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Foreword

Artificial intelligence (AI) has seen impressive progress over the last decade. 
Humanity’s dream of building intelligent machines that can think and act like 
us, only better and faster, seems to be finally taking off. To enable everyone to 
be part of this historic revolution requires the democratization of AI knowledge 
and resources. This book is timely and relevant toward accomplishing these lofty 
goals.

Learning Deep Learning by Magnus Ekman provides a comprehensive instructional 
guide for both aspiring and experienced AI engineers. In the book, Magnus shares 
the rich hands-on knowledge he has garnered at NVIDIA, an established leader in 
AI. The book does not assume any background in machine learning and is focused 
on covering significant breakthroughs in deep learning over the last few years. 
The book strikes a nice balance and covers both important fundamentals such as 
backpropagation and the latest models in several domains (e.g., GPT for language 
understanding, Mask R-CNN for image understanding).

AI is a trinity of data, algorithms, and computing infrastructure. The launch of the 
ImageNet challenge provided a large-scale benchmark dataset needed to train 
large neural networks. The parallelism of NVIDIA GPUs enabled the training of 
such large neural networks. We are now in the era of billion, and even trillion, 
parameter models. Building and maintaining large-scale models will soon be 
deemed a prerequisite skill for any AI engineer. This book is uniquely placed to 
teach such skills. It provides in-depth coverage of large-scale models in multiple 
domains.

The book also covers emerging areas such as neural architecture search, which 
will likely become more prevalent as we begin to extract the last ounce of 
accuracy and hardware efficiency out of current AI models. The deep learning 
revolution has almost entirely occurred in open source. This book provides 
convenient access to code and datasets and runs through the code examples 
thoroughly. There is extensive program code available in both TensorFlow and 
PyTorch, the two most popular frameworks for deep learning.
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I do not think any book on AI will be complete without a discussion of ethical 
issues. I believe that it is the responsibility of every AI engineer to think critically 
about the societal implications around the deployment of AI. The proliferation of 
harassment, hate speech, and misinformation in social media has shown how 
poorly designed algorithms can wreak havoc on our society. Groundbreaking 
studies such as the Gender Shades project and Stochastic Parrots have shown 
highly problematic biases in AI models that are commercially deployed at scale. I 
have advocated for banning the use of AI in sensitive scenarios until appropriate 
guidelines and testing are in place (e.g., the use of AI-based face recognition 
by law enforcement). I am glad to see the book cover significant developments 
such as model cards that improve accountability and transparency in training 
and maintaining AI models. I am hoping for a bright, inclusive future for the AI 
community.

—Dr. Anima Anandkumar
Bren Professor, Caltech

Director of ML Research, NVIDIA
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Foreword

By training I am an economist. Prior to my work in technical education, I spent 
years teaching students and professionals well-developed frameworks for 
understanding our world and how to make decisions within it. The methods and 
skills you will discover in Learning Deep Learning by Magnus Ekman parallel the 
tools used by economists to make forecasts and predictions in a world full of 
uncertainty. The power and capabilities of the deep learning techniques taught in 
this book have brought amazing advances in our ability to make better predictions 
and inferences from the data in the world around us.

Though their future benefits and importance can sometimes be exaggerated, 
there is no doubt the world and industry have been greatly affected by deep 
learning (DL) and its related supersets of machine learning (ML) and artificial 
intelligence (AI). Applications of these technologies have proven durable and are 
profound. They are with us everywhere: at home and at work, in our cars, and on 
our phones. They influence how we travel, how we communicate, how we shop, 
how we bank, and how we access information. It is very difficult to think of an 
industry that has not or will not be impacted by these technologies.

The explosion in the use of these technologies has uncovered two important 
gaps in knowledge and areas of opportunity for those who endeavor to learn. 
First is the technical skillset required to develop useful applications. And second, 
importantly, is an understanding of how these applications can address problems 
and opportunities in the world around us. This book helps to address both gaps. 
For these reasons, Learning Deep Learning has arrived in the right place at the 
right time.

As NVIDIA’s education and training arm, the Deep Learning Institute exists 
to help individuals and organizations grow their understanding of DL and 
other computing techniques so they can find creative solutions to challenging 
problems. Learning Deep Learning is the perfect addition to our training library. 
It is accessible to those with basic skills in statistics and calculus, and it doesn’t 
require the reader to first wade through tangential topics. Instead, Ekman focuses 
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on the building blocks of DL: the perceptron, other artificial neurons, deep neural 
networks (DNNs), and DL frameworks. Then he gradually layers in additional 
concepts that build on each other, all the way up to and including modern natural 
language processing (NLP) architectures such as Transformer, BERT, and GPT. 

Importantly, Ekman uses a learning technique that in our experience has proven 
pivotal to success—asking readers to think about using DL techniques in practice. 
Simple yet powerful coding examples and exercises are provided throughout the 
book to help readers apply their understanding. At the same time, explanations 
of the underlying theory are present, and those interested in deepening their 
knowledge of relevant concepts and tools without getting into programming code 
will benefit. Plenty of citations with references for further study of a specific topic 
are also provided.

For all these reasons, Learning Deep Learning is a very good place to start one’s 
journey to understanding the world of DL. Ekman’s straightforward approach 
to helping the reader understand what DL is, how it was developed, and how 
it can be applied in our ever-changing world is refreshing. He provides a 
comprehensive yet clear discussion of the technology and an honest assessment 
of its capabilities and its limitations. And through it all, he permits the reader to 
dream, just a bit, about where DL may yet take us. That is exciting. It is why this 
economist finds this book so timely and important, and why I think you will too.

—Dr. Craig Clawson
Director, NVIDIA Deep Learning Institute
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Preface

Deep learning (DL) is a quickly evolving field, which has demonstrated amazing 
results in performing tasks that traditionally have been performed well only by 
humans. Examples of such tasks are image classification, generating natural 
language descriptions of images, natural language translation, speech-to-text, 
and text-to-speech conversion.

Learning Deep Learning (this book, hereafter known as LDL) quickly brings you up 
to speed on the topic. It teaches how DL works, what it can do, and gives you some 
practical experience, with the overall objective of giving you a solid foundation for 
further learning.

You will learn about the perceptron and other artificial neurons. They are the 
fundamental building blocks of deep neural networks that have enabled the 
DL revolution. You will learn about fully connected feedforward networks 
and convolutional networks. You will apply these networks to solve practical 
problems, such as predicting housing prices based on a large number of variables 
or identifying to which category an image belongs. Figure P-1 shows examples of 
such categories and images.

You will also learn about ways to represent words from a natural language using 
an encoding that captures some of the semantics of the encoded words. You will 
then use these encodings together with a recurrent neural network to create 
a neural-based natural language translator. This translator can automatically 
translate simple sentences from English to French or other similar languages, as 
illustrated in Figure P-2.

In this book, we use green text boxes like this one to highlight concepts that we 
find extra important. The intent is to ensure that you do not miss key concepts. 
Let us begin by pointing out that we find Deep Learning important. 
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Finally, you will learn how to build an image-captioning network that combines 
image and language processing. This network takes an image as an input and 
automatically generates a natural language description of the image.

What we just described represents the main narrative of LDL. Throughout this 
journey, you will learn many other details. In addition, we end with a medley of 
additional important topics. We also provide appendixes that dive deeper into a 
collection of the discussed topics.

Airplane

Automobile

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck

Figure P-1 Categories and example images from the CIFAR-10 dataset 
(Krizhevsky, 2009). This dataset will be studied in more detail in Chapter 7.  
(Image source: https://www.cs.toronto.edu/~kriz/cifar.html)

Figure P-2 A neural network translator that takes a sentence in English as input 
and produces the corresponding sentence in French as output

I am a student Je suis étudiant
Deep
Neural

Network

https://www.cs.toronto.edu/~kriz/cifar.html


PREFACE

xxvii

What Is Deep Learning?
We do not know of a crisp definition of what DL is, but one attempt is that DL is 
a class of machine learning algorithms that use multiple layers of computational 
units where each layer learns its own representation of the input data. These 
representations are combined by later layers in a hierarchical fashion. This definition 
is somewhat abstract, especially given that we have not yet described the concept 
of layers and computational units, but in the first few chapters, we provide many 
more concrete examples of what this means.

A fundamental part of DL is the deep neural network (DNN), a namesake of 
the biological neuron, by which it is loosely inspired. There is an ongoing 
debate about how closely the techniques within DL do mimic activity in a 
brain, where one camp argues that using the term neural network paints the 
picture that it is more advanced than it is. Along those lines, they recommend 
using the terms unit instead of artificial neuron and just network instead of 
neural network. No doubt, DL and the larger field of artificial intelligence (AI) 
have been significantly hyped in mainstream media. At the time of writing this 
book, it is easy to get the impression that we are close to creating machines 
that think like humans, although lately, articles that express some doubt are 
more common. After reading this book, you will have a more accurate view of 
what kind of problems DL can solve. In this book, we choose to freely use the 
words neural network and neuron but recognize that the algorithms presented 
are more tied to machine capabilities than to how an actual human brain 
works.

In this book, we use red text boxes like this one when we feel the urge to state 
something that is somewhat beside the point, a subjective opinion or of similar 
nature. You can safely ignore these boxes altogether if you do not find them 
adding any value to your reading experience.

Let us dive into this book by stating the opinion that it is a little bit of a buzz 
killer to take the stance that our cool DNNs are not similar to the brain. This is 
especially true for somebody picking up this book after reading about machines 
with superhuman abilities in the mainstream media. To keep the illusion alive, 
we sometimes allow ourselves to dream a little bit and make analogies that 
are not necessarily that well founded, but to avoid misleading you, we try not to 
dream outside of the red box.



PREFACE

xxviii

To put DL and DNNs into context, Figure P-3 shows how they relate to the machine 
learning (ML) and AI fields. DNN is a subset of DL. DL in turn is a subset of the 
field of ML, which in turn is a subset of the greater field of AI.

In this book, we choose not to focus too much on the exact definition of DL and  
its boundaries, nor do we go into the details of other areas of ML or AI. Instead,  
we focus on details of what DNNs are and the types of tasks to which they can  
be applied.

Brief History of Deep Neural Networks
In the last couple of sections, we loosely referred to networks without describing 
what a network is. The first few chapters in this book discuss network 
architectures in detail, but at this point, it is sufficient to think of a network as 

Deep neural network (DNN) is a subset of DL.

DL is a subset of machine learning (ML), which is a subset of artificial 
intelligence (AI).

Figure P-3 Relationship between artificial intelligence, machine learning, deep 
learning, and deep neural networks. The sizes of the different ovals do not 
represent the relative size of one field compared to another.

Artificial intelligence
(AI)

Machine learning
(ML)

Deep learning
(DL)

Deep Neural Networks
(DNN)
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an opaque system that has inputs and outputs. The usage model is to present 
something, for example, an image or a text sequence, as inputs to the network, 
and the network will produce something useful on its outputs, such as an 
interpretation of what the image contains, as in Figure P-4, or a natural language 
translation in a different language, as was shown in Figure P-2.

As previously mentioned, a central piece of a neural network is the artificial neuron. 
The first model of an artificial neuron was introduced in 1943 (McCulloch and Pitts, 
1943), which started the first wave of neural network research. The McCulloch 
and Pitts neuron was followed in 1957 by the Rosenblatt perceptron (Rosenblatt, 
1958). A key contribution from the perceptron was its associated automated 
learning algorithm that demonstrated how a system could learn desired behavior. 
Details of how the perceptron works are found in Chapter 1. The perceptron has 
some fundamental limitations, and although it was shown that these limitations 
can be overcome by combining multiple perceptrons into a multilayer network, the 
original learning algorithm did not extend to multilayer networks. According to a 
common narrative, this resulted in neural network research falling out of fashion. 
This is often referred to as the first AI winter, which was allegedly caused by a book 
by Minsky and Papert (1969). In this book, they raised the absence of a learning 
algorithm for multilayer networks as a serious concern.

This topic and narrative are controversial. Olazaran (1996) has studied whether 
the statements of Minsky and Papert had been misrepresented. Further, 
Schmidhuber (2015) pointed out that there did exist a learning algorithm for 
multilevel networks (Ivakhnenko and Lapa, 1965) four years before the book by 
Minsky and Papert was published.

Figure P-4 A deep neural network as an opaque system that can take an image as 
an input and then output an indication of what type of object is in the image

Opaque
system

Dog

We note that in the days of Rosenblatt’s publications, they were certainly 
not shy about comparing their work with the human brain. In reading about 
the Rosenblatt perceptron (Rosenblatt, 1958), we see that the first paper he 
references is called “Design for a Brain.”
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The second wave of neural network research was initiated in the 1980s. It was 
heavily influenced by a paper that described the backpropagation algorithm for 
automatic training of multilayer networks (Rumelhart et al., 1986). Rumelhart 
and colleagues showed that this algorithm could be used to overcome the 
limitations of the perceptron. In the study, they explicitly pointed out that they 
believed this addressed the concerns raised by Minsky and Papert. Rumelhart 
and colleagues popularized the backpropagation algorithm in the context 
of neural networks, but it was not the first occurrence of the algorithm in 
the literature. The algorithm was applied to a similar problem domain in 
1970 (Linnainmaa, 1970). Werbos (1981) described it in the context of neural 
networks in 1981.

