PEARSON BUSINESS ANALYTICS SERIES

FOURTH EDITION

EVEN YOU CAN LEARN STATISTICS and ANALYTICS

An Easy to Understand Guide

DAVID M. LEVINE | DAVID F. STEPHAN

66.600

FREE SAMPLE CHAPTER

Even You Can Learn Statistics and Analytics Fourth Edition

An Easy to Understand Guide to Statistics and Analytics

> David M. Levine David F. Stephan

PEARSON

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City São Paulo • Sidney • Hong Kong • Seoul • Singapore • Taipei • Tokyo Editor-in-Chief: Mark L. Taub Acquisitions Editor: Kim Spenceley Development Editor: Chris Zahn Managing Editor: Sandra Schroeder Project Editor: Mandie Frank Production Manager: Remya Divakaran/codeMantra Copy Editor: Kitty Wilson Indexer: Timothy Wright Proofreader: Donna Mulder Designer: Chuti Prasertsith Compositor: codeMantra

Copyright © 2022 Pearson Education, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com. Visit us on the Web: informit.com/aw

All rights reserved. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, request forms, and the appropriate contacts within the Pearson Education Global Rights & Permissions Department, please visit www.pearson.com/permissions.

No patent liability is assumed with respect to the use of the information contained herein. Although every precaution has been taken in the preparation of this book, the publisher and author assume no responsibility for errors or omissions. Nor is any liability assumed for damages resulting from the use of the information contained herein.

ScoutAutomatedPrintCode

ISBN-13: 978-013-765476-5 ISBN-10: 0-13-765476-6

Library of Congress Control Number: 2021947626

Pearson's Commitment to Diversity, Equity, and Inclusion

Pearson is dedicated to creating bias-free content that reflects the diversity of all learners. We embrace the many dimensions of diversity, including but not limited to race, ethnicity, gender, socioeconomic status, ability, age, sexual orientation, and religious or political beliefs.

Education is a powerful force for equity and change in our world. It has the potential to deliver opportunities that improve lives and enable economic mobility. As we work with authors to create content for every product and service, we acknowledge our responsibility to demonstrate inclusivity and incorporate diverse scholarship so that everyone can achieve their potential through learning. As the world's leading learning company, we have a duty to help drive change and live up to our purpose to help more people create a better life for themselves and to create a better world.

Our ambition is to purposefully contribute to a world where:

- Everyone has an equitable and lifelong opportunity to succeed through learning.
- Our educational products and services are inclusive and represent the rich diversity of learners.
- Our educational content accurately reflects the histories and experiences of the learners we serve.
- Our educational content prompts deeper discussions with learners and motivates them to expand their own learning (and worldview).

While we work hard to present unbiased content, we want to hear from you about any concerns or needs with this Pearson product so that we can investigate and address them.

• Please contact us with concerns about any potential bias at https://www.pearson.com/report-bias.html.

CREDITS

Credits

Cover	ZinetroN/Shutterstock
Unnumbered Figure 3-1 – Unnumbered Figure 3-	-3 Microsoft Corporation
Unnumbered Figure 5-1 – Unnumbered Figure 5-	-3
Figure 6-2	
Figure 6-3	
Figure 8-2 – Figure 8-5	
Unnumbered Figure 8-1	
Unnumbered Figure 8-2	
Figure 9-1 – Figure 9-3	
Figure 9-5	
Figure 9-6	
Figure 10-3	
Figure 11-1	
Figure 12-1 – Figure 12-3	
Figure 12-5 – Figure 12-7	
Figure E-1 – Figure E-5	
Unnumbered Figure E-1	
Unnumbered Figure E-2	
Figure 13-5 JMP	Statistical Discovery LLC

Figure 13-6

Microsoft and/or its respective suppliers make no representations about the suitability of the information contained in the documents and related graphics published as part of the services for any purpose all such documents and related graphics are provided "as is" without warranty of any kind. Microsoft and/or its respective suppliers hereby disclaim all warranties and conditions with regard to this information, including all warranties and conditions of merchantability, whether express, implied or statutory, fitness for a particular purpose, title and non-infringement. In no event shall Microsoft and/or its respective suppliers be liable for any special, indirect or consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other tortious action, arising out of or in connection with the use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typographical errors. Changes are periodically added to the information herein. Microsoft and/or its respective suppliers may make improvements and/or changes in the product(s) and/or the program(s) described herein at any time. Partial screen shots may be viewed in full within the software version specified.

Microsoft[®] Windows[®], and Microsoft Office[®] are registered trademarks of the Microsoft Corporation in the U.S.A. and other countries. This book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

iv-

To our wives and our children, and in loving memory of our parents

This page intentionally left blank

Table of Contents

Introduction The Even You Can Learn Statistics and Analytics Owner's Manual
Chapter 1 Fundamentals of Statistics
1 1 The First Three Words of Statistics
1.2 The Fourth and Fifth Words
1.3 The Branches of Statistics
1.4 Sources of Data
1.5 Sampling Concepts
1.6 Sample Selection Methods
Chapter 2 Presenting Data in Tables and Charts
2.1 Presenting Categorical Variables
2.2 Presenting Numerical Variables
2.3 "Bad" Charts
Chapter 3 Descriptive Statistics
3.1 Measures of Central Tendency45
3.2 Measures of Position
3.3 Measures of Variation
3.4 Shape of Distributions
Chapter 4 Probability
4.1 Events
4.2 More Definitions
4.3 Some Rules of Probability
4.4 Assigning Probabilities
Chapter 5 Probability Distributions
5.1 Probability Distributions for Discrete Variables
5.2 The Binomial and Poisson Probability Distributions
5.3 Continuous Probability Distributions and the Normal Distribution100
5.4 The Normal Probability Plot
Chapter 6 Sampling Distributions and Confidence Intervals
6.1 Foundational Concepts122
6.2 Sampling Error and Confidence Intervals 125
6.3 Confidence Interval Estimate for the Mean Using the <i>t</i>
Distribution (σ Unknown)
6.4 Confidence Interval Estimation for Categorical Variables
6.5 Confidence Interval Estimation When Normality Cannot Be Assumed 134
Chapter 7 Fundamentals of Hypothesis Testing145
7.1 The Null and Alternative Hypotheses
7.2 Hypothesis Testing Issues

vii

7.3 Decision-Making Risks	49 50
7.5 Types of Hypothesis Tests	52
Chapter 8 Hypothesis Testing: <i>Z</i> and <i>t</i> Tests	57
8.1 Test for the Difference Between Two Proportions	57
8.2 Test for the Difference Between the Means of Two Independent Groups10	53
8.3 The Paired <i>t</i> Test	58
Chapter 9 Hypothesis Testing: Chi-Square Tests and the	
One-Way Analysis of Variance (ANOVA)18	33
9.1 Chi-Square Test for Two-Way Tables18	83
9.2 One-Way Analysis of Variance (ANOVA): Testing for the	~ 1
Differences Among the Means of More Than Iwo Groups	91
Chapter 10 Simple Linear Regression	11
10.1 Basics of Regression Analysis2	11
10.2 Developing a Simple Linear Regression Model	14
10.3 Measures of Variation	21
10.4 Inferences About the Slope	26
10.5 Common Mistakes when Using Regression Analysis	29
Chapter 11 Multiple Regression	13
11.1 The Multiple Regression Model	43
11.2 Coefficient of Multiple Determination	46
11.3 The Overall F Test	46
11.4 Residual Analysis for the Multiple Regression Model	+7 48
	-0
Chapter 12 Introduction to Analytics)9
12.1 Basic Concepts	59 65
12.2 Descriptive Analytics	60 60
	09
Chapter 13 Predictive Analytics	79
13.1 Predictive Analytics Methods	79
13.2 More About Predictive Models	91 04
13.5 The induction	57 87
13.5 Association Analysis.	90
Appendix A Microsoft Excel Operation and Configuration	99
A.1 Conventions for Keystroke and Mouse Operations	99
A.2 Microsoft Excel Technical Configuration	00
Appendix B Review of Arithmetic and Algebra)1
Assessment Quiz	01
Symbols	03
Answers to Quiz	10
Appendix C Statistical Tables	11

Appendix D	Spreadsheet Tips	
Chart Tij	DS	
Function	Tips	
Appendix E	Advanced Techniques	
Advance	d How-To Tips	
Analysis	ToolPak Tips	
Appendix F	Documentation for Downloadable Files	
El Dowr	ıloadable Data Files	
F.2 Down	lloadable Spreadsheet Solution Files	
Index		

Acknowledgments

We would especially like to thank the staff at Pearson: Kim Spenceley for making this fourth edition a reality, Kitty Wilson for her copy editing, Lori Lyons and Mandie Frank for their work in the production of this text.

