PEARSON BUSINESS ANALYTICS SERIES FOURTH EDITION

EVEN YOU CAN LEARN

 STATISTICS and ANALYTICS An Easy to Understand Guide

P DAVID M. LEVINE I DAVID F. STEPHAN

Even You Can Learn Statistics and Analytics Fourth Edition

An Easy to Understand Guide to Statistics and Analytics

David M. Levine
David F. Stephan

PEARSON

Editor-in-Chief: Mark L. Taub
Acquisitions Editor: Kim Spenceley
Development Editor: Chris Zahn
Managing Editor: Sandra Schroeder
Project Editor: Mandie Frank
Production Manager: Remya Divakaran/codeMantra
Copy Editor: Kitty Wilson
Indexer: Timothy Wright
Proofreader: Donna Mulder
Designer: Chuti Prasertsith
Compositor: codeMantra

Copyright © 2022 Pearson Education, Inc.
Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.
For government sales inquiries, please contact governmentsales@pearsoned.com.
For questions about sales outside the U.S., please contact intlcs@pearson.com. Visit us on the Web: informit.com/aw

All rights reserved. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, request forms, and the appropriate contacts within the Pearson Education Global Rights \& Permissions Department, please visit www.pearson.com/permissions.
No patent liability is assumed with respect to the use of the information contained herein. Although every precaution has been taken in the preparation of this book, the publisher and author assume no responsibility for errors or omissions. Nor is any liability assumed for damages resulting from the use of the information contained herein.

ScoutAutomatedPrintCode

ISBN-13: 978-013-765476-5
ISBN-10: 0-13-765476-6
Library of Congress Control Number: 2021947626

Pearson's Commitment to Diversity, Equity, and Inclusion

Pearson is dedicated to creating bias-free content that reflects the diversity of all learners. We embrace the many dimensions of diversity, including but not limited to race, ethnicity, gender, socioeconomic status, ability, age, sexual orientation, and religious or political beliefs.

Education is a powerful force for equity and change in our world. It has the potential to deliver opportunities that improve lives and enable economic mobility. As we work with authors to create content for every product and service, we acknowledge our responsibility to demonstrate inclusivity and incorporate diverse scholarship so that everyone can achieve their potential through learning. As the world's leading learning company, we have a duty to help drive change and live up to our purpose to help more people create a better life for themselves and to create a better world.

Our ambition is to purposefully contribute to a world where:

- Everyone has an equitable and lifelong opportunity to succeed through learning.
- Our educational products and services are inclusive and represent the rich diversity of learners.
- Our educational content accurately reflects the histories and experiences of the learners we serve.
- Our educational content prompts deeper discussions with learners and motivates them to expand their own learning (and worldview).

While we work hard to present unbiased content, we want to hear from you about any concerns or needs with this Pearson product so that we can investigate and address them.

- Please contact us with concerns about any potential bias at https://www.pearson.com/report-bias.html.

Credits

Cover
ZinetroN/Shutterstock
Unnumbered Figure 3-1 - Unnumbered Figure 3-3 Microsoft Corporation
Unnumbered Figure 5-1 - Unnumbered Figure 5-3
Figure 6-2
Figure 6-3
Figure 8-2 - Figure 8-5
Unnumbered Figure 8-1
Unnumbered Figure 8-2
Figure 9-1 - Figure 9-3
Figure 9-5
Figure 9-6
Figure 10-3
Figure 11-1
Figure 12-1 - Figure 12-3
Figure 12-5 - Figure 12-7
Figure E-1 - Figure E-5
Unnumbered Figure E-1
Unnumbered Figure E-2
Figure 13-5
JMP Statistical Discovery LLC
Figure 13-6

Microsoft and/or its respective suppliers make no representations about the suitability of the information contained in the documents and related graphics published as part of the services for any purpose all such documents and related graphics are provided "as is" without warranty of any kind. Microsoft and/or its respective suppliers hereby disclaim all warranties and conditions with regard to this information, including all warranties and conditions of merchantability, whether express, implied or statutory, fitness for a particular purpose, title and non-infringement. In no event shall Microsoft and/or its respective suppliers be liable for any special, indirect or consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other tortious action, arising out of or in connection with the use or performance of information available from the services.
The documents and related graphics contained herein could include technical inaccuracies or typographical errors. Changes are periodically added to the information herein. Microsoft and/or its respective suppliers may make improvements and/or changes in the product(s) and/or the program(s) described herein at any time. Partial screen shots may be viewed in full within the software version specified.
Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR}$, and Microsoft Office ${ }^{\circledR}$ are registered trademarks of the Microsoft Corporation in the U.S.A. and other countries. This book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

To our wives and our children, and in loving memory of our parents

This page intentionally left blank

Table of Contents

Introduction The Even You Can Learn Statistics and Analytics Owner's Manual xiii
Chapter 1 Fundamentals of Statistics 1
1.1 The First Three Words of Statistics 2
1.2 The Fourth and Fifth Words 4
1.3 The Branches of Statistics 4
1.4 Sources of Data 5
1.5 Sampling Concepts 7
1.6 Sample Selection Methods 8
Chapter 2 Presenting Data in Tables and Charts 15
2.1 Presenting Categorical Variables 15
2.2 Presenting Numerical Variables 23
2.3 "Bad" Charts 29
Chapter 3 Descriptive Statistics 45
3.1 Measures of Central Tendency 45
3.2 Measures of Position 49
3.3 Measures of Variation 54
3.4 Shape of Distributions 59
Chapter 4 Probability 75
4.1 Events 75
4.2 More Definitions 76
4.3 Some Rules of Probability 78
4.4 Assigning Probabilities 81
Chapter 5 Probability Distributions 87
5.1 Probability Distributions for Discrete Variables 87
5.2 The Binomial and Poisson Probability Distributions 93
5.3 Continuous Probability Distributions and the Normal Distribution 100
5.4 The Normal Probability Plot 108
Chapter 6 Sampling Distributions and Confidence Intervals 121
6.1 Foundational Concepts 122
6.2 Sampling Error and Confidence Intervals 125
6.3 Confidence Interval Estimate for the Mean Using the t Distribution (σ Unknown) 128
6.4 Confidence Interval Estimation for Categorical Variables 131
6.5 Confidence Interval Estimation When Normality Cannot Be Assumed 134
Chapter 7 Fundamentals of Hypothesis Testing 145
7.1 The Null and Alternative Hypotheses 145
7.2 Hypothesis Testing Issues 147
7.3 Decision-Making Risks 149
7.4 Performing Hypothesis Testing 150
7.5 Types of Hypothesis Tests 152
Chapter 8 Hypothesis Testing: Z and t Tests 157
8.1 Test for the Difference Between Two Proportions 157
8.2 Test for the Difference Between the Means of Two Independent Groups 163
8.3 The Paired t Test 168
Chapter 9 Hypothesis Testing: Chi-Square Tests and the One-Way Analysis of Variance (ANOVA) 183
9.1 Chi-Square Test for Two-Way Tables 183
9.2 One-Way Analysis of Variance (ANOVA): Testing for the Differences Among the Means of More Than Two Groups 191
Chapter 10 Simple Linear Regression. 211
10.1 Basics of Regression Analysis 211
10.2 Developing a Simple Linear Regression Model 214
10.3 Measures of Variation 221
10.4 Inferences About the Slope 226
10.5 Common Mistakes When Using Regression Analysis 229
Chapter 11 Multiple Regression 243
11.1 The Multiple Regression Model 243
11.2 Coefficient of Multiple Determination 246
11.3 The Overall F Test 246
11.4 Residual Analysis for the Multiple Regression Model 247
11.5 Inferences Concerning the Population Regression Coefficients 248
Chapter 12 Introduction to Analytics 259
12.1 Basic Concepts 259
12.2 Descriptive Analytics 265
12.3 Typical Descriptive Analytics Visualizations 269
Chapter 13 Predictive Analytics 279
13.1 Predictive Analytics Methods 279
13.2 More About Predictive Models 281
13.3 Tree Induction 284
13.4 Clustering 287
13.5 Association Analysis 290
Appendix A Microsoft Excel Operation and Configuration 299
A. 1 Conventions for Keystroke and Mouse Operations 299
A. 2 Microsoft Excel Technical Configuration 300
Appendix B Review of Arithmetic and Algebra 301
Assessment Quiz 301
Symbols 303
Answers to Quiz. 310
Appendix C Statistical Tables 311
Appendix D Spreadsheet Tips 339
Chart Tips 339
Function Tips. 341
Appendix E Advanced Techniques 343
Advanced How-To Tips 343
Analysis ToolPak Tips. 349
Appendix F Documentation for Downloadable Files 353
F. 1 Downloadable Data Files 353
F.2 Downloadable Spreadsheet Solution Files 355
Index 357

Acknowledgments

We would especially like to thank the staff at Pearson: Kim Spenceley for making this fourth edition a reality, Kitty Wilson for her copy editing, Lori Lyons and Mandie Frank for their work in the production of this text.

