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Praise for
Code That Fits in Your Head

“We progress in software by standing on the shoulders of those who came
before us. Mark’s vast experience ranges from philosophical and organisa-
tional considerations right down to the precise details of writing code. In this
book, you’re offered an opportunity to build on that experience. Use it.”

—Adam Ralph, speaker, tutor, and software simplifier, Particular Software

“I’ve been reading Mark’s blogs for years and he always manages to entertain
while at the same time offering deep technical insights. Code That Fits in Your
Head follows in that vein, offering a wealth of information to any software
developer looking to take their skills to the next level.”

—Adam Tornhill, founder of CodeScene, author of Software Design
X-Rays and Your Code as a Crime Scene

“My favorite thing about this book is how it uses a single code base as a
working example. Rather than having to download separate code samples, you
get a single Git repository with the entire application. Its history is hand-
crafted to show the evolution of the code alongside the concepts being
explained in the book. As you read about a particular principle or technique,
you’ll find a direct reference to the commit that demonstrates it in practice. Of
course, you’re also free to navigate the history at your own leisure, stopping at
any stage to inspect, debug, or even experiment with the code. I’ve never seen
this level of interactivity in a book before, and it brings me special joy because
it takes advantage of Git’s unique design in a new constructive way.”

—Enrico Campidoglio, independent consultant, speaker and
Pluralsight author

“Mark Seemann not only has decades of experience architecting and building
large software systems, but is also one of the foremost thinkers on how to scale
and manage the complex relationship between such systems and the teams
that build them.”

—Mike Hadlow, freelance software consultant and blogger



“Mark Seemann is well known for explaining complex concepts clearly and
thoroughly. In this book he condenses his wide-ranging software development
experience into a set of practical, pragmatic techniques for writing sustainable
and human-friendly code. This book will be a must read for every
programmer.”

—Scott Wlaschin, author of Domain Modeling Made Functional

“Mark writes, ‘Successful software endures’—this book will help you to write
that kind of software.”

—Bryan Hogan, software architect, podcaster, blogger

“Mark has an extraordinary ability to help others think deeply about the
industry and profession of software development. With every interview on
.NET Rocks! I have come away knowing I would have to go back and listen to
my own show to really take in everything we discussed.”

—Richard Campbell, co-host, .NET Rocks!
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“The future is already here — it’s just not very evenly distributed”
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Series Editor
Foreword

My grandson is learning to code.

Yes, you read that right. My 18-year-old grandson is learning to program
computers. Who’s teaching him? His aunt, my youngest daughter, who was
born in 1986, and who 16 months ago decided to change careers from chemical
engineering to programming. And who do they both work for? My eldest son,
who along with my youngest son, is in the process of starting up his second
software consultancy.

Yeah, software runs in the family. And, yeah, I’ve been programming for a
long, long time.

Anyway, my daughter asked me to spend an hour with my grandson teaching
him about the basics and the beginnings of computer programming. So we
started up a Tuple session and I lectured him on what computers were, and
how they got started, and what early computers looked like, and . . . well,
you know.

By the end of the lecture I was coding up the algorithm for multiplying two
binary integers, in PDP-8 assembly language. For those of you who aren’t
aware, the PDP-8 had no multiply instruction; you had to write an algorithm

xix



Series Editor Foreword

to multiply numbers. Indeed, the PDP-8 didn’t even have a subtract
instruction; you had to use two’s complement and add a pseudo-negative
number (let the reader understand).

As I finished up the coding example, it occurred to me that I was scaring my
grandson to death. I mean, when I was 18 this kind of geeky detail thrilled me;
but maybe it wasn’t so attractive to an 18-year-old whose aunt is trying to
teach him how to write simple Clojure programs.

Anyway, it made me think of just how hard programming actually is. And it
is hard. It’s really hard. It may be the hardest thing that humans have ever
attempted.

Oh, I don’t mean it’s hard to write the code to calculate a bunch of prime
numbers, or a Fibonacci sequence, or a simple bubble sort. That’s not too
hard. But an Air Traffic Control system? A luggage management system? A bill
of materials system? Angry Birds? Now that’s hard. That’s really, really hard.

I’ve known Mark Seemann for quite a few years now. I don’t remember ever
actually meeting him. It may be that we have never actually been together in
the same room. But he and I have interacted quite a bit in professional
newsgroups and social networks. He’s one of my favourite people to disagree
with.

He and I disagree on all kinds of things. We disagree on static versus dynamic
typing. We disagree on operating systems and languages. We disagree on, well,
lots of intellectually challenging things. But disagreeing with Mark is
something you have to do very carefully because the logic of his arguments
is impeccable.

So when I saw this book, I thought about how much fun it was going to be to
read through and disagree with. And that’s exactly what happened. I read
through it. I disagreed with some things. And I had fun trying to find a way to
make my logic supersede his. I think I may have even succeeded in one or two
cases—in my head—maybe.
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But that’s not the point. The point is that software is hard; and much of the
last seven decades have been spent trying to find ways to make it a little bit
easier. What Mark has done in this book is to gather all the best ideas from
those seven decades and compile them in one place.

More than that, he has organized them into a set of heuristics and techniques,
and placed them in the order that you would execute them. Those heuristics
and techniques build on each other, helping you move from stage to stage
while developing a software project.

In fact, Mark develops a software project throughout the pages of this book,
while explaining each stage and the heuristics and techniques that benefit
that stage.

Mark uses C# (one of the things I disagree with ;-), but that’s not relevant.
The code is simple, and the heuristics and techniques are applicable to any
other language you might be using.

He covers things such as Checklists, TDD, Command Query Separation, Git,
Cyclomatic Complexity, Referential Transparency, Vertical Slicing, Legacy
Strangulation, and Outside-In Development, just to mention a few.

Moreover, there are gems scattered literally everywhere throughout these
pages. I mean, you’ll be reading along, and all of a sudden he’ll say something
like, “Rotate your test function 90 degrees and see if you can balance it on the
Act of the Arrange/Act/Assert triplet” or “The goal is not to write code fast.
The goal is sustainable software” or “Commit database schema to git”.

Some of these gems are profound, some are just idle mentions, others are
speculations, but all of them are examples of the deep insight that Mark has
acquired over the years.

So read this book. Read it carefully. Think through Mark’s impeccable logic.
Internalise these heuristics and techniques. Stop and consider the insightful
gems as they pop out at you. And just maybe, when it comes time for you to
lecture your grandchildren, you won’t scare the devil out of them.

—Robert C. Martin
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Preface

In the second half of the 2000s, I began doing technical reviews for a publisher.
After reviewing a handful of books, the editor contacted me about a book on
Dependency Injection.

The overture was a little odd. Usually, when they contacted me about a book,
it would already have an author and a table of contents. This time, however,
there was none of that. The editor just requested a phone call to discuss
whether the book’s subject matter was viable.

I thought about it for a few days and found the topic inspiring. At the same
time, I couldn’t see the need for an entire book. After all, the knowledge was
out there: blog posts, library documentation, magazine articles, even a few
books all touched on related topics.

On reflection, I realised that, while the information was all out there, it was
scattered, and used inconsistent and sometimes conflicting terminology.
There’d be value in collecting that knowledge and presenting it in a consistent
pattern language.

Two years later, I was the proud author of a published book.
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After some years had gone by, I began to think about writing another book.
Not this one, but a book about some other topic. Then I had a third idea, and
a fourth, but not this one.

A decade went by, and I began to realise that when I consulted teams on
writing better code, I’d suggest practices that I’d learned from better minds
than mine. And again, I realised that most of that knowledge is already
available, but it’s scattered, and few people have explicitly connected the dots
into a coherent description of how to develop software.

Based on my experience with the first book, I know that there’s value in
collecting disparate information and presenting it in a consistent way. This
book is my attempt at creating such a package.

Who Should Read This Book

This book is aimed at programmers with at least a few years of professional
experience. I expect readers to have suffered through a few bad software
development projects; to have experience with unmaintainable code. I also
expect readers seeking to improve.

The core audience is ‘enterprise developers’—particularly back-end
developers. I’ve spent most of my career in that realm, so this simply reflects
my own expertise. But if you’re a front-end developer, a games programmer, a
development tools engineer, or something else entirely, I expect you will still
gain a lot from reading this book.

You should be comfortable reading code in a compiled, object-oriented
language in the C family. While I’ve been a C# programmer for most of my
career, I’ve learned a lot from books with example code in C++ or Java1. This
book turns the tables: Its example code is in C#, but I hope that Java,
TypeScript, or C++ developers find it useful, too.

1. If you’re curious about which books I mean, take a look at the bibliography.

xxiv



Preface

Prerequisites

This isn’t a beginner’s book. While it deals with how to organise and structure
source code, it doesn’t cover the most basic details. I expect that you already
understand why indentation is helpful, why long methods are problematic,
that global variables are bad, and so on. I don’t expect you to have read Code
Complete [65], but I assume that you know of some of the basics covered there.

