

Cert Guide

Advance your IT career with hands-on learning

CompTIA[®]

Advanced Security Practitioner (CASP+)

CAS-004

TROY McMILLAN

CompTIA® Advanced Security Practitioner (CASP+) CAS-004 Cert Guide

Troy McMillan

CompTIA® Advanced Security Practitioner (CASP+) CAS-004 Cert Guide

Copyright © 2023 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without written permission from the publisher. No patent liability is assumed with respect to the use of the information contained herein. Although every precaution has been taken in the preparation of this book, the publisher and author assume no responsibility for errors or omissions. Nor is any liability assumed for damages resulting from the use of the information contained herein.

ISBN-13: 978-0-13-734895-4

ISBN-10: 0-13-734895-9

Library of Congress Control Number: 2022933627

ScoutAutomatedPrintCode

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. Pearson IT Certification cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of any trademark or service mark.

Microsoft and/or its respective suppliers make no representations about the suitability of the information contained in the documents and related graphics published as part of the services for any purpose. All such documents and related graphics are provided "as is" without warranty of any kind. Microsoft and/or its respective suppliers hereby disclaim all warranties and conditions with regard to this information, including all warranties and conditions of merchantability, whether express, implied or statutory, fitness for a particular purpose, title and non-infringement. In no event shall Microsoft and/or its respective suppliers be liable for any special, indirect or consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other tortious action, arising out of or in connection with the use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typographical errors. Changes are periodically added to the information herein. Microsoft and/or its respective suppliers may make improvements and/or changes in the product(s) and/or the program(s) described herein at any time. Partial screenshots may be viewed in full within the software version specified.

Microsoft[®] and Windows[®] are registered trademarks of the Microsoft Corporation in the U.S.A. and other countries. Screenshots and icons reprinted with permission from the Microsoft Corporation. This book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

Editor-in-Chief Mark Taub

Director, ITP Product Management Brett Bartow

Executive Editor Nancy Davis

Development Editor Ellie Bru

Managing Editor Sandra Schroeder

Senior Project Editor Tonya Simpson

Copy Editor Kitty Wilson

Indexer Tim Wright

Proofreader Barbara Mack

Technical Editor Chris Crayton

Publishing Coordinator Cindy Teeters

Cover Designer Chuti Prasertsith

Compositor codeMantra

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no warranty or fitness is implied. The information provided is on an "as is" basis. The author and the publisher shall have neither liability nor responsibility to any person or entity with respect to any loss or damages arising from the information contained in this book.

Special Sales

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding interests), please contact our corporate sales department at corpsales@pearsoned. com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Pearson's Commitment to Diversity, Equity, and Inclusion

Pearson is dedicated to creating bias-free content that reflects the diversity of all learners. We embrace the many dimensions of diversity, including but not limited to race, ethnicity, gender, socioeconomic status, ability, age, sexual orientation, and religious or political beliefs.

Education is a powerful force for equity and change in our world. It has the potential to deliver opportunities that improve lives and enable economic mobility. As we work with authors to create content for every product and service, we acknowledge our responsibility to demonstrate inclusivity and incorporate diverse scholarship so that everyone can achieve their potential through learning. As the world's leading learning company, we have a duty to help drive change and live up to our purpose to help more people create a better life for themselves and to create a better world.

Our ambition is to purposefully contribute to a world where

- Everyone has an equitable and lifelong opportunity to succeed through learning
- Our educational products and services are inclusive and represent the rich diversity of learners
- Our educational content accurately reflects the histories and experiences of the learners we serve
- Our educational content prompts deeper discussions with learners and motivates them to expand their own learning (and worldview)

While we work hard to present unbiased content, we want to hear from you about any concerns or needs with this Pearson product so that we can investigate and address them.

Please contact us with concerns about any potential bias at https://www.pearson.com/report-bias.html.

Contents at a Glance

Introduction |

Part I: Security Architecture	
CHAPTER 1	Ensuring a Secure Network Architecture 3
CHAPTER 2	Determining the Proper Infrastructure Security Design 73
CHAPTER 3	Securely Integrating Software Applications 85
CHAPTER 4	Securing the Enterprise Architecture by Implementing Data Security Techniques 125
CHAPTER 5	Providing the Appropriate Authentication and Authorization Controls 149
CHAPTER 6	Implementing Secure Cloud and Virtualization Solutions 185
CHAPTER 7	Supporting Security Objectives and Requirements with Cryptography and Public Key Infrastructure (PKI) 203
CHAPTER 8	Managing the Impact of Emerging Technologies on Enterprise Security and Privacy 219
Part II: Security Operations	
CHAPTER 9	Performing Threat Management Activities 231
CHAPTER 10	Analyzing Indicators of Compromise and Formulating an Appropriate Response 251
CHAPTER 11	Performing Vulnerability Management Activities 275
CHAPTER 12	Using the Appropriate Vulnerability Assessment and Penetration Testing Methods and Tools 293
CHAPTER 13	Analyzing Vulnerabilities and Recommending Risk Mitigations 315
CHAPTER 14	Using Processes to Reduce Risk 347
CHAPTER 15	Implementing the Appropriate Incident Response 367
CHAPTER 16	Forensic Concepts 385
CHAPTER 17	Forensic Analysis Tools 399

Part III: Security Engineering and Cryptography	
CHAPTER 18	Applying Secure Configurations to Enterprise Mobility 419
CHAPTER 19	Configuring and Implementing Endpoint Security Controls 437
CHAPTER 20	Security Considerations Impacting Specific Sectors and Operational Technologies 459
CHAPTER 21	Cloud Technology's Impact on Organizational Security 477
CHAPTER 22	Implementing the Appropriate PKI Solution 499
CHAPTER 23	Implementing the Appropriate Cryptographic Protocols and Algorithms 519
CHAPTER 24	Troubleshooting Issues with Cryptographic Implementations 543
Part IV: Governance, Risk, and Compliance	
CHAPTER 25	Applying Appropriate Risk Strategies 555
CHAPTER 26	Managing and Mitigating Vendor Risk 607
CHAPTER 27	The Organizational Impact of Compliance Frameworks and Legal Considerations 625
CHAPTER 28	Business Continuity and Disaster Recovery Concepts 657
CHAPTER 29	Final Preparation 673
APPENDIX A	Answers to the Review Questions 679
	Glossary 709
	Index 761
Online Elements	
APPENDIX B	Memory Tables
APPENDIX C	Memory Tables Answer Key

APPENDIX D Study Planner

Glossary

Table of Contents

Introduction I

Part I: Security Architecture

Chapter 1 Ensuring a Secure Network Architecture 3

Services 3

Load Balancer 3

Intrusion Detection System (IDS)/Network Intrusion Detection System (NIDS)/Wireless Intrusion Detection System (WIDS) 3

Intrusion Prevention System (IPS)/Network Intrusion Prevention System (NIPS)/Wireless Intrusion Prevention System (WIPS) 6

Web Application Firewall (WAF) 6

Network Access Control (NAC) 8

Quarantine/Remediation 9

Persistent/Volatile or Non-persistent Agent 9

Agent vs. Agentless 9

Virtual Private Network (VPN) 10

Domain Name System Security Extensions (DNSSEC) 11

Firewall/Unified Threat Management (UTM)/Next-Generation Firewall (NGFW) 11

Types of Firewalls 12

Next-Generation Firewalls (NGFWs) 14

Firewall Placement 15

Deep Packet Inspection 19

Network Address Translation (NAT) Gateway 19

Stateful NAT 20

Static vs. Dynamic NAT 21

Internet Gateway 21

Forward/Transparent Proxy 21

Reverse Proxy 22

Distributed Denial-of-Service (DDoS) Protection 22

Routers 22

Routing Tables 23

```
Additional Route Protection 25
   Mail Security 26
   IMAP 26
   POP 27
   SMTP 27
   Email Spoofing
   Spear Phishing
                 28
    Whaling 28
   Spam 28
    Captured Messages 29
    Disclosure of Information
   Malware 30
   Application Programming Interface (API) Gateway/Extensible Markup
     Language (XML) Gateway 30
   Traffic Mirroring 30
   Switched Port Analyzer (SPAN) Ports 31
   Port Mirroring 31
    Virtual Private Cloud (VPC) 32
   Network Tap 32
    Sensors 32
   Security Information and Event Management (SIEM) 33
   File Integrity Monitoring (FIM) 35
   Simple Network Management Protocol (SNMP) Traps 36
   NetFlow 36
   Data Loss Prevention (DLP) 37
   Antivirus 39
Segmentation 39
   Microsegmentation 40
   Local Area Network (LAN)/Virtual Local Area Network (VLAN) 40
   Jump Box 43
   Screened Subnet 44
   Data Zones 44
    Staging Environments 45
   Guest Environments 45
    VPC/Virtual Network (VNET) 45
```

```
Availability Zone 46
   NAC Lists 47
   Policies/Security Groups 47
   Regions 49
   Access Control Lists (ACLs) 49
   Peer-to-Peer 49
   Air Gap 49
De-perimeterization/Zero Trust 49
   Cloud 50
   Remote Work 50
   Mobile 50
   Outsourcing and Contracting 52
   Wireless/Radio Frequency (RF) Networks 53
   WLAN-802.11 53
   WLAN Standards 54
   WLAN Security 56
Merging of Networks from Various Organizations 58
   Peering 59
   Cloud to on Premises 59
   Data Sensitivity Levels 59
   Mergers and Acquisitions 60
   Cross-domain 61
   Federation 61
   Directory Services 61
Software-Defined Networking (SDN) 62
   Open SDN 63
   Hybrid SDN 64
   SDN Overlay 64
Exam Preparation Tasks 66
Review All Key Topics 66
Define Key Terms 68
Complete Tables and Lists from Memory 69
Review Questions 69
```

Chapter 2 Determining the Proper Infrastructure Security Design 73 Scalability 73 Vertically 73 Horizontally 74 Resiliency 74 High Availability/Redundancy 74 Diversity/Heterogeneity 75 Course of Action Orchestration 75 Distributed Allocation 76 Replication 76 Clustering 76 Automation 76 Autoscaling 76 Security Orchestration, Automation, and Response (SOAR) 77 Bootstrapping 77 Performance 77 Containerization 78 Virtualization 79 Content Delivery Network 79 Caching 80 Exam Preparation Tasks 81 Review All Key Topics 81 Define Key Terms 81 Complete Tables and Lists from Memory 81 Review Questions 82 Chapter 3 Securely Integrating Software Applications 85 Baseline and Templates 85 Baselines 85 Create Benchmarks and Compare to Baselines 85 Templates 86 Secure Design Patterns/Types of Web Technologies 87