Details of how this algorithm works are found in Chapter 3. An important 
outcome of this second wave of neural network research was the development 
of LeNet in 1989. It was a convolutional neural network (CNN), which was shown 
to be able to recognize handwritten zip codes (LeCun et al., 1990). It built on 
Fukushima’s Neocognitron (Fukushima, 1980), which we believe is the first 
published CNN.

An enhanced version of LeNet was later used by major US banks to read 
handwritten checks, and it thereby became one of the first big commercial 
applications of neural networks. Convolutional neural networks are described in 
detail in Chapter 7. Despite the progress, neural networks fell out of fashion yet 
again, partly because the limited computational capability at the time prevented 
the networks from scaling to larger problems and partly because other traditional 
ML approaches were perceived as better alternatives. 

The third wave of neural network research was enabled by a combination of 
algorithmic progress, availability of massive datasets, and the ability to use 
graphics processing units (GPU) for general purpose computing. From an outsider 
perspective, all this came together in 2012. At that point, the field had been 
rebranded as DL and was popularized in large part due to AlexNet (Krizhevsky 
et al., 2012), which was a CNN that scored significantly higher than any other 
participant in a computer vision competition known as the ImageNet challenge.

In reality, this third wave was enabled by persistent research groups who had 
continued to perform neural network research in the 1990s and first decade 
of the 2000s. These insiders started using the term deep networks in 2006. 
Further, the ImageNet challenge was not the first competition in which neural 
networks, some of which were GPU accelerated, beat more traditional techniques. 
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For example, Graves and colleagues (2009) won competitions in handwriting 
recognition with a neural network in 2009. Similarly, Ciresan and colleagues 
(2011) used a GPU accelerated network for image classification in 2011.

This work was shortly followed by similar breakthroughs in other fields, which 
have led to the DL boom that is still ongoing as of the writing of this book. The rest 
of this book will describe some of these key findings and how they can be applied 
in practice. For a more detailed description of the history of DL, we recommend 
Schmidhuber’s (2015) overview.

Is This Book for You?
There are already many books on this topic, and different people like to 
approach subjects in different ways. In this book, we try to cut to the chase 
while still providing enough background to give you a warm fuzzy feeling that 
you understand why the techniques work. We decided to not start the book with 
an overall introduction to the field of traditional ML. Although we believe that 
anybody who wants to get serious about DL needs to also master traditional 
ML, we do not believe that it is necessary to first learn about traditional ML 
before learning the basics of DL. We even believe that having to first get through 
multiple chapters that do not directly discuss DL can be a barrier to entry for 
many people.

In this book, we use yellow text boxes like this one to highlight things that 
we otherwise do not discuss or explore in detail but nonetheless think are 
important for you to learn at some point. We believe that an important part of 
learning about a new topic is to not only acquire some basic skills but also get 
some insights into what the next steps are. We use the yellow boxes to signal 
to you that at this point it is perfectly fine to ignore a certain topic, but it will be 
important to learn as a next step.

Let us now begin by stating that it is important to know about traditional ML if 
you want to get serious about DL, but you can wait to learn about traditional ML 
until you have gotten a taste of DL.
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Apart from deciding whether to include traditional ML as a topic, any author of a 
book on DL needs to take a position on whether to include code examples and how 
deeply to dive into the mathematics. Our view is that because DL is an applied 
field, a book on this topic needs to contain a good mix of theory and practice, 
so code examples are necessary. We also believe that many topics in DL are 
inherently mathematical, and it is necessary to include some of the mathematics 
to provide a good description of how things work. With that background, we try to 
describe certain concepts from different angles using a good mix of elements:

• Figures

• Natural language (English) descriptions

• Programming code snippets

• Mathematical formulas

Readers who master all of the preceding might find some descriptions redundant, 
but we believe that this is the best way of making the book accessible to a large 
audience.

This book does not aim to include details about all the most recent and advanced 
techniques in the DL field. Instead, we include concepts and techniques that we 
believe are fundamental to understanding the latest developments in the field. 
Some of the appendixes describe how some major architectures are built on 
these concepts, but most likely, even better architectures will emerge. Our goal is 
to give you enough knowledge to enable you to continue learning by reading more 
recent research papers. Therefore, we have also decided to sprinkle references 
throughout the book to enable you to follow up on topics that you find extra 

Not starting the book with traditional ML techniques is an attempt to avoid one 
of the buzz killers that we have found in other books. One very logical, and 
therefore typical, way of introducing DL is to first describe what ML is and, 
as such, to start with a very simple ML technique, namely, linear regression. 
It is easy, as an excited beginner, to be a little disheartened when you expect 
to learn about cool techniques to classify cat images and instead get stuck 
reading a discussion about fitting a straight line to a set of random data points 
using mathematics that seem completely unrelated to DL. We instead try to 
take the quickest, while still logical, path to getting to image classification to 
provide you with some instant satisfaction, but you will notice that we still 
sneak in some references and comparisons to linear regression over time.
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interesting. However, it has been our intention to make the book self-contained 
so that you should never need to look up a reference to be able to follow the 
explanations in the book. In some cases, we include references to things that we 
do not explain but mention only in passing. In those cases, we try to make it clear 
that it is meant as future reading instead of being a central element of the book.

Is DL Dangerous?
There are plenty of science fiction books and movies that depict AI as a threat 
against humanity. Machines develop a form of consciousness and perceive 
humans as a threat and therefore decide to destroy us. There have also been 
thought experiments about how an AI accidentally destroys the human species as 
a side effect of trying to deliver on what it is programmed to do. One example is 
the paperclip maximizer (Bostrom, 2003), which is programmed with the goal of 
making as many paper clips as possible. In order to do so, it might kill all human 
beings to free up atoms needed to make paper clips. The risk that these exact 
scenarios will play out in practice is probably low, but researchers still see future 
powerful AIs as a significant risk.

More urgently, DL has already been shown to come with serious unintended 
consequences and malignant use. One example is a study of a commercially 
available facial recognition system (Buolamwini and Gebru, 2018) used by law 
enforcement. Although the system achieved 99% accuracy on lighter-skinned 
men, its accuracy on darker-skinned women was only 65%, thereby putting them 
at much greater risk of being incorrectly identified and possibly wrongly accused 
of crimes. An example of malignant use of DL is fake pornography (Dickson, 2019) 
whereby the technology is used to make it appear as if a person (often a celebrity) 
is featured in a pornographic video.

DL learns from data created by humans and consequently runs the risk of 
learning and even amplifying human biases. This underscores the need for 
taking a responsible approach to DL and AI. Historically, this topic has largely 
been neglected, but more recently started to receive more attention. A powerful 
demonstration can be found on the website of the Algorithmic Justice League 
(Buolamwini, n.d.) with a video showing how a face detection system fails to detect 
the face of a dark-skinned woman (Buolamwini) until she puts on a white mask. 

The references in the book are strictly for future reading and should not be 
necessary to read to be able to understand the main topics of the book.
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Another example is the emergence of algorithmic auditing, where researchers 
identify and report human biases and other observed problems in commercial 
systems (Raji and Buolamwini, 2019). Researchers have proposed to document 
known biases and intended use cases of any released system to mitigate these 
problems. This applies both to the data used to create such systems (Gebru, et al., 
2018) and to the released DL model itself (Mitchell et al., 2018). Thomas suggests a 
checklist of questions to guide DL practitioners throughout the course of a project 
to avoid ethical problems (Thomas, 2019). We touch on these topics throughout the 
book. We also provide resources for further reading in Chapter 18.

Choosing a DL Framework
As a practitioner of DL, you will need to decide what DL framework to use. A DL 
framework provides functionality that handles much of the low-level details 
when implementing DL models. Just as the DL field is rapidly evolving, so are the 
different frameworks. To mention a few, Caffe, Theano, MXNet, Torch, TensorFlow, 
and PyTorch have all been influential throughout the current DL boom. In addition 
to these full-fledged frameworks, there are specialized frameworks such as Keras 
and TensorRT. Keras is a high-level API that makes it easier to program for some of 
these frameworks. TensorRT is an inference optimizer and runtime engine that can 
be used to run models built and trained by many of the mentioned frameworks.

As of the writing of this book, our impression is that the two most popular full-
fledged frameworks are TensorFlow and PyTorch, where TensorFlow nowadays 
includes native support for the Keras API. Another significant framework is 
MXNet. Models developed in either of these frameworks can be deployed using 
the TensorRT inference engine.

Deciding on what DL framework to use can be viewed as a life-changing 
decision. Some people would say that it is comparable to choosing a text 
editor or a spouse. We do not share that belief but think that the world is big 
enough for multiple competing solutions. We decided to provide programming 
examples in both TensorFlow and PyTorch for this book. The TensorFlow 
examples are printed in the book itself, but equivalent examples in PyTorch, 
including detailed descriptions, can be found on the book’s website. We suggest 
that you pick a framework that you like or one that makes it easy to collaborate 
with people you interact with.
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The programming examples in this book are provided in a TensorFlow version 
using the Keras API (printed in the book) as well as in a PyTorch version (online). 
Appendix I contains information about how to install TensorFlow and PyTorch, 
as well as a description of some of the key differences between the two 
frameworks.

Prerequisites for Learning DL
DL combines techniques from a number of different fields. If you want to get 
serious about DL, and particularly if you want to do research and publish your 
findings, over time you will need to acquire advanced knowledge within the scope 
of many of these skillsets. However, we believe that it is possible to get started 
with DL with little or partial knowledge in these areas. The sections that follow 
list the areas we find important, and in each section, we list the minimum set of 
knowledge that we think you need in order to follow this book.

STATISTICS AND PROBABILITY THEORY

Many DL problems do not have exact answers, so a central theme is probability 
theory. As an example, if we want to classify objects in an image, there is often 
uncertainty involved, such as how certain our model is that an object of a specific 
category, such as a cat, is present in the picture. Further, we might want to 
classify the type of cat—for example, is it a tiger, lion, jaguar, leopard, or snow 
leopard? The answer might be that the model is 90% sure that it is a jaguar, but 
there is a 5% probability that it is a leopard and so on. This book does not require 
deep knowledge in statistics and probability theory. We do expect you to be able 
to compute an arithmetic mean and understand the basic concept of probability. 
It is helpful, although not strictly required, if you know about variance and how to 
standardize a random variable.

LINEAR ALGEBRA

As you will learn in Chapter 1, the fundamental building block in DL is based on 
calculating a weighted sum of variables, which implies doing many additions 
and multiplications. Linear algebra is a field of mathematics that enables us to 
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describe such calculations in a compact manner. This book frequently specifies 
formulas containing vectors and matrices. Further, calculations involve

• Dot products

• Matrix-vector multiplications

• Matrix-matrix multiplications

If you have not seen these concepts in the past, you will need to learn about them 
to follow the book. However, Chapter 1 contains a section that goes through these 
concepts. We suggest that you read that first and then assess whether you need 
to pick up a book about linear algebra.

CALCULUS

As you will learn in Chapters 2 and 3, the learning part in DL is based on 
minimizing the value of a function known as a loss function or error function. The 
technique used to minimize the loss function builds on the following concepts 
from calculus:

• Computing the derivative of a function of a single variable

• Computing partial derivatives of a function of multiple variables 

• Calculating derivatives using the chain rule of calculus

However, just as we do for linear algebra, we provide sections that go through the 
basics of these concepts. These sections are found in Chapters 2 and 3.

NUMERICAL METHODS FOR CONSTRAINED AND UNCONSTRAINED 
OPTIMIZATION

In DL, it is typically not feasible to find an analytical solution when trying to 
minimize the loss function. Instead, we rely on numerical optimization methods. 
The most prevalent method is an iterative method known as gradient descent. 
It is helpful if you already know something about iterative methods and finding 
extreme points in continuous functions. However, we do not require prior 
knowledge of gradient descent, and we describe how it works before using it in 
Chapter 3. 
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PYTHON PROGRAMMING

It is hard to do anything except specific DL applications without some 
knowledge about programming in general. Further, given that the most 
popular DL frameworks are based on Python, it is highly recommended to 
acquire at least basic Python skills to enable trying out and modifying code 
examples. There are many good books on the topic of programming, and 
if you have basic programming skills, it should be relatively simple to get 
started with Python by just following tutorials at python.org. It is possible for 
nonprogrammers to read this book and just skip the coding sections, but if you 
intend to apply your DL skills in practice, you should learn the basics of Python 
programming.

You do not need to learn everything about Python to get started with DL. Many 
DL applications use only a small subset of the Python language, extended with 
heavy use of domain-specific DL frameworks and libraries. In particular, many 
introductory examples make little or no use of object-oriented programming 
constructs. A specific module that is used frequently is the NumPy (numerical 
Python) module that, among other things, provides data types for vectors and 
matrices. It is also common to use pandas (Python Data Manipulation Library) 
to manipulate multidimensional data, but we do not make use of pandas in 
this book. 