A Note for Software Architects

The term ‘architect’ means different things to different people, even when the
context is constrained to software development. Some architects focus on the
big picture; they help an entire organisation succeed with its endeavours.
Other architects are deep in the code and mainly concerned with the
sustainability of a particular code base.

To the degree that I’m a software architect, I’m the latter kind. My expertise is
in how to organise source code so that it addresses long-term business goals. I
write about what I know, so to the degree this book is useful to architects, it
will be that type of architect.

You’ll find no content about Architecture Tradeoff Analysis Method (ATAM),
Failure Mode and Effects Analysis (FMEA), service discovery, and so on. That
kind of architecture is outside the scope of this book.

Organisation

While this is a book about methodologies, I’ve structured it around a code
example that runs throughout the book. I decided to do it that way in order to
make the reading experience more compelling than a typical ‘pattern
catalogue’. One consequence of this decision is that I introduce practices and
heuristics when they fit the ‘narrative’. This is also the order in which I
typically introduce the techniques when I coach teams.

The narrative is structured around a sample code base that implements a
restaurant reservation system. The source code for that sample code base is
available at informit.com/title/9780137464401.
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If you want to use the book as a handbook, I’ve included an appendix with
a list of all the practices and information about where in the book you can
read more.

About the Code Style

The example code is written in C#, which is a language that has rapidly
evolved in recent years. It’s picking up more and more syntax ideas from
functional programming; as an example, immutable record types were released
while I was writing the book. I’ve decided to ignore some of these new
language features.

Once upon a time, Java code looked a lot like C# code. Modern C# code, on
the other hand, doesn’t look much like Java.

I want the code to be comprehensible to as many readers as possible. Just as
I’ve learned much from books with Java examples, I want readers to be able to
use this book without knowing the latest C# syntax. Thus, I’m trying to stick
to a conservative subset of C# that ought to be legible to other programmers.

This doesn’t change the concepts presented in the book. Yes, in some
instances, a more succinct C#-specific alternative is possible, but that would
just imply that extra improvements are available.

To Var or Not to Var

The var keyword was introduced to C# in 2007. It enables you to declare a
variable without explicitly stating its type. Instead, the compiler infers the type
from the context. To be clear, variables declared with var are exactly as
statically typed as variables declared with explicit types.

For a long time the use of this keyword was controversial, but most people
now use it; I do, too, but I occasionally encounter pockets of resistance.

While I use var professionally, writing code for a book is a slightly different
context. Under normal circumstances, an IDE isn’t far away. A modern
development environment can quickly tell you the type of an implicitly typed
variable, but a book can’t.
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I have, for that reason, occasionally chosen to explicitly type variables. Most
of the example code still uses the var keyword because it makes the code
shorter, and line width is limited in a printed book. In a few cases, though, I’ve
deliberately chosen to explicitly declare a variable’s type, in the hope that it
makes the code easier to understand when read in a book.

Code Listings

The majority of the code listings are taken from the same sample code base.
It’s a Git repository, and the code examples are taken from various stages of
development. Each such code listing includes a relative path to the file in
question. Part of that file path is a Git commit ID.

For example, listing 2.1 includes this relative path: Restaurant/f729ed9/
Restaurant.RestApi/Program.cs. This means that the example is taken from
commit ID f729ed9, and the file is Restaurant.RestApi/Program.cs. In
other words, to view this particular version of the file, you check out that
commit:

$ git checkout f729ed9

When you’ve done that, you can now explore the Restaurant.RestApi/
Program.cs file in its full, executable context.

A Note on the Bibliography

The bibliography contains a mix of resources, including books, blog posts,
and video recordings. Many of my sources are online, so I have of course
supplied URLs. I’ve made an effort to mostly include resources that I have
reason to believe have a stable presence on the Internet.

Still, things change. If you’re reading this book in the future, and a URL has
become invalid, try an internet archive service. As I’m writing this, https://
archive.org is the best candidate, but that site could also be gone in the future.

Quoting Myself

Apart from other resources, the bibliography also includes a list of my own
work. I’m aware that, as far as making a case, quoting myself doesn’t
constitute a valid argument in itself.

xxvii

https://archive.org
https://archive.org


Preface

I’m not including my own work as a sleight of hand. Rather, I’m including
these resources for the reader who might be interested in more details. When
I cite myself, I do it because you may find an expanded argument, or a more
detailed code example, in the resource I point to.
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12Troubleshooting

Professional software development consists of more than feature development.
There are also meetings, time reports, compliance activities, and ... defects.

You run into errors and problems all the time. Your code doesn’t compile, the
software doesn’t do what it’s supposed to, it runs too slowly, et cetera.

The better you get at solving problems, the more productive you are. Most of
your troubleshooting skills may be based on “the shifting sands of individual
experience” [4], but there are techniques that you can apply.

This chapter presents some of them.

12.1 Understanding

The best advice I can think of is this:

Try to understand what’s going on.
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If you don’t understand why something doesn’t work1, then make
understanding it a priority. I’ve witnessed a fair amount of ‘programming by
coincidence’ [50]: throw enough code at the wall to see what sticks. When it
looks as though the code works, developers move on to the next task. Either
they don’t understand why the code works, or they may fail to understand that
it doesn’t, really.

If you understand the code from the beginning, chances are that it’ll be easier
to troubleshoot.

12.1.1 Scientific Method

When a problem manifests, most people jump straight into troubleshooting
mode. They want to address the problem. For people who program by
coincidence [50], addressing a problem typically involves trying various
incantations that may have worked before on a similar problem. If the first
magic spell doesn’t work, they move on to the next. This can involve restarting
a service, rebooting a computer, running a tool with elevated privileges,
changing small pieces of code, calling poorly-understood routines, etc. When
it looks like the problem has disappeared, they call it a day without trying to
understand why [50].

Needless to say, this isn’t an effective way to deal with problems.

Your first reaction to a problem should be to understand why it’s happening.
If you have absolutely no idea, ask for help. Usually, though, you already have
some inclination of what the problem may be. In that case, adopt a variation
of the scientific method [82]:

• Make a prediction. This is called a hypothesis.

• Perform the experiment.

• Compare outcome to prediction. Repeat until you understand what’s going
on.

1. Or, if you don’t understand why something does work.
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Don’t be intimidated by the term ‘scientific method’. You don’t have to don a
lab coat or design a randomised controlled double-blind trial. But do try to
come up with a falsifiable hypothesis. This might simply be a prediction, such
as “if I reboot the machine, the problem goes away,” or “if I call this function,
the return value will be 42.”

The difference between this technique and ‘programming by coincidence’ is
that the goal of going through these motions isn’t to address the problem. The
goal is to understand it.

A typical experiment could be a unit test, with a hypothesis that if you run it,
it’ll fail. See subsection 12.2.1 for more details.

12.1.2 Simplify

Consider if removing some code can make a problem go away.

The most common reaction to a problem is to add more code to address it.
The unspoken line of reasoning seems to be that the system ‘works’, and the
problem is just an aberration. Thus, the reasoning goes, if the problem is a
special case, it should be solved with more code to handle that special case.

This may occasionally be the case, but it’s more likely that the problem is a
manifestation of an underlying implementation error. You’d be surprised how
often you can solve problems by simplifying the code.

I’ve seen plenty of examples of such an ‘action bias’ in our industry. People
who solve problems I never have because I work hard to keep my code simple:

• People develop complex Dependency Injection Containers [25] instead of
just composing object graphs in code.

• People develop complicated ‘mock object libraries’ instead of writing
mostly pure functions.

• People create elaborate package restore schemes instead of just checking
dependencies into source control.
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• People use advanced diff tools instead of merging more frequently.

• People use convoluted object-relational mappers (ORMs) instead of
learning (and maintaining) a bit of SQL.

I could go on.

To be fair, coming up with a simpler solution is hard. For example, it took me
a decade of erecting increasingly more elaborate contraptions in
object-oriented code before I found simpler solutions. It turns out that many
things that are difficult in traditional object-oriented programming are simple
in functional programming. Once I learned about some of these concepts, I
found ways to use them in object-oriented contexts, too.

The point is that a catchphrase like KISS2 is useless in itself, because how does
one keep things simple?

You often have to be smart to keep it simple3, but look for simplicity anyway.
Consider if there’s a way you can solve the problem by deleting code.

12.1.3 Rubber Ducking

Before we discuss some specific problem-solving practices, I want to share
some general techniques. It’s not unusual to be stuck on a problem. How do
you get unstuck?

You may be staring at a problem with no clue as to how to proceed. As the
above advice goes, your first priority should be to understand the problem.
What do you do if you’re drawing a blank?

If you don’t manage your time, you can be stuck with a problem for a long
time, so do manage your time. Time-box the process. For example, set aside 25
minutes to look at the problem. If, after the time is up, you’ve made no
progress, take a break.

