
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780137464401
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780137464401
https://plusone.google.com/share?url=http://www.informit.com/title/9780137464401
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780137464401
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780137464401/Free-Sample-Chapter


Praise for
Code That Fits in Your Head

“We progress in software by standing on the shoulders of those who came
before us. Mark’s vast experience ranges from philosophical and organisa-
tional considerations right down to the precise details of writing code. In this
book, you’re offered an opportunity to build on that experience. Use it.”

—Adam Ralph, speaker, tutor, and software simplifier, Particular Software

“I’ve been reading Mark’s blogs for years and he always manages to entertain
while at the same time offering deep technical insights. Code That Fits in Your
Head follows in that vein, offering a wealth of information to any software
developer looking to take their skills to the next level.”

—Adam Tornhill, founder of CodeScene, author of Software Design
X-Rays and Your Code as a Crime Scene

“My favorite thing about this book is how it uses a single code base as a
working example. Rather than having to download separate code samples, you
get a single Git repository with the entire application. Its history is hand-
crafted to show the evolution of the code alongside the concepts being
explained in the book. As you read about a particular principle or technique,
you’ll find a direct reference to the commit that demonstrates it in practice. Of
course, you’re also free to navigate the history at your own leisure, stopping at
any stage to inspect, debug, or even experiment with the code. I’ve never seen
this level of interactivity in a book before, and it brings me special joy because
it takes advantage of Git’s unique design in a new constructive way.”

—Enrico Campidoglio, independent consultant, speaker and
Pluralsight author

“Mark Seemann not only has decades of experience architecting and building
large software systems, but is also one of the foremost thinkers on how to scale
and manage the complex relationship between such systems and the teams
that build them.”

—Mike Hadlow, freelance software consultant and blogger



“Mark Seemann is well known for explaining complex concepts clearly and
thoroughly. In this book he condenses his wide-ranging software development
experience into a set of practical, pragmatic techniques for writing sustainable
and human-friendly code. This book will be a must read for every
programmer.”

—Scott Wlaschin, author of Domain Modeling Made Functional

“Mark writes, ‘Successful software endures’—this book will help you to write
that kind of software.”

—Bryan Hogan, software architect, podcaster, blogger

“Mark has an extraordinary ability to help others think deeply about the
industry and profession of software development. With every interview on
.NET Rocks! I have come away knowing I would have to go back and listen to
my own show to really take in everything we discussed.”

—Richard Campbell, co-host, .NET Rocks!



Code That Fits
in Your Head



http://informit.com/martinseries
http://informit.com/socialconnect
http://informit.com


Code That Fits
in Your Head

Heuristics for Software Engineering

Mark Seemann

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo



Cover: Mark Seeman
Page xxix, author photo: © Linea Vega Seemann Jacobsen
Page 12, Queen Alexandrine’s Bridge, Denmark: Ulla Seemann
Page 33, baseball and bat: buriy/123RF
Page 38, illustration of human brain: maglyvi/Shutterstock
Page 38, illustration of laptop computer: grmarc/Shutterstock
Page 157, Figure 8.2: © Microsoft 2021
Page 158, Figure 8.3, scissors: Hurst Photo/Shutterstock
Page 158, Figure 8.3, hand saw: Andrei Kuzmik/Shutterstock
Page 158, Figure 8.3, utility knife: Yogamreet/Shutterstock
Page 158, Figure 8.3, Phillips-head screwdriver: bozmp/Shutterstock
Page 158, Figure 8.3, Swiss military knife: Billion Photos/Shutterstock
Page 159, Figure 8.4: Roman Babakin/Shutterstock
Page 170, Figure 8.5: © Microsoft 2021
Page 239, Figure 12.1: ajt/Shutterstock
Page 259, Figure 13.2, bursting star: Arcady/Shutterstock
Page 269, Figure 13.5: Verdandi/123RF
Page 277, Figure 14.1: Tatyana Pronina/Shutterstock
Page 291, Figure 15.2: kornilov007/Shutterstock
Page 291, hammer: bozmp/Shutterstock
Pages 306, Figure 15.3: Figure based on a screen shot from codescene.io
Pages 307, Figure 15.4: Figure based on a screen shot from codescene.io

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim,
the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the information or programs contained
herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include
electronic versions; custom cover designs; and content particular to your business, training goals, marketing
focus, or branding interests), please contact our corporate sales department at corpsales@pearsoned.com or
(800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2021944424

Copyright © 2022 Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be obtained from
the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or
by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, request forms and the appropriate contacts within the Pearson Education Global Rights &
Permissions Department, please visit www.pearson.com/permissions.

ISBN-13: 978-0-13-746440-1
ISBN-10: 0-13-746440-1

ScoutAutomatedPrintCode

http://codescene.io
http://codescene.io
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://Informit.com/aw
http://www.pearson.com/permissions
mailto:corpsales@pearsoned.com


To my parents:
My mother, Ulla Seemann, to whom I owe my attention to detail.

My father, Leif Seemann, from whom I inherited my contrarian streak.



This page intentionally left blank 



“The future is already here — it’s just not very evenly distributed”
—William Gibson



This page intentionally left blank 



Contents

Series Editor Foreword xix
Preface xxiii
About the Author xxix

PART I Acceleration 1

Chapter 1 Art or Science? 3
1.1 Building a House 4

1.1.1 The Problem with Projects 4
1.1.2 The Problem with Phases 5
1.1.3 Dependencies 6

1.2 Growing a Garden 7
1.2.1 What Makes a Garden Grow? 7

1.3 Towards Engineering 8
1.3.1 Software as a Craft 8
1.3.2 Heuristics 10
1.3.3 Earlier Notions of Software Engineering 11
1.3.4 Moving Forward with Software Engineering 12

1.4 Conclusion 14

xi



Contents

Chapter 2 Checklists 15
2.1 An Aid to Memory 15
2.2 Checklist for a New Code Base 17

2.2.1 Use Git 18
2.2.2 Automate the Build 19
2.2.3 Turn On all Error Messages 24

2.3 Adding Checks to Existing Code Bases 29
2.3.1 Gradual Improvement 30
2.3.2 Hack Your Organisation 31

2.4 Conclusion 32

Chapter 3 Tackling Complexity 33
3.1 Purpose 34

3.1.1 Sustainability 35
3.1.2 Value 36

3.2 Why Programming Is Difficult 38
3.2.1 The Brain Metaphor 38
3.2.2 Code Is Read More Than It’s Written 39
3.2.3 Readability 40
3.2.4 Intellectual Work 41

3.3 Towards Software Engineering 44
3.3.1 Relationship to Computer Science 44
3.3.2 Humane Code 45

3.4 Conclusion 46

Chapter 4 Vertical Slice 49
4.1 Start with Working Software 50

4.1.1 From Data Ingress to Data Persistence 50
4.1.2 Minimal Vertical Slice 51

4.2 Walking Skeleton 53
4.2.1 Characterisation Test 54
4.2.2 Arrange Act Assert 56
4.2.3 Moderation of Static Analysis 57

4.3 Outside-in 60
4.3.1 Receive JSON 61
4.3.2 Post a Reservation 64
4.3.3 Unit Test 68

xii



Contents

4.3.4 DTO and Domain Model 70
4.3.5 Fake Object 73
4.3.6 Repository Interface 74
4.3.7 Create in Repository 74
4.3.8 Configure Dependencies 76

4.4 Complete the Slice 77
4.4.1 Schema 78
4.4.2 SQL Repository 79
4.4.3 Configuration with Database 81
4.4.4 Perform a Smoke Test 82
4.4.5 Boundary Test with Fake Database 83

4.5 Conclusion 85

Chapter 5 Encapsulation 87
5.1 Save the Data 87

5.1.1 The Transformation Priority Premise 88
5.1.2 Parametrised Test 89
5.1.3 Copy DTO to Domain Model 91

5.2 Validation 92
5.2.1 Bad Dates 93
5.2.2 Red Green Refactor 96
5.2.3 Natural Numbers 99
5.2.4 Postel’s Law 102

5.3 Protection of Invariants 105
5.3.1 Always Valid 106

5.4 Conclusion 108

Chapter 6 Triangulation 111
6.1 Short-Term versus Long-Term Memory 111

6.1.1 Legacy Code and Memory 113
6.2 Capacity 114

6.2.1 Overbooking 115
6.2.2 The Devil’s Advocate 119
6.2.3 Existing Reservations 121
6.2.4 Devil’s Advocate versus Red Green Refactor 123
6.2.5 When Do You Have Enough Tests? 126

6.3 Conclusion 127

xiii



Contents

Chapter 7 Decomposition 129
7.1 Code Rot 129

7.1.1 Thresholds 130
7.1.2 Cyclomatic Complexity 132
7.1.3 The 80/24 Rule 134

7.2 Code That Fits in Your Brain 136
7.2.1 Hex Flower 136
7.2.2 Cohesion 138
7.2.3 Feature Envy 142
7.2.4 Lost in Translation 144
7.2.5 Parse, Don’t Validate 145
7.2.6 Fractal Architecture 148
7.2.7 Count the Variables 153

7.3 Conclusion 153

Chapter 8 API Design 155
8.1 Principles of API Design 156

8.1.1 Affordance 156
8.1.2 Poka-Yoke 158
8.1.3 Write for Readers 160
8.1.4 Favour Well-Named Code over Comments 160
8.1.5 X Out Names 161
8.1.6 Command Query Separation 164
8.1.7 Hierarchy of Communication 167

8.2 API Design Example 168
8.2.1 Maître D’ 169
8.2.2 Interacting with an Encapsulated Object 171
8.2.3 Implementation Details 174

8.3 Conclusion 176

Chapter 9 Teamwork 177
9.1 Git 178

9.1.1 Commit Messages 178
9.1.2 Continuous Integration 182
9.1.3 Small Commits 184

9.2 Collective Code Ownership 187

xiv



Contents

9.2.1 Pair Programming 189
9.2.2 Mob Programming 191
9.2.3 Code Review Latency 192
9.2.4 Rejecting a Change Set 194
9.2.5 Code Reviews 195
9.2.6 Pull Requests 197

9.3 Conclusion 199

PART II Sustainability 201

Chapter 10 Augmenting Code 203
10.1 Feature Flags 204

10.1.1 Calendar Flag 204
10.2 The Strangler Pattern 209

10.2.1 Method-Level Strangler 211
10.2.2 Class-Level Strangler 215

10.3 Versioning 218
10.3.1 Advance Warning 219

10.4 Conclusion 220

Chapter 11 Editing Unit Tests 223
11.1 Refactoring Unit Tests 223

11.1.1 Changing the Safety Net 224
11.1.2 Adding New Test Code 225
11.1.3 Separate Refactoring of Test and Production Code 227

11.2 See Tests Fail 233
11.3 Conclusion 234

Chapter 12 Troubleshooting 235
12.1 Understanding 235

12.1.1 Scientific Method 236
12.1.2 Simplify 237
12.1.3 Rubber Ducking 238

12.2 Defects 240
12.2.1 Reproduce Defects as Tests 241
12.2.2 Slow Tests 243
12.2.3 Non-deterministic Defects 246

xv



Contents

12.3 Bisection 250
12.3.1 Bisection with Git 251

12.4 Conclusion 255

Chapter 13 Separation of Concerns 257
13.1 Composition 258

13.1.1 Nested Composition 258
13.1.2 Sequential Composition 262
13.1.3 Referential Transparency 264

13.2 Cross-Cutting Concerns 267
13.2.1 Logging 267
13.2.2 Decorator 268
13.2.3 What to Log 272

13.3 Conclusion 274

Chapter 14 Rhythm 275
14.1 Personal Rhythm 276

14.1.1 Time-Boxing 276
14.1.2 Take Breaks 278
14.1.3 Use Time Deliberately 279
14.1.4 Touch Type 280

14.2 Team Rhythm 282
14.2.1 Regularly Update Dependencies 282
14.2.2 Schedule Other Things 283
14.2.3 Conway’s Law 284

14.3 Conclusion 285

Chapter 15 The Usual Suspects 287
15.1 Performance 288

15.1.1 Legacy 288
15.1.2 Legibility 290

15.2 Security 292
15.2.1 STRIDE 292
15.2.2 Spoofing 294
15.2.3 Tampering 294
15.2.4 Repudiation 296

xvi



Contents

15.2.5 Information Disclosure 296
15.2.6 Denial of Service 298
15.2.7 Elevation of Privilege 299

15.3 Other Techniques 300
15.3.1 Property-Based Testing 300
15.3.2 Behavioural Code Analysis 305

15.4 Conclusion 308

Chapter 16 Tour 309
16.1 Navigation 309

16.1.1 Seeing the Big Picture 310
16.1.2 File Organisation 314
16.1.3 Finding Details 316

16.2 Architecture 318
16.2.1 Monolith 318
16.2.2 Cycles 319

16.3 Usage 323
16.3.1 Learning from Tests 323
16.3.2 Listen to Your Tests 325

16.4 Conclusion 326

Appendix A List of Practices 329
A.1 The 50/72 Rule 329
A.2 The 80/24 Rule 330
A.3 Arrange Act Assert 330
A.4 Bisection 330
A.5 Checklist for A New Code Base 331
A.6 Command Query Separation 331
A.7 Count the Variables 331
A.8 Cyclomatic Complexity 331
A.9 Decorators for Cross-Cutting Concerns 332
A.10 Devil’s Advocate 332
A.11 Feature Flag 332
A.12 Functional Core, Imperative Shell 333
A.13 Hierarchy of Communication 333
A.14 Justify Exceptions from the Rule 333

xvii



Contents

A.15 Parse, Don’t Validate 334
A.16 Postel’s Law 334
A.17 Red Green Refactor 334
A.18 Regularly Update Dependencies 335
A.19 Reproduce Defects as Tests 335
A.20 Review Code 335
A.21 Semantic Versioning 335
A.22 Separate Refactoring of Test and Production Code 335
A.23 Slice 336
A.24 Strangler 336
A.25 Threat-Model 337
A.26 Transformation Priority Premise 337
A.27 X-driven Development 337
A.28 X Out Names 338

Bibliography 339
Index 349

xviii



Series Editor
Foreword

My grandson is learning to code.

Yes, you read that right. My 18-year-old grandson is learning to program
computers. Who’s teaching him? His aunt, my youngest daughter, who was
born in 1986, and who 16 months ago decided to change careers from chemical
engineering to programming. And who do they both work for? My eldest son,
who along with my youngest son, is in the process of starting up his second
software consultancy.

Yeah, software runs in the family. And, yeah, I’ve been programming for a
long, long time.

Anyway, my daughter asked me to spend an hour with my grandson teaching
him about the basics and the beginnings of computer programming. So we
started up a Tuple session and I lectured him on what computers were, and
how they got started, and what early computers looked like, and . . . well,
you know.

By the end of the lecture I was coding up the algorithm for multiplying two
binary integers, in PDP-8 assembly language. For those of you who aren’t
aware, the PDP-8 had no multiply instruction; you had to write an algorithm

xix



Series Editor Foreword

to multiply numbers. Indeed, the PDP-8 didn’t even have a subtract
instruction; you had to use two’s complement and add a pseudo-negative
number (let the reader understand).

As I finished up the coding example, it occurred to me that I was scaring my
grandson to death. I mean, when I was 18 this kind of geeky detail thrilled me;
but maybe it wasn’t so attractive to an 18-year-old whose aunt is trying to
teach him how to write simple Clojure programs.

Anyway, it made me think of just how hard programming actually is. And it
is hard. It’s really hard. It may be the hardest thing that humans have ever
attempted.

Oh, I don’t mean it’s hard to write the code to calculate a bunch of prime
numbers, or a Fibonacci sequence, or a simple bubble sort. That’s not too
hard. But an Air Traffic Control system? A luggage management system? A bill
of materials system? Angry Birds? Now that’s hard. That’s really, really hard.

I’ve known Mark Seemann for quite a few years now. I don’t remember ever
actually meeting him. It may be that we have never actually been together in
the same room. But he and I have interacted quite a bit in professional
newsgroups and social networks. He’s one of my favourite people to disagree
with.

He and I disagree on all kinds of things. We disagree on static versus dynamic
typing. We disagree on operating systems and languages. We disagree on, well,
lots of intellectually challenging things. But disagreeing with Mark is
something you have to do very carefully because the logic of his arguments
is impeccable.

