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Preface
This book has several aspects that I want to let you know about up front. If you’re already 
comfortable with terminology and concepts such as Hamiltonian Monte Carlo sampling, 
conjugate pairs, and posterior distributions, then this book is probably not for you. You 
already know a lot about those topics, and if you need more you know where to find it.

On the other hand, if you don’t feel quite at home with the purpose of random samples, R’s user 
interface, and why you might want to work with mean-corrected instead of with raw values, 
then it’s just possible that this book offers something that you might want to know about. Both 
this book and I assume that you have some background in statistical analysis—say, at the intro-
ductory college level, where you can expect to study some probability theory and how it applies 
to the assessment of sample means, variances, and correlations. Particularly if you have studied 
these problems in the past, you will be better placed to understand how Bayesian analysis differs 
from traditional approaches, and how it works out in the context of the functions and packages 
found in R. And if you feel as though you could use some refresher work in traditional statisti-
cal analysis, Pearson is making available to you for download an e-book titled Statistical Analysis: 
Microsoft Excel 2016. You’ll find details on obtaining that book at the end of this Preface.

You’re experienced. You probably have something close to the background in Bayesian anal-
ysis that I had in mind when I laid out the topics that I wanted this book to cover. It seemed 
to me that the world already has plenty of books about statistics and experimental method-
ology: one more isn’t going to help much. Something similar can be said about using syntax 
and diction that R recognizes: we already have as many elementary to intermediate texts on 
R as we need.

What we did need, I thought, was a source of information that connected the simplistic 
capabilities of VBA (the programming language historically offered by Microsoft Excel to 
give the user more control over the application) with the more sophisticated capabilities of 
programming languages such as R and C.

Similarly, we were missing information about three basic types of sampling that range from 
the simplistic, univariate sort of categorical analysis that you find in undergraduate texts 
to the complex sampling methods used by techniques such as quadratic approximation and 
Markov Chain Monte Carlo (MCMC). Richard McElreath has written, and has supplied to 
R, helper functions that ease the task of designing, writing, and installing the code that does 
the heavy lifting for you.

I have done what I can in this book to leverage the Excel skills that you have already 
developed in the areas of managing functions, handling data, and designing graphs and 
plots. The point will come that you see that Excel too handles the necessary tools of 
calculus in the form of function arguments—albeit more slowly and awkwardly. Shortly 
thereafter you’ll see how the three fundamental approaches to building posterior 
distributions by sampling are in fact wonderfully creative solutions to the same problem.

Now let’s see how I propose to get us there.
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Chapter 1: Bayesian Analysis and R: An Overview
When I first approached Pearson about writing this book, I came away from the discussions 
just a little discouraged. The editors and their advisors were polite and really good at listen-
ing, but I didn’t think that I heard much in the way of encouragement. In particular, they 
wanted to know why I would want to write this book.

Good question. I had several reasons in mind, but it wasn’t easy to articulate them. Still, 
I did so, and apparently I did so successfully because, well, look at what you’re holding. And 
those reasons made sense as a place to start out, but I’ll keep it to the first two that occurred 
to me:

■ Why would you want to read it? There are several reasons, but if you are like most 
of us you use Microsoft Excel for most numeric purposes, even though Excel was 
designed as a general-purpose calculation engine. You might have stayed away from 
Bayesian analysis because you heard that Excel is comparatively slow. And you’re right: 
because of both software problems and hardware issues, there was a time when you had 
to wait and wait for a solution to the problem that you posed to Bayesian software. No 
longer. Now you can get an answer in a reasonable length of time, and without making 
assumptions that you don’t feel quite comfortable with.

■ People I work with were using familiar words in unfamiliar ways. They were using 
terms like prior, likelihood, and parameter in contexts that they did not seem to fit. I 
wanted to find out more about what they were saying. But I needed a starting point, 
and because I was quite familiar with Excel’s numeric capabilities, I decided to work 
from the platform of Excel and toward a platform based on R. It’s true that Excel is 
comparatively slow and doesn’t have many functions that you would like to have in a 
Bayesian-oriented platform. But for certain problems, Excel works great and returns 
accurate results in a short timeframe. Fine; I can work from there.

That’s what’s going on in Chapter 1. Let’s move ahead.

Chapter 2: Generating Posterior Distributions with the Binomial Distribution
The basic idea behind a Bayesian analysis is to create a posterior distribution that informs 
you about the parameters that bring about the results of the simulation. You do not want 
to start a sequence with one family of distributions and then try to finish the sequence in 
another family, so you should aim for a situation in which the prior and the likelihood are 
from the same family.

That, of course, implies that you select the distributional family from which the product 
will stem. You have several families from which to choose, but your choice will almost inevi-
tably depend on the specific questions that you want to answer, which in turn depend on 
the nature of the data that you want to analyze.

One basic family of distributions is the binomial distribution. The term binomial itself 
implies the nature of a binomial distribution: two names, such as win and loss, buys and 
doesn’t buy, survives and fails to survive, and so on. Consider your lifetime experience with 
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coins. You have almost surely come to expect that when you pull a coin at random from 
your pocket and flip it, the probability is 50% that it will come up heads and 50% that it 
will come up tails. That’s a binomial distribution: two names, two outcomes, two results.

The distinctive feature of a binomial distribution is that its values are discrete rather than con-
tinuous. When you flip the coin, you do not anticipate that the flip could come up with any of 
an infinite number of results. You anticipate two and only two outcomes, heads and tails. 

This can be a very different situation from that of a person’s height or weight. Then, each 
measurement is just one of an infinite number of possible heights or weights. The beta 
distribution, discussed in Chapter 3, is an example of a continuous distribution as distinct 
from a discrete one, such as the binomial. When you set up your analysis using R, for exam-
ple, you can specify that a given parameter should be distributed as binomial, or any of R’s 
distributional families. This flexibility is one characteristic that makes R’s structure, and its 
design, so useful in Bayesian analysis.

Right here’s a good spot to stress that it’s important to specify the distributional 
characteristics of the parameters you use in an analysis, but don’t let them blind you to 
other aspects—aspects that you might well ignore if you were to ignore all the good 
reasons for adding Bayes to your toolkit.

It’s all too easy to forget that one of the key assumptions underlying a binomial test is that 
any two tests in your experiment are independent of one another. Suppose that you are 
studying the distribution of political party membership; one of the questions you ask is 
therefore which party, if any, a respondent belongs to. 

To make a valid inference regarding the probability of a participant’s response, you must be 
sure that the response is independent of any other response in your survey. So, the value of 
George’s response must be unaffected by the value of Ellen’s response. If that is the case, 
you’re able to add and subtract subtotals directly (for example, to derive cumulative totals) 
without having to adjust for some probably unknowable dependency in the data.