The following Python constructs are frequent in most of the code examples in 
the book:

• Integer and floating point datatypes

• Lists and dictionaries

• Importing and using external packages

• NumPy arrays

• NumPy functions

• If-statements, for-loops, and while-loops

• Defining and calling functions

• Printing strings and numerical datatypes

http://python.org
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• Plotting data with matplotlib

• Reading from and writing to files

In addition, many of the programming examples rely on constructs provided by 
a DL framework (TensorFlow in the book and PyTorch provided online). There is 
no need to know about these frameworks up front. The functionality is gradually 
introduced in the descriptions of the code examples. The code examples become 
progressively harder throughout the book, so if you are a beginner to coding, you 
will need to be prepared to spend some time honing your coding skills in parallel 
with reading the book.

DATA REPRESENTATION

Much of the DL mechanics are handled by highly optimized ML frameworks. 
However, your input data first needs to be converted into suitable formats that can 
be consumed by these frameworks. As such, you need to know something about 
the format of the data that you will use and, when applicable, how to convert it 
into a more suitable format. For example, for images, it is helpful to know the 
basics about RGB (red, green, blue) representation. Similarly, for the cases that 
use text as input data, it is helpful to know something about how characters are 
represented by a computer. In general, it is good to have some insight into how 
raw input data is often of low quality and needs to be cleaned. You will often 
find missing or duplicated data entries, timestamps from different time zones, 
and typos originating from manual processing. For the examples in this book, 
this is typically not a problem, but it is something you need to be aware of in a 
production setting.

About the Code Examples
You will find much overlap between the code examples in this book and code 
examples found in online tutorials as well as in other DL books (e.g., Chollet 2018; 
Glassner, 2018). Many of these examples have evolved from various published 
research papers in combination with publicly available datasets. (Datasets are 
described in more detail in Chapter 4.) In other words, we want to stress that we 
have not made up these examples from scratch, but they are heavily inspired by 
previously published work. However, we have done the actual implementation 
of these examples, and we have put our own touch on them to follow the 
organization of this book.
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The longer code examples are broken up into smaller pieces and presented step 
by step interspersed throughout the text in the book. You should be able to just 
copy/paste or type each code snippet into a Python interpreter, but it is probably 
better to just put all code snippets for a specific code example in a single file and 
execute in a noninteractive manner. The code examples are also available for 
download both as regular Python files and as Jupyter notebooks at https://github 
.com/NVDLI/LDL/. See Appendix I for more details.

In most chapters, we first present a basic version of a code example, and then we 
present results for variations of the program. We do not provide the full listings 
for all variations, but we try to provide all the necessary constructs in the book to 
enable you to do these variations yourself. 

DL algorithms are based on stochastic optimization techniques. As such, the 
results from an experiment may vary from time to time. That is, when you run a 
code example, you should not expect to get exactly the same result that is shown 
in the book. However, the overall behavior should be the same. 

Another thing to note is that the chosen format, where we intersperse code 
throughout the book and explain each snippet, results in certain restrictions, such 
as minimizing the length of each program, and we have also tried to maintain 

Modifying the code is left as an exercise for the reader. Hah, we finally got to 
say that! 

Seriously, we do believe that modifying existing code is a good way of getting 
your hands dirty. However, there is no need to exactly recreate the variations 
we did. If you are new to programming, you can start with just tweaking 
existing parameter values instead of adding new code. If you already have more 
advanced coding skills, you can consider defining your own experiments based 
on what you find extra interesting.

We were tempted to not provide downloadable versions of the code examples 
but instead force you to type them in yourself. After all, that is what we had to 
do in the 1980s when typing in a code listing from a computer magazine was 
a perfectly reasonable way of obtaining a new game. The youth of today with 
their app stores simply do not know how lucky they are.

https://github.com/NVDLI/LDL/
https://github.com/NVDLI/LDL/
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a linear flow and to not heavily modularize the code into classes and functions 
in most cases. Thus, instead of using sound coding practices to make the code 
examples easy to extend and maintain, focus is on keeping the examples small 
and readable.

Another thing to consider is what kind of development environment is needed to 
follow this book. In our opinion, anybody who wants to do serious work in DL will 
need to get access to a hardware platform that provides specific acceleration for 
DL—for example, a suitable graphics processing unit (GPU). However, if you do not 
have access to a GPU-based platform just yet, the code examples in the first few 
chapters are small enough to be run on a somewhat modern central processing 
unit (CPU) without too much pain. That is, you can start with a vanilla setup using 
the CPU for the first few chapters and then spend the resources needed to get 
access to a GPU-accelerated platform1 when you are getting to Chapter 7.

Instructions on how to set up a machine with the necessary development 
environment can be found in Appendix I, which also contains links to the code 
examples and datasets used in this book.

How to Read This Book
This book is written in a linear fashion and is meant to be read from beginning 
to end. We introduce new concepts in each chapter and frequently build on and 
refer back to discussions in previous chapters. It is often the case that we try 
to avoid introducing too many new concepts at once. This sometimes results in 
logically similar concepts being introduced in different chapters. However, we do 
sometimes take a step back and try to summarize a group of related techniques 
once they have all been introduced. You will see this for hidden units in Chapter 5, 

1. Nothing prevents you from running all programming examples on a CPU, but in some cases, you 
might need to do it overnight.

Medium term, you should get access to a GPU accelerated platform, but you can 
live with a standard CPU for the beginning of the book.

That is a lame excuse for writing ugly code, but whatever works. . .
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output units in Chapter 6, and techniques to address vanishing and exploding 
gradients in Chapter 10.

Readers who are complete beginners to neural networks and DL (the core target 
audience of the book) will likely find the first four chapters more challenging to 
get through than the remainder of the book. We introduce many new concepts. 
There is a fair amount of mathematical content, and we implement a neural 
network from scratch in Python. We encourage you to still try to get through these 
four chapters, but we also think it is perfectly fine to skim through some of the 
mathematical equations if you find them challenging. In Chapter 5, we move on 
to using a DL framework, and you will find that it will handle many of the details 
under the hood, and you can almost forget about them.

APPENDIXES

This book ends with a number of appendixes. Appendixes A through D could have 
been included as regular chapters in the book. However, we wanted to avoid 
information overload for first-time readers. Therefore, we decided to put some 
of the material in appendixes instead because we simply do not think that you 
need to learn those concepts in order to follow the narrative of the book. Our 
recommendation if you are a complete beginner to ML and DL is to read these 
appendixes last.

If you feel that you already know the basics about ML or DL, then it can make 
sense for you to read the first four appendixes interspersed among other 
chapters during your first pass through the book. Appendix A can be read after 
Chapter 3. Appendix B logically follows Chapter 8. Appendix C naturally falls after 
Chapter 13. Finally, Appendix D extends topics presented in Chapter 15.

Alternatively, even if you are a beginner but want to learn more details about a 
specific topic, then do go ahead and read the appendix that relates to that topic in 
the order just presented.

Appendixes E through H are shorter and focus on providing background or 
additional detail on some very specific topics. Appendix I describes how to set 
up a development environment and how to access the programming examples. 
Appendix J contains cheat sheets that summarize many of the concepts described 
throughout the book.2

2. Larger versions of these cheat sheets can be downloaded from http://informit.com/
title/9780137470358.

http://informit.com/title/9780137470358
http://informit.com/title/9780137470358
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GUIDANCE FOR READERS WHO DO NOT WANT TO READ ALL OF 
THIS BOOK

We recognize that some readers want to read this book in a more selective 
manner. This can be the case if you feel that you already have some of the 
basic skills or if you just want to learn about a specific topic. In this section, we 
provide some pointers for such readers, but this also means that we use some 
terminology that has not yet been introduced. If you are not interested in cherry 
picking chapters to read, then feel free to skip this section.

Figure P-5 illustrates three different envisioned tracks to follow depending on 
your interests. The leftmost track is what we just described, namely, to read the 
book from beginning to end.

If you are very interested in working with images and computer vision, 
we suggest that you read Appendix B about object detection, semantic 
segmentation, and instance segmentation. Further, the last few chapters of the 
book focus on natural language processing, and if that does not interest you, 
then we suggest that you skip Chapters 12 through 17. You should still skim 
Chapters 9 through 11 about recurrent neural networks. This track is shown in 
the middle of the figure.

If you want to focus mostly on language processing, then you can select the 
rightmost track. We suggest that you just skim Chapter 8 but do pay attention 
to the description of skip connections because it is referenced in later chapters. 
Then read Chapters 9 through 13, followed by Appendix C, then Chapters 14 and 
15, and conclude with Appendix D. These appendixes contain additional content 
about word embeddings and describe GPT and BERT, which are important 
network architectures for language processing tasks.

Overview of Each Chapter and Appendix
This section contains a brief overview of each chapter. It can safely be skipped if 
you just want to cut to the chase and get started with LDL!

CHAPTER 1 – THE ROSENBLATT PERCEPTRON

The perceptron, a fundamental building block of a neural network, is introduced. 
You will learn limitations of the perceptron, and we show how to overcome 
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Figure P-5 Three different tracks to follow when reading this book
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these limitations by combining multiple perceptrons into a network. The chapter 
contains some programming examples of how to implement a perceptron and its 
learning algorithm.

CHAPTER 2 – GRADIENT-BASED LEARNING

We describe an optimization algorithm known as gradient descent and the theory 
behind the perceptron learning algorithm. This is used as a stepping-stone in the 
subsequent chapter that describes the learning algorithm for multilevel networks. 

CHAPTER 3 – SIGMOID NEURONS AND BACKPROPAGATION

We introduce the backpropagation algorithm that is used for automatic learning 
in DNNs. This is both described in mathematical terms and implemented as a 
programming example used to do binary classification.

CHAPTER 4 – FULLY CONNECTED NETWORKS APPLIED TO 
MULTICLASS CLASSIFICATION

This chapter describes the concept of datasets and how they can be divided into a 
training set and a test set. It also touches on a network’s ability to generalize. We 
extend the neural network architecture to handle multiclass classification, and 
the programming example then applies this to the task of classifying handwritten 
digits. This programming example is heavily inspired by an example created by 
Nielsen (2015).

CHAPTER 5 – TOWARD DL: FRAMEWORKS AND NETWORK TWEAKS

The example from the previous chapter is reimplemented using a DL framework. 
We show how this framework vastly simplifies the code and enables us to model 
many variations on our network. Chapter 5 also introduces many techniques that 
are needed to enable training of deeper networks.

CHAPTER 6 – FULLY CONNECTED NETWORKS APPLIED TO 
REGRESSION

In this chapter, we study how a network can be used to predict a numerical value 
instead of classification problems studied in previous chapters. We do this with 
a programming example in which we apply the network to a regression problem 
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where we are trying to predict sales prices of houses based on a number of 
variables.

CHAPTER 7 – CONVOLUTIONAL NEURAL NETWORKS APPLIED TO 
IMAGE CLASSIFICATION

You will learn about the one type of network that initiated the DL boom in 2012, 
namely, the convolutional neural network, or just convolutional network. A CNN 
can be used in multiple problem domains, but it has been shown to be especially 
effective when applied to image classification/analysis. We explain how it works 
and walk through a programming example that uses a CNN to classify a more 
complex image dataset. In this example, instead of just distinguishing between 
different handwritten digits, we identify more complex object classes such as 
airplanes, automobiles, birds, and cats.

CHAPTER 8 – DEEPER CNNs AND PRETRAINED MODELS

Here we describe deeper CNNs such as GoogLeNet, VGG, and ResNet. As 
a programming example, we show how to download a pretrained ResNet 
implementation and how to use it to classify your own images.

CHAPTER 9 – PREDICTING TIME SEQUENCES WITH RECURRENT 
NEURAL NETWORKS

One limitation of the networks described in the previous chapters is that they 
are not well suited to handle data of different input lengths. Important problem 
domains such as text and speech often consist of sequences of varying lengths. 
This chapter introduces the recurrent neural network (RNN) architecture, which 
is well suited to handle such tasks. We use a programming example to explore 
how this network architecture can be used to predict the next data point in a time 
series.

CHAPTER 10 – LONG SHORT-TERM MEMORY

We discuss problems that prevent RNNs from learning long-term dependencies. 
We describe the long short-term memory (LSTM) technique that enables better 
handling of long sequences.
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CHAPTER 11 – TEXT AUTOCOMPLETION WITH LSTM AND BEAM 
SEARCH

In this chapter, we explore how to use LSTM-based RNNs for longer-term 
prediction and introduce a concept known as beam search. We illustrate it with 
a programming example in which we build a network that can be used for 
autocompletion of text. This is a simple example of natural language generation 
(NLG), which is a subset of the greater field of natural language processing (NLP).

CHAPTER 12 – NEURAL LANGUAGE MODELS AND WORD 
EMBEDDINGS

The example in the previous chapter is based on individual characters instead of 
words. In many cases, it is more powerful to work with words and their semantics 
instead of working with individual characters. Chapter 12 introduces the concepts 
language models and word encodings in a vector space (also known as embedding 
space) that can be used to capture some important relationships between words. 
As code examples, we extend our autocompletion example to work with words 
instead of characters and explore how to create word vectors in an embedding 
space. We also discuss how to build a model that can do sentiment analysis on 
text. This is an example of natural language understanding (NLU), which is yet 
another subfield of NLP.

