169–173

removing row numbers from output, 55
rows and columns both containing
variables, 126–129

subsetting multiple, 13
subsetting rows and columns, 21–23
subsetting rows by index label, 11–13
subsetting rows by row number, 13–14

RSS (residual sum of squares), 326–327
Rug plots, for univariate statistics, 80–81

S
Scalars, 40
Scatterplots

for bivariate statistics, 74–75
matplotlib example, 69
for multivariate statistics, 77–78
plot.scatter function, 112–113

Scientific computing stack, 350
SciPy conference, 364

scipy library
hierarchical clustering, 351
performance libraries, 360
scientific computing stack, 359

Scripts
project templates for running, 383
running Python from command line,
377–378

seaborn

Anscombe’s quartet for data visualization,
65–66

bivariate statistics, 83–94
multivariate statistics, 94–99
overview of, 78
themes and styles, 105–108
tips data set, 187
titanic data set, 297–299
univariate statistics, 79–83

Searches. See Find
Semicolon (;), types of delimiters, 55
Serialization, serialize and save data in binary
format, 53

Series

adding columns, 45–47
aggregation functions, 183–184
alignment and vectorization, 39–42
apply function(s) over, 133–135
attributes, 35
boolean subsetting, 36–39
categorical attributes or methods, 226
as class, 417–418
creating, 31–32
defined, 3
directly changing columns, 47–50
exporting/importing data, 53
exporting to Excel (to_excel method),
56

histogram, 111
methods, 35–37
overview of, 33–35
similarity with ndarray, 35–36
single value returns, 8–9
writing CSV files (to_csv method), 55
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SettingWithCopyWarning, 419–422
Shape

DataFrame attributes, 5
Series attributes, 35

Shape, in plotting, 97–98
Shell scripts, running Python from
command line, 377–378

Shiny for Python, 362
Simple linear regression

overview of, 283
sklearn library, 285–287
statsmodels library, 284–285

Single cluster algorithm, in hierarchical
clustering, 352–353

Siuba, 360
Size, in plotting, 77–78
size attribute, Series, 35
sklearn library

defaults in, 302–304
importing PCA function, 347–348
keeping labels in sklearn models, 293
k-fold cross validation, 330–331
KMeans function, 345–347
for logistic regression, 300–304
logistic regression example, 439–441
for multiple regression, 288–289
one-hot endocing with, 294–295
for simple linear regression, 285–287
splitting data into training and testing sets,
335–336

transformer pipelines in, 294–295
Slicing

colon (:) use in slicing syntax, 15,
399–400

columns, 18–21
string from beginning or to end, 232
strings, 230–231
strings incrementally, 232–233
subsetting columns, 15–16
subsetting multiple rows and columns,
22–23

values, 399–400
snakevis, profiling code, 360
sns.distplot, creating histograms, 81

Sns.set_style function, 105–108
Special characters, regular expressions, 240
Split–apply–combine, 175
splitlines method, strings, 235–236
split method

split and add columns individually,
123–125

split and combine in single step, 125–126
Spyder IDE, 382
SQL

comparing Pandas to, 162
groupy compared with SQL GROUP BY,
175

Square brackets ([])
getting first character of string, 230
list syntax, 395–396

Statistical graphics
bivariate statistics in matplotlib, 74–76
bivariate statistics in seaborn, 83–94
matplotlib library, 66–72
multivariate statistics in matplotlib,
76–78

multivariate statistics in seaborn, 94–99
overview of, 72–73
seaborn library, 78
univariate statistics in matplotlib,
73–74

univariate statistics in seaborn, 79–83
Statistics

basic plots, 27–28
grouped and aggregated calculations,
23–27

grouped frequency counts, 27
grouped means, 23–26

statsmodels library
for logistic regression, 299–300
for multiple regression, 287–288
for Poisson regression, 304–306
for simple linear regression, 284–285

Stocks/stock prices, 261–263
Storage

of information in dictionaries,
396–398

lists for data storage, 395–396
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str accessor, 123
Streamlit, 362
strftime, for date formats, 252–253
Strings (string)

accessing methods, 123
converting values to, 220–221
formatting, 236–239, 429–431
getting last character in, 231–233
methods, 233–236
overview of, 229
pattern compilation, 246–247
pattern matching, 240–243
pattern substitution, 245–246
regular expressions (regex) and, 239–240,
247

subset and slice, 229–231
summary/conclusion, 247

str.replace, pattern substitution,
245–246

Styles, seaborn, 105–108
Subplot syntax, 68
Subsets/subsetting

columns by index position break, 8
columns by name, 7–8
columns by range, 16–18
columns generally, 21–23
columns using slicing syntax, 15–16
data by dates, 263–266
DataFrame boolean subsetting, 43
lists, 395–396
modifying with
SettingWithCopyWarning, 419–420

multiple rows, 13
rows by index label, 11–13
rows by row number, 13–14
rows generally, 21–23
strings, 229–231
tuples, 396

sum

cumulative (cumsum), 199
custom functions, 180

Summarization. See Aggregation (or
aggregate)