2. Keep It Simple, Stupid.
3. Rich Hickey discusses simplicity in Simple Made Easy [45]. I owe much of my perspective on simplicity to

that talk.
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When you take a break, physically remove yourself from the computer.
Go get a cup of coffee. Something happens in your brain when you get
out of your chair and away from the screen. After a couple of minutes away
from the problem, you’ll likely begin to think about something else. Perhaps
you meet a colleague as you’re moving about. Perhaps you discover that the
coffee machine needs a refill. Whatever it is, it temporarily takes your mind off
the problem. That’s often enough to give you a fresh perspective.

I’ve lost count of the number of times I return to a problem after a stroll, only
to realise that I’ve been thinking about it the wrong way.

If walking about for a few minutes isn’t enough, try asking for help. If you have
a colleague to bother, do that.

I’ve experienced this often enough: I start explaining the problem, but halfway
in, I break off in mid-sentence: “Never mind, I’ve just gotten an idea!”

The mere act of explaining a problem tends to produce new insight.

If you don’t have a colleague, you may try explaining the problem to a rubber
duck, such as the one shown in figure 12.1.

Figure 12.1 A rubber duck. Talk to it. It’ll solve your problems.

It doesn’t really have to be a rubber duck, but the technique is known as
rubber ducking because one programmer actually did use one [50].
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Instead of using a rubber duck, I typically begin writing a question on the
Stack Overflow Q&A site. More often than not, I realise what the problem is
before I’m done formulating the question4.

And if realisation doesn’t come, I have a written question that I can publish.

12.2 Defects

I once started in a new job in a small software startup. I soon asked my
co-workers if they’d like to use test-driven development. They hadn’t used it
before, but they were keen on learning new things. After I’d shown them the
ropes, they decided that they liked it.

A few months after we’d adopted test-driven development, the CEO came by
to talk to me. He mentioned in passing that he’d noticed that since we’d
started using tests, defects in the wild had significantly dropped.

That still makes me proud to this day. The shift in quality was so dramatic that
the CEO had noticed. Not by running numbers or doing a complex analysis,
but simply because it was so significant that it called attention to itself.

You can reduce the number of defects, but you can’t eliminate them. But do
yourself a favour: don’t let them accumulate.

The ideal number of defects is zero.

Zero bugs isn’t as unrealistic as it sounds. In lean software development, this is
known as building quality in [82]. Don’t push defects in front of you to ‘deal
with them later’. In software development, later is never.

4. When that happens, I don’t succumb to the sunk cost fallacy. Even if I’ve spent time writing the question,
I usually delete it because I deem that it’s not, after all, of general interest.
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When a bug appears, make it a priority to address it. Stop what you’re doing5

and fix the defect instead.

12.2.1 Reproduce Defects as Tests

Initially, you may not even understand what the problem is, but when you think
that you do, perform an experiment: The understanding should enable you to
formulate a hypothesis, which again enables you to design an experiment.

Such an experiment may be an automated test. The hypothesis is that when
you run the test, it’ll fail. When you actually do run the test, if it does fail,
you’ve validated the hypothesis. As a bonus, you also have a failing test that
reproduces the defect, and that will later serve as a regression test.

If, on the other hand, the test succeeds, the experiment failed. This means that
your hypothesis was wrong. You’ll need to revise it so that you can design a
new experiment. You may need to repeat this process more than once.

When you finally have a failing test, ‘all’ you have to do is to make it pass. This
can occasionally be difficult, but in my experience, it usually isn’t. The hard
part of addressing a defect is understanding and reproducing it.

I’ll show you an example from the online restaurant reservation system. While
I was doing some exploratory testing I noticed something odd when I updated
a reservation. Listing 12.1 shows an example of the issue. Can you spot the
problem?

The problem is that the email property holds the name, and vice versa. It
seems that I accidentally switched them around somewhere. That’s the initial
hypothesis, but it may take a little investigation to figure out where.

Have I not been following test-driven development? Then how could this
happen?

5. Isn’t it wonderful that with Git you can simply stash your current work?
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Listing 12.1 Updating a reservation with a PUT request. A defect is manifest in this interaction.
Can you spot it?

PUT /reservations/21b4fa1975064414bee402bbe09090ec HTTP/1.1
Content-Type: application/json
{

"at": "2022-03-02 19:45",
"email": "pan@example.com",
"name": "Phil Anders",
"quantity": 2

}

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
{

"id": "21b4fa1975064414bee402bbe09090ec",
"at": "2022-03-02T19:45:00.0000000",
"email": "Phil Anders",
"name": "pan@example.com",
"quantity": 2

}

This could happen because I’d implemented SqlReservationsRepository6 as
a Humble Object [66]. This is an object so simple that you may decide not to
test it. I often use the rule of thumb that if the cyclomatic complexity is 1, a
test (also with a cyclomatic complexity of 1) may not be warranted.

Even so, you can still make mistakes even when the cyclomatic complexity is 1.
Listing 12.2 shows the offending code. Can you spot the problem?

Given that you already know what the problem is, you can probably guess that
the Reservation constructor expects the email argument before the name.
Since both parameters are declared as string, though, the compiler doesn’t
complain if you accidentally swap them. This is another example of stringly
typed code [3], which we should avoid7.

6. See for example listing 4.19.
7. One way to avoid stringly typed code is to introduce Email and Name classes that wrap their respective

string values. This prevents some cases of accidentally swapping these two arguments, but as it turned
out when I did it, it wasn’t entirely foolproof. You can consult the example code’s Git repository if you’re
interested in the details. The bottom line was that I felt that an integration test was warranted.
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Listing 12.2 The offending code fragment that causes the defect shown in listing 12.1. Can you
spot the programmer error?
(Restaurant/d7b74f1/Restaurant.RestApi/SqlReservationsRepository.cs)

using var rdr =
await cmd.ExecuteReaderAsync().ConfigureAwait(false);

if (!rdr.Read())
return null;

return new Reservation(
id,
(DateTime)rdr["At"],
(string)rdr["Name"],
(string)rdr["Email"],
(int)rdr["Quantity"]);

It’s easy enough to address the defect, but if I can make the mistake once, I can
make it again. Thus, I want to prevent a regression. Before fixing the code, write
a failing test that reproduces the bug. Listing 12.3 shows the test I wrote. It’s an
integration test that verifies that if you update a reservation in the database and
subsequently read it, you should receive a reservation equal to the one you
saved. That’s a reasonable expectation, and it reproduces the error because the
ReadReservation method swaps name and email, as shown in listing 12.2.

That PutAndReadRoundTrip test is an integration test that involves the
database. This is new. So far in this book, all tests have been running without
external dependencies. Involving the database is worth a detour.

12.2.2 Slow Tests

Bridging the gap between a programming language’s perspective on data and a
relational database is error-prone8, so why not test such code?

In this subsection, you’ll see an outline of how to do that, but there’s a
problem: such tests tend to be slow. They tend to be orders of magnitudes
slower than in-process tests.

8. Proponents of object-relational mappers (ORMs) might argue that this makes the case for such a tool.
As I’ve stated elsewhere in this book, I consider ORMs a waste of time: they create more problems than
they solve. If you disagree, then feel free to skip this subsection.
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Listing 12.3 Integration test of SqlReservationsRepository.
(Restaurant/645186b/Restaurant.RestApi.SqlIntegrationTests/SqlReservationsRepositoryTests.cs)

[Theory]
[InlineData("2032-01-01 01:12", "z@example.net", "z", "Zet", 4)]
[InlineData("2084-04-21 23:21", "q@example.gov", "q", "Quu", 9)]
public async Task PutAndReadRoundTrip(

string date,
string email,
string name,
string newName,
int quantity)

{
var r = new Reservation(

Guid.NewGuid(),
DateTime.Parse(date, CultureInfo.InvariantCulture),
new Email(email),
new Name(name),
quantity);

var connectionString = ConnectionStrings.Reservations;
var sut = new SqlReservationsRepository(connectionString);
await sut.Create(r);

var expected = r.WithName(new Name(newName));
await sut.Update(expected);
var actual = await sut.ReadReservation(expected.Id);

Assert.Equal(expected, actual);
}

The time it takes to execute a test suite matters, particularly for developer tests
that you continually run. When you refactor with the test suite as a safety net,
it doesn’t work if it takes half an hour to run all tests. When you follow the
Red Green Refactor process for test-driven development, it doesn’t work if
running the tests takes five minutes.

The maximum time for such a test suite should be ten seconds. If it’s much
longer than that, you’ll lose focus. You’ll be tempted to look at your email,
Twitter, or Facebook while the tests run.

You can easily eat into such a ten-second budget if you involve a database.
Therefore, move such tests to a second stage of tests. There are many ways you
can do this, but a pragmatic way is to simply create a second Visual Studio
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solution to exist side-by-side with the day-to-day solution. When you do that,
remember to also update the build script to run this new solution instead, as
shown in listing 12.4.