Storage Design Patterns 87

Container APIs 88

```
Secure Coding Standards 89
    CVE 90
    DISA STIG 90
    PA-DSS 90
    Application Vetting Processes 90
    API Management 91
    Middleware 91
Software Assurance 92
    Sandboxing/Development Environment 92
    Validating Third-Party Libraries 93
    Defined DevOps Pipeline 93
    Code Signing 94
    Interactive Application Security Testing (IAST) vs. Dynamic Application
     Security Testing (DAST) vs. Static Application Security Testing
     (SAST) 95
    Interactive Application Security Testing (IAST)
    Static Application Security Testing (SAST) 95
    Dynamic Application Security Testing (DAST) 95
    Code Analyzers 95
    Fuzzer 95
    Static 98
    Dynamic 98
    Misuse Case Testing 99
    Test Coverage Analysis 99
    Interface Testing 100
Considerations of Integrating Enterprise Applications 100
    Customer Relationship Management (CRM) 100
    Enterprise Resource Planning (ERP) 100
    Configuration Management Database (CMDB) 101
    Content Management System (CMS) 101
    Integration Enablers 101
    Directory Services 101
    Domain Name System (DNS) 101
    Service-Oriented Architecture (SOA) 102
    Enterprise Service Bus (ESB) 103
```

Chapter 4

```
Integrating Security into Development Life Cycle 103
    Formal Methods 103
    Requirements 103
    Fielding 104
    Insertions and Upgrades 104
    Disposal and Reuse 104
    Testing 105
    Validation and Acceptance Testing 107
    Regression 107
    Unit Testing 107
    Development Approaches 109
    SecDevOps 109
   Agile 109
    Spiral 111
    Security Implications of Agile Software Development 112
    Security Implications of the Waterfall Model 113
    Security Implications of the Spiral Model 114
    Versioning 114
    Continuous Integration/Continuous Delivery (CI/CD) Pipelines 116
    Best Practices 117
    Open Web Application Security Project (OWASP) 117
    Proper Hypertext Transfer Protocol (HTTP) Headers 117
Exam Preparation Tasks 119
Review All Key Topics 119
Define Key Terms 120
Complete Tables and Lists from Memory 121
Review Questions 121
Securing the Enterprise Architecture by Implementing Data Security
Techniques 125
Data Loss Prevention 125
    Blocking Use of External Media 125
    Print Blocking 126
    Remote Desktop Protocol (RDP) Blocking 126
```

```
Clipboard Privacy Controls 127
   Restricted Virtual Desktop Infrastructure (VDI) Implementation 128
   Data Classification Blocking 128
Data Loss Detection 129
   Watermarking 129
   Digital Rights Management (DRM) 129
   Network Traffic Decryption/Deep Packet Inspection 130
   Network Traffic Analysis 130
Data Classification, Labeling, and Tagging 130
   Metadata/Attributes 130
   XACML 130
   LDAP 131
Obfuscation 131
   Tokenization 131
   Scrubbing 131
   Masking 132
Anonymization 132
Encrypted vs. Unencrypted 132
Data Life Cycle 132
   Create 132
   Use 133
   Share 133
   Store 133
   Archive or Destroy 133
Data Inventory and Mapping 133
Data Integrity Management 134
Data Storage, Backup, and Recovery 134
   Redundant Array of Inexpensive Disks (RAID) 138
Exam Preparation Tasks 143
Review All Key Topics 143
Define Key Terms 144
Complete Tables and Lists from Memory 144
Review Questions 144
```

Chapter 5 Providing the Appropriate Authentication and Authorization Controls 149

Credential Management 149

Password Repository Application 149

End-User Password Storage 149

On Premises vs. Cloud Repository 150

Hardware Key Manager 150

Privileged Access Management 151

Privilege Escalation 151

Password Policies 151

Complexity 153

Length 153

Character Classes 153

History 154

Maximum/Minimum Age 154

Auditing 155

Reversable Encryption 156

Federation 156

Transitive Trust 156

OpenID 156

Security Assertion Markup Language (SAML) 157

Shibboleth 158

Access Control 159

Mandatory Access Control (MAC) 160

Discretionary Access Control (DAC) 160

Role-Based Access Control 161

Rule-Based Access Control 161

Attribute-Based Access Control 161

Protocols 162

Remote Authentication Dial-in User Service (RADIUS) 162

Terminal Access Controller Access Control System (TACACS) 163

Diameter 164

Lightweight Directory Access Protocol (LDAP) 164

```
Kerberos 165
                 OAuth 166
                 802.1X 166
                 Extensible Authentication Protocol (EAP) 167
             Multifactor Authentication (MFA) 168
                 Knowledge Factors 169
                 Ownership Factors 169
                 Characteristic Factors 170
                 Physiological Characteristics 170
                 Behavioral Characteristics 171
                 Biometric Considerations 172
                 2-Step Verification 173
                 In-Band 174
                 Out-of-Band 174
             One-Time Password (OTP) 175
                 HMAC-Based One-Time Password (HOTP) 175
                 Time-Based One-Time Password (TOTP) 175
             Hardware Root of Trust 176
             Single Sign-On (SSO) 177
            JavaScript Object Notation (JSON) Web Token (JWT) 178
             Attestation and Identity Proofing 179
             Exam Preparation Tasks 180
             Review All Key Topics 180
             Define Key Terms 181
             Review Questions 181
Chapter 6
             Implementing Secure Cloud and Virtualization Solutions 185
             Virtualization Strategies 185
                 Type 1 vs. Type 2 Hypervisors 186
                 Type 1 Hypervisor 186
                 Type 2 Hypervisor 187
                 Containers 187
                 Emulation 188
                 Application Virtualization 189
                 VDI 189
```

```
Provisioning and Deprovisioning 189
Middleware 190
Metadata and Tags 190
Deployment Models and Considerations 190
    Business Directives 191
    Cost 191
    Scalability 191
    Resources 191
    Location 191
    Data Protection
                  192
    Cloud Deployment Models 192
    Private 193
    Public 193
    Hybrid 193
    Community 193
Hosting Models 193
    Multitenant 193
    Single-Tenant 194
Service Models 194
    Software as a Service (SaaS) 194
    Platform as a Service (PaaS) 194
    Infrastructure as a Service (IaaS) 195
Cloud Provider Limitations 196
    Internet Protocol (IP) Address Scheme 196
    VPC Peering 196
Extending Appropriate On-premises Controls 196
Storage Models 196
    Object Storage/File-Based Storage 197
    Database Storage 197
    Block Storage 198
```

Blob Storage 198 Key-Value Pairs 198 Exam Preparation Tasks 199

Review All Key Topics 199

Define Key Terms 199

Complete Tables and Lists from Memory 200

Review Questions 200

Chapter 7 Supporting Security Objectives and Requirements with Cryptography and Public Key Infrastructure (PKI) 203

Privacy and Confidentiality Requirements 203

Integrity Requirements 204

Non-repudiation 204

Compliance and Policy Requirements 204

Common Cryptography Use Cases 205

Data at Rest 205

Data in Transit 205

Data in Process/Data in Use 205

Protection of Web Services 206

Embedded Systems 206

Key Escrow/Management 207

Mobile Security 209

Elliptic Curve Cryptography 209

P256 vs. P384 vs. P512 209

Secure Authentication 209

Smart Card 209

Common PKI Use Cases 210

Web Services 210

Email 210

GNU Privacy Guard (GPG) 211

Code Signing 211

Federation 211

Trust Models 212

VPN 212

SSL/TLS 212

Other Tunneling Protocols 213

Enterprise and Security Automation/Orchestration 213

Exam Preparation Tasks 214

Review All Key Topics 214

Define Key Terms 214

Complete Tables and Lists from Memory 214

Review Questions 215

Chapter 8 Managing the Impact of Emerging Technologies on Enterprise Security and Privacy 219

Artificial Intelligence 219

Machine Learning 220

Quantum Computing 220

Blockchain 220

Homomorphic Encryption 221

Secure Multiparty Computation 221

Private Information Retrieval 221

Secure Function Evaluation 221

Private Function Evaluation 221

Distributed Consensus 221

Big Data 222

Virtual/Augmented Reality 223

3-D Printing 224

Passwordless Authentication 224

Nano Technology 225

Deep Learning 225

Natural Language Processing 225

Deep Fakes 226

Biometric Impersonation 226

Exam Preparation Tasks 227

Review All Key Topics 227

Define Key Terms 227

Complete Tables and Lists from Memory 227

Part II: Security Operations

Chapter 9 Performing Threat Management Activities 231

Intelligence Types 231 Tactical 231 Commodity Malware 231 Strategic 232 Targeted Attacks 232 Operational 232 Threat Hunting 232 Threat Emulation 233 Actor Types 233 Advanced Persistent Threat (APT)/Nation-State 233 Insider Threat 234 Competitor 234 Hacktivist 234 Script Kiddie 235 Organized Crime 235 Threat Actor Properties 235 Resource 235 Time 235 Money 235 Supply Chain Access 235 Create Vulnerabilities 236 Capabilities/Sophistication 236 Identifying Techniques 237 Intelligence Collection Methods 237 Intelligence Feeds 237 Deep Web 237 Proprietary 238 Open-Source Intelligence (OSINT) 238 Social Media 238 Intelligence Collection Methods 239 Routing Tables 239 DNS Records 239

Search Engines 242

Human Intelligence (HUMINT) 243

Frameworks 243

MITRE Adversarial Tactics, Techniques, & Common Knowledge (ATT&CK) 243

ATT&CK for Industrial Control System (ICS) 245

Diamond Model of Intrusion Analysis 245

Cyber Kill Chain 246

Exam Preparation Tasks 246

Review All Key Topics 246

Define Key Terms 247

Complete Tables and Lists from Memory 247

Review Questions 248

Chapter 10 Analyzing Indicators of Compromise and Formulating an Appropriate Response 251

Indicators of Compromise 251

Packet Capture (PCAP) 251

Protocol Analyzers 252

tshark 252

Logs 252

Network Logs 253

Vulnerability Logs 254

Operating System Logs 254

Access Logs 255

NetFlow Logs 256

Notifications 256

FIM Alerts 257

SIEM Alerts 257

DLP Alerts 257

IDS/IPS Alerts 258

Antivirus Alerts 259

Notification Severity/Priorities 260

Syslog 261

Unusual Process Activity 263

```
Response 265
    Firewall Rules 265
    IPS/IDS Rules 267
    ACL Rules 267
    Signature Rules 267
    Behavior Rules 268
    DLP Rules 268
    Scripts/Regular Expressions 268
Exam Preparation Tasks 268
Review All Key Topics 269
Define Key Terms 269
Complete Tables and Lists from Memory 270
Review Ouestions 270
Performing Vulnerability Management Activities 275
Vulnerability Scans 275
    Credentialed vs. Non-credentialed 275
    Agent-Based/Server-Based 276
    Criticality Ranking 277
    Active vs. Passive 278
Security Content Automation Protocol (SCAP) 278
    Extensible Configuration Checklist Description Format (XCCDF) 278
    Open Vulnerability and Assessment Language (OVAL) 279
    Common Platform Enumeration (CPE) 279
    Common Vulnerabilities and Exposures (CVE) 279
    Common Vulnerability Scoring System (CVSS) 279
    Common Configuration Enumeration (CCE) 282
    Asset Reporting Format (ARF) 282
Self-assessment vs. Third-Party Vendor Assessment 283
Patch Management 283
    Manual Patch Management 284
    Automated Patch Management 284
Information Sources 284
    Advisories 285
```