CHAPTER 13 – WORD EMBEDDINGS FROM word2vec AND GloVe

In this chapter, we discuss two popular techniques for creating word embeddings. 
We download a set of existing embeddings and show how they capture various 
semantic relationships between words.

CHAPTER 14 – SEQUENCE-TO-SEQUENCE NETWORKS AND NATURAL 
LANGUAGE TRANSLATION

At this point, we introduce a network known as a sequence-to-sequence network, 
which is a combination of two recurrent neural networks. A key property of such 
a network is that its output sequence can be of a different length than the input 
sequence. We combine this type of network with the word encodings studied in 
the previous chapter. We build a natural language translator that takes a word 
sequence in one language (e.g., French) as an input and outputs a word sequence 
in a different language (e.g., English). Further, the output might be a different 
number of words and in a different word order than the input word sequence. The 
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sequence-to-sequence model is an example of an architecture known as encoder-
decoder architecture.

CHAPTER 15 – ATTENTION AND THE TRANSFORMER

In this chapter, we describe a technique known as attention, which can improve 
the accuracy of encoder-decoder architectures. We describe how it can be used 
to improve the neural machine translator from the previous chapter. We also 
describe the attention-based Transformer architecture. It is a key building block 
in many NLP applications.

CHAPTER 16 – ONE-TO-MANY NETWORK FOR IMAGE CAPTIONING

We describe in this chapter how a one-to-many network can be used to create 
textual descriptions of images and how to extend such a network with attention. 
A programming example implements this image-captioning network and 
demonstrates how it can be used to generate textual descriptions of a set of 
pictures.

CHAPTER 17 – MEDLEY OF ADDITIONAL TOPICS

Up until this point, we have organized topics so that they build on each other. In 
this chapter, we introduce a handful of topics that we did not find a good way of 
including in the previous chapters. Examples of such topics are autoencoders, 
multimodal learning, multitask learning, and neural architecture search.

CHAPTER 18 – SUMMARY AND NEXT STEPS

In the final chapter, we organize and summarize the topics discussed in earlier 
chapters to give you a chance to confirm that you have captured the key concepts 
described in the book. In addition to the summary, we provide some guidance to 
future reading tailored according to the direction you want to take—for example, 
highly theoretical versus more practical. We also discuss the topics of ethical AI 
and data ethics.

APPENDIX A – LINEAR REGRESSION AND LINEAR CLASSIFIERS

The focus of this book is DL. Our approach to the topic is to jump straight into 
DL without first describing traditional ML techniques. However, this appendix 
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does describe very basic ML topics so you can get an idea of how some of the 
presented DL concepts relate to more traditional ML techniques. This appendix 
logically follows Chapter 3.

APPENDIX B – OBJECT DETECTION AND SEGMENTATION

In this appendix, we describe techniques to detect and classify multiple objects 
in a single image. It includes both coarse-grained techniques that draw bounding 
boxes around the objects and fine-grained techniques that pinpoint the individual 
pixels in an image that correspond to a certain object. This appendix logically 
follows Chapter 8.

APPENDIX C – WORD EMBEDDINGS BEYOND word2vec AND GloVe

In this appendix, we describe some more elaborate techniques for word 
embeddings. In particular, these techniques can handle words that did not exist 
in the training dataset. Further, we describe a technique that can handle cases 
in which a word has a different meaning depending on its context. This appendix 
logically follows Chapter 13.

APPENDIX D – GPT, BERT, AND RoBERTa

This appendix describes architectures that build on the Transformer. These 
network architectures have resulted in significant improvements in many NLP 
tasks. This appendix logically follows Chapter 15.

APPENDIX E – NEWTON-RAPHSON VERSUS GRADIENT DESCENT

In Chapter 2, we introduce a mathematical concept technique known as gradient 
descent. This appendix describes a different method, known as Newton-Raphson, 
and how it relates to gradient descent.

APPENDIX F – MATRIX IMPLEMENTATION OF DIGIT CLASSIFICATION 
NETWORK

In Chapter 4, we include a programming example implementing a neural network 
in Python code. This appendix describes two different optimized variations of that 
programming example.
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APPENDIX G – RELATING CONVOLUTIONAL LAYERS TO 
MATHEMATICAL CONVOLUTION

In Chapter 7, we describe convolutional neural networks. They are based on, 
and named after, a mathematical operation known as convolution. This appendix 
describes this connection in more detail.

APPENDIX H – GATED RECURRENT UNITS

In Chapter 10, we describe a network unit known as long short-term memory 
(LSTM). In this appendix, we describe a simplified version of this unit known as 
gated recurrent unit (GRU).

APPENDIX I – SETTING UP A DEVELOPMENT ENVIRONMENT

This appendix contains information about how to set up a development 
environment. This includes how to install a deep learning framework and where 
to find the code examples. It also contains a brief section about key differences 
between TensorFlow and PyTorch, which are the two DL frameworks used for the 
code examples in this book.

APPENDIX J – CHEAT SHEETS

This appendix contains a set of cheat sheets that summarize much of the content 
in this book. They are also available for download in a different form factor: 
http://informit.com/title/9780137470358.

Register your copy of Learning Deep Learning on the InformIT site for convenient 
access to updates and/or corrections as they become available. To start 
the registration process, go to informit.com/register and log in or create an 
account. Enter the product ISBN (9780137470358) and click Submit. Look 
on the Registered Products tab for an Access Bonus Content link next to this 
product, and follow that link to access any available bonus materials. If you 
would like to be notified of exclusive offers on new editions and updates, please 
check the box to receive email from us. 

http://informit.com/title/9780137470358
http://informit.com/register
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Chapter 5

Toward DL: 
Frameworks and 
Network Tweaks

An obvious next step would be to see if adding more layers to our neural 
networks results in even better accuracy. However, it turns out getting deeper 
networks to learn well is a major obstacle. A number of innovations were needed 
to overcome these obstacles and enable deep learning (DL). We introduce the 
most important ones later in this chapter, but before doing so, we explain how to 
use a DL framework. The benefit of using a DL framework is that we do not need 
to implement all these new techniques from scratch in our neural network. The 
downside is that you will not deal with the details in as much depth as in previous 
chapters. You now have a solid enough foundation to build on. Now we switch 
gears a little and focus on the big picture of solving real-world problems using 
a DL framework. The emergence of DL frameworks played a significant role in 
making DL practical to adopt in the industry as well as in boosting productivity of 
academic research.
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Programming Example: moving to a 
DL Framework

In this programming example, we show how to implement the handwritten digit 
classification from Chapter 4, “Fully Connected Networks Applied to multiclass 
Classification,” using a DL framework. In this book, we have chosen to use the two 
frameworks TensorFlow and PyTorch. Both of these frameworks are popular and 
flexible. The TensorFlow versions of the code examples are interspersed throughout 
the book, and the PyTorch versions are available online on the book Web site.

TensorFlow provides a number of different constructs and enables you to 
work at different abstraction levels using different application programming 
interfaces (APIs). In general, to keep things simple, you want to do your work at 
the highest abstraction level possible because that means that you do not need 
to implement the low-level details. For the examples we will study, the keras API 
is a suitable abstraction level. keras started as a stand-alone library. It was not 
tied to TensorFlow and could be used with multiple DL frameworks. However, at 
this point, keras is fully supported inside of TensorFlow itself. see Appendix I for 
information about how to install TensorFlow and what version to use.

Appendix I also contains information about how to install PyTorch if that is your 
framework of choice. Almost all programming constructs in this book exist both 
in TensorFlow and in PyTorch. The section “key Differences between PyTorch 
and TensorFlow” in Appendix I describes some key differences between the two 
frameworks. You will find it helpful if you do not want to pick a single framework 
but want to master both of them.

The frameworks are implemented as Python libraries. That is, we still write our 
program as a Python program and we just import the framework of choice as 
a library. We can then use DL functions from the famework in our program. The 
initialization code for our TensorFlow example is shown in Code snippet 5-1.

Code Snippet 5-1 Import statements for our TensorFlow/keras Example

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras.utils import to_categorical

import numpy as np

import logging
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As you can see in the code, TensorFlow has its own random seed that needs to 
be set if we want reproducible results. However, this still does not guarantee 
that repeated runs produce identical results for all types of networks, so for the 
remainder of this book, we will not worry about setting the random seeds. The 
preceding code snippet also sets the logging level to only print out errors while 
suppressing warnings.

We then load and prepare our mNIsT dataset. Because mNIsT is a common 
dataset, it is included in keras. We can access it by a call to keras.datasets.
mnist and load_data. The variables train_images and test_images will 
contain the input values, and the variables train_labels and test_labels 
will contain the ground truth (Code snippet 5-2).

Just as before, we need to standardize the input data and one-hot encode the 
labels. We use the function to_categorical to one-hot encode our labels 

# Load training and test datasets.

mnist = keras.datasets.mnist

(train_images, train_labels), (test_images,

                               test_labels) = mnist.load_data()

 

# Standardize the data.

mean = np.mean(train_images)

stddev = np.std(train_images)

train_images = (train_images - mean) / stddev

test_images = (test_images - mean) / stddev

 

# One-hot encode labels.

train_labels = to_categorical(train_labels, num_classes=10)

test_labels = to_categorical(test_labels, num_classes=10)

Code Snippet 5-2 Load and Prepare the Training and Test Datasets

tf.get_logger().setLevel(logging.ERROR)

tf.random.set_seed(7)

 

EPOCHS = 20

BATCH_SIZE = 1
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instead of doing it manually, as we did in our previous example. This serves 
as an example of how the framework provides functionality to simplify our 
implementation of common tasks.

We are now ready to create our network. There is no need to define variables for 
individual neurons because the framework provides functionality to instantiate 
entire layers of neurons at once. We do need to decide how to initialize the 
weights, which we do by creating an initializer object, as shown in Code 
snippet 5-3. This might seem somewhat convoluted but will come in handy when 
we want to experiment with different initialization values.

If you are not so familiar with Python, it is worth pointing out that functions can 
be defined with optional arguments, and to avoid having to pass the arguments 
in a specific order, optional arguments can be passed by first naming which 
argument we are trying to set. An example is the num_classes argument in the 
to_categorical function.

# Object used to initialize weights.

initializer = keras.initializers.RandomUniform(

    minval=-0.1, maxval=0.1)

# Create a Sequential model.

# 784 inputs.

# Two Dense (fully connected) layers with 25 and 10 neurons.

# tanh as activation function for hidden layer.

# Logistic (sigmoid) as activation function for output layer.

model = keras.Sequential([

    keras.layers.Flatten(input_shape=(28, 28)),

    keras.layers.Dense(25, activation='tanh',

                       kernel_initializer=initializer,

                       bias_initializer='zeros'),

    keras.layers.Dense(10, activation='sigmoid',

                       kernel_initializer=initializer,

                       bias_initializer='zeros')])

Code Snippet 5-3 Create the Network
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The network is created by instantiating a keras.Sequential object, which 
implies that we are using the keras sequential API. (This is the simplest API, and 
we use it for the next few chapters until we start creating networks that require a 
more advanced API.) We pass a list of layers as an argument to the Sequential 
class. The first layer is a Flatten layer, which does not do computations but only 
changes the organization of the input. In our case, the inputs are changed from a 
28×28 array into an array of 784 elements. If the data had already been organized 
into a 1D-array, we could have skipped the Flatten layer and simply declared 
the two Dense layers. If we had done it that way, then we would have needed to 
pass an input_shape parameter to the first Dense layer because we always 
have to declare the size of the inputs to the first layer in the network.

The second and third layers are both Dense layers, which means they are fully 
connected. The first argument tells how many neurons each layer should have, 
and the activation argument tells the type of activation function; we choose 
tanh and sigmoid, where sigmoid means the logistic sigmoid function. 
We pass our initializer object to initialize the regular weights using the 
kernel_initializer argument. The bias weights are initialized to 0 using the 
bias_initializer argument.

one thing that might seem odd is that we are not saying anything about the 
number of inputs and outputs for the second and third layers. If you think about it, 
the number of inputs is fully defined by saying that both layers are fully connected 
and the fact that we have specified the number of neurons in each layer along 
with the number of inputs to the first layer of the network. This discussion 
highlights that using the DL framework enables us to work at a higher abstraction 
level. In particular, we use layers instead of individual neurons as building blocks, 
and we need not worry about the details of how individual neurons are connected 
to each other. This is often reflected in our figures as well, where we work with 
individual neurons only when we need to explain alternative network topologies. 
on that note, Figure 5-1 illustrates our digit recognition network at this higher 
abstraction level. We use rectangular boxes with rounded corners to depict a 
layer of neurons, as opposed to circles that represent individual neurons.

We are now ready to train the network, which is done by Code snippet 5-4. We 
first create a keras.optimizer.SGD object. This means that we want to use 
stochastic gradient descent (sgD) when training the network. Just as with the 
initializer, this might seem somewhat convoluted, but it provides flexibility to 
adjust parameters for the learning process, which we explore soon. For now, 
we just set the learning rate to 0.01 to match what we did in our plain Python 
example. We then prepare the model for training by calling the model’s compile 
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function. We provide parameters to specify which loss function to use (where we 
use mean_squared_error as before), the optimizer that we just created and 
that we are interested in looking at the accuracy metric during training.