Listing 12.4 Build script running all tests. The Build.sln file contains both unit and integration
tests that use the database. Compare with listing 4.2. (Restaurant/645186b/build.sh)

#!/usr/bin/env bash
dotnet test Build.sln --configuration Release

The Build.sln file contains the production code, the unit test code, as well as
integration tests that use the database. I do day-to-day work that doesn’t
involve the database in another Visual Studio solution called Restaurant.sln.
That solution only contains the production code and the unit tests, so running
all tests in that context is much faster.

The test in listing 12.3 is part of the integration test code, so only runs when I
run the build script, or if I explicitly choose to work in the Build.sln solution
instead of in Restaurant.sln. It’s sometimes practical to do that, if I need to
perform a refactoring that involves the database code.

I don’t want to go into too much detail about how the test in listing 12.3
works, because it’s specific to how .NET interacts with SQL Server. If you’re
interested in the details, they’re all available in the accompanying example
code base, but briefly, all the integration tests are adorned with a
[UseDatabase] attribute. This is a custom attribute that hooks into the
xUnit.net unit testing framework to run some code before and after each test
case. Thus, each test case is surrounded with behaviour like this:

1. Create a new database and run all DDL9 scripts against it.

2. Run the test.

3. Tear down the database.

9. Data Definition Language, typically a subset of SQL. See listing 4.18 for an example.
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Yes, each test creates a new database only to delete it again some milliseconds
later10. That is slow, which is why you don’t want such tests to run all the time.

Defer slow tests to a second stage of your build pipeline. You can do it as
outlined above, or by defining new steps that only run on your Continuous
Integration server.

12.2.3 Non-deterministic Defects

After running the restaurant reservation system for some time, the restaurant’s
maître d’ files a bug: once in a while, the system seems to allow overbooking.
She can’t deliberately reproduce the problem, but the state of the reservations
database can’t be denied. Some days contain more reservations than the
business logic shown in listing 12.5 allows. What’s going on?

You peruse the application logs11 and finally figure it out. Overbooking is a
possible race condition. If a day is approaching capacity and two reservations
arrive simultaneously, the ReadReservations method might return the same
set of rows to both threads, indicating that a reservation is possible. As figure
12.2 shows, each thread determines that it can accept the reservation, so it
adds a new row to the table of reservations.

This is clearly a defect, so you should reproduce it with a test. The problem is,
however, that this behaviour isn’t deterministic. Automated tests are supposed
to be deterministic, aren’t they?

It is, indeed, best if tests are deterministic, but do entertain, for a moment, the
notion that nondeterminism may be acceptable. In which way could this be?

10. Whenever I explain this approach to integration testing with a database, I’m invariably met with the
reaction that one can, instead, test by rolling back transactions. Yes, except that this means that you
can’t test database transaction behaviour. Also, using transaction rollback may be faster, but have you
measured? I have, once, and found no significant difference. See also section 15.1 for my general position
on performance optimisation.

11. See subsection 13.2.1.
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Tests can fail in two ways: A test may indicate a failure where none is;
this is called a false positive. A test may also fail to indicate an actual error;
this is called a false negative.

Listing 12.5 Apparently, there’s a bug in this code that allows overbooking. What could be the
problem? (Restaurant/dd05589/Restaurant.RestApi/ReservationsController.cs)

[HttpPost]
public async Task<ActionResult> Post(ReservationDto dto)
{

if (dto is null)
throw new ArgumentNullException(nameof(dto));

var id = dto.ParseId() ?? Guid.NewGuid();
Reservation? r = dto.Validate(id);
if (r is null)

return new BadRequestResult();

var reservations = await Repository
.ReadReservations(r.At)
.ConfigureAwait(false);

if (!MaitreD.WillAccept(DateTime.Now, reservations, r))
return NoTables500InternalServerError();

await Repository.Create(r).ConfigureAwait(false);
await PostOffice.EmailReservationCreated(r).ConfigureAwait(false);

return Reservation201Created(r);
}

Read
Reservations reservations Create OK

Read
Reservations

THREAD 1

THREAD 2

DATABASE

reservations Create OK

TIME

Figure 12.2 A race condition between two threads (e.g. two HTTP clients) concurrently trying
to make a reservation.

False positives are problematic because they introduce noise, and thereby
decrease the signal-to-noise ratio of the test suite. If you have a test suite that
often fails for no apparent reason, you stop paying attention to it [31].
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False negatives aren’t quite as bad. Too many false negatives could decrease
your trust in a test suite, but they introduce no noise. Thus, at least, you know
that if a test suite is failing, there is a problem.

One way to deal with the race condition in the reservation system, then, is to
reproduce it as the non-deterministic test in listing 12.6.

Listing 12.6 Non-deterministic test that reproduces a race condition.
(Restaurant/98ab6b5/Restaurant.RestApi.SqlIntegrationTests/ConcurrencyTests.cs)

[Fact]
public async Task NoOverbookingRace()
{

var start = DateTimeOffset.UtcNow;
var timeOut = TimeSpan.FromSeconds(30);
var i = 0;
while (DateTimeOffset.UtcNow - start < timeOut)

await PostTwoConcurrentLiminalReservations(
start.DateTime.AddDays(++i));

}

This test method is only an orchestrator of the actual unit test. It keeps
running the PostTwoConcurrentLiminalReservations method in listing 12.7
for 30 seconds, over and over again, to see if it fails. The assumption, or hope,
is that if it can run for 30 seconds without failing, the system may actually
have the correct behaviour.

There’s no guarantee that this is the case. If the race condition is as scarce as
hen’s teeth, this test could produce a false negative. That’s not my experience,
though.

When I wrote this test, it only ran for a few seconds before failing. That gives
me some confidence that the 30-second timeout is a sufficiently safe margin,
but I admit that I’m guessing; it’s another example of the art of software
engineering.

It turned out that the system had the same bug when updating existing
reservations (as opposed to creating new ones), so I also wrote a similar test
for that case.
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Listing 12.7 The actual test method orchestrated by the code in listing 12.6. It attempts to
post two concurrent reservations. The state of the system is that it’s almost sold out (the
capacity of the restaurant is ten, but nine seats are already reserved), so only one of those
reservations should be accepted.
(Restaurant/98ab6b5/Restaurant.RestApi.SqlIntegrationTests/ConcurrencyTests.cs)

private static async Task PostTwoConcurrentLiminalReservations(
DateTime date)

{
date = date.Date.AddHours(18.5);
using var service = new RestaurantService();
var initialResp =

await service.PostReservation(new ReservationDtoBuilder()
.WithDate(date)
.WithQuantity(9)
.Build());

initialResp.EnsureSuccessStatusCode();

var task1 = service.PostReservation(new ReservationDtoBuilder()
.WithDate(date)
.WithQuantity(1)
.Build());

var task2 = service.PostReservation(new ReservationDtoBuilder()
.WithDate(date)
.WithQuantity(1)
.Build());

var actual = await Task.WhenAll(task1, task2);

Assert.Single(actual, msg => msg.IsSuccessStatusCode);
Assert.Single(

actual,
msg => msg.StatusCode == HttpStatusCode.InternalServerError);

}

These tests are examples of slow tests that ought to be included only as
second-stage tests as discussed in subsection 12.2.2.

There are various ways you can address a defect like the one discussed here.
You can reach for the Unit of Work [33] design pattern. You can also deal with
the issue at the architectural level, by introducing a durable queue with a
single-threaded writer that consumes the messages from it. In any case, you
need to serialise the reads and the writes involved in the operation.

I chose to go for a pragmatic solution: use .NET’s lightweight transactions, as
shown in listing 12.8. Surrounding the critical part of the Post method with a
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TransactionScope effectively serialises12 the reads and writes. That solves the
problem.

Listing 12.8 The critical part of the Post method is now surrounded with a
TransactionScope, which serialises the read and write methods. The highlighted code is new
compared to listing 12.5. (Restaurant/98ab6b5/Restaurant.RestApi/ReservationsController.cs)

using var scope = new TransactionScope(
TransactionScopeAsyncFlowOption.Enabled);

var reservations = await Repository
.ReadReservations(r.At)
.ConfigureAwait(false);

if (!MaitreD.WillAccept(DateTime.Now, reservations, r))
return NoTables500InternalServerError();

await Repository.Create(r).ConfigureAwait(false);
await PostOffice.EmailReservationCreated(r).ConfigureAwait(false);
scope.Complete();

In my experience, most defects can be reproduced as deterministic tests, but
there’s a residual that eludes this ideal. Multithreaded code infamously falls
into that category. Of two evils, I prefer nondeterministic tests over no test
coverage at all. Such tests will often have to run until they time out in order to
give you confidence that they’ve sufficiently exercised the test case in question.
You should, therefore, put them in a second stage of tests that only runs on
demand and as part of your deployment pipeline.

12.3 Bisection

Some defects can be elusive. When I developed the restaurant system I ran into
one that took me most of a day to understand. After wasting hours following
several false leads, I finally realised that I couldn’t crack the nut only by staring
long enough at the code. I had to use a method.