Chapter 2 discusses this sort of concern in greater detail.

Chapter 3: Understanding the Beta Distribution
The principal difference between the binomial and the beta distribution is the degree 
of granularity with which variables are measured. Both distributions show how numeric 
variables are distributed across a span of values, much like the normal curve shows how a 
y-variable is distributed across a range of x-values.

But a variable that follows a beta distribution does so in a continuous rather than an 
interrupted fashion. The heads and tails left by coin flips follow a binomial pattern. Sorted 
by their actual values (heads, tails on a coin; 1, 2, 3,..., 6 on a die), the values that you see are 
not distributed continuously but discretely. We do not act as though a third of a head is a 
legitimate coin flip value, any more than we do that 2 1/2 is a legitimate value for the roll of 
a die.
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But both those values would be legitimate if the variable, instead of being a coin flip or 
the roll of dice, were a plant’s weight or height. Weight and height are both legitimately 
continuous variables, and each can take on an infinite number of values. That’s the distinc-
tion between the distributions: if a distribution can take on any number of numeric values 
it’s a beta, whereas a binomial distribution is limited typically to a much smaller number 
of values, such as 2 for a coin flip, 11 for a dice roll, and 2 if an item is judged defective or 
acceptable in a quality control context.

Both R and Excel have functions used to explore and manipulate the binomial and the beta 
distributions. It’s useful to keep in mind that there are times when it’s more convenient and 
just as quick to use Excel and VBA for generating frequency distributions as it is to use R. 
Chapter 4 has more to say about this matter.

Keep in mind that both Bayesian and frequentist approaches often return results that are 
either very close to one another (due to rounding errors induced by nearly all applications 
of calculus) or identical. 

Chapter 4: Grid Approximation and the Beta Distribution
At this point, the discussion has centered on frequency distributions, both discrete (binomial) 
and continuous (beta). It moves now to the use of approximation techniques with frequency 
distributions. 

Bayesian methods depend on approximations of distributions. We can, literally by fiat, 
declare that there exists a frequency distribution that is defined by its location (its mean) 
and its spread (variance or standard deviation). We can pass those attributes—the mean and 
the variance—to software that with adequate speed and efficiency builds the distribution 
we’re after, with the required location and spread. 

VBA can do that. We can use VBA to structure an array of values that, when populated with 
enough values, looks and behaves like a beta distribution or a binomial distribution or a 
normal distribution, or any other recognizable distribution of data. So how is it that VBA 
has acquired a reputation for slow and clumsy code?

An important part of the answer is that VBA is only partly compiled at runtime. It’s an inter-
preted language, which means the same code must be compiled repeatedly, again slowing mat-
ters down. Furthermore, VBA is not optimized for array management; newer languages such 
as Python manage arrays much more effectively by converting multi-row, multi-column arrays 
to single-row vectors, which some insist speeds up processing dramatically.

This chapter demonstrates how a posterior distribution changes in response to the act of 
modifying the likelihood. It’s a useful place to provide that demonstration because it shows 
how the grid approximation technique results in simple modifications to the frequency 
distribution’s structure—and the rationale for terming it a grid approximation. 
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Chapter 5: Grid Approximation with Multiple Parameters
Issues such as the speed with which hardware executes instructions, the efficiency with 
which code fills a distribution with simulated data, whether the computer in use is a
vector machine, and other considerations are unquestionably important to the speed with 
which an analysis runs. But generally, a more important issue is the number of parameters 
and quantiles you ask the analysis to deal with.

When you expect to analyze only one parameter, even if it has as many as seven or eight 
meaningful levels, you could push likelihoods through a Bayesian analysis and have plenty 
of time left over. It might seem obvious, but as soon as you add a parameter to the design, 
you aren’t just adding but multiplying design cells.

Start with six levels of a parameter, which even BASIC code could analyze before you 
finish your coffee. Now add another parameter that has five levels, and you’re not 
simulating record counts for just 6 + 5 = 11, but 6 * 5 = 30 design cells. You might never 
have to put a simulated record in one of those multiple parameter cells, depending on 
matters such as size of the standard deviation, but your grid approximation code will need 
to attend to every one of them, when a quadratic approximation or a Markov Chain Monte 
Carlo instead could go flying past them.

Chapter 5 will give you a sense of how much time is spent needlessly dealing with design 
cells just because grid approximation requires that they be there.

Chapter 6: Regression Using Bayesian Methods
Most of us are familiar with the regression approach to solving problems that are presented 
in the context of the general linear model. We’re familiar, even comfortable, with a page or 
two of printed output that includes figures such as 

■ Traditional correlation coefficients and regression constants

■ Regression summaries such as R2

■ Inferential statistics such as F ratios and standard errors of estimate

This chapter begins to tie together concepts and techniques that in previous chapters 
have remained largely isolated from one another. In particular, difficulties imposed by the 
grid approximation method can be painful, especially when multiple predictor variables 
are involved. There are various reasons for this, particularly when the experimenter wants 
to assess the simultaneous effect of multiple variables. If one can’t evaluate the combined 
effects of water and fertilization on a crop, it’s at least that difficult to evaluate their separate 
effects. But just when the experiment becomes really interesting due to the addition of vari-
ables, the analysis starts to groan under the weight of that addition.

Chapter 6 starts to replace the use of grid approximation with that of an R function named 
quap, or quadratic approximation. The reason that so much ink is spent on discussing grid 
approximation is that it forms the basis for more sophisticated techniques such as speeding 
up the structuring and populating of posterior distributions, faster methods of approximat-
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ing posterior distributions than grid approximation. Furthermore, the extra speed of qua-
dratic approximation enables us to use multiple predictor variables simultaneously—and 
without that capability, grid approximation falls short.

Like grid approximation, quap approximates the posterior distribution density of the 
parameters we want to know about. To do so, the software uses a quadratic function, so we 
term it a quadratic approximation.

Chapter 7: Handling Nominal Variables
Often you’ll have a variable whose values have been saved as numeric values but that should 
be analyzed as though the numeric values were in fact text values. This chapter discusses 
ways to handle them so that text values are managed as though they were in fact numeric. 
The opposite approach, in which numeric values are handled as though they were text, 
also exists. Dummy coding and index variables are discussed here, as is the use of the quap
function to make conversion more straightforward.

Chapter 8: MCMC Sampling Methods
The final chapter in this book moves to a technique that for several years has been the 
gold standard for Bayesian sampling: Markov Chain Monte Carlo, or MCMC. Other and 
older approaches tend to get stuck in particular thickets of the posterior distribution, often 
because of autocorrelation built into the sampling logic. But MCMC manages to avoid that 
trap, and to simultaneously maintain its execution speed.