We finally call the fit function for the model, which starts the training process. 
As the function name indicates, it fits the model to the data. The first two 
arguments specify the training dataset. The parameter validation_data is 

Fully connected 25 tanh neurons

Fully connected 10
logistic neurons

Ten outputs representing ten classes

28x28 pixel input image

Flatten

Figure 5-1 Digit classification network using layers as building blocks

# Use stochastic gradient descent (SGD) with

# learning rate of 0.01 and no other bells and whistles.

# MSE as loss function and report accuracy during training.

opt = keras.optimizers.SGD(learning_rate=0.01)

 

model.compile(loss='mean_squared_error', optimizer = opt,

              metrics =['accuracy'])

 

# Train the model for 20 epochs.

# Shuffle (randomize) order.

# Update weights after each example (batch_size=1).

history = model.fit(train_images, train_labels,

                    validation_data=(test_images, test_labels),

                    epochs=EPOCHS, batch_size=BATCH_SIZE,

                    verbose=2, shuffle=True)

Code Snippet 5-4 Train the Network
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the test dataset. our variables EPOCHS and BATCH_SIZE from the initialization 
code determine how many epochs to train for and what batch size we use. We 
had set BATCH_SIZE to 1, which means that we update the weight after a single 
training example, as we did in our plain Python example. We set verbose=2 to 
get a reasonable amount of information printed during the training process and 
set shuffle to True to indicate that we want the order of the training data to be 
randomized during the training process. All in all, these parameters match what 
we did in our plain Python example.

Depending on what TensorFlow version you run, you might get a fair number of 
printouts about opening libraries, detecting the graphics processing unit (gPU), 
and other issues as the program starts. If you want it less verbose, you can set 
the environment variable TF_CPP_MIN_LOG_LEVEL to 2. If you are using bash, 
you can do that with the following command line:

export TF_CPP_MIN_LOG_LEVEL=2

Another option is to add the following code snippet at the top of your program.

import os

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

The printouts for the first few training epochs are shown here. We stripped out 
some timestamps to make it more readable.

Epoch 1/20

loss: 0.0535 - acc: 0.6624 - val_loss: 0.0276 - val_acc: 0.8893

Epoch 2/20

loss: 0.0216 - acc: 0.8997 - val_loss: 0.0172 - val_acc: 0.9132

Epoch 3/20

loss: 0.0162 - acc: 0.9155 - val_loss: 0.0145 - val_acc: 0.9249

Epoch 4/20

loss: 0.0142 - acc: 0.9227 - val_loss: 0.0131 - val_acc: 0.9307
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Epoch 5/20

loss: 0.0131 - acc: 0.9274 - val_loss: 0.0125 - val_acc: 0.9309

Epoch 6/20

loss: 0.0123 - acc: 0.9313 - val_loss: 0.0121 - val_acc: 0.9329

In the printouts, loss represents the mean squared error (msE) of the training 
data, acc represents the prediction accuracy on the training data, val_loss 
represents the msE of the test data, and val_acc represents the prediction 
accuracy of the test data. It is worth noting that we do not get exactly the same 
learning behavior as was observed in our plain Python model. It is hard to know 
why without diving into the details of how TensorFlow is implemented. most likely, 
it could be subtle issues related to how initial parameters are randomized and 
the random order in which training examples are picked. Another thing worth 
noting is how simple it was to implement our digit classification application using 
TensorFlow. Using the TensorFlow framework enables us to study more advanced 
techniques while still keeping the code size at a manageable level.

We now move on to describing some techniques needed to enable learning in 
deeper networks. After that, we can finally do our first DL experiment in the next 
chapter.

The Problem of saturated Neurons and 
vanishing gradients

In our experiments, we made some seemingly arbitrary changes to the learning 
rate parameter as well as to the range with which we initialized the weights. For 
our perceptron learning example and the XOR network, we used a learning rate 
of 0.1, and for the digit classification, we used 0.01. similarly, for the weights, we 
used the range −1.0 to +1.0 for the XOR example, whereas we used −0.1 to +0.1 
for the digit example. A reasonable question is whether there is some method to 
the madness. our dirty little secret is that we changed the values simply because 
our networks did not learn well without these changes. In this section, we discuss 
the reasons for this and explore some guidelines that can be used when selecting 
these seemingly random parameters.
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To understand why it is sometimes challenging to get networks to learn, we 
need to look in more detail at our activation function. Figure 5-2 shows our 
two s-shaped functions. It is the same chart that we showed in Figure 3-4 in 
Chapter 3, “sigmoid Neurons and Backpropagation.”

one thing to note is that both functions are uninteresting outside of the shown 
z-interval (which is why we showed only this z-interval in the first place). Both 
functions are more or less straight horizontal lines outside of this range.

Now consider how our learning process works. We compute the derivative of the 
error function and use that to determine which weights to adjust and in what 
direction. Intuitively, what we do is tweak the input to the activation function 
(z in the chart in Fig. 5-2) slightly and see if it affects the output. If the z-value is 
within the small range shown in the chart, then this will change the output (the 
y-value in the chart). Now consider the case when the z-value is a large positive or 
negative number. Changing the input by a small amount (or even a large amount) 
will not affect the output because the output is a horizontal line in those regions. 
We say that the neuron is saturated.

saturated neurons can cause learning to stop completely. As you remember, when 
we compute the gradient with the backpropagation algorithm, we propagate the 
error backward through the network, and part of that process is to multiply the 
derivative of the loss function by the derivative of the activation function. Consider 

Figure 5-2 The two s-shaped functions tanh and logistic sigmoid
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what the derivatives of the two activation functions above are for z-values of 
significant magnitude (positive or negative). The derivative is 0! In other words, no 
error will propagate backward, and no adjustments will be done to the weights. 
similarly, even if the neuron is not fully saturated, the derivative is less than 0. 
Doing a series of multiplications (one per layer) where each number is less than 
0 results in the gradient approaching 0. This problem is known as the vanishing 
gradient problem. saturated neurons are not the only reason for vanishing 
gradients, as we will see later in the book.

Initialization and Normalization 
Techniques to Avoid saturated Neurons

We now explore how we can prevent or address the problem of saturated 
neurons. Three techniques that are commonly used—and often combined—are 
weight initialization, input standardization, and batch normalization.

WEIgHT INITIALIZATIoN

The first step in avoiding saturated neurons is to ensure that our neurons are 
not saturated to begin with, and this is where weight initialization is important. It 
is worth noting that, although we use the same type of neurons in our different 
examples, the actual parameters for the neurons that we have shown are much 
different. In the XOR example, the neurons in the hidden layer had three inputs 
including the bias, whereas for the digit classification example, the neurons in 
the hidden layer had 785 inputs. With that many inputs, it is not hard to imagine 
that the weighted sum can swing far in either the negative or positive direction 
if there is just a little imbalance in the number of negative versus positive inputs 
if the weights are large. From that perspective, it kind of makes sense that if 
a neuron has a large number of inputs, then we want to initialize the weights 
to a smaller value to have a reasonable probability of still keeping the input 
to the activation function close to 0 to avoid saturation. Two popular weight 
initialization strategies are glorot initialization (glorot and Bengio, 2010) and He 
initialization (He et al., 2015b). glorot initialization is recommended for tanh- and 

Saturated neurons are insensitive to input changes because their derivative is 
0 in the saturated region. This is one cause of the vanishing gradient problem 
where the backpropagated error is 0 and the weights are not adjusted.
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sigmoid-based neurons, and He initialization is recommended for reLU-based 
neurons (described later). Both of these take the number of inputs into account, 
and glorot initialization also takes the number of outputs into account. Both glorot 
and He initialization exist in two flavors, one that is based on a uniform random 
distribution and one that is based on a normal random distribution.

We have previously seen how we can initialize the weights from a uniform 
random distribution in TensorFlow by using an initializer, as was done in Code 
snippet 5-4. We can choose a different initializer by declaring any one of the 
supported initializers in keras. In particular, we can declare a glorot and a He 
initializer in the following way:

initializer = keras.initializers.glorot_uniform()

initializer = keras.initializers.he_normal()

Parameters to control these initializers can be passed to the initializer 
constructor. In addition, both the glorot and He initializers come in the two flavors 
uniform and normal. We picked uniform for glorot and normal for He because 
that is what was described in the publications where they were introduced.

If you do not feel the need to tweak any of the parameters, then there is no 
need to declare an initializer object at all, but you can just pass the name of the 
initializer as a string to the function where you create the layer. This is shown 
in Code snippet 5-5, where the kernel_initializer argument is set to 
'glorot_uniform'.

We do not go into the formulas for Glorot and He initialization, but they are 
good topics well worth considering for further reading (glorot and Bengio, 
2010; He et al., 2015b).

model = keras.Sequential([

        keras.layers.Flatten(input_shape=(28, 28)),

        keras.layers.Dense(25, activation='tanh',

                           kernel_initializer='glorot_uniform',

                           bias_initializer='zeros'),

        keras.layers.Dense(10, activation='sigmoid',

                           kernel_initializer='glorot_uniform',

                           bias_initializer='zeros')])

Code Snippet 5-5 setting an Initializer by Passing Its Name as a string
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We can separately set bias_initializer to any suitable initializer, but as 
previously stated, a good starting recommendation is to just initialize the bias 
weights to 0, which is what the 'zeros' initializer does.

INPUT sTANDArDIZATIoN

In addition to initializing the weights properly, it is important to preprocess the 
input data. In particular, standardizing the input data to be centered around 0 and 
with most values close to 0 will reduce the risk of saturating neurons from the 
start. We have already used this in our implementation; let us discuss it in a little 
bit more detail. As stated earlier, each pixel in the mNIsT dataset is represented 
by an integer between 0 and 255, where 0 represents the blank paper and a 
higher value represents pixels where the digit was written.1 most of the pixels 
will be either 0 or a value close to 255, where only the edges of the digits are 
somewhere in between. Further, a majority of the pixels will be 0 because a digit 
is sparse and does not cover the entire 28×28 image. If we compute the average 
pixel value for the entire dataset, then it turns out that it is about 33. Clearly, if we 
used the raw pixel values as inputs to our neurons, then there would be a big risk 
that the neurons would be far into the saturation region. By subtracting the mean 
and dividing by the standard deviation, we ensure that the neurons get presented 
with input data that is in the region that does not lead to saturation.

BATCH NormALIZATIoN

Normalizing the inputs does not necessarily prevent saturation of neurons for 
hidden layers, and to address that problem Ioffe and szegedy (2015) introduced 
batch normalization. The idea is to normalize values inside of the network as well 
and thereby prevent hidden neurons from becoming saturated. This may sound 
somewhat counterintuitive. If we normalize the output of a neuron, does that not 
result in undoing the work of that neuron? That would be the case if it truly was 
just normalizing the values, but the batch normalization function also contains 
parameters to counteract this effect. These parameters are adjusted during 
the learning process. Noteworthy is that after the initial idea was published, 
subsequent work indicated that the reason batch normalization works is different 
than the initial explanation (santurkar et al., 2018).

1. This might seem odd because a value of 0 typically represents black and a value of 255 typically 
represents white for a grayscale image. However, that is not the case for this dataset.

Batch normalization (Ioffe and szegedy, 2015) is a good topic for further 
reading.
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There are two main ways to apply batch normalization. In the original paper, the 
suggestion was to apply the normalization on the input to the activation function 
(after the weighted sum). This is shown to the left in Figure 5-3.

This can be implemented in keras by instantiating a layer without an activation 
function, followed by a BatchNormalization layer, and then apply an 
activation function without any new neurons, using the Activation layer. This is 
shown in Code snippet 5-6.

However, it turns out that batch normalization also works well if done after 
the activation function, as shown to the right in Figure 5-3. This alternative 
implementation is shown in Code snippet 5-7.

Figure 5-3 Left: Batch normalization as presented by Ioffe and szegedy (2015). The 
layer of neurons is broken up into two parts. The first part is the weighted sums for 
all neurons. Batch normalization is applied to these weighted sums. The activation 
function (tanh) is applied to the output of the batch normalization operation. 
right: Batch normalization is applied to the output of the activation functions.

keras.layers.Dense(64),

keras.layers.BatchNormalization(),

keras.layers.Activation('tanh'),

Code Snippet 5-6 Batch Normalization before Activation Function

keras.layers.Dense(64, activation='tanh'),

keras.layers.BatchNormalization(),

Code Snippet 5-7 Batch Normalization after Activation Function
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Cross-Entropy Loss Function to mitigate 
Effect of saturated output Neurons

one reason for saturation is that we are trying to make the output neuron get to 
a value of 0 or 1, which itself drives it to saturation. A simple trick introduced by 
LeCun, Bottou, orr, and müller (1998) is to instead set the desired output to 0.1 or 
0.9, which restricts the neuron from being pushed far into the saturation region. 
We mention this technique for historical reasons, but a more mathematically 
sound technique is recommended today.