12. Serialisability, here, refers to making sure that database transactions behave as though they were
serialised one after another [55]. It has nothing to do with converting objects to and from JSON or
XML.
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Fortunately, such a method exists. We can call it bisection for lack of a better
word. In all its simplicity, it works like this:

1. Find a way to detect or reproduce the problem.

2. Remove half of the code.

3. If the problem is still present, repeat from step 2. If the problem goes away,
restore the code you removed, and remove the other half. Again, repeat
from step 2.

4. Keep going until you’ve whittled down the code that reproduces the
problem to a size so small that you understand what’s going on.

You can use an automated test to detect the problem, or use some ad hoc way
to detect whether the problem is present or absent. The exact way you do this
doesn’t matter for the technique, but I find that an automated test is often the
easiest way to go about it, because of the repetition involved.

I often use this technique when I rubber duck by writing a question on Stack
Overflow. Good questions on Stack Overflow should come with a minimal
working example. In most cases I find that the process of producing the
minimal working example is so illuminating that I get unstuck before I have a
chance to post the question.

12.3.1 Bisection with Git

You can also use the bisection technique with Git to identify the commit that
introduced the defect. I ultimately used that with the problem I ran into.

I’d added a secure resource to the REST API to list the schedule for a
particular day. A restaurant’s maître d’ can make a GET request against that
resource to see the schedule for the day, including all reservations and who
arrives when. The schedule includes names and emails of guests, so it
shouldn’t be available without authentication and authorisation13.

This particular resource demands that a client presents a valid JSON Web
Token (JWT). I’d developed this security feature with test-driven development
and I had enough tests to feel safe.

13. For an example of what this looks like, see subsection 15.2.5.
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Then one day, as I was interacting with the deployed REST API, I could no
longer access this resource! I first thought that I’d supplied an invalid JWT, so
I wasted hours troubleshooting that. Dead end.

It finally dawned on me that this security feature had worked. I’d interacted
with the deployed REST API earlier and seen it work. At one time it worked,
and now it didn’t. In between these two known states a commit must have
introduced the defect. If I could identify that particular code change, I might
have a better chance of understanding the problem.

Unfortunately, there was some 130 commits between those two extremes.

Fortunately, I’d found an easy way to detect the problem, if given a commit.

This meant that I could use Git’s bisect feature to identify the exact commit
that caused the problem.

Git can run an automated bisection for you if you have an automated way to
detect the problem. Usually, you don’t. When you bisect, you’re looking for a
commit that introduced a defect that went unnoticed at the time. This means
that even if you have an automated test suite, the tests didn’t catch that bug.

For that reason, Git can also bisect your commits in an interactive session. You
start such a session with git bisect start, as shown in listing 12.9.

Listing 12.9 The start of a Git bisect session. I ran it from Bash, but you can run it in any shell
where you use Git. I’ve edited the terminal output by removing irrelevant data that Bash tends to
show, so that it fits on the page.

˜/Restaurant ((56a7092...))
$ git bisect start

˜/Restaurant ((56a7092...)|BISECTING)

This starts an interactive session, which you can tell from the Git integration
in Bash (it says BISECTING). If the current commit exhibits the defect you’re
investigating, you mark it as shown in listing 12.10
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Listing 12.10 Marking a commit as bad in a bisect session.

$ git bisect bad

˜/Restaurant ((56a7092...)|BISECTING)

If you don’t provide a commit ID, Git is going to assume that you meant the
current commit (in this case 56a7092).

You now tell it about a commit ID that you know is good. This is the other
extreme of the range of commits you’re investigating. Listing 12.11 shows how
that’s done.

Listing 12.11 Marking a commit as good in a bisect session. I’ve trimmed the output a little to
make it fit on the page.

$ git bisect good 58fc950
Bisecting: 75 revisions left to test after this (roughly 6 steps)
[3035c14...] Use InMemoryRestaurantDatabase in a test

˜/Restaurant ((3035c14...)|BISECTING)

Notice that Git is already telling you how many iterations to expect. You can
also see that it checked out a new commit (3035c14) for you. That’s the
half-way commit.

You now have to check whether or not the defect is present in this commit. You
can run an automated test, start the system, or any other way you’ve identified
to answer that question.

In my particular case, the half-way commit didn’t have the defect, so I told
Git, as shown in listing 12.12.

Listing 12.12 Marking the half-way commit as good in a bisect session. I’ve trimmed the output
a little to make it fit on the page.

$ git bisect good
Bisecting: 37 revisions left to test after this (roughly 5 steps)
[aa69259...] Delete Either API

˜/Restaurant ((aa69259...)|BISECTING)
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Again, Git estimates how many more steps are left and checks out a new
commit (aa69259).

Listing 12.13 Finding the commit responsible for the defect, using a Git bisect session.

$ git bisect bad
Bisecting: 18 revisions left to test after this (roughly 4 steps)
[75f3c56...] Delete redundant Test Data Builders

˜/Restaurant ((75f3c56...)|BISECTING)
$ git bisect good
Bisecting: 9 revisions left to test after this (roughly 3 steps)
[8f93562...] Extract WillAcceptUpdate helper method

˜/Restaurant ((8f93562...)|BISECTING)
$ git bisect good
Bisecting: 4 revisions left to test after this (roughly 2 steps)
[1c6fae1...] Extract ConfigureClock helper method

˜/Restaurant ((1c6fae1...)|BISECTING)
$ git bisect good
Bisecting: 2 revisions left to test after this (roughly 1 step)
[8e1f1ce] Compact code

˜/Restaurant ((8e1f1ce...)|BISECTING)
$ git bisect good
Bisecting: 0 revisions left to test after this (roughly 1 step)
[2563131] Extract CreateTokenValidationParameters method

˜/Restaurant ((2563131...)|BISECTING)
$ git bisect bad
Bisecting: 0 revisions left to test after this (roughly 0 steps)
[fa0caeb...] Move Configure method up

˜/Restaurant ((fa0caeb...)|BISECTING)
$ git bisect good
2563131c2d06af8e48f1df2dccbf85e9fc8ddafc is the first bad commit
commit 2563131c2d06af8e48f1df2dccbf85e9fc8ddafc
Author: Mark Seemann <mark@example.com>
Date: Wed Sep 16 07:15:12 2020 +0200

Extract CreateTokenValidationParameters method

Restaurant.RestApi/Startup.cs | 32 +++++++++++++++++++-------------
1 file changed, 19 insertions(+), 13 deletions(-)

˜/Restaurant ((fa0caeb...)|BISECTING)
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I repeated the process for each step, marking the commit as either good or
bad, depending on whether or not my verification step passed. This is shown
in listing 12.13.

After just eight iterations, Git found the commit responsible for the defect.
Notice that the last step tells you which commit is the ‘first bad commit’.

Once I saw the contents of the commit, I immediately knew what the problem
was and could easily fix it. I’m not going to tire you with a detailed description
of the error, or how I fixed it. If you’re interested, I wrote a blog post [101]
with all the details, and you can also peruse the Git repository that
accompanies the book.

The bottom line is that bisection is a potent technique for finding and isolating
the source of an error. You can use it with or without Git.

12.4 Conclusion

There’s a significant degree of personal experience involved in
troubleshooting. I once worked in a team where a unit test failed on one
developer’s machine, while it passed on another programmer’s laptop. The
exact same test, the same code, the same Git commit.

We could have just shrugged and found a workaround, but we all knew that
making the symptom go away without understanding the root cause tends to
be a myopic strategy. The two developers worked together for maybe half an
hour to reduce the problem to a minimal working example. Essentially, it
boiled down to string comparison.

On the machine where the test failed, a comparison of strings would consider
"aa" less than "bb", and "bb" less than "cc". That seems fine, doesn’t it?

On the machine where the test succeeded, however, "bb" was still less than
"cc", but "aa" was greater than "bb". What’s going on?

At this point, I got involved, took one look at the repro and asked both
developers what their ‘default culture’ was. In .NET, the ‘default culture’ is an
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Ambient Context [25] that knows about culture-specific formatting rules, sort
order, and so on.

As I expected, the machine that considered "aa" greater than "bb" was
running with the Danish default culture, whereas the other machine used US
English. The Danish alphabet has three extra letters (Æ, Ø, and Å) after Z,
but the Å used to be spelled Aa in the old days, and since that spelling still
exists in proper nouns, the aa combination is considered to be equivalent to å.
Å being the last letter in the alphabet is considered greater than B.

It took me less than a minute to figure out what the problem was, because I’d
run into enough problems with Danish sort orders earlier in my career. That’s
still the shifting sands of individual experience—the art of software
engineering.

I’d never been able to identify the problem if my colleagues hadn’t first used a
methodology like bisection to reduce the problem to a simple symptom. Being
able to produce a minimal working example is a superpower in software
troubleshooting.

Notice what I haven’t discussed in this chapter: debugging.