So when I saw this book, I thought about how much fun it was going to be to
read through and disagree with. And that’s exactly what happened. I read
through it. I disagreed with some things. And I had fun trying to find a way to
make my logic supersede his. I think I may have even succeeded in one or two
cases—in my head—maybe.

xx



Series Editor Foreword

But that’s not the point. The point is that software is hard; and much of the
last seven decades have been spent trying to find ways to make it a little bit
easier. What Mark has done in this book is to gather all the best ideas from
those seven decades and compile them in one place.

More than that, he has organized them into a set of heuristics and techniques,
and placed them in the order that you would execute them. Those heuristics
and techniques build on each other, helping you move from stage to stage
while developing a software project.

In fact, Mark develops a software project throughout the pages of this book,
while explaining each stage and the heuristics and techniques that benefit
that stage.

Mark uses C# (one of the things I disagree with ;-), but that’s not relevant.
The code is simple, and the heuristics and techniques are applicable to any
other language you might be using.

He covers things such as Checklists, TDD, Command Query Separation, Git,
Cyclomatic Complexity, Referential Transparency, Vertical Slicing, Legacy
Strangulation, and Outside-In Development, just to mention a few.

Moreover, there are gems scattered literally everywhere throughout these
pages. I mean, you’ll be reading along, and all of a sudden he’ll say something
like, “Rotate your test function 90 degrees and see if you can balance it on the
Act of the Arrange/Act/Assert triplet” or “The goal is not to write code fast.
The goal is sustainable software” or “Commit database schema to git”.

Some of these gems are profound, some are just idle mentions, others are
speculations, but all of them are examples of the deep insight that Mark has
acquired over the years.

So read this book. Read it carefully. Think through Mark’s impeccable logic.
Internalise these heuristics and techniques. Stop and consider the insightful
gems as they pop out at you. And just maybe, when it comes time for you to
lecture your grandchildren, you won’t scare the devil out of them.

—Robert C. Martin

xxi



This page intentionally left blank 



Preface

In the second half of the 2000s, I began doing technical reviews for a publisher.
After reviewing a handful of books, the editor contacted me about a book on
Dependency Injection.

The overture was a little odd. Usually, when they contacted me about a book,
it would already have an author and a table of contents. This time, however,
there was none of that. The editor just requested a phone call to discuss
whether the book’s subject matter was viable.

I thought about it for a few days and found the topic inspiring. At the same
time, I couldn’t see the need for an entire book. After all, the knowledge was
out there: blog posts, library documentation, magazine articles, even a few
books all touched on related topics.

On reflection, I realised that, while the information was all out there, it was
scattered, and used inconsistent and sometimes conflicting terminology.
There’d be value in collecting that knowledge and presenting it in a consistent
pattern language.

Two years later, I was the proud author of a published book.

xxiii



Preface

After some years had gone by, I began to think about writing another book.
Not this one, but a book about some other topic. Then I had a third idea, and
a fourth, but not this one.

A decade went by, and I began to realise that when I consulted teams on
writing better code, I’d suggest practices that I’d learned from better minds
than mine. And again, I realised that most of that knowledge is already
available, but it’s scattered, and few people have explicitly connected the dots
into a coherent description of how to develop software.

Based on my experience with the first book, I know that there’s value in
collecting disparate information and presenting it in a consistent way. This
book is my attempt at creating such a package.

Who Should Read This Book

This book is aimed at programmers with at least a few years of professional
experience. I expect readers to have suffered through a few bad software
development projects; to have experience with unmaintainable code. I also
expect readers seeking to improve.

The core audience is ‘enterprise developers’—particularly back-end
developers. I’ve spent most of my career in that realm, so this simply reflects
my own expertise. But if you’re a front-end developer, a games programmer, a
development tools engineer, or something else entirely, I expect you will still
gain a lot from reading this book.

You should be comfortable reading code in a compiled, object-oriented
language in the C family. While I’ve been a C# programmer for most of my
career, I’ve learned a lot from books with example code in C++ or Java1. This
book turns the tables: Its example code is in C#, but I hope that Java,
TypeScript, or C++ developers find it useful, too.

1. If you’re curious about which books I mean, take a look at the bibliography.

xxiv



Preface

Prerequisites

This isn’t a beginner’s book. While it deals with how to organise and structure
source code, it doesn’t cover the most basic details. I expect that you already
understand why indentation is helpful, why long methods are problematic,
that global variables are bad, and so on. I don’t expect you to have read Code
Complete [65], but I assume that you know of some of the basics covered there.

A Note for Software Architects

The term ‘architect’ means different things to different people, even when the
context is constrained to software development. Some architects focus on the
big picture; they help an entire organisation succeed with its endeavours.
Other architects are deep in the code and mainly concerned with the
sustainability of a particular code base.

To the degree that I’m a software architect, I’m the latter kind. My expertise is
in how to organise source code so that it addresses long-term business goals. I
write about what I know, so to the degree this book is useful to architects, it
will be that type of architect.

You’ll find no content about Architecture Tradeoff Analysis Method (ATAM),
Failure Mode and Effects Analysis (FMEA), service discovery, and so on. That
kind of architecture is outside the scope of this book.

Organisation

While this is a book about methodologies, I’ve structured it around a code
example that runs throughout the book. I decided to do it that way in order to
make the reading experience more compelling than a typical ‘pattern
catalogue’. One consequence of this decision is that I introduce practices and
heuristics when they fit the ‘narrative’. This is also the order in which I
typically introduce the techniques when I coach teams.

The narrative is structured around a sample code base that implements a
restaurant reservation system. The source code for that sample code base is
available at informit.com/title/9780137464401.

xxv

http://informit.com/title/9780137464401


Preface

If you want to use the book as a handbook, I’ve included an appendix with
a list of all the practices and information about where in the book you can
read more.

About the Code Style

The example code is written in C#, which is a language that has rapidly
evolved in recent years. It’s picking up more and more syntax ideas from
functional programming; as an example, immutable record types were released
while I was writing the book. I’ve decided to ignore some of these new
language features.

Once upon a time, Java code looked a lot like C# code. Modern C# code, on
the other hand, doesn’t look much like Java.

I want the code to be comprehensible to as many readers as possible. Just as
I’ve learned much from books with Java examples, I want readers to be able to
use this book without knowing the latest C# syntax. Thus, I’m trying to stick
to a conservative subset of C# that ought to be legible to other programmers.

This doesn’t change the concepts presented in the book. Yes, in some
instances, a more succinct C#-specific alternative is possible, but that would
just imply that extra improvements are available.

To Var or Not to Var

The var keyword was introduced to C# in 2007. It enables you to declare a
variable without explicitly stating its type. Instead, the compiler infers the type
from the context. To be clear, variables declared with var are exactly as
statically typed as variables declared with explicit types.

For a long time the use of this keyword was controversial, but most people
now use it; I do, too, but I occasionally encounter pockets of resistance.

While I use var professionally, writing code for a book is a slightly different
context. Under normal circumstances, an IDE isn’t far away. A modern
development environment can quickly tell you the type of an implicitly typed
variable, but a book can’t.

xxvi



Preface

I have, for that reason, occasionally chosen to explicitly type variables. Most
of the example code still uses the var keyword because it makes the code
shorter, and line width is limited in a printed book. In a few cases, though, I’ve
deliberately chosen to explicitly declare a variable’s type, in the hope that it
makes the code easier to understand when read in a book.

Code Listings

The majority of the code listings are taken from the same sample code base.
It’s a Git repository, and the code examples are taken from various stages of
development. Each such code listing includes a relative path to the file in
question. Part of that file path is a Git commit ID.

For example, listing 2.1 includes this relative path: Restaurant/f729ed9/
Restaurant.RestApi/Program.cs. This means that the example is taken from
commit ID f729ed9, and the file is Restaurant.RestApi/Program.cs. In
other words, to view this particular version of the file, you check out that
commit:

$ git checkout f729ed9

When you’ve done that, you can now explore the Restaurant.RestApi/
Program.cs file in its full, executable context.

A Note on the Bibliography

The bibliography contains a mix of resources, including books, blog posts,
and video recordings. Many of my sources are online, so I have of course
supplied URLs. I’ve made an effort to mostly include resources that I have
reason to believe have a stable presence on the Internet.

Still, things change. If you’re reading this book in the future, and a URL has
become invalid, try an internet archive service. As I’m writing this, https://
archive.org is the best candidate, but that site could also be gone in the future.

Quoting Myself

Apart from other resources, the bibliography also includes a list of my own
work. I’m aware that, as far as making a case, quoting myself doesn’t
constitute a valid argument in itself.

xxvii

https://archive.org
https://archive.org


Preface

I’m not including my own work as a sleight of hand. Rather, I’m including
these resources for the reader who might be interested in more details. When
I cite myself, I do it because you may find an expanded argument, or a more
detailed code example, in the resource I point to.

Acknowledgements

I’d like to thank my wife Cecilie for love and support during all the years we’ve
been together, and my children Linea and Jarl for staying out of trouble.

Apart from family, my first thanks go to my invaluable long-time friend
Karsten Strøbæk, who not only has tolerated my existence for 25 years, but
who was also the first reviewer on this book. He also helped me with various
LATEX tips and tricks, and added more entries to the index than I did.

I’d also like to thank Adam Tornhill for his feedback on the section about his
work.

I’m indebted to Dan North for planting the phrase Code That Fits in Your
Head in my subconscious, which might have happened as early as 2011 [72].

Register your copy of Code That Fits in Your Head on the InformIT site
for convenient access to updates and/or corrections as they become
available. To start the registration process, go to informit.com/register
and log in or create an account. Enter the product ISBN
(9780137464401) and click Submit. Look on the Registered Products tab
for an Access Bonus Content link next to this product, and follow that
link to access any available bonus materials. If you would like to be
notified of exclusive offers on new editions and updates, please check the
box to receive email from us.

xxviii

http://informit.com/register


About the
Author

Mark Seemann is a bad economist who’s
found a second career as a programmer,
and he has worked as a web and enterprise
developer since the late 1990s. As a young
man Mark wanted to become a rock star, but
unfortunately had neither the talent nor the
looks – later, however, he became a Certified
Rockstar Developer. He has also written a
Jolt Award-winning book about Dependency
Injection, given more than a 100 international
conference talks, and authored video courses
for both Pluralsight and Clean Coders. He
has regularly published blog posts since 2006.
He lives in Copenhagen with his wife and two
children.

xxix



This page intentionally left blank 



12Troubleshooting

Professional software development consists of more than feature development.
There are also meetings, time reports, compliance activities, and ... defects.

You run into errors and problems all the time. Your code doesn’t compile, the
software doesn’t do what it’s supposed to, it runs too slowly, et cetera.

The better you get at solving problems, the more productive you are. Most of
your troubleshooting skills may be based on “the shifting sands of individual
experience” [4], but there are techniques that you can apply.

This chapter presents some of them.

12.1 Understanding

The best advice I can think of is this:

Try to understand what’s going on.

235



Chapter 12 Troubleshooting

If you don’t understand why something doesn’t work1, then make
understanding it a priority. I’ve witnessed a fair amount of ‘programming by
coincidence’ [50]: throw enough code at the wall to see what sticks. When it
looks as though the code works, developers move on to the next task. Either
they don’t understand why the code works, or they may fail to understand that
it doesn’t, really.

If you understand the code from the beginning, chances are that it’ll be easier
to troubleshoot.

12.1.1 Scientific Method

When a problem manifests, most people jump straight into troubleshooting
mode. They want to address the problem. For people who program by
coincidence [50], addressing a problem typically involves trying various
incantations that may have worked before on a similar problem. If the first
magic spell doesn’t work, they move on to the next. This can involve restarting
a service, rebooting a computer, running a tool with elevated privileges,
changing small pieces of code, calling poorly-understood routines, etc. When
it looks like the problem has disappeared, they call it a day without trying to
understand why [50].

Needless to say, this isn’t an effective way to deal with problems.

Your first reaction to a problem should be to understand why it’s happening.
If you have absolutely no idea, ask for help. Usually, though, you already have
some inclination of what the problem may be. In that case, adopt a variation
of the scientific method [82]:

• Make a prediction. This is called a hypothesis.

• Perform the experiment.

• Compare outcome to prediction. Repeat until you understand what’s going
on.

1. Or, if you don’t understand why something does work.

236



12.1 Understanding

Don’t be intimidated by the term ‘scientific method’. You don’t have to don a
lab coat or design a randomised controlled double-blind trial. But do try to
come up with a falsifiable hypothesis. This might simply be a prediction, such
as “if I reboot the machine, the problem goes away,” or “if I call this function,
the return value will be 42.”

The difference between this technique and ‘programming by coincidence’ is
that the goal of going through these motions isn’t to address the problem. The
goal is to understand it.

A typical experiment could be a unit test, with a hypothesis that if you run it,
it’ll fail. See subsection 12.2.1 for more details.

12.1.2 Simplify

Consider if removing some code can make a problem go away.

The most common reaction to a problem is to add more code to address it.
The unspoken line of reasoning seems to be that the system ‘works’, and the
problem is just an aberration. Thus, the reasoning goes, if the problem is a
special case, it should be solved with more code to handle that special case.

This may occasionally be the case, but it’s more likely that the problem is a
manifestation of an underlying implementation error. You’d be surprised how
often you can solve problems by simplifying the code.

I’ve seen plenty of examples of such an ‘action bias’ in our industry. People
who solve problems I never have because I work hard to keep my code simple:

• People develop complex Dependency Injection Containers [25] instead of
just composing object graphs in code.

• People develop complicated ‘mock object libraries’ instead of writing
mostly pure functions.

• People create elaborate package restore schemes instead of just checking
dependencies into source control.

237



Chapter 12 Troubleshooting

• People use advanced diff tools instead of merging more frequently.

• People use convoluted object-relational mappers (ORMs) instead of
learning (and maintaining) a bit of SQL.

I could go on.

To be fair, coming up with a simpler solution is hard. For example, it took me
a decade of erecting increasingly more elaborate contraptions in
object-oriented code before I found simpler solutions. It turns out that many
things that are difficult in traditional object-oriented programming are simple
in functional programming. Once I learned about some of these concepts, I
found ways to use them in object-oriented contexts, too.

The point is that a catchphrase like KISS2 is useless in itself, because how does
one keep things simple?

You often have to be smart to keep it simple3, but look for simplicity anyway.
Consider if there’s a way you can solve the problem by deleting code.

12.1.3 Rubber Ducking

Before we discuss some specific problem-solving practices, I want to share
some general techniques. It’s not unusual to be stuck on a problem. How do
you get unstuck?

You may be staring at a problem with no clue as to how to proceed. As the
above advice goes, your first priority should be to understand the problem.
What do you do if you’re drawing a blank?

If you don’t manage your time, you can be stuck with a problem for a long
time, so do manage your time. Time-box the process. For example, set aside 25
minutes to look at the problem. If, after the time is up, you’ve made no
progress, take a break.

2. Keep It Simple, Stupid.
3. Rich Hickey discusses simplicity in Simple Made Easy [45]. I owe much of my perspective on simplicity to

that talk.

238



12.1 Understanding

When you take a break, physically remove yourself from the computer.
Go get a cup of coffee. Something happens in your brain when you get
out of your chair and away from the screen. After a couple of minutes away
from the problem, you’ll likely begin to think about something else. Perhaps
you meet a colleague as you’re moving about. Perhaps you discover that the
coffee machine needs a refill. Whatever it is, it temporarily takes your mind off
the problem. That’s often enough to give you a fresh perspective.

I’ve lost count of the number of times I return to a problem after a stroll, only
to realise that I’ve been thinking about it the wrong way.

If walking about for a few minutes isn’t enough, try asking for help. If you have
a colleague to bother, do that.

I’ve experienced this often enough: I start explaining the problem, but halfway
in, I break off in mid-sentence: “Never mind, I’ve just gotten an idea!”

The mere act of explaining a problem tends to produce new insight.

If you don’t have a colleague, you may try explaining the problem to a rubber
duck, such as the one shown in figure 12.1.

Figure 12.1 A rubber duck. Talk to it. It’ll solve your problems.

It doesn’t really have to be a rubber duck, but the technique is known as
rubber ducking because one programmer actually did use one [50].