That characteristic—maintaining speed while increasing design complexity—is what allows 
MCMC to simulate large posterior distributions without slowing down unduly. In turn, that 
positions you to code predictor variables so that they behave in the best ways of both con-
tinuous and discrete variables, and in ways that ease their interpretation when it comes time 
to evaluate the results. 

Who Are Those Guys?
Right about now you might well be asking yourself, “Why should I read this? What kind of 
statistical analysis is the author pushing, Bayesian or frequentist?” The best I can do by way 
of an answer to those questions is to tell you a little bit about my education and experience.

I took my first course in statistical analysis at a small, well-regarded liberal arts college in 
the Midwest. It was a miserable experience, and that might well have been due to the fact 
that it was taught out of the psychology department. I still have the textbook that was used 
in that course, and in the fashion of the day (this was in the 1970s) it told its readers what to 
do with a bunch of numbers and almost nothing about why it made sense to do that.

Nevertheless, I finished that course in statistics and took a couple more just for good 
measure. They were a bit better than the one I took from the psych department. After my 
undergrad degree I enrolled in grad school and started out under a professor who I knew 
I wanted to study with. He was a frequentist and was first author on a basic statistics text 
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that broke new ground: It explained to the reader why it was desirable to include certain 
calculations in a given statistical analysis.

His book, as well as his classes, stressed the rationale for the kinds of analysis that were de 
rigueur during the late 1970s. You followed up carefully designed experiments with tests of 
statistical significance. You used t-tests (Gossett) to calculate that statistical significance with 
two groups. You used the analysis of variance (Fisher) to calculate that statistical significance 
with more than two groups. You used the product-moment correlation coefficient (Pearson) 
to measure the strength of the relationship between two ratio variables. You used factor 
analysis and multivariate analysis of variance (Green; Wilks) to reduce a data overload down 
to a few manageable factors and to test differences between groups measured on more than 
one outcome variable. You used multiple comparisons (Tukey) to pinpoint the location of 
statistically significant differences between group means.

Every one of these techniques belongs in the frequentist toolkit. I used each of them, in 
combination with an ad hoc technique called exponential smoothing, at a large telecom-
munications firm during the 1980s. We were able to reduce a bloated resale inventory from 
more than $14 million to less than $7 million in under a year, without write downs. (This 
was back when $14 million was a lot of money.)

So I have every possible reason in my educational and professional background to be 
grateful for the tools that frequentist statistics has offered me. And I am grateful. But...

I start to feel uneasy every time I read about a finding by the Reproducibility Project that 
contradicts the finding of another published study. That can happen, and does, for reasons 
that range from mis-specifying a design so that it treats a random factor as fixed, to 
something as commonplace as p-hacking.

I worry when I find that someone has applied Welch’s correction or something similar in 
a situation where sample sizes are unequal and so are population variances: the Behrens-
Fisher problem. There’s something wrong with a scientific approach that allows such a 
problem to exist so long without a satisfactory solution.

The analysis of variance (ANOVA) has the principal purpose of determining whether 
any two population means are equal in an experiment consisting of at least three groups. 
There are at least six distinct procedures, collectively called multiple comparisons, intended 
to pinpoint which groups are responsible for a significant ANOVA outcome. One of them 
requires a standardized score difference of 7.5 for two means to be considered significantly 
different at the .05 level, and another requires a difference of 15. It is true that our choice of 
multiple comparison procedure differs according to the situation under which the data were 
collected and given the inferences we want to make. Still, we should be able to come up 
with methods that agree more closely than do the Scheffé and planned orthogonal 
contrasts.

Then there’s multicollinearity, an issue that crops up in regression analysis. It can pose 
other problems for statistical analysis, and I touch on them briefly in Chapter 6. There are 
plenty of other similar issues, I promise you that. Some are solved by recourse to Bayesian 
methods, and some just aren’t. My point is that I have no special reason to prefer frequen-
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tist methods to Bayesian or vice versa. I have tried in this book to avoid any bias toward 
frequentist methods, and I hope and think that I have succeeded.

Where to Find It 
I suspect that you are someone who uses the R application with some level of experience. As 
such, I assume that you have probably installed R software on your computer, following the 
instructions provided by the CRAN website (cran.r-project.org). When you do so, quite a 
bit of default code and simple straightforward functions such as max and read.csv are auto-
matically installed on your computer.

Other code takes the form of packages, and here there’s nothing automatic about the 
installation. If you want to install a package, and you almost certainly will, the standard pro-
cedure is to identify a mirror site from the drop-down list that appears when you select the 
Set CRAN mirror item in R’s Packages menu. After you have identified a mirror site, you can 
select one of the roughly 15,000 packages that CRAN offers in a drop-down. 

Even though the packages are presented in alphabetical order, selecting one of 15,000 is 
more than most users look forward to doing. So you’ll be glad to know that you do not 
need to go through that tedious process more than once in order to install the code 
discussed in this book.

The R application, without any special assistance, recognizes most of the code discussed in this 
book. There are a few functions (notably, quap and ulam) that require you to install a package 
named rethinking. You do not use R’s Packages menu to install rethinking. See Appendix A for 
detailed instructions on installing the rethinking package on a Windows machine.
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And speaking of platforms, at the time that I’m writing this book, no provision is made to 
install rethinking on a Mac. For the time being, as far as we know, there is no version of 
rethinking that is compatible with the Mac.

At this point you should be good to go. Chapter 1, “Bayesian Analysis and R: An Overview,”
is coming right up.

Bonus Material
To access the downloadable worksheets and PDF of the book Statistical Analysis: Microsoft 
Excel 2016 please

1. Got to informit.com/register.

2. Enter the ISBN 9780137580989.

3. Answer the proof of purchase challenge questions.

4. Click on the “Access Bonus Content” link in the Registered Products section of your 
account page, to be taken to the page where your downloadable content is available.

http://cran.r-project.org
http://informit.com/register


Statisticians use the term regression pretty loosely. 

At its simplest, the term refers to the average of the 
products of the corresponding z-scores—a.k.a., 
the Pearson correlation coefficient. At its oldest, 
the term refers to the tendency of sons’ heights to 
regress toward the mean of their fathers’ heights. 
When applied to categories such as method of 
transportation, brand of car, or the presence of a 
defect in a manufactured product, it’s usually called 
logistic regression. When particular types of cod-
ing schemes are applied to independent variables, 
which are manipulated by the researcher and not 
merely observed, it’s often termed the general linear 
model. And in a true experimental design, the pur-
pose of regression analysis is not simply to predict 
but, more typically, to explain. Depending on the 
context, then, regression can imply a variety of sta-
tistical and methodological purposes. 