Too many people rely exclusively on debugging for troubleshooting. While I
do occasionally use the debugger, I find the combination of the scientific
method, automated testing, and bisection more efficient. Learn and use these
more universal practices, because you can’t use debugging tools in your
production environment.
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daily stand-up, 194, 275, 282

format, 275
Danish alphabet, 256
Danish teachers’ union, 280
dark room, 7
data

access, 74, 316, 320–322
component, 316
implementation, 314
interface, 321
package, 321, 322

export, 257
import, 257
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tampering, 293, 294
version control, 305

Data Definition Language,
245

data store, 50, 61, 271
data structure, 45, 70
Data Transfer Object, 69,

70, 315
configuration, 173
role, 70
validation, 140, 142
versus Domain Model,

72, 145
data type
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delete, 164
row version, 183
schema, 6, 78, 79, 257
SDK, 282
secure, 295
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defect, see also bug, 35, 88

address, 241, 243, 249
deal with later, 240
detect, 159
elusive, 250
expose, 228
finding, 192, 251–255
fix, 129
ideal number of, 240
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configure, 270
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Iterator, 165
Model View Controller,
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developer
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done done, 192
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essay, 160
essence, 141, 146
ethics, 292
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falsifiability, 97, 237
fault tolerance, 267, 271, 300
feature, 50, 52, 192, 193

add, 35, 40, 129
big, 220
completion, 193, 208
configuration, 208
cutting across, 267
delivery, 276
deployed, 201
difficult, 204
done, 192
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firefighting, 193, 275
Firefox, 314
first language, 181
fits in your head, 150–152,

154, 176, 262, 274, 312
API, 165
architecture, 314
chunk, 262, 265, 312
code, 114, 115, 135, 198,

309
composition, 259
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low-hanging, 24
FsCheck, 301–305

NegativeInt, 302
NonNegativeInt, 302, 304
PositiveInt, 302

function
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object, 99, 103, 108
social, 177

Interactive Development
Environment, 281

interception, 269, 295
interface

add member, 122, 213
affordance, 156
cycle, 320
delete member, 214
extra method, 212
go to implementation,

315
versus base class, 229

internal, see access modifier
Internet, 14
internet
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180, 314
need it later, 215
negative number, see number
nested class, see class
nesting, 259, 260, 262, 274

dolls, 268, 269
object, 268

nihilism, 10
nil, 89
no-op, 67
Nobel laureate, 42
noble, 290, 291
non-breaking change, 219
non-determinism, 265, 266,

273
non-nullable reference type,

see null
Norman, Donald A., 156,

157
NoSQL, 78
notification area, 277
NPM, 282
NuGet, 282
null, 28

ArgumentNullException,
92

check, 92, 99
coalescing operator, 104,

133
Guard Clause, 75, 81, 94,

96, 98
nil, 89
non-nullable reference

type, 28, 99, 106, 144,
162

null-forgiving operator,
144

nullable reference type,
28, 72, 92, 146, 162
alternatives to, 146
gradually enabling, 31
suppression, 144

NullReferenceException,
92

return value, 161
Null Object, see design

pattern
NullRepository class, 76, 77,

81
number, see also integer

128-bit, 294
increment, 133
natural, 100–102, 106, 300
negative, 102, 107, 300,

301
one, 133
positive, 102, 108
random, 273
seven, 39, 46, 111, 131,

133, 138
ten, 41, 43
zero, 107

number-line order, 122
NUnit, 301

O
object

composition, 259, 315
equality, 72
immutable, 106
polymorphic, 268
shared, 76

object-oriented API, 221
object-oriented code, 238,

266, 274
object-oriented

composition, 258, 259
object-oriented

decomposition, 274
object-oriented design, 139,

142, 160, 259, 274

object-oriented language,
xxiv, 146, 266

object-oriented
programming, 14, 100,
108, 211, 238

object-relational mapper, 78,
79, 243, 320, 321
reinvention, 6
versus SQL, 238

obligation, 87, 108
Obsolete attribute, see

attribute
Occurrence class, 215–218
office, 279

home, 284
open, 284, 285
own, 284

one-time code, 112
open-source software, 278,

285
OpenAPI, 205
opening hours, 168, 169
operations specialist, 177
operations team, 78
operator

greater-than, 123
greater-than-or-equal,

123
less-than, 123
less-than-or-equal, 123
minus, 302
null-coalescing, 104, 133
null-forgiving, 92, 144
ternary, 104
unary, 302

Option, 146
order

ascending, 122
ordering, 227
organisation

healthy, 32
rhythm, 193
unhealthy, 32

ORM, see object-relational
mapper
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outcome
actual, 56, 97
adverse, 127
direct, 178
expected, 56, 72, 97, 116
falsifiable, 97
improvement, 17, 29, 32
negative, 178
positive, 178
predicted, 97
quantitative, 97
successful, 13, 124
versus process, 178

output, 70, 100, 103
indirect, 229
parsed, 148
terminal, 252, 253
to input, 262, 264
type, 163

over-engineering, 215
overbooking, 246, 247, 268

test, 116, 117, 226
overload, 213

add, 212, 213
return-type, 217

overlogging, 272
overtime, 192

P
package, 30, 283, 318, 319,

321–323
author, 282
data access, 321, 322
distribution, 282
encapsulation, 156
reusable, 44, 45, 301
test, 322
update, 282, 283
version, 282

package manager, 282
package restore, 237
pair programming, 189–192,

199, 295
rotation, 190

parameter, see also
argument, 152

how many, 153
query, 50
swap, 242, 243, 268

Parameter Object, 153
parameterless constructor,

see constructor
Parametrised Test, see test
params keyword, 170
parsing, 144, 145, 147, 148,

173
partial function, 148
password, 296
pattern language, xxiii
pause point, 16
peasant, 290
performance, 201, 287–290,

292
fixation, 292
issue, 58

performance monitoring,
267

permission, 198, 293, 299
persistent storage, 77
personal computer, 11
personally identifiable

information, 296
perverse incentive, 132, 292
petri dish, 307
phase, 5

act, 56, 57, 69, 97, 115,
124

arrange, 56, 69, 115, 124
assert, 56, 73, 91, 97
construction, 5, 6
design, 6
green, 97, 98, 104, 107,

125
programming, 5
red, 97, 107, 125
refactor, 96, 98, 104

phone number, 112, 113
physical activity, 279
physical design, 4
physical object, 12, 13, 156
physical work, 279
physics, 44

PII, see personally
identifiable information

pilot, 16–18
test, 16

pipeline, see deployment
pipeline

pixel, 258
plain text, 54

document, 61
planning, 5, 6, 13, 49
platform, 258, 309

defect, 298
plot of land, 87, 290
poka-yoke, 159, 321

active, 159
passive, 159

policy, 21, 198
politeness, 198
polymorphism, 146, 172,

229, 268
Pomodoro technique, 276,

277
pop culture, 12
ports and adapters, 318,

319, 323
positive number, see number
POST, see HTTP
PostAsync method, 66
postcondition, 226–228

contract, 108
guarantee, 108
invariant, 109, 144
Postel’s law, 103
weaken, 228

Postel’s law, 103, 106, 109
Postel, Jon, 103
Postman, 82
PowerShell, 22
precondition, 143, 145, 156

check, 105, 144, 145
contract, 108
invariant, 109, 144
Postel’s law, 103
responsibility, 108
strengthen, 232
weaken, 212, 227
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predicate, 260, 262, 263
predictability, 264
prediction, 37, 97, 236, 237
PRINCE2, 276
private, see access modifier
probability, 127
problem

address, 236, 237
alternative solution, 9
dealing with, 236
detect, 252
disappear, 236
explaining, 239
manifestation, 236, 272,

278
reaction, 236
reproduction, 246, 251
solving, 235, 238
stuck, 238
unanticipated, 193

process, 275, 291
agile, 284
approval, 190
compilation, 167
external, 299
formal, 308
iterative, 197
long-running, 102
mistake-proof, 159
subconscious, 279
versus outcome, 178

procrastination, 276
product owner, 177
production code

as answer to driver, 88
bug, 228
change, 224, 228
confidence, 224
coupled to test code, 228
edit, 203
refactoring, 227, 229
rule, 58

productivity, 191, 235, 278,
281, 285
deleting code, 132
long hours, 279

measure, 279
metric, 132
negative, 279
personal, 279, 285
tip, 280

profit, 35
Program class, 22, 26, 27,

150
programmer, see also

developer
good, 45, 176
irreplacable, 113
legacy code, 113
maintenance, 105, 309
other, 177, 310
responsibility, 295
single, 192
suffering of, 129
third-party, 326
user-interface, 188

programming by
coincidence, 236, 237

programming language
advanced, 14
C-based, 135
components, 258
cross-platform, 36
density, 134
emulator, 39
functional, 266
high-level, 298
keyword, 133
layout, 135
learning, 18, 279, 280
mainstream, 320, 321
new, 40
statically typed, 157, 161
tools, 24, 25
verbosity, 21, 134

progress, 12, 14, 35, 45
project, 4–6
project management, 6, 37
proper noun, 256
property, 301