We have sought to make the contents of this book as clear, accurate, and errorfree as possible. We invite you to make suggestions or ask questions about the content if you think we have fallen short of our goals in any way. Please email your comments to authors@davidlevinestatistics.com and include the hashtag \#EYCLSA4 in the subject line of your message.

About the Authors

David M. Levine and David F. Stephan are part of a writing team known for their series of business statistics textbooks that include Basic Business Statistics, Business Statistics: A First Course, and Statistics for Managers Using Microsoft Excel. In long teaching careers at Baruch College, both were known for their classroom innovations, with Levine being honored with a Presidential Excellence Award for Distinguished Teaching Award and Stephan granted the privilege to design and develop the College's first computer-based classroom. Both are active members of the Data, Analytics and Statistics Instruction SIG of the Decision Sciences Institute.

Levine is Professor Emeritus of Information Systems at Baruch College. He is nationally recognized innovator in business statistics education and is also the coauthor of Applied Statistics for Engineers and Scientists Using Microsoft Excel and Minitab. Levine is also the author or coauthor of four books about statistical quality management: Statistics for Six Sigma Green Belts and Champions, Six Sigma for Green Belts and Champions, Design for Six Sigma for Green Belts and Champions, and Quality Management, 3rd Edition. He has published articles in various journals, including Psychometrika, The American Statistician, Communications in Statistics, Multivariate Behavioral Research, Journal of Systems Management, Quality Progress, and The American Anthropologist, and has given numerous talks at American Statistical Association, Decision Sciences Institute, and Making Statistics More Effective in Schools of Business conferences.

During his more than 20 years at Baruch College, Stephan devised techniques for teaching computer applications such as Microsoft Excel in a business context and developed future-forward courses that explored the effects of emerging digital technologies. He also served as the associate director of a U.S. Department of Education FIPSE project that successfully integrated interactive media into classroom instruction for the humanities.. Stephan is also the developer of PHStat, the statistics add-in for Microsoft Excel distributed by Pearson Education.

This page intentionally left blank

Introduction
 The Even You Can Learn Statistics and Analytics Owner's Manual

In today's world, understanding statistics and analytics is more important than ever before. Even You Can Learn Statistics and Analytics: An Easy to Understand Guide to Statistics and Analytics teaches you the basic concepts that provide you with the knowledge to apply statistics and analytics in your life. You will also learn the most commonly used statistical methods and have the opportunity to practice those methods while using Microsoft Excel.

Please read the rest of this introduction so that you can become familiar with the distinctive features of this book. To download files that support your learning of statistics, visit the website for this book at www.informit.com.

Mathematics Is Always Optional!

Never mastered higher mathematics—or generally fearful of math? Not to worry, because in Even You Can Learn Statistics and Analytics, you will find that every concept is explained in plain English, without the use of higher mathematics or mathematical symbols. However, if you are interested in the mathematical foundations behind statistics, Even You Can Learn Statistics and Analytics includes Equation Blackboards, stand-alone sections that present the equations behind statistical methods and complement the main material.

Learning with the Concept-Interpretation Approach

Even You Can Learn Statistics and Analytics uses a Concept-Interpretation

 approach to help you learn statistics and analytics:- A CONCEPT, a plain language definition that uses no complicated mathematical terms.
- An INTERPRETATION, that fully explains the concept and its importance to statistics. When necessary, these sections also include common misconceptions about the concept as well as the common errors people can make when trying to apply the concept.

For simpler concepts, an EXAMPLES section lists real-life examples or applications of the statistical concepts. For more involved concepts, WORKED-OUT PROBLEMS provide complete solutions to statistical problems-including actual spreadsheet results-that illustrate how you can apply the concepts to other problems.

Practicing Statistics While You Learn Statistics

To help you learn statistics, you should always review the worked-out problems that appear in this book. As you review them, you can practice what you have just learned by using the optional SPREADSHEET SOLUTION sections.

Spreadsheet Solution sections enable you to use Microsoft Excel as you learn statistics. If you don't want to practice your spreadsheet skills, you can examine the spreadsheet results that appear throughout the book. Many spreadsheet results are available as files that you can download for free through the InformIT website, www.informit.com. Please visit the website for this book at www.informit.com to access these bonus materials.

Spreadsheet program users will also benefit from Appendix D and Appendix E, which help teach you more about spreadsheets as you learn statistics.

And if technical issues or instructions have ever confounded your using Microsoft Excel in the past, check out Appendix A, which details the technical configuration issues you might face and explains the conventions used in all technical instructions that appear in this book.

In-Chapter Aids

As you read a chapter, look for the following icons for extra help:
Important Point icons highlight key definitions and explanations.

File icons identify the downloadable files that enable you to examine the data in selected problems.

Interested in the mathematical foundations of statistics? Then look for the Interested in Math? icons throughout the book. But remember, you can skip any or all of the math sections without losing any comprehension of the statistical methods presented, because math is always optional in this book!

End-of-Chapter Features

At the end of most chapters of Even You Can Learn Statistics and Analytics, you can find the following features, which you can review to reinforce your learning.

Important Equations

The Important Equations sections present all of the important equations discussed in the chapter. You can use these lists for reference and later study even if you have skipped over the Equation Blackboards and "interested in math" passages.

One-Minute Summaries

Each One-Minute Summary is a quick review of the significant topics in the chapter in outline form. When appropriate, the summaries also help guide you to make the right decisions about applying statistics to the data you seek to analyze.

Test Yourself

The Test Yourself sections offer a set of short-answer questions and problems that enable you to review and test yourself (with answers provided) to see how much you have retained of the concepts presented in a chapter.

Summary

Even You Can Learn Statistics and Analytics can help you whether you are taking a formal course in data analysis, brushing up on your knowledge of statistics for a specific analysis, or need to learn about analytics. If you have questions about this book, feel free to contact the authors via email at authors@davidlevinestatistics. com and include the hashtag \#EYCLSA4 in the subject line of your email.

This page intentionally left blank

Presenting Data in Tables and Charts

2.1 Presenting Categorical Variables
2.2 Presenting Numerical Variables
2.3 "Bad" Charts
One-Minute Summary
Test Yourself

Tables and charts are ways of summarizing categorical and numerical variables that can help you present information effectively. In this chapter, you will learn the appropriate types of tables and charts to use for each type of variable.

2. Presenting Categorical Variables

You present a categorical variable by first sorting values according to the categories of the variable. Then you place the count, amount, or percentage (part of the whole) of each category into a summary table or into one of several types of charts.

The Summary Table

CONCEPT A two-column table in which category names are listed in the first column and the counts, amounts, or percentages of values are listed in a second column. Sometimes, additional columns present the same data in more than one way (for example, as counts and percentages).

EXAMPLE A restaurant owner records the entrées ordered by guests during the Friday-to-Sunday weekend period. The data recorded can be presented using a summary table.

Entrée Ordered	Percentage
Beef	36
Chicken	26
Fish	28
Vegan	7
Other	3

INTERPRETATION Summary tables enable you to see the big picture about a set of data. In this example, you can conclude that most customers will order beef, chicken, or fish. Very few will order either vegan or other entrées.

The Bar Chart

CONCEPT A chart containing rectangles ("bars") in which the length of each bar represents the count, amount, or percentage of responses of one category.

EXAMPLE The data of the summary table that the previous concept uses can be visualized using a percentage bar chart.

Bar Chart of Entrées Ordered

INTERPRETATION A bar chart better presents the point that beef entrée is the single largest category of entrée ordered. For most people, scanning a bar chart is easier than scanning a column of numbers in which the numbers are unordered, as they are in the previous summary table.

The Pie Chart and the Doughnut Chart

CONCEPT

Pie: A circle chart in which wedge-shaped areas-pie slices-represent the count, amount, or percentage of each category, and the entire circle ("pie") represents the total.

Doughnut: A circle chart in which parts of the circumference represent the count, amount, or percentage of each category, and the entire circumference represents the total.

EXAMPLE The following pie and doughnut charts visualize the summary table data that the two preceding concepts use.

INTERPRETATION A pie chart or a doughnut chart enables you to see how the various categories contribute to the whole. In the example charts, you can see that chicken and fish entrées make up about half of all entrées ordered and that beef is the entrée most ordered.