Survival analysis, 311–317
Cox proportional hazards model,
314–316

data for, 311–312
Kaplan Meier curves, 312–314
overview, 311
summary/conclusion, 317

SyiPy, 359

T
Tables

observational units across multiple,
154–160

observational units in, 169–173
Tab separated values (TSV), 55, 253
tail, returning last row, 13
T attribute, Series, 35
Templates, project, 379, 383
Terminal application, Mac, 377
Text. See also Characters; Strings (string)

function documentation (docstring),
132

overview of, 229
Themes, seaborn, 105–109
Three-valued logic, 203–204
Tidy data

columns containing multiple variables,
122–126

columns containing values not variables,
118–122

concept map for, 372
data assembly, 167
data normalization, 169–173
definition of, 117
keeping multiple columns fixed,
120–122

keeping one column fixed, 118–120
overview of, 117
rows and columns both containing
variables, 126–129

split and add columns individually,
123–125
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Tidy data (continued)
split and combine in single step, 125–126
summary/conclusion, 129

tidyverse, 360
Time. See datetime
TimedeltaIndex, 265–266
timedelta object

date calculations, 257–258
subsetting date based data, 265–266

timeit function, timing execution of
statements or expressions, 360, 427–428

Time zones, 278–279
tips data set, seaborn library, 187, 283
titanic data set, 297–299
to_csv method, 55
to_datetime function, 250–253
to_dict method, 58–59
to_excel method, 56
to_feather method, 57
to_numeric function, 222–225
Transform (transform)

applying to data, 323–324
missing value example of transforming
data, 186–188

overview of, 184
z-score example of transforming data,
184–186

Transformer pipelines, 294–295
True, 434
TSV (tab separated values), 55, 253
Tuples (tuple), 396
2D density plot, 88–89
type function, working with Python
objects, 5

U
Unique identifiers, 220
Univariate statistics

in matplotlib, 73–74
in seaborn, 79–83

Updates, package, 390
User input, as source of missing data,
207–208

V

value_counts method, 27, 211–212
Values (value)

columns containing values not variables
(See Columns, with values not variables)

converting to strings, 220–221
creating DataFrame values, 34
directly changing columns, 47–50
dropping, 52
functions taking, 406–407
missing (See Missing data (NaN values))
multiple assignment of list of, 413–414
passing/reassigning, 395–396
replacing with
SettingWithCopyWarning, 420–421

Series attributes, 35
shifting datetime values, 270–276
slicing, 399–400

VanderPlas, Jake, 359
Variables

adding covariates to linear models, 324
bi-variable statistics (See Bivariate
statistics)

calculations involving multiple, 191
columns containing multiple (See
Columns, with multiple variables)

columns containing values not variables
(See Columns, with values not variables)

converting to numeric values, 221–225
multiple assignment, 413–414
multiple linear regression with three
covariates, 320–322

multiple variable statistics (See
Multivariate statistics)

one-variable grouped aggregation,
176–177

rows and columns both containing,
126–129

single variable statistics (See Univariate
statistics)

sklearn library used with categorical
variables, 291–293

statsmodels library used with
categorical variables, 289–291
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Vectors (vectorize)
applying vectorized function, 138–141
with common index labels (automatic
alignment), 41–42

DataFrame alignment and vectorization,
44–45

Series alignment and vectorization,
39–42

Series referred to as vectors, 35
timing, 427–428
using numba library, 140–141
using numpy library, 140
vectors of different length, 40–41
vectors of same length, 39–40
vectors with integers (scalars), 40

Violin plots
bivariate statistics, 91–93
creating scatterplots, 91–93
with hue parameter, 96–97

Visualization
Anscombe’s quartet for data visualization,
65–66

using plots for, 27–28
value of, 65–66

Voilà, 362

W
Ward cluster algorithm, in hierarchical
clustering, 354–355

Wickham, Hadley, 99, 117
“Wide” data, converting into tidy data,
118–120

Windows
Anaconda command prompt, 381–382
cd command for viewing working
directory, 383

command line, 377
installing Anaconda, 373

X
xarray library, 359
XGBoost, 361

Y
Year, extracting date components from
datetime object, 254–257

Z
Zero-indexed languages, 399

z-score, transforming data, 184–186
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