239



Chapter 12 Troubleshooting

Instead of using a rubber duck, I typically begin writing a question on the
Stack Overflow Q&A site. More often than not, I realise what the problem is
before I’m done formulating the question4.

And if realisation doesn’t come, I have a written question that I can publish.

12.2 Defects

I once started in a new job in a small software startup. I soon asked my
co-workers if they’d like to use test-driven development. They hadn’t used it
before, but they were keen on learning new things. After I’d shown them the
ropes, they decided that they liked it.

A few months after we’d adopted test-driven development, the CEO came by
to talk to me. He mentioned in passing that he’d noticed that since we’d
started using tests, defects in the wild had significantly dropped.

That still makes me proud to this day. The shift in quality was so dramatic that
the CEO had noticed. Not by running numbers or doing a complex analysis,
but simply because it was so significant that it called attention to itself.

You can reduce the number of defects, but you can’t eliminate them. But do
yourself a favour: don’t let them accumulate.

The ideal number of defects is zero.

Zero bugs isn’t as unrealistic as it sounds. In lean software development, this is
known as building quality in [82]. Don’t push defects in front of you to ‘deal
with them later’. In software development, later is never.

4. When that happens, I don’t succumb to the sunk cost fallacy. Even if I’ve spent time writing the question,
I usually delete it because I deem that it’s not, after all, of general interest.

240



12.2 Defects

When a bug appears, make it a priority to address it. Stop what you’re doing5

and fix the defect instead.

12.2.1 Reproduce Defects as Tests

Initially, you may not even understand what the problem is, but when you think
that you do, perform an experiment: The understanding should enable you to
formulate a hypothesis, which again enables you to design an experiment.

Such an experiment may be an automated test. The hypothesis is that when
you run the test, it’ll fail. When you actually do run the test, if it does fail,
you’ve validated the hypothesis. As a bonus, you also have a failing test that
reproduces the defect, and that will later serve as a regression test.

If, on the other hand, the test succeeds, the experiment failed. This means that
your hypothesis was wrong. You’ll need to revise it so that you can design a
new experiment. You may need to repeat this process more than once.

When you finally have a failing test, ‘all’ you have to do is to make it pass. This
can occasionally be difficult, but in my experience, it usually isn’t. The hard
part of addressing a defect is understanding and reproducing it.

I’ll show you an example from the online restaurant reservation system. While
I was doing some exploratory testing I noticed something odd when I updated
a reservation. Listing 12.1 shows an example of the issue. Can you spot the
problem?

The problem is that the email property holds the name, and vice versa. It
seems that I accidentally switched them around somewhere. That’s the initial
hypothesis, but it may take a little investigation to figure out where.

Have I not been following test-driven development? Then how could this
happen?

5. Isn’t it wonderful that with Git you can simply stash your current work?

241



Chapter 12 Troubleshooting

Listing 12.1 Updating a reservation with a PUT request. A defect is manifest in this interaction.
Can you spot it?

PUT /reservations/21b4fa1975064414bee402bbe09090ec HTTP/1.1
Content-Type: application/json
{

"at": "2022-03-02 19:45",
"email": "pan@example.com",
"name": "Phil Anders",
"quantity": 2

}

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
{

"id": "21b4fa1975064414bee402bbe09090ec",
"at": "2022-03-02T19:45:00.0000000",
"email": "Phil Anders",
"name": "pan@example.com",
"quantity": 2

}

This could happen because I’d implemented SqlReservationsRepository6 as
a Humble Object [66]. This is an object so simple that you may decide not to
test it. I often use the rule of thumb that if the cyclomatic complexity is 1, a
test (also with a cyclomatic complexity of 1) may not be warranted.

Even so, you can still make mistakes even when the cyclomatic complexity is 1.
Listing 12.2 shows the offending code. Can you spot the problem?

Given that you already know what the problem is, you can probably guess that
the Reservation constructor expects the email argument before the name.
Since both parameters are declared as string, though, the compiler doesn’t
complain if you accidentally swap them. This is another example of stringly
typed code [3], which we should avoid7.

6. See for example listing 4.19.
7. One way to avoid stringly typed code is to introduce Email and Name classes that wrap their respective

string values. This prevents some cases of accidentally swapping these two arguments, but as it turned
out when I did it, it wasn’t entirely foolproof. You can consult the example code’s Git repository if you’re
interested in the details. The bottom line was that I felt that an integration test was warranted.

242



12.2 Defects

Listing 12.2 The offending code fragment that causes the defect shown in listing 12.1. Can you
spot the programmer error?
(Restaurant/d7b74f1/Restaurant.RestApi/SqlReservationsRepository.cs)

using var rdr =
await cmd.ExecuteReaderAsync().ConfigureAwait(false);

if (!rdr.Read())
return null;

return new Reservation(
id,
(DateTime)rdr["At"],
(string)rdr["Name"],
(string)rdr["Email"],
(int)rdr["Quantity"]);

It’s easy enough to address the defect, but if I can make the mistake once, I can
make it again. Thus, I want to prevent a regression. Before fixing the code, write
a failing test that reproduces the bug. Listing 12.3 shows the test I wrote. It’s an
integration test that verifies that if you update a reservation in the database and
subsequently read it, you should receive a reservation equal to the one you
saved. That’s a reasonable expectation, and it reproduces the error because the
ReadReservation method swaps name and email, as shown in listing 12.2.

That PutAndReadRoundTrip test is an integration test that involves the
database. This is new. So far in this book, all tests have been running without
external dependencies. Involving the database is worth a detour.

12.2.2 Slow Tests

Bridging the gap between a programming language’s perspective on data and a
relational database is error-prone8, so why not test such code?

In this subsection, you’ll see an outline of how to do that, but there’s a
problem: such tests tend to be slow. They tend to be orders of magnitudes
slower than in-process tests.

8. Proponents of object-relational mappers (ORMs) might argue that this makes the case for such a tool.
As I’ve stated elsewhere in this book, I consider ORMs a waste of time: they create more problems than
they solve. If you disagree, then feel free to skip this subsection.

243



Chapter 12 Troubleshooting

Listing 12.3 Integration test of SqlReservationsRepository.
(Restaurant/645186b/Restaurant.RestApi.SqlIntegrationTests/SqlReservationsRepositoryTests.cs)

[Theory]
[InlineData("2032-01-01 01:12", "z@example.net", "z", "Zet", 4)]
[InlineData("2084-04-21 23:21", "q@example.gov", "q", "Quu", 9)]
public async Task PutAndReadRoundTrip(

string date,
string email,
string name,
string newName,
int quantity)

{
var r = new Reservation(

Guid.NewGuid(),
DateTime.Parse(date, CultureInfo.InvariantCulture),
new Email(email),
new Name(name),
quantity);

var connectionString = ConnectionStrings.Reservations;
var sut = new SqlReservationsRepository(connectionString);
await sut.Create(r);

var expected = r.WithName(new Name(newName));
await sut.Update(expected);
var actual = await sut.ReadReservation(expected.Id);

Assert.Equal(expected, actual);
}

The time it takes to execute a test suite matters, particularly for developer tests
that you continually run. When you refactor with the test suite as a safety net,
it doesn’t work if it takes half an hour to run all tests. When you follow the
Red Green Refactor process for test-driven development, it doesn’t work if
running the tests takes five minutes.

The maximum time for such a test suite should be ten seconds. If it’s much
longer than that, you’ll lose focus. You’ll be tempted to look at your email,
Twitter, or Facebook while the tests run.

You can easily eat into such a ten-second budget if you involve a database.
Therefore, move such tests to a second stage of tests. There are many ways you
can do this, but a pragmatic way is to simply create a second Visual Studio

244



12.2 Defects

solution to exist side-by-side with the day-to-day solution. When you do that,
remember to also update the build script to run this new solution instead, as
shown in listing 12.4.

Listing 12.4 Build script running all tests. The Build.sln file contains both unit and integration
tests that use the database. Compare with listing 4.2. (Restaurant/645186b/build.sh)

#!/usr/bin/env bash
dotnet test Build.sln --configuration Release

The Build.sln file contains the production code, the unit test code, as well as
integration tests that use the database. I do day-to-day work that doesn’t
involve the database in another Visual Studio solution called Restaurant.sln.
That solution only contains the production code and the unit tests, so running
all tests in that context is much faster.

The test in listing 12.3 is part of the integration test code, so only runs when I
run the build script, or if I explicitly choose to work in the Build.sln solution
instead of in Restaurant.sln. It’s sometimes practical to do that, if I need to
perform a refactoring that involves the database code.

I don’t want to go into too much detail about how the test in listing 12.3
works, because it’s specific to how .NET interacts with SQL Server. If you’re
interested in the details, they’re all available in the accompanying example
code base, but briefly, all the integration tests are adorned with a
[UseDatabase] attribute. This is a custom attribute that hooks into the
xUnit.net unit testing framework to run some code before and after each test
case. Thus, each test case is surrounded with behaviour like this:

1. Create a new database and run all DDL9 scripts against it.

2. Run the test.

3. Tear down the database.

9. Data Definition Language, typically a subset of SQL. See listing 4.18 for an example.

245



Chapter 12 Troubleshooting

Yes, each test creates a new database only to delete it again some milliseconds
later10. That is slow, which is why you don’t want such tests to run all the time.

Defer slow tests to a second stage of your build pipeline. You can do it as
outlined above, or by defining new steps that only run on your Continuous
Integration server.

12.2.3 Non-deterministic Defects

After running the restaurant reservation system for some time, the restaurant’s
maître d’ files a bug: once in a while, the system seems to allow overbooking.
She can’t deliberately reproduce the problem, but the state of the reservations
database can’t be denied. Some days contain more reservations than the
business logic shown in listing 12.5 allows. What’s going on?

You peruse the application logs11 and finally figure it out. Overbooking is a
possible race condition. If a day is approaching capacity and two reservations
arrive simultaneously, the ReadReservations method might return the same
set of rows to both threads, indicating that a reservation is possible. As figure
12.2 shows, each thread determines that it can accept the reservation, so it
adds a new row to the table of reservations.

This is clearly a defect, so you should reproduce it with a test. The problem is,
however, that this behaviour isn’t deterministic. Automated tests are supposed
to be deterministic, aren’t they?

It is, indeed, best if tests are deterministic, but do entertain, for a moment, the
notion that nondeterminism may be acceptable. In which way could this be?

10. Whenever I explain this approach to integration testing with a database, I’m invariably met with the
reaction that one can, instead, test by rolling back transactions. Yes, except that this means that you
can’t test database transaction behaviour. Also, using transaction rollback may be faster, but have you
measured? I have, once, and found no significant difference. See also section 15.1 for my general position
on performance optimisation.

11. See subsection 13.2.1.

246



12.2 Defects

Tests can fail in two ways: A test may indicate a failure where none is;
this is called a false positive. A test may also fail to indicate an actual error;
this is called a false negative.

Listing 12.5 Apparently, there’s a bug in this code that allows overbooking. What could be the
problem? (Restaurant/dd05589/Restaurant.RestApi/ReservationsController.cs)

[HttpPost]
public async Task<ActionResult> Post(ReservationDto dto)
{

if (dto is null)
throw new ArgumentNullException(nameof(dto));

var id = dto.ParseId() ?? Guid.NewGuid();
Reservation? r = dto.Validate(id);
if (r is null)

return new BadRequestResult();

var reservations = await Repository
.ReadReservations(r.At)
.ConfigureAwait(false);

if (!MaitreD.WillAccept(DateTime.Now, reservations, r))
return NoTables500InternalServerError();

await Repository.Create(r).ConfigureAwait(false);
await PostOffice.EmailReservationCreated(r).ConfigureAwait(false);

return Reservation201Created(r);
}

Read
Reservations reservations Create OK

Read
Reservations

THREAD 1

THREAD 2

DATABASE

reservations Create OK

TIME

Figure 12.2 A race condition between two threads (e.g. two HTTP clients) concurrently trying
to make a reservation.

False positives are problematic because they introduce noise, and thereby
decrease the signal-to-noise ratio of the test suite. If you have a test suite that
often fails for no apparent reason, you stop paying attention to it [31].

247



Chapter 12 Troubleshooting

False negatives aren’t quite as bad. Too many false negatives could decrease
your trust in a test suite, but they introduce no noise. Thus, at least, you know
that if a test suite is failing, there is a problem.

One way to deal with the race condition in the reservation system, then, is to
reproduce it as the non-deterministic test in listing 12.6.

Listing 12.6 Non-deterministic test that reproduces a race condition.
(Restaurant/98ab6b5/Restaurant.RestApi.SqlIntegrationTests/ConcurrencyTests.cs)

[Fact]
public async Task NoOverbookingRace()
{

var start = DateTimeOffset.UtcNow;
var timeOut = TimeSpan.FromSeconds(30);
var i = 0;
while (DateTimeOffset.UtcNow - start < timeOut)

await PostTwoConcurrentLiminalReservations(
start.DateTime.AddDays(++i));

}

This test method is only an orchestrator of the actual unit test. It keeps
running the PostTwoConcurrentLiminalReservations method in listing 12.7
for 30 seconds, over and over again, to see if it fails. The assumption, or hope,
is that if it can run for 30 seconds without failing, the system may actually
have the correct behaviour.

There’s no guarantee that this is the case. If the race condition is as scarce as
hen’s teeth, this test could produce a false negative. That’s not my experience,
though.

When I wrote this test, it only ran for a few seconds before failing. That gives
me some confidence that the 30-second timeout is a sufficiently safe margin,
but I admit that I’m guessing; it’s another example of the art of software
engineering.

It turned out that the system had the same bug when updating existing
reservations (as opposed to creating new ones), so I also wrote a similar test
for that case.

248



12.2 Defects

Listing 12.7 The actual test method orchestrated by the code in listing 12.6. It attempts to
post two concurrent reservations. The state of the system is that it’s almost sold out (the
capacity of the restaurant is ten, but nine seats are already reserved), so only one of those
reservations should be accepted.
(Restaurant/98ab6b5/Restaurant.RestApi.SqlIntegrationTests/ConcurrencyTests.cs)

private static async Task PostTwoConcurrentLiminalReservations(
DateTime date)

{
date = date.Date.AddHours(18.5);
using var service = new RestaurantService();
var initialResp =

await service.PostReservation(new ReservationDtoBuilder()
.WithDate(date)
.WithQuantity(9)
.Build());

initialResp.EnsureSuccessStatusCode();

var task1 = service.PostReservation(new ReservationDtoBuilder()
.WithDate(date)
.WithQuantity(1)
.Build());

var task2 = service.PostReservation(new ReservationDtoBuilder()
.WithDate(date)
.WithQuantity(1)
.Build());

var actual = await Task.WhenAll(task1, task2);

Assert.Single(actual, msg => msg.IsSuccessStatusCode);
Assert.Single(

actual,
msg => msg.StatusCode == HttpStatusCode.InternalServerError);

}

These tests are examples of slow tests that ought to be included only as
second-stage tests as discussed in subsection 12.2.2.

There are various ways you can address a defect like the one discussed here.
You can reach for the Unit of Work [33] design pattern. You can also deal with
the issue at the architectural level, by introducing a durable queue with a
single-threaded writer that consumes the messages from it. In any case, you
need to serialise the reads and the writes involved in the operation.

I chose to go for a pragmatic solution: use .NET’s lightweight transactions, as
shown in listing 12.8. Surrounding the critical part of the Post method with a

249



Chapter 12 Troubleshooting

TransactionScope effectively serialises12 the reads and writes. That solves the
problem.

Listing 12.8 The critical part of the Post method is now surrounded with a
TransactionScope, which serialises the read and write methods. The highlighted code is new
compared to listing 12.5. (Restaurant/98ab6b5/Restaurant.RestApi/ReservationsController.cs)

using var scope = new TransactionScope(
TransactionScopeAsyncFlowOption.Enabled);

var reservations = await Repository
.ReadReservations(r.At)
.ConfigureAwait(false);

if (!MaitreD.WillAccept(DateTime.Now, reservations, r))
return NoTables500InternalServerError();

await Repository.Create(r).ConfigureAwait(false);
await PostOffice.EmailReservationCreated(r).ConfigureAwait(false);
scope.Complete();

In my experience, most defects can be reproduced as deterministic tests, but
there’s a residual that eludes this ideal. Multithreaded code infamously falls
into that category. Of two evils, I prefer nondeterministic tests over no test
coverage at all. Such tests will often have to run until they time out in order to
give you confidence that they’ve sufficiently exercised the test case in question.
You should, therefore, put them in a second stage of tests that only runs on
demand and as part of your deployment pipeline.