We have sought to make the contents of this book as clear, accurate, and errorfree as possible. We invite you to make suggestions or ask questions about the content if you think we have fallen short of our goals in any way. Please email your comments to authors@davidlevinestatistics.com and include the hashtag #EYCLSA4 in the subject line of your message.

About the Authors

David M. Levine and **David F. Stephan** are part of a writing team known for their series of business statistics textbooks that include *Basic Business Statistics, Business Statistics: A First Course*, and *Statistics for Managers Using Microsoft Excel*. In long teaching careers at Baruch College, both were known for their classroom innovations, with Levine being honored with a Presidential Excellence Award for Distinguished Teaching Award and Stephan granted the privilege to design and develop the College's first computer-based classroom. Both are active members of the Data, Analytics and Statistics Instruction SIG of the Decision Sciences Institute.

Levine is Professor Emeritus of Information Systems at Baruch College. He is nationally recognized innovator in business statistics education and is also the coauthor of *Applied Statistics for Engineers and Scientists Using Microsoft Excel and Minitab*. Levine is also the author or coauthor of four books about statistical quality management: *Statistics for Six Sigma Green Belts and Champions, Six Sigma for Green Belts and Champions, Design for Six Sigma for Green Belts and Champions,* and *Quality Management,* 3rd Edition. He has published articles in various journals, including *Psychometrika, The American Statistician, Communications in Statistics, Multivariate Behavioral Research, Journal of Systems Management, Quality Progress,* and *The American Anthropologist,* and has given numerous talks at American Statistical Association, Decision Sciences Institute, and Making Statistics More Effective in Schools of Business conferences.

During his more than 20 years at Baruch College, **Stephan** devised techniques for teaching computer applications such as Microsoft Excel in a business context and developed future-forward courses that explored the effects of emerging digital technologies. He also served as the associate director of a U.S. Department of Education FIPSE project that successfully integrated interactive media into classroom instruction for the humanities.. Stephan is also the developer of PHStat, the statistics add-in for Microsoft Excel distributed by Pearson Education. This page intentionally left blank

Introduction The Even You Can Learn Statistics and Analytics Owner's Manual

In today's world, understanding statistics and analytics is more important than ever before. *Even You Can Learn Statistics and Analytics: An Easy to Understand Guide to Statistics and Analytics* teaches you the basic concepts that provide you with the knowledge to apply statistics and analytics in your life. You will also learn the most commonly used statistical methods and have the opportunity to practice those methods while using Microsoft Excel.

Please read the rest of this introduction so that you can become familiar with the distinctive features of this book. To download files that support your learning of statistics, visit the website for this book at www.informit.com.

Mathematics Is Always Optional!

Never mastered higher mathematics—or generally fearful of math? Not to worry, because in *Even You Can Learn Statistics and Analytics*, you will find that every concept is explained in plain English, without the use of higher mathematics or mathematical symbols. However, if you *are* interested in the mathematical foundations behind statistics, *Even You Can Learn Statistics and Analytics* includes **Equation Blackboards**, stand-alone sections that present the equations behind statistical methods and complement the main material.

Learning with the Concept-Interpretation Approach

Even You Can Learn Statistics and Analytics uses a **Concept-Interpretation** approach to help you learn statistics and analytics:

- A **CONCEPT**, a plain language definition that uses no complicated mathematical terms.
- An **INTERPRETATION**, that fully explains the concept and its importance to statistics. When necessary, these sections also include common misconceptions about the concept as well as the common errors people can make when trying to apply the concept.

iiix

INTRODUCTION

For simpler concepts, an **EXAMPLES** section lists real-life examples or applications of the statistical concepts. For more involved concepts, **WORKED-OUT PROBLEMS** provide complete solutions to statistical problems—including actual spreadsheet results—that illustrate how you can apply the concepts to other problems.

Practicing Statistics While You Learn Statistics

To help you learn statistics, you should always review the worked-out problems that appear in this book. As you review them, you can practice what you have just learned by using the optional **SPREADSHEET SOLUTION** sections.

Spreadsheet Solution sections enable you to use Microsoft Excel as you learn statistics. If you don't want to practice your spreadsheet skills, you can examine the spreadsheet results that appear throughout the book. Many spreadsheet results are available as files that you can download for free through the InformIT website, www.informit.com. Please visit the website for this book at www.informit.com to access these bonus materials.

Spreadsheet program users will also benefit from Appendix D and Appendix E, which help teach you more about spreadsheets as you learn statistics.

And if technical issues or instructions have ever confounded your using Microsoft Excel in the past, check out Appendix A, which details the technical configuration issues you might face and explains the conventions used in all technical instructions that appear in this book.

In-Chapter Aids

As you read a chapter, look for the following icons for extra help:

Important Point icons highlight key definitions and explanations.

File icons identify the downloadable files that enable you to examine the data in selected problems.

Interested in the mathematical foundations of statistics? Then look for the Interested in Math? icons throughout the book. But remember, you can skip any or all of the math sections without losing any comprehension of the statistical methods presented, because math is always optional in this book!

End-of-Chapter Features

At the end of most chapters of *Even You Can Learn Statistics and Analytics*, you can find the following features, which you can review to reinforce your learning.

Important Equations

The **Important Equations** sections present all of the important equations discussed in the chapter. You can use these lists for reference and later study even if you have skipped over the Equation Blackboards and "interested in math" passages.

One-Minute Summaries

Each **One-Minute Summary** is a quick review of the significant topics in the chapter in outline form. When appropriate, the summaries also help guide you to make the right decisions about applying statistics to the data you seek to analyze.

Test Yourself

The **Test Yourself** sections offer a set of short-answer questions and problems that enable you to review and test yourself (with answers provided) to see how much you have retained of the concepts presented in a chapter.

Summary

Even You Can Learn Statistics and Analytics can help you whether you are taking a formal course in data analysis, brushing up on your knowledge of statistics for a specific analysis, or need to learn about analytics. If you have questions about this book, feel free to contact the authors via email at authors@davidlevinestatistics. com and include the hashtag #EYCLSA4 in the subject line of your email.

This page intentionally left blank

Presenting Data in Tables and Charts

- 2.1 Presenting Categorical Variables
- 2.2 Presenting Numerical Variables
- 2.3 "Bad" Charts One-Minute Summary Test Yourself

T ables and charts are ways of summarizing categorical and numerical variables that can help you present information effectively. In this chapter, you will learn the appropriate types of tables and charts to use for each type of variable.

2) Presenting Categorical Variables

You present a categorical variable by first sorting values according to the categories of the variable. Then you place the count, amount, or percentage (part of the whole) of each category into a summary table or into one of several types of charts.

The Summary Table

CONCEPT A two-column table in which category names are listed in the first column and the counts, amounts, or percentages of values are listed in a second column. Sometimes, additional columns present the same data in more than one way (for example, as counts and percentages).

EXAMPLE A restaurant owner records the entrées ordered by guests during the Friday-to-Sunday weekend period. The data recorded can be presented using a summary table.

Entrée Ordered	Percentage
Beef	36
Chicken	26
Fish	28
Vegan	7
Other	3

INTERPRETATION Summary tables enable you to see the big picture about a set of data. In this example, you can conclude that most customers will order beef, chicken, or fish. Very few will order either vegan or other entrées.

The Bar Chart

CONCEPT A chart containing rectangles ("bars") in which the length of each bar represents the count, amount, or percentage of responses of one category.

EXAMPLE The data of the summary table that the previous concept uses can be visualized using a percentage bar chart.

INTERPRETATION A bar chart better presents the point that beef entrée is the single largest category of entrée ordered. For most people, scanning a bar chart is easier than scanning a column of numbers in which the numbers are unordered, as they are in the previous summary table.

The Pie Chart and the Doughnut Chart

CONCEPT

Pie: A circle chart in which wedge-shaped areas—pie slices—represent the count, amount, or percentage of each category, and the entire circle ("pie") represents the total.

Doughnut: A circle chart in which parts of the circumference represent the count, amount, or percentage of each category, and the entire circumference represents the total.

EXAMPLE The following pie and doughnut charts visualize the summary table data that the two preceding concepts use.

INTERPRETATION A pie chart or a doughnut chart enables you to see how the various categories contribute to the whole. In the example charts, you can see that chicken and fish entrées make up about half of all entrées ordered and that beef is the entrée most ordered.

In recent years, doughnut charts have become preferred over pie charts. The *area* of pie "slices" can be misperceived, making the pie slice seem larger or smaller than the percentage of the whole that the slice represents. In contrast, doughnut charts focus attention on the lengths of each arc, which are easier to compare and accurately reflect the percentage of the whole.