Chapter 11

Bulletins 286

Vendor Websites 287

Information Sharing and Analysis Centers (ISACs) 287

News Reports 287

Exam Preparation Tasks 287

Review All Key Topics 287

Define Key Terms 288

Complete Tables and Lists from Memory 288

Review Questions 288

Chapter 12 Using the Appropriate Vulnerability Assessment and Penetration Testing Methods and Tools 293

Methods 293

Static Analysis/Dynamic Analysis 293

Side-Channel Analysis 293

Reverse Engineering 294

Software 294

Hardware 294

Wireless Vulnerability Scan 295

Rogue Access Points 295

Software Composition Analysis 296

Fuzz Testing 296

Pivoting 297

Post-exploitation 297

Persistence 298

Tools 298

SCAP Scanner 298

Network Traffic Analyzer 299

Vulnerability Scanner 300

Protocol Analyzer 302

Port Scanner 302

HTTP Interceptor 304

Exploit Framework 304

Password Cracker 306

Dependency Management 307

Requirements 308

Scope of Work 308

Rules of Engagement 308

Invasive vs. Non-invasive 308

Asset Inventory 308

Permissions and Access 309

Corporate Policy Considerations 310

Facility Considerations 310

Physical Security Considerations 310

Rescan for Corrections/Changes 310

Exam Preparation Tasks 310

Review All Key Topics 310

Define Key Terms 311

Complete Tables and Lists from Memory 312

Review Ouestions 312

Chapter 13 Analyzing Vulnerabilities and Recommending Risk Mitigations 315

Vulnerabilities 315

Race Conditions 315

Overflows 315

Buffer 316

Integer 318

Broken Authentication 318

Unsecure References 319

Poor Exception Handling 319

Security Misconfiguration 319

Improper Headers 320

Information Disclosure 321

Certificate Errors 321

Weak Cryptography Implementations 321

Weak Ciphers 322

Weak Cipher Suite Implementations 322

Software Composition Analysis 322

Use of Vulnerable Frameworks and Software Modules 323

Use of Unsafe Functions 323

Third-Party Libraries 323

Dependencies 324 Code Injections/Malicious Changes 324 End of Support/End of Life 324 Regression Issues 324 Inherently Vulnerable System/Application 325 Client-Side Processing vs. Server-Side Processing 325 JSON/Representational State Transfer (REST) 326 Browser Extensions 326 Flash 327 ActiveX 327 Hypertext Markup Language 5 (HTML5) 327 Asynchronous JavaScript and XML (AJAX) 327 Simple Object Access Protocol (SOAP) 329 Machine Code vs. Bytecode or Interpreted vs. Emulated 329 Attacks 329 Directory Traversal 330 Cross-site Scripting (XSS) 331 Cross-site Request Forgery (CSRF) 331 Injection 332 XML 332 LDAP 335 Structured Query Language (SQL) 335 Command 337 Process 337 Sandbox Escape 337 Virtual Machine (VM) Hopping 337 VM Escape 337 Border Gateway Protocol (BGP) Route Hijacking 338 Interception Attacks 339 Denial-of-Service (DoS)/DDoS 339 SYN Flood 339 Teardrop Attack 340

Authentication Bypass 340

Social Engineering 340 Phishing/Pharming 340 Shoulder Surfing 341 Identity Theft 341 Dumpster Diving 341 VLAN Hopping 341 Exam Preparation Tasks 341 Review All Key Topics 341 Define Key Terms 342 Complete Tables and Lists from Memory 343 Review Questions 343 Using Processes to Reduce Risk 347 Proactive and Detection 347 Hunts 347 Developing Countermeasures 347 Deceptive Technologies 347 Honeynet/Honeypot 348 Decoy Files 348 Simulators 348 Dynamic Network Configurations 348 Security Data Analytics 348 Processing Pipelines 349 Data 349 Stream 349 Indexing and Search 350 Log Collection and Curation 350 Database Activity Monitoring 350 Preventive 351 Antivirus 352 Immutable Systems 352 Hardening 352 Sandbox Detonation 352 Application Control 353 License Technologies 353

Allow List vs. Block List 354

Chapter 14

Time of Check vs. Time of Use 354 Atomic Execution 355 Security Automation 355 Cron/Scheduled Tasks 355 Bash 356 PowerShell 357 Python 357 Physical Security 358 Review of Lighting 358 Types of Lighting Systems 358 Types of Lighting 359 Review of Visitor Logs 359 Camera Reviews 359 Open Spaces vs. Confined Spaces 361 Natural Access Control 361 Natural Surveillance 361 Natural Territorial Reinforcement 361 Exam Preparation Tasks 362 Review All Key Topics 362 Define Key Terms 362 Complete Tables and Lists from Memory 363 Review Questions 363 Chapter 15 Implementing the Appropriate Incident Response 367 Event Classifications 367 False Positive 367 False Negative 367 True Positive 367 True Negative 367 Triage Event 367 Preescalation Tasks 368 Incident Response Process 368 Preparation 369 Training 369

Testing 370

```
Analysis 371
                Containment 371
                Minimize 371
                Isolate 371
                Recovery 371
                Response 372
                Lessons Learned 372
            Specific Response Playbooks/Processes 373
                Scenarios 373
                Ransomware 373
                Data Exfiltration 373
                Social Engineering 374
                Non-automated Response Methods 374
                Automated Response Methods 374
                Runbooks 374
                SOAR 375
            Communication Plan 375
            Stakeholder Management 377
                Legal 377
                Human Resources 377
                Public Relations 378
                Internal and External 378
                Law Enforcement 378
                Senior Leadership
                                379
                Regulatory Bodies 379
            Exam Preparation Tasks 379
            Review All Key Topics 379
            Define Key Terms 380
            Review Questions 380
Chapter 16
           Forensic Concepts 385
            Legal vs. Internal Corporate Purposes 385
            Forensic Process 385
                Identification 385
                Evidence Collection 385
```

Detection 370

Chain of Custody 385

Order of Volatility 386

Memory Snapshots 387

Images 388

Cloning 388

Evidence Preservation 388

Secure Storage 389

Backups 389

Analysis 389

Media Analysis 389

Software Analysis 390

Network Analysis 390

Hardware/Embedded Device Analysis 391

Forensics Tools 391

Verification 391

Presentation 391

Integrity Preservation 392

Hashing 392

Cryptanalysis 394

Steganalysis 394

Exam Preparation Tasks 394

Review All Key Topics 394

Define Key Terms 395

Complete Tables and Lists from Memory 395

Review Questions 395

Chapter 17 Forensic Analysis Tools 399

File Carving Tools 399

Foremost 399

Strings 400

Binary Analysis Tools 401

Hex Dump 401

Binwalk 401

Ghidra 401

GNU Project Debugger (GDB) 401

XXIX

```
OllyDbg 402
    readelf 402
    objdump 402
    strace 402
    ldd 402
    file 403
Analysis Tools 403
    ExifTool 403
    Nmap 403
    Aircrack-ng 403
    Volatility 404
    The Sleuth Kit 405
   Dynamically vs. Statically Linked 405
Imaging Tools 405
    Forensic Toolkit (FTK) Imager 405
    dd 406
Hashing Utilities 407
    sha256sum 407
    ssdeep 407
Live Collection vs. Post-mortem Tools 407
    netstat 407
    ps 409
    vmstat 409
    ldd 410
    lsof 410
    netcat 410
    tcpdump 411
    conntrack 411
    Wireshark 412
Exam Preparation Tasks 413
Review All Key Topics 413
Define Key Terms 414
Complete Tables and Lists from Memory 414
Review Questions 414
```

Part III: Security Engineering and Cryptography

Chapter 18 Applying Secure Configurations to Enterprise Mobility 419

Managed Configurations 419

Application Control 419

Password 419

MFA Requirements 420

Facial 421

Fingerprint 421

Iris Scan 421

Token-Based Access 421

Patch Repository 422

Firmware Over-the-Air 422

Remote Wipe 422

Wi-Fi 423

Wi-Fi Protected Access (WPA2/3) 423

Device Certificates 423

Profiles 424

Bluetooth 424

Near-Field Communication (NFC) 424

Peripherals 425

Geofencing 425

VPN Settings 425

Geotagging 426

Certificate Management 426

Full Device Encryption 427

Tethering 427

Airplane Mode 427

Location Services 427

DNS over HTTPS (DoH) 428

Custom DNS 428

Deployment Scenarios 429

Bring Your Own Device (BYOD) 429

Corporate-Owned 429

Corporate-Owned, Personally Enabled (COPE) 429

Choose Your Own Device (CYOD) 429

Implications of Wearable Devices 429 Unauthorized Remote Activation/Deactivation of Devices or Features 430 Encrypted and Unencrypted Communication Concerns 430 Physical Reconnaissance 430 Personal Data Theft 430 Health Privacy 430 Digital Forensics on Collected Data 430 Unauthorized Application Stores 431 Jailbreaking/Rooting 431 Side Loading 431 Containerization 432 Original Equipment Manufacturer (OEM) and Carrier Differences 432 Supply Chain Issues 432 eFuse 432 Exam Preparation Tasks 433 Review All Key Topics 433 Define Key Terms 433 Complete Tables and Lists from Memory 433 Review Questions 433 Configuring and Implementing Endpoint Security Controls 437 Hardening Techniques 437 Removing Unneeded Services 437 Disabling Unused Accounts 438 Images/Templates 438 Removing End-of-Life Devices 438 Removing End-of-Support Device 438 Local Drive Encryption 439 Enabling No-Execute (NX)/Execute Never (XN) Bit 439 Disabling Central Processing Unit (CPU) Virtualization Support 439 Secure Encrypted Enclaves 440 Memory Encryption 440 Shell Restrictions 441 Address Space Layout Randomization (ASLR) 442 Processes 442

Chapter 19

Patching 442

```
Firmware 442
```

Application 443

Logging 443

Monitoring 443

Mandatory Access Control 444

Security-Enhanced Linux (SELinux)/Security-Enhanced Android (SEAndroid) 444

SELinux 444

SEAndroid 444

Kernel vs. Middleware 445

Trustworthy Computing 445

Trusted Platform Module (TPM) 445

Secure Boot 446

Unified Extensible Firmware Interface (UEFI)/Basic Input/Output System (BIOS) Protection 447

Attestation Services 448

Hardware Security Module (HSM) 448

Measured Boot 449

Self-Encrypting Drives (SEDs) 450

Compensating Controls 450

Antivirus 450

Application Controls 451

Host-Based Intrusion Detection System (HIDS)/Host-Based Intrusion Prevention System (HIPS) 451

Host-Based Firewall 451

Endpoint Detection and Response (EDR) 451

Redundant Hardware 452

Self-Healing Hardware 452

User and Entity Behavior Analytics (UEBA) 452

Exam Preparation Tasks 452

Review All Key Topics 452

Define Key Terms 453

Complete Tables and Lists from Memory 454

Chapter 20 Security Considerations Impacting Specific Sectors and Operational Technologies 459