We start by looking at the first couple of factors in the backpropagation algorithm; 
see Chapter 3, Equation 3-1(1) for more context. The formulas for the msE loss 
function, the logistic sigmoid function, and their derivatives for a single training 
example are restated here:2
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We then start backpropagation by using the chain rule to compute the derivative 
of the loss function and multiply by the derivative of the logistic sigmoid function 
to arrive at the following as the error term for the output neuron:
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We chose to not expand S'(z
f
) in the expression because it makes the formula 

unnecessarily cluttered. The formula reiterates what we stated in one of the 
previous sections: that if S'(z

f
) is close to 0, then no error will backpropagate 

through the network. We show this visually in Figure 5-4. We simply plot the 
derivative of the loss function and the derivative of the logistic sigmoid function 
as well as the product of the two. The chart shows these entities as functions 
of the output value y (horizontal axis) of the output neuron. The chart assumes that 
the desired output value (ground truth) is 0. That is, at the very left in the chart, 
the output value matches the ground truth, and no weight adjustment is needed. 

2. In the equations in Chapter 3, we referred to the output of the last neuron as f to avoid confusing it 
with the output of the other neuron, g. In this chapter, we use a more standard notation and refer to 
predicted value (the output of the network) as ŷ .
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As we move to the right in the chart, the output is further away from the ground 
truth, and the weights need to be adjusted. Looking at the figure, we see that the 
derivative of the loss function (blue) is 0 if the output value is 0, and as the output 
value increases, the derivative increases. This makes sense in that the further away 
from the true value the output is, the larger the derivative will be, which will cause 
a larger error to backpropagate through the network. Now look at the derivative 
of the logistic sigmoid function. It also starts at 0 and increases as the output 
starts deviating from 0. However, as the output gets closer to 1, the derivative is 
decreasing again and starts approaching 0 as the neuron enters its saturation 
region. The green curve shows the resulting product of the two derivatives 
(the error term for the output neuron), and it also approaches 0 as the output 
approaches 1 (i.e., the error term becomes 0 when the neuron saturates).

Looking at the charts, we see that the problem arises from the combination of 
the derivative of the activation function approaching 0, whereas the derivative of 
the loss function never increases beyond 1, and multiplying the two will therefore 
approach 0. one potential solution to this problem is to use a different loss 
function whose derivative can take on much higher values than 1. Without further 
rationale at this point, we introduce the function in Equation 5-1 that is known as 
the cross-entropy loss function:

    :   (ŷ)   y ln ˆ 1 y ln 1 ŷCross entropy loss e y( )( ) ( ) ( )= − ⋅ + − ⋅ −

Equation 5-1 Cross-entropy loss function
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2. Derivative of output neuron2
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(output value results from
a weighted sum z << 0).

Figure 5-4 Derivatives and error term as function of neuron output when ground 
truth y (denoted y_target in the figure) is 0
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substituting the cross-entropy loss function into our expression for the error term 
of the output neuron yields Equation 5-2:
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Equation 5-2 Derivative of cross-entropy loss function and derivative of logistic 
output unit combined into a single expression

We spare you from the algebra needed to arrive at this result, but if you squint 
your eyes a little bit and remember that the logistic sigmoid function has some 
ex terms, and we know that ln(ex) = x and the derivative of ln(x) = x−1, then it does 
not seem farfetched that our seemingly complicated formulas might end up 
as something as simple as that. Figure 5-5 shows the equivalent plot for these 
functions. The y-range is increased compared to Figure 5-4 to capture more of 
the range of the new loss function. Just as discussed, the derivative of the cross-
entropy loss function does increase significantly at the right end of the chart, 
and the resulting product (the green line) now approaches 1 in the case where 
the neuron is saturated. That is, the backpropagated error is no longer 0, and the 
weight adjustments will no longer be suppressed.

Although the chart seems promising, you might feel a bit uncomfortable to just 
start using Equation 5-2 without further explanation. We used the msE loss 
function in the first place, you may recall, on the assumption that your likely 
familiarity with linear regression would make the concept clearer. We even stated 
that using msE together with the logistic sigmoid function is not a good choice. 

Derivative of cross-entropy
loss increases steeply
toward infinity as network
output moves further away
from ground truth.

The resulting error term for the
output neuron (green curve)
is no longer zero when output is
opposite of ground truth.

Figure 5-5 Derivatives and error term when using cross-entropy loss function. 
ground truth y (denoted y_target in the figure) is 0, as in Figure 5-4.
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We have now seen in Figure 5-4 why this is the case. still, let us at least give you 
some insight into why using the cross-entropy loss function instead of the msE 
loss function is acceptable. Figure 5-6 shows how the value of the msE and cross-
entropy loss function varies as the output of the neuron changes from 0 to 1 in the 
case of a ground truth of 0. As you can see, as y moves further away from the true 
value, both msE and the cross-entropy function increase in value, which is the 
behavior that we want from a loss function.

Intuitively, by looking at the chart in Figure 5-6, it is hard to argue that one function 
is better than the other, and because we have already shown in Figure 5-4 that 
msE is not a good function, you can see the benefit of using the cross-entropy loss 
function instead. one thing to note is that, from a mathematical perspective, it does 
not make sense to use the cross-entropy loss function together with a tanh neuron 
because the logarithm for negative numbers is not defined.

Figure 5-6 value of the mean squared error (blue) and cross-entropy loss 
(orange) functions as the network output ŷ  changes (horizontal axis). The 
assumed ground truth is 0.

As further reading, we recommend learning about information theory and 
maximum-likelihood estimation, which provides a rationale for the use of the 
cross-entropy loss function.
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In the preceding examples, we assumed a ground truth of 0. For completeness, 
Figure 5-7 shows how the derivatives behave in the case of a ground truth of 1.

The resulting charts are flipped in both directions, and the msE function shows 
exactly the same problem as for the case when ground truth was 0. similarly, the 
cross-entropy loss function solves the problem in this case as well.

Figure 5-7 Behavior of the different derivatives when assuming a ground truth 
of 1. Top: mean squared error loss function. Bottom: Cross-entropy loss function.
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ComPUTEr ImPLEmENTATIoN oF THE Cross-ENTroPY 
Loss FUNCTIoN

If you find an existing implementation of a code snippet that calculates the cross-
entropy loss function, then you might be confused at first because it does not 
resemble what is stated in Equation 5-1. A typical implementation can look like 
that in Code snippet 5-8. The trick is that, because we know that y in Equation 5-1 
is either 1.0 or 0.0, the factors y and (1-y) will serve as an if statement and 
select one of the ln statements.

Apart from what we just described, there is another thing to consider when 
implementing backpropagation using the cross-entropy loss function in a 
computer program. It can be troublesome if you first compute the derivative of 
the cross-entropy loss (as in Equation 5-2) and then multiply by the derivative 
of the activation function for the output unit. As shown in Figure 5-5, in certain 
points, one of the functions approaches 0 and one approaches infinity, and 
although this mathematically can be simplified to the product approaching 1, due 
to rounding errors, a numerical computation might not end up doing the right 
thing. The solution is to analytically simplify the product to arrive at the combined 
expression in Equation 5-2, which does not suffer from this problem.

In reality, we do not need to worry about these low-level details because we are 
using a DL framework. Code snippet 5-9 shows how we can tell keras to use the 
cross-entropy loss function for a binary classification problem. We simply state 
loss='binary_crossentropy' as an argument to the compile function.

def cross_entropy(y_truth, y_predict):
        if y_truth == 1.0:

            return -np.log(y_predict)

        else:

            return -np.log(1.0-y_predict)

Code Snippet 5-8 Python Implementation of the Cross-Entropy Loss Function

model.compile(loss='binary_crossentropy',

              optimizer = optimizer_type,

              metrics =['accuracy'])

Code Snippet 5-9 Use Cross-Entropy Loss for a Binary Classification Problem in 
TensorFlow
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In Chapter 6, “Fully Connected Networks Applied to regression,” we detail 
the formula for the categorical cross-entropy loss function, which is used for 
multiclass classification problems. In TensorFlow, it is as simple as stating 
loss='categorical_crossentropy'.

Different Activation Functions to Avoid 
vanishing gradient in Hidden Layers

The previous section showed how we can solve the problem of saturated neurons 
in the output layer by choosing a different loss function. However, this does not 
help for the hidden layers. The hidden neurons can still be saturated, resulting 
in derivatives close to 0 and vanishing gradients. At this point, you may wonder 
if we are solving the problem or just fighting symptoms. We have modified 
(standardized) the input data, used elaborate techniques to initialize the weights 
based on the number of inputs and outputs, and changed our loss function 
to accommodate the behavior of our activation function. Could it be that the 
activation function itself is the cause of the problem?

How did we end up with the tanh and logistic sigmoid functions as activation 
functions anyway? We started with early neuron models from mcCulloch 
and Pitts (1943) and rosenblatt (1958) that were both binary in nature. Then 
rumelhart, Hinton, and Williams (1986) added the constraint that the activation 
function needs to be differentiable, and we switched to the tanh and logistic 
sigmoid functions. These functions kind of look like the sign function yet are still 
differentiable, but what good is a differentiable function in our algorithm if its 
derivative is 0 anyway?

Based on this discussion, it makes sense to explore alternative activation 
functions. one such attempt is shown in Figure 5-8, where we have complicated 
the activation function further by adding a linear term 0.2*x to the output to 
prevent the derivative from approaching 0.

Although this function might well do the trick, it turns out that there is no good 
reason to overcomplicate things, so we do not need to use this function. We 
remember from the charts in the previous section that a derivative of 0 was a 
problem only in one direction because, in the other direction, the output value 
already matched the ground truth anyway. In other words, it is fine with a 
derivative of 0 on one side of the chart. Based on this reasoning, we can consider 
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the rectified linear unit (reLU) activation function in Figure 5-9, which has been 
shown to work for neural networks (glorot, Bordes, and Bengio, 2011).

Now, a fair question is how this function can possibly be used after our entire 
obsession with differentiable functions. The function in Figure 5-9 is not 

Figure 5-8 modified tanh function with an added linear term

Figure 5-9 rectified linear unit (reLU) activation function
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differentiable at x = 0. However, this does not present a big problem. It is true 
that from a mathematical point of view, the function is not differentiable in 
that one point, but nothing prevents us from just defining the derivative as 
1 in that point and then trivially using it in our backpropagation algorithm 
implementation. The key issue to avoid is a function with a discontinuity, like 
the sign function. Can we simply remove the kink in the line altogether and use 
y = x as an activation function? The answer is that this does not work. If you 
do the calculations, you will discover that this will let you collapse the entire 
network into a linear function and, as we saw in Chapter 1, “The rosenblatt 
Perceptron,” a linear function (like the perceptron) has severe limitations. 
It is even common to refer to the activation function as a nonlinearity, which 
stresses how important it is to not pick a linear function as an activation 
function.

An obvious benefit with the reLU function is that it is cheap to compute. The 
implementation involves testing only whether the input value is less than 0, 
and if so, it is set to 0. A potential problem with the reLU function is when 
a neuron starts off as being saturated in one direction due to a combination 
of how the weights and inputs happen to interact. Then that neuron will not 
participate in the network at all because its derivative is 0. In this situation, the 
neuron is said to be dead. one way to look at this is that using reLUs gives the 
network the ability to remove certain connections altogether, and it thereby 
builds its own network topology, but it could also be that it accidentally kills 
neurons that could be useful if they had not happened to die. Figure 5-10 
shows a variation of the reLU function known as leaky ReLU, which is defined 
so its derivative is never 0.

The activation function should be nonlinear and is even often referred to as a 
nonlinearity instead of activation function.

given that humans engage in all sorts of activities that arguably kill their brain 
cells, it is reasonable to ask whether we should prevent our network from 
killing its neurons, but that is a deeper discussion.
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All in all, the number of activation functions we can think of is close to unlimited, 
and many of them work equally well. Figure 5-11 shows a number of important 
activation functions that we should add to our toolbox. We have already seen tanh, 
reLU, and leaky reLU (xu, Wang, et al., 2015). We now add the softplus function 
(Dugas et al., 2001), the exponential linear unit also known as elu (shah et al., 
2016), and the maxout function (goodfellow et al., 2013). The maxout function is 
a generalization of the reLU function in which, instead of taking the max value 
of just two lines (a horizontal line and a line with positive slope), it takes the max 
value of an arbitrary number of lines. In our example, we use three lines, one with 
a negative slope, one that is horizontal, and one with a positive slope.

All of these activation functions except for tanh should be effective at fighting 
vanishing gradients when used as hidden units. There are also some alternatives 
to the logistic sigmoid function for the output units, but we save that for Chapter 6.

Figure 5-10 Leaky rectified linear unit (reLU) activation function

The tanh, ReLU, leaky ReLU, softplus, elu, and maxout functions can all be 
considered for hidden units, but tanh has a problem with vanishing gradients.

There is no need to memorize the formulas for the activation functions at this 
point, but just focus on their shape.
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Figure 5-11 Important activation functions for hidden neurons. Top row: tanh, 
reLU. middle row: leaky reLU, softplut. Bottom row: elu, maxout.
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We saw previously how we can choose tanh as an activation function for the 
neurons in a layer in TensorFlow, also shown in Code snippet 5-10.