Note that pie and doughnut charts do not enable you to as easily compare categories as a bar chart does. On the other hand, bar charts are less useful for understanding parts of a whole. The restaurant owner who recorded the entrée selections likely will want to compare categories and understand how each category contributes to the whole. Therefore, that person might use both a bar chart and a pie or doughnut chart to visualize the collected data.

spreadsheet solution

Bar, Pie, and Doughnut Charts

Chapter 2 Bar, **Chapter 2 Pie**, and **Chapter 2 Doughnut** present the preceding bar, pie, and doughnut charts, respectively. Experiment with each chart by entering your own values in column B of each worksheet that contains a chart.

Best Practices

Sort your summary table data by the values in the second column before you create a chart. This will enable you to create a chart that fosters comparisons. For a bar chart, arrange values from smallest to largest value if you want the longest bar to appear at the top of the chart; otherwise, sort the values from largest to smallest.

Reformat charts created by software to eliminate unwanted gridlines and legends or to change the text font and size of titles and axis labels.

How-Tos

Chart Tip CT1 (see Appendix D) explains how to sort data in a summary table.

Chart Tip CT2 lists common chart-reformatting commands.

Chart Tip CT3 lists the general steps for creating charts.

The Pareto Chart

CONCEPT A special type of bar chart that presents the counts, amounts, or percentages of the categories, in descending order left to right, and also contains a superimposed plotted line that represents a running cumulative percentage.

EXAMPLE

Causes of Incomplete ATM Transactions

Cause	Frequency	Percentage
ATM malfunctions	32	4.42%
ATM out of cash	28	3.87%
Invalid amount requested	23	3.18%
Lack of funds in account	19	2.62%
Card unreadable	234	32.32%
Warped card jammed	365	50.41%
Wrong keystroke	23	3.18%
Total	724	100.00%

Source: Data extracted from A. Bhalla, "Don't Misuse the Pareto Principle," Six Sigma Forum Magazine, May 2009, pp. 15–18.

Causes of Incomplete ATM Transactions

This Pareto chart uses the data of the table that immediately precedes it to highlight the causes of incomplete ATM transactions.

INTERPRETATION When you have many categories, a Pareto chart enables you to focus on the most important categories by visually separating the *vital few* from the *trivial many* categories. For the incomplete ATM transactions data, the Pareto chart shows that two categories, warped card jammed and card unreadable, account for more than 80% of all defects and that those two categories combined with the ATM malfunctions and ATM out of cash categories account for more than 90% of all defects.

spreadsheet solution

Pareto Charts

Chapter 2 Pareto contains an example of a Pareto chart. Experiment with this chart by typing your own set of values in descending order—in column B, rows 2 through 11. (Do not alter the entries in row 12 or columns C and D.)

How-To

Chart Tip CT4 (see Appendix D) summarizes how to create a Pareto chart.

Two-Way Table

CONCEPT A table that presents the counts or percentages of responses for two categorical variables. In a two-way table, the categories of one of the variables form the rows of the table, while the categories of the second variable form the columns. The last row of a two-way table contains column totals, and the last column of such a table contains the row totals. Two-way tables are also known as cross-classification or cross-tabulation tables.

EXAMPLES This two-way table tallies entrées ordered by guests during the Friday-to-Sunday weekend period by sex.

		S	ex	
		Female	Male	Total
	Beef	64	80	144
	Chicken	53	51	104
Entrée Ordered	Fish	72	40	112
	Vegan	8	20	28
	Other	3	9	12
	Total	200	200	400

Two-way tables can be formatted to show grand total percentages or row or column percentages.

Grand Total Percentages Table

		Sex			
		Female Male Total			
	Beef	16.00%	20.00%	36.00%	
	Chicken	13.25%	12.75%	26.00%	
Entrée Ordered	Fish	18.00%	10.00%	28.00%	
	Vegan	2.00%	5.00%	7.00%	
	Other	0.75%	2.25%	3.00%	
	Total	50.00%	50.00%	100.00%	

Row Percentages Table

	Sex					
		Female Male Total				
	Beef	44.44%	55.56%	100.00%		
	Chicken	50.96%	49.04%	100.00%		
Entrée Ordered	Fish	64.29%	35.71%	100.00%		
	Vegan	28.57%	71.43%	100.00%		
	Other	25.00%	75.00%	100.00%		
	Total	50.00%	50.00%	100.00%		

Column Percentages Table

		Female	Male	Total
	Beef	32.00%	40.00%	36.00%
	Chicken	26.50%	25.50%	26.00%
Entrée Ordered	Fish	36.00%	20.00%	28.00%
	Vegan	4.00%	10.00%	7.00%
	Other	1.50%	4.50%	3.00%
	Total	100.00%	100.00%	100.00%
Entrée Ordered	Chicken Fish Vegan Other Total	26.50% 36.00% 4.00% 1.50% 100.00%	25.50% 20.00% 10.00% 4.50% 100.00%	28.00% 28.00% 7.00% 3.00% 100.00%

Sov

INTERPRETATION The simplest two-way table contains a row variable that has two categories and a column variable that has two categories. This creates a table that has two rows and two columns in its inner part (see the table on the next page). Each inner cell represents the count or percentage of a pairing, or cross-classifying, of categories from each variable.

		First Column Category	Second Column Category	Total
Row Variable	First Row Category	Count or percent- age for first row and first column categories	Count or percent- age for first row and second col- umn categories	Total for first row category
	Second Row Category	Count or percent- age for second row and first col- umn categories	Count or percent- age for second row and second column categories	Total for second row category
	Total	Total for first col- umn category	Total for second column category	Overall total

Column Variable

Two-way tables reveal the combination of values that occurs most often in data. In the example, the tables reveal that males are more likely to order beef than females and that females are more likely to order fish.

PivotTables create worksheet summary tables from sample data and provide a good way of creating two-way tables from sample data. Advanced Technique AT1 in Appendix E discusses how to create such tables.

spreadsheet solution

Two-Way Tables

Chapter 2 Two-Way contains the counts of the download and call-to-action button variables as a simple two-way table.

Chapter 2 Two-Way PivotTable contains the counts of the entrée ordered and sex variables summarized in a two-way table that is an Excel PivotTable as well as PivotTables formatted to show grand total, row, and column percentage.

How-To

Advanced Technique ADV1 in Appendix E summarizes how to create a two-way table that is a PivotTable.

22 Presenting Numerical Variables

You present numerical variables by first establishing groups that represent separate ranges of values and then placing each value into the proper group. Then you create tables that summarize the groups by frequency (count) or percentage and use the table as the basis for creating charts such as a histogram, which this chapter explains.

The Frequency and Percentage Distribution

CONCEPT A table of grouped numerical data that contains the names of each group in the first column, the counts (frequencies) of each group in the second column, and the percentages of each group in the third column. This table can also appear as a two-column table that shows either the frequencies or the percentages.

EXAMPLE Consider the following data table, which presents the average ticket cost (in U.S. \$) for each NBA team during a recent season.

	Team	Average Ticket Cost	Team	Average Ticket Cost
NBA Ticket	Atlanta	143	Miami	187
Cost	Boston	234	Milwaukee	153
	Brooklyn	212	Minnesota	107
	Charlotte	89	New Orleans	48
	Chicago	251	New York	285
	Cleveland	135	Oklahoma City	199
	Dallas	124	Orlando	127
	Denver	152	Philadelphia	197
	Detroit	135	Phoenix	61
	Golden State	463	Portland	119
	Houston	177	Sacramento	198
	Indiana	130	San Antonio	195
	L.A. Clippers	137	Toronto	180
	L.A. Lakers	444	Utah	78
	Memphis	104	Washington	138

Source: Data extracted from "The Most Expensive NBA Teams to See Live," https://bit.ly/3rvSAah.

The following frequency and percentage distribution summarizes these data using 10 groupings from 0 to under 50 to 450 to under 500.

Average Ticket Cost	Frequency	Percentage
0 to under 50	1	3.33%
50 to under 100	3	10.00%
100 to under 150	11	36.67%
150 to under 200	9	30.00%
200 to under 250	2	6.67%
250 to under 300	2	6.67%
300 to under 350	0	0%
350 to under 400	0	0%
400 to under 450	1	3.33%
450 to under 500	_1	3.33%
	30	100.00%

INTERPRETATION Frequency and percentage distributions enable you to quickly determine differences among the many groups of values. In this example, you can quickly see that most of the average ticket costs are between \$100 and \$300 and that very few average ticket costs are either below \$50 or above \$200.

You need to be careful in forming distribution groups because the ranges of the groups affect how you perceive the data. For example, had you grouped the average ticket costs into only two groups, below \$150 and \$150 and above, you would not be able to see any pattern in the data.