Embedded 459 Internet of Things (IoT) 459 IoT Examples 460 Methods of Securing IoT Devices 461 System on a Chip (SoC) 461 Application-Specific Integrated Circuit (ASIC) and Field-Programmable Gate Array (FPGA) 461 ICS/Supervisory Control and Data Acquisition (SCADA) 462 Programmable Logic Controller (PLC) 463 Historian 463 Ladder Logic 463 Safety Instrumented System 464 Heating, Ventilation, and Air Conditioning (HVAC) 464 Protocols 465 Controller Area Network (CAN) Bus 465 Modbus 466 Distributed Network Protocol 3 (DNP3) 466 Zigbee 467 Common Industrial Protocol (CIP) 467 Data Distribution Service 468 Sectors 468 Energy 469 Manufacturing 469 Healthcare 470 Public Utilities 470 Public Services 470 Facility Services 471 Exam Preparation Tasks 472 Review All Key Topics 472 Define Key Terms 472

Complete Tables and Lists from Memory 473

Chapter 21 Cloud Technology's Impact on Organizational Security 477

Automation and Orchestration 477

Encryption Configuration 477

Logs 478

Availability 479

Collection 479

Monitoring 479

Configuration 480

Alerting 480

Monitoring Configurations 480

Key Ownership and Location 481

Key Life-Cycle Management 483

Backup and Recovery Methods 485

Cloud as Business Continuity and Disaster Recovery (BCDR) 486

Primary Provider BCDR 486

Alternative Provider BCDR 486

Infrastructure vs. Serverless Computing 486

Application Virtualization 487

Software-Defined Networking 488

Misconfigurations 488

Collaboration Tools 488

Web Conferencing 488

Video Conferencing 489

Audio Conferencing 491

Storage and Document Collaboration Tools 491

Storage Configurations 492

Bit Splitting 493

Data Dispersion 493

Cloud Access Security Broker (CASB) 493

Exam Preparation Tasks 494

Review All Key Topics 494

Define Key Terms 495

Chapter 22 Implementing the Appropriate PKI Solution 499

PKI Hierarchy 499

Registration Authority (RA) 499

Certificate Authority (CA) 499

Subordinate/Intermediate CA 500

Certificate Types 501

Wildcard Certificate 501

Extended Validation 502

Multidomain 502

General Purpose 503

Certificate Usages/Profiles/Templates 504

Client Authentication 504

Server Authentication 504

Digital Signatures 504

Code Signing 505

Extensions 505

Common Name (CN) 505

Subject Alternate Name (SAN) 505

Trusted Providers 505

Trust Model 506

Cross-certification 506

Configure Profiles 507

Life-Cycle Management 507

Public and Private Keys 508

Digital Signature 512

Certificate Pinning 512

Certificate Stapling 512

Certificate Signing Requests (CSRs) 513

Online Certificate Status Protocol (OCSP) vs. Certificate Revocation List (CRL) 513

HTTP Strict Transport Security (HSTS) 514

Exam Preparation Tasks 514

Review All Key Topics 514

Define Key Terms 515

Chapter 23 Implementing the Appropriate Cryptographic Protocols and Algorithms 519

Hashing 519 Secure Hashing Algorithm (SHA) 519 Hash-Based Message Authentication Code (HMAC) 520 Message Digest (MD) 521 RACE Integrity Primitives Evaluation Message Digest (RIPEMD) 521 Poly1305 521 Symmetric Algorithms 522 Modes of Operation 523 Electronic Codebook (ECB) 523 Cipher Block Chaining (CBC) 524 Output Feedback (OFB) 524 Counter (CTR) 525 Galois/Counter Mode (GCM) 525 Stream and Block 526 Advanced Encryption Standard (AES) 527 Triple Digital Encryption Standard (3DES) 528 ChaCha/Salsa20 528 Asymmetric Algorithms 528 Key Agreement 529 Diffie-Hellman 529 Elliptic-Curve Diffie-Hellman (ECDH) 530 Signing 530 Digital Signature Algorithm (DSA) Rivest, Shamir, and Adleman (RSA) 530 Elliptic-Curve Digital Signature Algorithm (ECDSA) 531 Known Flaws/Weaknesses 531 Protocols 532 Secure Sockets Layer (SSL)/Transport Layer Security (TLS) 532 Secure/Multipurpose Internet Mail Extensions (S/MIME) 533 Internet Protocol Security (IPsec) 534 Secure Shell (SSH) 534 EAP 535

```
Elliptic-Curve Cryptography 535
                P256/P384 535
            Forward Secrecy 536
            Authenticated Encryption with Associated Data 536
            Key Stretching 536
                Password-Based Key Derivation Function 2 (PBKDF2) 537
                Berypt 537
            Exam Preparation Tasks 537
            Review All Key Topics 537
            Define Key Terms 538
            Complete Tables and Lists from Memory 538
            Implementation and Configuration Issues 542
                Validity Dates 542
Chapter 24
            Troubleshooting Issues with Cryptographic Implementations 543
                Wrong Certificate Type 543
                Revoked Certificates 543
                Incorrect Name 543
                Chain Issues 544
                Invalid Root or Intermediate CAs 544
                Self-signed 544
                Weak Signing Algorithm 545
                Weak Cipher Suite 545
                Incorrect Permissions 546
                Cipher Mismatches 546
                Downgrade 546
            Keys 546
                Mismatched 547
                Improper Key Handling 547
                Embedded Keys 548
                Rekeying 548
                Exposed Private Keys 548
                Crypto Shredding 548
                Cryptographic Obfuscation 548
```

Key Rotation 549

Compromised Keys 549

Exam Preparation Tasks 549

Review All Key Topics 549

Define Key Terms 550

Complete Tables and Lists from Memory 550

Review Questions 550

Part IV: Governance, Risk, and Compliance

Chapter 25 Applying Appropriate Risk Strategies 555

Risk Assessment 555

Likelihood 556

Impact 556

Qualitative vs. Quantitative 557

Qualitative Risk Analysis 557

Quantitative Risk Analysis 558

Exposure Factor 558

Asset Value 558

Total Cost of Ownership (TCO) 559

Return on Investment (ROI) 560

Payback 561

Net Present Value (NPV) 562

Mean Time to Recovery (MTTR) 562

Mean Time Between Failure (MTBF) 562

Annualized Loss Expectancy (ALE)/Annualized Rate of Occurrence (ARO)/Single Loss Expectancy (SLE) 562

ALE 563

ARO 563

SLE 563

Gap Analysis 564

Risk Handling Techniques 565

Transfer 565

Accept 565

Avoid 566

Mitigate 566

```
Risk Types 566
    Inherent 567
    Residual 567
    Exceptions 567
Risk Management Life Cycle 568
    Identify 569
    Assess 570
    Control 570
    People 572
    Process 572
    Technology 572
    Control Types 572
    Protect 572
    Detect 572
    Respond 572
    Restore 573
    Review 573
    Frameworks 573
    NIST 574
    Open Source Security Testing Methodology Manual (OSSTMM) 588
    COSO's Enterprise Risk Management (ERM) Integrated Framework 588
    Risk Management Standard by the Federation of European Risk Management
     Associations (FERMA) 589
Risk Tracking 590
    Risk Register 590
    Key Performance Indicators/Key Risk Indicators 591
    KPIs
         592
    KRIs 594
Risk Appetite vs. Risk Tolerance 594
    Tradeoff Analysis 595
    Usability vs. Security Requirements 595
Policies and Security Practices 595
    Separation of Duties
    Job Rotation 596
```

Mandatory Vacation 596

Least Privilege 597

Employment and Termination Procedures 598

Training and Awareness for Users 599

Auditing Requirements and Frequency 601

Exam Preparation Tasks 601

Review All Key Topics 601

Define Key Terms 603

Complete Tables and Lists from Memory 603

Review Questions 603

Chapter 26 Managing and Mitigating Vendor Risk 607

Shared Responsibility Model (Roles/Responsibilities) 607

Cloud Service Provider (CSP) 607

Geographic Location 608

Infrastructure 608

Compute/Storage/Networking 608

Services 608

Client 609

Encryption 609

Operating Systems 609

Applications 609

Data 609

Vendor Lock-in and Vendor Lock-out 610

Vendor Viability 610

Financial Risk 610

Merger or Acquisition Risk 610

Meeting Client Requirements 610

Legal 610

Change Management 611

Staff Turnover 612

Device and Technical Configurations 612

ACLs 612

Creating Rule Sets 613

Change Monitoring 614

Configuration Lockdown 614

Support Availability 615

Geographical Consideration 615

Supply Chain Visibility 615

Incident Reporting Requirements 616

Source Code Escrows 616

Ongoing Vendor Assessment Tools 616

Third-Party Dependencies 616

Code 617

Hardware 617

Modules 618

Technical Considerations 618

Technical Testing 618

Network Segmentation 618

Transmission Control 618

Shared Credentials 619

Exam Preparation Tasks 620

Review All Key Topics 620

Define Key Terms 620

Complete Tables and Lists from Memory 621

Review Questions 621

Chapter 27 The Organizational Impact of Compliance Frameworks and Legal Considerations 625

Security Concerns of Integrating Diverse Industries 625

Rules 625

Policies 626

Regulations 626

Data Considerations 626

Data Sovereignty 626

Data Ownership 627

Data Classifications 627

Commercial Business Classifications 628

Military and Government Classifications 628

Data Retention 629

Data Types 629

Health/Financial 630

Intellectual Property 630

Personally Identifiable Information (PII) 633

Data Removal, Destruction, and Sanitization 634

Geographic Considerations 635

Location of Data 636

Location of Data Subject 636

Location of Cloud Provider 637

Third-Party Attestation of Compliance 637

Regulations, Accreditations, and Standards 637

Open Standards 638

Adherence to Standards 638

Competing Standards 639

Lack of Standards 639

De Facto Standards 639

Payment Card Industry Data Security Standard (PCI DSS) 639

General Data Protection Regulation (GDPR) 640

International Organization for Standardization (ISO) 641

Capability Maturity Model Integration (CMMI) 643

National Institute of Standards and Technology (NIST) 644

Children's Online Privacy Protection Act (COPPA) 644

Common Criteria 644

Cloud Security Alliance (CSA) Security Trust Assurance and Risk (STAR) 646

Legal Considerations 646

Due Diligence/Due Care 646

Export Controls 647

Legal Holds 648

E-Discovery 648

Contract and Agreement Types 648

Service-Level Agreement (SLA) 649

Master Service Agreement (MSA) 649

Non-disclosure Agreement (NDA) 650

Memorandum of Understanding (MOU) 650

Interconnection Security Agreement (ISA) 650

Operational-Level Agreement 651

Privacy-Level Agreement 651

Exam Preparation Tasks 651

Review All Key Topics 651

Define Key Terms 652

Complete Tables and Lists from Memory 653

Business Impact Analysis 656

Chapter 28 Business Continuity and Disaster Recovery Concepts 657

Develop Contingency Planning Policy 658

Conduct the BIA 658

Identify Critical Processes and Resources 659

Recovery Time Objective 659

Recovery Point Objective 659

Recovery Service Level 659

Mission Essential Functions 659

Privacy Impact Assessment 660

Disaster Recovery Plan (DRP)/Business Continuity Plan (BCP) 660

Personnel Components 661

Project Scope 661

Business Continuity Steps 662

Recovery and Multiple Site Strategies 662

Cold Site 663

Warm Site 663

Hot Site 663

Mobile Site 664

Incident Response Plan 664

Roles/Responsibilities 665

After-Action Reports 666

Testing Plans 666

Checklist 666

Walk-through 666

Tabletop Exercises 666

Full Interruption Test 667

Parallel Test/Simulation Test 667

Exam Preparation Tasks 667

Review All Key Topics 667

Define Key Terms 668

Complete Tables and Lists from Memory 668

Tools for Final Preparation 672

Pearson Test Prep Practice Test Software and Questions on the Website 672

Chapter 29 Final Preparation 673

Accessing the Pearson Test Prep Software Online 673

Accessing the Pearson Test Prep Practice Test Software Offline 673

Customizing Your Exams 674

Updating Your Exams 675

Premium Edition 676

Chapter-Ending Review Tools 676

Suggested Plan for Final Review/Study 676

Summary 677

Appendix A Answers to the Review Questions 679

Glossary 709

Index 761

Online Elements

Appendix B Memory Tables

Appendix C Memory Tables Answer Key

Appendix D Study Planner

Glossary

About the Author

Troy McMillan, CASP, is a product developer and technical editor for CyberVista as well as a full-time trainer. He became a professional trainer more than 20 years ago, teaching Cisco, Microsoft, CompTIA, and wireless classes. His recent work includes