12.3 Bisection

Some defects can be elusive. When I developed the restaurant system I ran into
one that took me most of a day to understand. After wasting hours following
several false leads, I finally realised that I couldn’t crack the nut only by staring
long enough at the code. I had to use a method.

12. Serialisability, here, refers to making sure that database transactions behave as though they were
serialised one after another [55]. It has nothing to do with converting objects to and from JSON or
XML.

250



12.3 Bisection

Fortunately, such a method exists. We can call it bisection for lack of a better
word. In all its simplicity, it works like this:

1. Find a way to detect or reproduce the problem.

2. Remove half of the code.

3. If the problem is still present, repeat from step 2. If the problem goes away,
restore the code you removed, and remove the other half. Again, repeat
from step 2.

4. Keep going until you’ve whittled down the code that reproduces the
problem to a size so small that you understand what’s going on.

You can use an automated test to detect the problem, or use some ad hoc way
to detect whether the problem is present or absent. The exact way you do this
doesn’t matter for the technique, but I find that an automated test is often the
easiest way to go about it, because of the repetition involved.

I often use this technique when I rubber duck by writing a question on Stack
Overflow. Good questions on Stack Overflow should come with a minimal
working example. In most cases I find that the process of producing the
minimal working example is so illuminating that I get unstuck before I have a
chance to post the question.

12.3.1 Bisection with Git

You can also use the bisection technique with Git to identify the commit that
introduced the defect. I ultimately used that with the problem I ran into.

I’d added a secure resource to the REST API to list the schedule for a
particular day. A restaurant’s maître d’ can make a GET request against that
resource to see the schedule for the day, including all reservations and who
arrives when. The schedule includes names and emails of guests, so it
shouldn’t be available without authentication and authorisation13.

This particular resource demands that a client presents a valid JSON Web
Token (JWT). I’d developed this security feature with test-driven development
and I had enough tests to feel safe.

13. For an example of what this looks like, see subsection 15.2.5.

251



Chapter 12 Troubleshooting

Then one day, as I was interacting with the deployed REST API, I could no
longer access this resource! I first thought that I’d supplied an invalid JWT, so
I wasted hours troubleshooting that. Dead end.

It finally dawned on me that this security feature had worked. I’d interacted
with the deployed REST API earlier and seen it work. At one time it worked,
and now it didn’t. In between these two known states a commit must have
introduced the defect. If I could identify that particular code change, I might
have a better chance of understanding the problem.

Unfortunately, there was some 130 commits between those two extremes.

Fortunately, I’d found an easy way to detect the problem, if given a commit.

This meant that I could use Git’s bisect feature to identify the exact commit
that caused the problem.

Git can run an automated bisection for you if you have an automated way to
detect the problem. Usually, you don’t. When you bisect, you’re looking for a
commit that introduced a defect that went unnoticed at the time. This means
that even if you have an automated test suite, the tests didn’t catch that bug.

For that reason, Git can also bisect your commits in an interactive session. You
start such a session with git bisect start, as shown in listing 12.9.

Listing 12.9 The start of a Git bisect session. I ran it from Bash, but you can run it in any shell
where you use Git. I’ve edited the terminal output by removing irrelevant data that Bash tends to
show, so that it fits on the page.

˜/Restaurant ((56a7092...))
$ git bisect start

˜/Restaurant ((56a7092...)|BISECTING)

This starts an interactive session, which you can tell from the Git integration
in Bash (it says BISECTING). If the current commit exhibits the defect you’re
investigating, you mark it as shown in listing 12.10

252



12.3 Bisection

Listing 12.10 Marking a commit as bad in a bisect session.

$ git bisect bad

˜/Restaurant ((56a7092...)|BISECTING)

If you don’t provide a commit ID, Git is going to assume that you meant the
current commit (in this case 56a7092).

You now tell it about a commit ID that you know is good. This is the other
extreme of the range of commits you’re investigating. Listing 12.11 shows how
that’s done.

Listing 12.11 Marking a commit as good in a bisect session. I’ve trimmed the output a little to
make it fit on the page.

$ git bisect good 58fc950
Bisecting: 75 revisions left to test after this (roughly 6 steps)
[3035c14...] Use InMemoryRestaurantDatabase in a test

˜/Restaurant ((3035c14...)|BISECTING)

Notice that Git is already telling you how many iterations to expect. You can
also see that it checked out a new commit (3035c14) for you. That’s the
half-way commit.

You now have to check whether or not the defect is present in this commit. You
can run an automated test, start the system, or any other way you’ve identified
to answer that question.

In my particular case, the half-way commit didn’t have the defect, so I told
Git, as shown in listing 12.12.

Listing 12.12 Marking the half-way commit as good in a bisect session. I’ve trimmed the output
a little to make it fit on the page.

$ git bisect good
Bisecting: 37 revisions left to test after this (roughly 5 steps)
[aa69259...] Delete Either API

˜/Restaurant ((aa69259...)|BISECTING)

253



Chapter 12 Troubleshooting

Again, Git estimates how many more steps are left and checks out a new
commit (aa69259).

Listing 12.13 Finding the commit responsible for the defect, using a Git bisect session.

$ git bisect bad
Bisecting: 18 revisions left to test after this (roughly 4 steps)
[75f3c56...] Delete redundant Test Data Builders

˜/Restaurant ((75f3c56...)|BISECTING)
$ git bisect good
Bisecting: 9 revisions left to test after this (roughly 3 steps)
[8f93562...] Extract WillAcceptUpdate helper method

˜/Restaurant ((8f93562...)|BISECTING)
$ git bisect good
Bisecting: 4 revisions left to test after this (roughly 2 steps)
[1c6fae1...] Extract ConfigureClock helper method

˜/Restaurant ((1c6fae1...)|BISECTING)
$ git bisect good
Bisecting: 2 revisions left to test after this (roughly 1 step)
[8e1f1ce] Compact code

˜/Restaurant ((8e1f1ce...)|BISECTING)
$ git bisect good
Bisecting: 0 revisions left to test after this (roughly 1 step)
[2563131] Extract CreateTokenValidationParameters method

˜/Restaurant ((2563131...)|BISECTING)
$ git bisect bad
Bisecting: 0 revisions left to test after this (roughly 0 steps)
[fa0caeb...] Move Configure method up

˜/Restaurant ((fa0caeb...)|BISECTING)
$ git bisect good
2563131c2d06af8e48f1df2dccbf85e9fc8ddafc is the first bad commit
commit 2563131c2d06af8e48f1df2dccbf85e9fc8ddafc
Author: Mark Seemann <mark@example.com>
Date: Wed Sep 16 07:15:12 2020 +0200

Extract CreateTokenValidationParameters method

Restaurant.RestApi/Startup.cs | 32 +++++++++++++++++++-------------
1 file changed, 19 insertions(+), 13 deletions(-)

˜/Restaurant ((fa0caeb...)|BISECTING)

254



12.4 Conclusion

I repeated the process for each step, marking the commit as either good or
bad, depending on whether or not my verification step passed. This is shown
in listing 12.13.

After just eight iterations, Git found the commit responsible for the defect.
Notice that the last step tells you which commit is the ‘first bad commit’.

Once I saw the contents of the commit, I immediately knew what the problem
was and could easily fix it. I’m not going to tire you with a detailed description
of the error, or how I fixed it. If you’re interested, I wrote a blog post [101]
with all the details, and you can also peruse the Git repository that
accompanies the book.

The bottom line is that bisection is a potent technique for finding and isolating
the source of an error. You can use it with or without Git.

12.4 Conclusion

There’s a significant degree of personal experience involved in
troubleshooting. I once worked in a team where a unit test failed on one
developer’s machine, while it passed on another programmer’s laptop. The
exact same test, the same code, the same Git commit.

We could have just shrugged and found a workaround, but we all knew that
making the symptom go away without understanding the root cause tends to
be a myopic strategy. The two developers worked together for maybe half an
hour to reduce the problem to a minimal working example. Essentially, it
boiled down to string comparison.

On the machine where the test failed, a comparison of strings would consider
"aa" less than "bb", and "bb" less than "cc". That seems fine, doesn’t it?

On the machine where the test succeeded, however, "bb" was still less than
"cc", but "aa" was greater than "bb". What’s going on?

At this point, I got involved, took one look at the repro and asked both
developers what their ‘default culture’ was. In .NET, the ‘default culture’ is an

255



Chapter 12 Troubleshooting

Ambient Context [25] that knows about culture-specific formatting rules, sort
order, and so on.

As I expected, the machine that considered "aa" greater than "bb" was
running with the Danish default culture, whereas the other machine used US
English. The Danish alphabet has three extra letters (Æ, Ø, and Å) after Z,
but the Å used to be spelled Aa in the old days, and since that spelling still
exists in proper nouns, the aa combination is considered to be equivalent to å.
Å being the last letter in the alphabet is considered greater than B.

It took me less than a minute to figure out what the problem was, because I’d
run into enough problems with Danish sort orders earlier in my career. That’s
still the shifting sands of individual experience—the art of software
engineering.

I’d never been able to identify the problem if my colleagues hadn’t first used a
methodology like bisection to reduce the problem to a simple symptom. Being
able to produce a minimal working example is a superpower in software
troubleshooting.

Notice what I haven’t discussed in this chapter: debugging.

Too many people rely exclusively on debugging for troubleshooting. While I
do occasionally use the debugger, I find the combination of the scientific
method, automated testing, and bisection more efficient. Learn and use these
more universal practices, because you can’t use debugging tools in your
production environment.

256



Index

.NET, 310
1.0, 26
analyser, 29, 30, 67
Boolean default, 208
default culture, 255
deprecation, 220
ecosystem, 26
entry point, 309, 310
Iterator, 165
lightweight transaction,

249
package manager, 282
SQL Server, 245
time resolution, 122

;, see semicolon
@Deprecated, see

Deprecated annotation
[Fact], see attribute
[InlineData], see attribute
[Obsolete], see attribute
[Property], see attribute
[Theory], see attribute
#pragma, 67
80/24 rule, 134

A
A/B testing, 300
AAA, see Arrange Act

Assert
abstraction, 69

bad, 144
definition, 65, 100, 142,

176, 261, 264
example, 69
good, 146, 147
level, 151

high, 51, 311, 312, 323
versus detail, 79, 320

Accelerate (book), 5, 14, 37,
50

acceleration, 185
Accept header, see HTTP
acceptance test, see test
acceptance-test-driven

development, 61
access modifier, 319

internal, 143, 319
private, 76, 206, 319

action
bias, 237

Controller, 260
impure, 273, 274
outcome, 178

activity, 13–15, 18
exhausting, 190
involuntary, 42
mandatory, 276
physical, 279
recurring, 282
regular, 283
scheduled, 284

actor model, 318
Acyclic Dependency

Principle, 321
acyclic graph, 314
Adapter, see design pattern
addition (arithmetic), 273
address

email, see also email, 102,
120, 268, 296

resource, 294–296, 325
AddSingleton method, 81
administrator rights, 299
ADO.NET, 79, 295
affordance, 156, 157, 176

349

http://ADO.NET


Index

agency, 42
agenda

meeting, 280
personal, 32

agile process, see process
AI, see artificial intelligence
Airbus A380, 17
airplane, 16

bomber, 16
algorithm, 89, 279, 287–289

distributed system, 300
inefficient, 289
sort, 44, 45

Ambient Context, 256
analyser, see tool
Analysis Paralysis, 49
annotation, 220
anonymous type, 64
antipattern, 158
API, 66, 156, 219

acronym, 156
ADO.NET, 79
affordance, 156, 176
analyser, 26
capability

advertisement, 158
too many, 158

change, 66, 162
date and time, 122
dependency, 219
deprecated, 221
design, 103, 158, 160

encapsulation, 176
exercise, 162
goal, 165
good, 155, 158, 171
principles, 155, 168,

176
FsCheck, 304, 305
HTTP

invalid input, 93
tools, 82
versus REST, 66

Maybe, 146
memorisation, 113
object-oriented, 221

public, 169–171, 196
reasoning about, 166, 171
REST, 205

benefit, 326
client, 325
deployed, 252
feature flag, 209
links, 323
logging, 272
secure, 251
test, 324
user interface, 323

specialised, 164
statically typed, 161, 167
stringly typed, 164
unfamiliar, 161, 185
xUnit.net, 90

APL, 134
application

line-of-business, 4
Application Programming

Interface, see API
application/json, 62, 63
apprentice, see craft
architect, xxv, 3, 5, 314
architecture, 287, 288, 299,

300
component-based, 322
conventional, 51
Conway’s law, 285
CQRS, 166, 299
diagram, 51
fractal, 151, 152, 154, 174

big picture, 305
example, 175, 265, 312,

314, 325
functional core,

imperative shell, 273,
319

impact, 318
lack of, 37, 285
large-scale, 211
layered, 51, 52, 318
monolith, 318
one-size-fits-all, 318
poka-yoke, 321

ports and adapters, 319,
323

resilient, 299
Tradeoff Analysis

Method, xxv
variety, 318

argument, see also
parameter, 93, 242
additional, 55
as context, 265
counting, 153
generated, 301
logging, 272
mutation, 164
name, 93
passing, 142
replacing constant, 88
required, 156, 170, 171
string, 57
swap, 242, 268
valid, xxvii

armed guard, 292
army

air corps, 16
buyer, 16

Arrange Act Assert
as scientific method, 97
definition, 56
degenerate, 57
purpose, 57
structure, 69, 115

array, 304
JSON, 205
params, 170
replaced by container, 89
replacing scalar, 89
sort, 44

art
enjoyment of, 10
more than science, 65
of programming, 10
of risk assessment, 127
of software engineering,

37, 220, 327
determinism, 125
discomfort, 292

350

http://ADO.NET
http://xUnit.net


Index

example, 93, 248
experience, 99, 256

shift toward
methodology, 47

artefact, 153
always current, 168
code, 181
inspection, 159
mistake-proof, 159
of packaging, 319
preservation, 153

artificial intelligence, 38
artist, 3, 10, 299

comics, 10
ASP.NET

configuration, 81, 150,
173, 317

Decorator, 271
Dependency Injection, 76,

77, 207, 270
entry point, 22, 26
exception, 93, 268
familiarity, 150, 310
IConfiguration interface,

311
Main method, 310
Model View Controller,

63, 67, 151
options, 315
web project, 21

Assert.True, 55
assertion, 65, 72, 116

abstract, 65, 323
append, 62, 225–227, 234
collection, 72, 231, 232
elegant, 72
explicit, 117
fail, 63
library, 55
message, 67
multiple, 226
phase, 56, 69, 73, 91, 97
roulette, 62, 226
single, 226
superficial, 55
tautological, 97, 233

Assertion Message, see
design pattern

Assertion Roulette, see
design pattern

asset, 47
assumption, 52, 248
attacker, 293–296, 298, 299
attention, 42, 46, 307

to keyword, 142
to metric, 105, 130, 132,

154
to names, 161
to performance, 289
to quality, 129, 154
to test suite, 247

attribute, 59, 301, 308
custom, 245
Fact, 90, 93
InlineData, 90, 95, 103,

301, 302
Obsolete, 220
Property, 301
Theory, 90, 93
UseDatabase, 245

audit, 16, 267
trail, 16, 267, 296

authentication, 251
absence of, 37
as mitigation, 296
JSON Web Token, 297
packaged, 318
two-factor, 112

author, 195–198
co-, 190
code, 41
main, 308
package, 282
pull request, 195

authorisation, 251, 311, 314,
318

automation, 19, 22, 32, 81
backup, 284
bisection, 252
build, 17, 18, 22, 32

test, 54, 55
checklist, 29

code review, 28
database, 83
HTTP, 82
quality gate, 32
test, 20, 82
threshold, 131
tool, 24, 25, 29, 32

awareness, 42
of circumstances, 188
of code rot, 154
of quality, 132

Azure, see Microsoft Azure
Azure DevOps Services, 24,

178, 197

B
B-17, 16, 17
B-tree, 45
backup, 178, 284
backwards compatibility,

219
bacteria growth, 307
balance, 56, 57, 69, 292, 296
Barr, Adam, 11, 13
base class, see class
baseball, 33, 41, 43
Bash, 19, 22, 252
bat-and-ball problem, 33,