In recent years, doughnut charts have become preferred over pie charts. The area of pie "slices" can be misperceived, making the pie slice seem larger or smaller than the percentage of the whole that the slice represents. In contrast, doughnut charts focus attention on the lengths of each arc, which are easier to compare and accurately reflect the percentage of the whole.

Note that pie and doughnut charts do not enable you to as easily compare categories as a bar chart does. On the other hand, bar charts are less useful for understanding parts of a whole. The restaurant owner who recorded the entrée selections likely will want to compare categories and understand how each category contributes to the whole. Therefore, that person might use both a bar chart and a pie or doughnut chart to visualize the collected data.

spreadsheet solution

Bar, Pie, and Doughnut Charts

Chapter 2 Bar, Chapter 2 Pie, and Chapter 2 Doughnut present the preceding bar, pie, and doughnut charts, respectively. Experiment with each chart by entering your own values in column B of each worksheet that contains a chart.

Best Practices

Sort your summary table data by the values in the second column before you create a chart. This will enable you to create a chart that fosters comparisons. For a bar chart, arrange values from smallest to largest value if you want the longest bar to appear at the top of the chart; otherwise, sort the values from largest to smallest.

Reformat charts created by software to eliminate unwanted gridlines and legends or to change the text font and size of titles and axis labels.

How-Tos

Chart Tip CTl (see Appendix D) explains how to sort data in a summary table.
Chart Tip CT2 lists common chart-reformatting commands.
Chart Tip CT3 lists the general steps for creating charts.

The Pareto Chart

CONCEPT A special type of bar chart that presents the counts, amounts, or percentages of the categories, in descending order left to right, and also contains a superimposed plotted line that represents a running cumulative percentage.

EXAMPLE

Causes of Incomplete ATM Transactions

Cause	Frequency	Percentage
ATM malfunctions	32	4.42%
ATM out of cash	28	3.87%
Invalid amount requested	23	3.18%
Lack of funds in account	19	2.62%
Card unreadable	234	32.32%
Warped card jammed	365	50.41%
Wrong keystroke	$\underline{23}$	3.18%
Total	$\mathbf{7 2 4}$	$\mathbf{1 0 0 . 0 0 \%}$

Source: Data extracted from A. Bhalla, "Don't Misuse the Pareto Principle," Six Sigma Forum Magazine, May 2009, pp. 15-18.

Causes of Incomplete ATM Transactions

This Pareto chart uses the data of the table that immediately precedes it to highlight the causes of incomplete ATM transactions.

INTERPRETATION When you have many categories, a Pareto chart enables you to focus on the most important categories by visually separating the vital few from the trivial many categories. For the incomplete ATM transactions data, the Pareto chart shows that two categories, warped card jammed and card unreadable, account for more than 80% of all defects and that those two categories combined with the ATM malfunctions and ATM out of cash categories account for more than 90% of all defects.

spreadsheet solution

Pareto Charts

Chapter 2 Pareto contains an example of a Pareto chart. Experiment with this chart by typing your own set of valuesin descending order-in column B, rows 2 through 11 .
(Do not alter the entries in row 12 or columns C and D.)

How-To

Chart Tip CT4 (see Appendix D) summarizes how to create a Pareto chart.

Two-Way Table

CONCEPT A table that presents the counts or percentages of responses for two categorical variables. In a two-way table, the categories of one of the variables form the rows of the table, while the categories of the second variable form the columns. The last row of a two-way table contains column totals, and the last column of such a table contains the row totals. Two-way tables are also known as cross-classification or cross-tabulation tables.

EXAMPLES This two-way table tallies entrees ordered by guests during the Friday-to-Sunday weekend period by sex.

	Sex			
	Female	Male	Total	
	Beef	64	80	144
Entree Ordered	Chicken	53	51	104
	Fish	72	40	112
	Vegan	8	20	28
	Other	3	9	12
	Total	$\boxed{200}$	200	$\overline{400}$

Two-way tables can be formatted to show grand total percentages or row or column percentages.

Grand Total Percentages Table

	Sex			
	Beef Chicken	Female	Male	Total
		16.00\%	20.00\%	36.00\%
		13.25\%	12.75\%	26.00\%
Entrée Ordered	Fish	18.00\%	10.00\%	28.00\%
	Vegan	2.00\%	5.00\%	7.00\%
	Other	0.75\%	2.25\%	3.00\%
	Total	50.00\%	50.00\%	100.00\%

Row Percentages Table

	Beef	Sex		Total
		Female	Male	
		44.44\%	55.56\%	100.00\%
	Chicken	50.96\%	49.04\%	100.00\%
Entrée Ordered	Fish	64.29\%	35.71\%	100.00\%
	Vegan	28.57\%	71.43\%	100.00\%
	Other	25.00\%	75.00\%	100.00\%
	Total	50.00\%	50.00\%	100.00\%

Column Percentages Table

		Sex		Total
		Female	Male	
	Beef	32.00\%	40.00\%	36.00\%
	Chicken	26.50\%	25.50\%	26.00\%
Entrée Ordered	Fish	36.00\%	20.00\%	28.00\%
	Vegan	4.00\%	10.00\%	7.00\%
	Other	1.50\%	4.50\%	3.00\%
	Total	100.00\%	100.00\%	100.00\%

INTERPRETATION The simplest two-way table contains a row variable that has two categories and a column variable that has two categories. This creates a table that has two rows and two columns in its inner part (see the table on the next page). Each inner cell represents the count or percentage of a pairing, or cross-classifying, of categories from each variable.

Two-way tables reveal the combination of values that occurs most often in data. In the example, the tables reveal that males are more likely to order beef than females and that females are more likely to order fish.

PivotTables create worksheet summary tables from sample data and provide a good way of creating two-way tables from sample data. Advanced Technique AT1 in Appendix E discusses how to create such tables.

spreadshect solution

Two-Way Tables

Chapter 2 Two-Way contains the counts of the download and call-to-action button variables as a simple two-way table.
Chapter 2 Two-Way PivotTable contains the counts of the entrée ordered and sex variables summarized in a two-way table that is an Excel PivotTable as well as PivotTables formatted to show grand total, row, and column percentage.

How-To

Advanced Technique ADV1 in Appendix E summarizes how to create a two-way table that is a PivotTable.

22 Presenting Numerical Variables

You present numerical variables by first establishing groups that represent separate ranges of values and then placing each value into the proper group. Then you create tables that summarize the groups by frequency (count) or percentage and use the table as the basis for creating charts such as a histogram, which this chapter explains.

The Frequency and Percentage Distribution

CONCEPT A table of grouped numerical data that contains the names of each group in the first column, the counts (frequencies) of each group in the second column, and the percentages of each group in the third column. This table can also appear as a two-column table that shows either the frequencies or the percentages.
EXAMPLE Consider the following data table, which presents the average ticket cost (in U.S. \$) for each NBA team during a recent season.

$\stackrel{-\infty}{\underline{\underline{~}}}$	Team	Average Ticket Cost	Team	Average Ticket Cost
NBA Ticket Cost	Atlanta	143	Miami	187
	Boston	234	Milwaukee	153
	Brooklyn	212	Minnesota	107
	Charlotte	89	New Orleans	48
	Chicago	251	New York	285
	Cleveland	135	Oklahoma City	199
	Dallas	124	Orlando	127
	Denver	152	Philadelphia	197
	Detroit	135	Phoenix	61
	Golden State	463	Portland	119
	Houston	177	Sacramento	198
	Indiana	130	San Antonio	195
	L.A. Clippers	137	Toronto	180
	L.A. Lakers	444	Utah	78
	Memphis	104	Washington	138

[^0]The following frequency and percentage distribution summarizes these data using 10 groupings from 0 to under 50 to 450 to under 500.

Average Ticket Cost	Frequency	Percentage
0 to under 50	1	3.33%
50 to under 100	3	10.00%
100 to under 150	11	36.67%
150 to under 200	9	30.00%
200 to under 250	2	6.67%
250 to under 300	2	6.67%
300 to under 350	0	0%
350 to under 400	0	0%
400 to under 450	1	3.33%
450 to under 500	$\underline{1}$	3.33%
100.00%		

INTERPRETATION Frequency and percentage distributions enable you to quickly determine differences among the many groups of values. In this example, you can quickly see that most of the average ticket costs are between $\$ 100$ and $\$ 300$ and that very few average ticket costs are either below $\$ 50$ or above $\$ 200$.

You need to be careful in forming distribution groups because the ranges of the groups affect how you perceive the data. For example, had you grouped the average ticket costs into only two groups, below \$150 and \$150 and above, you would not be able to see any pattern in the data.