If we want a different activation function, we simply replace 'tanh' with one of 
the other supported functions (e.g., 'sigmoid', 'relu', or 'elu'). We can also 
omit the activation argument altogether, which results in a layer without an 
activation function; that is, it will just output the weighted sum of the inputs. We 
will see an example of this in Chapter 6.

variations on gradient Descent to 
Improve Learning

There are a number of variations on gradient descent aiming to enable better and 
faster learning. one such technique is momentum, where in addition to computing 
a new gradient every iteration, the new gradient is combined with the gradient 
from the previous iteration. This can be likened with a ball rolling down a hill 
where the direction is determined not only by the slope in the current point but 
also by how much momentum the ball has picked up, which was caused by the 
slope in previous points. momentum can enable faster convergence due to a more 
direct path in cases where the gradient is changing slightly back and forth from 
point to point. It can also help with getting out of a local minimum. one example of 
a momentum algorithm is Nesterov momentum (Nesterov, 1983).

Another variation is to use an adaptive learning rate instead of a fixed learning 
rate, as we have used previously. The learning rate adapts over time on the 
basis of historical values of the gradient. Two algorithms using adaptive learning 

keras.layers.Dense(25, activation='tanh',

                   kernel_initializer=initializer,

                   bias_initializer='zeros'),

Code Snippet 5-10 setting the Activation Function for a Layer

Nesterov momentum, AdaGrad, RMSProp, and Adam are important variations 
(also known as optimizers) on gradient descent and stochastic gradient descent.
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rate are adaptive gradient, known as AdaGrad (Duchi, Hazan, and singer, 2011), 
and RMSProp (Hinton, n.d.). Finally, adaptive moments, known as Adam (kingma 
and Ba, 2015), combines both adaptive learning rate and momentum. Although 
these algorithms adaptively modify the learning rate, we still have to set an 
initial learning rate. These algorithms even introduce a number of additional 
parameters that control how the algorithms perform, so we now have even more 
parameters to tune for our model. However, in many cases, the default values 
work well.

Finally, we discussed earlier how to avoid vanishing gradients, but there can also 
be a problem with exploding gradients, where the gradient becomes too big in 
some point, causing a huge step size. It can cause weight updates that completely 
throw off the model. gradient clipping is a technique to avoid exploding gradients 
by simply not allowing overly large values of the gradient in the weight update 
step. gradient clipping is available for all optimizers in keras.

Code snippet 5-11 shows how we set an optimizer for our model in keras. The 
example shows stochastic gradient descent with a learning rate of 0.01 and no 
other bells and whistles.

We do not go into the details of how to implement momentum and adaptive 
learning rate; we simply use implementations available in the DL framework. 
Understanding these techniques is important when tuning your models, 
so consider exploring these topics. You can find them summarized in Deep 
Learning (goodfellow, Bengio, and Courville, 2016), or you can read the original 
sources (Duchi, Hazan, and singer, 2011; Hinton, n.d.; kingma and Ba, 2015; 
Nesterov, 1983).

Gradient clipping is used to avoid the problem of exploding gradients.

opt = keras.optimizers.SGD(lr=0.01, momentum=0.0, decay=0.0,

                           nesterov=False)

model.compile(loss='mean_squared_error', optimizer = opt,

              metrics =['accuracy'])

Code Snippet 5-11 setting an optimizer for the model
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Just as we can for initializers, we can choose a different optimizer by declaring any 
one of the supported optimizers in Tensorflow, such as the three we just described:

opt = keras.optimizers.Adagrad(lr=0.01, epsilon=None)

opt = keras.optimizers.RMSprop(lr=0.001, rho=0.8, epsilon=None)

opt = keras.optimizers.Adam(lr=0.01, epsilon=0.1, decay=0.0)

In the example, we freely modified some of the arguments and left out others, 
which will then take on the default values. If we do not feel the need to modify the 
default values, we can just pass the name of the optimizer to the model compile 
function, as in Code snippet 5-12.

We now do an experiment in which we apply some of these techniques to our 
neural network.

Experiment: Tweaking Network and 
Learning Parameters

To illustrate the effect of the different techniques, we have defined five different 
configurations, shown in Table 5-1. Configuration 1 is the same network that 
we studied in Chapter 4 and at beginning of this chapter. Configuration 2 is the 
same network but with a learning rate of 10.0. In configuration 3, we change the 
initialization method to glorot uniform and change the optimizer to Adam with 
all parameters taking on the default values. In configuration 4, we change the 
activation function for the hidden units to reLU, the initializer for the hidden layer 
to He normal, and the loss function to cross-entropy. When we described the 
cross-entropy loss function earlier, it was in the context of a binary classification 
problem, and the output neuron used the logistic sigmoid function. For multiclass 
classification problems, we use the categorical cross-entropy loss function, 
and it is paired with a different output activation known as softmax. The details 
of softmax are described in Chapter 6, but we use it here with the categorical 

model.compile(loss='mean_squared_error', optimizer ='adam',

              metrics =['accuracy'])

Code Snippet 5-12 Passing the optimizer as a string to the Compile Function
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cross-entropy loss function. Finally, in configuration 5, we change the mini-batch 
size to 64.

modifying the code to model these configurations is trivial using our DL 
framework. In Code snippet 5-13, we show the statements for setting up the 
model for configuration 5, using reLU units with He normal initialization in the 
hidden layer and softmax units with glorot uniform initialization in the output 
layer. The model is then compiled using categorical cross-entropy as the loss 
function and Adam as the optimizer. Finally, the model is trained for 20 epochs 
using a mini-batch size of 64 (set to BATCH_SIZE=64 in the init code).

Table 5-1 Configurations with Tweaks to our Network

CONFIGURATION
HIDDEN 
ACTIVATION

HIDDEN 
INITIALIZER

OUTPUT 
ACTIVATION

OUTPUT 
INITIALIZER

LOSS 
FUNCTION OPTIMIZER

MINI-
BATCH 
SIZE

Conf1 tanh Uniform 0.1 sigmoid Uniform 0.1 msE sgD 
lr=0.01

1

Conf2 tanh Uniform 0.1 sigmoid Uniform 0.1 msE sgD 
lr=10.0

1

Conf3 tanh glorot 
uniform

sigmoid glorot uniform msE Adam 1

Conf4 reLU He normal softmax glorot uniform CE Adam 1

Conf5 reLU He normal softmax glorot uniform CE Adam 64

Note: CE, cross-entropy; msE, mean squared error; sgD, stochastic gradient descent.

Code Snippet 5-13 Code Changes Needed for Configuration 5

model = keras.Sequential([

    keras.layers.Flatten(input_shape=(28, 28)),

    keras.layers.Dense(25, activation='relu',

                      kernel_initializer='he_normal',

                      bias_initializer='zeros'),

    keras.layers.Dense(10, activation='softmax',
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If you run this configuration on a gPU-accelerated platform, you will notice that 
it is much faster than the previous configuration. The key here is that we have a 
batch size of 64, which results in 64 training examples being computed in parallel, 
as opposed to the initial configuration where they were all done serially.

The results of the experiment are shown in Figure 5-12, which shows how the test 
errors for all configurations evolve during the training process.

                       kernel_initializer='glorot_uniform',

                       bias_initializer='zeros')])

model.compile(loss='categorical_crossentropy',

                    optimizer = 'adam',

                    metrics =['accuracy'])

history = model.fit(train_images, train_labels,

                    validation_data=(test_images, test_labels),

                    epochs=EPOCHS, batch_size=BATCH_SIZE,

                    verbose=2, shuffle=True)

We use matplotlib to visualize the learning process. A more powerful approach 
is to use the TensorBoard functionality that is included in TensorFlow. We highly 
recommend that you get familiar with TensorBoard when you start building and 
tuning your own models.

Figure 5-12 Error on the test dataset for the five configurations
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Configuration 1 (red line) ends up at an error of approximately 6%. We spent a 
nontrivial amount of time on testing different parameters to come up with that 
configuration (not shown in this book).

Configuration 2 (green) shows what happens if we set the learning rate to 10.0, 
which is significantly higher than 0.01. The error fluctuates at approximately 70%, 
and the model never learns much.

Configuration 3 (blue) shows what happens if, instead of using our tuned 
learning rate and initialization strategy, we choose a “vanilla configuration” with 
glorot initialization and the Adam optimizer with its default values. The error is 
approximately 7%.

For Configuration 4 (purple), we switch to using different activation functions and 
the cross-entropy error function. We also change the initializer for the hidden 
layer to He normal. We see that the test error is reduced to 5%.

For Configuration 5 (yellow), the only thing we change compared to Configuration 
4 is the mini-batch size: 64 instead of 1. This is our best configuration, which ends 
up with a test error of approximately 4%. It also runs much faster than the other 
configurations because the use of a mini-batch size of 64 enables more examples 
to be computed in parallel.

Although the improvements might not seem that impressive, we should recognize 
that reducing the error from 6% to 4% means removing one-third of the error 
cases, which definitely is significant. more important, the presented techniques 
enable us to train deeper networks.

Hyperparameter Tuning and 
Cross-validation

The programming example showed the need to tune different hyperparameters, 
such as the activation function, weight initializer, optimizer, mini-batch size, and 
loss function. In the experiment, we presented five configurations with some 
different combinations, but clearly there are many more combinations that we 
could have evaluated. An obvious question is how to approach this hyperparameter 
tuning process in a more systematic manner. one popular approach is known as 
grid search and is illustrated in Figure 5-13 for the case of two hyperparameters 
(optimizer and initializer). We simply create a grid with each axis representing a 
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single hyperparameter. In the case of two hyperparameters, it becomes a 2D grid, 
as shown in the figure, but we can extend it to more dimensions, although we can 
only visualize, at most, three dimensions. Each intersection in the grid (represented 
by a circle) represents a combination of different hyperparameter values, and 
together, all the circles represent all possible combinations. We then simply run an 
experiment for each data point in the grid to determine what is the best combination.

What we just described is known as exhaustive grid search, but needless to say, it 
can be computationally expensive as the number of combinations quickly grows 
with the number of hyperparameters that we want to evaluate. An alternative is to 
do a random grid search on a randomly selected a subset of all combinations. This 
alternative is illustrated in the figure by the green dots that represent randomly 
chosen combinations. We can also do a hybrid approach in which we start with 
a random grid search to identify one or a couple of promising combinations, and 
then we can create a finer-grained grid around those combinations and do an 
exhaustive grid search in this zoomed-in part of the search space. grid search is 
not the only method available for hyperparameter tuning. For hyperparameters 
that are differentiable, it is possible to do a gradient-based search, similar to the 
learning algorithm used to tune the normal parameters of the model.

Figure 5-13 grid search for two hyperparameters. An exhaustive grid search 
would simulate all combinations, whereas a random grid search might simulate 
only the combinations highlighted in green.



CHAPTEr 5 ToWArD DL: FrAmEWorks AND NETWork TWEAks

148

Implementing grid search is straightforward, but a common alternative is to 
use a framework known as sci-kit learn.3 This framework plays well with keras. 
At a high level, we wrap our call to model.fit() into a function that takes 
hyperparameters as input values. We then provide this wrapper function to sci-kit 
learn, which will call it in a systematic manner and monitor the training process. 
The sci-kit learn framework is a general mL framework and can be used with both 
traditional mL algorithms as well as DL.

UsINg A vALIDATIoN sET To AvoID ovErFITTINg

The process of hyperparameter tuning introduces a new risk of overfitting. 
Consider the example earlier in the chapter where we evaluated five 
configurations on our test set. It is tempting to believe that the measured error 
on our test dataset is a good estimate of what we will see on not-yet-seen data. 
After all, we did not use the test dataset during the training process, but there 
is a subtle issue with this reasoning. Even though we did not use the test set to 
train the weights of the model, we did use the test set when deciding which set of 
hyperparameters performed best. Therefore, we run the risk of having picked a 
set of hyperparameters that are particularly good for the test dataset but not as 
good for the general case. This is somewhat subtle in that the risk of overfitting 
exists even if we do not have a feedback loop in which results from one set of 
hyperparameters guide the experiment of a next set of hyperparameters. This 
risk exists even if we decide on all combinations up front and only use the test 
dataset to select the best performing model.

We can solve this problem by splitting up our dataset into a training dataset, a 
validation dataset, and a test dataset. We train the weights of our model using the 
training dataset, and we tune the hyperparameters using our validation dataset. 
once we have arrived at our final model, we use our test dataset to determine 
how well the model works on not-yet-seen data. This process is illustrated in 
the left part of Figure 5-14. one challenge is to decide how much of the original 
dataset to use as training, validation, and test set. Ideally, this is determined on 
a case-by-case basis and depends on the variance in the data distribution. In 
absence of any such information, a common split between training set and test 
set when there is no need for a validation set is 70/30 (70% of original data used 
for training and 30% used for test) or 80/20. In cases where we need a validation 
set for hyperparameter tuning, a typical split is 60/20/20. For datasets with 
low variance, we can get away with a smaller fraction being used for validation, 
whereas if the variance is high, a larger fraction is needed.

