
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780137487776
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780137487776
https://plusone.google.com/share?url=http://www.informit.com/title/9780137487776
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780137487776
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780137487776/Free-Sample-Chapter

Praise for Software Development Pearls

“This is a collection of lessons that Karl has learned over his long and, I can say this honestly,
distinguished career. It is a retrospective of all the good things (and some of the bad) he
picked up along the way. However, this is not a recollection of ‘It was like this in my day’
aphorisms, but lessons that are relevant and will benefit anybody involved, even tangentially,
in software development today. The book is surprising. It is not simply a list of pearls of
wisdom—each lesson is carefully argued and explained. Each one carries an explanation of
why it is important to you, and importantly, how you might bring the lesson to your reality.”

—James Robertson, Author of Mastering the Requirements Process

“Wouldn’t it be great to gain a lifetime’s experience early in your career, when it’s most
useful, without having to pay for the inevitable errors of your own experience? Much of
Karl Wiegers’s half-century in software and management has been as a consultant, where
he’s often been called upon to rectify debacles of other people’s making. In Software
Development Pearls, Karl lays out the most common and egregious types of maladies that
he’s run into. It’s valuable to know where the most expensive potholes are and which
potholes people keep hitting time and time again.

“Not just a disaster correspondent, Karl is well versed in the best techniques of business
analysis, software engineering, and project management. So from Karl’s experience and
knowledge you’ll gain concise but important insights into how to recover from setbacks as
well as how to avoid them in the first place.

“Forty-six years ago I was lucky enough to stumble onto Fred Brooks’s classic The
Mythical Man-Month, which gave me tremendous insights into my new career. Karl’s book
is in a similar vein, but broader in scope and more relevant for today’s world. My own
half-century of experience confirms that he’s right on the money with the lessons that he’s
chosen for Software Development Pearls.”

—Meilir Page-Jones, Senior Business Analyst, Wayland Systems Inc.

“Karl has created yet another wonderful book full of well-rounded advice for software
developers. His wisdom will be relatable to all development professionals and students—
young and old, new and experienced. Although I’ve been doing software development for
many years, this book brought timely reminders of things my team should do better. I
cannot wait to have our new-to-the-job team members read this.

“Software Development Pearls is rooted in actual experiences from many years of real
projects, with a dose of thorough research to back up the lessons. As with all of Karl’s
books, he keeps it light and engaging, chock-full of relatable stories and a few funny
comments. You can read it from front to back or just dive into a particular section that’s
relevant to the areas you’re looking to improve today. An enjoyable read plus practical
advice—you can’t go wrong!”

—Joy Beatty, Vice President at Seilevel

9780137487776_print.indb 1 06/09/21 4:18 PM

“Karl’s Software Development Pearls achieves the challenging goal of capturing and
explaining many insights that you’re unlikely to be exposed to in your training, that most
practitioners learn through the school of hard knocks, and yet are critical to developing
great software.

“While the book’s structure compels you to connect with your experience and identify
how to shift your behavior as a result, it’s the content that shines: a collection of 59+1
lessons that cover the broad landscape of the software development ecosystem. These
insights will help you save time, collaborate more effectively, build better systems, and
change your view on common misconceptions. Software Development Pearls is an easy
read and is backed by a wide range of references to other experts who have discovered
these same insights in their travels.

“These lessons truly are Pearls: timelessly valuable elements of wisdom to make you
better at developing great software, regardless of your role. Consider getting two copies
of the book: one for yourself, and one to leave where others on the team can pick it up
and discover their own pearls.”

—Jim Brosseau, Clarrus

“This is an excellent book for anyone involved in software development. One of the bril-
liant (and unusual) aspects of the book is the way it is organized into self-contained les-
sons. Once you read them, they work like memes—memorable chunks of distilled
knowledge that spring to mind when you need them. This happened to me recently when
I was discussing the need for a requirements competency on agile projects with a senior
executive and immediately thought of Lesson 8, ‘The overarching objective of require-
ments development is clear and effective communication.’

“From personal experience, I can attest to the value of lessons like #22, ‘Many system
problems take place at interfaces,’ but only because I was burned badly by not paying
enough attention to them. Anyone in software development eventually accumulates hard-
won lessons like these about what to do—and not do—in the future. This book will get
you there with much less pain. As Karl says in Lesson 7, ‘The cost of recording knowledge
is small compared to the cost of acquiring knowledge.’ Not only is that good advice for
practitioners, it also neatly captures why you should buy this book.”

—Howard Podeswa, Author of The Agile Guide to Business Analysis
and Planning: From Strategic Plan to Continuous Value Delivery

9780137487776_print.indb 2 06/09/21 4:18 PM

Software Development
Pearls

9780137487776_print.indb 3 06/09/21 4:18 PM

This page intentionally left blank

Software Development
Pearls

Lessons from Fifty Years of
Software Experience

Karl Wiegers

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City
São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

9780137487776_print.indb 5 30/08/21 9:13 PM

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any
kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic
versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2021942545

Copyright © 2022 Karl E. Wiegers

Cover image: Philipp Tur/Shutterstock

Key icon: LDDesign/Shutterstock

Person reading book icon: VoodooDot/Shutterstock

Stairs icon: FOS_ICON/Shutterstock

All rights reserved. This publication is protected by copyright, and permission must be obtained from the publisher prior
to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or likewise. For information regarding permissions, request forms, and the appropriate
contacts within the Pearson Education Global Rights & Permissions Department, please visit www.pearson.com/permissions.

ISBN-13: 978-0-13-748777-6
ISBN-10: 0-13-748777-0

ScoutAutomatedPrintCode

9780137487776_print.indb 6 06/09/21 4:18 PM

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearson.com/permissions

For Chris, as always

9780137487776_print.indb 7 06/09/21 4:18 PM

This page intentionally left blank

ix

Contents

Foreword . xix

Acknowledgments . xxi

About the Author . xxiii

Chapter 1: Learning from Painful Experience . 1

My Perspective . 1
About the Book . 2
A Note on Terminology . 4
Your Opportunity . 5

Chapter 2: Lessons About Requirements . 7

Introduction to Requirements . 7
Many Types of Requirements . 7
Subdomains of Requirements Engineering 9
The Business Analyst Role . 10
Requirements Are Foundational . 11

First Steps: Requirements . 11
Lesson 1: Get the requirements right or the project will fail 12

The Right Requirements—But When? 13
The Right Requirements—But How? . 14

Lesson 2: Requirements development delivers
shared understanding . 15

Lesson 3: Stakeholder interests intersect at the requirements 17
Stakeholder Analysis . 18
Who Makes the Call? . 21
We’re All on the Same Side Here . 21

Lesson 4: Favor a usage-centric approach to requirements 21
Why the Excess Functionality? . 22
Putting Usage First . 22
A User Story Concern . 24
Usage Rules! . 25

9780137487776_print.indb 9 06/09/21 4:18 PM

Contentsx

Lesson 5: Requirements development demands iteration 25
Progressive Refinement of Detail . 26
Emergent Functional Requirements . 27
Emergent Nonfunctional Requirements 28

Lesson 6: Agile requirements aren’t different from
other requirements . 28

Roles and Responsibilities . 29
Terminology . 29
Documentation Detail . 30
Activity Timing . 30
Deliverable Forms . 31
When to Prioritize . 32
Is There Really a Difference? . 32

Lesson 7: Recording knowledge is cheaper than acquiring it 33
Fear of Writing . 34
Benefits of Written Communication . 34
A Sensible Balance . 36

Lesson 8: Requirements are about clear communication 37
Multiple Audiences, Multiple Needs . 38
Choosing Representation Techniques . 40
Can We Talk? . 41

Lesson 9: Requirements quality is in the eye of the beholder 41
Many Requirements Beholders . 42
Requirements Quality Checklist . 42

Lesson 10: Requirements must be good enough to reduce risk 44
Dimensions of Detail . 45
How Much Is Enough? . 46

Lesson 11: People don’t simply gather requirements 46
Gathering versus Elicitation . 47
When to Elicit Requirements . 48
The Elicitation Context . 48
Elicitation Techniques . 49
Laying the Foundation . 51

Lesson 12: Elicitation brings the customer’s voice
to the developer . 51

Communication Pathways . 52
Product Champions . 53

9780137487776_print.indb 10 06/09/21 4:18 PM

Contents xi

Other Requirements Communication Pathways 53
Bridging the Gap . 54

Lesson 13: Telepathy and clairvoyance don’t work 55
Guess That Requirement! . 55
Being Explicit . 55
Telepathy Fails . 57

Lesson 14: Large groups have difficulty agreeing on
requirements . 57

Pay Attention! . 58
Facilitator to the Rescue . 59
Focus, Focus, Focus . 59
Reaching Outside the Group . 60

Lesson 15: Avoid decibel prioritization . 61
Prioritization Techniques . 62
Prioritization Criteria . 62
Analysis over Volume . 64

Lesson 16: Define scope to know whether your scope is creeping . . . 64
The Specter of Scope Creep . 64
How to Document Scope . 65
Is It in Scope? . 66
Fuzzy Requirements = Fuzzy Scope . 67

Next Steps: Requirements . 69

Chapter 3: Lessons About Design . 71

Introduction to Design . 71
Different Aspects of Design . 72
Do You Have a Good Design? . 74

First Steps: Design . 75
Lesson 17: Design demands iteration . 76

The Power of Prototypes . 77
Proofs of Concept . 78
Mock-ups . 78

Lesson 18: It’s cheaper to iterate at higher levels of abstraction 79
Stepping Back from the Details . 81
Rapid Visual Iteration . 81
Iteration Made Easy . 83

Lesson 19: Make products easy to use correctly, hard to
use incorrectly . 84

Make It Impossible for the User to Make a Mistake 86

9780137487776_print.indb 11 06/09/21 4:18 PM

Contentsxii

Make It Difficult for the User to Make a Mistake 86
Make It Easy to Recover from an Error 86
Just Let It Happen . 87

Lesson 20: You can’t optimize all desirable quality attributes 87
Dimensions of Quality . 88
Specifying Quality Attributes . 90
Designing for Quality . 90
Architecture and Quality Attributes . 92

Lesson 21: An ounce of design is worth a pound of recoding 92
Technical Debt and Refactoring . 93
Architectural Shortcomings . 94

Lesson 22: Many system problems take place at interfaces 94
Technical Interface Issues . 96
Input Data Validation . 98
User Interface Issues . 99
Interface Wars . 100

Next Steps: Design . 100

Chapter 4: Lessons About Project Management . 103

Introduction to Project Management . 103
People Management . 104
Requirements Management . 104
Expectation Management . 104
Task Management . 105
Commitment Management . 105
Risk Management . 105
Communication Management . 106
Change Management . 106
Resource Management . 106
Dependency Management . 106
Contract Management . 107
Supplier Management . 107
Managing Away the Barriers . 107

First Steps: Project Management . 108
Lesson 23: Work plans must account for friction 109

Task Switching and Flow . 109
Effective Hours . 111

9780137487776_print.indb 12 06/09/21 4:18 PM

Contents xiii

Other Sources of Project Friction . 112
Planning Implications . 113

Lesson 24: Don’t give anyone an estimate off the top
of your head . 114

Hasty Predictions . 114
Fear of Fuzz . 115

Lesson 25: Icebergs are always larger than they first appear 116
Contingency Buffers . 117
Risky Assumptions . 119
Contracting on Icebergs . 120
The Beauty of Buffers . 121

Lesson 26: Data strengthens your negotiating position 121
Where Did You Get That Number? . 122
Principled Negotiation . 123

Lesson 27: Use historical data to improve estimates 124
Multiple Sources of Historical Data . 125
Software Metrics . 126

Lesson 28: Don’t change an estimate just to make
someone happy . 127

Goals versus Estimates . 128
When to Adjust . 129

Lesson 29: Stay off the critical path . 129
Critical Path Defined . 129
Keeping Out of the Way . 131

Lesson 30: Incomplete tasks get no partial credit 132
What Does “Done” Mean? . 132
No Partial Credit . 134
Tracking by Requirements Status . 135
Doneness Leads to Value . 136

Lesson 31: A project team needs flexibility to adapt to change . . . 136
Five Project Dimensions . 136
Negotiating Priorities . 138
The Flexibility Diagram . 138
Applying the Five Dimensions . 140

Lesson 32: Uncontrolled project risks will control you 140
What Is Risk Management? . 141
Identifying Software Risks . 141

9780137487776_print.indb 13 06/09/21 4:18 PM

Contentsxiv

Risk Management Activities . 143
There’s Always Something to Worry About 145

Lesson 33: The customer is not always right 145
Being “Not Right” . 146
Respecting the Point . 148

Lesson 34: We do too much pretending in software 149
Living in Fantasyland . 149
Irrational Exuberance . 150
Games People Play . 150

Next Steps: Project Management . 151

Chapter 5: Lessons About Culture and Teamwork 153

Introduction to Culture and Teamwork . 153
Keeping the Faith . 154
Cultural Congruence . 155
Crystallizing the Culture . 156
Growing the Group . 157

First Steps: Culture and Teamwork . 158
Lesson 35: Knowledge is not zero-sum . 159

The Knowledge Hog . 160
Rectifying Ignorance . 160
Scaling Up Knowledge Transfer . 161
A Healthy Information Culture . 163

Lesson 36: Don’t make commitments you know
you can’t fulfill . 163

Promises, Promises . 164
Life Happens . 165

Lesson 37: Higher productivity requires training and
better practices . 166

What’s the Problem? . 167
Some Possible Solutions . 167
Tools and Training . 169
Individual Developer Variation . 169

Lesson 38: The flip side of every right is a responsibility 171
Some Customer Rights and Responsibilities 172
Some Developer Rights and Responsibilities 172
Some Project Manager or Sponsor Rights

and Responsibilities . 172

9780137487776_print.indb 14 06/09/21 4:18 PM

Contents xv

Some Autonomous Team Rights and Responsibilities 173
Concerns before Crises . 173

Lesson 39: Surprisingly little separation can inhibit
communication . 173

Barriers of Space and Time . 174
Virtual Teams: The Ultimate in Separation 175
A Door, a Door, My Kingdom for a Door! 176

Lesson 40: Small-team approaches don’t scale to
large projects . 177

Processes and Tools . 178
The Need for Specialization . 179
Communication Clashes . 180

Lesson 41: Address culture change during a change initiative 180
Values, Behaviors, and Practices . 181
Agile and Culture Change . 182
Internalization . 184

Lesson 42: Engineering techniques don’t work with
unreasonable people . 185

Try a Little Teaching . 186
Who’s Out of Line Here? . 186
In Favor of Flexibility . 187

Next Steps: Culture and Teamwork . 187

Chapter 6: Lessons About Quality . 189

Introduction to Quality . 189
Definitions of Quality . 189
Planning for Quality . 190
Multiple Views of Quality . 192
Building Quality In . 192

First Steps: Quality . 194
Lesson 43: Pay for quality now or pay more later 195

The Cost-of-Repair Growth Curve . 195
Harder to Find . 197
Early Quality Actions . 198

Lesson 44: High quality naturally leads to higher productivity . . . 200
A Tale of Two Projects . 200
The Scourge of Rework . 202
The Cost of Quality . 203

9780137487776_print.indb 15 06/09/21 4:18 PM

Contentsxvi

Lesson 45: Organizations somehow find time to fix
bad software . 205

Why Not the First Time? . 205
The $100 Million Syndrome . 206
Striking the Balance . 207

Lesson 46: Beware the crap gap . 207
The Crap Gap Illustrated . 207
Crap-Gap Scenarios in Software . 208

Lesson 47: Never let anyone talk you into doing a bad job 209
Power Plays . 210
Rushing to Code . 211
Lack of Knowledge . 211
Shady Ethics . 212
Circumventing Processes . 212