Histogram

CONCEPT A special bar chart for grouped numerical data in which the groups are represented as individual bars on the horizontal *X* axis and the frequencies or percentages for each group are plotted on the vertical *Y* axis. In a histogram, in contrast to a bar chart of categorical data, no gaps exist between adjacent bars.

EXAMPLE The following histogram presents the average ticket cost data of the preceding example. The value below each bar (25, 75, 125, 175, 225, 275, 325, 375, 425, and 475) is the **midpoint**—the approximate middle value for the group the bar represents. As with the frequency and percentage distributions, you can quickly see that very few average ticket prices are above \$275.

INTERPRETATION A histogram reveals the overall shape of the frequencies in the groups. A histogram is considered symmetric if each side of the chart is an approximate mirror image of the other side. The histogram of this example has more values in the lower portion than in the upper portion, so it is considered to be non-symmetric, or *skewed*.

spreadsheet solution

Frequency Distributions and Histograms

Chapter 2 Histogram contains a frequency distribution and histogram for the average ticket cost (in U.S. \$) for each NBA team during a recent season. Experiment with this chart by entering different values in column B, rows 3 through 12 of the Histogram worksheet.

How-Tos

Advanced Technique ADV2 in Appendix E and Chart Tip CT5 in Appendix D discuss how you can create frequency distributions and histograms.

The Time-Series Plot

CONCEPT A chart in which each point represents the value of a numerical variable at a specific time. By convention, the *X* axis (the horizontal axis) always represents units of time, and the Y axis (the vertical axis) always represents units of the variable.

EXAMPLE Consider the following data table, which presents the number of domestic movie releases from 1990 to 2020.

	Year	Movies Released	Year	Movies Released
	1990	224	2006	608
Movie	1991	244	2007	631
neleases	1992	234	2008	607
	1993	258	2009	520
	1994	254	2010	538
	1995	279	2011	601
	1996	310	2012	669
	1997	303	2013	687
	1998	336	2014	708
	1999	384	2015	708
	2000	371	2016	737
	2001	355	2017	740
	2002	480	2018	873
	2003	507	2019	792
	2004	551	2020	200
	2005	547		
			1	

Source: Data extracted from "Domestic Yearly Box Office," https://www.boxofficemojo.com/year/.

The following time-series plot visualizes these data.

INTERPRETATION Time-series plots can reveal patterns over time—patterns that you might not see when looking at a long list of numerical values. In this example, the plot reveals that, overall, there was a general increase in the number of movies released between 1990 and 2019. Before the steep drop in 2020 caused by the COVID-19 pandemic, the number of movies released in the preceding 30 years had increased fourfold.

The Scatter Plot

CONCEPT A chart that plots the values of two numerical variables for each observation. In a scatter plot, the *X* axis (the horizontal axis) always represents units of one variable, and the *Y* axis (the vertical axis) always represents units of the second variable.

EXAMPLE Consider the following data table, which presents the average ticket cost (in U.S. \$) and the premium ticket cost (in U.S. \$) for each NBA team during a recent season.

Team	Average Ticket Cost	Premium Ticket Cost
Philadelphia	197	383
Phoenix	61	110
Portland	119	233
Sacramento	198	380
San Antonio	195	384
Toronto	180	338
Utah	78	142
Washington	138	271

The following scatter plot visualizes these data.

INTERPRETATION A scatter plot helps reveal patterns in the relationship between two numerical variables. The scatter plot for these data reveals a strong positive linear (straight-line) relationship between the average ticket cost and the cost of a premium ticket. Based on this relationship, you can conclude that the average ticket cost is a useful predictor of the premium ticket cost. (Chapter 10 more fully discusses using one numerical variable to predict the value of another numerical variable.)

spreadsheet solution

Time-Series and Scatter Plots

Chapter 2 Time-Series contains the time-series plot for the domestic movie releases from 1990 to 2020. Experiment with this plot by entering different values in column B, rows 2 through 32.

Chapter 2 Scatter Plot contains the scatter plot for the NBA ticket cost data. Experiment with this scatter plot by entering different data values in columns B and C, rows 2 through 31.

How-Tos

Chart Tip CT6 (in Appendix D) discusses how you can create time-series plots.

Chart Tip CT7 (in Appendix D) discusses how you can create scatter plots.

23 "Bad" Charts

So-called "good" charts, such as the charts presented so far in this chapter, help visualize data in ways that aid understanding. However, in the modern world, you can easily find examples of "bad" charts that obscure or confuse the data. Such charts include elements or practices known to impede understanding or fail to apply properly the techniques that this chapter discusses.

CONCEPT A "bad" chart fails to clearly present data in a useful and undistorted manner.

INTERPRETATION Using pictorial symbols obscures the data and can create a false impression in the mind of the reader, especially if the pictorial symbols are representations of three-dimensional objects. In Example 1, the wine glasses fail to reflect that the 1992 data (2.25 million gallons) is a bit more than twice the 1.04 million gallons for 1989. In addition, the spaces between the wine glasses falsely suggest equal-sized time periods and obscure the trend in wine exports. (Hint: Plot the data as a time-series chart to discover the actual trend.)

EXAMPLE 1: Australian Wine Exports to the United States.

Example 2 combines the inaccuracy of using a picture (grape vine) with the error of having unlabeled and improperly scaled axes. A missing *X* axis prevents the reader from immediately seeing that the 1997–1998 value is misplaced. By the scale of the graph, that data point should be closer to the rest of the data. A missing *Y* axis prevents the reader from getting a better sense of the rate of change in land planted through the years. Other problems also exist. Can you spot at least one more? (Hint: Compare the 1949–1950 data to the 1969–1970 data.)

EXAMPLE 2: Amount of Land Planted with Grapes for the Wine Industry.

When producing your own charts, use these guidelines:

- Always choose the simplest chart that can present your data.
- Always supply a title.
- Always label every axis.
- Avoid unnecessary decorations or illustrations around the borders or in the background.
- Avoid the use of fancy pictorial symbols to represent data values.
- Avoid 3D versions of bar and pie charts.
- If the chart contains axes, always include a scale for each axis.
- When charting non-negative values, the scale on the vertical axis should begin at zero.

One-Minute Summary

To choose an appropriate table or chart type, begin by determining whether your data are categorical or numerical.

If your data are categorical:

- Determine whether you are presenting one or two variables.
- If one variable, use a summary table, bar chart, pie chart, or doughnut chart. If emphasizing the *vital few* from the *trivial many*, use a Pareto chart.
- If two variables, use a two-way table.

If your data are numerical:

- If charting one variable, use a frequency and percentage distribution with or without a histogram.
- If charting two variables, if the time order of the data is important, use a time-series plot; otherwise, use a scatter plot.

Test Yourself Short Answers

- 1. Which of the following graphical presentations is not appropriate for categorical data?
 - a. Pareto chart
 - b. scatter plot

- c. bar chart
- d. pie chart
- 2. Which of the following graphical presentations is not appropriate for numerical data?
 - a. histogram
 - b. pie chart
 - c. time-series plot
 - d. scatter plot
- 3. A type of histogram in which the categories are plotted in the descending rank order of the magnitude of their frequencies is called a:
 - a. bar chart
 - b. pie chart
 - c. scatter plot
 - d. Pareto chart
- 4. Which of the following would best show that the total of all the categories sums to 100%?
 - a. pie chart
 - b. histogram
 - c. scatter plot
 - d. time-series plot
- 5. The basic principle behind the _____ is the capability to separate the vital few categories from the trivial many categories.
 - a. scatter plot
 - b. bar chart
 - c. Pareto chart
 - d. pie chart
- 6. When studying the simultaneous responses to two categorical variables, you should construct a:
 - a. histogram
 - b. pie chart
 - c. scatter plot
 - d. cross-classification table
- 7. In a cross-classification table, the number of rows and columns:
 - a. must always be the same
 - b. must always be two
 - c. must add to 100%
 - d. None of the above.