Histogram

CONCEPT A special bar chart for grouped numerical data in which the groups are represented as individual bars on the horizontal X axis and the frequencies or percentages for each group are plotted on the vertical Y axis. In a histogram, in contrast to a bar chart of categorical data, no gaps exist between adjacent bars.

EXAMPLE The following histogram presents the average ticket cost data of the preceding example. The value below each bar $(25,75,125,175,225,275$, $325,375,425$, and 475) is the midpoint-the approximate middle value for the group the bar represents. As with the frequency and percentage distributions, you can quickly see that very few average ticket prices are above $\$ 275$.

Average Ticket Price Histogram

INTERPRETATION A histogram reveals the overall shape of the frequencies in the groups. A histogram is considered symmetric if each side of the chart is an approximate mirror image of the other side. The histogram of this example has more values in the lower portion than in the upper portion, so it is considered to be non-symmetric, or skewed.

spreadshect solution

Frequency Distributions and Histograms

Chapter 2 Histogram contains a frequency distribution and histogram for the average ticket cost (in U.S. \$) for each NBA team during a recent season. Experiment with this chart by entering different values in column B, rows 3 through 12 of the Histogram worksheet.

How-Tos

Advanced Technique ADV2 in Appendix E and Chart Tip CT5 in Appendix D discuss how you can create frequency distributions and histograms.

The Time-Series Plot

CONCEPT A chart in which each point represents the value of a numerical variable at a specific time. By convention, the X axis (the horizontal axis) always represents units of time, and the Y axis (the vertical axis) always represents units of the variable.

EXAMPLE Consider the following data table, which presents the number of domestic movie releases from 1990 to 2020.

Year	Movies Released	Year	Movies Released
1990	224	2006	608
1991	244	2007	631
1992	234	2008	607
1993	258	2009	520
1994	254	2010	538
1995	279	2011	601
1996	310	2012	669
1997	303	2013	687
1998	336	2014	708
1999	384	2015	708
2000	371	2016	737
2001	355	2017	740
2002	480	2018	873
2003	507	2019	792
2004	551	2020	200
2005	547		

Source: Data extracted from "Domestic Yearly Box Office," https://www.boxofficemojo.com/year/.
The following time-series plot visualizes these data.

INTERPRETATION Time-series plots can reveal patterns over time—patterns that you might not see when looking at a long list of numerical values. In this example, the plot reveals that, overall, there was a general increase in the number of movies released between 1990 and 2019. Before the steep drop in 2020 caused by the COVID-19 pandemic, the number of movies released in the preceding 30 years had increased fourfold.

The Scatter Plot

CONCEPT A chart that plots the values of two numerical variables for each observation. In a scatter plot, the X axis (the horizontal axis) always represents units of one variable, and the Y axis (the vertical axis) always represents units of the second variable.

EXAMPLE Consider the following data table, which presents the average ticket cost (in U.S. \$) and the premium ticket cost (in U.S. \$) for each NBA team during a recent season.

	Team	Average Ticket Cost	Premium Ticket Cost
	Atlanta	143	267
NBA Ticket Cost	Boston	234	448
	Brooklyn	212	391
	Charlotte	89	173
	Chicago	251	493
	Cleveland	135	268
	Dallas	124	245
	Denver	152	296
	Detroit	135	266
	Golden State	463	874
	Houston	177	346
	Indiana	130	252
	L.A. Clippers	137	271
	L.A. Lakers	444	857
	Memphis	104	203
	Miami	187	371
	Milwaukee	153	301
	Minnesota	107	204
	New Orleans	48	89
	New York	285	561
	Oklahoma City	199	390
	Orlando	127	249

Team	Average Ticket Cost	Premium Ticket Cost
Philadelphia	197	383
Phoenix	61	110
Portland	119	233
Sacramento	198	380
San Antonio	195	384
Toronto	180	338
Utah	78	142
Washington	138	271

The following scatter plot visualizes these data.

INTERPRETATION A scatter plot helps reveal patterns in the relationship between two numerical variables. The scatter plot for these data reveals a strong positive linear (straight-line) relationship between the average ticket cost and the cost of a premium ticket. Based on this relationship, you can conclude that the average ticket cost is a useful predictor of the premium ticket cost. (Chapter 10 more fully discusses using one numerical variable to predict the value of another numerical variable.)

23 "Bad" Charts

So-called "good" charts, such as the charts presented so far in this chapter, help visualize data in ways that aid understanding. However, in the modern world, you can easily find examples of "bad" charts that obscure or confuse the data. Such charts include elements or practices known to impede understanding or fail to apply properly the techniques that this chapter discusses.

CONCEPT A "bad" chart fails to clearly present data in a useful and undistorted manner.

INTERPRETATION Using pictorial symbols obscures the data and can create a false impression in the mind of the reader, especially if the pictorial symbols are representations of three-dimensional objects. In Example 1, the wine glasses fail to reflect that the 1992 data (2.25 million gallons) is a bit more than twice the 1.04 million gallons for 1989. In addition, the spaces between the wine glasses falsely suggest equal-sized time periods and obscure the trend in wine exports. (Hint: Plot the data as a time-series chart to discover the actual trend.)

EXAMPLE 1: Australian Wine Exports to the United States.

We're drinking more. . .

Australian wine exports to the U.S. in millions of gallons

1989

1992

1995

1997

Example 2 combines the inaccuracy of using a picture (grape vine) with the error of having unlabeled and improperly scaled axes. A missing X axis prevents the reader from immediately seeing that the 1997-1998 value is misplaced. By the scale of the graph, that data point should be closer to the rest of the data. A missing Y axis prevents the reader from getting a better sense of the rate of change in land planted through the years. Other problems also exist. Can you spot at least one more? (Hint: Compare the 1949-1950 data to the 1969-1970 data.)

EXAMPLE 2: Amount of Land Planted with Grapes for the Wine Industry.

When producing your own charts, use these guidelines:

- Always choose the simplest chart that can present your data.
- Always supply a title.
- Always label every axis.
- Avoid unnecessary decorations or illustrations around the borders or in the background.
- Avoid the use of fancy pictorial symbols to represent data values.
- Avoid 3D versions of bar and pie charts.
- If the chart contains axes, always include a scale for each axis.
- When charting non-negative values, the scale on the vertical axis should begin at zero.

One-Minute Summary

To choose an appropriate table or chart type, begin by determining whether your data are categorical or numerical.

If your data are categorical:

- Determine whether you are presenting one or two variables.
- If one variable, use a summary table, bar chart, pie chart, or doughnut chart. If emphasizing the vital few from the trivial many, use a Pareto chart.
- If two variables, use a two-way table.

If your data are numerical:

- If charting one variable, use a frequency and percentage distribution with or without a histogram.
- If charting two variables, if the time order of the data is important, use a time-series plot; otherwise, use a scatter plot.

Test Yourself Short Answers

1. Which of the following graphical presentations is not appropriate for categorical data?
a. Pareto chart
b. scatter plot
c. bar chart
d. pie chart
2. Which of the following graphical presentations is not appropriate for numerical data?
a. histogram
b. pie chart
c. time-series plot
d. scatter plot
3. A type of histogram in which the categories are plotted in the descending rank order of the magnitude of their frequencies is called a:
a. bar chart
b. pie chart
c. scatter plot
d. Pareto chart
4. Which of the following would best show that the total of all the categories sums to 100% ?
a. pie chart
b. histogram
c. scatter plot
d. time-series plot
5. The basic principle behind the \qquad is the capability to separate the vital few categories from the trivial many categories.
a. scatter plot
b. bar chart
c. Pareto chart
d. pie chart
6. When studying the simultaneous responses to two categorical variables, you should construct a:
a. histogram
b. pie chart
c. scatter plot
d. cross-classification table
7. In a cross-classification table, the number of rows and columns:
a. must always be the same
b. must always be two
c. must add to 100%
d. None of the above.

Answer True or False:

8. Histograms are used for numerical data, whereas bar charts are suitable for categorical data.
9. A website monitors customer complaints and organizes these complaints into six distinct categories. Over the past year, the company has received 534 complaints. One possible graphical method for representing these data is a Pareto chart.
10. A website monitors customer complaints and organizes these complaints into six distinct categories. Over the past year, the company has received 534 complaints. One possible graphical method for representing these data is a scatter plot.
11. A social media website collected information on the age of its customers. The youngest customer was 5, and the oldest was 96 . To study the distribution of the age of its customers, the company should use a pie chart.
12. A social media website collected information on the age of its customers. The youngest customer was 5 , and the oldest was 96 . To study the distribution of the age of its customers, the company can use a histogram.
13. A website wants to collect information on the daily number of visitors. To study the daily number of visitors, it can use a pie chart.
14. A website wants to collect information on the daily number of visitors. To study the daily number of visitors, it can use a time-series plot.
15. A professor wants to study the relationship between the number of hours a student studied for an exam and the exam score achieved. The professor can use a time-series plot.
16. A professor wants to study the relationship between the number of hours a student studied for an exam and the exam score achieved. The professor can use a bar chart.
17. A professor wants to study the relationship between the number of hours a student studied for an exam and the exam score achieved. The professor can use a scatter plot.
18. If you wanted to compare the percentage of items that are in a particular category as compared to other categories, you should use a pie chart, not a bar chart.