Lesson 48: Strive to have peers find defects 213
Benefits of Peer Reviews . 214
Varieties of Software Reviews . 215
The Soft Side: Cultural Implications of Reviews 216

Lesson 49: A fool with a tool is an amplified fool 217
A Tool Must Add Value . 218
A Tool Must Be Used Sensibly . 219
A Tool Is Not a Process . 219

Lesson 50: Rushed development leads to maintenance
nightmares . 221

Technical Debt and Preventive Maintenance 221
Conscious Technical Debt . 222
Designing for Quality, Now or Later . 223

Next Steps: Quality . 224

Chapter 7: Lessons About Process Improvement . 225

Introduction to Process Improvement . 225
Software Process Improvement: What and Why 225
Don’t Fear the Process . 226
Making SPI Stick . 227

First Steps: Software Process Improvement 228

9780137487776_print.indb 16 06/09/21 4:18 PM

Contents xvii

Lesson 51: Watch out for “Management by Businessweek” 229
First Problem, Then Solution . 230
A Root Cause Example . 230
Diagnosis Leads to Cure . 232

Lesson 52: Ask not, “What’s in it for me?” Ask,
“What’s in it for us?” . 233

The Team Payoff . 233
The Personal Payoff . 235
Take One for the Team . 235

Lesson 53: The best motivation for changing how people
work is pain . 236

Pain Hurts! . 236
Invisible Pain . 237

Lesson 54: Steer change with gentle pressure,
relentlessly applied . 238

Steering . 239
Managing Upward . 240

Lesson 55: Don’t make all the mistakes other people
already have . 241

The Learning Curve . 242
Good Practices . 243

Lesson 56: Good judgment and experience can trump
a process . 244

Processes and Rhythms . 245
Being Nondogmatic . 246

Lesson 57: Shrink templates to fit your project 247
Lesson 58: Learn and improve so the next project goes better 252

Looking Back . 252
Retrospective Structure . 254
After the Retrospective . 255

Lesson 59: Don’t do ineffective things repeatedly 256
The Merits of Learning . 257
The Merits of Thinking . 258

Next Steps: Software Process Improvement 259

9780137487776_print.indb 17 06/09/21 4:18 PM

Contentsxviii

Chapter 8: What to Do Next . 261

Lesson 60: You can’t change everything at once 262
Prioritizing Changes . 264
Reality Check . 265

Action Planning . 266
Your Own Lessons . 267

Appendix: Summary of Lessons . 269

References . 273

Index . 285

9780137487776_print.indb 18 06/09/21 4:18 PM

xix

Foreword

After Karl Wiegers received his PhD in organic chemistry, he took a job as a research
scientist at Kodak in Rochester, New York. Karl had interviewed at Kodak before he
accepted the job, and he thought he understood the nature of the work. He would be
doing research related to photographic film, photo development, and related
projects.

When Karl arrived at Kodak, he was escorted through a light lock, into the labo-
ratory. A light lock is like an air lock in a submarine, except that it ensures that no
light leaks into a room that is kept completely dark. After Karl went through the
light lock, his eyes took several minutes to adjust to the barely lit laboratory. No one
had told Karl that his research lab would be a photographic dark room.

Karl quickly realized he did not want to spend his career literally working in the
dark, and so he transitioned to roles of software developer, then software manager,
and eventually software process and quality improvement leader. Later, he founded
his own company, Process Impact.

This practical book is Karl’s attempt to lead others out of software darkness and
into the light. As with his other books, there is more pragmatism than theory. The
book concentrates on the areas in which Karl has direct experience: especially
requirements, process improvement, quality, culture, and teamwork.

Karl doesn’t explain why he titled the book Software Development Pearls. The
process of growing a pearl begins when an irritant such as a grain of sand gets
trapped in an oyster. In response, the oyster gradually accretes a substance to protect
itself from the irritant. It takes a long time, but eventually the irritant results in a
valuable pearl.

Karl is one of the most thoughtful software people I know. He has reflected deeply
on the software development irritants he has encountered over his career, and this
book contains 60 of his most valuable responses.

—Steve McConnell, Construx Software and author of Code Complete

9780137487776_print.indb 19 06/09/21 4:18 PM

This page intentionally left blank

xxi

Acknowledgments

Over a span of more than fifty years, I’ve learned how to do software development,
project management, and process improvement from many sources. I’ve read count-
less books and articles, taken many professional training courses, and attended a
multitude of conference presentations. I’m grateful to all the educators who passed
along anything from one helpful nugget of knowledge to a whole new understanding
of some part of our discipline. Two great trainers particularly stand out: Steve
Bodenheimer and Dr. Joyce Statz. How many names of your professional instructors
stick in your mind decades later?

The vast body of software engineering literature is a virtually endless source of
enlightenment. Authors whose work I’ve found especially illuminating include Mike
Cohn, Larry Constantine, Alan Davis, Tom DeMarco, Tom Gilb, Robert Glass,
Ellen Gottesdiener, Capers Jones, Norm Kerth, Tim Lister, Steve McConnell, Rox-
anne Miller, James Robertson, Suzanne Robertson, Johanna Rothman, and Ed Your-
don. If you haven’t read their work, you should. It’s been a rare privilege to become
friends with so many wise authors and consultants over the years.

I’ve had the good fortune to work with some talented software engineers. You can
learn a lot from seeing how others work, because we all have complementary experi-
ences. As the Principal Consultant at my company, Process Impact, I’ve provided
about 150 companies and government agencies with training and consulting services.
I appreciate all of the clients and students in my training courses who shared their
horror—and success—stories with me. Those reports helped me learn what tech-
niques do and don’t work well in a multitude of real-world situations. I’ve distilled
all that I learned from these numerous sources into the lessons in this book.

In preparing this book, I had valuable discussions with Jim Brosseau, Tanya
Charbury, Mike Cohn, David Hickerson, Tony Higgins, Norm Kerth, Ramsay
Miller, Howard Podeswa, Holly Lee Sefton, and particularly Meilir Page-Jones, Ken
Pugh, and Kathy Reynolds. I thank them sincerely for their patience with my ques-
tions and the experience stories they shared. Thanks also to those people who pro-
vided insightful quotations to augment my personal observations.

I appreciate the helpful manuscript review input provided by Joy Beatty, Jim Bros-
seau, Mike Cohn, Gary K. Evans, Lonnie Franks, David Hickerson, Kathy Iberle,
Norm Kerth, Darryl Logsdon, Jeannine McConnell, Marco Negri, Meilir Page-
Jones, Neil Potter, Ken Pugh, Gina Schmidt, James Shields, John Siegrist, Jeneil

9780137487776_print.indb 21 06/09/21 4:18 PM

Acknowledgmentsxxii

Stephen, Tom Tomasovic, and Sebastian Watzinger. Review comments from Tanya
Charbury, Kathy Reynolds, Maud Schlich, and Holly Lee Sefton were particularly
valuable. Thanks also to Gary K. Evans for permission to modify a useful figure on
design interfaces.

I’m grateful to Haze Humbert, Menka Mehta, and the entire editorial and pro-
duction team at Pearson for their fine work on my manuscript.

As always, I’m indebted to my wife, Chris, for patiently tolerating another book
project.

9780137487776_print.indb 22 06/09/21 4:18 PM

xxiii

About the Author

Since 1997, Karl Wiegers has been Principal Consultant with Process Impact, a soft-
ware development consulting and training company in Happy Valley, Oregon. Previ-
ously, he spent eighteen years at Kodak, where he held positions as a photographic
research scientist, software developer, software manager, and software process and
quality improvement leader. Karl received a PhD in organic chemistry from the Uni-
versity of Illinois.

Karl is the author of twelve previous books, including The Thoughtless Design of
Everyday Things, Software Requirements, More About Software Requirements,
Practical Project Initiation, Peer Reviews in Software, Successful Business Analysis
Consulting, and a forensic mystery novel titled The Reconstruction. He has written
many articles on software development, management, design, consulting, chemistry,
and military history. Several of Karl’s books have won awards, most recently the
Society for Technical Communication’s Award of Excellence for Software Require-
ments, 3rd Edition (co-authored with Joy Beatty). Karl has served on the Editorial
Board for IEEE Software magazine and as a contributing editor for Software Devel-
opment magazine.

When he’s not at the keyboard, Karl enjoys wine tasting, volunteering at the pub-
lic library, delivering Meals on Wheels, playing guitar, writing and recording songs,
reading military history, and traveling. You can reach him through www.processim-
pact.com or www.karlwiegers.com.

9780137487776_print.indb 23 30/08/21 9:13 PM

http://www.processim-pact.com
http://www.processim-pact.com
http://www.karlwiegers.com

This page intentionally left blank

1

Chapter 1

Learning from Painful
Experience

I’ve never known anyone who could truthfully say, “I am building software today as
well as software could ever be built.” Anyone who can’t say that would benefit from
learning better ways to work. This book offers some shortcuts for that quest.

Experience is the form of learning that sticks with us the best. It’s also the most
painful way to learn. Our initial attempts to try new approaches often stumble and
sometimes fail. We all must climb learning curves, accepting short-term productiv-
ity hits as we struggle to master new methods and understand when and how to use
them adeptly.

Fortunately, an alternative learning mechanism is available. We can compress our
learning curves by absorbing lessons, tips, and tricks from people who have already
acquired and applied the knowledge. This book is a collection of such pearls of
wisdom about software engineering and project management—useful insights I’ve
gained through my personal experiences and observed from other people’s work.
Your own experiences and lessons might differ, and you might not agree with every-
thing I present. That’s fine; everyone’s experience is unique. These are all things I’ve
found valuable in my software career, though.

My Perspective

Let me start with a bit of my background to show how I accumulated these lessons. I
took my first computer programming class in college in 1970—FORTRAN, of
course. My very first job—the next summer—involved automating some operations
of the financial aid office at my college, all on my own. I’d had two credits of pro-
gramming, so I was a software engineer, right? The project was surprisingly

9780137487776_print.indb 1 06/09/21 4:18 PM

Chapter 1 Learning from Painful Experience2

successful, considering my limited background. I took two more programming
courses in college. Everything else I’ve learned about software engineering I’ve picked
up on my own from reading, training courses, experience, and colleagues. That unof-
ficial career path wasn’t unusual some time ago, as people were drawn to software
development from many backgrounds but had little formal education in computing.

Since that early start, I spent a lot of time doing a diverse range of software work:
requirements development, application design, user interface design, programming,
testing, project management, writing documentation, quality engineering, and pro-
cess improvement leadership. I took some side trips along the way, like getting a PhD
in organic chemistry. Even then, one-third of my doctoral thesis consisted of soft-
ware code for analyzing experimental data and simulating chemical reactions.

Early in my career as a research scientist at Eastman Kodak Company, then a huge
and highly successful corporation, I used computers to design and analyze experi-
ments. I soon transitioned into full-time software development, building applica-
tions for use in the Kodak Research Laboratories and managing a small software
group for a few years. I found that my scientific background and inclination guided
me to take a more systematic approach to software development than I might have
otherwise.

I wrote my first article about software in 1983. Since then, I’ve written many arti-
cles and eight books on numerous aspects of the discipline. As an independent con-
sultant and trainer since 1997, I have provided services to nearly 150 companies and
government agencies in many business domains. These interactions let me observe
techniques that work effectively on software projects—and techniques that don’t.

Many of my insights about software development and management came from
my personal project experiences, some rewarding, but also some disappointing.
I gained other knowledge from my consulting clients’ experiences, generally on
projects that did not go well. No one calls a consultant when everything is going
swimmingly. I wrote this book so that you don’t need to accumulate all those same
lessons slowly and painfully through your personal project struggles. One highly
experienced software engineer who read this list of lessons commented, “Every one
of those items has a scar (or several) associated with it.”

About the Book

This book presents fifty-nine lessons about software development and management,
grouped into six domains, with one chapter on each domain:

Chapter 2. Requirements

Chapter 3. Design

9780137487776_print.indb 2 06/09/21 4:18 PM

About the Book 3

Chapter 4. Project management

Chapter 5. Culture and teamwork

Chapter 6. Quality

Chapter 7. Process improvement

Chapter 8 provides one final, general lesson to keep in mind as you move forward.
For easy reference, all sixty lessons are collected in the Appendix.

I haven’t attempted to provide a complete list of lessons in those domains. There’s
so much knowledge in each category that no one could create an exhaustive compila-
tion. Nor do I address other essential aspects of software development, most obvi-
ously programming, testing, and configuration management. Other authors have
compiled comprehensive wisdom in those areas in books like these:

 • Programming Pearls by Jon Bentley (2000)

 • Lessons Learned in Software Testing by Cem Kaner, James Bach, and Bret
Pettichord (2002)

 • Code Complete by Steve McConnell (2004)

 • Software Engineering at Google by Titus Winters, Tom Manshreck, and
Hyrum Wright (2020)

The topics and lessons in this book are largely independent, so you can read them in
any order you like without any loss of continuity. Each chapter begins with a brief
overview of the pertinent software domain. Then several First Steps encourage you
to reflect on your previous experiences with that domain before you dive into the
chapter’s lessons. The First Steps invite you to think about problems your teams have
experienced in that area, the impacts of those problems, and possible contributing
root causes.

Each lesson concisely states a core insight, followed by a discussion and suggested
practices that teams can adopt based on the lesson. As you read through each chap-
ter, think about how those practices might relate to your situation. A book icon in
the margin, as shown here, indicates a true story drawn from my personal experi-
ences, interactions with my consulting clients, or experiences that colleagues have
shared with me. All the stories are real, though names have been changed to preserve
privacy. In addition to the true-story icons, key points in each lesson description are
flagged with a key icon in the margin, like the one shown here. Some of the lessons
contain cross-references to other lessons, which are indicated with a margin icon like
the one you see here.

9780137487776_print.indb 3 06/09/21 4:18 PM

Chapter 1 Learning from Painful Experience4

The Next Steps section at the end of each chapter will help you plan how to apply
the chapter’s material to your project, team, or organization. No matter what sort
of project you work on, what life cycle it follows, or what kind of product you build,
look for the idea behind each lesson and see how you might adapt it to help your
project be more successful.

Consider going through the First Steps and Next Steps with a group of your col-
leagues rather than doing them alone. At the beginning of the hundreds of training
courses I’ve taught, I have small groups discuss problems their teams have expe-
rienced related to the course topic (the First Steps). At the end of the course, the
same groups explore solutions to those problems, brainstorming ways to apply the
course contents right away (the Next Steps). My students find it valuable to include
a variety of stakeholders in those discussion groups. Different stakeholders bring
diverse perspectives on how certain aspects of the project are going. Combining their
perspectives provides a rich understanding of their current practices and a creative
opportunity to choose practical solutions.

I hope many of my lessons resonate with you and motivate you to try something
different on your projects. However, you can’t change everything you do at once.
Individuals, teams, and organizations can absorb change only at a certain rate as
they strive to get their project work done concurrently. The final chapter in the book,
“What to Do Next,” will help you chart a path to translate the lessons into actions.
That chapter offers suggestions about prioritizing the changes you want to put into
motion and crafting an action plan to help you get from where you are today to
where you want to be.

A Note on Terminology

I use the terms system, product, solution, and application more or less interchange-
ably in this book. In each instance, I’m simply referring to whatever ultimate deliver-
able your project creates, so please don’t read any significance into whichever term
I use in a particular place. Whether you work on corporate or government informa-
tion systems, websites, commercial software applications, or hardware devices with
embedded software, the lessons and their associated practices will be broadly
applicable.