- Author of CompTIA CySA+ CS0-002 Cert Guide (Pearson IT Certification)
- Author of *CompTIA A+ Complete Review Guide* (Sybex)
- Author of *CompTIA Server* + *Study Guide* (Sybex)
- Contributing subject matter expert for CCNA Cisco Certified Network Associate Certification Exam Preparation Guide (Kaplan)
- Prep test question writer for *Network+ Study Guide* (Sybex)
- Technical editor for *Windows 7 Study Guide* (Sybex)
- Contributing author for CCNA-Wireless Study Guide (Sybex)
- Technical editor for CCNA Study Guide, Revision 7 (Sybex)
- Author of VCP VMware Certified Professional on vSphere 4 Review Guide: Exam VCP-410 and associated instructional materials (Sybex)
- Author of *Cisco Essentials* (Sybex)
- Co-author of CISSP Cert Guide (Pearson IT Certification)
- Prep test question writer for CCNA Wireless 640-722 (Cisco Press)

He also has appeared in the following training videos for OnCourse Learning: Security+; Network+; Microsoft 70-410, 411, and 412 exam prep; ICND 1; ICND 2; and Cloud+.

He now creates certification practice tests and study guides and online courses for Cybervista. Troy lives in Asheville, North Carolina, with his wife, Heike.

Dedication

I dedicate this book to my wife. I love you, honey!	
	—Troy

Acknowledgments

I'd like to thank Robin Abernathy, my coauthor on the previous edition of the book. I must also thank my coworkers at CyberVista, who have helped me to grow over the past 15 years. Thank you, Ann, George, John, Josh, and Shahara. I also must as always thank my beautiful wife, who has supported me through the lean years and continues to do so. Finally, I have to acknowledge all the help and guidance from the Pearson team.

—Troy McMillan

About the Technical Reviewer

Chris Crayton is a technical consultant, trainer, author, and industry-leading technical editor. He has worked as a computer technology and networking instructor, information security director, network administrator, network engineer, and PC specialist. Chris has authored several print and online books on PC repair, CompTIA A+, CompTIA Security+, and Microsoft Windows. He has also served as technical editor and content contributor on numerous technical titles for several of the leading publishing companies. He holds numerous industry certifications, has been recognized with many professional and teaching awards, and has served as a statelevel SkillsUSA final competition judge. Chris tech edited and contributed to this book to make it better for students and those wishing to better their lives.

We Want to Hear from You!

As the reader of this book, *you* are our most important critic and commentator. We value your opinion and want to know what we're doing right, what we could do better, what areas you'd like to see us publish in, and any other words of wisdom you're willing to pass our way.

We welcome your comments. You can email to let us know what you did or didn't like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book's title and author as well as your name and email address. We will carefully review your comments and share them with the author and editors who worked on the book.

Email: community@informit.com

I

Introduction

The CompTIA Advanced Security Practitioner (CASP+) certification is a popular certification for those in the security field. Although many vendor-specific networking certifications are popular in the industry, the CompTIA CASP+ certification is unique in that it is vendor neutral. The CompTIA CASP+ certification often acts as a stepping-stone to more specialized and vendor-specific certifications, such as those offered by ISC².

In the CompTIA CASP+ exam, the topics are structured so that they can apply to many security devices and technologies, regardless of vendor. Although the CompTIA CASP+ is vendor neutral, devices and technologies are implemented by multiple independent vendors. In that light, several of the examples associated with this book use particular vendors' configurations and technologies. More detailed training regarding a specific vendor's software and hardware can be found in books and training specific to that vendor.

Goals and Methods

The goal of this book is to assist you in learning and understanding the technologies covered in the CASP+ CAS-004 blueprint from CompTIA and help prepare you to pass the CAS-004 version of the CompTIA CASP+ exam.

To aid you in mastering and understanding the CASP + certification objectives, this book provides the following tools:

- Opening topics list: This list defines the topics that are covered in the chapter.
- **Key Topics icons:** These icons indicate important figures, tables, and lists of information that you need to know for the exam. They are sprinkled throughout each chapter and are summarized in table format at the end of each chapter.
- **Memory tables:** These can be found on the companion website and in Appendix B, "Memory Tables," and Appendix C, "Memory Tables Answer Key."

 Use them to help memorize important information.
- **Key terms:** Key terms without definitions are listed at the end of each chapter. Write down the definition of each term and check your work against the Glossary.

For current information about the CompTIA CASP+ certification exam, visit https://www.comptia.org/certifications/comptia-advanced-security-practitioner

Who Should Read This Book?

This book is for readers who want to acquire additional certifications beyond the CASP+ certification (for example, the CISSP certification and beyond). The book is designed in such a way to offer easy transition to future certification studies.

Strategies for Exam Preparation

Read the chapters in this book, jotting down notes with key concepts or configurations on a separate notepad.

Download the current list of exam objectives by submitting a form at https://www.comptia.org/training/resources/exam-objectives

Use the practice exams, available through Pearson Test Prep. As you work through the practice exams, note the areas where you lack confidence and review those concepts. After you review these areas, work through the practice exam a second time and rate your skills.

After you work through a practice exam a second time and feel confident with your skills, schedule the real CompTIA CASP+ exam (CAS-004). The following website provides information about registering for the exam: www.pearsonvue.com/comptia/.

CompTIA CASP+ Exam Topics

Table 1 lists general exam topics (*objectives*) and specific topics under each general topic (*subobjectives*) for the CompTIA CASP+ CAS-004 exam. This table lists the primary chapter in which each exam topic is covered. Note that many objectives and subobjectives are interrelated and are addressed in multiple chapters.

	Table 1	CompTIA	CASP+	Exam	Topics
--	---------	---------	-------	------	--------

Chapter	CAS-004 Exam Objective	CAS-004 Exam Subobjective
1 Ensuring a Secure Network Architecture	1.1 Given a scenario, analyze the security requirements and objectives to ensure an appropriate, secure network architecture for a new or existing network.	 Services Segmentation De-perimeterization/zero trust Merging of networks from various organizations Software-defined networking (SDN)

Chapter	CAS-004 Exam Objective	CAS-004 Exam Subobjective
Determining the Proper Infrastructure Security Design	1.2 Given a scenario, analyze the organizational requirements to determine the proper infrastructure security design.	 Scalability Resiliency Automation Performance Containerization Virtualization Content delivery network Caching
Securely Integrating Software Applications	1.3 Given a scenario, integrate software applications securely into an enterprise architecture.	 Baseline and templates Software assurance Considerations of integrating enterprise applications Integrating security into development life cycle
Securing the Enterprise Architecture by Implementing Data Security Techniques	1.4 Given a scenario, implement data security techniques for securing enterprise architecture.	 Data loss prevention Data loss detection Data classification, labeling, and tagging Obfuscation Anonymization Encrypted vs. unencrypted Data life cycle Data inventory and mapping Data integrity management Data storage, backup, and recovery
Providing the Appropriate Authentication and Authorization Controls	1.5 Given a scenario, analyze the security requirements and objectives to provide the appropriate authentication and authorization controls.	 Credential management Password policies Federation Access control Protocols Multifactor authentication (MFA) One-time password (OTP) Hardware root of trust Single sign-on (SSO) JavaScript Object Notation (JSON) web token (JWT) Attestation and identity proofing

Chapter	CAS-004 Exam Objective	CAS-004 Exam Subobjective
6 Implementing Secure Cloud and Virtualization Solutions	1.6 Given a set of requirements, implement secure cloud and virtualization solutions.	 Virtualization strategies Provisioning and deprovisioning Middleware Metadata and tags Deployment models and considerations Hosting models Service models Cloud provider limitations Extending appropriate on-premises controls Storage models
Supporting Security Objectives and Requirements with Cryptography and Public Key Infrastructure (PKI)	1.7 Explain how cryptography and public key infrastructure (PKI) support security objectives and requirements.	 Privacy and confidentiality requirements Integrity requirements Non-repudiation Compliance and policy requirements Common cryptography use cases Common PKI use cases
Managing the Impact of Emerging Technologies on Enterprise Security and Privacy	1.8 Explain the impact of emerging technologies on enterprise security and privacy.	 Artificial intelligence Machine learning Quantum computing Blockchain Homomorphic encryption Secure multiparty computation Distributed consensus Big data Virtual/augmented reality 3-D printing Passwordless authentication Nano technology Deep learning Biometric impersonation
9 Performing Threat Management Activities	2.1 Given a scenario, perform threat management activities.	 Intelligence types Actor types Threat actor properties Frameworks

Chapter	CAS-004 Exam Objective	CAS-004 Exam Subobjective
Analyzing Indicators of Compromise and Formulating an Appropriate Response	2.2 Given a scenario, analyze indicators of compromise and formulate an appropriate response.	Indicators of compromiseResponse
Performing Vulnerability Management Activities	2.3 Given a scenario, perform vulnerability management activities.	 Vulnerability scans Security Content Automation Protocol (SCAP) Self-assessment vs. third-party vendor assessment Patch management Information sources
Using the Appropriate Vulnerability Assessment and Penetration Testing Methods and Tools	2.4 Given a scenario, use the appropriate vulnerability assessment and penetration testing methods and tools	 Methods Tools Dependency management Requirements
Analyzing Vulnerabilities and Recommending Risk Mitigations	2.5 Given a scenario, analyze vulnerabilities and recommend risk mitigations.	VulnerabilitiesInherently vulnerable system/ applicationAttacks
14 Using Processes to Reduce Risk	2.6 Given a scenario, use processes to reduce risk.	 Proactive and detection Security data analytics Preventive Application control Security automation Physical security
15 Implementing the Appropriate Incident Response	2.7 Given an incident, implement the appropriate response.	 Event classifications Triage event Preescalation tasks Incident response process Specific response playbooks/processes Communications plan Stakeholder management