Answer True or False:

- 8. Histograms are used for numerical data, whereas bar charts are suitable for categorical data.
- 9. A website monitors customer complaints and organizes these complaints into six distinct categories. Over the past year, the company has received 534 complaints. One possible graphical method for representing these data is a Pareto chart.
- A website monitors customer complaints and organizes these complaints into six distinct categories. Over the past year, the company has received 534 complaints. One possible graphical method for representing these data is a scatter plot.
- 11. A social media website collected information on the age of its customers. The youngest customer was 5, and the oldest was 96. To study the distribution of the age of its customers, the company should use a pie chart.
- 12. A social media website collected information on the age of its customers. The youngest customer was 5, and the oldest was 96. To study the distribution of the age of its customers, the company can use a histogram.
- 13. A website wants to collect information on the daily number of visitors. To study the daily number of visitors, it can use a pie chart.
- 14. A website wants to collect information on the daily number of visitors. To study the daily number of visitors, it can use a time-series plot.
- 15. A professor wants to study the relationship between the number of hours a student studied for an exam and the exam score achieved. The professor can use a time-series plot.
- 16. A professor wants to study the relationship between the number of hours a student studied for an exam and the exam score achieved. The professor can use a bar chart.
- 17. A professor wants to study the relationship between the number of hours a student studied for an exam and the exam score achieved. The professor can use a scatter plot.
- 18. If you wanted to compare the percentage of items that are in a particular category as compared to other categories, you should use a pie chart, not a bar chart.

Fill in the Blank:

- 19. To evaluate two categorical variables at the same time, a ______ should be developed.
- 20. A ______ is a vertical bar chart in which the rectangular bars are constructed at the boundaries of each class interval.
- 21. A _____ chart should be used when you are primarily concerned with the percentage of the total that is in each category.
- 22. A _____ chart should be used when you are primarily concerned with comparing the percentages in different categories.

- 23. A ______ should be used when you are studying a pattern between two numerical variables.
- 24. A ______ should be used to study the distribution of a numerical variable.
- 25. You have measured your pulse rate daily for 30 days. A _____ plot should be used to study the pulse rate for the 30 days.
- 26. You have collected data from your friends concerning their favorite soft drink. You should use a _____ chart to study the favorite soft drink of your friends.
- 27. You have collected data from your friends concerning the time it takes to get ready to leave their house in the morning. You should use a ______ to study this variable.

Answers to Test Yourself Short Answers

1. b 15. False 2. b 16. False 3. d 17. True 4. a 18. False 5. c 19. two-way table 6. d 20. histogram 7. d 21. pie chart 8. True 22. bar chart 9. True 23. scatter plot 10. False 24. histogram 11. False 25. time-series plot 12. True 26. bar chart, pie chart, or Pareto chart 13. False 27. histogram 14. True

Problems

1. A Pew Research Center survey studied the key issues for employed adults who have been working at home some or all of the time. The following three summary tables present the results of that survey.

Feeling Motivated to Do Their Work	Percentage
Very Difficult	7%
Somewhat Difficult	29%
Somewhat Easy	31%
Easy	34%

Doing Work Without Interruptions	Percentage
Very Difficult	8%
Somewhat Difficult	24%
Somewhat Easy	37%
Easy	31%

Having an Adequate Workspace	Percentage
Very Difficult	4%
Somewhat Difficult	19%
Somewhat Easy	31%
Easy	47%

For each table

- a. Construct a bar chart and a pie or doughnut chart.
- b. Which graphical method do you think best presents these data?
- c. What conclusions can you reach concerning how employed adults who have been working at home some or all of the time feel about being motivated to do their work?
- d. What conclusions can you reach concerning how employed adults who have been working at home some or all of the time feel about doing work without interruptions?
- e. What conclusions can you reach concerning how employed adults who have been working at home some or all of the time feel about having an adequate workspace?
- f. What differences in the responses among the three issues exist?
- 2. Market researchers for a telecommunications company have summarized data collected about the payment methods customers use in the following summary table.

Payment Method	Frequency
Bank transfer (automatic)	1,212
Credit card (automatic)	1,191
Electronic check	2,243
Mailed check	871
Total	5,517

CHAPTER 2 PRESENTING DATA IN TABLES AND CHARTS

- a. Using this table construct a bar chart and a pie or doughnut chart.
- b. Which graphical method do you think best presents these data?
- c. What conclusions can you reach about customer payment methods?
- 3. Medication errors are a serious problem in hospitals. The following summary table presents the root causes of pharmacy errors at a hospital during a recent time period.

Reason for Failure	Frequency
Additional instructions	16
Dose	23
Drug	14
Duplicate order entry	22
Frequency	47
Omission	21
Order not discontinued when received	12
Order not received	52
Patient	5
Route	4
Other	8

- a. Construct a Pareto chart for these data.
- b. Discuss the "vital few" and "trivial many" reasons for the root causes of pharmacy errors.
- 4. Students who attend a regional university located in a small town are known to favor the local independent pizza restaurant. A national chain of pizza restaurants looks to open a store in that town and conducts a survey of students who attend that university to determine pizza preferences. The following two-way table summarizes the survey variables store type and sex, based on the responses of a sample of 220 students.

		Sex	
		Female	Male
Store Type	Local	74	71
	National	19	56

- a. Construct a two-way table that displays grand total percentages.
- b. Construct a two-way table that displays row percentages.
- c. Construct a two-way table that displays column percentages.

- d. What conclusions can you reach from the tables constructed in parts (a) through (c)?
- e. Which table do you think is most useful in reaching the conclusions in your part (d) answer?
- 5. Churning, the loss of customers to a competitor, is a problem for all companies, especially telecommunications companies. Market researchers for a telecommunications company collect data from 5,517 customers of the company. Data collected for each customer includes whether the customer churned during the last month, the sex of the customer, whether the customer is a senior citizen, and whether the customer uses paperless billing. The following three summary tables summarize these survey variables.

				Ch	urn
				No	Yes
Cox	Fema	ale		1,858	883
Sex	Male			1,903	873
			1		
				0	hurn
				U	nurn
			_	No	Yes
Sonior Citi	700	No		3,142	1,285
Senior Citizen		Yes		619	471
					Churn
				No	Yes
Denerless B	lling	No		1,394	398
raperiess Bi	mng	Yes		2,367	1,358

For each table

- a. Construct a two-way table that displays grand total percentages
- b. Construct a two-way table that displays row percentages.
- c. Construct a two-way table that displays column percentages.
- d. What conclusions can you reach from the tables constructed in parts (a) through (c)?
- e. Which table do you think is most useful in reaching the conclusions in your part (d) answer?

(Data extracted from "Find Out How Many Calories in Beer?" https:// www.beer100.com/beer-calories.)

- a. Construct a frequency distribution and a percentage distribution for percentage alcohol, number of calories per 12 ounces, and number of carbohydrates per 12 ounces (in grams).
- b. Construct a histogram for percentage alcohol, number of calories per 12 ounces, and number of carbohydrates per 12 ounces (in grams).
- c. Construct three scatter plots: percentage alcohol versus calories, percentage alcohol versus carbohydrates, and calories versus carbohydrates.
- d. What conclusions can you reach about the percentage alcohol, number of calories per 12 ounces, and number of carbohydrates per 12 ounces (in grams)?
- The Super Bowl Ads file contains the average ratings of 57 ads from the 2021 NFL Super Bowl broadcast. (Data extracted from T. Schad, "Rocket mortgage ads dominate Ad Meter," USA Today, February 9, 2021, p. 4B.)
 - a. Construct a histogram based on these data.
 - b. What conclusions can you reach concerning Super Bowl ad ratings?
- 8. The **Big Mac Starbucks** file contains the cost (in U.S. \$) of a McDonald's Big Mac sandwich and a Starbucks tall latte in 11 world cities.

City	Big Mac	Starbucks Tall Latte
Moscow	2.29	4.35
Johannesburg	2.53	2.18
Hong Kong	2.87	4.60
Bangkok	3.85	2.60
Dubai	4.08	4.29
Buenos Aires	4.22	2.14
London	4.32	3.58
New York	5.09	4.30
Paris	5.37	4.30
Toronto	4.38	3.15
Zurich	6.89	5.94

Source: Data extracted from "How Much a Big Mac Costs Around the World," *Business Insider*, https://businessinsider.com/mcdonalds-big-mac-price-around-the-world-2018-5, and "The Starbucks Index 2019," https://www.finder.com/starbucks.index.

Ads

Super Bowl

Big Mac Starbucks

- a. Construct a scatter plot from these data.
- b. What conclusions can you reach about the relationship between the cost of a McDonald's Big Mac and a Starbucks tall latte in these 11 world cities?
- 9. The **Potter Movies** file contains the first weekend gross (in \$millions) and the total domestic gross (in \$millions) for the eight movies in the Harry Potter film series.

Potter Movies

Title	First Weekend	Total Domestic
Sorcerer's Stone	90.295	317.871
Chamber of Secrets	88.357	262.233
Prisoner of Azkaban	93.687	249.758
Goblet of Fire	102.335	290.201
Order of the Phoenix	77.108	292.137
Half-Blood Prince	77.836	302.089
Deathly Hallows Part I	125.017	296.132
Deathly Hallows Part II	169.189	381.193

Source: Data extracted from "Box Office History for Harry Potter Movies," https://www.the-numbers.com/movies/franchise/Harry-Potter.