9780137487776_print.indb 4 06/09/21 4:18 PM

Your Opportunity 5

Your Opportunity

Unless you are indeed among that rare class of practitioners who are already building
software as well as software could ever be built, you have some improvement oppor-
tunities. We all need to continuously enhance our capabilities: as individual practi-
tioners, as project teams, and as organizations. We all want fewer scars.

A junior developer named Zachary Minott (2020) made some thoughtful obser-
vations about how he outperformed more experienced developers. Minott described
an ethic of acknowledging what he didn’t know, systematically going about learning,
and putting the new knowledge into practice. He said, “If there is any superpower
that I do have, it’s the ability to learn fast and immediately apply what I learn to what
I’m doing.” Minott discovered the critical mechanism for continuously wending his
way toward mastery of his discipline.

We all need to continuously enhance our
capabilities. We all want fewer scars.

Perhaps you decide to take a class to learn a new skill or enhance your current
way of working. While you take the class, the work continues to pile up. It’s easy to
ignore what you’ve learned and continue to work as you always have in the rush to
get caught up. That’s comfortable, as your current approach has sufficed so far. But
that’s not the way to improve.

I adopted the approach of identifying two areas on each project to get better at.
I would set aside some time to learn about those topics and try to apply my new
understanding. Not every technique worked out, but my approach allowed me to
gradually accumulate skills that have served me well.

I encourage you to do the same. Don’t merely read the book; take the next step.
Decide how you and your colleagues can apply the practices you read about and
what you hope they’ll do for you. Build a list of practices that you want to learn more
about and then put them into use. That way, you’ll come out ahead in the long run.

9780137487776_print.indb 5 06/09/21 4:18 PM

If you don’t get the requirements right, it doesn’t matter how
Lesson 1

well you execute the rest of the project.

A business analyst at one of my consulting clients related an unfortunate project
experience. Their IT department was building a replacement information system for
use within their company. The development team believed that they already under-
stood the system’s requirements without obtaining any additional user input. They
weren’t arrogant, just confident. However, when the developers presented the com-
pleted system to the users, their reaction was, “But seriously, folks, where’s our appli-
cation?” The users rejected the system as completely unacceptable.

The development team was shocked; they thought they were working in good faith
to build the right product. However, neglecting to engage with the users to ensure
that the development team understood the requirements was a serious oversight.

When you proudly present your new baby to the world, you do not want to
be told, “Your baby is ugly.” But that’s what happened in this case. So, what did
the company do? They rebuilt the system, this time with adequate user input. (See
Lesson 45, “Organizations never have time to build software right, yet they find
the resources to fix it later.”) That was an expensive lesson in the importance of cus-
tomer involvement in getting the requirements right.

Whether you’re building a new product or enhancing an existing one, require-
ments are the basis for all subsequent project work. Design, construction, testing,
documentation, training, and migration from one system or operating environment
to another all depend on having the right requirements. Numerous studies have
found that effectively developing and communicating requirements are critical suc-
cess factors for any project. Conversely, common contributors to troubled projects
include inadequate project vision, incomplete and inaccurate requirements, and
changing requirements and project objectives (PMI 2017). Getting the requirements
right is core to ensuring that the solution aligns with the developing organization’s
product vision and business strategy (Stretton 2018). If you don’t get the require-
ments right, you will fail.

Without high-quality requirements,
stakeholders can be surprised at what
the development team delivers. Software
surprises are usually bad news.

The Right Requirements—But When?

I’m not saying that you need a complete set of requirements before you commence
implementation. That’s not realistic for any but the smallest and most stable prod-

12 Chapter 2 Lessons About Requirements

9780137487776_print.indb 7 06/09/21 4:18 PM

ucts. New ideas, changes, and corrections will always come along that you must fold
into your development plans. But for any portion of the system that you’re
building—whether it’s a single development iteration, a specific release, or the full
product—you need to have the requirements as nearly correct as possible. Other-
wise, plan on performing rework after you think you’re done. Agile projects use
development iterations to validate the requirements that fed into the iteration. The
further away those initial requirements are from what customers actually need, the
more rework that will be needed.

Some people claim that you’ll never get the requirements right. They say custom-
ers always think of more to add, there are always worthwhile changes to make, and
the environment evolves continuously. That may be true, but I counter with, “In that
case, you might never finish the project.” From the perspective that there’s always
something you could add, you might never nail the requirements perfectly. But for the
agreed-upon scope of a given development portion, you’ve got to get them right, or
success will elude you.

The situation is a little different if you’re building a highly innovative product.
If no one has ever made anything like it before, you’re unlikely to get it right on the
first try. Your first attempt is essentially a plan to test hypotheses and determine the
requirements through experimentation. Ultimately, though, your explorations will
lead to an understanding of your novel product’s capabilities and characteristics—its
requirements.

The Right Requirements—But How?

There’s no substitute for ongoing customer engagement to develop a set of accurate,
clear, and timely requirements. (See Lesson 12, “Requirements elicitation must bring
the customer’s voice close to the developer’s ear.”) You can’t just hold a workshop
early on and then tell the customers, “We’ll call you when we’re done.” Ideally, the
team will have customer representatives available throughout the project. The team
will have many questions to ask and points that require clarification. They’ll need to
elaborate high-level requirements from early explorations into appropriate detail at
the right time. The team needs frequent feedback from users and other stakeholders
to validate their understanding of requirements and the solutions they conceive.

It can be challenging to get customers to sign up for this extensive level of par-
ticipation. They have their own work to do; their managers might not want some of
their best people to spend a lot of time on the project. “You can go to a workshop or
two,” the manager might say, “but I don’t want those software people interrupting
you all the time with questions.”

13Lesson 1: Get the requirements right or the project will fail

9780137487776_print.indb 8 06/09/21 4:18 PM

One way to sell the case for ongoing engagement is to point out problems the
organization has experienced because of inadequate customer participation.
Even better, cite local experiences where customer engagement paid off. Another
persuasion technique is to propose a structured framework for the require-
ments engagement instead of leaving it completely open-ended. This framework
might include some combination of informal discussions, elicitation workshops,
requirements reviews, and working with screen sketches, prototypes, and incre-
mental releases.

Customers are more likely to be excited about the project and willing to con-
tribute if they see signs of tangible progress, such as through periodic releases of
working software. They’ll also be more enthusiastic if they see that their input
truly influences the project’s direction. It’s sometimes a struggle to persuade
users to accept new and replacement software systems. User representatives who
worked with the IT team and understand the new system and its rationale can
greatly smooth the transition.

I’ve worked with several customer representatives who had an outsize impact on
the project’s success. Besides providing input on requirements, some of them also
provided user interface sketches and tests to verify that portions of the software
were implemented properly. I can’t overstate the contribution such committed cus-
tomers made to help the development team get the requirements right and deliver
the right solution.

Without high-quality requirements, stakeholders can be surprised at what the
development team delivers. In my experience, software surprises are usually bad
news. When they see the product, the reaction I want from my customers is, “Wow,
Karl, this is better than I ever imagined. Thank you!” That’s the kind of software
surprise we can all live with.

In his classic book The Mythical Man-Month, Frederick P. Brooks, Jr. (1995) advises,
“Plan to throw one away; you will, anyhow.” Brooks is referring to the idea that, on
large projects, it’s advisable to create a pilot or preproduction system to figure out
how best to build the complete system. That’s an expensive prospect, particularly if
the system includes hardware components. However, a pilot system is valuable if you
have technical feasibility questions or if a suitable design strategy isn’t clear initially.

Lesson 17 Design demands iteration.

Chapter 2 Lessons About Requirements14

A pilot system also reveals the unknown unknowns, factors you hadn’t yet realized
were significant.

While you’re unlikely to build and then discard a preliminary version of most
products, you do need to iterate on potential designs before the team gets very far
into construction. Creating the simplest possible design sounds attractive, and it
does accelerate solution delivery. Rapid delivery might meet a customer’s short-term
perception of value, but it may not be the best long-term strategy as the product
grows over time.

There’s always more than one design solution for a software problem and seldom
a single best solution (Glass 2003). The first design approach you conceive won’t be
the best option. Norman Kerth, a highly experienced designer of software, furniture,
and other items, explained it to me nicely:

You haven’t done your design job if you haven’t thought of at least three solutions,
discarded all of them because they weren’t good enough, and then combined the best
parts of all of them into a superior fourth solution. Sometimes, after considering three
options, you realize that you don’t really understand the problem. After reflection, you
might discover a simple solution when you generalize the problem.

Software design isn’t a linear, orderly, systematic, or predictable process. Top
designers often focus first on the hard parts where a solution might not be obvi-
ous or perhaps even feasible (Glass 2003). Several methods facilitate iteration as a
designer moves from an initial concept to an effective solution. One method is to
create and refine graphical models—diagrams—of the proposed designs. This tech-
nique is addressed in Lesson 18, “It’s cheaper to iterate at higher levels of abstrac-
tion.” Prototyping is another valuable technique for iterating on both technical and
UX designs.

The Power of Prototypes

A prototype is a partial, preliminary, or possible solution. You build a piece of the
system as an experiment, testing the hypothesis that you understand how to design
the system well. If the experiment fails, you redesign it and try again. A prototype is
valuable for assessing and reducing risk, particularly if you’re employing a novel
architectural or design pattern that you want to validate before committing to it.

If you intend a prototype to grow into the
product, you must build it with production-
level quality from the beginning.

77Lesson 17: Design demands iteration

 Before you construct a prototype, determine whether you intend to discard it and
then develop the real thing, or grow the preliminary solution into the product. A
key point is that if you intend a prototype to grow into the product, you must build
it with production-level quality from the beginning. That takes more effort than
building something temporary that you’ll discard after it has served its purpose. The
more work you put into a prototype, the more reluctant you become to change it
significantly or throw it away, which impedes the iteration mindset. Your prototyping
approach should encourage cyclical refinement and even starting over if necessary.

Agile teams sometimes create stories called spikes to research technical
approaches, resolve uncertainty, and reduce risk before committing to a specific solu-
tion (Leffingwell 2011). Unlike other user stories, a spike’s prime deliverable is not
working code, but rather knowledge. Spikes could involve technical prototypes, UI
prototypes, or both, depending on the information sought. A spike should have a
clear goal, just like a scientific experiment. The developer has a hypothesis to test.
The spike should be designed to provide evidence for or against the hypothesis, test
and confirm the validity of some approach, or allow the team to make an informed
technical decision quickly.

Proofs of Concept

Proof-of-concept prototypes, also called vertical prototypes, are valuable for validat-
ing a proposed architecture. I once worked on a project that envisioned an unconven-
tional client–server approach. The architecture made sense in our computing
environment, but we wanted to make sure we weren’t painting ourselves into a tech-
nical corner. We built a proof-of-concept prototype with a vertical slice of function-
ality from the UI through the communication layers and the computational engine.
It worked, so we felt confident this design was workable.

Experimenting on a proof-of-concept prototype is a way to iterate at a relatively
low cost, although you do need to build some executable software. Such prototypes
are valuable for assessing the proposed design’s technical aspects: architecture, algo-
rithms, database structure, system interfaces, and communications. You can evaluate
architectures against their needed properties—such as performance, security, safety,
and reliability—and then refine them progressively.

Mock-ups

User interface designs always require iteration. Even if you’re following established
UI conventions, you should perform at least informal usability testing to choose
appropriate controls and layouts to meet your ease-of-learning, ease-of-use, and
accessibility goals. For instance, A/B testing is an approach in which you present

Chapter 3 Lessons About Design78

users with two UI alternatives for a given operation so that they can choose which
one makes the most sense to them. The people who conduct an A/B test can observe
user behaviors with the different approaches to determine which option is more intu-
itive or leads to more successful outcomes. It’s simpler, faster, and cheaper to
conduct such experiments while you’re still exploring the design than to react to
post-delivery customer complaints or lower-than-expected click-through rates on a
web page.

As with requirements, UX designs benefit from the progressive refinement
of detail through prototyping. You can create mock-ups, also called horizontal
prototypes because they consist of just a thin layer of user interface with no func-
tional substance below it. Mock-ups range from basic screen sketches to executable
interfaces that look authentic but don’t do real work (Coleman and Goodwin 2017).
Even simple paper prototypes are valuable and are quick to create and modify. You
can use a word processing document or even index cards to lay out the data elements
in boxes representing potential screens, see how the elements relate to each other,
and note which elements are user input and which are displayed results. Watch out
for these traps with user interface prototyping.

• Spending too much time perfecting the UI’s cosmetics (“How about a darker
red for this text?”) before you’ve mastered the screen flow and functional lay-
outs. Get the broad strokes right first.

• Customers or managers thinking the software must be nearly done because the
UI looks good, even if there’s nothing behind it but simulated functions. A less
polished prototype shows that it isn’t yet finished.

• Coaching prototype evaluators as they attempt to perform a task that isn’t
obvious to them. You can’t judge usability if you’re helping the users learn and
use the prototype.

If you don’t invest in repeatedly exploring both user experience and techni-
cal designs before committing to them, you risk delivering products that custom-
ers don’t like. Thoughtlessly designed products annoy customers, waste their time,
erode their goodwill toward your product and company, and generate bad reviews
(Wiegers 2021). A few more iteration cycles will get you much closer to useful and
enjoyable designs.

79Lesson 18: It’s cheaper to iterate at higher levels of abstraction

Lesson 23

I overheard this conversation at work one day:
Manager Shannon: “Jamie, I know you’re doing the usability assessments on

the Canary project right now. Several other projects are also interested in usability
assessments. How much time do you spend on that?”

Team Member Jamie: “About eight hours a week.”
Manager Shannon: “Okay, so you could work with five projects at a time then.”
Do you see any flaws in Shannon’s thinking? Five times eight is forty, the nominal

hours in a work week, so this discussion seems reasonable on the surface. But Shan-
non hasn’t considered the many factors that reduce the time that individuals have
available each day for project work: project friction (as opposed to interpersonal fric-
tion, which I’m not discussing here).

There’s a difference between elapsed hours on the job and effective available
hours. This difference is just one factor that both project planners and individual
team members must keep in mind as they translate size or effort estimates into cal-
endar time. If people don’t incorporate these friction factors into their planning,
they’ll forever underestimate how long it will take to get work done.

Task Switching and Flow

People do not multitask—they task switch. When multitasking computers switch
from one job to another, there’s a period of unproductive time during the switch.
The same is true of people, only it’s far worse. It takes a little while to gather all the

Lesson 23 Work plans must account for friction.

materials you need to work on a different activity, access the right files, and reload
your brain with the pertinent information. You need to change your mental context
to focus on the new problem and remember where you were the last time you worked
on it. That’s the slow part.

Some people are better at task switching than others. Maybe I have a short atten-
tion span, but I’m pretty good at diverting my focus to something different and then
resuming the original activity right where I left off. For many people, though, exces-
sive task switching destroys productivity. Programmers are particularly susceptible
to the time-sucking impact of multitasking, as Joel Spolsky (2001) explains:

When you manage programmers, specifically, task switches take a really, really, really
long time. That’s because programming is the kind of task where you have to keep a
lot of things in your head at once. The more things you remember at once, the more
productive you are at programming. A programmer coding at full throttle is keeping
zillions of things in their head at once.

109 Lesson 23: Work plans must account for friction

People do not multitask—they task switch.

When I was a manager, a developer named Jordan said he was flailing. Jordan
didn’t understand the priorities of items in his work backlog. He would work on task
A for a while, then feel guilty that he was neglecting task B, so he’d switch to that
one. He was getting little done as a result. Jordan and I worked out his priorities and
a plan for allocating time to tasks in turn. He stopped flailing, his productivity went
up, and Jordan felt much better about his progress. Jordan’s task-switching overhead
and priority confusion affected both his productivity and his state of mind.