C#, 301, 302
declaration, 72

getter, 143
read-only, 72, 75, 172, 176
Visual Basic, 301

Property attribute, see
attribute

property-based testing, see
test

prophylaxis, 134
prose, 180, 181
Pryce, Nat, 7
psychology, 42
pull request, 197, 198, 285

big, 134, 194, 198
punch card, 289
punctuation, 180
pure function, see also

referential transparency,
237, 264–266, 273, 274

PureScript, 166
purpose, 36, 37, 44, 258, 296
PUT, see HTTP
puzzle, 33, 43

Q
quality, 129, 301

build in, 159, 240
essential, 100
internal, 31, 35, 37, 98,

154
better, 131
low, 40

quality gate, 31, 32
quantifiable result, 36, 97
Query, see also Command

Query Separation, 166
composition, 262
constructor, 262
deterministic, 264, 265
example, 176, 262, 263
favour, 166
non-deterministic, 264,

266
parameter, 50
side effect, 261, 262
type, 163, 171

queue, 50, 249, 299
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QuickCheck, 301
quicksort, 45

R
race condition, 246–248
Rainsberger, J.B., 47
RAM, 39, 45, 112
random number, 273
random number generator,

264
random value, 301, 302
range, 148, 212, 213
readability, 41, 281

code review criterion, 196
nudge, 135
optimise for, 40, 79

reader
future, 59, 160, 163

readme, 168
real world, 29, 100, 258
reality, 6, 10, 52, 192, 290

physical, 6
reboot, 236, 237
receiver, 160
recursion, 89
Red Green Refactor, 96, 97,

125, 128, 224
execution time, 244
red phase, 103, 107

Reeves, Jack, 5, 13
refactoring, 98, 203

Add Parameter, 228
backbone of, 224
big, 220
candidate, 139
code ownership, 187
commit, 229
database, 245
Extract Method, 187,

227, 228
IDE, 234
Inline Method, 187
legacy code, 114
Move Method, 143, 227
opportunity, 125
prophylactical, 134

Rename Method, 218, 227
Rename Variable, 227
safe, 227, 228
test, 231
test code, 224, 232, 234

apart, 229
to property-based test,

301–303
upon rot, 325

toward deeper insight,
209

Refactoring (book), 143,
223, 224, 227

reference type, see also null,
28

referential transparency, 264,
265, 273

regression, 227, 228
likelihood, 126
prevention, 55, 61, 127,

243
relationship type, 206
release, 219–221

canary, 300
Release configuration, 22, 25
release cycle, 5
repeatability, 272
repetition, 251
Repository, see design

pattern
repudiation, 293, 296
research, 5, 38
resiliency, 298–300
REST, 66
restart, 236
restaurant owner, 294, 296
RESTful, 205
RESTful Web Services

Cookbook (book), 116
return on investment, 299
revelation, 278
review, 13, see code review
reviewer, 195–198
rework, 220
Richardson Maturity

Model, 66

risk, 299
risk assessment, 127
robot, 156

industrial, 258, 327
role

claim, 297, 298
object, 70

rollback, 246
roof, 6
roofer, 9
room

dark, 7
root cause, 255
Roslyn, 26, 29
rotation, 56, 57
routine, 194, 279
routing, 151, 311
rubber duck, 239, 240, 251
rubber stamp, 194, 198
Ruby, 89, 282
RubyGems, 282
rule

against decay, 131
analyser, 26, 27, 30, 31,

57, 139
breaking, 131
business, 118, 124, 138,

290
encapsulation, 70, 72

Command Query
Separation, 166

disable, 60
documentation, 58
extra, 264
formatting, 256
hard, 132
line height, 135
machine-enforced, 31
motivation, 28
redundant, 132
threshold, 131, 132
versus food for though, 89

rule of thumb, 10, 182, 204,
210, 242

running, 278
Russian dolls, 268, 269
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S
sabotage, 119, 233
safety net, 224, 228, 234, 244
salary, 21
scaffold, 20
scalar, 88, 89, 119
schedule

certificate update, 284
package update, 283
synchronisation, 190
team, 282

school, 160, 177, 280, 281
science, 44, 97, 98
scientific evidence, 13
scientific method, 97, 236,

237, 256
scientist, 3, 44
screen, 42, 239, 258, 281
Scrum, 276, 283

sprint, 283
retrospective, 282

SDK, 282, 326
sealed keyword, 27
seating

bar-style, 118, 168
counter, 117
overlap detection, 174
second, 138, 168, 169
single, 117, 138, 168

security, 271, 287, 288, 290,
292, 300
balance, 296
mitigation, 292

security by obscurity, 294
Seeing Like a State (book),

290
self-hosting, 55, 324
self-similarity, 154
Semantic Versioning, 218,

219
semicolon, 135
sender, 160
sensitivity, 231, 290
separation of concerns, 257,

268, 274, 314

serialisation, 64, 249, 250,
325

server, 21
setter, 108, 143
seven, 46, 136–138, 151–154

magical number, 39
proxy, 46
threshold, 130, 131, 133
token, 39, 133

shared code, see code
ownership

shell script, 22
shifting sands of individual

experience, 11, 13, 93, 99,
235, 256

shopping, 279
shower, 278
side effect, 162, 164–166,

171, 258, 259, 261–266
constructor, 262
Haskell, 323
hidden, 43
logging, 273

sign-off, 13, 23, 198, 199
signal, 29, 247
signature

digital, 296
method, 145, 146,

162–164, 166, 170,
171
identical, 213

Simple Made Easy
(conference talk), 238

simplest thing that could
possibly work, 75, 117,
215

simplicity, 46, 238
simulation, 13, 21
single point of failure, 187
SingleOrDefault method,

124–127
Singleton lifetime, see

Dependency Injection
skill, 199

decomposition, 155
legacy, 113

literary composition, 160
situational, 8
specialised, 9
troubleshooting, 235

slice
vertical, 49–52, 54, 60, 61,

77
first, 64, 85
happy path, 64
purpose, 64

small step, 61, 88, 194, 220
SMTP, 102
snapshot, 183, 184, 187
social media, 258
software

reusable, 45
successful, 4
sustainable, 67
unsuccessful, 4

software craftsmanship,
8–10

software crisis, 11, 14
software developer, see also

developer
collaboration, 189
professional, 31

skill, 8
software development

asynchronous, 285
highest-ranked problem,

182
history, 14, 15
industry, 9, 13, 14, 45

age, 3
improvement, 8

management, 292
process, 52, 276

latency, 192
regular, 35

professional, 29, 235
reality, 203

project
bad, xxiv

sustainable, 40
team, 177, 287
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software engineering, 34, 35,
37, 41, 44–47
aspirational goal, 11
classic, 308
conference, 11
deterministic process, 125
pocket, 11
practice, 182
process, 177
science, 97
traditional, 300, 308

SOLID principles, 300
sort order, 256

Danish, 256
sorting algorithm, see

algorithm
source control system, see

version control system
spaghetti code, 261, 285, 319
special case, 212, 237
specialisation, 188
Speculative Generality, 52
spelling error, 25
split screen configuration,

135
spoofing, 293, 294
SQL, 78, 212, 238, 245, 299

named parameter, 295
script, 315
SELECT, 123

SQL injection, 293, 295, 296,
299

SQL Server, 78, 299
SSTable, 45
Stack Overflow, 14, 240, 251,

280
stack trace, 309
stakeholder

Continuous Delivery, 276
disregard for engineering,

31
feedback from, 49, 85
involvment, 308
meeting, 280
prioritisation, 290
security, 292, 293

stand-in, 73
standard

de-facto, 18, 179
standard output, 50
Startup class, 23, 27, 55, 63,

76, 81, 83, 150, 173, 310,
311, 313, 315
constructor, 82

Stash, 178
state

application, 78, 121, 164
change, 164, 165

local, 165
consistent, 218
illegal

unrepresentable, 159
inspection, 230
invalid, 106–108, 159
mutation, 106
object, 106, 164
system, 249
transformation, 88
valid, 106, 144, 156

stateless class, 76, 80, 173
statement

formal, 41
statement completion, 281
static code analysis, see code

analysis
static flow analysis, 144, 147
static keyword, 27, 67, 139,

142, 147
statistics, 178
steering wheel, 41, 42
stored procedure, 299
Strangler, 210, 220

class-level, 215–217
method-level, 214

strangler fig, 210, 211
STRIDE, 292–294, 300
string comparison, 255
stringly typed code, 58, 164,

242
stroll, 239
struct keyword, 207
structural equality, 72

stub, 73
subdirectory, see also

directory, 314, 315
subroutine, 39
subterfuge, 32
subtype, 227
Subversion, 18, 178
suffering, xxiv, 129
sum type, 160
sunk cost fallacy, see fallacy
SuperFreakonomics (book),