41, 43, 44, 53, 71
batch file, 22
batch job, 319
BDD, see behaviour-driven

development
Beck, Kent, 4, 116, 139, 210,

257
human mind, 115

behaviour
addition, 203
change, 162, 174, 227
combined, 141
complex, 138
compose, 262
correct, 248, 297
desired, 119, 128, 213
draining of, 81
existing, 203

351

http://ASP.NET


Index

external, 98
hidden, 204, 208, 274
incomplete, 209
incorrect, 268
new, 204
non-deterministic, 246,

265
object, 107
of existing software, 54
proper, 73, 121
test, 69, 115, 208

add, 198
unlawful, 181
with side effect, 266

behaviour-driven
development, 53

behavioural code analysis,
306–308

benign intent, 126
bicycle, 41, 42, 278
big O notation, 289
big picture, xxv, 305, 316
bill by the hour, 292
binary classification, 29
bisection, see also Git, 251,

252, 255, 256
blog post, xxiii, xxvii, 255
boiler plate, 310
bomber, see airplane
Boolean

default, 208
expression, 55
flag, 144, 206, 207
negation, 172
return value, 145, 171,

261, 263
value, 261

bootstrap, 55, 223
Bossavit, Laurent, 192
bottleneck, 281, 289
boundary, 50, 61

HTTP, 61
system, 68, 69
test, 69, 76, 83
value, 300, 301

Boy Scout Rule, 31

brain, 151, 239
capacity, 175
compared to computer,

38, 112
constraint, 45, 46, 99,

152
emulator, 136
evaluating formal

statements, 41
fits in your

API, 165
application, 150
architecture, 151, 152
chunk, 262, 265
code, 45, 46, 114, 115,

135, 141, 196, 198,
234

composition, 259
essential quality, 100
example, 142, 147, 175
part, 151, 174, 318
software engineering,

46
jumping to conclusions,

43, 45, 97
keeping track, 15, 153,

265
reduction, 88
seven chunks, 111, 136
side effect, 264

long-term memory, 111
misled, 44, 72
motor functions, 42
short-term memory, 39,

133
source code for, 43
subconscious, 41, 42
tax, 264
trust, 91
working memory, 131

branch, 81, 118, 138, 147,
152
add, 134
instruction, 39, 133
logic, 81
on constant, 119

outcome, 138
render, 152

break, 194, 238, 239,
276–279, 285
compatibility, 219, 220
contract, 66
cycle, 321
existing implementation,

122
functionality, 216

breakage, 35
breaking change, 196,

219–221, 227, 282
brewer, 12
bribe, 292
bridge, 12, 13, 326
Brooklyn, 117
Brooks, Fred, 46
browser, 314, 323
budget, 244, 262
buffer overflow, 293, 298
bug, see also defect, 174,

228, 241, 247, 298
address, 241
despite best efforts, 201
discovery, 192, 193
fix, 35, 192, 204, 220, 282

struggle, 40
production, 8
regression, 227, 228
report, 180, 246
reproduction, 184, 243
tons of, 289
uncaught, 252
zero, 240

build, 22, 131
automated, 17, 18, 22, 32,

54
configuration, 25
pipeline, 246
release, 22
repeatability, 272
script, 22, 23, 32, 55, 245
step, 22

build quality in, 158, 240
building a house, 3–7

352



Index

bus factor, 188, 308
business

decision, 169, 299
goal, xxv, 319
logic, 169, 171, 246, 257,

322
out of, 5, 36, 37
owner, 293
process, 100
rule, 118, 124, 138, 290

encapsulation, 70, 72
by the book, 31

C
C, 293

language family, xxiv, 28,
135

C++, xxiv, 36, 44, 293
C#

80x24 box, 135
8, 28, 31, 92, 146, 162
access modifier, 319
analyser, 25
branching and looping

keywords, 133
compiler, 92, 94, 104, 144,

220
Data Transfer Object, 70
framework guidelines,

143
inheritance, 315
language

high-level, 298
verbose, 21

like Java, xxvi
managed code, 293
object-orientation, 266
operator

null-coalescing, 104,
133

null-conditional, 302
overload

return-type, 217
previous versions, 146
property, 143, 301, 302
struct, 207

syntax, xxvi
sugar, 143

type system, 100
var keyword, xxvi
verbosity, 134

CA1822, 139
CA2007, 57
CA2234, 58
cache, 267, 271

read-through, 271
cadastral map, 290–292
calculation, 13, 33, 38, 273
CalendarFlag class, 207, 208
call site, see also caller, 106,

210, 212–214
caller, 142, 146, 167, 211

check return value, 147
direct, 150
interaction with object,

99, 108, 109, 156
migrate, 211, 215–219,

221
multiple, 106
responsibility, 108

Campidoglio, Enrico, 19
canary release, 300
capacity

brain, 175
memory

long-term, 111, 112
short-term, 136, 137,

141
working, 114, 131

of restaurant, 115–117,
246, 249
hard-coded, 125, 126,

168
remaining, 123

of team, 192
system, 293

car, 41, 42, 87
Carlsberg, 12
carpenter, 9
case keyword, 133
category theory, 264

Category Theory for
Programmers (book), 264

CD, see Continuous Delivery
cent, 41
certificate, 284

X.509, 284
chain of command, 285
chair, 156, 239, 277

affordance, 156, 157
office, 157

change, see also breaking
change
code structure, 98, 113

safe, 227
concurrent, 183
coupling, 306, 307
documentation, 168, 181
easy, 210
frequency, 307
impending, 221
in place, 215
motivation, 53
perspective, 7, 277
rate, 139, 257
significant, 210
small, 35, 61, 96
state, 78, 164, 165

Characterisation Test, 54,
58

chat forum, 284
chatter, 285
checklist, 16–18, 41

automated, 29
Command Query

Separation, 166
do-confirm, 18
engineering, 13, 37
more than, 32
new code, 17, 32, 54, 55,

57
outcome, 32, 178
read-do, 18
Red Green Refactor, 224
STRIDE, 292, 294
surgery, 17
take-off, 17

353



Index

team, 282
warnings as errors, 25

chef de cuisine, 3, 169
children’s book, 38
chunk, 115, 141, 262

abstraction, 141, 148,
149, 152, 175, 265

code, 114, 151
hex flower, 312
pathways, 138, 152
short-term memory, 112,

141
slot, 136, 148, 149

Circuit Breaker, see design
pattern

claim
role, 297, 298

class, 27
base, 122, 229, 230, 232,

315
concrete, 213
declaration, 27, 268, 270,

310, 311
delete, 221
Domain Model, 145
field, 108, 139, 153, 206

immutable, 265
instance, 139

Humble Object, 123
immutable, 72, 107, 173
inheritance, 315
instance, 75, 76
member, 143, 150

instance, 67, 139, 142
name, 163, 169, 316
nested, 76, 232
private, 76
sealed, 27

clean code, 160
Clean Code (book), 288
client, 49, 111, 284

API, 66
code, 156, 326
concurrent, 183, 184
external, 61

HTTP, 62, 92, 247, 325,
326
test, 324, 325

postcondition, 103
SDK, 326

cloud, 20, 21, 45, 295
co-author, 190
coaching, xxv, 10, 88, 191
code, see also production

code
auto-generated, 25, 40,

54, 72, 153
bad, 259–261
block, 139

complexity, 152
decomposition, 154,

155
small, 134, 144, 257

calling, 108, 214
dead, 7
defensive, 28, 108, 109
deletion, 7, 26, 27, 132,

187, 238
ephemeral, 19
high-level, 305
high-quality, 153
humane, 46, 174
imperfect, see also

imperfection, 91, 123
incomplete, 204
liability, 47
low-level, 154
malicious, 126
metric, see metric
minimal, 20
multithreaded, 250
network-facing, 293
obscure, 43
organisation, 43, 51, 52,

59
layer, 51

quality, see quality
read more than written,

39, 44, 160
readable, 40, 41, 135, 196,

281

redundant, 98, 187
removal, 237, 251
reuse, 40, 319
self-documenting, 161,

170
shared, see code

ownership
simplest possible, 52
transformation, 88, 89,

119
unfamiliar, 146
unmaintainable, xxiv
unsurprising, 310

code analysis
rule, 27, 28, 59, 66, 67, 75,

139
static, 32, 57, 58, 75

driver, 53, 81
false positive, 29, 60
like automated code

review, 28
suppression, 67
turn on, 31
warnings as errors, 29

tool, 24
code base

example, see example
greenfield, 307
memorise, 111
table of contents, 314
unfamiliar, 323

Code Complete (book), 139,
288

code ownership, 187
collective, 187–190, 194,

195, 197, 199
weak, 199

code quality, see quality
code reading, 196, 197
code review, 28, 189, 190,

192–199, 285, 295,
308
big, 195
civilised, 197
initial, 193
on-the-go, 190

354



Index

repeat, 197
suggestion, 197

code rot, see also decay, 7,
130, 154, 325

code smell, 25, 56, 62, 139,
142
Feature Envy, 143, 154

coffee, 239
machine, 239

cognitive constraint, 45, 99,
176

coherence, xxiv, 43, 186
cohesion, 139, 154
collapse, 265
colleague, 78, 195, 239

help, 82, 198
collective code ownership,

see code ownership
combat aviation, 185
combinatorial explosion, 69
Command, 166, 262
Command Query

Responsibility
Segregation, 166, 299

Command Query
Separation, 166
composition, 262
determinism, 264
predictability, 264
side effect, 258
signature, 171
violation, 261

command-line interface, 21
command-line prompt, 19
command-line tool, 21
command-line utility, 51
command-line window, 19
comment, 23, 180

apology, 161
Arrange Act Assert, 56
commit, 187
good, 167
legitimate, 167
misleading, 160, 161, 196
not all bad, 161
pragma, 67

replace with named
method, 161, 167

stale, 161, 167, 168
TODO, 67
versus clean code, 160

Common Lisp, 36
commons, 290
communal table, 138
communication, 179, 285

ad hoc, 285
arbitrary, 285
channel, 219
face to face, 284
structure, 285
written, 285

commute, 278
comparison, 123

string, 255
compartmentalisation, 114
compatibility, 219

backwards, 219
breaking, 219, 220

compiler
C#, 92, 220
error, 25, 28, 29, 210
leaning on, 208, 210
Roslyn, 26
warning, 24–30, 220

complexity, see also
cyclomatic complexity,
46, 307
analysis, 153, 308
collapsed, 265
essential, 46
hidden, 148, 149
increase, 129
indicator, 132
limit, 138
measure, 130
of called methods, 141
prediction, 132, 134
structure, 151

compliance, 235
Composite, see design

pattern
composition, 258, 259, 315

nested, 260, 262
object, 259
pure function, 264
sequential, 262–264, 266,

274
Composition Root, see

design pattern
comprehensibility, xxvi, 136,

153
computational complexity

theory, 289
computer, 7, 327

away from, 239, 277–279,
285

compared to brain, 38,
39, 45, 46

disconnected, 292
in front of, 278, 279
limits, 45
personal, 11
reboot, 236

computer science, 44, 45,
287, 289
education, 8
Vietnam, 6

concentration, 42
concurrency, 183, 184, 191,

247, 249
conference, 31

GOTO, 158
software engineering, 11

conference room, 191
confidence, 111, 224, 227,

248, 250
configuration

application, 173, 174
ASP.NET, 81, 173, 317
feature flag, 207, 208
file, 82, 206, 208, 315
network, 293
system, 151, 207
value, 172, 173

Configure method, 150, 311,
312

ConfigureAwait method, 27,
57–59

355

http://ASP.NET


Index

ConfigureServices method,
83, 151, 173, 312, 313
convention, 311
deleted, 27

ConfigureWebHost method,
83

connection string, 81–83,
151, 317
missing, 226

consciousness, 42
consensus, 191, 197

lack of, 68, 73, 107
constant, 75, 88, 89, 119
constraint, 6, 99
construction, 12, 13

real-world, 5, 6, 13
constructor, 170, 172–174,

207, 215–217
argument, 74, 230
as Query, 262
auto-generated, 72
overload, 170
parameterless, 76
precondition, 144
side effect, 262
validity, 106

Constructor Injection, see
design pattern

contemplation, 26, 190, 278
contention, 183
context, 40, 126, 160, 181

surrounding, 142, 325
Continuous Delivery, 5, 19,

20, 85, 306
Continuous Deployment,

204, 275, 282, 291
Continuous Integration,

131, 182, 184, 204
server, 20, 22, 24, 58, 182,

246
contract, 66

advertisement, 161
design by, 99, 103
encapsulation, 99
external, 61
guarantee, 103

object, 87, 108
regression, 61
signing, 87

convention, 67, 180, 311
naming, 26

Conway’s law, 285
cooperation, 12, 284
Copenhagen, 42, 278

GOTO conference, 158
copilot, 18
copy and paste, 306
correctness, 289
cost, 4, 21, 305

sunk, 195, 210, 240
counter seating, 117
coupling, 306, 320

change, 306, 307
team, 308

Covid-19, 281
CQRS, see Command

Query Responsibility
Segregation

CQS, see Command Query
Separation

craft, 8–10
crash, 92, 174, 268, 293, 298

airplane, 16
run-time, 268

creativity, 13
crisps, 7
critical resource, 187
cross-cutting concern, 201,

267, 314, 315
Decorator, 267, 271, 274
list of, 267

cross-platform, 36
cruft, 37, 153
cruising speed, 201
crunch mode, 193
culture, 32

hustle, 32
of quality, 154
oral, 285, 290

cURL, 82
customer, 36

paying, 219

potential, 28
scare away, 296, 297

CVS, 18, 178
cycle, 320–322

life, 52
Red Green Refactor, 96,

97
release, 5

cyclomatic complexity, see
metric

D
daily stand-up, 194, 275, 282

format, 275
Danish alphabet, 256
Danish teachers’ union, 280
dark room, 7
data

access, 74, 316, 320–322
component, 316
implementation, 314
interface, 321
package, 321, 322

export, 257
import, 257
persisted, 64
tampering, 293, 294
version control, 305

Data Definition Language,
245

data store, 50, 61, 271
data structure, 45, 70
Data Transfer Object, 69,

70, 315
configuration, 173
role, 70
validation, 140, 142
versus Domain Model,

72, 145
data type

built-in, 101
integer, 101

database
access, 268, 295, 318
backup, 78, 284
cache, 267

356



Index

cloud, 295
column, 183
create, 245, 246
data structure, 45
design, 6
fake, 73
graph, 78
implementation, 151
in-memory, 73
language, 78
lock, 183
logging, 272
permissions, 299
query, 45, 123, 265, 289
read and write, 268
real, 73
referential transparency,

264
relational, 6, 78, 151, 166,

243
restore, 284
row, 183

delete, 164
row version, 183
schema, 6, 78, 79, 257
SDK, 282
secure, 295
set up, 83
state, 246
tampering, 294
tear down, 83, 245
test, 243, 245, 246
transaction, 250
update, 243

DateTime struct, 72, 145,
171, 211

daughter, 280
DDD, see domain-driven

design
DDL, see Data Definition

Language
DDoS, see denial of service
dead code, 7
deadline, 192, 193
deadlock, 58
Death Star commit, 186

Debug configuration, 25
debugging, 256
decay, see also code rot

gradual, 130, 131, 153
decomposition, 114, 115,

138
code block, 154, 155
relative to composition,

258, 274
separation of concerns,

274
Decorator, see design

pattern
default culture, 255

Danish, 256
default value, 124, 208
defect, see also bug, 35, 88

address, 241, 243, 249
deal with later, 240
detect, 159
elusive, 250
expose, 228
finding, 192, 251–255
fix, 129
ideal number of, 240
in the wild, 240
introduction of, 252
platform, 298
prevention, 193
production, 127
reproduction, 127, 241,