Regression à la Bayes
So it shouldn’t be at all surprising that the Bayesian 
approach to regression looks very different from the 
frequentist approach. Suppose that you want to bet-
ter understand the relationship between the amount 
of fat consumed by adults during a year and the 
amount of low density lipoproteins (LDL) choles-
terol found in blood samples from similar adults at 
the year’s end.

Assuming that you have no insurmountable difficul-
ties with the acquisition of good data, you’re set up 
to quantify the relationship between LDL and fat 
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consumption. Just about any application designed to return numeric analyses will provide 
you with the summary statistics you’re after:

� Correlation coefficient. A number between –1.0 and +1.0 that expresses the direction 
and the strength of relationship between two variables. A correlation of 1.0 describes 
a perfect and positive relationship, such as height in inches with height in centimeters. 
A correlation of –1.0 describes a perfect negative relationship. An example of a perfect 
negative relationship is the correlation between the number of correct answers on a test 
with the number of incorrect answers on that same test. 

� R2. The square of the correlation between a predicted variable and one or more predic-
tor variables. I believe that usage calls for the abbreviation to be capitalized (R2) with 
more than one predictor, and lowercase (r2) with just one predictor.

� Slope or regression coefficient. The gradient of a line that shows where x-values, such 
as golf score, connect with predicted y-values, such as years playing golf (see Figure 6.1). 
You may recall this concept as taught in middle school as “the rise over the run.”

Figure 6.1
A regression line slopes 
up when the correlation is 
positive, such as calories 
consumed and weight. 
It slopes down, as here, 
when the correlation is 
negative, such as number 
of years playing golf and 
average golf score.

All of the just-named statistics—and more—are returned by any credible statistics package, 
certainly various packages supplied by R and even the venerable BMD and Lotus 1-2-3. 
What distinguishes the Bayesian approach to regression analysis is that it does not maxi-
mize or minimize the value of some function such as R2 to arrive at a solution; that is the 
goal of frequentist approaches. Bayesian methods seek to maximize the probabilities of 
particular outcomes.

One of the names for frequentist regression is least squares analysis. The frequentist algo-
rithms calculate the combination of predictors that minimizes the squared deviations of the 
observed predictor variable’s values from the predicted values. The values of the remaining 
statistics flow from that finding: R2, the F ratio, the standard errors of the intercept and the 
coefficients, the standard error of estimate, and so on.

The least squares approach to regression analysis works with one, two, three, or more pre-
dictor variables. Regression’s job is to combine those predictors to create a new variable. 
They are combined by multiplying each predictor by its own coefficient, then summing the 
products of the predictors and their coefficients. Regression does the heavy lifting when it 
optimizes those coefficients. 
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Then, regression calculates the correlation between, on one hand, the observed or outcome 
variable, and on the other hand, the combined predictor variables. Make one tiny change to 
the value of one of the predictor variables—say, change it from 5.00 to 5.01—and typically 
all the other variables change in response: their regression coefficients, the standard errors 
of the regression coefficients, R2, the F ratio, the sums of squares—anything except the 
degrees of freedom. 

Figure 6.2 shows an example.

Figure 6.2
The values in the range 
B2:D6 are identical to 
those in B8:D12 with one 
exception: the value in C2 
has been changed from 
0.4099 to 0.4100 in cell 
C8. But the regression 
statistics in F2:H6 are all 
different from those in 
F8:H12, with the excep-
tion of the degrees of 
freedom regression.

Sample Regression Analysis
To lay the groundwork for a comparison of Bayesian regression analysis with traditional 
least squares, Figure 6.2 shows the basics of a very small analysis, rendered in Excel. It 
includes 

� Values in B2:D6, which are used as inputs to Excel’s LINEST function. 

� Values in the range C2:D6, which contains two predictor variables in columns 
C and D.

� Values in cells B2:B6, which contain a predicted variable. 

� The LINEST function, in the range F2:H6, which contains and displays the results of 
the function. For example, the contents of each cell in F2:H6 are computed with the 
dynamic formula that’s repeated here:

=LINEST(B2:B6,C2:D6,,TRUE)
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Figure 6.3
A slight change in the 
input data or in a regres-
sion coefficient can result 
in a dramatic change in 
the results.

That formula is known as a dynamic array formula in more recent versions of Excel, released in the 
2021 timeframe. Earlier versions of Excel use a legacy array formula, which requires that the user 
begin by selecting the entire range to be occupied by the array formula, and to enter the formula 
via Ctrl+Shift+Enter rather than via Enter alone. One of the results of the changes made to the way 
that Excel handles formulas is that you can now enter a LINEST formula without either having 
to begin by selecting the full target range or having to enter the formula via Ctrl+Shift+Enter. If 
you prefer, you can start by selecting a single cell and end with Enter instead of Ctrl+Shift+Enter. 
The legacy array formula appears on the worksheet surrounded by curly braces. The dynamic array 
formula appears on the worksheet without those braces.
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� After entering the formula in F2:H6 of Figure 6.2, I copied and saved it as the result 
values in F8:H12. That is because I want you to be able to use Excel’s Solver, or to 
change the regression coefficients manually, so you can compare the results of that 
change with the original results. By doing so, you can demonstrate for yourself what 
happens when you try to maximize regression’s accuracy by adjusting the returned 
coefficients and intercept. (You cannot change just part of an array formula; it’s all or 
nothing at all. But if you have saved the results of LINEST as values, you are free to 
change any of those values as you please.)

� The regression equation’s predicted value for the first of the five records is shown in 
cell L2 of Figure 6.3. It is calculated with this equation:

=$H$2+$G$2*C2+$F$2*D2

which is then copied and pasted into L3:L6 of Figure 6.3.
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You can get the same effect using Excel’s TREND function. I used the LINEST approach because I 
wanted to show the steps explicitly.T

IP
� I also entered the formulas in L2:L6 as values in J2:J6 by first copying the formulas, and 

then pasting them into J2:J6, choosing one of the Paste Values options.

� Finally, I entered formulas for the sum of the squared deviations in J8:J12 and L8:L12, 
and their sums in J14:L14.

Open the Excel workbook for this chapter and activate the worksheet named Fig 6.3. Verify 
that the sums of the squared deviations are both 0.415.

Now, change the value of one or both the regression coefficients in cells F2, G2, or H2. 
Make your entry a numeric value. Notice that the values displayed in cells J14 and L14 no 
longer equal one another. While you’re at it, you might note that the value in L14 is now 
larger than the value shown in cell J14.