132
supertype, 227
support agreement, 78
surgeon, 17
surgery, 17
survey

geographical, 127, 128
sustainability, 34–37, 40, 44,

45, 47, 114
versus speed, 67

SUT, see System Under Test
SUT Encapsulation Method,

66
Swagger, 205
Swiss Army knife, 158, 164
switch keyword, 133
syntactic sugar, 143
system

edge, 265, 266
restore, 284
running, 268

System 1, 42, 43, 279
System 2, 42, 43
system tray, 277
System Under Test, 66, 69,

301, 316, 325
coupling to test, 107
description, 128, 304
sabotage, 233
state, 230
triangulation, 127

T
tab, 315, 316
tagged union, see sum type
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take-off, 16
tampering, 293–295
task

big, 276
complex, 16
getting started, 276

tautology
assertion, 97, 233

TCP, 103
TDD, see test-driven

development
team

change, 187
high-performing, 5
low-performing, 5

team coupling, 308
team member

new, 111, 150
TeamCity, 24
technical debt, 7, 8, 178
technical expertise, 31
temperature, 326
terminal, 135
terrain, 291
test

acceptance, 61
add to existing code base,

24
as measurment, 127
automated

as driver, 53
as guidance, 167
database, 83
ease, 19
favour, 82
system, 82

boundary, 69, 76, 83
coverage, 118, 223, 250
deterministic, 246, 250
developer, 21
example, 300
exploratory, 208, 241
failing, 63, 96, 241
high-level, 65
in-process, 243

integration, 54, 208,
242–246, 297, 318

iteration, 96
manual, 82, 85
non-deterministic, 246,

248, 250
parametrised, 89, 90, 107,

300, 301
append test case, 119,

225
compared to property,

301
passing, 96, 97
property-based, 53, 279,

301–305
refactoring, 301
regression, 241
revisit, 116
slow, 243, 246, 249
smoke, 82, 85
state-based, 73

test case, 90, 91
append, 225
before and after, 245
comprehensive, 304
exercise, 250
good, 119
redundant, 128
single, 88

test code, 224
change, 234
coupled to production

code, 228
duplication, 61
edit, 224, 225, 228, 232,

234
maintenance, 234, 325
problem, 91
refactoring, 227, 229, 231,

232, 234, 326
rotate, 56, 57

test data, 303
Test Double, 73

Fake Object, 73, 84, 122
Test Spy, 229, 231

test framework, 90, 282

test library, 58
test method, 89, 119

add, 225
orchestration, 248, 249

test pilot, see pilot
test runner, 58
Test Spy, see Test Double
test suite, 53

build script, 55
execution time, 244
failing, 248
noise, 247, 248
safety net, 224
trust, 223, 248

Test Utility Method, 65,
324–326

test-driven development, 53,
63
acceptance, 61
beginner, 119
coaching, 191
enabling, 54
execution time, 244
mob programming, 316
one among alternative

drivers, 76
outside-in, 53, 61, 64, 68,

78
poka-yoke, 159
scientific method, 97, 98
security feature, 251
success story, 240
teaching, 119
technology choice, 78
triangulation, 127

Test-Driven Development By
Example (book), 116

text file, 21
textbook, 280
The Leprechauns of

Software Engineering
(book), 13

The Pragmatic Programmer
(book), 9, 279

Theory attribute, see
attribute
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thinking
deliberate, 42
effortful, 43

thread, 57, 58, 76
multi, 250
race, 246, 247
single, 249

thread safety, 80, 173
threat, 292, 299

identification, 299
mitigation, 295, 296, 298

threat modelling, 292, 293,
299, 300

threshold, 130–133, 135,
306, 307
aggressive, 154

throughput, 326
tick, 122
time, 227, 264, 266, 273, 306

management, 238
of day, 264
personal, 279
wasting, 276, 279

time-boxing, 238, 276, 277,
280

timeout, 248, 250
TODO comment, 67
tool, 24, 72

analyser, 24–30, 53, 76,
88, 302
warning, 28, 29

GUI, 82
linter, 24

topology, 21
Tornhill, Adam, 305
touch type, 280, 281
tradition, 9, 10, 268
traffic, 293, 298, 326
transaction, 87, 183, 246,

249, 250
roll back, 246

TransactionScope class, 250
transformation

atomic, 88
code, 88, 89, 91, 115, 119

Data Transfer Object, 70
input, 50

Transformation Priority
Premise, 75, 89, 115, 119,
128

tree, 151, 211, 314
B, 45
dead, 211
fractal, 151, 152
hollow, 211
host, 210
leaf node, 151
LSM, 45

Trelford, Phil, 158
triangulation, 119, 123, 127

geometry, 127
troubleshooting, 235, 236,

272
debugging, 256
experience, 255
ordeal, 8
superpower, 256
support future, 272
understanding, 268

trunk, 151, 184
trust, 87, 224, 248
try/catch, 92
TryParse method, 98, 99
Twitter, 244, 277
two-factor authentication,

see authentication
type

anonymous, 64
custom, 170
generic, 216
polymorphic, 229
static, 164
wrapper, 302

type declaration, 28
type hierarchy, 227
type inference, xxvi
type information, 157

static, 170
type signature, 162

type system, 106, 157
static, 28, 100

type-driven development, 53
TypeScript, xxiv
typist, 5, 281
typo, 187, 196, 281

U
ubiquitous language, 169
unauthorised access, 293
understanding, 235–238,

241, 251, 252
bug, 40
computer, 45, 176
difficult, 35, 40, 46
easier, 216
human, 45, 176
struggling, 182

undo, 18, 19, 186
unintended consequence,

132
unit, 68, 69, 107
Unit of Work, see design

pattern
unit test, see test

definition, 68
universal conjecture, 98
urgency, 283
Uri class, 58, 59, 66
URL, 66, 83, 205, 294, 296

documented, 205
opaque, 206
template, 66

UrtCop, 26
USB, 159
Usenet, 280
user, 4, 52, 296

regular, 293, 299
user code, 151, 298
user group, 31
user interface

before database, 6
feature flag, 209
slice, 50

using directive, 21
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V
vacation, 41, 187, 191, 205
validation, 77, 92, 147, 154,

261
email address, 102
input, 115
object-oriented, 144

validation link, 102
validity, 99, 102, 106, 108,

147
value, 36, 37, 192

hard-coded, 303
run-time, 273

Value Object, see design
pattern, 72

value type, 207
var keyword, xxvi, xxvii
variable, 75, 88, 89, 119

count, 153, 154
global, xxv, 43
local, 153
name, 196

VBScript, 44
vendor, 78
version

language, 282
major, 219, 221
new, 282
old, 282
platform, 282
skip, 282

version control data, 305
version control system, 18,

19, 178, 305
centralised, 18, 19, 182
CVS, 18
distributed, 18, 186
secrets, 82
Subversion, 18
tactical advantage, 186

vertex, 314
vicious circle, 193
Vietnam, 6
view

high-level, 151
materialised, 299

vigilance, 320
vine, 210, 211
violence, 210
virtual machine, 21
Visitor, see design pattern
Visual Basic, 44

property, 301
Visual SourceSafe, 183
Visual Studio

add null check, 76, 81
auto-generated code,

21–23, 25, 72
build configuration, 25
code metrics, 105, 133
developer, 30
generate constructor, 72
generate Equals and

GetHashCode, 72
Go To Definition, 315
IntelliSense, 157
project, 30, 54, 318
solution, 30, 54, 245
test runner, 58

void keyword, 162, 165
VT100, 135
vulnerability, 293, 294, 296,

299

W
wait time, 193

maximum, 194
walking, 239, 277, 279
Walking Skeleton, 20, 54, 60
warnings as errors, 25, 26,

29–32
as driver, 53, 57
cost, 67

weak code ownership, see
code ownership

web site, 51
Weinberg, Gerald M., 289
what you see is all there is,

43, 45, 152, 175
while keyword, 133
Windows, 19, 22, 268, 277,

315

wizard, 20, 54
work

design, 6, 278
detective, 106
human, 13
intellectual, 5, 42, 279
physical, 279
project, 4
skilled, 8
uninterrupted, 276
unplanned, 192, 193

work from home, 284
work item, 275, 276, 283
work item management, 178
workaround, 207, 255
worker, 5
Working Effectively with

Legacy Code (book), 113,
223

workshop, 292
worse is better, 36, 37
wrapper, 207, 242, 269, 302,

304
writer

single-thread, 249
WYSIATI, see what you see

is all there is

X
X out names, 162–164, 260
x-ray, 307
X.509 certificate, see

certificate
XML, 250, 326
XP, 276, 284
xp_cmdshell, 299
xUnit Test Patterns (book),

224
xUnit.net, 55, 90, 245, 301

Y
Yoder, Joseph, 153

Z
zero, 102, 106, 107
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zero bugs, 240
zero tolerance, 25
zone, see also flow, 42, 277,

278

zoom, 148, 149, 151, 152,
154
context, 314, 317, 324,

325

example, 175, 265
navigation, 314, 317,

325
out, 265
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