246, 250
run-time, 28, 268
troubleshooting, 235

defensive code, see code
delegation, 65, 169, 174, 175
DELETE, see HTTP
delimiter, 135
demonstration flight, 16
denial of service, 293

distributed, 293, 298
dependency

change frequency, 283
composition, 207
external, 243
formal, 172

injected, 152, 260
isolation of, 68
management, 6
package, 321
polymorphic, 172
primitive, 207
replace with fake, 84
source control, 237
stability, 283
update, 282, 283
visible, 172

dependency analysis, 287,
300, 306

dependency cycle, 321
Dependency Injection

book, xxiii
Container, 237, 270

configure, 270
dispense with, 207
register, 76, 77, 151,

317
responsibility, 207

Singleton lifetime, 76, 173
Dependency Injection

Principles, Practices, and
Patterns (book), 207

Dependency Inversion
Principle, 79, 320

deployment
automation, 19
repeatability, 272
sign-off, 23

deployment pipeline, 49, 250
establishment, 20, 23, 85
issue, 20

Deprecated annotation, 220
deprecation, 220, 221
describing a program, 6
design

by contract, 99, 100, 103,
109

error, 158
design pattern, 224, 279, 300

Adapter, 315
Assertion Message, 67

357



Index

Assertion Roulette, 62,
226

Circuit Breaker, 267, 271
Composite, 259
Composition Root, 322
Constructor Injection, 75,

172, 310
Decorator, 267–271, 274,

317
Humble Object, 80, 123,

242
Iterator, 165
Model View Controller,

63, 67, 151, 311
Null Object, 76
Repository, 74
Unit of Work, 249
Value Object, 72
Visitor, 160

Design Patterns (book), 259
design phase, 6
desktop application, 293
Deursen, Steven van, 207
developer, see also software

developer
as resource, 5
back-end, xxiv
in a hurry, 319
main, 199, 289
original, 284, 289
remote, 194
responsibility, 295
single, 192
Visual Studio, 30

development, see also
software development
back-end, 9, 188
front-end, 9
greenfield, 2, 203
individual, 231
user-interface, 188

development environment,
see also IDE, 135, 157,
168

development machine, 22,
82, 205, 255, 256

Devil’s Advocate, 119–121,
123–125, 128

DI, see Dependency
Injection

diff, 179, 181
tool, 238

Dijkstra, Edsger, 11
diminishing returns, 191
directed graph, 227
directory, see also

subdirectory, 19, 314, 315
discipline

academic, 288, 305
engineering, 10, 11, 13,

14, 31
future, 327

esoteric, 34
intellectually demanding,

33
discomfort, 292
discoverability, 158
discriminated union, see

sum type
discussion

repeated, 285
technical, 284
written, 284

disillusionment, 10
disjoint set, 139
do keyword, 133
document database, see

database
documentation, 59, 60, 160,

167
high-level, 168
online, 28
rule, 57, 58
scalability, 280
stale, 41, 168, 196

doing dishes, 278
dollar, 33
domain, 148
Domain Model, 70–72, 74,

315, 318–322
abstraction, 79
clean, 79

evolution, 100
motivation, 145, 169

domain name, 284
domain-driven design, 53,

169
domain-specific language,

78
Don’t repeat yourself, see

DRY principle
done done, 192
door handle, 156
dot-driven development, 158
dotnet

build, 22, 55
test, 55

double-blind trial, 237
double-entry bookkeeping,

53, 91, 224
driver

code analysis, 75, 81
code as answer to, 88
example, 53
extrinsic, 53
multiple, 76
of behaviour, 68
of change, 53, 103
of implementation, 61
of transformation, 91
test, 74, 115, 224

integration, 208
driving, 41, 42
Dronning Alexandrine’s

bridge, 12
DRY principle, 107
DSL, see domain-specific

language
DTO, see Data Transfer

Object
duplication

address, 147, 234
look out for, 52
needless, 197
of implementation code,

91
test code, 61
validation, 144

358



Index

DVCS, see version control
system

dyslexia, 181

E
economics, 8, 132
edge

of system, 265, 266
edge case, 69
editor, see also IDE, 13

vertical line, 135
education

computer science, 8, 44
self, 280

effort, 16
continual, 35
heoric, 210
little, 42
mental, 42, 43
small, 32

Eiffel (language), 100
elevated privileges, 236
elevation of privilege, 293,

299
email

address
as identification, 102
bogus, 102
validation, 102

confirmation, 229
grammar, 180
personally identifiable

information, 294, 296,
297

procrastination, 244, 277
unit test, 229, 230, 303

employee, 297
hire, 282
new, 113
regular, 194

empty string, 57, 103, 105
emulator, 39, 136
encapsulation

broken, 144
business rule, 70, 72
contract, 87, 99

Data Transfer Object, 70
good, 156
invariants, 144
misunderstood, 108
poor, 173, 223
purpose, 165, 169
state, 106
versus strings, 58

enclosure diagram, 307, 308
engineer, see also software

engineer, 3, 12, 13, 177
chemical, 12
real, 13, 177, 199

engineering, see also
software engineering, 29,
33
deterministic process, 327
discipline, 10, 11, 13, 14,

31
future, 327

mechanical, 44
method, 13, 17
practice, 199, 210
real, 326
relationship with science,

44, 98
security, 300, 308

English, 181
US, 256

Entity Framework, 79
entry point, 52, 150, 309, 310

ASP.NET, 22, 26
environment

concern, 326
configuration, 82
data, 264
development, 135, 157,

168
pre-production, 20
production, 85, 127

debugging, 256
deployment, 23
lack of, 20

programming, 24, 25
Equals method, 72

equilibrium
unstable, 153

error
compile-time, 92, 160
finding, 255
pilot, 16
programmer, 243
report, 93
reproduction, 243
spelling, 25

error message, 17, 18
essay, 160
essence, 141, 146
ethics, 292
eureka, 278
exception, 301

ArgumentNullException,
92

ArgumentOutOfRange-
Exception, 300,
301

handling, 92
message, 93, 107, 180
NotImplementedExcep-

tion, 213
NullReferenceException,

92
run-time, 92

versus compiler error,
160

type, 92
unhandled, 93, 127, 268

exclamation mark, 91, 92,
94, 96

execution
branch, 119
path, 88, 115
repeatability, 272

exercise, 284, 316
API design, 162, 163
physical, 278, 279

experience, 37, 125
accumulated, 9, 10
individual, 11, 13, 93, 99,

235, 256
personal, 255

359

http://ASP.NET


Index

professional, xxiv, 44
subjective, 42

experiment, 15, 97, 236, 237,
241
Git, 18, 185, 186
result, 11

F
F#, 134, 146, 160, 322, 323
Fact attribute, 90, 93
fail fast, 103
failure, 148, 210, 247

single point of, 187
Fake Object, see Test Double
FakeDatabase class, 69, 73,

74, 83, 122, 212, 213
fallacy

logical, 37
sunk cost, 195, 210, 240

false negative, 97, 226, 247,
248

false positive, 29, 60, 247
falsifiability, 97, 237
fault tolerance, 267, 271, 300
feature, 50, 52, 192, 193

add, 35, 40, 129
big, 220
completion, 193, 208
configuration, 208
cutting across, 267
delivery, 276
deployed, 201
difficult, 204
done, 192
end-to-end, 52
incomplete, 204
new, 204, 209, 220, 282
optional, 28
security, 251, 252, 271
subdirectory per, 314
suggestion, 278

feature branch, 220
Feature Envy, see code smell
feature flag, 184, 204,

206–209, 220
configuration, 208

fee, 28
reservation, 296

feedback, 49, 52, 60, 160
feudalism, 290
Fiddler, 82
file, 314

code, 315
dirty, 231
executable, 318
organisation, 314

filter, 122, 123, 262, 314, 315
finite state machine, 300
firefighting, 193, 275
Firefox, 314
first language, 181
fits in your head, 150–152,

154, 176, 262, 274, 312
API, 165
architecture, 314
chunk, 262, 265, 312
code, 114, 115, 135, 198,

309
composition, 259
criterion, 196
evaluation, 141, 311, 317,

323
example, 142, 147, 175
object, 100
part, 174, 318
system, 114

flag, see also feature flag,
144, 206, 208

flow, see also zone, 42, 277
focus, 16, 244
Foote, Brian, 153
for keyword, 133
foreach keyword, 133
forensics, 40
forgetfulness, 16, 38
formatting, 187, 196, 198

blank line, 56
culture, 256
Git commit, 179, 180
guard, 24
line width, 136

foundation, 6, 11, 19

Fowler, Martin
code that humans can

understand, 45, 176
Data Transfer Object, 70
quality, 35, 37, 40, 47
Strangler, 211

FP, see functional
programming

fractal architecture, see
architecture

fractal tree, 151, 152
fractals, 151, 154
framework

automated testing, 14
data-access, 52
experience with, 311
familiarity, 309, 310
MVC, 63, 67
not-invented-here

syndrome, 6, 36
security, 271
unit testing, 55, 90, 305

Freakonomics (book), 132
Freeman, Steve, 7
frequency, 283

change, 307
frog

boil, 130
fruit

low-hanging, 24
FsCheck, 301–305

NegativeInt, 302
NonNegativeInt, 302, 304
PositiveInt, 302

function
self-contained, 46

functional core, imperative
shell, 266, 273, 318
example, 319
in presence of

object-oriented code,
274

functional programming, 14,
238, 264, 266
influence on C#, xxvi

FxCop, 26

360



Index

G
Gabriel, Richard P., 36
game programming, 9
Gantt chart, 6
gardening, 3, 7, 8
Gawande, Atul, 16, 17
generics, 146, 215

nested, 216
geographical survey, 127, 128
geometry, 127
GET, see HTTP
GetHashCode method, 72
getter, 108, 143
GetUninitializedObject

method, 107
Gibson, William, 14, 327
Git, 14

.git directory, 19
50/72 rule, 179, 180
Bash, 19, 252
basics, 18
bisect, 251–255
blame, 40
branch, 184–187, 197
command line, 19, 179,

180
command-line interface,

18
commit

big, 186
empty, 19
five minutes from, 218
hidden, 231
ID, 253
self-explanatory, 180,

181
small, 185

commit message, 167,
168, 178–182, 198
co-author, 190
empty, 178

connection string, 82
database schema, 79
de-facto standard, 18, 178
experimentation, 185
game changer, 231

graphical user interface,
18, 19, 180

HEAD, 231
history, 59, 186, 187
init, 19
issues, 18
learning, 18
log, 179, 283
master, 184, 185, 187, 197

deployment, 23
incomplete feature, 204

merge, 197, 198, 213, 216,
218

online service, 19, 197
push, 186
reason for using, 182
rebase, 1
repository, 19, 255

local, 184
secrets, 82
stage, 233
stash, 186, 231, 232, 241
tactics, 178
user-friendliness, 18

Git flow, 197
GitHub, 19, 178, 197, 284
GitHub flow, 197, 198
GitLab, 178
glucose, 43
Go To Definition, 315, 317
Go To Implementation, 317
God Class, 158
Goldilogs, 272
GOOS, see Growing

Object-Oriented
Software, Guided by
Tests (book)

GOTO conference, 158
government, 35
grammar, 180
graph

acyclic, 314
directed, 227

graph database, 78
graphical user interface, 18,

19, 82, 164, 180

greater than, 123, 255, 256
greater than or equal, 123,

302
grocery store, 279
ground level, 34
Growing Object-Oriented

Software, Guided by Tests
(book), 7, 61, 78, 325

growing season, 290
guarantee, 87, 103, 108
guard

armed, 292
Guard Clause, 100, 139, 145,

187, 262
natural numbers, 101, 102
null, 75, 94

GUI, see graphical user
interface

GUID, 264, 265, 294
guidance, 11, 21
guideline, 10, 26, 88, 89, 103
guild, see craft
guitar, 10

H
hack, 32, 92, 131, 321
hammer, 291
happy path, 64
hard drive, 19, 112, 186
hard limit, 138
hard-coded

capacity, 125, 126, 168
constant, 89
path, 66
return value, 61
value, 75, 77, 78, 83, 87,

88, 303
hardware, 14, 21, 290

control of, 126
hash, 183
hash index, 45
Haskell, 160, 274

absence of null references,
146

big function, 134
category theory, 264

361



Index

learning, 266
linter, 25
Maybe, 146
QuickCheck, 301
side effect, 166

HDMI, 159
head waiter, see maître

d’hôtel
headline, 180
height restriction barrier,

159
hello world, 54, 55, 61
helper method

extract, 139, 234
motivation, 66

Henney, Kevlin, 6
heroism, 210
heuristic, 10

API design, 155
Arrange Act Assert, 56,

69, 115
for first feature, 64

hex flower, 137, 138, 141,
142, 148–151, 312, 313,
317

hexagon, 137, 138, 142, 150
Hickey, Rich, 46, 238
hierarchy, 314

directory, 315
inheritance, 315
of communication, 167,

179, 219
rigid, 285
type, 227

hill, 34
hipster, 117, 138, 168
history, 12

line width, 135
of software development,

14, 15
rewrite, 1, 19

HIV, 29
Hoare, Tony, 11
HomeController class, 63,

207
hotspot, 307, 308

house, 3, 5, 87
House, Cory, 196
HTTP, 318, 322, 326

200 OK, 55
201 Created, 55
204 No Content, 115
400 Bad Request, 93
403 Forbidden, 297, 298
500 Internal Server Error,

93, 94, 116, 226
boundary, 61
client, 247
code, 319
content negotiation, 62
DELETE, 294, 296
GET, 205, 251, 293, 296,

297, 323
header, 325

Accept, 62
Content-Type, 62, 63
Location, 295

interaction, 205, 209
POST, 78, 82, 294, 323,

325
PUT, 242, 294
request, 21, 67, 151, 312

logging, 272
response, 226, 297

content, 226
logging, 272

specification, 116
status code, 55, 65, 94,

116, 261
error, 115

verb, 66
HttpClient class, 324, 325
HTTPS, 295, 296
humane bounds, 154
humane code, 46, 174
Humble Object, see design

pattern
hunt-and-peck typing, 281
hypermedia controls, 66, 205
hypothesis, 37, 97, 236, 237,

241

I
IConfiguration interface, 82,

311
IDE, 14

acronym, 281
file view, 316
guidance, 21, 170, 281
navigation, 310, 315
refactoring, 223, 227,

234
use to compile, 22

if keyword, 133
illegal states

unrepresentable, 159
illusion

maintainability, 26
immutability

class, 72, 107, 173
field, 265

object, 106
imperative mood, 18, 179,

180
imperfection, 91, 106, 123,

126
implementation detail, 172,

264
coupling, 107, 320
Dependency Inversion

Principle, 79
hidden, 165, 170
irrelevant, 176
unknown, 99, 171, 174
view, 316

improvement
heuristic, 119
loss of ability, 35

impure action, 273, 274
incantation, 236
incentive

perverse, 132, 292
indentation, xxv, 271
infinity, 152
information disclosure, 293,

296
infrastructure

cloud, 45

362



Index

code, 204
digital, 35

inheritance, 315
single, 315

initialisation, 106
object, 144

InlineData attribute, see
attribute

inlining, 290
input, 50, 103

acceptable, 103
invalid, 93, 95, 100, 103
logging, 273
malevolent, 293
null, 99
parsing, 147, 148
query, 50
required, 156
valid, 100
validation, 77, 92, 115

insight, 210, 239, 268, 278
inspiration, 17, 44, 279
instruction, 17, 160
instrumentation, 267, 272
insurance, 292
intangible, 13, 44, 291, 292
integer, see also number, 100

16-bit, 101
8-bit, 101
default value, 124
non-negative, 302
non-positive, 301, 302
signed, 102
unsigned, 102

Integrated Development
Environment, see IDE

integration test, see test
IntelliSense, 157
intent, 163, 167, 196, 198

benign, 126
code, 161

interaction
external world, 145, 229
hidden, 262
HTTP, 205, 209
IDE, 281

interpersonal, 197
object, 99, 103, 108
social, 177

Interactive Development
Environment, 281

interception, 269, 295
interface

add member, 122, 213
affordance, 156
cycle, 320
delete member, 214
extra method, 212
go to implementation,

315
versus base class, 229

internal, see access modifier
Internet, 14
internet

disconnected from, 292
interpreter, 180
introvert, 190
intuition, 33, 38, 41
invariant, 80, 109, 144, 145,