The value in cell J14 is unchanged from its original value. That’s why I saved the results of 
the LINEST function in F2:H6—so that it would be unaffected by your selection of a differ-
ent value for the regression coefficient in cell F2, G2, or H2. Either way, the sum of the 
squared deviations in L14 has increased above its value when the LINEST results were undis-
turbed. And that means the regression equation is not doing as accurate a job of forecasting 
outcomes as when you left its coefficients alone.

What’s the point of all this? It’s that traditional, least squares techniques for regression analy-
sis do not necessarily tell you what you need or want to know about the relationship between 
an outcome variable and one or more predictor variables. Of course, you don’t want to ignore 
the traditional point estimate that’s returned by the traditional R2 calculations, but neither 
should you ignore the results of calculations that return an R2—and associated statistics—that 
don’t quite meet or exceed the criterion of maximized R2.

To keep some flexibility in your analytic tools, it’s a good idea to view the results of a 
regression analysis through both a frequentist and a Bayesian lens. I’ve already discussed 
some of the issues surrounding the frequentist approach in this chapter—in particular, the 
worksheet function LINEST—so let’s now take a look first at regression methods that rely 
heavily on matrix algebra, and then on one alternative from the Bayesian toolbox, R’s quap
function. 

Matrix Algebra Methods
Suppose that you took regression’s job as your own, in a situation that called for you to 
predict the value of an outcome variable given knowledge of three predictor variables, 
named Var 1, Var 2, and Var 3. You decide to declare, by fiat, that each predictor variable 
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should be multiplied by a regression coefficient of 1. Then the regression equation would 
look like this:

(1 * Var 1) + (1 * Var 2) + (1 * Var 3) = Predicted variable

There is nothing to prevent you from doing that, but it’s wildly unlikely that the regression 
coefficients you chose, a sequence of 1s, will work better than any other coefficients that 
you might choose. Nevertheless, you will have completed a basic requirement of regres-
sion analysis: a sequence of variables, each multiplied by its regression coefficient and added 
together to create a new, composite variable.

This is the meaning of the term multiple regression. You have multiple predictor variables and one 
outcome variable. Other kinds of analysis, such as multivariate ANOVA, employ multiple outcome 
variables. But in the case of regression, the word multiple belongs to the predictor variables, not the 
predicted variable. This leads to confusion in many basic to intermediate statistics classes.
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For years, statistical packages such as Systat, and even more generalized applications such 
as Excel, used matrix algebra to solve regression’s normal equations. These processes 
failed to operate successfully when they were presented with data sets that involved severe 
multicollinearity. Multicollinearity comes about when two or more predictor variables in 
a regression equation are strongly or even perfectly correlated.

When this situation occurs, it can throw the results of the matrix algebra off course. 
Taking apart the matrix components of a multiple regression, you find that the process 
involves calculating the sums of squares and cross products matrix (SSCP). Then the 
inverse of the SSCP is calculated. If the values of one of the fields in the original data 
matrix is a linear function of another one of those fields, then the inverse of the SSCP 
cannot be calculated. (This is usually because the determinant of the SSCP is zero.)

This problem was known in the waning years of the previous century, but it went unfixed, 
largely because it took an unusual sequence of events for the problem to arise. Further-
more, the user who encountered the problem got an error warning, sometimes in the form 
of a lengthy text message, sometimes in the form such as Excel’s #NUM! cell value. So an 
opportunity existed for the user to recognize that an infrequent error had occurred, and to 
fix it in the data file.

But users did not like knowing of a remaining problem, however unusual, in their software, 
so developers applied an approach called QR decomposition in place of the existing matrix 
algebra. It’s the approach that you find in Excel and other numeric analysis packages even as 
late as this book’s publication in 2022.

However, QR decomposition does not truly fix the multicollinearity problem, which is not 
a strictly either/or situation. When one field is a nearly perfect linear function of another, 
problems can arise with rounding errors, and those errors can reduce the accuracy of the 
analysis results.
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Some software publishers have adopted the reasonable solution of displaying a zero instead 
of a calculated regression coefficient when QR decomposition detects the presence of 
multicollinearity. This has the effect—possibly useful, possibly disastrous—of eliminating 
the associated field from the regression equation. Depending on the nature of the linear 
function, the regression software might set both the regression coefficient and its standard 
error to zero.

For the time being, though, let’s shift our attention to some of the critical elements of the 
quap function.

Understanding quap
R’s quap function occupies a position between the simpler (but often awkward) grid approxi-
mation and the more sophisticated (but often murky) MCMC. We might as well begin with 
the function’s name: quap is an abbreviation of quadratic approximation. (The functionality 
is also referred to as Laplace approximation.) 

Behind the scenes, the software makes an approximation of the posterior distribution density 
(the product of the priors and the observations) of the parameter we want to know about; 
for example, a regression coefficient in a multiple regression equation. To do so, the 
software uses a quadratic function; hence the term quadratic approximation.

The quap function is capable of returning a variety of analyses that support Bayesian meth-
ods. However, its principal purpose is to build a posterior distribution from samples that 
conform to requirements that you supply. These often include the location and spread of 
Gaussian distributions from which priors are assembled. Another purpose that the quap
function serves is to define the relationships among the variables in your analysis. 

Let’s take a look at how those processes might support a quap function that supports the 
Bayesian version of simple (that is, single-predictor) regression analysis. We start with a 
little housekeeping:

library(rethinking)
setwd("C:/Users/Smith/Documents")
PropTaxes <- read.csv("Assessments.csv")

The quap function is part of the rethinking package, so begin by loading rethinking. You’ll 
need to install rethinking first, if you haven’t done so already.

You don’t need to set the working directory by means of the setwd function if your data file 
is already stored there; otherwise, use setwd to point R in the right direction, or copy the 
file into the current working directory.

The third line of R code above assumes that your data is in a csv file named Assessments.
csv, so read the data into R’s workspace from that file and assign it the name PropTaxes. 
Keep in mind that the read.csv function results in a data frame, so you now have a data 
frame named PropTaxes. (Don’t forget that names in R, including file names, are case 
sensitive.)
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Here’s the next line in the R code:

MeanValue <- mean(PropTaxes$Value)

This statement establishes a new variable named MeanValue from the variable named Value. 
It is the arithmetic mean of the variable for all the cases in the PropTaxes data frame. The 
code goes on to subtract that mean value from each observed value, changing the nature 
of the variable from a raw observation to a mean-corrected value. At that point, MeanValue
is no longer an assessment measured in dollars but a deviation from the mean assessment, 
measured in dollars. There are some good analytic reasons to shift the meaning of the 
Value variable in this way, but the principal purpose here is to clarify the meaning of the 
resulting regression coefficient. 