Fill in the Blank:

19. To evaluate two categorical variables at the same time, a \qquad should be developed.
20. A \qquad is a vertical bar chart in which the rectangular bars are constructed at the boundaries of each class interval.
21. A \qquad chart should be used when you are primarily concerned with the percentage of the total that is in each category.
22. A \qquad chart should be used when you are primarily concerned with comparing the percentages in different categories.
23. A \qquad should be used when you are studying a pattern between two numerical variables.
24. A \qquad should be used to study the distribution of a numerical variable.
25. You have measured your pulse rate daily for 30 days. A \qquad plot should be used to study the pulse rate for the 30 days.
26. You have collected data from your friends concerning their favorite soft drink. You should use a \qquad chart to study the favorite soft drink of your friends.
27. You have collected data from your friends concerning the time it takes to get ready to leave their house in the morning. You should use a \qquad to study this variable.

Answers to Test Yourself Short Answers

1. b
2. b
3. d
4. a
5. c
6. d
7. d
8. True
9. True
10. False
11. False
12. True
13. False
14. True
15. False
16. False
17. True
18. False
19. two-way table
20. histogram
21. pie chart
22. bar chart
23. scatter plot
24. histogram
25. time-series plot
26. bar chart, pie chart, or Pareto chart
27. histogram

Problems

1. A Pew Research Center survey studied the key issues for employed adults who have been working at home some or all of the time. The following three summary tables present the results of that survey.
Feeling Motivated to Do Their Work Percentage
Very Difficult 7\%
Somewhat Difficult 29\%
Somewhat Easy 31\%
Easy 34\%

Doing Work Without Interruptions	Percentage
Very Difficult	8%
Somewhat Difficult	24%
Somewhat Easy	37%
Easy	31%
Having an Adequate Workspace	Percentage
Very Difficult	4%
Somewhat Difficult	19%
Somewhat Easy	31%
Easy	47%

For each table

a. Construct a bar chart and a pie or doughnut chart.
b. Which graphical method do you think best presents these data?
c. What conclusions can you reach concerning how employed adults who have been working at home some or all of the time feel about being motivated to do their work?
d. What conclusions can you reach concerning how employed adults who have been working at home some or all of the time feel about doing work without interruptions?
e. What conclusions can you reach concerning how employed adults who have been working at home some or all of the time feel about having an adequate workspace?
f. What differences in the responses among the three issues exist?
2. Market researchers for a telecommunications company have summarized data collected about the payment methods customers use in the following summary table.

Payment Method	Frequency
Bank transfer (automatic)	1,212
Credit card (automatic)	1,191
Electronic check	2,243
Mailed check	$\frac{871}{5,517}$

a. Using this table construct a bar chart and a pie or doughnut chart.
b. Which graphical method do you think best presents these data?
c. What conclusions can you reach about customer payment methods?
3. Medication errors are a serious problem in hospitals. The following summary table presents the root causes of pharmacy errors at a hospital during a recent time period.
Reason for Failure Frequency
Additional instructions 16
Dose 23
Drug 14
Duplicate order entry 22
Frequency 47
Omission 21
Order not discontinued when received 12
Order not received 52
Patient 5
Route 4
Other 8
a. Construct a Pareto chart for these data.
b. Discuss the "vital few" and "trivial many" reasons for the root causes of pharmacy errors.
4. Students who attend a regional university located in a small town are known to favor the local independent pizza restaurant. A national chain of pizza restaurants looks to open a store in that town and conducts a survey of students who attend that university to determine pizza preferences. The following two-way table summarizes the survey variables store type and sex, based on the responses of a sample of 220 students.

a. Construct a two-way table that displays grand total percentages.
b. Construct a two-way table that displays row percentages.
c. Construct a two-way table that displays column percentages.
d. What conclusions can you reach from the tables constructed in parts (a) through (c)?
e. Which table do you think is most useful in reaching the conclusions in your part (d) answer?
5. Churning, the loss of customers to a competitor, is a problem for all companies, especially telecommunications companies. Market researchers for a telecommunications company collect data from 5,517 customers of the company. Data collected for each customer includes whether the customer churned during the last month, the sex of the customer, whether the customer is a senior citizen, and whether the customer uses paperless billing. The following three summary tables summarize these survey variables.

For each table
a. Construct a two-way table that displays grand total percentages
b. Construct a two-way table that displays row percentages.
c. Construct a two-way table that displays column percentages.
d. What conclusions can you reach from the tables constructed in parts (a) through (c)?
e. Which table do you think is most useful in reaching the conclusions in your part (d) answer?
6. The file Domestic Beer contains the percentage alcohol, number of calories per 12 ounces, and number of carbohydrates (in grams) per 12 ounces for 157 of the best-selling domestic beers in the United States.

Domestic

 Beer(Data extracted from "Find Out How Many Calories in Beer?" https:// www.beer100.com/beer-calories.)
a. Construct a frequency distribution and a percentage distribution for percentage alcohol, number of calories per 12 ounces, and number of carbohydrates per 12 ounces (in grams).
b. Construct a histogram for percentage alcohol, number of calories per 12 ounces, and number of carbohydrates per 12 ounces (in grams).
c. Construct three scatter plots: percentage alcohol versus calories, percentage alcohol versus carbohydrates, and calories versus carbohydrates.
d. What conclusions can you reach about the percentage alcohol, number of calories per 12 ounces, and number of carbohydrates per 12 ounces (in grams)?
7. The Super Bowl Ads file contains the average ratings of 57 ads from the 2021 NFL Super Bowl broadcast. (Data extracted from T. Schad, "Rocket mortgage ads dominate Ad Meter," USA Today, February 9, 2021, p. 4B.)
a. Construct a histogram based on these data.
b. What conclusions can you reach concerning Super Bowl ad ratings?
8. The Big Mac Starbucks file contains the cost (in U.S. \$) of a McDonald's Big Mac sandwich and a Starbucks tall latte in 11 world cities.

Big Mac
Starbucks

City	Big Mac	Starbucks Tall Latte
Moscow	2.29	4.35
Johannesburg	2.53	2.18
Hong Kong	2.87	4.60
Bangkok	3.85	2.60
Dubai	4.08	4.29
Buenos Aires	4.22	2.14
London	4.32	3.58
New York	5.09	4.30
Paris	5.37	4.30
Toronto	4.38	3.15
Zurich	6.89	5.94

Source: Data extracted from "How Much a Big Mac Costs Around the World," Business Insider, https://businessinsider.com/mcdonalds-big-mac-price-around-the-world-2018-5, and "The Starbucks Index 2019," https://www.finder.com/starbucks.index.

Potter Movies

UHDTV Wholesale Sales
a. Construct a scatter plot from these data.
b. What conclusions can you reach about the relationship between the cost of a McDonald's Big Mac and a Starbucks tall latte in these 11 world cities?
9. The Potter Movies file contains the first weekend gross (in \$millions) and the total domestic gross (in \$millions) for the eight movies in the Harry Potter film series.

Title	First Weekend	Total Domestic
Sorcerer's Stone	90.295	317.871
Chamber of Secrets	88.357	262.233
Prisoner of Azkaban	93.687	249.758
Goblet of Fire	102.335	290.201
Order of the Phoenix	77.108	292.137
Half-Blood Prince	77.836	302.089
Deathly Hallows Part I	125.017	296.132
Deathly Hallows Part II	169.189	381.193

Source: Data extracted from "Box Office History for Harry Potter Movies," https:// www.the-numbers.com/movies/franchise/Harry-Potter.
a. Construct a scatter plot from these data.
b. What conclusion can you reach about the relationship between the first weekend and total domestic grosses?
10. The UHDTV Wholesale Sales file contains the U.S. wholesale sales of Ultra HDTVs (in \$millions) from 2013 to 2019.