When you’re deeply immersed in some work, focused on the activity and free
from distractions, you enter a mental state called flow. Creative knowledge work like
software development (or writing a book) requires flow to be productive (DeMarco
and Lister 2013). You understand what you’re working on, the information you need
is in your working memory, and you know where you’re headed. You can tell you’ve
been in a state of flow when you lose track of time as you’re making great progress
and having fun. Then your phone pings with a text message, an e-mail notification
pops up, your computer reminds you that a meeting starts in five minutes, or some-
one stops by to talk. Boom—there goes your flow.

Interruptions are flow killers. It takes several minutes to get your brain back into
that highly productive state and pick up where you were before the interruption.
Some reports suggest that interruptions and task switching can impose a penalty of
at least 15 percent of a knowledge worker’s time, amounting to more than one hour
per day (DeMarco 2001). A realistic measure of your effective work capacity is based
not on how many hours you’re at work or even how many hours you’re on task, but
how many uninterrupted hours you’re on task (DeMarco and Lister 2013).

To achieve the high productivity and satisfaction that come from an extended
state of flow, you need to actively manage your work time. The potential for distrac-
tions and interruptions is ever-present unless you take steps to block them out. Jory
MacKay (2021) offers several recommendations for reducing context switching and
its accompanying productivity destruction.

• Timeblock your schedule to create clearer focus boundaries . Planning how
you will spend your day, with dedicated blocks of time allocated to specific
activities, carves out opportunities for extended deep concentration. If the
nature of your work permits, devote certain full days each week to focus on
your most important individual tasks, to more actively collaborate with oth-
ers, or to catch up on busywork.

Chapter 4 Lessons About Project Management 110

Build a habit of single tasking throughout the day . One of my talented but
less productive team members was able to get more work done when we agreed
that he would set aside half-day blocks of time during which he didn’t answer
the phone, texts, or e-mails—at all.

• Employ routines to remove attention residue as you migrate from one task
to the next . Physically moving on to the next activity doesn’t immediately
unplug your brain from the previous one, which can be a distraction. A small
transition ritual or distraction—a cup of coffee, an amusing video—can help
you make that mental break into a new work mode.

• Take regular breaks to recharge . The intense concentration of a state of flow
is great—up to a point. You must come up for air occasionally. Stretch your
tired neck, arms, and shoulders. To minimize eyestrain, periodically focus your
eyes on something in the distance for a few seconds instead of staring at the
screen endlessly. Short mental breaks are refreshing before you dive back into
that productive flow state.

Effective Hours

At-work hours seep away through many channels. You attend meetings and video
chats, respond to e-mails, look things up on the web, participate in retrospectives, and
review your teammates’ code. Time gets lost to unexpected bug fixes, kicking around
ideas with your coworkers, administrative activities, and the usual healthy socializing.
Working from home offers myriad other distractions, many of them more fun than
project work. Even if you work forty hours a week, you don’t spend anywhere near that
many on your project.

One software group of mine measured how we devoted our time on projects
for several years (Wiegers 1996). Individuals tracked the time (to half-hour resolu-
tion) they spent working on each project in ten activity categories: project planning,
requirements, design, implementation, testing, documentation, and four types of
maintenance. We didn’t try to make the weekly numbers add up to any total. We
just wanted to know how we really spent our time, compared to how we thought we
spent our time, compared to how we were supposed to spend our time.

The results were eye-opening. In the first year we collected data, we devoted an
average of just 26 hours per week to project work. The tracking made us all more
conscious of finding ways to focus our time more productively. However, we never
exceeded an average of 31 hours of project time per week.

111 Lesson 23: Work plans must account for friction

Several of my colleagues have obtained similar results, averaging five to six hours
per day on project work. Other sources also suggest that a typical average of ideal
work hours—“uninterrupted attentive time for project tasks”—is about five hours
per day (Larman 2004). Rather than relying on published figures to estimate your
effective project time, collect your own data. Recording how you work for a few typi-
cal weeks will provide a good idea of how many hours per week you can expect to
devote to project tasks, which affects the team’s projected productivity or velocity.

The intent of this time tracking is not so that managers can see who’s working
hard. Managers shouldn’t even see the data for individuals, just aggregated team or
organizational data. Knowing the team’s average effective weekly work hours helps
everyone make more realistic estimates, plans, and commitments.

Other Sources of Project Friction

Besides the daily frittering away of time on myriad activities, project teams lose time
to other sources of friction. For instance, most corporate IT organizations are
responsible for both new development and enhancing and repairing current produc-
tion systems. Since you can’t predict when something will break or a change request
will come along, these sporadic, interruptive maintenance demands usurp team
members’ time with unplanned work.

Distance between project participants can retard information exchanges and
decision-making. (See Lesson 39, “It takes little physical separation to inhibit com-
munication and collaboration.”) Even with the many collaboration tools avail-
able, projects with people in multiple locations and time zones should expect some
slowdown from communication friction. Sometimes you can’t reach an individual,
such as a key customer representative who has the answer you need. You have to
either wait until they’re available or make your best guess so that you can proceed.
That slows you down, especially when an incorrect guess leads to rework.

The team composition can further impose friction if project participants speak
different native languages and work in diverse cultures. Unclear and volatile require-
ment priorities can chew up hours as people spend time researching, debating, and
adjusting priorities. The team might have to temporarily shelve some incomplete
work if a new, higher-priority task inserts itself into the schedule. Unplanned rework
is yet another time diversion.

I know of a contract project that involved a customer in the eastern United States
and a vendor in western Canada (Wiegers 2003). Their project plan included some
peer reviews of certain deliverables. However, the long-distance reviews took longer
than expected, as did follow-up to verify the corrections made. Slow decision-making
across the distance further reduced the project’s pace. Sluggish iteration to resolve
requirements questions and ambiguity about who the right contact people were for
each issue were further impediments. These—and other—factors put the project
behind schedule after just the first week and eventually contributed to its failure.

Chapter 4 Lessons About Project Management 112

Planning Implications

Project friction has a profound impact on estimation, so both individuals and teams
must keep it in mind. I estimate how long individual tasks will take as though I will
have no distractions or interruptions, just focused and productive time. Next, I con-
vert that ideal effort estimate into calendar time based on my effective work-hour
percentage. I also consider whether any of the other aforementioned sources of fric-
tion could affect my estimates. Then I try to arrange my work so that I can focus on
a single task at a time until it’s complete or I hit a blocking point.

My colleague Dave described what happens on his current project, whose man-
ager doesn’t consider the impacts of time lost to excessive multitasking:

The manager likes to split people up between teams, 50 percent here and 50 percent
there, or 50, 25, and 25. But when this happens, it seems like they forget the percent-
ages and think the team has all full-time people. Then they seem surprised at how long
things take. Also, being on multiple teams means more overhead in meetings and less
coding time.

If people always create estimates without accounting for the many ways that time
splitting and project conditions can slow down the work, they’re destined to overrun
their estimates every time.

I used to work with a software developer named Stephan. Stephan was territorial
about his knowledge. If I asked him a question, I could almost see the wheels turning
in his head: “If I give Karl the full answer to his question, he’ll know as much as I do
about that topic. That’s not acceptable, so I’ll give him half of the answer and see if
he goes away.” If I came back later seeking a more complete response, I might get
half of the remaining answer. In this way, I asymptotically approached getting the
complete answer to my question.

Lesson 35 Knowledge is not zero-sum.

113 Lesson 23: Work plans must account for friction

Extracting information bit by bit from Stephan was annoying. The information I
sought was never confidential. We both worked at the same company, so we should
have been aligned toward our joint success. Stephan apparently didn’t agree with me
that freely sharing knowledge with your colleagues is a characteristic of a healthy
software culture.

Knowledge isn’t like other commodities. If I have $3 and give you one of them,
now I have only $2. Money is zero-sum in the sense that I must lose some of it for you
to gain something in this transaction. In contrast, if I give you some of my knowl-
edge, I still possess all the knowledge myself. I can share it with other people, as can
you. Everyone touched by this expanding circle of knowledge benefits.

A healthy organization fosters a culture of
free knowledge exchange and continuous
learning.

The Knowledge Hog

Some people hoard information out of insecurity. They fear that if they share some
of their precious hard-won knowledge with others, those other people become more
competitive with them. Perhaps that’s true, but it’s flattering for someone to ask for
your help. The requester is acknowledging your superior experience and insights.
Rarely, someone might ask you for information because they don’t want to take the
time to figure it out themselves. You don’t have to do someone else’s work for them,
but you should remember that you and your teammates are all working toward the
same ends.

Other people carefully protect their knowledge as a form of job security. If no one
else knows what they know, the company can’t possibly fire them, because too much
institutional knowledge would go out the door. Maybe they think they should get a
raise because they’re the sole holder of so much important information.

People who conceal organizational knowledge pose a risk. They create an
informational bottleneck that can impede other people’s work. My colleague Jim
Brosseau aptly refers to knowledge hoarding as technical ransom (Brosseau 2008).
Information hiding is an excellent practice for software design; for software teams,
not so much.

159Lesson 35: Knowledge is not zero-sum

Rectifying Ignorance

A healthy organization fosters a culture of knowledge exchange and continuous
learning. Sharing knowledge enhances everyone’s performance, so management
rewards people who freely pass along what they know, not those who keep it to them-
selves. In a learning organization, team members feel that it’s psychologically safe to
ask questions (Winters et al. 2020). We’re all ignorant about most of the knowledge
in the universe, so let’s learn from our colleagues when the opportunity arises.

Experienced members of an organization can share their expertise in many ways.
The most obvious method is simply to answer questions. But more than just answer-
ing questions, experts should invite the questions. They should appear approachable
to fellow employees, particularly novices, and be thoughtful and patient when some-
one picks their brains. Beyond simply transferring information, experts can convey
insights about how to apply the knowledge to specific situations.

Some organizations use formal mentoring programs to get new team members
up to speed quickly (Winters et al. 2020). Pairing new employees with experienced
colleagues greatly accelerates learning. When I began my professional career as a
research chemist, I was the first guinea pig for a new mentoring program. My men-
tor, Seth, was a scientist in the group I had joined, but he wasn’t in my reporting
chain. I felt comfortable asking Seth questions that otherwise might have awkwardly
revealed my ignorance to my manager. Seth helped me get rolling in an unfamiliar
technology area. A mentoring or “buddy” program reduces the learning curve for
new team members and starts building relationships with them immediately.

Scaling Up Knowledge Transfer

One-on-one communications are effective, but they don’t scale well. Experienced,
talented people are much in demand, both for their project work and for the exper-
tise they can share. To cultivate a knowledge-sharing culture, consider techniques to
leverage information more efficiently than one-on-one time spent together. Here are
several possibilities.

Technical Talks
My software development team once decided to work through the many excellent
programming examples in Steve McConnell’s classic book Code Complete
(McConnell 2004). We took turns studying a particular section and then describing
it to the group in a lunch-and-learn session. These informal group learning experi-
ences efficiently disseminated good programming practices across the group. They
facilitated a shared understanding of techniques and a common vocabulary.

Chapter 5 Lessons About Culture and Teamwork 160

Presentations and Training
Formal technical presentations and training courses are good ways to communicate
institutional knowledge across an organization. I developed several training courses
when I worked at Kodak and delivered them many times. If you set up an internal
training program, line up enough qualified instructors so that one individual doesn’t
have to teach the same courses all the time.

Documentation
Written knowledge spans the spectrum from specific project or application docu-
mentation to broadly applicable technical guides, tutorials, FAQs, wikis, and tip
sheets. Someone must write this documentation, which means they aren’t spending
that time creating other project deliverables. Written documentation is a highly
leverageable organizational asset, provided that team members turn to it as a useful
resource.

I’ve known people who preferred to rediscover knowledge on their own rather
than seek it from existing documentation. Those people didn’t heed Lesson 7, “The
cost of recording knowledge is small compared to the cost of acquiring knowledge.”
Once someone has invested the time to create relevant and useful documentation, it’s
a lot quicker to read it than to reconstruct the same information. All organization
members should be able to update such documents to keep them valuable as current
sources of pooled experience.

Deliverable Templates and Examples
When I worked in a large product development organization, our process improve-
ment group built an extensive online catalog containing high-quality templates and
examples of many project deliverables (Wiegers 1998b). We scoured company soft-
ware departments for good requirements specifications, design documents, project
plans, process descriptions, and other items. This “good practices” collection pro-
vided a valuable jump-start whenever any software practitioner in the company
needed to create some new project artifact.

Technical Peer Reviews
Peer reviews of software work products serve as an informal mechanism for exchang-
ing technical knowledge. They’re a great way to look over other people’s shoulders
and to let them peek over yours. I’ve learned something from every review I’ve par-
ticipated in, whether as a reviewer or as the author of the item being reviewed. The
technique of pair programming, in which two people write code together, provides a
form of instantaneous peer review, as well as exchanging knowledge between the
programmers. See Lesson 48, “Strive to have a peer, rather than a customer, find a
defect,” for more about reviews.

161Lesson 35: Knowledge is not zero-sum

Discussion Groups
Rather than trying to locate exactly the right person when you have a question, you
might post the question to a discussion group or group chat tool within
your company. Exposing your lack of knowledge to a large community can be awk-
ward. That’s why it’s valuable to grow a culture that invites questioning and rewards
those who assist. Ignorance is not a tragedy, but an unwillingness to solicit help is.

Discussion participants can offer multiple perspectives on your question quickly.
The posted responses are available to everyone in the discussion, which further dis-
seminates the knowledge. You probably weren’t the only person who didn’t know the
answer to that specific question, so good for you for asking. I have a friend who’s the
most curious person I know. He’s willing to ask anyone he encounters in daily life
about things he sees them do that are unfamiliar to him. He’s learned a lot that way,
and the people he asks are always happy to share what they know.

A Healthy Information Culture

Everyone has something to teach—and to learn. When I managed a software devel-
opment group, I hired a graduate student in computer science as a temporary sum-
mer employee. I confess that at first I was skeptical about his understanding of
practical software engineering. Similarly, he had some disdain for the process-driven
approach our group advocated. After just a few weeks, though, I gained respect for
his contemporary programming knowledge, which far exceeded mine. And he
acquired an appreciation for how sensible processes can help teams be more effec-
tive. We both grew by being open to what the other had to share.

You don’t need to be the world’s expert on some topic to be helpful. You just need
some useful block of knowledge and the willingness to share it. In the world of tech-
nology, if you’re one week ahead of the next person in some area, you’re a wizard.
Someone else will doubtless be ahead of you in other areas, so take advantage of
their trailblazing. People in a healthy learning culture share what they know and also
acknowledge that someone else might know a better way.

Suppose I’m a BA and I have a conversation with a customer to flesh out some require-
ments details. I go back to my office and write up what I learned in whatever form my
project uses for requirements. The customer e-mails me the next day and says, “I just
talked to one of my coworkers and learned that I had something wrong in that require-
ment we talked about yesterday.” How much work must I do to correct that error?
Very little; I simply update the requirement to match the customer’s current request.
Let’s say that making that correction cost ten dollars’ worth of company time.

When it comes to software quality, you can pay now or pay
Lesson 43

more later.

Chapter 5 Lessons About Culture and Teamwork 162

Alternatively, suppose the customer contacts me a month or six after we had the
conversation to point out the same problem. Now how much does it cost to correct
that error? It depends on how much work the team has done based on the original,
incorrect requirement. Not only does my company still have to pay ten dollars to
fix the requirement, but a developer might have to redo some portion of the design.
Maybe that costs another thirty or forty dollars. If the developers already imple-
mented the original requirement, they’ll have to modify or recode it. They’ll need to
update tests, verify the newly implemented requirement, and run regression tests to
see whether the code changes broke anything. All that could cost perhaps a hundred
dollars more. Maybe someone must revise a web page or a help screen as well. The
bill keeps increasing.