- a. Construct a scatter plot from these data.
- b. What conclusion can you reach about the relationship between the first weekend and total domestic grosses?
- 10. The **UHDTV Wholesale Sales** file contains the U.S. wholesale sales of Ultra HDTVs (in \$millions) from 2013 to 2019.

Year	Wholesale Sales
2013	310
2014	2,238
2015	7,673
2016	12,932
2017	13,400
2018	14,300
2019	14,900

Source: Data extracted from "4K Ultra HD TVs wholesale sales revenue in the United States from 2013 to 2019," https://www.statista.com/statistics/643511/4k-ultra-hdtv-wholesale-sales-in-us/.

a. Construct a time-series plot of the U.S. Ultra HDTV wholesale sales from 2013 to 2019.

- b. What pattern does the plot reveal?
- c. If you were asked to predict U.S. Ultra HDTV wholesale sales for 2020, what would you predict?
- 11. The **MLB Salaries** file contains the average MLB baseball player salaries (in \$millions) for the years 2003 through 2020.

Year	Average MLB Salary	Year	Average MLB Salary
2003	2.37	2012	3.21
2004	2.31	2013	3.39
2005	2.48	2014	3.69
2006	2.70	2015	3.84
2007	2.82	2016	4.38
2008	2.93	2017	4.45
2009	3.00	2018	4.41
2010	3.01	2019	4.80
2011	3.10	2020	4.43

Source: Data extracted from https://statista.com/statistics/23621/mean-salary-of-playersin-major-league-baseball (no longer available).

- a. Construct a time-series plot of the average MLB baseball player salaries for the years 2003 through 2020.
- b. What pattern does the plot reveal?
- c. If you were asked to predict the average MLB baseball player salary for 2021, what would you predict?

Answers to Test Yourself Problems

- b. If you are more interested in determining which category of feeling motivated to do their job response occurs most often, then the bar chart is preferred. If you are more interested in seeing the distribution of the entire set of categories, then either the pie chart or the doughnut chart is preferred.
 - c. Respondents are about equally likely to feel that it is easy, somewhat easy, or somewhat difficult to feel motivated to do their job.
 - d. Respondents are about equally likely to feel that it is somewhat easy or somewhat difficult to do work without interruption.
 - e. Respondents are most likely to feel that it is easy to have adequate workspace.
 - f. They feel that it is easier to have adequate workspace than to feel motivated to do work or to work without interruption.

Salaries

- 2. b. If you are more interested in determining which category of payment method used occurs most often, then the bar chart is preferred. If you are more interested in seeing the distribution of the entire set of categories, either the pie chart or doughnut chart is preferred.
 - c. Respondents are most likely to pay by electronic check and least likely to pay by mailed check.
- b. The most important categories of medication errors are orders not received and frequency followed by dose, duplicate order entry, and omission.
- 4. a. through c.

		Sex		
		Female	Male	Grand Total
Store Tures	Local	33.64%	32.27%	65.91%
Store Type	National	8.64%	25.45%	34.09%
	Grand Total	42.28%	57.72%	100.00%

		Sex		
		Female	Male	Grand Total
Store Turne	Local	51.03%	48.97%	100.00%
Store Type	National	25.33%	74.67%	100.00%
	Grand Total	42.27%	57.73%	100.00%
	National Grand Total	$\frac{25.33\%}{42.27\%}$	74.67% 57.73%	100.00% 100.00%

		Sex		
		Female	Male	Grand Total
Ctore Turne	Local	79.57%	55.91%	65.91%
Store Type	National	20.43%	44.09%	34.09%
	Grand Total	100.00%	100.00%	100.00%

5. a. through c.

Sex and Churn

	Ch		
	No	Yes	Grand Total
Female	33.68%	16.01%	49.69%
Male	34.49%	15.82%	50.31%
Grand Total	68.17%	31.83%	100.00%
	Female Male Grand Total	No Female 33.68% Male 34.49% Grand Total 68.17%	No Yes Female 33.68% 16.01% Male 34.49% 15.82% Grand Total 68.17% 31.83%

		Ch		
		No	Yes	Grand Total
Sor	Female	67.79%	32.21%	100.00%
Sex	Male	68.55%	31.45%	100.00%
	Grand Total	68.17%	31.83%	100.00%

		Ch		
		No	Yes	Grand Total
Sav	Female	51.21%	50.59%	49.68%
Sex	Male	48.79%	49.41%	50.32%
	Grand Total	100.00%	100.00%	100.00%

- d. There is very little difference between males and females in churning.
- e. Row percentages are more valuable because this table compares males and females.

Senior Citizen and Churn

		Churn		
		No	Yes	Grand Total
Conier Citizen	No	56.95%	23.29%	79.24%
Senior Giuzen	Yes	11.22%	8.54%	19.76%
	Grand Total	68.17%	31.83%	100.00%

		Churn		
		No	Yes	Grand Total
Conier Citizon	Νο	70.97%	29.03%	100.00%
Senior Citizen	Yes	56.79%	43.21%	100.00%
	Grand Total	68.17%	31.83%	100.00%

		Churn		
		No	Yes	Grand Total
Sonior Citizon	Νο	83.54%	73.17%	80.24%
Senior Citizen	Yes	16.46%	26.83%	19.76%
	Grand Total	100.00%	100.00%	100.00%

- d. Senior citizens are much less likely to churn.
- e. Row percentages are more valuable because this table compares senior citizens and non-senior citizens.

Paperless Billing and Churn

		Churn		
		No	Yes	Grand Total
Depertees Dilling	Νο	25.27%	7.21%	32.48%
Paperiess Billing	Yes	42.90%	24.61%	67.51%
	Grand Total	68.17%	31.62%	100.00%
		Ch		

		onum		
		No	Yes	Grand Total
Paperless Billing	Νο	77.79%	22.21%	100.00%
	Yes	63.54%	36.46%	100.00%
	Grand Total	68.17%	31.83%	100.00%

		Ch		
		No	Yes	Grand Total
Paperless Billing	Νο	37.06%	22.67%	32.48%
	Yes	62.94%	77.33%	67.52%
	Grand Total	100.00%	100.00%	100.00%

- d. Those who use paperless billing are more likely to churn than those who do not use paperless billing.
- e. Row percentages are more valuable because this table best helps to compare those with and without paperless billing.
- 6. c. The alcohol percentage is concentrated between 4% and 6%, with more between 4% and 5%. The calories are concentrated between 140 and 160. The carbohydrates are concentrated between 12 and 15. There are outliers in the percentage of alcohol in both tails. The outlier in the lower tail is due to the nonalcoholic beer O'Doul's. The outlier in the upper tail is around 11.5%. A few beers have high calorie counts near 330 and carbohydrates as high as 32. A strong positive relationship exists between percentage of alcohol and calories and between calories and carbohydrates, and there is a moderately positive relationship between percentage alcohol and carbohydrates.

- 7. b. The ad ratings are fairly symmetrical, with many of the ad scores between 5 and 6. Very few ratings are below 4.5 or above 7.
- 8. b. There is a weak relationship between the cost of a McDonald's Big Mac and the cost of a Starbucks tall latte in various cities.
- 9. b. There is a moderately positive relationship between the U.S. gross and the first weekend gross for Harry Potter movies.
- 10. b. Ultra HDTV sales rose dramatically from 2013 to 2016 but leveled off after that.
 - c. Somewhere between 15 and 16 million.
- 11. b. There has been a very strong linear increase in the salaries.
 - c. Because there was a decrease in 2020, the prediction is that the average salary in 2021 will be less than \$5 million.

References

- 1. Beninger, J. M., and D. L. Robyn. 1978. "Quantitative Graphics in Statistics," *The American Statistician*, 32: 1–11.
- Berenson, M. L., D. M. Levine, K. A. Szabat, and D. F. Stephan. Basic Business Statistics: Concepts and Applications, 15th edition. Hoboken, NJ: Pearson Education, 2023.
- 3. Levine, D., D. Stephan, and K. Szabat. *Statistics for Managers Using Microsoft Excel*, 9th edition. Boston: Pearson Education, 2021.
- 4. Tufte, E. R. *The Visual Display of Quantitative Information*, 2nd edition. Cheshire, CT: Graphics Press, 2002.
- 5. Tufte, E. R. Visual Explanations. Cheshire, CT: Graphics Press, 1997.