3. https://scikit-learn.org

https://scikit-learn.org
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Cross-vALIDATIoN To ImProvE UsE oF TrAININg DATA

one unfortunate effect of introducing the validation set is that we can now use 
only 60% of the original data to train the weights in our network. This can be 
a problem if we have a limited amount of training data to begin with. We can 
address this problem using a technique known as cross-validation, which avoids 
holding out parts of the dataset to be used as validation data but at the expense 
of additional computation. We focus on one of the most popular cross-validation 
techniques, known as k-fold cross-validation. We start by splitting our data into a 
training set and a test set, using something like an 80/20 split. The test set is not 
used for training or hyperparameter tuning but is used only in the end to establish 
how good the final model is. We further split our training dataset into k similarly 
sized pieces known as folds, where a typical value for k is a number between 
5 and 10.

We can now use these folds to create k instances of a training set and validation 
set by using k − 1 folds for training and 1 fold for validation. That is, in the case of 
k = 5, we have five alternative instances of training/validations sets. The first one 
uses folds 1, 2, 3, and 4 for training and fold 5 for validation, the second instance 
uses folds 1, 2, 3, and 5 for training and fold 4 for validation, and so on.

Let us now use these five instances of train/validation sets to both train the 
weights of our model and tune the hyperparameters. We use the example 
presented earlier in the chapter where we tested a number of different 
configurations. Instead of training each configuration once, we instead train each 
configuration k times with our k different instances of train/validation data. Each 
of these k instances of the same model is trained from scratch, without reusing 
weights that were learned by a previous instance. That is, for each configuration, 
we now have k measures of how well the configuration performs. We now 
compute the average of these measures for each configuration to arrive at a 
single number for each configuration that is then used to determine the best-
performing configuration.

Now that we have identified the best configuration (the best set of hyperparameters), 
we again start training this model from scratch, but this time we use all of the 
k folds as training data. When we finally are done training this best-performing 
configuration on all the training data, we can run the model on the test dataset to 
determine how well it performs on not-yet-seen data. As noted earlier, this process 
comes with additional computational cost because we must train each configuration 
k times instead of a single time. The overall process is illustrated on the right side of 
Figure 5-14.
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We do not go into the details of why cross-validation works, but for more 
information, you can consult The Elements of statistical Learning (Hastie, 
Tibshirani, and Friedman, 2009).

Concluding remarks on the Path 
Toward Deep Learning

This chapter introduced the techniques that are regarded as enablers of the DL 
revolution that started with the AlexNet paper (krizhevsky, sutskever, and Hinton, 
2012). In particular, the emergence of large datasets, the introduction of the reLU 

Train the model weights only using
the training set. Evaluate the

resulting model on validation set.

Model good 
enough?

Split data into training, validation,
and test datasets.

Tune hyper-
parameters.

Evaluate final model
on test datasets.

START

DONE

Train the model weights for k instances of the same
model. Use di�erent combinations of k-1 folds as

input to each model instance. Evaluate each model
instance on the held-out fold. Compute average of

all model instances.

Model good
enough?

Split data into training and
test datasets. Split the
training set into k folds.
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Evaluate final
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Train model
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k-fold cross-validationBaseline algorithm
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Figure 5-14 Tuning hyperparameters with a validation dataset (left) and using 
k-fold cross-validation (right)
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unit and the cross-entropy loss function, and the availability of low-cost gPU-
powered high-performance computing are all viewed as critical components that 
had to come together to enable deeper models to learn (goodfellow et al., 2016).

We also demonstrated how to use a DL framework instead of implementing our 
models from scratch. The emergence of these DL frameworks is perhaps equally 
important when it comes to enabling the adoption of DL, especially in the industry.

With this background, we are now ready to move on to Chapter 6 and build our 
first deep neural network!
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neural machine translation, 385–387

Text autocompletion, 285
autoregressive models, 287–289
bidirectional RNNs, 298–300
character mappings, 293
concluding remarks, 302
initialization statements, 292–293
input and output sequences, 300–302
natural language sentences, 240
programming example, 291–298
text encoding, 285–287
training examples, 293–294
training model, 295–296

Text prediction and beam search, 289–291
Text sentiment analysis, 334–341
Text-To-Text Transfer Transformer (T5), 591
text_to_word_sequence() function

neural language models, 320
neural machine translation, 372

tf_framework directory, 624
Thought vectors, 366–367
3D plots for perceptrons, 30–32
Thresholds in bias term, 33
Time in backpropagation through, 248–250
Time sequences. See Recurrent Neural 

networks (RNNs)
Timesteps in natural language translation, 

364–365
to() function, 633
to_categorical() function, 119–120, 377
tokenize() function

image captioning, 429
neural machine translation, 373–374

Tokenizer class, 321
Tokens

BERT, 584–585
GPT, 580
image captioning, 429–430
natural language translation, 363–365
neural machine translation, 372–377, 384
sequence-to-sequence learning, 366

torch.no_grad() function, 633

TPU (tensor processing unit) pods, 591
train() function, 634
Training

algorithm cheat sheet, 661
autoencoders, 450, 453–454
book sales forecasting problem, 261
BPTT, 248
CBOW model, 347
convolutional layers, 192–193
digit classification, 122–123
image captioning, 439–443
multiclass classification, 100–101
multimodal learning, 466–467
multitask learning, 472
NAS, 487
PyTorch vs. TensorFlow functions, 631–632, 

634
word embeddings, 323

Training data and datasets
collecting, 481–482
convolutional layers, 176
digit classification, 119
image captioning, 422, 431–432
multiclass classification, 98–100
networks, 92–100
neural machine translation, 378
overfitting, 148–149
reading, 105–107
RoBERTa, 587
time series, 264

Training errors
convolutional layers, 194–197
house prices example, 165
multiclass classification, 98–101
network tuning, 478–479, 481–482
regularization for, 166
ResNet, 215–216

Training examples
book sales forecasting problem, 251–253, 

256–259
learning algorithm, 38–40
MNIST dataset, 95
multiclass classification, 113
multimodal learning, 464
natural language translation, 364–365
optimized continuous skip-gram model, 

350–351
text autocompletion, 293–294
word embeddings, 316, 320–322
xOR example, 83, 86

Training loops
learning algorithm, 10
mini-batch implementation, 605–606

http://torch.no_grad(
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Training loops (Continued)
MNIST learning, 112–114
xOR example, 85–86

Training model
neural machine translation, 385–387
text autocompletion, 295–296

Transfer learning
multimodal learning, 464
multitask learning, 470
pretrained models, 226–228

Transformer, 393
architecture, 411–415
cheat sheet, 666
concluding remarks, 415–416
GPT, 578–581
image captioning, 422
models based on, 590–591
positional encoding, 414–415
recurrent layers, 407
self-attention, 409

Transformer-xL, 590–591
Translation in multimodal learning, 462–463
Translation invariance in convolutional layers, 

175–176, 179
Transpose operation

matrices, 24–25
vector notation, 22

Transposed convolution in semantic 
segmentation, 553–554

True negatives (TNs) in binary classifiers, 534
True positives (TPs) in binary classifiers, 

534–535
Trunks in multitask learning, 471
Tuning networks, 477–482
tweak_model() function, 495–496
2D matrices, extending vectors to, 24–25
Two-input perceptron example, 4–7
Type I errors in binary classifiers, 534
Type II errors in binary classifiers, 534

U
U-Net, 558–559
ULMFiT (Universal Language Model Fine-

tuning), 589
Unbiased estimators for linear output units, 160
Uniform random searches in NAS, 486
United States Census Bureau data

book sales forecasting problem,  
250–251

datasets, 626–627
Univariate linear regression, 520–521
Universal Language Model Fine-tuning 

(ULMFiT), 589

Unlabeled data
autoencoders, 451–452
transfer learning, 228

Unpooling in semantic segmentation, 553–555, 
557

Unrolling in time, 246–247
Unsupervised learning, 513
Update gates in GRUs, 615
Upsampling techniques

semantic segmentation, 550–552
U-Net, 558–559

Use cases for language models, 304–307

V
VAEs (variational autoencoders), 513–515
Validation datasets, 100
Validation sets, overfitting, 148
Vanishing gradients

activation function, 250
avoiding, 136–141
CEC, 277–278
mitigating, 267–272
RNNs, 273
S-shaped activation functions, 248
saturated neurons, 124–126

Variable length datasets in time series, 264
Variables

book sales forecasting problem, 263–264
Boston Housing dataset, 160–161
digit classification, 123
gradient-based learning, 43, 48
xOR example, 83–84

Variational autoencoders (VAEs), 513–515
VGGNet, 206–209
Vectors

attention technique, 395–398, 400–404
autoencoders, 449–450
BERT, 585
book sales forecasting problem, 251–252
CBOW model, 346–347
continuous skip-gram model, 349
dot products, 57
ELMo, 574
extending to matrices, 24–25
GloVe, 359–360
gradient descent, 47
gradients, 44
image captioning, 419–421, 424–426
multi-head attention, 410–411
natural language translation, 389–390
neural language models, 330–332
notation, 21–23
self-attention, 409
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sentiment analysis of text, 338–340
sequence-to-sequence learning,  

366–367
summary, 28–29
support vector machines, 531–533
tensors, 30
word, 303–304, 316
word2vec, 353

Versions of Python, 622–623
VGG (Visual Geometry Group), 206
VGG19 network, 418–424
VGGNet-16 network

deconvolution networks, 557
Fast R-CNN, 544
Faster R-CNN, 546

view() function, 636
Virtual environment installation, 629
virtualenv tool, 629
Visual Geometry Group (VGG), 206
Vocabularies

FastText, 567
wordpieces, 564–565

W
W-shingling technique, 337
Weight decay in regularization, 166–167
Weight initialization for saturated neurons, 

126–128
Weighted sums

batch normalization, 129
plots, 52–53

Weights and weight sharing
alignment vectors, 402
attention technique, 400, 405
audio filters, 611
backpropagation, 76–81, 269
backpropagation through time, 249
bias term, 33–34
character-based embedding, 569
convolutional layers, 176, 191, 229
convolutional neural networks, 88, 185–190
datasets, 99
depthwise separable convolutions,  

232–233
dot products, 23
ELMo, 574–575
exploding gradients, 142
geometric interpretation, 31
gradient computation, 69–71
gradient descent, 44–45, 48, 65–66
GRUs, 615
input, 2–4
learning algorithm, 7–12, 14, 37–40

learning algorithm analytic motivation,  
49–50

learning algorithm geometric description, 51
linear output units, 160
LSTM, 276, 279
matrix-matrix multiplication, 27–28
mini-batch implementation, 602–603
multi-head attention, 411
multiple perceptrons, 19–20
multitask learning, 471–472, 476
neural machine translation, 384
pattern identification, 55
perceptrons, 15–16
plots, 52–54
recurrent layers, 243–244, 246–247
ResNet, 216
self-attention, 408–409
semantic segmentation, 551, 554–555
synaptic, 2
transfer learning, 228
two-input example, 4–7
vanishing gradients, 250
VGGNet, 209
vector notation, 22
word embeddings, 317
word2vec, 352–353
xOR example, 84–85

Word embeddings, 303–304, 563–564
benefits and operation, 313–315
character-based method, 567–572
cheat sheet, 665
concluding remarks, 342
ELMo, 572–575
FastText, 566–567
GloVe, 356–362
human biases, 332–333
inference models, 325
initialization section, 319–320
language model examples, 307–312
language model use cases, 304–307
neural language models, 315–319
programming example, 319–329
related work, 575–576
sentiment analysis of text, 334–341
subtraction, 329–332
training examples, 320–322
training process, 323
word2vec. See word2vec algorithm
wordpieces, 564–566

Word-of-n-grams, 569
Word vectors, 303–304

GloVe, 359
neural language models, 316, 330–332
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word2vec algorithm, 343
autoencoder similarity, 450–451
CBOW model, 346–347
computational complexity, 344–346
concluding remarks, 361–362
continuous skip-gram model, 348–349,  

352
evolution, 354–355
matrix form, 353–354
neural language models, 332
optimized continuous skip-gram model, 

349–351
tweaking, 352–353
word embeddings, 344–351

Wordpieces
BERT, 583
overview, 564–566

X
xception module, 234
xLNet, 590–591
xOR functions

backpropagation, 82–87
linear classification, 528–530
multiple perceptrons, 17–19
perceptrons, 15–16

Y
YouTube videos, 507

Z
zero_grad() method, 632
Zero-shot task transfer, 581–582
zeros() function, 107


	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	Foreword
	Foreword
	Preface 
	Acknowledgments
	About the Author
	5 TOWARD DL: FRAMEWORKS AND NETWORK TWEAKS
	Programming Example: Moving to a DL Framework
	The Problem of Saturated Neurons and Vanishing Gradients
	Initialization and Normalization Techniques to Avoid Saturated Neurons
	Weight Initialization
	Input Standardization
	Batch Normalization

	Cross-Entropy Loss Function to Mitigate Effect of Saturated Output Neurons
	Computer Implementation of the Cross-Entropy Loss Function

	Different Activation Functions to Avoid Vanishing Gradient in Hidden Layers
	Variations on Gradient Descent to Improve Learning
	Experiment: Tweaking Network and Learning Parameters
	Hyperparameter Tuning and Cross-Validation
	Using a Validation Set to Avoid Overt fi ting
	Cross-Validation to Improve Use of Training Data

	Concluding Remarks on the Path Toward Deep Learning

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z