156
investigation, 16, 241, 307
IPostOffice interface, 230,

231, 233, 271, 317
IReservationsRepository

interface, 73, 74, 76, 77,
79, 81, 83, 121, 123, 156,
161–163, 211–214, 269,
271, 316, 317

IRestaurantManager
interface, 260, 261

IT professional, 293, 295,
298

Iterator, see design pattern

J
Java

deprecation, 220
developer, xxiv
example code, xxiv, xxvi
high-level language, 298
inheritance, 315
like C#, xxvi

managed code, 293
null, 146

JavaScript, 25, 282, 298
Jenkins, 24
job security, 113
journeyman, 9, 10
JSON, 250

array, 205
configuration, 315
document, 61, 70, 83, 92,

173
object, 64
parsing, 326
representation, 205, 323,

325
response, 61, 62
serialisation, 64, 325

JSON Web Token, 251, 252,
282, 297, 298
redaction, 272

judgment, 37, 220
human, 326
moral, 31, 32
subjective, 53, 79

jumping to conclusions, 43,
45, 97

JWT, see JSON Web
Token

K
Kahneman, Daniel, 42, 43
Kanban board, 275
kata, 280
Kay, Alan, 11, 12
keyboard, 191, 281
keyboard shortcut, 315, 316
king, 290, 291
King, Alexis, 147
KISS, 238
kitchen, 117, 118, 168, 169
kitchen timer, 277
knowledge

existing, xxiii, xxiv, 11
expansion, 280
local, 290
loss of, 285

363



Index

packaged, 26, 45
painstakingly acquired,

114
knowledge distribution, 308
knowledge gap, 288
knowledge map, 308
knowledge silo, 190, 194
knowledge transfer, 191
Knuth, Donald, 11

L
lab coat, 237
lambda expression, 270
land, 87, 290

ownership, 290
language, see also

programming language
familiarity, 309
first, 181

latency, 190, 192
later is never, 240
LaTeX, xxviii, 4
law of unintended

consequences, 132
layer, 52, 320
layered architecture, see

architecture
leader

technical, 132
leadership, 300
lean manufacturing, 159
lean on the compiler, 210
lean software development,

158, 240
Lean Startup (book), 50
left to right, 122
legacy code, 111, 223

avoid, 114
deliberate, 129
escape, 114
gradual decay, 153
memory, 113, 136
programmer, 113
realisation, 129
refactoring, 114

legacy system, 211

legibility, 290–292
less than, 123, 255
less than or equal, 123
liability, 87

code, 47
library

JSON Web Token, 282
mock object, 237
open-source, 219
reusable, 45, 58

life cycle, 52
light, 7, 9, 210
line

blank, 56
Arrange Act Assert,

56, 57, 69, 115
Git commit message,

179
section, 139

vertical, 135
wide, 271

line break, 23, 271
line width, xxvii, 135
line-of-business application,

4
lines of code, see metric
LINQ, 122, 124, 125
linter, 24, 25, 30, 32

as driver, 53, 76
false positive, 29
warnings as errors, 29

Liskov Substitution
Principle, 227

listen to your tests, 325
literal, 59
literary analysis, 160
localhost, 205
Location header, see HTTP
locking

optimistic, 183, 184
pessimistic, 183

log, 93, 267, 268
log entry, 174, 270, 271
logging, 77, 267, 268,

270–273, 315, 317, 318
LoggingPostOffice class, 271

LoggingReservations
Repository class, 270, 271

logistics, 5, 13
long hours, 193, 279
loop, 133

tight, 289
lottery factor, 188
low-hanging fruit, 24
LSM-tree, 45
Lucid, 36, 40
lunch, 194, 282

M
maître d’hôtel, 102, 169, 246

authentication, 297
schedule, 251, 293, 296,

304
machine code, 290
machine learning, 9
magic spell, 236
Main method, 265, 309, 310
maintainability

illusion, 26
maintainer, 189
maintenance burden, 214
maintenance mode, 4
maintenance task, 221
maintenance tax, 212
MaitreD class, 169–174, 304
man-in-the-middle attack,

293, 295, 296
management, 191, 194
manager, 31, 177, 178, 210,

292
non-technical, 31, 292

manoeuvrability, 185, 231,
233

manufacturing, 327
lean, 159

Martin, Robert C.
abstraction, 65, 100, 142,

176, 261, 264
Transformation Priority

Premise, 88, 89
triangulation, 119, 123

mason, 5

364



Index

master, see craft
materialised view, 299
mathematics, 33, 41, 264

fractals, 151, 152
matryoshka dolls, 268, 269
Maybe, 146, 162
measure, 37, 97, 246, 290

triangulation, 127
measurement, 291, 292

performance, 267
proxy, 292
triangulation, 127, 128

medieval village, 290
meeting, 235, 275, 280
memorisation, 111–114
memory

aid, 17
fading, 112
long-term, 111–113, 136,

141
short-term, 111–113, 154

capacity, 136, 137, 141
chunk, 141
hexagonal layout, 142
limit, 39, 46, 99, 133
magical number seven,

39
slot, 136, 138, 149
unreliable, 38, 39
working, 39, 111, 114, 131

memory footprint, 289
merge conflict, 183
merge hell, 182–184, 220
merge sort, 45
metaphor, 3–8, 38, 97

accountant, 8
author, 8
brain, 38, 112
gardening, 7, 8
house, 4–8
Russian matryoshka

dolls, 269
software craftsmanship, 9
triangulation, 127

metering, 267

method
signature, 164

method call
blocking, 102

methodology, xxv, 15, 256
deliberate, 56
engineering, 13
lack of, 10
quantitative, 327
scientific, 97
software development,

47, 53
software engineering, 50

metric
attention, 130, 154
cyclomatic complexity,

130–133, 147, 149, 150,
306
example, 136, 138–140,

174, 260, 262, 311,
312, 317, 323

explicitly consider, 152
of called methods, 140
one, 242
seven, 46, 105, 169
threshold, 136
Visual Studio, 105

depth of inheritance, 105
invent, 132
lines of code, 132, 134

attention, 154
example, 139, 140, 174,

260, 312, 317, 323
explicitly consider, 152
Visual Studio, 105

monitor, 130
practicality of, 132
useful, 132
Visual Studio, 133

Meyer, Bertrand, 100, 166
micro-commit, 187
micro-service, 318
microseconds, 289
Microsoft, 28, 72, 78, 293
Microsoft Azure, 268
Milewski, Bartosz, 264

milliseconds, 289
mindset

engineering, 14
team, 132
tinkering, 36

minimal working example,
251, 255, 256

mistake
all the time, 41
cheap, 185
commit, 185
easy to make, 53, 224
hide, 186, 201
prevention, 126
proof, 158
reduce risk of, 88
repeat, 243
typing, 281

misuse, 158
mitigation, 292, 295, 297,

298
mob programming, 184,

191, 192, 199, 316
driver, 316

mobile phone app, 293
mock, 73, 107
Model View Controller, see

design pattern
module, 189, 258, 314
money, 12, 21, 35
monolith, 219, 318, 319, 323
morals, 31, 32
morning, 194, 275, 280
motivation, 53, 57, 309

Domain Model, 145
extrinsic, 53
intrinsic, 38
package, 321
process, 178
rule, 28

motor function, 42
multi-tenancy, 269, 323, 325
mutation, 106

artefact, 153

365



Index

MVC, see Model View
Controller

myopia, 37, 192, 255

N
naming convention, 26
nanosecond, 122, 289
NASA, 11
NATO, 11
natural number, see number
navigation, 24, 111, 151,

180, 314
need it later, 215
negative number, see number
nested class, see class
nesting, 259, 260, 262, 274

dolls, 268, 269
object, 268

nihilism, 10
nil, 89
no-op, 67
Nobel laureate, 42
noble, 290, 291
non-breaking change, 219
non-determinism, 265, 266,

273
non-nullable reference type,

see null
Norman, Donald A., 156,

157
NoSQL, 78
notification area, 277
NPM, 282
NuGet, 282
null, 28

ArgumentNullException,
92

check, 92, 99
coalescing operator, 104,

133
Guard Clause, 75, 81, 94,

96, 98
nil, 89
non-nullable reference

type, 28, 99, 106, 144,
162

null-forgiving operator,
144

nullable reference type,
28, 72, 92, 146, 162
alternatives to, 146
gradually enabling, 31
suppression, 144

NullReferenceException,
92

return value, 161
Null Object, see design

pattern
NullRepository class, 76, 77,

81
number, see also integer

128-bit, 294
increment, 133
natural, 100–102, 106, 300
negative, 102, 107, 300,

301
one, 133
positive, 102, 108
random, 273
seven, 39, 46, 111, 131,

133, 138
ten, 41, 43
zero, 107

number-line order, 122
NUnit, 301

O
object

composition, 259, 315
equality, 72
immutable, 106
polymorphic, 268
shared, 76

object-oriented API, 221
object-oriented code, 238,

266, 274
object-oriented

composition, 258, 259
object-oriented

decomposition, 274
object-oriented design, 139,

142, 160, 259, 274

object-oriented language,
xxiv, 146, 266

object-oriented
programming, 14, 100,
108, 211, 238

object-relational mapper, 78,
79, 243, 320, 321
reinvention, 6
versus SQL, 238

obligation, 87, 108
Obsolete attribute, see

attribute
Occurrence class, 215–218
office, 279

home, 284
open, 284, 285
own, 284

one-time code, 112
open-source software, 278,

285
OpenAPI, 205
opening hours, 168, 169
operations specialist, 177
operations team, 78
operator

greater-than, 123
greater-than-or-equal,

123
less-than, 123
less-than-or-equal, 123
minus, 302
null-coalescing, 104, 133
null-forgiving, 92, 144
ternary, 104
unary, 302

Option, 146
order

ascending, 122
ordering, 227
organisation

healthy, 32
rhythm, 193
unhealthy, 32

ORM, see object-relational
mapper

366



Index

outcome
actual, 56, 97
adverse, 127
direct, 178
expected, 56, 72, 97, 116
falsifiable, 97
improvement, 17, 29, 32
negative, 178
positive, 178
predicted, 97
quantitative, 97
successful, 13, 124
versus process, 178

output, 70, 100, 103
indirect, 229
parsed, 148
terminal, 252, 253
to input, 262, 264
type, 163

over-engineering, 215
overbooking, 246, 247, 268

test, 116, 117, 226
overload, 213

add, 212, 213
return-type, 217

overlogging, 272
overtime, 192

P
package, 30, 283, 318, 319,

321–323
author, 282
data access, 321, 322
distribution, 282
encapsulation, 156
reusable, 44, 45, 301
test, 322
update, 282, 283
version, 282

package manager, 282
package restore, 237
pair programming, 189–192,

199, 295
rotation, 190

parameter, see also
argument, 152

how many, 153
query, 50
swap, 242, 243, 268

Parameter Object, 153
parameterless constructor,

see constructor
Parametrised Test, see test
params keyword, 170
parsing, 144, 145, 147, 148,

173
partial function, 148
password, 296
pattern language, xxiii
pause point, 16
peasant, 290
performance, 201, 287–290,

292
fixation, 292
issue, 58

performance monitoring,
267

permission, 198, 293, 299
persistent storage, 77
personal computer, 11
personally identifiable

information, 296
perverse incentive, 132, 292
petri dish, 307
phase, 5

act, 56, 57, 69, 97, 115,
124

arrange, 56, 69, 115, 124
assert, 56, 73, 91, 97
construction, 5, 6
design, 6
green, 97, 98, 104, 107,

125
programming, 5
red, 97, 107, 125
refactor, 96, 98, 104

phone number, 112, 113
physical activity, 279
physical design, 4
physical object, 12, 13, 156
physical work, 279
physics, 44

PII, see personally
identifiable information

pilot, 16–18
test, 16

pipeline, see deployment
pipeline

pixel, 258
plain text, 54

document, 61
planning, 5, 6, 13, 49
platform, 258, 309

defect, 298
plot of land, 87, 290
poka-yoke, 159, 321

active, 159
passive, 159

policy, 21, 198
politeness, 198
polymorphism, 146, 172,

229, 268
Pomodoro technique, 276,

277
pop culture, 12
ports and adapters, 318,

319, 323
positive number, see number
POST, see HTTP
PostAsync method, 66
postcondition, 226–228

contract, 108
guarantee, 108
invariant, 109, 144
Postel’s law, 103
weaken, 228

Postel’s law, 103, 106, 109
Postel, Jon, 103
Postman, 82
PowerShell, 22
precondition, 143, 145, 156

check, 105, 144, 145
contract, 108
invariant, 109, 144
Postel’s law, 103
responsibility, 108
strengthen, 232
weaken, 212, 227

367



Index

predicate, 260, 262, 263
predictability, 264
prediction, 37, 97, 236, 237
PRINCE2, 276
private, see access modifier
probability, 127
problem

address, 236, 237
alternative solution, 9
dealing with, 236
detect, 252
disappear, 236
explaining, 239
manifestation, 236, 272,

278
reaction, 236
reproduction, 246, 251
solving, 235, 238
stuck, 238
unanticipated, 193

process, 275, 291
agile, 284
approval, 190
compilation, 167
external, 299
formal, 308
iterative, 197
long-running, 102
mistake-proof, 159
subconscious, 279
versus outcome, 178

procrastination, 276
product owner, 177
production code

as answer to driver, 88
bug, 228
change, 224, 228
confidence, 224
coupled to test code, 228
edit, 203
refactoring, 227, 229
rule, 58

productivity, 191, 235, 278,
281, 285
deleting code, 132
long hours, 279

measure, 279
metric, 132
negative, 279
personal, 279, 285
tip, 280

profit, 35
Program class, 22, 26, 27,

150
programmer, see also

developer
good, 45, 176
irreplacable, 113
legacy code, 113
maintenance, 105, 309
other, 177, 310
responsibility, 295
single, 192
suffering of, 129
third-party, 326
user-interface, 188

programming by
coincidence, 236, 237

programming language
advanced, 14
C-based, 135
components, 258
cross-platform, 36
density, 134
emulator, 39
functional, 266
high-level, 298
keyword, 133
layout, 135
learning, 18, 279, 280
mainstream, 320, 321
new, 40
statically typed, 157, 161
tools, 24, 25
verbosity, 21, 134

progress, 12, 14, 35, 45
project, 4–6
project management, 6, 37
proper noun, 256
property, 301

C#, 301, 302
declaration, 72

getter, 143
read-only, 72, 75, 172, 176
Visual Basic, 301

Property attribute, see
attribute

property-based testing, see
test

prophylaxis, 134
prose, 180, 181
Pryce, Nat, 7
psychology, 42
pull request, 197, 198, 285

big, 134, 194, 198
punch card, 289
punctuation, 180
pure function, see also

referential transparency,
237, 264–266, 273, 274

PureScript, 166
purpose, 36, 37, 44, 258, 296
PUT, see HTTP
puzzle, 33, 43

Q
quality, 129, 301

build in, 159, 240
essential, 100
internal, 31, 35, 37, 98,

154
better, 131
low, 40

quality gate, 31, 32
quantifiable result, 36, 97
Query, see also Command

Query Separation, 166
composition, 262
constructor, 262
deterministic, 264, 265
example, 176, 262, 263
favour, 166
non-deterministic, 264,

266
parameter, 50
side effect, 261, 262
type, 163, 171

queue, 50, 249, 299

368



Index

QuickCheck, 301
quicksort, 45

R
race condition, 246–248
Rainsberger, J.B., 47
RAM, 39, 45, 112
random number, 273
random number generator,

264
random value, 301, 302
range, 148, 212, 213
readability, 41, 281

code review criterion, 196
nudge, 135
optimise for, 40, 79

reader
future, 59, 160, 163

readme, 168
real world, 29, 100, 258
reality, 6, 10, 52, 192, 290

physical, 6
reboot, 236, 237
receiver, 160
recursion, 89
Red Green Refactor, 96, 97,

125, 128, 224
execution time, 244
red phase, 103, 107

Reeves, Jack, 5, 13
refactoring, 98, 203

Add Parameter, 228
backbone of, 224
big, 220
candidate, 139
code ownership, 187
commit, 229
database, 245
Extract Method, 187,

227, 228
IDE, 234
Inline Method, 187
legacy code, 114
Move Method, 143, 227
opportunity, 125
prophylactical, 134