Numerics

3Vs, 265

A

ING

INDEX

ABS() function, 134 ampersand operator, forming labels with, 345 Analysis ToolPak add-in, checking Microsoft Excel for, 300 analytics, 259. *See also* descriptive analytics; predictive analytics; prescriptive analytics big data, 264–265 data mining, 262–263 data science and, 260 descriptive, 261, 265 dashboards, 265-266 market basket analysis, 291–293 MCT (multidimensional contingency table), 266–268 drill down, 261–262 machine learning and, 263 predictive, 261, 279 association methods, 281, 290-291 classification methods, 280 classification tree, 284-285

clustering methods, 280, 287–289 cross-validation, 282-283 limitations of models, 282 model validation, 282 models, 281-282 regression tree, 285-287 target-based, 280 tree induction, 284 types of, 279–280 prescriptive, 261-262 semi-structured data, 264 structured data. 264 types of, 260 unstructured data, 263-264 ANOVA (analysis of variance). See also one-way ANOVA equations, 195 one-way, 191-192 assumptions, 200 factor, 191 summary table, 193–194 three variances of. 192-193 worked out problems, 194-195, 198-200

Apriori analysis, 291 assigning probabilities, 81 classical approach, 81 empirical approach, 81 subjective approach, 81–82 association analysis, 281, 290–291 assumption(s), 168 of normality, 129 one-way ANOVA, 200 regression analysis, 218–219 residual analysis, 219

B

A/B testing, 158–159, 184–186 "bad" charts, 29–31 bar charts, 16–17 histogram, 24–25 Pareto, 18–20 big data, 264–265 BINOM.DIST() function, 95 binomial distribution, 93–94 bootstrap estimation, 135–136 bootstrapping, 134–135 boxplot, 61–64 bullet graphs, 272–274, 348

С

categorical variables, 3 charts. See also visualizations arranging data in, 339 "bad", 29-31 bar, 16–17, 24–25 best practices, 18 creating, 340 doughnut, 17–18 Pareto, 18-20, 300 pie, 17-18 reformatting, 339-340 scatter plot, 27–29 time-series plot, 25–27 treemaps, 270-272 worksheets and, 18 CHISQ.DIST.RT() function, 190 CHISQ.INV.RT() function, 190 chi-square test for two-way tables, 183-190 city block distance, 287 classical probability, 81 classification methods, predictive analytics, 280 tree, 284-285 CLT (Central Limit Theorem), 123

clustering methods iris data set. 290 predictive analytics, 280, 287-289 coefficient of correlation, 224-225 of determination, 224 of multiple determination, 246 collectively exhaustive events, 77 column percentages table, 21 completely randomized design, 191 confidence interval estimation, 126–127 for the mean, 128–131 for the proportion, 131-134 when normality cannot be assumed, 134 bootstrap estimation, 135-136 bootstrapping, 134-135 worked out problem, 127 - 128continuous probability distribution. 100-101 continuous values, 3

creating charts, 300, 340 histograms, 340–341 PivotTables, 343–344 scatter plots, 341 worksheets, 9 critical value, 130–134, 148–149, 152, 158–160, 195

D

dashboards, 265–266 data mining, 262–263 data science, analytics and, 260 degrees of freedom, 186 dendogram, 288–289 dependent variable, 212, 245 descriptive analytics, 261, 265 dashboards, 265–266 drill down, 261–262 market basket analysis, 291-293 MCT (multidimensional contingency table), 266-268 visualizations bullet graphs, 272-274

sparklines, 269–270 treemaps, 270–272 descriptive statistics, 4–5, 48 measures of central tendency, 45 mean, 45-46 median, 46-49 mode, 49 measures of position, 49 percentile, 53-54 quartiles, 50–53 rank. 49–50 measures of variation, 54 range, 54–55 standard deviation, 55-58 variance, 55–58 Z score, 58–59 shape, 59 boxplot, 61-64 left-skewed, 60 right-skewed, 60-61 symmetric, 59 developing a simple linear regression model, 214-216 DEVSQ() function, 171 discrete probability distribution. 88–90 expected value of a variable, 89–90

standard deviation of a variable, 90-93 worked out problems, 88-89 discrete values, 3 dispersion, 54 distance, 287, 289 distribution(s) binomial, 93-94 continuous probability, 100-101 discrete probability, 88-89 expected value of a variable, 89-90 standard deviation of a variable, 90-93 frequency, 23-24 normal, 101–103 finding the *Z* value, 105-108 normal probability plot, 108-109 standard deviation units, 103–105 Poisson. 97–100 sampling, 122 Central Limit Theorem (CLT), 123

of the proportion, 124–125 *t*, 129–131 documentation for downloadable fles, 353–355 doughnut chart, 17–18 drill down, 261–262

E

elbow method, 289 elementary events, 76 empirical probability, 81 equality of variances, 200 equations, 196 ANOVA, 195-197 binomial distribution, 95-96 for calculating the mean, 47 confidence interval estimation for the proportion, 133 confidence interval for the mean, 130 for defining the median, 49 degrees of freedom, 186 discrete probability distribution, 92–93 first and third quartile, 51

mean squares, 196–197 for measures of variation in a regression analysis, 222–223 paired *t* test, 172–173 Poisson distribution, 98-99 pooled-variance *t* test, 167-168 simple linear regression, 214, 217-218, 229-234 symbols, 47-58 variance, 56-58 Z test, 59, 162–163 Euclidean distance, 287 events collectively exhaustive, 77 elementary, 76 joint, 76 expected value of a variable, 89-90 experiments, 6, 75–76, 198-199, 200 health care, 161–162 one-factor, 191 random sampling and, 200

F-G

factor, 191 F.DIST.RT() function, 250 Fisher, R. A., 290 FP-Growth method, 291 frames, 7 frequency distribution, 23-24, 344-345 FREQUENCY() function, 342 frequent item set, 291–292 functions ABS(), 134 BINOM.DIST(), 95 CHISQ.DIST.RT(), 190 CHISQ.INV.RT(), 190 DEVSQ(), 171 entering, 341 F.DIST.RT(), 250 FREQUENCY(), 342 LINEST(), 250, 346-347 MAX(), 57 MIN(), 57 for normal probabilities, 342 NORM.DIST(), 107NORM.INV(), 107 NORM.S.DIST(), 160 NORM.S.INV(), 107, 134, 160 POISSON.DIST(), 98 SKEW(), 64 STANDARDIZE(), 107 STDEV.P(), 57

STDEV.S(), 57 T.DIST.2T(), 250 T.INV.2T(), 131, 171, 250 VAR.P(), 57 VARS.S(), 57 grand total percentages table, 21

Η

hierarchical clustering, 287 hints, 283 histograms, 24–25, 340–341 hypothesis testing, 145 alternative hypothesis, 146-147 chi-square test for two-way tables, 183-190 for the difference between the means of two independent groups, 163 for the difference between two proportions, 157-158 A/B testing, 158–159 health care experiment, 161–162 *p*-value approach, 160

Z test, 160 issues with, 147 null hypothesis, 146 one-sample tests, 152 one-tail test, 152 one-way ANOVA, 191-192, 194-200. See also one-way ANOVA factor, 191 summary table, 193-194 variances, 192-193 paired *t* test, 168–175 performing, 150 pooled-variance *t* test, 163-165, 166 assumptions, 168 equation, 167-168 practical significance versus statistical significance, 148 *p*-value approach, 151 risk trade-off, 150 symbols, 146 test statistic, 147–148 two-tail test, 152 type I error, 149 type II error, 149 variables and, 152

I

independent variable, 212, 243–244 inferential statistics, 5, 121 interval estimate, 127. *See also* confidence interval estimate iris data set, 290

J-K-L

jmp.com, 287, 290 joint events, 76 least squares method, developing a simple linear regression model, 215–216 left-skewed shape, 60 levels, 191 LINEST() function, 250, 346–347

Μ

machine learning, 263 semi-supervised, 283 unsupervised methods, 283 Manhattan distance, 287 market basket analysis, 291–293

MAX() function, 57 MCT (multidimensional contingency table), 266-268 mean squares, 192–193, 196-197 means(s), 45-46 confidence interval estimation, 128–131 equation for calculating, 47 testing for the difference between independent groups, 163 worked out problems, 46 measures of central tendency mean, 45-46 median, 46-49 mode, 49 measures of position, 49 percentile, 53-54 quartiles, 50-53 measures of variation, 54 range, 54-55 SSE (error sum of squares), 221 SSR (regression sum of squares), 221 SST (sum of squares total), 221

standard deviation, 55 - 58variance, 55–58 Z score, 58–59 median, 46-49 Microsoft Excel, 260. See also worksheets Analysis ToolPak add-in, 2,349 ANOVA procedure, 351 checking for, 300 histogram procedure, 349-350 regression procedure, 351-352 t-Test procedure, 350-351 keystroke conventions and mouse operation, 299 PivotTables, 22, 267-268, 343-344 technical configuration, 300 visualizations bullet graphs, 272-274, 348 sparklines, 269-270 treemaps, 270-272 worksheets, creating, 9