Software’s malleability lets us make changes and corrections whenever war-
ranted. But every change has a price. Even discussing the possibility of adding some
functionality or fixing a bug and then deciding not to do it takes time. The longer a
requirement defect lingers undetected and the more rework you have to do to correct
it, the higher the price tag.

The Cost-of-Repair Growth Curve

The cost of correcting a defect depends on when it was introduced into the product
and when someone fixed it. The curve in Figure 6.2 shows that the cost increases sig-
nificantly for late-discovered requirements errors. I omitted a numeric scale on the
y-axis because various sources cite different data, and software people debate the
exact numbers. The cost ratio and steepness of the curve depend on the product
type, the development life cycle being followed, and other factors.

For instance, data from Hewlett-Packard indicated that the cost ratio could be
as high as 110:1 if a customer discovered a requirement defect in production versus
someone finding it during requirements development (Grady 1999). Another analysis

R
el

at
iv

e
C

os
t t

o
C

or
re

ct

Concept Requirements Design Coding System Testing Production

When Defect Is Corrected

195Lesson 43: Pay for quality now or pay more later

Figure 6.2 The cost to correct a defect increases rapidly with time.

suggested a relative cost factor of 30:1 to correct errors introduced during require-
ments development or architectural design that were discovered post-release (NIST
2002). For highly complex hardware/software systems, the cost amplification factor
from discovery in the requirements stage versus the operational stage can range from
29x to more than 1,500x (Haskins et al. 2004).

The cost of correcting a defect depends on
when it was introduced into the product and
when someone fixed it.

Regardless of the exact numbers, there’s broad agreement that early defect cor-
rection is far cheaper than fixing defects following release (Sanket 2019, Winters
et al. 2020). It’s a bit like paying your credit card bill. You can pay the balance due
on time, or you can pay a smaller amount now plus the remaining balance along
with substantial interest charges and late fees in the future. Johanna Rothman (2000)
compared how three hypothetical companies could employ different strategies to
deal with defects and consequently experience different relative defect-repair costs.
However, in all three scenarios, the later in the project the team fixes a defect, the
more it costs.

Some people have argued that agile development greatly flattens the cost-of-
change curve (Beck and Andres 2005). I haven’t yet located any actual project
data to support this contention. However, this lesson isn’t about the cost of mak-
ing a change like adding new functionality—it’s about the price you pay to correct
defects. A requirements defect that is discovered before a user story is coded is still
less expensive to repair than the same defect identified during acceptance testing.
Scott Ambler (2006) suggests that the relative defect-correction cost is lower on agile
projects because of agile’s quick feedback cycles that shorten the time between when
some work is done and when its quality is assessed. That sounds plausible, but it
only partially addresses the fundamental issue with defect-repair costs.

The issue with cost-to-repair is not only the days, weeks, or months between
when the defect was injected into the product and when someone discovers it. The
amplification factor depends heavily on how much work was done based on the
defective bit that now must be redone. It costs very little to fix a coding error if your
pair-programming partner finds it moments after you typed the wrong thing, when
knowledge about the defective work is fresh in your brain. However, if the customer
calls to report the same type of error when the software is in production, it certainly
will be far more difficult to rectify. As an example, a developer friend of mine related
this recent experience:

Chapter 6 Lessons About Quality196

This week I missed one comma (literally) in a ColdFusion script on a custom website
for a client. It caused a crash, which caused him a delay and hassle. Plus, then there were
the back-and-forth e-mails, and then me opening up all the tools and source code and
finding the bug, adding the comma, retesting, and so on. One darn comma.

Besides the cost-to-repair issue, my friend alluded to another important aspect of
late defect detection we should keep in mind: the negative impact on the users.

Harder to Find

Diagnosing a system failure takes longer if the underlying fault was introduced long
ago. If you review some requirements and spot an error, you know exactly where the
problem lies. However, if a customer reports a malfunction—whether that’s one
month or five years after someone wrote the requirement—the detective work is
more challenging. Is the failure due to an erroneous requirement, a design problem, a
coding bug, or an error in a third-party component? Therein lies Ambler’s argument
for lower defect-correction costs on agile projects: when defects are revealed shortly
after they’re introduced, it’s easier to locate the fault that caused a failure.

After you uncover the root cause—the fault—for a customer-reported system fail-
ure, you have to recognize all of the affected work products, repair them, retest the
system, write release notes, redeploy the corrected product, and reassure the cus-
tomer that the problem is fixed. That’s a lot of expensive re- stuff to do. Plus, at that
point, the problem has affected many more stakeholders than if someone had found
it much earlier.

Early Quality Actions

Serious defects discovered during system testing can lead to a lot of repair work.
Those found after release can disrupt user operations and trigger emergency fixes
that divert team members from new development work. This reality leads us to sev-
eral thoughts about how to pay less for high-quality software.

Prevent Defects Instead of Correcting Them
Quality control activities, such as testing, code static analysis, and code reviews,
look for defects. Quality assurance activities seek to prevent defects in the first place.
Improved processes, better technical practices, more proficient practitioners, and
taking a little more time to do our work carefully are all ways to prevent errors and
avoid their associated correction costs.

197Lesson 43: Pay for quality now or pay more later

Push Quality Practices to the Left
Regardless of the project’s development life cycle, the earlier you find a defect, the
cheaper it is to resolve. Each piece of software work involves a micro-sequence of
requirements, design, and coding, moving from left to right on a timescale axis.
We’ve seen that eradicating requirement errors provides the greatest leverage for time
savings down the road. Therefore, we should use all the tools at our disposal to find
errors in requirements and designs before they’re translated into erroneous code.

Peer reviews and prototyping are effective ways to detect requirement errors. Push-
ing testing from its traditional position late in the development sequence—on the
right side of the timeline—far to the left is particularly powerful. Strategy options
include following a test-driven development process (Beck 2003), writing acceptance
tests to flesh out requirements details (Agile Alliance 2021b), and—my preference—
concurrently writing functional requirements and their corresponding tests (Wiegers
and Beatty 2013).

Every time I write tests shortly after writing requirements, I discover errors in
both the requirements and the tests. The thought processes involved with writing
requirements and tests are complementary, which is why I find that doing both
yields the highest-quality outcome. Writing tests through a collaboration between
the BA and the tester leverages both the idea of doing it earlier in the process and
having multiple sets of eyes looking at the same thing from different perspectives.
Writing tests early in the development cycle doesn’t add time to the project; it just
reallocates time to a point where it provides greater quality leverage. Those con-
ceptual tests can be elaborated into detailed test scenarios and procedures as devel-
opment progresses.

During implementation, developers can use static and dynamic code analysis
tools to reveal many problems far faster than humans can review code manually.
These tools can find run-time errors that code reviewers struggle to spot, such as
memory corruption bugs and memory leaks (Briski et al. 2008). On the other hand,
human reviewers can spot code logic errors and omissions that automated tools
won’t detect.

The timing of quality control activities is important. I once worked with
a developer who wouldn’t let anyone review her code until it was fully imple-
mented, tested, formatted, and documented—that is, clear on the right side of
her development timescale. At that point, she was psychologically resistant to
hearing that she wasn’t done after all. Each issue that someone raised in a code
review triggered a defensive response and rationalization about why it was fine
the way it was. You’re much better off starting with preliminary reviews on just a
portion of a work item—be it requirements, design, code, or tests—to get input
from others on how to craft the rest of the item better. Push quality to the left by
reviewing early and often.

Chapter 6 Lessons About Quality198

Track Defects to Understand Them
The most efficient way to control defects is to contain them to the life cycle activity—
requirements, design, coding—in which they originated. Record some information
about your bugs instead of simply swatting them and moving on. Ask yourself ques-
tions to identify the origin of each defect so that you can learn what types of errors
are the most common. Did this problem happen because I didn’t understand what
the customer wants? Did I understand the need accurately but make an incorrect
assumption about other system components or interfaces? Did I simply make a mis-
take while coding? Was a customer change request not communicated to everyone
who needed to know about it?

Note the life cycle activity (not necessarily a discrete project phase) in which each
defect originated and how it was discovered. You can calculate your defect contain-
ment percentage from that data to see how many problems are leaking from their
creation stage into later development activities, thereby amplifying their cost-to-
repair factors. That information will show you which practices are the best quality
filters and where your improvement opportunities lie.

Minimizing defect creation and finding them early reduces your overall develop-
ment costs. Strive to bring your full arsenal of quality weapons to bear from the earli-
est project stages.

Frustration with disappointing results is a powerful motivation for trying a different
approach. However, you need to be confident that any new strategy you adopt has a
good chance of solving your problem. Organizations sometimes turn to the latest
buzzword solution, the hot new thing in software development, as the magic elixir
for their software challenges.

Lesson 51 Watch out for “Management by Businessweek.”

A manager might read about a promising—but possibly overhyped—methodology
and insist that his organization adopt it immediately to cure their ills. I’ve heard this phe-
nomenon called “Management by Businessweek.” Perhaps a developer is enthused after
hearing a conference presentation about a new way of working and wants his team to try
it. The drive to improve is laudable, but you need to direct that energy toward the right
problem and assess how well a potential solution fits your culture before adopting it.

Over the years, people have leaped onto the bandwagons of countless new soft-
ware engineering and management paradigms, methodologies, and frameworks.
Among others, we’ve gone through

199Lesson 43: Pay for quality now or pay more later

• Structured systems analysis and design

• Object-oriented programming

• Information engineering

• Rapid application development

• Spiral model

• Test-driven development

• Rational Unified Process

• DevOps

More recently, agile software development in numerous variations—Extreme Pro-
gramming, Adaptive Software Development, Feature-Driven Development, Scrum,
Lean, Kanban, Scaled Agile Framework, and others—has exemplified this pursuit of
ideal solutions.

Alas, as Frederick P. Brooks, Jr. (1995) eloquently informs us, there are no silver
bullets: “There is no single development, in either technology or management tech-
nique, which by itself promises even one order-of-magnitude improvement within a
decade in productivity, in reliability, in simplicity.” All of the approaches in the pre-
ceding list have their merits and limitations; all must be applied to appropriate prob-
lems by properly prepared teams and managers. I’ll use a hypothetical new software
development approach called Method-9 as an example for this discussion.

Before you settle on any new development
approach, ask yourself, “What’s preventing us
from achieving those better results today?”

First Problem, Then Solution

The articles and books that its inventors and early adopters wrote about Method-9
praised its benefits. Some companies are drawn to Method-9 because they want their
products to satisfy customer needs better. Maybe you want to deliver useful software
faster (and who doesn’t?). Method-9 can get you there. Perhaps you wish to reduce the
defects that annoy customers and drain the team’s time with rework (again, who
doesn’t?). Method-9 to the rescue! This is the essence of process improvement: setting
goals, identifying barriers, and choosing techniques you believe will address them.

Chapter 7 Lessons About Process Improvement230

Before you settle on any new development approach, though, ask yourself,
“What’s preventing us from achieving those better results today?” (Wiegers 2019f).
If you want to deliver useful products faster, what’s slowing you down? If your goal
is fewer defects and less rework, why do your products contain too many bugs today?
If your ambition is to respond faster to changing needs, what’s standing in your way?

In other words, if Method-9 is the answer—at least according to that article you
read—what was the question?

I suspect that not all organizations perform a careful root cause analysis before
they latch on to what sounds like a promising solution. Setting improvement goals is
a great start, but you must also understand the current obstacles to achieving those
goals. You need to treat real causes, not symptoms. If you don’t understand those
problems, choosing any new approach is just a hopeful shot in the dark.

A Root Cause Example

Suppose you want to deliver software products that meet customers’ needs better
than in the past. You’ve read that Method-9 teams include a role called the Vision
Guru, who’s responsible for ensuring the product achieves the desired outcome.
“Perfect!” you think. “The Vision Guru will make sure we build the right thing.
Happy customers are guaranteed.” Problem solved, right? Maybe, but I suggest that,
before making any wholesale process changes, your team should understand why
your products don’t thrill your customers already.

Root cause analysis is a process of thinking backward, asking “why” several times
until you get to issues that you can target with thoughtfully selected improvement
actions. The first contributing cause suggested might not be directly actionable; nor
might it be the ultimate root cause. Therefore, addressing that initial cause won’t
solve the problem. You need to ask “why” another time or two to ensure that you’re
getting to the tips of the analysis tree.

Figure 7.1 shows a portion of a fishbone diagram—also called an Ishikawa or
cause-and-effect diagram—which is a convenient way to work through a root cause
analysis. The only tools you need are a few interested stakeholders, a whiteboard,
and some markers. Let’s walk through that diagram.

Your goal is to better meet customer needs with the initial release of your software
products. Write that goal on a long horizontal line. Alternatively, you could phrase
it as a problem statement: “Initial product release does not meet customer needs.”
In either case, that long horizontal line—the backbone in the fishbone diagram—
represents your target issue.

231Lesson 51: Watch out for “Management by Businessweek”

Next, ask your group, “Why are we not already meeting our customer needs?”
Now the analysis begins. One possible answer is that the team doesn’t get adequate
input to the requirements from end users—a common situation. Write that cause on
a diagonal line coming off the goal statement line. That’s a good start, but you need
a deeper understanding to know how to solve the problem. You ask, “Why not?”

One member of the group says, “We’ve tried to talk to real users, but their manag-
ers say they’re too busy to work with the software team.” Someone else complains
that the surrogate customer representatives who work with the team don’t do a good
job of presenting the ultimate users’ real needs. Write those second-level causes on
horizontal lines coming off the parent problem’s diagonal line.

end users are too busy to
work with the software team

surrogate customer reps don’t
represent real user needs well

busin
ess

 analys
is

is
developers don’t ask customer

no B
A on th

e te
am

not a
 co

re te
am sk

ill
reps the right questions

input from
 end users

inadequate requirem
ents

Better meet customer
needs with initial release

Figure 7.1 Root cause analysis often is depicted as a fishbone diagram.

A third participant points out that the developers who attempt to elicit require-
ments aren’t skilled at asking customer reps the right questions. Then comes the
usual follow-up question: “Why not?” There could be multiple reasons, including a
lack of education or interest in requirements on the developers’ part. It might be that
business analysis is neither a core team skill nor a dedicated team role. Each cause
goes onto a new diagonal line attached to its parent.

Now you’re getting to actionable barriers that stand between your team’s cur-
rent performance and where you all want to be. Continue this layered analysis until
the participants agree that they understand why they aren’t already achieving the
desired results. I’ve found this technique to be remarkably efficient at focusing the
participants’ thinking and quickly reaching a clear understanding of the situation.
The diagram might get messy; consider writing the causes on sticky notes so that you
can shuffle them around as the exploration continues.

Chapter 7 Lessons About Process Improvement232

Diagnosis Leads to Cure

In subsequent brainstorming sessions, team members can explore practical solutions
to address those root causes. Then you are well on your way toward achieving supe-
rior performance. You might conclude that adding experienced business analysts
(BAs) to your teams could be more valuable than adopting Method-9 with its Vision
Guru. Or maybe the combination of the two will prove to be the secret sauce. You
just don’t know until you think it through.

As you contemplate whether a new development method will work for you, look
past the hype and the fads. Understand the prerequisites and risks associated with
the new approach, and then balance those against a realistic appraisal of the poten-
tial payoff. Good questions to explore include these.

• Will your team need training, tools, or consulting assistance to get started and
sustain progress?

• Would the solution’s cost yield a high return on investment?

• What possible cultural impacts would the transition have on your team, your
customers, and their respective organizations and businesses?

• How ugly could the learning curve be?