We’ll take a look at that shortly. In the meantime, notice that when the setwd function cre-
ates the new data frame from the Assessments.csv data file, it attaches the Value field as a 
variable. You can address that variable directly by providing the data frame’s name, followed 
by the dollar sign $, followed by the variable’s name. For example:

PropTaxes$Value

Housekeeping’s over, and now it’s time to build the model for the analysis. The first step 
is to name the model, which here will have the name AssessModel. The specifications that 
follow the function name in the code will be used to structure AssessModel. Those specifi-
cations are assigned to the model by means of the assignment operator, which in R is indi-
cated by the less-than symbol followed by a dash: <-. (Sometimes, although rarely, the equal 
sign is used instead of <-.)

AssessModel <- quap(
  alist( . . .

Here, the result returned by the quap function is saved to a new object (a model) named 
AssessModel. The model is made in the form of a list created by the alist function. The 
elements that belong to the list are formulas and as such might include references to vari-
ables and parameters that aren’t yet ready for use. For example:

Tax ~ dnorm( mu , sigma ) ,

This is a model formula, and it can be used as a component of the list assembled by the alist
function. A list created by alist has some important differences from a list that results from 
the c or the list function; for example, elements of the list are not necessarily evaluated 
immediately. In the prior example, the value of Tax can be read as dependent on the pur-
pose of the dnorm function and the parameters mu and sigma. If we don’t yet know what val-
ues to use for mu and sigma, we can’t yet evaluate dnorm or its results. But no worries: we’ll 
get around to evaluating them shortly.

So, that’s the first component of the list. Here’s where we left off:

Tax ~ dnorm( mu , sigma ) ,

That tilde operator is used frequently in quap formulas, and its effect can depend on the 
context. Here, it means roughly that Tax will be distributed as a normal curve with mu and 
sigma as its parameters. In English, Tax depends on the result returned by dnorm when it 
gets mu and sigma as its arguments. 
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As I just noted, the code doesn’t have those values yet. While waiting for them, let’s get a 
handle on dnorm. That’s an abbreviation of density normal. It tells R to look in the normal 
curve and return the density (in this context, density means probability) when values have 
been assigned to both mu and sigma. 

R provides support for 17 types of distribution (plus several less common ones), including the beta, binomial, chi-squared, 
F, gamma, log-normal, Poisson, t, and uniform. 

Each type of distribution can be accessed to return that distribution’s probability, cumulative probability, quantiles, and 
random values. The first letter of the function denotes the type of information to return. The four letters used are d, r, p, 
and q. 

So, for example:

� The letter d, prepended to norm to produce dnorm, returns the probability (density) of the normal distribution at a 
given x-value. 

� Prepending r to binom returns random numbers from the binomial distribution via rbinom. 

� The function pf returns the cumulative probability from the F distribution. 

� The function qlnorm returns quantiles from the log-normal distribution.

C A S E  S T U D Y : I N V E N T O R Y I N G  T Y P E S  O F  D I S T R I B U T I O N

Continuing the Code
The R statement that I was about to discuss before introducing the topic of R’s distributional 
function syntax is

Tax ~ dnorm( mu , sigma ) ,

That statement establishes that Tax comprises the parameters mu and sigma, but we don’t 
yet know how they are involved. For all we know, Tax could be the sum of mu and sigma, 
or their difference, or their ratio—it’s just too soon to know. But we do know that you can 
specify the normal, Gaussian distribution with only two parameters:

� The mean of the distribution, usually termed mu. The mu parameter locates the dis-
tribution along the horizontal axis. So, the mean of a population’s IQ scores might be 
100; the mean of a population’s HDL cholesterol score might be 65 mg/dl. It is the 
normal curve’s central tendency.

� The standard deviation of the distribution, usually termed sigma. In a Gaussian distri-
bution, about 34% of the cases fall between the mean and one sigma above the mean, 
and another below it; another 13.6% falls between one and two sigmas above (and 
another below) the mean; and 2.1% falls three sigmas above and below the mean. It’s a 
measure of the distribution’s spread: the width of the distribution, relative to its height.
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Software that actually performs Bayesian statistical analysis needs some way of knowing 
what the underlying distributions look like, and the arguments to the quap function in R 
provide that capability. Because the Gaussian distribution requires so little information to 
structure—that is, the mean and the standard deviation—it’s straightforward to code. 

Furthermore, many topics of interest to all life forms follow the template of a standard 
normal distribution, and they do so intrinsically. Consequently it’s not usually necessary 
to provide code that takes into account anomalous distributions, such as bimodal curves, 
highly skewed shapes, and fits that require some grappling.

A Full Example
Let’s put some meat on these bones. Suppose that you’re interested in the relationship 
between body weight and LDL cholesterol levels. You have a simple, straightforward 
hypothesis that, other things being equal, there is a direct relationship between a person’s 
body weight and his or her LDL level. To take advantage of the tools that quap gives you, 
you’ll need an alist, one that looks something like the following code:

library(rethinking)
adult.weight <- read.csv("Sample Weight Data.csv")

The read.csv statement attempts to open the file named Sample Weight Data.csv in the 
working directory. You can include the file’s path in the argument to read.csv; if you han-
dle it that way, keep in mind that R uses forward slashes, not back slashes, to delimit folder 
names in file addresses. Or, you could save the data file in what you know to be R’s current 
working directory.

sample.mean.wt <- mean(adult.weight$Weight)
  ldl.model <- quap(
    alist(
        LDL ~ dnorm( mu , st.dev.wt ) ,
        mu <- alpha + beta *( adult.weight$Weight - sample.mean.wt ) ,

I have given these two variables in mu’s definition the names of alpha and beta, because 
that’s how they are normally referred to in the literature on simple (i.e., not multiple: only 
one predictor) regression: alpha is the intercept and beta is the regression coefficient. 

Now we need to establish the central tendency and the spread of the alpha and beta priors. 
We can tell quap that alpha, the equation’s intercept, has a mean of 20 and a standard 
deviation of 20:

alpha ~ dnorm( 20 , 20 ) ,

and that beta, the regression coefficient, has a mean of 0 and a standard deviation of 1:

beta ~ dnorm( 0 , 1 ) ,

and that the standard deviation of body weight follows a uniform distribution with a mean 
of 0 and its own standard deviation of 50:

        st.dev.wt ~ dunif( 0 , 50 )
    ) , data = adult.weight)
precis(ldl.model)
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And you’ll need a set of observations that are stored in the csv file Sample Weight Data.
csv. They are temporarily stored by R in the structure named adult.weight. Here are the 
first few observations in adult.weight. Note that the first row of the csv file contains field 
names. The read.csv’s header argument is set to True when the table’s first row contains 
one fewer field name than the table’s number of columns. (This is often true when the first 
column contains row numbers but is not the case here.)