MIN() function, 57 mode, 49 models, 281-282 MSA (mean square among groups), 193 MST (mean square total), 193 MSW (mean square within groups), 193 multiple regression analysis, 243-244 coefficient of multiple determination, 246 independent variables, 243-244 inferences concerning the population regression coefficients, 248-249 net regression coefficients. 244-245 predicting the dependent variable, 245 residual analysis and, 247 - 248worked out problems, 244, 245-246

Ν

net regression coefficients, 244–245

36S

normal distribution, 101-102 finding the *Z* value, 105-108 normal probability plot, 108-109 standard deviation units, 103-105 worked out problems, 102-103 normal probability plot, 108-109 NORM.DIST() function, 107 NORM.INV() function, 107 NORM.S.DIST() function, 160 NORM.S.INV() function, 107, 134, 160 null hypothesis, 146, 161 numbers. 1 numerical variables, 3

0

observation, 3 one-sample tests, 152 one-tail test, 152 one-way ANOVA, 191–192 assumptions, 200 factor, 191 summary table, 193–194 variances, 192–193 ordered values, 48 ordinal position, 50 outliers, 58 overall *F* test, 246–247

P

paired t test, 168–175, 346 parameters, 4 Pareto charts, 18-20, 300 percentile, 53-54 performing hypothesis testing, 150 pie chart, 17–18 PivotTables, 22, 267–268, 343-344 point estimate, 125 Poisson distribution, 97–100 POISSON.DIST() function, 98 pooled-variance *t* test, 163-165, 166 assumptions, 168 equation, 167-168 population, 2 bootstrap estimation, 135-136 bootstrapping, 134–135 power of the test, 149 practical significance, 148

prediction, 212 multiple regression and, 245 using a simple linear regression model, 217 predictive analytics, 261, 279. See also machine learning association methods. 281.290-291 classification methods. 280 classification tree, 284-285 clustering methods, 280, 287-289 data mining, 262-263 model(s), 281–282 cross-validation. 282-283 limitations of, 282 validation, 282 regression tree, 285–287 target-based, 280 tree induction. 284 types of, 279-280 prescriptive analytics, 261-262 probability(ies), 75, 77. See *also* distribution(s) assigning, 81

classical approach, 81 empirical approach, 81 subjective approach, 81–82 events, 75–76 collectively exhaustive, 77 elementary, 76 joint, 76 rules, 78–80 sampling, 7–8 *p*-value, 151, 160

Q-R

quartiles, 50–53. *See also* quartiles 'random', 8 random variables, 76 range, 54–55 rank, 48. *See also* quartiles reformatting charts, 339–340 regression analysis, 211, 222–223. *See also* simple linear regression assumptions, 218–219 coefficient of correlation, 224–225 coefficient of determination, 224 common mistakes when using, 229–232 dependent variable, 212 independent variable, 212 measures of variation. 221 equations, 222–223 SSE (error sum of squares), 221 SSR (regression sum of squares), 221 SST (sum of squares total), 221 multiple, 243–244 coefficient of multiple determination, 246 inferences concerning the population regression coefficients, 248-249 net regression coefficients, 244-245 overall F test. 246-247 predicting the dependent variable. 245 residual analysis and, 247-248

worked out problems, 244 prediction, 212 residual, 219-220 scatter plot, 213 simple linear, 214 developing a model, 214-216 equations, 214, 217-218 prediction, 217 standard error of the estimate, 225 regression tree, 285–287 residual analysis, 219–220, 247 - 248right-skewed shape, 60-61 row percentages table, 21 rules of probability, 78-80 pruning, 291

S

sample size, 47 sampling, 2, 7 all possible samples of a given sample size, 122 Central Limit Theorem (CLT), 123

distribution, 122, 124-125 error, 125-126 frames, 7 probability, 7-8 random. 200 with replacement, 8–9 simple random, 8 without replacement, 9 scatter plots, 27–29, 213, 341 semi-structured data, 264 semi-supervised machine learning, 283 shape, 59 boxplot, 61-64 left-skewed, 60 right-skewed, 60-61 symmetric, 59 worked out problems, 61 sigma, 47, 58 similarity, 287 simple linear regression, 214 coefficient of correlation, 224-225 coefficient of determination, 224 equations, 217–218, 229-234 inferences about the slope, 226

confidence interval, 226-229 *t* test for the slope, 226 measures of variation, 221 SSE (error sum of squares), 221 SSR (regression sum of squares), 221 SST (sum of squares total), 221 prediction, 217 standard error of the estimate, 225 simple random sampling, 8 SKEW() function, 64 skewness left, 60 right, 60-61 slope confidence interval, 226-229 *t* test for, 226, 248–249 sources of data, 5 experiments, 6 published sources, 5–6 surveys, 6 sparklines, 269-270 spreadsheets. See worksheets SSA (sum of squares among groups), 192, 196

SSE (error sum of squares), 221 SSR (regression sum of squares), 221 SST (sum of squares total), 192, 196, 221 SSW (sum of squares within groups), 192, 196 standard deviation, 55–58, 90-93 standard error of the estimate, 225 STANDARDIZE() function, 107 statistical methods, 2 statistical significance, 148 statistic, 4 statistics, 2. See also descriptive statistics; probability(ies); sampling; variable(s) descriptive, 4-5 inferential, 5, 121 population, 2 sampling, 2, 7 frames, 7 probability, 7–8 with replacement, 8-9 simple random, 8 without replacement, 9

sources of data, 5 experiments, 6 published sources, 5-6 surveys, 6 test, 147-148, 226 variables, 2-4 STDEV.P() function, 57 STDEV.S() function, 57 structured data, 264 subjective probability, 81-82 summary table, 15–16 supervised learning, 280 surveys, 6 symbols, 47, 56–58, 92–93, 95-96, 130, 133, 195-196 hypothesis testing, 146 for measures of variation in a regression analysis, 222-223 standard error of the estimate, 225 symmetric shape, 59

Т

t distribution, 129–131 tables summary, 15–16 two-way, 20, 21–22

chi-square test, 183-190 column percentages table, 21 grand total percentages table, 21 row percentages table, 21 target-based predictive analytics, 280 T.DIST.2T() function, 250 test statistic, 147-148, 226 time-series plot, 25-27 T.INV.2T() function, 131, 171, 250 tree induction, 284 treemaps, 270-272 two-tail test, 152 two-way tables, 20-22 chi-square test for, 183-190 column percentages table, 21 grand total percentages table, 21 row percentages table, 21 type I error, 149 type II error, 149

U-V

unstructured data, 263-264 unsupervised learning, 283 value(s), 3 critical, 130–134, 148-149, 152, 158-160, 195 observation, 3 ordered, 48 outliers, 58 p-, 151 similarity, 287 Z, finding, 105–108 variable(s) categorical, 3 chi-square test for two-way tables, 183-190 coefficient of correlation, 224-225 dependent, 212 expected value of a, 89-90 hypothesis testing and, 152 independent, 212 multiple regression and, 243-244 numerical, 3 random. 76

variance(s), 55–58. *See also* ANOVA (analysis of variance) equality of, 200 mean squares, 192–193 worked out problems, 55–56 VAR.P() function, 57 VARS.S() function, 57 visualizations bullet graphs, 272–274, 348 sparklines, 269–270 treemaps, 270–272

W

websites, jmp.com, 287, 290 worked out problems ANOVA, 194–195, 198–200 binomial distribution, 94 boxplot, 62–64 chi-square test for two-way tables, 184–188 classification tree, 284–285 clustering, 287–289 confidence interval estimation, 127–128

for the proportion, 132 when normality cannot be assumed, 135–136 discrete probability distribution, 88-89 expected value of a variable, 89-90 finding the *Z* value from area under the normal curve. 105–108 market basket analysis, 291-293 mean, 46 median, 48 multiple regression model, 244, 245-246 normal distribution. 102 - 103normal probability plot, 109-111 overall F test, 247 paired *t* test, 170–171, 173-175 Poisson distribution, 100 pooled-variance *t* test, 164 quartiles, 51-53 regression tree, 285-287

residual analysis for the multiple regression model, 247–248 shape, 61 simple linear regression, 214 sparklines, 269–270 standard deviation, 55-56, 90-92 *t* distribution, 129–130 testing for the difference between two proportions, 158-160 variance, 55–56 Z score, 58–59 worksheets. See also charts; functions; PivotTables; tables

charts, 18 arranging data in, 339 creating, 300, 340 reformatting, 339–340 creating, 9 histograms, creating, 340–341 scatter plots, creating, 341

X-Y-Z

Z score, 58–59, 102