The insights from a root cause analysis can point you toward better practices to
address each problem you discover. Without exploring the barriers between where
you are today and your goals, don’t be surprised if the problems are still there after
you switch to a different development strategy. Try a root cause analysis instead of
chasing after the Hottest New Thing someone read in a headline.

Root cause analysis takes less time than you might fear. It’s a sound investment in
focusing your improvement efforts effectively. Any doctor will tell you that it’s a good
idea to understand the disease before prescribing a treatment.

233Lesson 52: Ask not, “What’s in it for me?” Ask, “What’s in it for us?”

Appendix

Summary of Lessons

Requirements

 #1. If you don’t get the requirements right, it doesn’t matter how well you execute
the rest of the project.

 #2. The key deliverables from requirements development are a shared vision and
understanding.

 #3. Nowhere more than in the requirements do the interests of all the project stake-
holders intersect.

 #4. A usage-centric approach to requirements will meet customer needs better
than a feature-centric approach.

 #5. Requirements development demands iteration.

 #6. Agile requirements aren’t different from other requirements.

 #7. The cost of recording knowledge is small compared to the cost of acquiring
knowledge.

 #8. The overarching objective of requirements development is clear and effective
communication.

 #9. Requirements quality is in the eye of the beholder.

 #10. Requirements must be good enough to let construction proceed at an accept-
able level of risk.

9780137487776_print.indb 269 06/09/21 4:19 PM

269

 #11. People don’t simply gather requirements.

 #12. Requirements elicitation must bring the customer’s voice close to the develop-
er’s ear.

 #13. Two commonly used requirements elicitation practices are telepathy and clair-
voyance. They don’t work.

 #14. A large group of people can’t agree to leave a burning room, let alone agree on
exactly how to word some requirement.

 #15. Avoid decibel prioritization when deciding which features to include.

 #16. Without a documented and agreed-to project scope, how do you know whether
your scope is creeping?

Design

 #17. Design demands iteration.

 #18. It’s cheaper to iterate at higher levels of abstraction.

 #19. Make products easy to use correctly and hard to use incorrectly.

 #20. You can’t optimize all desirable quality attributes.

 #21. An ounce of design is worth a pound of recoding.

 #22. Many system problems take place at interfaces.

Project Management

 #23. Work plans must account for friction.

 #24. Don’t give anyone an estimate off the top of your head.

 #25. Icebergs are always larger than they first appear.

 #26. You’re in a stronger negotiating position when you have data to build your
case.

 #27. Unless you record estimates and compare them to what actually happened, you
will forever be guessing, not estimating.

 #28. Don’t change an estimate based on what the recipient wants to hear.

9780137487776_print.indb 270 06/09/21 4:19 PM

Appendix Summary of Lessons270

 #29. Stay off the critical path.

 #30. A task is either entirely done or it is not done: no partial credit.

 #31. The project team needs flexibility around at least one of the five dimensions of
scope, schedule, budget, staff, and quality.

 #32. If you don’t control your project’s risks, they will control you.

 #33. The customer is not always right.

 #34. We do too much pretending in software.

Culture and Teamwork

 #35. Knowledge is not zero-sum.

 #36. No matter how much pressure others exert, never make a commitment you
know you can’t fulfill.

 #37. Without training and better practices, don’t expect higher productivity to hap-
pen by magic.

 #38. People talk a lot about their rights, but the flip side of every right is a
responsibility.

 #39. It takes little physical separation to inhibit communication and collaboration.

 #40. Informal approaches that work for a small colocated team don’t scale up well.

 #41. Don’t underestimate the challenge of changing an organization’s culture as it
moves toward new ways of working.

 #42. No engineering or management technique will work if you’re dealing with
unreasonable people.

Quality

 #43. When it comes to software quality, you can pay now or pay more later.

 #44. High quality naturally leads to higher productivity.

 #45. Organizations never have time to build software right, yet they find the
resources to fix it later.

9780137487776_print.indb 271 06/09/21 4:19 PM

Quality 271

 #46. Beware the crap gap.

 #47. Never let your boss or your customer talk you into doing a bad job.

 #48. Strive to have a peer, rather than a customer, find a defect.

 #49. Software people love tools, but a fool with a tool is an amplified fool.

 #50. Today’s “gotta get it out right away” development project is tomorrow’s main-
tenance nightmare.

Process Improvement

 #51. Watch out for “Management by Businessweek.”

 #52. Ask not, “What’s in it for me?” Ask, “What’s in it for us?”

 #53. The best motivation for changing how people work is pain.

 #54. When steering an organization toward new ways of working, use gentle pres-
sure, relentlessly applied.

 #55. You don’t have time to make each mistake that every practitioner before you
has already made.

 #56. Good judgment and experience sometimes trump a defined process.

 #57. Adopt a shrink-to-fit philosophy with document templates.

 #58. Unless you take the time to learn and improve, don’t expect the next project to
go any better than the last one.

 #59. The most conspicuous repeatability the software industry has achieved is
doing the same ineffective things over and over.

General

 #60. You can’t change everything at once.

9780137487776_print.indb 272 06/09/21 4:19 PM

Appendix Summary of Lessons272

285

Index

Numbers

10x developer performance ratio, 170
$100 million syndrome, 206–207
100 percent done, 133

A

A/B testing, 78
abandoned projects, 201–207, 227
About Face (Cooper et al.), 100
absorbing risk, 144
abstraction

advantages of design, 75
iterating at high level of, 79–84

acceptance criteria, 31
acceptance tests, 15, 29, 32, 40, 48, 197,

198–199
ACM (Association for Computing

Machinery), 171
action planning for change, 262

template for, 266–267
activity network diagrams, 129–131
adaptive maintenance, 221
Advanced Automation System, 206
Affordable Care Act (ACA), 206–207
after-action reviews. See retrospectives
agile requirements, 28–33, 269

activity timing, 30–31
deliverable forms, 31–32
documentation detail, 30
representation of, 31–32
prioritization of, 32
roles and responsibilities for, 29
terminology for, 29

agile software development. See also
Scrum

accommodating change in, 106
architecture in, 226, 229, 246–247
business analyst on, 29, 33, 54
communication pathways for

requirements, 54
contingency buffers in, 118–119
cost of change in, 197
cultural change for, 182–184
definition of done in, 133
frameworks for, 229
iteration backlog, 66
job stories in, 25
lightweight and just-in-time

documentation, 30–31
Manifesto for Agile Software

Development, 36, 226, 253
planning game, 62
product backlog, 29, 30, 53, 54, 65, 66,

106, 119, 192
product owners, 10, 28, 36–37, 43,

53–54, 114, 170, 183
requirements in, 28–33, 269. See also

agile requirements, requirements
retrospectives in, 253
scope management in, 65, 137–138
spikes, 77–78
technical debt in, 93
user stories in, 24–25, 29, 30

air traffic control (ATC) system, 206
algorithm development, 73
alignment, of teams, 157–158
allocating requirements to design

components, 71–72

Z03_Wiegers_Index_p285-p312.indd 285 06/09/21 9:00 AM

Index286

ambiguous requirements, 31, 40, 44,
67–68

Ambler, Scott, 197
American Society for Quality, 189
analysis

paralysis, 34, 84, 257
requirements, 9
risk, 143–145
stakeholder, 18–20

analyst, business. See business analyst
(BA)

architectural design, 72, 82, 92, 195–196
interfaces, 75, 94–100, 270

architecture
agile projects and, 226, 229, 246–247
quality attributes and, 92

assessment, of current processes, 237, 262
Association for Computing Machinery

(ACM), 171
assumed requirements, 55–57
assumptions

defined, 56
and contingency buffers, 119–120
in estimates, 115, 117, 119–120, 129,

141–142
in requirements, 55–57, 248, 249–250

assurance, quality, 198
attributes, quality. See quality attributes
audiences for requirements, 38–39
authentication, multifactor, 91
automated testing tools, 220
availability, 88, 91

B

BA. See business analyst (BA)
BABOK (Business Analysis Body of

Knowledge), 46
Bach, James, 3
backlog

iteration, 66
product, 29, 30, 53, 54, 65, 66, 106,

119, 192

bad-job pressure, 207–213, 272
circumventing processes, 212–213
illustration of, 207–208
lack of knowledge, 211–212
power plays, 210
rushing to code, 211
scenarios for, 208–210
shady ethics, 212

barriers, removing, 107–108, 266
Beatty, Joy, 244, 247
Bentley, Jon, 3
best practices, 243–244
bottom-up change, 262
brainstorming, 4, 141–142, 215, 232
breaks, importance of, 111
Bright Hub PM, 142
Brooks, Frederick P. Jr. 76, 137, 229
Brooks’s Law, 137
Brosseau, Jim, 160
budget, as a project dimension, 136–140,

271
buffers, contingency, 116–121

advantages of, 68, 121
on agile projects, 118–119
assumptions in, 119–120
contracting and, 120–121
example of, 117–119
plans for risks in, 119–120

building in quality, 192–193, 200–202,
205–206

burning room, leaving a, 57–58, 270
business

analysis. See requirements
analyst. See business analyst (BA)
objectives, 63
requirements, 8, 15, 21, 26, 63
rules, 20, 33, 35–36, 38, 45, 50, 179

business analysis. See requirements
Business Analysis Body of Knowledge

(BABOK), 46
business analyst (BA), 10, 90

on agile projects, 29, 33, 54
as facilitator, 29–33

Z03_Wiegers_Index_p285-p312.indd 286 06/09/21 9:00 AM

Index 287

modeling for, 81
as project role, 10
project management and, 114

business requirements document
(BRD), 15

Businessweek, management by, 228–233,
272

buy-in, process improvement and, 234

C

Capability Maturity Model for Software
(CMM), 163, 187, 226

Capability Maturity Model Integration
(CMMI), 226, 246

cause-and-effect diagram, 231–232
change, 265. See also process

improvement
on agile projects,106
bottom-up, 262
cost of, 195–198
criteria for success of, 265
cultural, 180–184, 271
as cycle, 263
gentle pressure and, 239–240, 272
management, 106, 240–241
metrics for, 239
objectives of, 239
pain as motivation for, 236–238, 272
process of, 262–263
prioritizing, 264
rate of, 262–263
requirements, 116–117
scope, 107, 129
treating as a project, 240, 266–267

CHAOS report, 257–258
charter, project, 21
charts. See also diagrams; modeling

Gantt, 117–119
PERT, 129–131

clairvoyance, 55–57, 270
clashes, communication, 180

CMM. See Capability Maturity Model
for Software (CMM)

CMMI. See Capability Maturity Model
Integration (CMMI)

Code Complete (McConnell), 3, 161
code of ethics, 171
code

patches, 221
reuse, 94
reviews, 233. See also peer reviews

cohesion, 74
Cohn, Mike, 24, 27, 114
collaboration, 173–177, 271

barriers of space and time in, 174–175
by virtual teams, 175–176

collective versus individual results,
233–235

personal payoff, 235
team return on investment, 233–234

commitment versus support, 182
commitments, 105, 163–166, 271

chain of, 164–165
versus estimates, 105, 116
ethics and professionalism of,

163–164
inability to fulfill, 163–164
for process improvement, 240
resisting pressure to make, 163–166,

271
commitment management, 105
communication

barriers to, 112–113, 173–177, 271
benefits of written, 34–38
clashes, 180
collaboration and, 173–177, 271
explicit versus implicit, 249
friction from, 112–113
importance of, 170, 238
for knowledge transfer, 161–163
management, 106
pathways for, 52–54
public, 156

Z03_Wiegers_Index_p285-p312.indd 287 06/09/21 9:00 AM

Index288

representation techniques for, 40–41
requirements, 41, 48, 269
with stakeholders, 19–20
standards for, 88
verbal, 30
visual models for, 84

compliance, regulatory, 63
conflicting requirements, 146
conformance to standards, 88, 190
congruence, cultural, 155
Constantine, Larry, 74
constraints, 72, 187, 192

design and implementation, 45, 72,
248

interface, 96
from nonfunctional requirements, 88,

248
project dimension, 123–124, 129,

137–138, 139–471
schedule and budget, 68
from stakeholders, 17–18, 19–20
triple, 136, 190–191

context diagram, 66
contingency buffers, 116–121

advantages of, 68, 121
on agile projects, 118–119
assumptions in, 119–120
contracting and, 120–121
example of, 117–119
plans for risks in, 119–120

contingency plans, 106, 119–120, 144
continuous learning, 160–161
contract

management, 107
team, 35

contracting, 68, 120–121
Cooper, Alan, 100
corporate culture, 154. See also culture
corrective maintenance, 221–223
cost

of change, 195–198
of quality, 89, 203–205

of quality goals, 92
to repair defects, 195–197

coupling, 74
Cover Oregon project, 206–207
crap gap, 207–209, 272. See also bad-job

pressure
Creating a Software Engineering Culture

(Wiegers), 153
creativity and process, 226
critical chain project management, 117
critical path, 129–132, 271

defined, 129–131
staying clear of, 131–132

criticism, giving and accepting, 213–214
Crosby, Philip B., 190, 203
CRUD, 73
culture, 153–158. See also teamwork

changing, 180–184, 265, 271
changing to agile development,

182–184
congruence and, 155
corporate, 154
crystallizing, 156–157
defined, 153–154
first steps for, 158–159
fragility of, 154
healthy software engineering,

153–155, 158, 159, 160, 163
internalization of, 162, 184
knowledge and, 159–163, 271
management and, 154, 265
next steps for, 187–188
peer reviews and, 215–217
values, behaviors, and technical

practices, 181–182
Cunningham, Ward, 222
customers. See also stakeholders

are not always right, 145–148
back door processes of, 147
communication pathways for, 52–54
conflicting requests from, 146
ear of the developer and, 51–54, 270

Z03_Wiegers_Index_p285-p312.indd 288 06/09/21 9:00 AM

Index 289

positional power of, 148
as product champions, 52–54
respecting viewpoint of, 148–149
rights and responsibilities of, 172
as source of requirements and

constraints, 13–14
value to, 76, 91, 92, 93
voice of, 145–148

cycle, process improvement, 262–263

D

daily scrum, 59
DAR (display-action-response) model, 81
data

for estimation, 114–116
historical, 120, 124–127
as a negotiation aid, 121–123
software metrics, 126–127
validation of interface, 98–99

data flow diagrams, 244
database design, 73
Davis, Alan, 45
debt, technical. See technical debt
decision makers, 21
defects

containment, 199
cost to repair, 195–197
difficulty of finding, 197–198
effect on productivity, 200–202
finding versus fixing, 203
preventing, 141–142, 168, 198
tracking, 199–200
zero, 190

deferred requirements, 135
defined processes

judgment and experience versus,
244–247, 272

nondogmatism and, 246–247
rhythms versus, 245–246

degrees of freedom, 137–138, 139
deleted requirements, 135
deliverable forms, 31–32

deliverable templates, 162
Deming, Dr. W. Edwards, 262
dependencies, 106–107, 120, 128, 130,

164–165, 248, 249–250
contingency plans for, 106

design, 71–75
architectural, 72, 82
avoiding redesign and recoding with,

92–94, 270
database, 73
defined, 71
detailed, 73, 74, 81–82
first steps for, 75–76
good, 74–77
interfaces, 75, 94–100. See also

interfaces
iteration on, 76–84, 270
modeling, 81
next steps for, 100–101
prefactoring, 94
principles for, 74–75
prototypes in, 77–78. See also

prototypes
for quality, 223, 270
quality attributes in, 87–92.