Year	Wholesale Sales
2013	310
2014	2,238
2015	7,673
2016	12,932
2017	13,400
2018	14,300
2019	14,900

Source: Data extracted from "4K Ultra HD TVs wholesale sales revenue in the United States from 2013 to 2019," https://www.statista.com/statistics/64351l/4k-ultra-hdtv-wholesale-sales-in-us/.
a. Construct a time-series plot of the U.S. Ultra HDTV wholesale sales from 2013 to 2019.
b. What pattern does the plot reveal?
c. If you were asked to predict U.S. Ultra HDTV wholesale sales for 2020, what would you predict?
11. The MLB Salaries file contains the average MLB baseball player salaries (in \$millions) for the years 2003 through 2020.

MLB Salaries

Year	Average MLB Salary	Year	Average MLB Salary
2003	2.37	2012	3.21
2004	2.31	2013	3.39
2005	2.48	2014	3.69
2006	2.70	2015	3.84
2007	2.82	2016	4.38
2008	2.93	2017	4.45
2009	3.00	2018	4.41
2010	3.01	2019	4.80
2011	3.10	2020	4.43

Source: Data extracted from https://statista.com/statistics/23621/mean-salary-of-players-in-major-league-baseball (no longer available).
a. Construct a time-series plot of the average MLB baseball player salaries for the years 2003 through 2020.
b. What pattern does the plot reveal?
c. If you were asked to predict the average MLB baseball player salary for 2021, what would you predict?

Answers to Test Yourself Problems

1. b. If you are more interested in determining which category of feeling motivated to do their job response occurs most often, then the bar chart is preferred. If you are more interested in seeing the distribution of the entire set of categories, then either the pie chart or the doughnut chart is preferred.
c. Respondents are about equally likely to feel that it is easy, somewhat easy, or somewhat difficult to feel motivated to do their job.
d. Respondents are about equally likely to feel that it is somewhat easy or somewhat difficult to do work without interruption.
e. Respondents are most likely to feel that it is easy to have adequate workspace.
f. They feel that it is easier to have adequate workspace than to feel motivated to do work or to work without interruption.
2. b. If you are more interested in determining which category of payment method used occurs most often, then the bar chart is preferred. If you are more interested in seeing the distribution of the entire set of categories, either the pie chart or doughnut chart is preferred.
c. Respondents are most likely to pay by electronic check and least likely to pay by mailed check.
3. b. The most important categories of medication errors are orders not received and frequency followed by dose, duplicate order entry, and omission.
4. a. through c.

	Sex			
	Female	Male	Grand Total	
Store Type	Local	33.64%	32.27%	65.91%
	National	$\frac{8.64 \%}{42.28 \%}$	$\frac{25.45 \%}{57.72 \%}$	$\frac{34.09 \%}{100.00 \%}$

	Sex			
	Female		Male	Grand Total
Store Type	Local	51.03%	48.97%	100.00%
	National	$\frac{25.33 \%}{42.27 \%}$	$\frac{74.67 \%}{57.73 \%}$	$\frac{100.00 \%}{100.00 \%}$

		Sex		
		Female	Male	Grand Total
Store Type	Local	79.57%	55.91%	65.91%
	National	$\frac{20.43 \%}{100.00 \%}$	$\frac{44.09 \%}{100.00 \%}$	$\frac{34.09 \%}{100.00 \%}$
	Grand Total			

5. a. through c.

Sex and Churn

		Churn		
	No		Yes	Grand Total
	Semale	33.68%	16.01%	49.69%
	Male	$\frac{34.49 \%}{68.17 \%}$	$\frac{15.82 \%}{31.83 \%}$	$\frac{50.31 \%}{100.00 \%}$

		Churn		
		No	Yes	Grand Total
	Female	67.79%	32.21%	100.00%
	Male	$\frac{68.55 \%}{68.17 \%}$	$\frac{31.45 \%}{31.83 \%}$	$\frac{100.00 \%}{100.00 \%}$

	Churn			
	No		Yes	Grand Total
Sex	Female	51.21%	50.59%	49.68%
	Male	$\frac{48.79 \%}{100.00 \%}$	$\frac{49.41 \%}{100.00 \%}$	$\frac{50.32 \%}{100.00 \%}$

d. There is very little difference between males and females in churning.
e. Row percentages are more valuable because this table compares males and females.

Senior Citizen and Churn

				Churn		
	No		Yes	Grand Total		
Senior Citizen	No	56.95%	23.29%	79.24%		
	Yes	$\frac{11.22 \%}{68.17 \%}$	$\frac{8.54 \%}{31.83 \%}$	$\frac{19.76 \%}{100.00 \%}$		

				Churn		
		No	Yes	Grand Total		
Senior Citizen	No	70.97%	29.03%	100.00%		
	Yes	$\frac{56.79 \%}{68.17 \%}$	$\frac{43.21 \%}{31.83 \%}$	$\frac{100.00 \%}{100.00 \%}$		

	Churn			
		No	Yes	Grand Total
	No	83.54\%	73.17\%	80.24\%
Senior Citizen	Yes	16.46\%	26.83\%	19.76\%
	Grand Total	100.00\%	100.00\%	100.00\%

d. Senior citizens are much less likely to churn.
e. Row percentages are more valuable because this table compares senior citizens and non-senior citizens.
Paperless Billing and Churn

	Churn			
		No	Yes	Grand Total
	No	25.27\%	7.21\%	32.48\%
Paperless Billing	Yes	42.90\%	24.61\%	67.51\%
	Grand Total	68.17\%	31.62\%	100.00\%

	Churn			
	No		Yes	Grand Total
Paperless Billing	No	Yes	$\frac{77.79 \%}{22.21 \%}$	100.00%
	Grand Total	$\frac{63.54 \%}{68.17 \%}$	$\frac{36.46 \%}{31.83 \%}$	$\frac{100.00 \%}{100.00 \%}$

	Churn			
		No	Yes	Grand Total
	No	37.06\%	22.67\%	32.48\%
Paperless Billing	Yes	62.94\%	77.33\%	67.52\%
	Grand Total	100.00\%	100.00\%	100.00\%

d. Those who use paperless billing are more likely to churn than those who do not use paperless billing.
e. Row percentages are more valuable because this table best helps to compare those with and without paperless billing.
6. c. The alcohol percentage is concentrated between 4% and 6%, with more between 4% and 5%. The calories are concentrated between 140 and 160 . The carbohydrates are concentrated between 12 and 15 . There are outliers in the percentage of alcohol in both tails. The outlier in the lower tail is due to the nonalcoholic beer O'Doul's. The outlier in the upper tail is around 11.5%. A few beers have high calorie counts near 330 and carbohydrates as high as 32. A strong positive relationship exists between percentage of alcohol and calories and between calories and carbohydrates, and there is a moderately positive relationship between percentage alcohol and carbohydrates.
7. b. The ad ratings are fairly symmetrical, with many of the ad scores between 5 and 6 . Very few ratings are below 4.5 or above 7 .
8. b. There is a weak relationship between the cost of a McDonald's Big Mac and the cost of a Starbucks tall latte in various cities.
9. b. There is a moderately positive relationship between the U.S. gross and the first weekend gross for Harry Potter movies.
10. b. Ultra HDTV sales rose dramatically from 2013 to 2016 but leveled off after that.
c. Somewhere between 15 and 16 million.
11. b. There has been a very strong linear increase in the salaries.
c. Because there was a decrease in 2020, the prediction is that the average salary in 2021 will be less than $\$ 5$ million.

References

1. Beninger, J. M., and D. L. Robyn. 1978. "Quantitative Graphics in Statistics," The American Statistician, 32: 1-11.
2. Berenson, M. L., D. M. Levine, K. A. Szabat, and D. F. Stephan. Basic Business Statistics: Concepts and Applications, 15th edition. Hoboken, NJ: Pearson Education, 2023.
3. Levine, D., D. Stephan, and K. Szabat. Statistics for Managers Using Microsoft Excel, 9th edition. Boston: Pearson Education, 2021.
4. Tufte, E. R. The Visual Display of Quantitative Information, 2nd edition. Cheshire, CT: Graphics Press, 2002.
5. Tufte, E. R. Visual Explanations. Cheshire, CT: Graphics Press, 1997.