Weight LDL

165 37

118 48

114 61

117 55

108 33

And here are the results of running the code, shown in precis form:

> precis(ldl.model)

mean sd 5.50% 94.50%

alpha 58.27 1.63 55.6 60.8

beta   0.06 0.07 -0.03   0.2

st.dev.wt 11.53 1.16 9.68 13.38

You can compare R’s results to Excel’s by running LINEST. The LINEST function (entered 
normally in current Excel versions, by selecting a single cell and using Enter rather than 
Ctrl+Shift+Enter) is

=LINEST(B2:B51,A2:A51-AVERAGE(A2:A51),,TRUE)

Here are the results of running the Excel LINEST function:

0.064249 58.52

0.070996      1.655082

0.016775    11.7032

0.818952    48.0

112.1677 6574.312

The LINEST results require some mapping: 

� The value in LINEST’s first row and rightmost column (here, 58.52) is always the equa-
tion’s intercept. Notice that the quap model returns a value of 58.27 (second row, second 
column of the precis summary). The two values are quite close, and the difference is 
easily attributable to sampling error in the quap model.
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� The value in LINEST’s first row and leftmost column (here, 0.064) is always the final 
regression coefficient. In this case, because we have called for one coefficient only, it is 
also the equation’s first and only coefficient. 

� The value in LINEST’s second row and rightmost column (here, 1.655) is the standard 
error of the intercept. It is always in that cell, of LINEST’s results, directly below the 
intercept. Its value is quite close to that returned by precis in its third column, second 
row, 1.63.

� The value in LINEST’s second row and leftmost column (here, 0.071) is the standard 
error of the regression coefficient. Values in the second row of LINEST results are 
always the standard error of the statistic in the same column, first row.

� The value in LINEST’s third row and rightmost column (here, 11.7) is the standard 
error of estimate, and it is quite close to the precis estimate of 11.53. Suppose that 
you took all the observations at a given value of the predictor and found the stan-
dard deviation of the difference between their actual and the predicted values on 
the predicted variable. That’s the standard error of estimate, and it helps you decide 
whether the prediction equation is more accurate at some levels of the predictor than 
at others.

Compare the results of the regression analysis as returned by Excel with those returned 
by quap via precis. It’s clear that where the two approaches return the same analyses 
(e.g., intercepts, coefficients, standard errors), the Bayesian approach and the frequentist 
approach are either identical or very nearly so. 

And you can get those results without risking the slippery slope of multicollinearity. Which 
makes this a good point to go further into multiple regression.

Designing the Multiple Regression
Suppose that you have data on 50 cars, including each car’s weight in pounds, mean speed 
at which it has been driven, and mean miles per gallon (MPG). You’re interested in the 
effect that a car’s weight and average speed have on the miles per gallon of fuel that the 
car achieves.

One way to approach the problem is with one analysis using Weight as the sole predictor 
variable and another using Speed as the sole predictor. You could choose the analysis that 
returns the greater R2 value as the one to use in assessing a car’s predicted MPG.

One problem with running and comparing the two analyses is that the two predictor vari-
ables, Speed and Weight, might not be independent of one another; that is, they might be 
correlated and therefore share variance. In that case, you can’t tell how much of the shared 
variance is shared by Speed and MPG and how much is shared by Weight and MPG. But 
it’s very likely that running two analyses and summing the R2 values will double count some 
amount of the variance (because it’s shared by the two predictor variables) and therefore 
mislead you as to the strength of the relationships.
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Only in the limiting cases in which the predictor variables share no variance with one 
another (so they’re independent) or in which they’re perfectly correlated (so they share all 
their own variance) can you tell what’s going on. Of course, that sort of complete inde-
pendence or dependence appears only in samples handed out in stats class. (An exception 
occurs when regression is used in preference to the analysis of variance and the categorical 
predictor variables are designed to be independent of one another.)

Whether your primary interest is in the total variance in the outcome variable that’s 
associated with variance in both the predictor variables, or the total amount that’s 
shared with each of the predictors, you’re going to need to arrange things to combine 
the predictors without double counting the variance shared with the outcome. Multiple 
regression does that for you, whether by means of matrix algebra or by means of QR 
decomposition, and I wouldn’t have spent so much ink on the topic if Bayesian methods 
didn’t do it too.

Arranging a Bayesian Multiple Regression
Earlier in this chapter I described how to provide arguments to a quap function that support 
a single-predictor regression. I’ll review it briefly here. You supply these arguments:

� A variable that represents the outcome for each case, such as a car’s MPG, usually the 
name of the outcome variable. For example:

MPG <- dnorm ( mu, sigma)

specifies that MPG’s density is normally distributed (dnorm) with a mean of mu and a 
standard deviation of sigma. This outcome variable is usually input in a data frame 
along with the predictor (see below).

� A parameter, often but not necessarily termed mu, that represents the result of the 
regression equation. For example:

mu <- alpha + beta ( predictor )

� Parameters, usually but not necessarily named alpha and beta, that represent 
the constant (or the intercept) and the coefficient (or the slope) in the regression 
equation. 

� A parameter, often but not necessarily termed sigma, which represents the standard 
deviation of the outcome variable. This determines the spread of the outcome variable’s 
distribution across its x-axis.

� A data frame that contains, at a minimum, the values for the outcome variable (in this 
example, MPG) and for a predictor variable such as Speed. The data frame might be 
named CarData.
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Here’s how the quap function might appear for an analysis of MPG given a single predictor 
variable, Speed:

CarQuap <- quap(
       alist(
               MPG ~ dnorm ( mu, sigma )
               mu <- alpha + beta ( Speed )
               alpha ~ dnorm ( 0, 1 )
               beta ~ dnorm ( 0, 1 )
               sigma ~ dexp (1)
       ), data = CarData ) 

A few comments about the arguments to the quap function:

� As I mentioned earlier in this chapter, it’s usually a good idea to standardize the values 
that you supply for the outcome variable and the predictor variable(s) before passing 
them along to quap. Doing so minimizes the effects that numeric overflows can have on 
the results of the analysis. You can use an R function, standardize, to handle this for 
you, or you can subtract the mean value of a variable from each actual value and divide 
each result by the variable’s standard deviation. (The results are often termed z-scores.)

� One result of this standardization is that the z-scores will have a mean of 0 and a stan-
dard deviation of 1. It often works out well, especially if you have standardized the 
predictors and the outcome variable, to use 0 and 1 as the mean and sigma of the dnorm
arguments that describe the distributions of alpha and beta.