Rename Method, 218, 227
Rename Variable, 227
safe, 227, 228
test, 231
test code, 224, 232, 234

apart, 229
to property-based test,

301–303
upon rot, 325

toward deeper insight,
209

Refactoring (book), 143,
223, 224, 227

reference type, see also null,
28

referential transparency, 264,
265, 273

regression, 227, 228
likelihood, 126
prevention, 55, 61, 127,

243
relationship type, 206
release, 219–221

canary, 300
Release configuration, 22, 25
release cycle, 5
repeatability, 272
repetition, 251
Repository, see design

pattern
repudiation, 293, 296
research, 5, 38
resiliency, 298–300
REST, 66
restart, 236
restaurant owner, 294, 296
RESTful, 205
RESTful Web Services

Cookbook (book), 116
return on investment, 299
revelation, 278
review, 13, see code review
reviewer, 195–198
rework, 220
Richardson Maturity

Model, 66

risk, 299
risk assessment, 127
robot, 156

industrial, 258, 327
role

claim, 297, 298
object, 70

rollback, 246
roof, 6
roofer, 9
room

dark, 7
root cause, 255
Roslyn, 26, 29
rotation, 56, 57
routine, 194, 279
routing, 151, 311
rubber duck, 239, 240, 251
rubber stamp, 194, 198
Ruby, 89, 282
RubyGems, 282
rule

against decay, 131
analyser, 26, 27, 30, 31,

57, 139
breaking, 131
business, 118, 124, 138,

290
encapsulation, 70, 72

Command Query
Separation, 166

disable, 60
documentation, 58
extra, 264
formatting, 256
hard, 132
line height, 135
machine-enforced, 31
motivation, 28
redundant, 132
threshold, 131, 132
versus food for though, 89

rule of thumb, 10, 182, 204,
210, 242

running, 278
Russian dolls, 268, 269

369



Index

S
sabotage, 119, 233
safety net, 224, 228, 234, 244
salary, 21
scaffold, 20
scalar, 88, 89, 119
schedule

certificate update, 284
package update, 283
synchronisation, 190
team, 282

school, 160, 177, 280, 281
science, 44, 97, 98
scientific evidence, 13
scientific method, 97, 236,

237, 256
scientist, 3, 44
screen, 42, 239, 258, 281
Scrum, 276, 283

sprint, 283
retrospective, 282

SDK, 282, 326
sealed keyword, 27
seating

bar-style, 118, 168
counter, 117
overlap detection, 174
second, 138, 168, 169
single, 117, 138, 168

security, 271, 287, 288, 290,
292, 300
balance, 296
mitigation, 292

security by obscurity, 294
Seeing Like a State (book),

290
self-hosting, 55, 324
self-similarity, 154
Semantic Versioning, 218,

219
semicolon, 135
sender, 160
sensitivity, 231, 290
separation of concerns, 257,

268, 274, 314

serialisation, 64, 249, 250,
325

server, 21
setter, 108, 143
seven, 46, 136–138, 151–154

magical number, 39
proxy, 46
threshold, 130, 131, 133
token, 39, 133

shared code, see code
ownership

shell script, 22
shifting sands of individual

experience, 11, 13, 93, 99,
235, 256

shopping, 279
shower, 278
side effect, 162, 164–166,

171, 258, 259, 261–266
constructor, 262
Haskell, 323
hidden, 43
logging, 273

sign-off, 13, 23, 198, 199
signal, 29, 247
signature

digital, 296
method, 145, 146,

162–164, 166, 170,
171
identical, 213

Simple Made Easy
(conference talk), 238

simplest thing that could
possibly work, 75, 117,
215

simplicity, 46, 238
simulation, 13, 21
single point of failure, 187
SingleOrDefault method,

124–127
Singleton lifetime, see

Dependency Injection
skill, 199

decomposition, 155
legacy, 113

literary composition, 160
situational, 8
specialised, 9
troubleshooting, 235

slice
vertical, 49–52, 54, 60, 61,

77
first, 64, 85
happy path, 64
purpose, 64

small step, 61, 88, 194, 220
SMTP, 102
snapshot, 183, 184, 187
social media, 258
software

reusable, 45
successful, 4
sustainable, 67
unsuccessful, 4

software craftsmanship,
8–10

software crisis, 11, 14
software developer, see also

developer
collaboration, 189
professional, 31

skill, 8
software development

asynchronous, 285
highest-ranked problem,

182
history, 14, 15
industry, 9, 13, 14, 45

age, 3
improvement, 8

management, 292
process, 52, 276

latency, 192
regular, 35

professional, 29, 235
reality, 203

project
bad, xxiv

sustainable, 40
team, 177, 287

370



Index

software engineering, 34, 35,
37, 41, 44–47
aspirational goal, 11
classic, 308
conference, 11
deterministic process, 125
pocket, 11
practice, 182
process, 177
science, 97
traditional, 300, 308

SOLID principles, 300
sort order, 256

Danish, 256
sorting algorithm, see

algorithm
source control system, see

version control system
spaghetti code, 261, 285, 319
special case, 212, 237
specialisation, 188
Speculative Generality, 52
spelling error, 25
split screen configuration,

135
spoofing, 293, 294
SQL, 78, 212, 238, 245, 299

named parameter, 295
script, 315
SELECT, 123

SQL injection, 293, 295, 296,
299

SQL Server, 78, 299
SSTable, 45
Stack Overflow, 14, 240, 251,

280
stack trace, 309
stakeholder

Continuous Delivery, 276
disregard for engineering,

31
feedback from, 49, 85
involvment, 308
meeting, 280
prioritisation, 290
security, 292, 293

stand-in, 73
standard

de-facto, 18, 179
standard output, 50
Startup class, 23, 27, 55, 63,

76, 81, 83, 150, 173, 310,
311, 313, 315
constructor, 82

Stash, 178
state

application, 78, 121, 164
change, 164, 165

local, 165
consistent, 218
illegal

unrepresentable, 159
inspection, 230
invalid, 106–108, 159
mutation, 106
object, 106, 164
system, 249
transformation, 88
valid, 106, 144, 156

stateless class, 76, 80, 173
statement

formal, 41
statement completion, 281
static code analysis, see code

analysis
static flow analysis, 144, 147
static keyword, 27, 67, 139,

142, 147
statistics, 178
steering wheel, 41, 42
stored procedure, 299
Strangler, 210, 220

class-level, 215–217
method-level, 214

strangler fig, 210, 211
STRIDE, 292–294, 300
string comparison, 255
stringly typed code, 58, 164,

242
stroll, 239
struct keyword, 207
structural equality, 72

stub, 73
subdirectory, see also

directory, 314, 315
subroutine, 39
subterfuge, 32
subtype, 227
Subversion, 18, 178
suffering, xxiv, 129
sum type, 160
sunk cost fallacy, see fallacy
SuperFreakonomics (book),

132
supertype, 227
support agreement, 78
surgeon, 17
surgery, 17
survey

geographical, 127, 128
sustainability, 34–37, 40, 44,

45, 47, 114
versus speed, 67

SUT, see System Under Test
SUT Encapsulation Method,

66
Swagger, 205
Swiss Army knife, 158, 164
switch keyword, 133
syntactic sugar, 143
system

edge, 265, 266
restore, 284
running, 268

System 1, 42, 43, 279
System 2, 42, 43
system tray, 277
System Under Test, 66, 69,

301, 316, 325
coupling to test, 107
description, 128, 304
sabotage, 233
state, 230
triangulation, 127

T
tab, 315, 316
tagged union, see sum type

371



Index

take-off, 16
tampering, 293–295
task

big, 276
complex, 16
getting started, 276

tautology
assertion, 97, 233

TCP, 103
TDD, see test-driven

development
team

change, 187
high-performing, 5
low-performing, 5

team coupling, 308
team member

new, 111, 150
TeamCity, 24
technical debt, 7, 8, 178
technical expertise, 31
temperature, 326
terminal, 135
terrain, 291
test

acceptance, 61
add to existing code base,

24
as measurment, 127
automated

as driver, 53
as guidance, 167
database, 83
ease, 19
favour, 82
system, 82

boundary, 69, 76, 83
coverage, 118, 223, 250
deterministic, 246, 250
developer, 21
example, 300
exploratory, 208, 241
failing, 63, 96, 241
high-level, 65
in-process, 243

integration, 54, 208,
242–246, 297, 318

iteration, 96
manual, 82, 85
non-deterministic, 246,

248, 250
parametrised, 89, 90, 107,

300, 301
append test case, 119,

225
compared to property,

301
passing, 96, 97
property-based, 53, 279,

301–305
refactoring, 301
regression, 241
revisit, 116
slow, 243, 246, 249
smoke, 82, 85
state-based, 73

test case, 90, 91
append, 225
before and after, 245
comprehensive, 304
exercise, 250
good, 119
redundant, 128
single, 88

test code, 224
change, 234
coupled to production

code, 228
duplication, 61
edit, 224, 225, 228, 232,

234
maintenance, 234, 325
problem, 91
refactoring, 227, 229, 231,

232, 234, 326
rotate, 56, 57

test data, 303
Test Double, 73

Fake Object, 73, 84, 122
Test Spy, 229, 231

test framework, 90, 282

test library, 58
test method, 89, 119

add, 225
orchestration, 248, 249

test pilot, see pilot
test runner, 58
Test Spy, see Test Double
test suite, 53

build script, 55
execution time, 244
failing, 248
noise, 247, 248
safety net, 224
trust, 223, 248

Test Utility Method, 65,
324–326

test-driven development, 53,
63
acceptance, 61
beginner, 119
coaching, 191
enabling, 54
execution time, 244
mob programming, 316
one among alternative

drivers, 76
outside-in, 53, 61, 64, 68,

78
poka-yoke, 159
scientific method, 97, 98
security feature, 251
success story, 240
teaching, 119
technology choice, 78
triangulation, 127

Test-Driven Development By
Example (book), 116

text file, 21
textbook, 280
The Leprechauns of

Software Engineering
(book), 13

The Pragmatic Programmer
(book), 9, 279

Theory attribute, see
attribute

372



Index

thinking
deliberate, 42
effortful, 43

thread, 57, 58, 76
multi, 250
race, 246, 247
single, 249

thread safety, 80, 173
threat, 292, 299

identification, 299
mitigation, 295, 296, 298

threat modelling, 292, 293,
299, 300

threshold, 130–133, 135,
306, 307
aggressive, 154

throughput, 326
tick, 122
time, 227, 264, 266, 273, 306

management, 238
of day, 264
personal, 279
wasting, 276, 279

time-boxing, 238, 276, 277,
280

timeout, 248, 250
TODO comment, 67
tool, 24, 72

analyser, 24–30, 53, 76,
88, 302
warning, 28, 29

GUI, 82
linter, 24

topology, 21
Tornhill, Adam, 305
touch type, 280, 281
tradition, 9, 10, 268
traffic, 293, 298, 326
transaction, 87, 183, 246,

249, 250
roll back, 246

TransactionScope class, 250
transformation

atomic, 88
code, 88, 89, 91, 115, 119

Data Transfer Object, 70
input, 50

Transformation Priority
Premise, 75, 89, 115, 119,
128

tree, 151, 211, 314
B, 45
dead, 211
fractal, 151, 152
hollow, 211
host, 210
leaf node, 151
LSM, 45

Trelford, Phil, 158
triangulation, 119, 123, 127

geometry, 127
troubleshooting, 235, 236,

272
debugging, 256
experience, 255
ordeal, 8
superpower, 256
support future, 272
understanding, 268

trunk, 151, 184
trust, 87, 224, 248
try/catch, 92
TryParse method, 98, 99
Twitter, 244, 277
two-factor authentication,

see authentication
type

anonymous, 64
custom, 170
generic, 216
polymorphic, 229
static, 164
wrapper, 302

type declaration, 28
type hierarchy, 227
type inference, xxvi
type information, 157

static, 170
type signature, 162

type system, 106, 157
static, 28, 100

type-driven development, 53
TypeScript, xxiv
typist, 5, 281
typo, 187, 196, 281

U
ubiquitous language, 169
unauthorised access, 293
understanding, 235–238,

241, 251, 252
bug, 40
computer, 45, 176
difficult, 35, 40, 46
easier, 216
human, 45, 176
struggling, 182

undo, 18, 19, 186
unintended consequence,

132
unit, 68, 69, 107
Unit of Work, see design

pattern
unit test, see test

definition, 68
universal conjecture, 98
urgency, 283
Uri class, 58, 59, 66
URL, 66, 83, 205, 294, 296

documented, 205
opaque, 206
template, 66

UrtCop, 26
USB, 159
Usenet, 280
user, 4, 52, 296

regular, 293, 299
user code, 151, 298
user group, 31
user interface

before database, 6
feature flag, 209
slice, 50

using directive, 21

373



Index

V
vacation, 41, 187, 191, 205
validation, 77, 92, 147, 154,

261
email address, 102
input, 115
object-oriented, 144

validation link, 102
validity, 99, 102, 106, 108,

147
value, 36, 37, 192

hard-coded, 303
run-time, 273

Value Object, see design
pattern, 72

value type, 207
var keyword, xxvi, xxvii
variable, 75, 88, 89, 119

count, 153, 154
global, xxv, 43
local, 153
name, 196

VBScript, 44
vendor, 78
version

language, 282
major, 219, 221
new, 282
old, 282
platform, 282
skip, 282

version control data, 305
version control system, 18,

19, 178, 305
centralised, 18, 19, 182
CVS, 18
distributed, 18, 186
secrets, 82
Subversion, 18
tactical advantage, 186

vertex, 314
vicious circle, 193
Vietnam, 6
view

high-level, 151
materialised, 299

vigilance, 320
vine, 210, 211
violence, 210
virtual machine, 21
Visitor, see design pattern
Visual Basic, 44

property, 301
Visual SourceSafe, 183
Visual Studio

add null check, 76, 81
auto-generated code,

21–23, 25, 72
build configuration, 25
code metrics, 105, 133
developer, 30
generate constructor, 72
generate Equals and

GetHashCode, 72
Go To Definition, 315
IntelliSense, 157
project, 30, 54, 318
solution, 30, 54, 245
test runner, 58

void keyword, 162, 165
VT100, 135
vulnerability, 293, 294, 296,

299

W
wait time, 193

maximum, 194
walking, 239, 277, 279
Walking Skeleton, 20, 54, 60
warnings as errors, 25, 26,

29–32
as driver, 53, 57
cost, 67

weak code ownership, see
code ownership

web site, 51
Weinberg, Gerald M., 289
what you see is all there is,

43, 45, 152, 175
while keyword, 133
Windows, 19, 22, 268, 277,

315

wizard, 20, 54
work

design, 6, 278
detective, 106
human, 13
intellectual, 5, 42, 279
physical, 279
project, 4
skilled, 8
uninterrupted, 276
unplanned, 192, 193

work from home, 284
work item, 275, 276, 283
work item management, 178
workaround, 207, 255
worker, 5
Working Effectively with

Legacy Code (book), 113,
223

workshop, 292
worse is better, 36, 37
wrapper, 207, 242, 269, 302,

304
writer

single-thread, 249
WYSIATI, see what you see

is all there is

X
X out names, 162–164, 260
x-ray, 307
X.509 certificate, see

certificate
XML, 250, 326
XP, 276, 284
xp_cmdshell, 299
xUnit Test Patterns (book),

224
xUnit.net, 55, 90, 245, 301

Y
Yoder, Joseph, 153

Z
zero, 102, 106, 107

374

http://xUnit.net


Index

zero bugs, 240
zero tolerance, 25
zone, see also flow, 42, 277,

278

zoom, 148, 149, 151, 152,
154
context, 314, 317, 324,

325

example, 175, 265
navigation, 314, 317,

325
out, 265

375


	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	Series Editor Foreword
	Preface
	About the Author
	Chapter 12 Troubleshooting
	12.1 Understanding
	12.1.1 Scientific Method
	12.1.2 Simplify
	12.1.3 Rubber Ducking

	12.2 Defects
	12.2.1 Reproduce Defects as Tests
	12.2.2 Slow Tests
	12.2.3 Non-deterministic Defects

	12.3 Bisection
	12.3.1 Bisection with Git

	12.4 Conclusion

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z