Index

Numerics

3Vs, 265

A

ABS() function, 134
ampersand operator, forming labels with, 345
Analysis ToolPak add-in, checking Microsoft Excel for, 300
analytics, 259. See also
descriptive analytics; predictive analytics;
prescriptive analytics
big data, 264-265
data mining, 262-263
data science and, 260
descriptive, 261, 265
dashboards, 265-266
market basket analysis, 291-293
MCT (multidimensional contingency table), 266-268
drill down, 261-262
machine learning and, 263
predictive, 261, 279
association methods, 281, 290-291
classification methods, 280
classification tree, 284-285
clustering methods, 280, 287-289
cross-validation, 282-283
limitations of models, 282
model validation, 282
models, 281-282
regression tree,
285-287
target-based, 280
tree induction, 284
types of, 279-280
prescriptive, 261-262
semi-structured data, 264
structured data, 264
types of, 260
unstructured data, 263-264
ANOVA (analysis of variance). See also
one-way ANOVA
equations, 195
one-way, 191-192
assumptions, 200
factor, 191
summary table, 193-194
three variances of,
192-193
worked out problems, 194-195, 198-200

Apriori analysis, 291
assigning probabilities, 81 classical approach, 81 empirical approach, 81 subjective approach, 81-82
association analysis, 281, 290-291
assumption(s), 168
of normality, 129
one-way ANOVA, 200
regression analysis, 218-219
residual analysis, 219

B

A/B testing, 158-159,
184-186
"bad" charts, 29-31
bar charts, 16-17
histogram, 24-25
Pareto, 18-20
big data, 264-265
BINOM.DIST() function, 95
binomial distribution, 93-94
bootstrap estimation, 135-136
bootstrapping, 134-135
boxplot, 61-64
bullet graphs, 272-274, 348

C

categorical variables, 3 charts. See also visualizations arranging data in, 339
"bad", 29-31
bar, 16-17, 24-25
best practices, 18
creating, 340
doughnut, 17-18
Pareto, 18-20, 300
pie, 17-18
reformatting, 339-340
scatter plot, 27-29
time-series plot, 25-27
treemaps, 270-272
worksheets and, 18
CHISQ.DIST.RT() function, 190
CHISQ.INV.RT() function, 190
chi-square test for two-way
tables, 183-190
city block distance, 287
classical probability, 81
classification
methods, predictive
analytics, 280
tree, 284-285
CLT (Central Limit
Theorem), 123
clustering methods
iris data set, 290
predictive analytics, 280, 287-289
coefficient
of correlation, 224-225
of determination, 224
of multiple determination, 246
collectively exhaustive
events, 77
column percentages table, 21
completely randomized
design, 191
confidence interval
estimation, 126-127
for the mean, 128-131
for the proportion, 131-134
when normality cannot be assumed, 134 bootstrap estimation, 135-136
bootstrapping, 134-135
worked out problem, 127-128
continuous probability
distribution,
100-101
continuous values, 3
creating
charts, 300, 340
histograms, 340-341
PivotTables, 343-344
scatter plots, 341
worksheets, 9
critical value, 130-134,
148-149, 152,
158-160, 195

D

dashboards, 265-266
data mining, 262-263
data science, analytics and, 260
degrees of freedom, 186
dendogram, 288-289
dependent variable, 212, 245
descriptive analytics, 261, 265
dashboards, 265-266
drill down, 261-262
market basket analysis, 291-293

MCT (multidimensional contingency table), 266-268
visualizations bullet graphs, 272-274
sparklines, 269-270
treemaps, 270-272
descriptive statistics, 4-5, 48
measures of central
tendency, 45
mean, 45-46
median, 46-49
mode, 49
measures of position, 49
percentile, 53-54
quartiles, 50-53
rank, 49-50
measures of variation, 54
range, 54-55
standard deviation, 55-58
variance, 55-58
Z score, 58-59
shape, 59
boxplot, 61-64
left-skewed, 60
right-skewed, 60-61
symmetric, 59
developing a simple linear regression model, 214-216
DEVSQ() function, 171 discrete probability distribution, 88-90 expected value of a variable, 89-90
standard deviation of a variable, 90-93
worked out problems, 88-89
discrete values, 3
dispersion, 54
distance, 287, 289
distribution(s)
binomial, 93-94
continuous probability,
100-101
discrete probability,
88-89
expected value of a variable, 89-90
standard deviation of a variable, 90-93
frequency, 23-24
normal, 101-103
finding the Z value, 105-108
normal probability plot, 108-109
standard deviation units, 103-105
Poisson, 97-100
sampling, 122
Central Limit Theorem (CLT), 123
of the proportion,
124-125
$t, 129-131$
documentation for down-
loadable fles, 353-355
doughnut chart, 17-18
drill down, 261-262

E

elbow method, 289
elementary events, 76
empirical probability, 81
equality of variances, 200
equations, 196
ANOVA, 195-197
binomial distribution, 95-96
for calculating the mean, 47
confidence interval estimation for the proportion, 133
confidence interval for the mean, 130
for defining the median, 49
degrees of freedom, 186 discrete probability distribution, 92-93
first and third quartile, 51
mean squares, 196-197
for measures of variation in a regression analysis, 222-223
paired t test, 172-173
Poisson distribution, 98-99
pooled-variance t test, 167-168
simple linear regression, 214, 217-218, 229-234
symbols, 47-58
variance, 56-58
Z test, 59, 162-163
Euclidean distance, 287
events
collectively exhaustive, 77
elementary, 76
joint, 76
expected value of a variable, 89-90
experiments, 6, 75-76,
198-199, 200
health care, 161-162
one-factor, 191
random sampling and, 200

F-G

factor, 191
F.DIST.RT() function, 250

Fisher, R. A., 290
FP-Growth method, 291
frames, 7
frequency distribution, 23-24, 344-345
FREQUENCY() function, 342
frequent item set, 291-292
functions
ABS(), 134
BINOM.DIST(), 95
CHISQ.DIST.RT(), 190
CHISQ.INV.RT(), 190
DEVSQ(), 171
entering, 341
F.DIST.RT(), 250

FREQUENCY(), 342
LINEST(), 250, 346-347
MAX(), 57
MIN(), 57
for normal probabilities, 342

NORM.DIST(), 107
NORM.INV(), 107
NORM.S.DIST(), 160
NORM.S.INV(), 107,
134, 160
POISSON.DIST(), 98
SKEW(), 64
STANDARDIZE(), 107
STDEV.P(), 57

STDEV.S(), 57
T.DIST.2T(), 250
T.INV.2T(), 131, 171, 250
VAR.P(), 57
VARS.S(), 57
grand total percentages
table, 21

H

hierarchical clustering, 287
hints, 283
histograms, 24-25, 340-341
hypothesis testing, 145
alternative hypothesis, 146-147
chi-square test for two-way tables, 183-190
for the difference between the means
of two independent groups, 163
for the difference between two proportions, 157-158
A/B testing, 158-159
health care experiment, 161-162
p-value approach, 160
Z test, 160
issues with, 147
null hypothesis, 146
one-sample tests, 152
one-tail test, 152
one-way ANOVA, 191-192, 194-200.
See also one-way ANOVA
factor, 191
summary table, 193-194
variances, 192-193
paired t test, 168-175
performing, 150
pooled-variance t test,
163-165, 166
assumptions, 168
equation, 167-168
practical significance
versus statistical
significance, 148
p-value approach, 151
risk trade-off, 150
symbols, 146
test statistic, 147-148
two-tail test, 152
type I error, 149
type II error, 149
variables and, 152

I

independent variable, 212, 243-244
inferential statistics, 5, 121
interval estimate, 127. See
also confidence interval estimate
iris data set, 290

J-K-L

jmp.com, 287, 290
joint events, 76
least squares method,
developing a simple linear regression model, 215-216
left-skewed shape, 60
levels, 191
LINEST() function, 250, 346-347

M

machine learning, 263
semi-supervised, 283 unsupervised methods, 283
Manhattan distance, 287
market basket analysis, 291-293

MAX() function, 57
MCT (multidimensional contingency table), 266-268
mean squares, 192-193, 196-197
means(s), 45-46
confidence interval estimation, 128-131
equation for calculating, 47
testing for the difference between independent groups, 163
worked out problems, 46
measures of central
tendency
mean, 45-46
median, 46-49
mode, 49
measures of position, 49
percentile, 53-54
quartiles, 50-53
measures of variation, 54
range, 54-55
SSE (error sum of squares), 221
SSR (regression sum of squares), 221
SST (sum of squares
total), 221
standard deviation,
55-58
variance, 55-58
Z score, 58-59
median, 46-49
Microsoft Excel, 260. See also
worksheets
Analysis ToolPak add-in, 2, 349
ANOVA procedure, 351
checking for, 300
histogram procedure, 349-350
regression procedure, 351-352
t -Test procedure, 350-351
keystroke conventions and mouse operation, 299
PivotTables, 22,
267-268, 343-344
technical configuration, 300
visualizations
bullet graphs, 272-274, 348
sparklines, 269-270
treemaps, 270-272
worksheets, creating, 9