See also quality attributes
refactoring, 93, 202, 222
requirements and, 71–72
user experience, 73–74, 99–100
user interface, See user interface

design
value of, 270
for X, 88

Design for X (Design for Excellence), 88
designer, 43
detail

documentation on agile projects, 30
progressive refinement of, 26–27
requirements, 45–46

detailed design, 73, 74, 81–82
developers, 43

performance variation of, 169–170
rights and responsibilities of, 172

Z03_Wiegers_Index_p285-p312.indd 289 06/09/21 9:00 AM

Index290

development, requirements, 9, 16–17, 269.
See also elicitation, requirements

on agile projects, 28–32, 269. See also
agile requirements

business analyst role in, 13–14
communication, 41, 269
documentation for, 33–37. See also

documenting requirements
emergent functional and

nonfunctional requirements, 27–29
feature bloat in, 22
objective of, 37–41, 269
purpose of, 11
subdomains of, 9–10
timing of, 13–14
usage-centric strategy for, 22–23
vision and understanding in, 15–17

DFD (data flow diagrams), 244
DfX, 88
diagrams. See also charts

activity network, 129–131
cause-and-effect, 231–232
context, 66
data flow, 244
dialog map, 82–83
ecosystem, 66
flexibility, 138–140
Kiviat, 138–140
in requirements, 40–41
state-transition, 82
statechart, 82
UML, 84
use case, 66

dialog maps, 82–83
Dijkstra, Edsger, 74
direct users, 19
discussion groups, 162
display-action-response (DAR) model, 81
distance, as communication barrier,

112–113, 175–176
document analysis, 50
document templates, shrinking to fit,

247–252, 272

documentation, 161–162
benefits of, 30, 34–36
cost of recording, 33, 269
lightweight and just-in-time, 30–31
project charter, 21
vision and scope, 21, 65–66

documenting requirements, 33–37
balance in, 36–37
benefits of, 34–36
cost of recording, 33–37, 269
detail in, 30
fear of writing, 34
limitations of, 36–37, 269

dogmatic, not being, 170, 187, 210,
246–247

doing more with less, 167
done, definition of, 122–136, 271

no partial credit, 132, 134–135
one hundred percent done, 133
planning checklist for, 132–134
requirements status tracking, 135
value and, 136

doors, office, 176–177
durability, 89

E

ear of the developer, 51–54, 270
Eastman Kodak Company. See Kodak
ecosystem diagram, 66
effective hours, 109–111
efficiency, 88, 91
effort, metrics for, 112, 126, 203, 255
elicitation, requirements, 46–51, 270

clairvoyance and, 55–57, 270
communication pathways for, 52–54
conflicting requests in, 146
context of, 48–49
defined, 47
document analysis, 50
gathering versus, 46–47
interviews, 49
observations, 50

Z03_Wiegers_Index_p285-p312.indd 290 06/09/21 9:00 AM

Index 291

practices for, 55–57, 270
prototypes, 51
requirements for, 270
scope creep, 64–68
solutions versus needs in, 146
surveys, 50
techniques for, 49–51
telepathy and, 55–57, 270
voice of customer in, 145–148
wikis, 50
workshops, 49, 57–61

emergent requirements
functional, 27–28
nonfunctional, 28–29

emotions
buy-in for process improvement, 234
retrospectives and, 254

epics, 29
errors, user, 86–87
estimates, 114–116

assumptions in, 115, 117, 119–120,
129, 141–142

best response to a request for,
114–116, 271

changing, 127–128
versus commitment, 105, 116
versus goals, 127–129
presenting as a range, 115
when to adjust, 129

estimation, 114–116
from historical data, 124–127
process, 115

ethics
code of, 171
shady, 212

Evans, Gary K. 99
event lists, 66
expectation management, 15, 104–105
exposure, risk, 144–145
extensibility, 89
external interface requirements, 8
external quality, 192
external stakeholders, 18
exuberance, irrational, 150

F

facilitation, 29–33, 59
fault handling, 89
fear of writing, 34
Fearless Change (Manns and Rising), 262
feasibility, of requirements, 43
feature road map, 66
feature tree, 66
feature-centric requirements approach,

21–25, 269
features

bloat, 22
prioritization of, 61–64
unused, 21–22
versus usage, 22–23

Federal Aviation Administration’s
Advanced Automation Program,
206

feeding buffer, 118
First Steps

requirements, 11–12
design, 75–76
project management, 108–109
culture and teamwork, 158–159
quality, 194–195
process improvement, 228

fishbone diagram, 231–232
fitness for use, 190
five-dimensional analysis, 136–140, 271
flexibility diagrams, 138–140
float time, 130
flow, 109–111
flow, task, 22, 73–74, 83
focus, change efforts and, 264
fool with a tool, 217–220
foundational functionality, 64
frameworks for agile software

development, 229, 241–253
freedom, degrees of, 137–138, 139
friction, project, 109–113

additional sources of, 112–113
effective hours and, 109–112
example of, 109

Z03_Wiegers_Index_p285-p312.indd 291 06/09/21 9:00 AM

Index292

planning implications of, 113
project management and, 109–113,

270
task switching and flow, 109–111

functional requirements, 8, 29, 31,
198–199

G

Gantt chart, 117–119
garbage in, garbage out (GIGO), 220
gathering requirements. See elicitation,

requirements
gentle pressure, relentlessly applied,

239–240, 272
GIGO (garbage in, garbage out), 220
glossary, 39
going slow to go fast, 168
goal versus estimate, 128
good design, 74–77
good enough, 44–46

quality, 45, 193
requirements, 44–46, 269

good practices, 162, 243–244, 246
Gottesdiener, Ellen, 59
grammar checker, 219
group memory, 179
group workshops, 49, 57–61
groups, discussion, 162
Guiney, Eamonn, 23, 244

H

hardware engineers, 37, 38, 43
Harris, Sidney, 72
HCI, 73–74
healthy software engineering culture,

153–155, 158, 159, 160, 163
HealthCare.gov, 206–207
heuristics for user interface design, 100
hiding information, in design, 74
historical data, 120

for estimation, 124–127

hoarding of information, 160
horizontal prototypes, 78–79
horizontal scope, 59
hours, effective, 109–111
human–computer interaction (HCI),

73–74

I

IBM, inspection program at, 234
icebergs, 116–121, 271
IDEF0, 41
IEC (International Electrotechnical

Commission), 250
IEEE (Institute of Electrical and

Electronics Engineers), 171,
247, 250

IEEE Computer Society, 171, 247
IIBA (International Institute of Business

Analysis), 10, 46
IIBA Business Analysis Body of

Knowledge, 46
implied requirements, 55–57
inch-pebbles, 134–135
incremental development, 98, 121, 257.

See also agile software development
indirect users, 19
individual versus collective results, 233–235

personal payoff, 235
team return on investment, 233–234

information culture
healthy, 163
information hoarding, 160
knowledge exchange and continuous

learning, 160–161
knowledge transfer techniques,

161–162
lack of knowledge, 211–212

information hiding, in design, 74
information hoarding, 160
inputs, validating, 98–99
inspection, 42, 215, 234. See also peer

reviews

Z03_Wiegers_Index_p285-p312.indd 292 06/09/21 9:00 AM

Index 293

installability, 88
Institute of Electrical and Electronics

Engineers (IEEE), 171, 247, 250
institutionalization, of practices, 184
integrity, 88, 91
interfaces, 75, 94–100, 270

input data validation in, 98–99
making easy to use, 84–87
system problems at, 94–95
technical issues with, 96–98

internal quality, 192
internalization

of practices, 154, 167, 184, 205
of process, 246

International Electrotechnical
Commission (IEC), 250

International Institute of Business
Analysis (IIBA), 10, 46

International Organization for
Standardization (ISO), 250

interoperability, 88
interruptions, 175

impact of, 110–111
reducing, 111

interviews, 49
invisible pain, 237–238
iron triangle, project management, 136
irrational exuberance, 150
Ishikawa diagram, 231–232
ISO (International Organization for

Standardization), 250
iteration

contingency buffers in agile, 118
on designs, 76–84, 269–270
at high level of abstraction, 79–84
rapid visual, 81–83
on requirements, 25–28, 84, 269–270
on user interface architecture, 92

iteration backlog, 66
iterative development, 117. See also agile

software development

J

job stories, 25
Jones, Capers, 116–117, 142
Juran, Joseph M., 190
just-in-time documentation, 30–31

K

Kaner, Cem, 3
Kerth, Norman L., 76–77, 252
key performance indicators, 239
Kiviat diagram, 138–140
knowledge. See also information culture

acquisition of, 241–242, 269
cost of recording, 33–37, 269
is not zero-sum, 159–163, 271
lack of, 211–212
learning curve, 242–243
sharing of, 159–162
transfer, 161–162

Kodak, 2, 4, 161, 254–255
Kulak, Daryl, 23, 244

L

large workshop groups, problems with,
57–61, 270

large-scale software failures, 206
late defect detection, 197–198
learning. See also knowledge

continuous, 160–161. See also
information culture

merits of, 257–258
from peer reviews, 162, 235
sessions, 242

learning curve, 169, 242–243
left, shifting quality to the, 198–199
Leonard, Andrew, 179
lessons learned, 254–255, 267
Lessons Learned in Software Testing

(Kaner, Bach, and Pettichord), 3

Z03_Wiegers_Index_p285-p312.indd 293 06/09/21 9:00 AM

Index294

life cycle stage, containing defects to,
199–200

lightweight documentation, 30–31
lint, 219
Liskov, Barbara, 74
Lister, Tim, 17

M

MacKay, Jory, 111
maintainability, 89
maintenance, software, 221–223

adaptive, 221
categories of, 221
corrective, 221
perfective, 221
preventive, 221
technical debt and, 221–222

Making Process Improvement Work
(Potter and Sakry), 266

management, 244, 245, 272
behaviors, 240–241
by Businessweek, 228–233, 272
congruence, 155
expectation, 15, 104–105
influence on culture, 154, 265
product, 43, 53–54
project. See project management
requirements, 9, 220
rights and responsibilities of, 172
senior, 183, 184
steering by gentle pressure, 239–240,

272
managing upward, 240–241
Manifesto for Agile Software

Development, 36, 226, 253
Manns, Mary Lynn, 262
Manshreck, Tom, 3
manufacturability, 89
manuscript reviewers, 131, 166
maps

dialog, 82–83
feature road, 66
user story, 66

market requirements document (MRD),
15

marketing, 15, 38, 43, 45, 53, 54
maturity levels, process, 163, 187, 226
McConnell, Steve, 3, 127, 142, 161
meetings

daily scrum, 59
peer review, 215, 233–234
virtual, 175, 176

mentoring, 161
methodology, 229, 245, 246–247
lightweight, 226
metrics

process improvement, 239
software, 126–127, 239

Microsoft, 179
work effort, 112, 126, 203, 255
Microsoft PowerPoint, 83
Microsoft Project, 218
Miller, Roxanne, 90
Minott, Zachary, 5
mistakes, software engineering

avoiding, 241–244, 272
danger of repeating, 256–258, 272

mistakes, user, 86–87
mitigation of risk, 144–145
mockup, 78–79
modeling

abstraction in, 79–84
designs, 81
dialog map, 82–83
iteration during, 79–84
notations for, 41, 83–94
requirements, 84
tools, 83–84, 218
visual, 40–41, 84

more with less, doing, 167
multifactor authentication, 91
multitasking, 109–111
Myers, Glenford, 74
Mythical Man-Month, The (Brooks), 76

Z03_Wiegers_Index_p285-p312.indd 294 06/09/21 9:00 AM

Index 295

N

Nagappan, Raj, 24
natural language, 40
needs versus solutions, 146
negotiation, 121–123, 138

commitments, 105
data and, 121–123
principled, 123–125
of project priorities,138

Next Steps
requirements, 69
design, 100–101
project management, 151
culture and teamwork, 187–188
quality, 224
process improvement, 259

Nichols, Bill, 170
Nielsen, Jakob, 100
no silver bullets, 229
nondogmatic, being, 246–252
nonfunctional requirements, 8, 88–92.

See also quality attributes
architecture and, 92
as constraints, 88
optimizing, 90–91
prioritizing, 91
trade-offs between, 88, 91, 93

O

Obamacare, 206–207
observation, of users, 50
offices, 174–175, 176–177
one hundred million dollar syndrome,

206–207
one hundred percent done, 133
optimizing nonfunctional requirements,

90–91
Oregon healthcare system, 206–207
owner, product, 10, 28, 36–37, 43, 54,

114, 170, 183

P

Page-Jones, Meilir, 200
pain, points of, 228, 236–238, 272

as change motivator, 236
examples of, 236–237
invisible, 237–238

paper prototypes, 78–79
Parnas, David, 74
partial credit, 132, 134–135
passaround, 215
patches, code, 221
path, critical, 129–132

defined, 129–131
staying clear of, 131–132

Pearls from Sand, 16
peer deskcheck, 215
peer reviews, 198, 213–217, 233–235, 244

benefits of, 162, 214, 235, 244
best practices for code, 216
cultural aspects of, 215–217
guidelines for, 216–217
inspections, 42, 215, 234
knowledge exchange through, 162, 235
personal payoff from, 235
of requirements, 42–43
return on investment from, 233–234
ways to perform, 215–216
when to perform, 205–206

people management, 104
perfective maintenance, 221
performance, 89, 91

of individual software developers,
169–170

personas, 20
PERT charts, 129–131
Pettichord, Bret, 3
pilot

activities for process improvement,
240, 263

system, 76
Plan-Do-Check-Act cycle, 262–263
Planguage, 90

Z03_Wiegers_Index_p285-p312.indd 295 06/09/21 9:00 AM

Index296

planning
done, definition of, 132–134
for process improvement, 262
for quality, 189–190
worksheets, 125, 133

plans, action, 262
template for, 266–267

Podeswa, Howard, 33
points of pain. See pain, points of
portability, 89, 91
positional power, 123, 128, 148
positives, false, 219
postmortems. See retrospectives
post-project reviews. See retrospectives
power plays, 210
prefactoring, 94
Prefactoring (Pugh), 72
presentations, 161
pressure, gentle, 239–240, 272
pretending, in software, 149–151, 271

fantasy thinking, 149
game playing, 150–151
irrational exuberance, 150

preventive maintenance, 221–223
Prime Directive for retrospectives, 253
principled negotiation, 123–125
priorities, 106, 110, 113, 131, 140, 148

negotiating project, 138
prioritization, requirements, 32, 44, 138, 269

criteria for, 62–64
decibel, 61–64, 270
techniques for, 62

prioritizing
changes, 264
risks, 141, 143, 144, 145

problems
requirements, 12
design, 75
project management, 108
culture and teamwork, 158
quality, 194
process improvement, 228

process
assessment of, 262
benefits of, 226–227
choosing an appropriate, 229–233
circumventing, 212–213
defined, 245–246
fear of, 226–227
internalizing, 246
judgment and experience versus, 244
maturity levels, 163, 187, 226
negative connotations surrounding,

226
nondogmatism and, 246–247
prioritizing changes, 264
rhythm versus, 245–246
scaling up, 177–180, 271
tools versus, 219–221
verification of, 264

process improvement, 225–228
action plan for, 262
challenges of, 226–227
culture change for, 265, 272
cycle for, 262–263
defined, 225–226
first steps for, 228
gentle pressure, relentlessly applied,

239–240, 272
key performance indicators, 239
management behaviors, 265, 272
next steps for, 259
objective of, 225
policies, 181
retrospectives and, 254, 255–256
tracking progress of, 240
treating as a project, 240, 266–267

product
backlog, 29, 30, 53, 54, 65, 66, 106,

119, 192
champion, 53–54
defined, 4
making easy to use, 84–87
manager, 53–54

Z03_Wiegers_Index_p285-p312.indd 296 06/09/21 9:00 AM

Index 297

owner, 10, 28, 36–37, 43, 54, 114, 170,
183

requirements, 18. See also
requirements

productivity, 170
increasing, 166–168, 271
individual developer, 169–170
quality and, 200–202, 271–272
tools, 169