Chapter	CAS-004 Exam Objective	CAS-004 Exam Subobjective
16 Forensics Concepts	2.8 Explain the importance of forensic concepts.	 Legal vs. internal corporate purposes Forensic process Integrity preservation Cryptanalysis Steganalysis
17 Forensics Analysis Tools	2.9 Given a scenario, use forensic analysis tools.	 File carving tools Binary analysis tools Analysis tools Imaging tools Hashing utilities Live collection vs. post-mortem tools
Applying Secure Configurations to Enterprise Mobility	3.1 Given a scenario, apply secure configurations to enterprise mobility.	Managed configurationsDeployment scenariosSecurity considerations
Configuring and Implementing Endpoint Security Controls	3.2 Given a scenario, configure and implement endpoint security controls.	 Hardening techniques Processes Mandatory access control Trustworthy computing Compensating controls
Security Considerations Impacting Specific Sectors and Operational Technologies	3.3 Explain security considerations impacting specific sectors and operational technologies.	 Embedded ICS/supervisory control and data acquisition (SCADA) Protocols Sectors

Chapter	CAS-004 Exam Objective	CAS-004 Exam Subobjective
21	3.4 Explain how cloud	■ Automation and orchestration
Cloud	technology adoption impacts	Encryption configuration
Technology's	organizational security.	■ Logs
Impact on		 Monitoring configurations
Organizational		Key ownership and location
Security		Key life-cycle management
		Backup and recovery methods
		■ Infrastructure vs. serverless computing
		 Application virtualization
		 Software-defined networking
		Misconfigurations
		Collaboration tools
		Storage configurations
		■ Cloud access security broker (CASB)
22	3.5 Given a business requirement, implement the appropriate PKI solution.	■ PKI hierarchy
		Certificate types
		 Certificate sages/profiles/templates
		Extensions
		■ Trusted providers
		■ Trust model
		■ Cross-certification
		Configure profiles
		■ Life-cycle management
		Public and private keys
		Digital signature
		Certificate pinning
		Certificate stapling
		Certificate signing requests (CSRs)
		 Online Certificate Status Protocol
		(OCSP) vs. certificate revocation list
		(CRL)
		■ HTTP Strict Transport Security
		(HSTS)

Chapter	CAS-004 Exam Objective	CAS-004 Exam Subobjective
Implementing the Appropriate Cryptographic Protocols and Algorithms	3.6 Given a business requirement, implement the appropriate cryptographic protocols and algorithms	 Hashing Symmetric algorithms Asymmetric algorithms Protocols Elliptic-curve cryptography Forward secrecy Authenticated encryption with associated data Key stretching
Troubleshooting Issues with Cryptographic Implementations	3.7 Given a scenario, troubleshoot issues with cryptographic implementations.	Implementation and configuration issuesKeys
Applying Appropriate Risk Strategies	4.1 Given a set of requirements, apply the appropriate risk strategies.	 Risk assessment Risk handling techniques Risk types Risk management life cycle Risk tracking Risk appetite vs. risk tolerance Policies and security practices
26 Managing and Mitigating Vendor Risk	4.2 Explain the importance of managing and mitigating vendor risk.	 Shared responsibility model (roles/responsibilities) Vendor lock-in and vendor lockout Vendor viability Meeting client requirements Support availability Geographical considerations Supply chain visibility Incident reporting requirements Source code escrows Ongoing vendor assessment tools Third-party dependencies Technical considerations

Chapter	CAS-004 Exam Objective	CAS-004 Exam Subobjective
The Organizational Impact of Compliance Frameworks and Legal Considerations	4.3 Explain compliance frameworks and legal considerations, and their organizational impact	 Security concerns of integrating diverse industries Data considerations Geographic considerations Third-party attestation of compliance Regulations, accreditations, and standards Legal considerations Contract and agreement types
Business Continuity and Disaster Recovery Concepts	4.4 Explain the importance of business continuity and disaster recovery concepts.	 Business impact analysis Privacy impact assessment Disaster recovery plan (DRP)/business continuity plan (BCP) Incident response plan Testing plans

How This Book Is Organized

Although this book could be read cover-to-cover, it is designed to be flexible and allow you to easily move between chapters and sections of chapters to cover just the material that you need more work with. However, if you do intend to read all the chapters, the order in the book is an excellent sequence to use.

In addition to the 28 main chapters, this book includes tools to help you verify that you are prepared to take the exam. The companion website also includes flash cards and memory tables that you can work through to verify your knowledge of the subject matter.

Companion Website

Register this book to get access to the Pearson Test Prep practice test software and other study materials plus additional bonus content. Check this site regularly for new and updated postings written by the author that provide further insight into the more troublesome topics on the exam. Be sure to check the box that you would like to hear from us to receive updates and exclusive discounts on future editions of this product or related products.

To access this companion website, follow these steps:

- Go to www.pearsonITcertification.com/register and log in or create a new account.
- **2.** Enter the ISBN: 9780137348954.
- **3.** Answer the challenge question as proof of purchase.
- **4.** Click the **Access Bonus Content** link in the Registered Products section of your account page, to be taken to the page where your downloadable content is available.

Please note that many of our companion content files can be very large, especially image and video files.

If you are unable to locate the files for this title by following the steps just listed, please visit www.pearsonITcertification.com/contact and select the **Site Problems/Comments** option. Our customer service representatives will assist you.

Pearson Test Prep Practice Test Software

As noted previously, this book comes complete with the Pearson Test Prep practice test software, containing two full exams. These practice tests are available to you either online or as an offline Windows application. To access the practice exams that were developed with this book, please see the instructions in the card inserted in the sleeve in the back of the book. This card includes a unique access code that enables you to activate your exams in the Pearson Test Prep software.

NOTE The cardboard sleeve in the back of this book includes a piece of paper. The paper lists the activation code for the practice exams associated with this book. Do not lose the activation code. On the opposite side of the paper from the activation code is a unique, one-time-use coupon code for the purchase of the Premium Edition eBook and Practice Test.

Accessing the Pearson Test Prep Software Online

The online version of the Pearson Test Prep software can be used on any device with a browser and connectivity to the Internet, including desktop machines, tablets, and smartphones. To start using your practice exams online, simply follow these steps:

- 1. Go to http://www.PearsonTestPrep.com.
- 2. Select Pearson IT Certification as your product group.

- **3.** Enter the email/password for your account. If you don't have an account on PearsonITCertification.com or CiscoPress.com, you need to establish one by going to PearsonITCertification.com/join.
- 4. In the My Products tab, click the Activate New Product button.
- **5.** Enter the access code printed on the insert card in the back of your book to activate your product. The product is now listed in your My Products page.
- **6.** Click the **Exams** button to launch the exam settings screen and start your exam.

Accessing the Pearson Test Prep Software Offline

If you wish to study offline, you can download and install the Windows version of the Pearson Test Prep software. There is a download link for this software on the book's companion website, or you can just enter this link in your browser: http://www.pearsonitcertification.com/content/downloads/pcpt/engine.zip.

To access the book's companion website and the software, simply follow these steps:

- Register your book by going to PearsonITCertification.com/register and entering the ISBN: 9780137348954.
- 2. Respond to the challenge questions.
- 3. Go to your account page and select the Registered Products tab.
- 4. Click the Access Bonus Content link under the product listing.
- **5.** Click the **Install Pearson Test Prep Desktop Version** link under the Practice Exams section of the page to download the software.
- 6. When the software finishes downloading, unzip all the files on your computer.
- **7.** Double-click the application file to start the installation and follow the onscreen instructions to complete the registration.
- **8.** When the installation is complete, launch the application and click **Activate Exam** button on the My Products tab.
- **9.** Click the **Activate a Product** button in the Activate Product Wizard.
- **10.** Enter the unique access code found on the card in the sleeve in the back of your book and click the **Activate** button.

- 11. Click **Next** and then the **Finish** button to download the exam data to your application.
- **12.** You can now start using the practice exams by selecting the product and clicking the **Open Exam** button to open the exam settings screen.

Note that the offline and online versions will sync together, so saved exams and grade results recorded on one version will be available to you on the other as well.

Customizing Your Exams

When you are in the exam settings screen, you can choose to take exams in one of three modes:

- Study Mode
- Practice Exam Mode
- Flash Card Mode

Study Mode allows you to fully customize your exams and review answers as you are taking the exam. This is typically the mode you would use first to assess your knowledge and identify information gaps. Practice Exam Mode locks certain customization options, as it is presenting a realistic exam experience. Use this mode when you are preparing to test your exam readiness. Flash Card Mode strips out the answers and presents you with only the question stem. This mode is great for late stage preparation when you really want to challenge yourself to provide answers without the benefit of seeing multiple choice options. This mode will not provide the detailed score reports that the other two modes will, so it should not be used if you are trying to identify knowledge gaps.

In addition to these three modes, you will be able to select the source of your questions. You can choose to take exams that cover all of the chapters or you can narrow your selection to just a single chapter or the chapters that make up specific parts in the book. All chapters are selected by default. If you want to narrow your focus to individual chapters, simply deselect all the chapters and then select only those on which you wish to focus in the Objectives area.

You can also select the exam banks on which to focus. Each exam bank comes complete with a full exam of questions that cover topics in every chapter. The two exams printed in the book are available to you as well as two additional exams of unique questions. You can have the test engine serve up exams from all four banks or just from one individual bank by selecting the desired banks in the exam bank area.

There are several other customizations you can make to your exam from the exam settings screen, such as the time of the exam, the number of questions served up, whether to randomize questions and answers, whether to show the number of correct answers for multiple answer questions, or whether to serve up only specific types of questions. You can also create custom test banks by selecting only questions that you have marked or questions on which you have added notes.

Updating Your Exams

If you are using the online version of the Pearson Test Prep software, you should always have access to the latest version of the software as well as the exam data. If you are using the Windows desktop version, every time you launch the software, it will check to see if there are any updates to your exam data and automatically download any changes that were made since the last time you used the software. This requires that you are connected to the Internet at the time you launch the software.

Sometimes, due to many factors, the exam data may not fully download when you activate your exam. If you find that figures or exhibits are missing, you may need to manually update your exams.

To update a particular exam you have already activated and downloaded, simply select the **Tools** tab and select the **Update Products** button. Again, this is only an issue with the desktop Windows application.

If you wish to check for updates to the Pearson Test Prep exam engine software, Windows desktop version, simply select the **Tools** tab and select the **Update Application** button. This will ensure you are running the latest version of the software engine.

Premium Edition eBook and Practice Tests

This book also includes an exclusive offer for 80% off the Premium Edition eBook and Practice Tests edition of this title. Please see the coupon code included with the cardboard sleeve for information on how to purchase the Premium Edition.