MIN() function, 57
mode, 49
models, 281-282
MSA (mean square among groups), 193
MST (mean square total), 193
MSW (mean square within groups), 193
multiple regression analysis, 243-244
coefficient of multiple determination, 246
independent variables, 243-244
inferences concerning the population regression coefficients, 248-249
net regression coefficients, 244-245
predicting the dependent variable, 245
residual analysis and, 247-248
worked out problems, 244, 245-246
net regression coefficients,
244-245
normal distribution,
101-102
finding the Z value, 105-108
normal probability plot, 108-109
standard deviation units, 103-105
worked out problems, 102-103
normal probability plot, 108-109

NORM.DIST() function, 107
NORM.INV() function, 107
NORM.S.DIST() function, 160

NORM.S.INV() function, $107,134,160$
null hypothesis, 146, 161 numbers, 1
numerical variables, 3

0

observation, 3
one-sample tests, 152
one-tail test, 152
one-way ANOVA, 191-192
assumptions, 200
factor, 191
summary table, 193-194
variances, 192-193
ordered values, 48
ordinal position, 50
outliers, 58
overall F test, 246-247

P

paired t test, 168-175, 346
parameters, 4
Pareto charts, 18-20, 300
percentile, 53-54
performing hypothesis testing, 150
pie chart, 17-18
PivotTables, 22, 267-268, 343-344
point estimate, 125
Poisson distribution, 97-100
POISSON.DIST() function, 98
pooled-variance t test, 163-165, 166
assumptions, 168
equation, 167-168
population, 2
bootstrap estimation, 135-136
bootstrapping, 134-135
power of the test, 149
practical significance, 148
prediction, 212
multiple regression and, 245
using a simple linear regression model, 217
predictive analytics, 261,
279. See also machine learning
association methods, 281, 290-291
classification methods, 280
classification tree, 284-285
clustering methods, 280, 287-289
data mining, 262-263
model(s), 281-282
cross-validation, 282-283
limitations of, 282
validation, 282
regression tree, 285-287
target-based, 280
tree induction, 284
types of, 279-280
prescriptive analytics,
261-262
probability(ies), 75, 77. See
also distribution(s)
assigning, 81
classical approach, 81
empirical approach, 81
subjective approach, 81-82
events, 75-76
collectively
exhaustive, 77
elementary, 76
joint, 76
rules, 78-80
sampling, 7-8
p-value, 151, 160

Q-R

quartiles, 50-53. See also
quartiles
'random', 8
random variables, 76
range, 54-55
rank, 48. See also quartiles
reformatting charts,
339-340
regression analysis, 211,
222-223. See also simple
linear regression
assumptions,
218-219
coefficient of correlation,
224-225
coefficient of determi-
nation, 224
common mistakes when
using, 229-232
dependent variable, 212
independent variable, 212
measures of variation, 221
equations, 222-223
SSE (error sum of squares), 221
SSR (regression sum of squares), 221
SST (sum of squares total), 221
multiple, 243-244
coefficient of multiple determination, 246
inferences concerning the population
regression coefficients, 248-249
net regression coefficients, 244-245
overall F test, 246-247
predicting the dependent
variable, 245
residual analysis and, 247-248
worked out problems, 244
prediction, 212
residual, 219-220
scatter plot, 213
simple linear, 214
developing a model, 214-216
equations, 214 , 217-218
prediction, 217
standard error of the
estimate, 225
regression tree, 285-287
residual analysis, 219-220, 247-248
right-skewed shape, 60-61
row percentages table, 21 rules
of probability, 78-80
pruning, 291

S

sample size, 47
sampling, 2, 7
all possible samples of a given sample size, 122

Central Limit Theorem (CLT), 123
distribution, 122, 124-125
error, 125-126
frames, 7
probability, 7-8
random, 200
with replacement, 8-9
simple random, 8
without replacement, 9
scatter plots, 27-29, 213,
341
semi-structured data, 264
semi-supervised machine
learning, 283
shape, 59
boxplot, 61-64
left-skewed, 60
right-skewed, 60-61
symmetric, 59
worked out problems, 61
sigma, 47, 58
similarity, 287
simple linear regression, 214
coefficient of correlation, 224-225
coefficient of determi-
nation, 224
equations, 217-218, 229-234
inferences about the slope, 226
confidence interval, 226-229
t test for the slope, 226
measures of variation, 221
SSE (error sum of
squares), 221
SSR (regression sum
of squares), 221
SST (sum of squares total), 221
prediction, 217
standard error of the estimate, 225
simple random sampling, 8
SKEW() function, 64
skewness
left, 60
right, 60-61
slope
confidence interval,

$$
226-229
$$

t test for, 226, 248-249
sources of data, 5
experiments, 6
published sources, 5-6
surveys, 6
sparklines, 269-270
spreadsheets. See worksheets
SSA (sum of squares among
groups), 192, 196

SSE (error sum of squares), 221

SSR (regression sum of squares), 221
SST (sum of squares total), 192, 196, 221
SSW (sum of squares within groups), 192, 196
standard deviation, 55-58, 90-93
standard error of the
estimate, 225
STANDARDIZE() function, 107
statistical methods, 2
statistical significance, 148
statistic, 4
statistics, 2. See also
descriptive statistics;
probability(ies);
sampling; variable(s)
descriptive, 4-5
inferential, 5, 121
population, 2
sampling, 2, 7
frames, 7
probability, 7-8
with replacement, 8-9
simple random, 8 without replacement, 9
sources of data, 5
experiments, 6 published sources, 5-6
surveys, 6
test, 147-148, 226
variables, 2-4
STDEV.P() function, 57
STDEV.S() function, 57
structured data, 264
subjective probability, 81-82
summary table, 15-16
supervised learning, 280
surveys, 6
symbols, 47, 56-58, 92-93, 95-96, 130, 133,
195-196
hypothesis testing, 146
for measures of vari-
ation in a regression
analysis, 222-223
standard error of the
estimate, 225
symmetric shape, 59

T

t distribution, 129-131 tables
summary, 15-16
two-way, 20, 21-22
chi-square test,
183-190
column percentages
table, 21
grand total
percentages
table, 21
row percentages
table, 21
target-based predictive analytics, 280
T.DIST.2T() function, 250
test statistic, 147-148, 226
time-series plot, 25-27
T.INV.2T() function, 131,

171, 250
tree induction, 284
treemaps, 270-272
two-tail test, 152
two-way tables, 20-22
chi-square test for,
183-190
column percentages
table, 21
grand total percentages
table, 21
row percentages
table, 21
type I error, 149
type II error, 149

U-V

unstructured data, 263-264
unsupervised learning, 283
value(s), 3
critical, 130-134, 148-149, 152, 158-160, 195
observation, 3
ordered, 48
outliers, 58
p-, 151
similarity, 287
Z, finding, 105-108
variable(s)
categorical, 3
chi-square test for
two-way tables, 183-190
coefficient of correlation, 224-225
dependent, 212
expected value of a, 89-90
hypothesis testing and, 152
independent, 212
multiple regression and,
243-244
numerical, 3
random, 76
variance(s), 55-58. See also
ANOVA (analysis of
variance)
equality of, 200
mean squares, 192-193
worked out problems, 55-56
VAR.P() function, 57
VARS.S() function, 57
visualizations
bullet graphs, 272-274, 348
sparklines, 269-270
treemaps, 270-272

W

websites, jmp.com, 287, 290 worked out problems ANOVA, 194-195, 198-200
binomial distribution, 94
boxplot, 62-64
chi-square test for two-way tables, 184-188
classification tree, 284-285
clustering, 287-289
confidence interval estimation, 127-128
for the proportion, 132 when normality cannot be assumed, 135-136
discrete probability distribution, 88-89
expected value of a variable, 89-90
finding the Z value from area under the normal curve, 105-108
market basket analysis, 291-293
mean, 46
median, 48
multiple regression model, 244, 245-246
normal distribution, 102-103
normal probability plot, 109-111
overall F test, 247
paired t test, 170-171, 173-175
Poisson distribution, 100
pooled-variance t test, 164
quartiles, 51-53
regression tree, 285-287
residual analysis for the multiple regression model, 247-248
shape, 61
simple linear regression, 214
sparklines, 269-270
standard deviation, 55-56, 90-92
t distribution, 129-130
testing for the difference between two proportions, 158-160
variance, 55-56
Z score, 58-59
worksheets. See also charts;
functions; PivotTables; tables
charts, 18 arranging data in, 339 creating, 300, 340 reformatting, 339-340
creating, 9
histograms, creating, 340-341
scatter plots, creating, 341

X-Y-Z

Z score, 58-59, 102

[^0]: Source: Data extracted from "The Most Expensive NBA Teams to See Live," https://bit.ly/3rvSAah.