� Notice the use of the tilde instead of an assignment operator in several lines of the quap
code. This simply indicates that a parameter is to be distributed as the density of, in 
this case, a normal curve.

� In this example, sigma is specified as sigma ~ dexp(1). The dexp function returns the 
density of the exponential distribution, which is the parent for a variety of other con-
tinuous distributions such as the Gaussian-normal, the Gamma, the Poisson, and the 
Binomial.  

The exponential distribution has one parameter, rate (or lambda); by contrast, the 
Gaussian distribution has two: the mean and the standard deviation. In R syntax, the 
exponential distribution’s rate parameter is 1 by default, and the dexp function returns 
the density probability for the associated quantile, x (or 1 as here). Among other rea-
sons, the exponential distribution is handy for specifying sigma, because the exponen-
tial is constrained to positive returns, and the standard deviation is, by definition, a 
positive quantity. 

That’s all you need for a simple regression of one outcome variable on one predictor. To 
add a predictor and analyze the simultaneous effect of two on one outcome variable, you 
need four items omitted from the single-predictor analysis:

1. The additional predictor named Weight should be added to the input data frame named 
CarData above.
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2. The additional regression coefficient, for Weight, must be specified by the addition of 
this line of code:
Weight_beta ~ dnorm ( 0, 1 )

3. In addition, for clarity it makes sense to edit the existing specification for the Speed
coefficient to this:
Speed_beta ~ dnorm ( 0, 1 )

4. The Weight predictor and its coefficient should be added to the regression equation. In 
the single-variable example, that equation looks like this:

mu <- alpha + beta ( Speed )

In the two-variable example the equation looks like this:

mu <- alpha + Speed_beta ( Speed ) + Weight_beta (Weight)

The full code example might look like this:

library(rethinking)
setwd("C:/Users/conra/Documents/Pearson Bayes/Drafts/Ch 6")
CarDataFrame <- read.csv("Cars.csv")
#You may need to adjust the path to the .csv file on your computer
#The three variables are named Spd, Wt and Mileage 
#in the csv file. They are saved as newly standardized data 
#with new names (Speed, Weight, and MPG) in the 
#same steps that standardize them.
CarDataFrame$Speed <- standardize( CarDataFrame$Spd )
CarDataFrame$Weight <- standardize( CarDataFrame$Wt )
CarDataFrame$MPG <- standardize( CarDataFrame$Mileage )
regmodel <- quap(
alist(
MPG ~ dnorm( mu , sigma ) ,
mu <- a + ( Speed_beta * Speed ) + ( Weight_beta * Weight ) ,
a ~ dnorm( 0 , 1 ) ,
Weight_beta ~ dnorm ( 0, 1 ) ,
Speed_beta ~ dnorm ( 0, 1 ) ,
sigma ~ dexp( 1 )
) , data = CarDataFrame )

You can get a smattering of summary information using the rethinking library’s precis
function. Simply supply it with the name of the quap model you just created, and specify 
the number of significant figures if you wish:

precis(regmodel, digits=6)

Here’s what precis returns:

mean sd 5.50% 94.50%

a -1.1E-05 0.131111 -0.20955 0.20953

Weight_beta -0.30059 0.137421 -0.52021 -0.08096

Speed_beta -0.01806 0.137417 -0.23768 0.201556

sigma 0.93517 0.092242 0.78775 1.08259

(The 5.50% and 94.50% limits are how the developer of the rethinking package chooses to pro-
test the conventional and arbitrary criteria of, for example, 5% and 95% confidence intervals.)
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To check your work, consider running a true regression package on the data that this section 
has analyzed. One convenient way, using continuous predictors and an outcome as here, is to 
use the lm package. If you do so after running your Bayesian analysis you can take advantage 
of the data frame you just created. For example, you can get quite a bit of summary informa-
tion from these two statements, which return the results shown in Figure 6.4:

Car_lm <- lm (CarDataFrame$MPG ~ CarDataFrame$Speed + CarDataFrame$Weight) 
summary(Car_lm)

Figure 6.4
The lm function performs 
a traditional multiple 
regression analysis.

Notice first that the intercept and coefficients returned by lm are close to the a (alpha) and 
Speed and Weight (betas) returned by quap and precis, but do not duplicate them precisely. 
This is largely due to traditional regression’s use of the maximum R2 as its criterion that a 
solution has been reached.

In making your comparisons, bear in mind that lm and precis might each display the regression 
coefficients differently than the other.

N
O

T
E

Furthermore, lm by default returns only three significant figures, but you can choose the 
number of digits with quap’s digits argument. You might want to compare as many as, say, 
eight digits in the regression coefficients. One way to do so is via the options function. For 
example, these functions:

options(digits=4)
coef(Car_lm)

return these results:

(Intercept)  CarDataFrame$Speed CarDataFrame$Weight 
 -3.036e-16          -2.005e-02          -3.066e-01 

but these functions:

options(digits=6)
coef(Car_lm)
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return these results:

(Intercept)  CarDataFrame$Speed CarDataFrame$Weight 
 -3.03642e-16        -2.00472e-02        -3.06564e-01        

(In the latter two examples I’ve used the coef function instead of the summary function to 
save space by showing only the coefficients.)  

There are lots of ways to specify numeric formats in R. The options statement, just dis-
cussed, belongs to R’s base functions, whereas the digits specification belongs, among 
many others, to the quap function. This situation tends to make matters more confused
rather than less.

Summary
And that’s the main point of this chapter: to clarify the aspects of Bayesian analysis without 
confusing you with abstruse details such as the physics of sampling in an MCMC context. 
It’s my intention, and I believe the intention of quap’s author, Richard McElreath, to pro-
vide a steppingstone from an oversimplified discussion of grid approximation to an over-
complex essay on multilevel regression. It’s important to understand how and why Bayesian 
techniques require a definition of your variables’ distribution. Then, you’re much better 
placed to also understand the workings of nominal variables and MCMC, the topics of the 
final two chapters in this book.
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Mu parameter, 78–79
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 Sigma parameter, 79
 specifying the order of execution, 

77–78
 viewing the results from different 

perspectives, 88–95
 visualizing the arrays, 80–81

W-X-Y-Z
warmup phase, 139, 144

weak prior, 56

write.csv function, 24

nested loops, 82
ReDim statement, 83
two-parameter grid approximation. 

See also procedures
 calculating the probabilities, 84–85
 combining Mu and Sigma, 82
 folding in the prior, 86–88
 inventorying the results, 88
 local variables, 77
 Mu parameter, 78–79
 Option statements, 77
 putting the data together, 82–84
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