Credits

Chapter Opener: Charlie Edwards/Getty Images

Figures 1-1-1-8, 1-11, 1-18-1-20, 2-4, 4-2, 4-3, 5-3(a)-5-5, 6-3, 12-3, 12-4, 13-2, 13-3, 13-8, 13-9, 13-11, 13-14, 14-2, 14-4(a), 14-7, 20-2: Cisco Systems, Inc

Figure 1-15: Micro Focus

Figure 3-4: Apple Inc

Figure 3-8: Mozilla Foundation

Figures 3-9, 4-1, 5-2, 9-1, 9-2, 10-1, 10-2, 10-4, 10-5, 10-9-10-11, 14-4(b), 14-5,

15-1, 17-5, 17-6, 19-1, 24-1–24-3: Microsoft

Figure 5-3(b): MyFreeTemplates.com

Figure 8-3: luchschen/123RF

Figure 10-3: Wazuh Inc

Figure 10-6: Comodo Group, Inc

Figure 10-7, 11-1–11-3: Tenable, Inc

Figure 10-8: SolarWinds Worldwide, LLC

Figure 11-6: National Security Agency

Figure 11-7: Philippine National Police

Figures 12-2, 12-7: Progress Software Corporation

Figures 12-5, 12-6: Nmap.Org

Figure 12-8: Rapid7

Figure 12-9: Massimiliano Montoro

Figure 13-4: Adaptive path

Figures 17-1, 17-2: Canonical Ltd

Figure 17-3: Aircrack-ng

Figure 17-4: The Open Group

Figure 17-7: Linus Torvalds

Figures 17-8, 17-9: The Wireshark Foundation

Figure 19-5: Puget Systems

Figures 25-1, 25-2: National Institute of Standards and Technology

Figure 25-8: ISO

Figure 25-9: COSO

Figure 25-10: Federation of European risk management associations

Securing the Enterprise Architecture by Implementing Data Security Techniques

Securing the enterprise architecture entails the use of many techniques and processes. In this chapter you'll learn about data security techniques and how they can be used to support securing of the overall architecture.

Data Loss Prevention

As you learned in Chapter 1, preventing the loss of critical and sensitive data requires the use of both policies and procedures that reflect best practices and software tools such as data loss prevention (DLP) software to prevent malicious as well as inadvertent data leaks. In this opening section of the chapter you'll learn about other techniques to prevent data loss.

Blocking Use of External Media

One of the many ways malware and other problems can be introduced to a network (right around all your fancy firewalls and security devices) is through the peripheral devices that users bring in and connect to their computers. Moreover, sensitive data can also leave your network this way. To address this, you should implement controls over the types of peripherals users can bring and connect (if any). The following sections look at the biggest culprits.

The use of any types of USB devices (thumb drives, external hard drives, network interfaces, and so on) should be strictly controlled—and in some cases prohibited altogether. Granular control of this issue is possible thanks to Windows Group Policy.

Some organizations choose to allow certain types of USB storage devices but require that the devices be encrypted before they can be used. It is also possible to allow some but not all users to use these devices, and it is even possible to combine digital rights management features with the policy to prohibit certain types of information from being copied to these devices.

For example, with Group Policy in Windows, you can use a number of policies to control the use of USB devices. Figure 4-1 shows a default domain policy to disallow the use of all removable storage. As you see, there are many other less drastic settings as well.

All Removable Storage classes: Deny	Setting	State	Comment
Il access	Set time (in seconds) to force reboot	Not configured	No
	CD and DVD: Deny execute access	Not configured	No
dit policy setting	CD and DVD: Deny read access	Not configured	No
equirements:	CD and DVD: Deny write access	Not configured	No
it least Windows Vista	Custom Classes: Deny read access	Not configured	No
Contract Con	Custom Classes: Deny write access	Not configured	No
Description: Configure access to all removable	Floppy Drives: Deny execute access	Not configured	No
torage classes.	Floppy Drives: Deny read access	Not configured	No
	Floppy Drives: Deny write access	Not configured	No
his policy setting takes precedence	Removable Disks: Deny execute access	Not configured	No
ver any individual removable torage policy settings. To manage	Removable Disks: Deny read access	Not configured	No
ndividual classes, use the policy	Removable Disks: Deny write access	Not configured	No
ettings available for each class.	🗐 All Removable Storage classes: Deny all access	Enabled	No
	All Removable Storage: Allow direct access in remote sessions	Not configured	No
you enable this policy setting, no ccess is allowed to any removable	1 Tape Drives: Deny execute access	Not configured	No
torage class.	Tape Drives: Deny read access	Not configured	No
	Tape Drives: Deny write access	Not configured	No
you disable or do not configure this	WPD Devices: Deny read access	Not configured	No
colicy setting, write and read ccesses are allowed to all removable torage classes.	WPD Devices: Deny write access	Not configured	No

Figure 4-1 Controlling the Use of USB Devices

Print Blocking

As you learned in Chapter 1, blocking the printing of sensitive documents is entirely within the capabilities of DLP software. Print blocking can prevent someone from getting a copy of sensitive information off the printer and can prevent that information from being stored for any length of time in the memory of the print device, where it might be obtained by someone hacking into the printer.

Remote Desktop Protocol (RDP) Blocking

Remote Desktop Protocol (RDP) is a proprietary protocol developed by Microsoft that provides a graphical interface to connect to another computer over a network connection. Unlike Telnet and SSH, which allow only working from the command line, RDP enables you to work on a remote computer as if you were actually sitting at its console.

RDP sessions use native RDP encryption but do not authenticate the session host server. To mitigate this, you can use SSL/TLS for server authentication and to encrypt RDP session host server communications. This requires a certificate. You can use an existing certificate or the default self-signed certificate.

While RDP can be used for remote connections to a machine, it can also be used to connect users to a *virtual desktop infrastructure (VDI)*. A VDI allows a user to connect from anywhere and work from a virtual desktop. Each user may have his or her own virtual machine (VM) image, or many users may use images based on the same VM.

The advantages and disadvantages of RDP are described in Table 4-1.

Table 4-1 Advantages and Disadvantages of RDP

Advantages	Disadvantages
Data is kept in the data center, so disaster recovery is easier.	Sever downtime can cause issues for many users.
Users can work from anywhere when using RDP in a VDI.	Network issues can cause problems for many users.
There is a potential reduction in the cost of business software when using an RDP model where all users are using the same base VM.	Insufficient processing power in the host system can cause bottlenecks.
	Implementing and supporting RDP requires solid knowledge.

RDP can be blocked at the firewall and at the system level by blocking port 3389.

Clipboard Privacy Controls

The clipboard function in desktops, laptops, and mobile devices is a convenient feature that stores information in memory until you paste it somewhere. But did you ever think of what happens after that? The information stays there until you copy over it! Moreover, in many systems, including Android, it has been found that any application can read that data without your permission.

While there is a fix to the Android issue, the point to be made is that organizations should be aware of this issue and take whatever steps are required to solve it as it may exist in your operating systems.

Restricted Virtual Desktop Infrastructure (VDI) Implementation

Virtual desktop infrastructures (VDIs) host desktop operating systems within a virtual environment in a centralized server. Users access the desktops and run them from the server. There are three models for implementing VDI:

- **Centralized model:** All desktop instances are stored in a single server, which requires significant processing power on the server.
- **Hosted model:** Desktops are maintained by a service provider. This model eliminates capital cost and is instead subject to operational cost.
- Remote virtual desktops model: An image is copied to the local machine, which means a constant network connection is unnecessary.

Figure 4-2 compares the remote virtual desktop models (also called streaming) with centralized VDI.

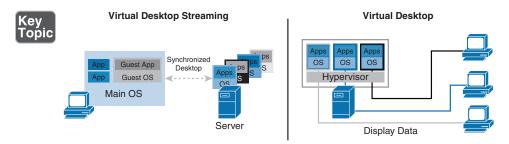


Figure 4-2 VDI Streaming and Centralized VDI

While a VDI environment can be beneficial, there are some steps that can be taken to restrict the infrastructure for security reasons:

- Consider disallowing copy and paste functions.
- Create an allow list (formerly known as a whitelist) or a block list (formerly known as a blacklist) to prevent users from accessing certain external sites or email providers.
- Evaluate the primary image for unnecessary services.
- Implement firewalls and antivirus software.
- Require multifactor authentication.

Data Classification Blocking

Data should be classified based on its value to the organization and its sensitivity to disclosure. Assigning a value to data allows an organization to determine the resources that should be used to protect the data. Resources that are used to protect data include human resources, monetary resources, and access control resources.

Classifying data as it relates to confidentiality, integrity, and availability (CIA) allows you to apply different protective measures.

After data is classified, the data can be segmented based on the level of protection it needs. Classification levels ensure that data is handled and protected in the most cost-effective manner possible. An organization should determine the classification levels it uses based on the needs of the organization. A number of commercial business and military and government information classifications are commonly used.

The information life cycle should also be based on the classification of the data. Organizations are required to retain certain information, particularly financial data, based on local, state, and federal laws and regulations.

Once data classification has occurred, you can then use the classifications to restrict access to data based on its classification. In Chapter 5, you'll will learn about an access control system called mandatory access control (MAC) that uses such classification labels to block access to data.

Data Loss Detection

It's bad enough when data leakages or data breaches occur, and it's even worse when you don't even know it's occurring! It is astounding how long it takes some companies to know they've been breached! In this section you'll learn about methods of detecting and preventing data loss.

Watermarking

Steganography occurs when a message is hidden inside another object, such as a picture or a document. In steganography, it is crucial that only those who are expecting the message know that the message exists.

Digital watermarking is a method used in steganography. It involves embedding a logo or trademark in documents, pictures, or other objects. The watermark deters people from using the materials in an unauthorized manner.

Digital Rights Management (DRM)

Hardware manufacturers, publishers, copyright holders, and individuals use *digital rights management (DRM)* to control the use of digital content. This often also involves device controls. First-generation DRM software controls copying. Second-generation DRM controls executing, viewing, copying, printing, and altering works or devices. The U.S. Digital Millennium Copyright Act (DMCA) of 1998 imposes criminal penalties on those who make available technologies whose primary purpose is to circumvent content protection technologies. DRM includes restrictive license agreements and encryption. DRM protects computer games and other software, documents, ebooks, films, music, and television.

In most enterprise implementations, the primary concern is the DRM control of documents by using open, edit, print, or copy access restrictions that are granted on a permanent or temporary basis. Solutions can be deployed that store the protected data in a central or decentralized model. Encryption is used in DRM to protect the data both at rest and in transit.

Network Traffic Decryption/Deep Packet Inspection

In Chapter 1 you learned about firewalls that can perform deep packet inspection. **Deep packet inspection** can be used to identify data types that should not be on the network as well as data types that should not be leaving the network.

When performing deep packet inspection on encrypted traffic, realize that the capturing system must be configured with the decryption key, and it will impact performance of the system doing the capture and subsequent decryption.

Network Traffic Analysis

When network traffic is captured for analysis, we typically are most concerned with which systems are communicating with which other systems and what they are sending to one another. One of the best tools for organizing traffic into conversations or flows is NetFlow (you learned about NetFlow in Chapter 1).

Data Classification, Labeling, and Tagging

Earlier in this chapter you learned about the value of classifying data into sensitivity levels. In this section you'll learn about how data is marked with its classification.

Metadata/Attributes

Data types are marked or labeled with their classification. This can be done physically with tags on storage devices containing data of various types and can also be done electronically so the DLP system can read this information and take the appropriate action, according to the DLP policy. Attributes (properties) of the data and its metadata (more details about the data) can also be used in this process.