Programming Pearls (Bentley), 3
progressive refinement of requirements

detail, 26–27
project

buffer, 117
charter, 21
defined, 103
dimensions, 136–140, 271
estimation. See estimation
friction, 109–113. See also friction,

project
management. See project management
manager. See project manager
planning, 132–134, 189–190, 262
retrospectives. See retrospectives
priorities, 32, 44, 61–64, 138, 269
sponsor, 43, 122–123
treating change as, 240, 266–267

project management, 103–108
change management in, 106
commitment management in, 105
communication management in, 106
contingency buffers in, 116–121
contract management in, 107
critical path, 129–132, 271
defined, 103–104
dependency management in, 106–107
done, definition of, 122–136, 271
estimates. See estimates
expectation management in, 104–105
first steps for, 108–109
five-dimensional analysis in, 136–140,

271
iron triangle, 136

negotiation, 121–123. See also
negotiation

next steps for, 151
people management in, 104
pretending and wishful thinking in,

149–151, 271
removing barriers in, 107–108
requirements management in, 104
resource management in, 106
risk. See risk; risk management
supplier management in, 107
iron triangle, 136
task management in, 105
triple constraint, 136, 190–191
uncertainty in, 116–121, 271
voice of customer in, 145–148

Project Management Institute, 151
project management iron triangle, 136
project manager, 105–108, 137–138

crap-gap scenarios and, 209
defined, 103
five-dimensional analysis by, 137–141
process assessment activity and, 238
requirements planning and, 36–37, 43,

67–68
rights and responsibilities of, 172
unreasonable, 186
use of experience-based knowledge

by, 258
project retrospectives. See retrospectives
project priorities, negotiating, 138
Project Retrospectives (Kerth), 252
project tracking, 135–136, 240
proof-of-concept prototype, 78
prototypes, 51, 77–78, 198

defined, 77
design and, 71, 77–79
horizontal, 78–79
paper, 78–79
power of, 77–78
proof-of-concept, 78
requirements and, 14, 15, 28, 40,

51, 57

Z03_Wiegers_Index_p285-p312.indd 297 06/09/21 9:00 AM

Index298

user interface, 73–74, 78–79
vertical, 78

Pugh, Ken, 73, 93, 94

Q

quality, 136–138, 189–193
as a project dimension, 271
assurance, 198
attributes. See quality attributes
building in, 192–193, 200–202, 205–206
control, 198
cost of, 195–197, 203–205
defined, 189–190
effect on productivity, 200–202, 209,

271–272
external, 192
first steps for, 194–195
internal, 192
metrics for, 126–128, 255
next steps for, 224
of requirements, 41–44, 269
requirements quality checklist, 42–45
shifting to the left, 198–199

quality attributes, 270
architecture and, 92
designing for, 90–91
lists of, 88–92
optimizing, 88–92
prioritizing, 90–91
specifying, 90
trade-offs between, 88, 91, 93

quality factors. See quality attributes
“Quality is free” (Crosby), 203
quality of service requirements.

See quality attributes

R

rapid visual iteration, 81–83
recoding, avoiding, 92–94, 270
recording knowledge, cost of, 33–37, 269

redesign, avoiding, 92–94, 270
refactoring, 93, 222
refining requirements details, 26–27
regulatory compliance, 63
reliability, 89, 91
repair, cost of, 195–197
reports, CHAOS, 257–258
representation, of requirements, 31,

40–41
requests, from customers, 145–148
requirements, 7–11, 269

agile. See agile requirements
ambiguity in, 31, 40, 44, 67–68
analysis, 9
assumed, 55–57
audiences for, 38–39
business, 8, 15, 21, 26, 63
categories of, 8–9
characteristics of high-quality, 42–45
communication of, 41, 269
communication pathways, 52–54
complete, 13–18, 269
conflicting, 146
conformance to, 88, 190
defined, 8
detail in, 26–27, 30, 45–46
development. See development,

requirements
documenting, 33–37. See also

documenting requirements
elicitation. See elicitation,

requirements
emergent, 27–29
external interface, 8
first steps for, 11–12
functional, 8, 27–28, 31
good enough, 44–46, 269
growth, 68, 116–121
implied, 55–57
iteration on, 25–28, 84, 269
management, 9, 104
management tools, 218, 220
modeling of, 40–41, 84

Z03_Wiegers_Index_p285-p312.indd 298 06/09/21 9:00 AM

Index 299

next steps for, 69
nonfunctional, 8, 28–29. See also

nonfunctional requirements;
quality attributes

peer reviews of, 42–43
perfect, 44
prioritization. See prioritization,

requirements
and prototypes, 14, 15, 28, 40, 51, 57
quality checklist, 42–45
quality of, 41–44, 269
representation of, 31, 40–41
specification. See specification,

requirements
solution, 9, 17, 46, 54
status tracking, 135
testing, 198–199, 220
transition, 8
types of, 8
usage-centric approach to, 22–23, 269
user, 8, 20, 25, 26, 49, 54, 60, 147
validation, 9
ways to represent, 40–41

Requirements by Collaboration
(Gottesdiener), 59

requirements management (RM) tools,
218, 220

Requirements Modeling Language
(RML), 41

resource management, 106
resource usage, 89
responsibilities and rights. See rights and

responsibilities
retrospectives, 127, 252–256

on agile projects, 253
characteristics of, 252–253
emotional component of, 254
post-retrospective activities, 255–257
Prime Directive, 253
risks gathered from, 142, 252, 254, 255
structure of, 254–255

return on investment (ROI)
from peer reviews, 233–234
from training, 240

reusability, 89, 91
reuse, 94
reverse engineering, 33
reviewers, manuscript, 131, 166
reviews. See peer reviews
rework

cost of, 203
design to reduce, 92–94, 270
requirements development to reduce,

12, 13, 44, 56–57
quality problems and, 200, 202–203
time required for, 112–113, 125,

126–127
software process improvement to

reduce, 225, 230, 234
rhythms, 245–246
Rice, David, 223
rights and responsibilities, 171–173, 235,

271
of autonomous teams, 173
of customers, 172
of developers, 172
of project managers or sponsors, 172

Rising, Linda, 262
risk

absorbing, 144
analysis, 143–145
avoidance, 144
condition–consequence format,

143–144
contingency plans for, 144
and estimation, 115
exposure, 144–145
gathered from retrospectives, 142, 252,

254, 255
identifying, 141–143
lists, 142–145
management. See risk management
mitigation, 144–145
prioritizing, 144
transferring, 144

risk analysis and contingency buffers, 117
risk management, 105, 140–141,

143–145, 271

Z03_Wiegers_Index_p285-p312.indd 299 06/09/21 9:00 AM

Index300

RML (Requirements Modeling
Language), 41

Robertson, James, 47, 50
Robertson, Suzanne, 47, 50
robustness, 89, 91
root cause analysis, 228–233

benefits of, 228–230
cause-and-effect diagram, 231–232
example of, 230–232

root causes of problems
requirements, 12
design, 76
project management, 109
culture and teamwork, 159
quality, 194
process improvement, 228

Rothman, Johanna, 196
rules, business, 20, 33, 35–36, 38, 45, 50,

179
rushing to code, 211

S

safety, 89, 91
Santayana, George, 256–257
scalability, 89
scaling up processes and methods,

177–180, 271
communication clashes, 180
processes and tools, 178–179
specialization, 179

schedule, as a project dimension,
136–140, 271

schedule estimation, 111, 136–140
scope, 26–68, 270

ambiguous requirements and, 31, 40,
44, 67–68

as a project dimension, 136–140, 271
changing, 67–68, 136–140
on contracted projects, 68, 107
creep, 56–57, 64–68, 270
defined, 65
horizontal, 59
project, 66–67

representing, 65–66
vertical, 59

Scrum, 54, 59, 182–184, 246
scrum, daily, 59
“Scrum Guide, The” (Schwaber and

Sutherland), 246
security, 89, 91
senior management, 183, 184
serviceability, 89
shared vision, 15–17
Shewhart Cycle, 262–263
shrink-to-fit philosophy, 247–252, 272
silver bullets, no, 229
simple matter of programming (SMOP),

212
simulation, 83
size, metrics for, 126, 255
slack time, 119, 120, 130–131
Software Engineering Code of Ethics and

Professional Practice, The, 171
software engineering culture, healthy,

153–155, 158, 159, 160, 163
Software Engineering at Google (Winters,

Manshreck, and Wright), 3
Software Engineering Institute, 170
Software Estimation (McConnell), 127
software metrics, 126–127, 239
software process improvement.

See process improvement
software requirements specification

(SRS), 11, 15, 30, 39, 46
template for, 247–249

Software Requirements (Wiegers and
Beatty), 244

solution
defined, 4
versus needs, 146
requirements, 9, 17, 46, 54
specialization, 179

specification, requirements, 9, 17, 29
goal of, 15, 39, 45
template for, 247–249

SPI (software process improvement).
See process improvement

Z03_Wiegers_Index_p285-p312.indd 300 06/09/21 9:00 AM

Index 301

spike, 77–78
Spolsky, Joel, 110
sponsor, project, 43, 122–123
sprint. See also iteration

backlog, 66
goal, 173

SRS. See software requirements
specification (SRS)

staff, as a project dimension, 136–140,
271

stakeholders, 42–43, 148. See also
customers

analysis of, 18–20
conflicting requirements from, 146
defined, 17
examples of, 18, 19
interests of, 4, 17–21, 145–149
as source of requirements and

constraints, 13–14
standards, conformance to, 88, 190
Standish Group, The, 170, 257
static code analysis tools, 219
steering

gentle pressure, relentlessly applied,
239–240, 272

managing upward, 240–241
stories, user, 24–25, 29–31, 48, 62, 77–78
story maps, 66
story points, 118–119
structured analysis and design, 41
subdomains, of requirements

engineering, 9–10
supplier management, 107
support, versus commitment, 182
surrogate representatives, 146–147
surveys, 50
sustainabiity, 89

T

task
dependencies, 129–130
management, 105

planning, 133–134
sequence of, 130
switching, 109–111
tracking completion, 134

team
alignment of, 157–158
contract, 107
review, 215
virtual, 175–176

teamwork, 153–158. See also culture
alignment and, 157–158
commitment in, 163–166, 271
communication and collaboration in,

173–177, 271
culture and, 271
first steps for, 158–159
mentoring, 161
next steps for, 187–188
peer reviews and, 233–235, 244

technical debt, 93, 221–223
conscious, 222–223
refactoring and, 93, 222
repaying, 168, 222
software maintenance and, 221–222

technical ransom, 160
technical reviews. See peer reviews
technical talks, 161
telepathy, 55–57, 270
templates, 39, 266–267

action planning, 266–267
collection of examples, 162
job story, 25
populating, 249
shrinking to fit, 247–252, 272
software requirements specification,

247–249
use cases, 23, 25, 39
user story, 24
vision and scope document, 39, 65–66
vision statement, 16–17

test-driven development, 27, 198–199
tester, 43
testing, 115, 191, 198, 202, 203

Z03_Wiegers_Index_p285-p312.indd 301 06/09/21 9:00 AM

Index302

acceptance, 15, 29, 32, 40, 48, 197,
198–199

automated, 220
A/B, 78
pushing to the left, 198–199
regression, 115, 209, 223
requirements, 78, 198–199, 220
unit, 209
usability, 78, 85

tests, acceptance, 198–199
thinking, merits of, 258
time

metrics for, 126, 255
needed for process improvement, 227,

239, 240, 255
waste of, 62, 79, 92, 99, 114–115,

167–168, 193, 208, 236, 255–256
time zones, 174–175
tools, 217–220, 251, 272

for modeling, 83–84, 218
processes and, 178–179
for quality, 217–220
requirements management, 218, 220
for security, 98

traceability, of requirements, 44
tracking

defects, 199–200
project, 135–136, 240
requirements status, 135
task completion, 134

trade-offs
project dimensions,137
quality attributes, 88, 91, 93

training, 4, 161, 271
versus achievement, 240
cost of quality and, 204
development of, 125, 133
to improve capability, 169, 271
limitations of, 181, 183
presentations and, 161
for process improvement, 240
and transition requirements, 9
return on investment from, 240

transition requirements, 8
triple constraint, 136, 190–191

U

UI design. See user interface (UI) design
UML (Unified Modeling Language),

41, 84
understanding, shared, 15–17
Unified Modeling Language (UML),

41, 84
unreasonable people, 185–187, 271
upgradability, 89
usability, 89, 91
usage, product, 8, 21–23, 63

versus features, 22–23
usage-centric

design, 200
requirements approach, 21–25, 269

use cases, 22–23, 29, 31, 39, 66, 244
user classes, 63

disfavored, 19
favored, 20, 63

user experience (UX) design, 73–74,
99–100, 270

user interface (UI) design, 73–74,
84–87, 270

architecture of, 92
detailed, 73, 74, 81–82
guidelines for, 99–100
iterating on, 84–87
making easy to use, 84–87
optimizing, 88–92
and prototypes, 73–74, 78–79

user mistakes, 86–87
user representatives, 43, 52–54
user requirements, 8, 20, 25, 26, 49, 54,

60, 147. See also use cases; user
stories

user stories, 29, 30, 48, 62
spikes, 77–78
templates for, 24–25
user story maps, 66

Z03_Wiegers_Index_p285-p312.indd 302 06/09/21 9:00 AM

Index 303

users
classes of, 63
direct, 19
indirect, 19
observation of, 50
as product champions, 52–54

V

value, to customers, 76, 91, 92, 93
variation of developer performance,

169–170
velocity, 112, 118–119, 126
verifiability, 89
verification

of new processes, 263
of requirements, 44, 135

vertical prototypes, 78
vertical scope, 59
virtual teams, 175–176
vision

product, 16–17, 21
shared, 15–17, 269

vision and scope document, 16–17,
21, 39, 65–66

vision statement, 16–17, 21
template for, 16

visual models, 40–41, 81–84
voice of the customer, 145–148

W

walkthrough, 215
waste of time, 62, 79, 92, 99, 114–115,

167–168, 193, 208, 236, 255–256
Weinberg, Gerald, 190
Wideband Delphi, 105
wikis, 50
Winters, Titus, 3
wishful thinking, 149
work effort, 126–127

metrics, 112, 126, 203, 255
worksheets, planning, 125, 133
workshops, elicitation, 49, 57–61
Wright, Hyrum, 3
written documentation.

See documentation

X-Y-Z

zero defects, 190
zero-sum, knowledge is not, 159–163,

271

Z03_Wiegers_Index_p285-p312.indd 303 06/09/21 9:00 AM

	Cover
	Half Title
	Title Page
	Copyright Page
	Dedication
	Contents
	Foreword
	Acknowledgments
	About the Author
	Chapter 1: Learning from Painful Experience
	My Perspective
	About the Book
	A Note on Terminology
	Your Opportunity

	Lesson 1: Get the requirements right or the project will fail
	The Right Requirements—But When?
	The Right Requirements—But How?

	Lesson 17: Design demands iteration
	The Power of Prototypes
	Proofs of Concept
	Mock-ups

	Lesson 23: Work plans must account for friction
	Task Switching and Flow
	Effective Hours
	Other Sources of Project Friction
	Planning Implications

	Lesson 35: Knowledge is not zero-sum
	The Knowledge Hog
	Rectifying Ignorance
	Scaling Up Knowledge Transfer
	A Healthy Information Culture

	Lesson 43: Pay for quality now or pay more later
	The Cost-of-Repair Growth Curve
	Harder to Find
	Early Quality Actions

	Lesson 51: Watch out for “Management by Businessweek”
	First Problem, Then Solution
	A Root Cause Example
	Diagnosis Leads to Cure

	Appendix: Summary of Lessons
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Y-Z