XACML

Extensible Access Control Markup Language (XACML) is a standard for an access control policy language using Extensible Markup Language (XML). Its goal is to create an attribute-based access control system that decouples the access decision

from the application or the local machine. It provides for fine-grained control of activities based on criteria including:

- Attributes of the user requesting access (for example, all division managers in London)
- The protocol over which the request is made (for example, HTTPS)
- The authentication mechanism (for example, requester must be authenticated with a certificate)

LDAP

LDAP attributes are used in Active Directory. Examples include the Distinguished Name (DN) and Relative Distinguished Name (RDN), Common Name (CN), Domain Component (DC), and Organizational Unit (OU) attributes.

Obfuscation

Obfuscation is the act of making something obscure, unclear, or unintelligible. When we use that term with respect to sensitive or private information, it refers to changing the information in some way to make it unreadable to unauthorized individuals. It's not encryption, however. In this section you'll learn about methods of obfuscation.

Tokenization

Tokenization substitutes a sensitive value in data with another value that is not sensitive. It is an emerging standard for mobile transactions that uses numeric tokens to protect cardholders' sensitive credit and debit card information. Tokenization is a great security feature that substitutes the primary account number with a numeric token that can be processed by all participants in the payment ecosystem.

Scrubbing

Data *scrubbing* actually has two meanings:

- Scrubbing is used to maintain data quality. It involves checking main memory and storage for errors and making corrections using redundant data in the form of different checksums or copies of data. By detecting and correcting errors quickly, scrubbing reduces the likelihood that correctable errors will accumulate and lead to uncorrectable errors.
- Scrubbing also can refer to removing private data. This meaning relates to obfuscation.

Masking

Data masking means altering data from its original state to protect it. You already learned about two forms of masking: encryption and hashing. Encryption is storing the data in an encrypted form, and hashing is storing a hash value (generated from the data by a hashing algorithm) rather than the data itself. Many passwords are stored as hash values.

Other methods of data hiding are

- Using substitution tables and aliases for data
- Redacting or replacing sensitive data with random values
- Averaging or aggregating individual values

Anonymization

Data deidentification, or *data anonymization*, is the process of deleting or masking personal identifiers, such as personal names, from a set of data. It is often done when the data is being used in the aggregate, such as when medical data is used for research. Anonymization is a technical control used as one of the main approaches to data privacy protection.

Encrypted vs. Unencrypted

While using obfuscation is appropriate for some data types, it is not sufficient for all types. When security is top of mind, data should be encrypted—both at rest and when it is in transit.

Data Life Cycle

You learned about the data life cycle earlier in this chapter. Review that section. You will learn more about it in Chapter 27. The information life cycle should also be based on the classification of the data. Organizations are required to retain certain information, particularly financial data, based on local, state, or government laws and regulations. This section looks at the steps in the data life cycle.

Create

The first step in the data life cycle is the creation or acquisition of the data. While most data is generated by an organization, in some cases, an organization might purchase data, such as purchasing a marketing report from an industry organization or demographic data that helps sell products. The important issue during this step is the proper classification of the data so it can receive the appropriate protection.

Use

Once the data is available to users, those who require access to it need to use the data in the manner intended. At this step, the important issue is proper access control and review of accounts given access to ensure that permissions are being used appropriately.

Share

The sharing of data with others is a step fraught with danger. Uncontrolled sharing can cancel out all of an organization's security safeguards. Granting the right to share the data should only be done when necessary, and this right should be held by as few individuals as possible.

Store

During the time that data is held by an organization, it must be stored somewhere. Security issues that are paramount at this step are ensuring that the prescribed encryption is in place, that the data is being successfully backed up, and that integrity is being ensured by frequently generating hash values of the data that can be used to identify data corruption if it occurs.

Archive or Destroy

All organizations need procedures in place for the retention and destruction of data. Data retention and destruction must follow all local, state, and federal regulations and laws. Documenting proper procedures ensures that information is maintained for the required time to prevent financial fines and possible incarceration of high-level organizational officers. These procedures must include both the retention period, including longer retention periods for legal holds, and the destruction process.

Data Inventory and Mapping

Data inventory and mapping is a process typically carried out using software tools to enumerate all the data, regardless of where it might be stored or which department uses it. It's also a stringent requirement of modern privacy legislation, like the General Data Protection Regulation (GDPR) and California Consumer Privacy Act (CCPA), because it also identifies privacy information. It also consolidates data from multiple databases.

Data Integrity Management

When data has been altered by an unauthorized process or individual, we say that it lacks integrity. To maintain integrity, access control is certainly important, but the best assurance that integrity has been maintained is to generate message digests of the relevant data by using hashing algorithms. The values can be used at a later time to verify that the data remains unchanged from the time the message digest was generated.

Data Storage, Backup, and Recovery

While protecting data on a device is always a good idea, in many cases an organization must comply with an external standard regarding the minimum protection provided to the data on the storage device. For example, the *Payment Card Industry Data Security Standard (PCI DSS)* enumerates requirements that payment card industry players should meet to secure and monitor their networks, protect cardholder data, manage vulnerabilities, implement strong access controls, and maintain security policies.

The operations team also must determine which data is backed up, how often the data is backed up, and the method of backup used. An organization must determine how data is stored, including data in use and data that is backed up. While data owners are responsible for determining data access rules, data life cycle, and data usage, they must also ensure that data is backed up and stored in alternate locations to ensure that it can be restored.

Let's look at an example. Suppose that an organization's security administrator has received a subpoena for the release of all the email received and sent by the company's chief executive officer (CEO) for the past three years. If the security administrator is only able to find one year's worth of email records on the server, he should check the organization's backup logs and archives before responding to the request. Failure to produce all the requested data could possibly have legal implications. The security administrator should restore the CEO's email from an email server backup and provide whatever is available for up to the past three years from the subpoena date. Keep in mind, however, that the organization should provide all the data that it has regarding the CEO's emails. If the security administrator is able to recover the past five years' worth of the CEO's email, the security administrator should notify the appropriate authorities and give them access to all five years' data.

As a rule of thumb, in a subpoena situation, you should always provide all the available data, regardless of whether it exceeds the requested amount or any internal data retention policies. For example, if users are not to exceed 500 MB of storage but you find that a user has more than 3 GB of data, you should provide all that data in

response to any legal requests. Otherwise, you and the organization could be held responsible for withholding evidence.

To design an appropriate data recovery solution, security professionals must understand the different types of data backups that can occur and how these backups are used together to restore the live environments.

Security professionals must understand the following data backup types and schemes:

- Full backup
- Differential backup
- Incremental backup
- Copy backup
- Daily backup
- Transaction log backup
- First-in, first-out rotation scheme
- Grandfather/father/son rotation scheme

The three main data backup types are full backups, differential backups, and incremental backups. To understand these three data backup types, you must understand the concept of archive bits. When a file is created or updated, the archive bit for the file is enabled. If the archive bit is cleared, the file will not be archived during the next backup. If the archive bit is enabled, the file will be archived during the next backup.

With a *full backup*, all data is backed up. During the full backup process, the archive bit for each file is cleared. A full backup takes the longest time and the most space to complete. However, if an organization uses only full backups, then only the latest full backup needs to be restored. Any backup that uses a differential or incremental backup will first start with a full backup as its baseline. A full backup is the most appropriate for offsite archiving.

In a *differential backup*, all files that have been changed since the last full backup will be backed up. During the differential backup process, the archive bit for each file is not cleared. A differential backup might vary from taking a short time and a small amount of space to growing in both the backup time and amount of space needed over time. Each differential backup will back up all the files in the previous differential backup if a full backup has not occurred since that time. In an organization that uses a full/differential scheme, the full backup and only the most recent differential backup must be restored, meaning only two backups are needed.

An *incremental backup* backs up all files that have been changed since the last full or incremental backup. During the incremental backup process, the archive bit for each file is cleared. An incremental backup usually takes the least amount of time and space to complete. In an organization that uses a full/incremental scheme, the full backup and each subsequent incremental backup must be restored. The incremental backups must be restored in order. If your organization completes a full backup on Sunday and an incremental backup daily Monday through Saturday, up to seven backups could be needed to restore the data. Table 4-2 provides a comparison of the three main backup types.

Table 4-2 Backup Types Comparison

Туре	Data Backed Up	Backup Time	Restore Time	Storage Space
Full backup	All data	Slowest	Fast	High
Incremental backup	Only new/modified files/ folders since the last full or incremental backup	Fast	Moderate	Lowest
Differential backup	All data since the last full backup	Moderate	Fast	Moderate

Copy and daily backups are two special backup types that are not considered part of any regularly scheduled backup scheme because they do not require any other backup type for restoration. Copy backups are similar to normal backups but do not reset the file's archive bit. Daily backups use a file's timestamp to determine whether it needs to be archived. Daily backups are popular in mission-critical environments where multiple daily backups are required because files are updated constantly.

Transaction log backups are used only in environments where it is important to capture all transactions that have occurred since the last backup. Transaction log backups help organizations recover to a particular point in time and are most commonly used in database environments.

Although magnetic tape drives are still in use today to back up data, many organizations today back up their data to optical discs, including CD-ROMs, DVDs, and Blu-ray discs; high-capacity, high-speed magnetic drives; solid-state drives; or other media. No matter the media used, retaining backups both onsite and offsite is important. Store onsite backup copies in a waterproof, heat-resistant, fire-resistant safe or vault.

As part of any backup plan, an organization should also consider the backup rotation scheme that it will use. Cost considerations and storage considerations often dictate that backup media be reused after a period of time. If this reuse is not planned

in advance, media can become unreliable due to overuse. Two of the most popular backup rotation schemes are first-in, first-out and grandfather/father/son:

- *First-in, first-out (FIFO)*: In this scheme, the newest backup is saved to the oldest media. Although this is the simplest rotation scheme, it does not protect against data errors. If an error exists in the data, the organization might not have a version of the data that does not contain the error.
- Grandfather/father/son (GFS): In this scheme, three sets of backups are defined. Most often these three definitions are daily, weekly, and monthly. The daily backups are the sons, the weekly backups are the fathers, and the monthly backups are the grandfathers. Each week, one son advances to the father set. Each month, one father advances to the grandfather set. Figure 4-3 displays a typical five-day GFS rotation using 21 tapes. The daily tapes are usually differential or incremental backups. The weekly and monthly tapes must be full backups.

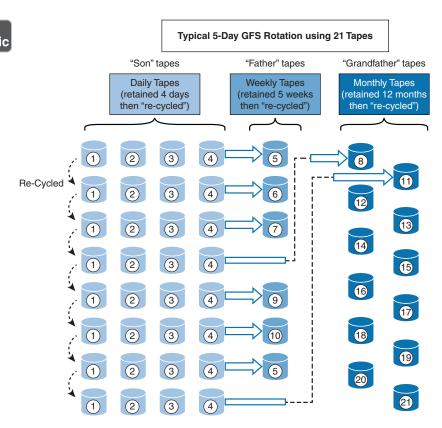


Figure 4-3 Grandfather/Father/Son Backup Rotation Scheme

Electronic backup solutions back up data more quickly and accurately than the normal data backups and are best implemented when information changes often. You should be familiar with the following electronic backup terms and solutions:

- Electronic vaulting: This method involves copying files as modifications occur in real time.
- *Remote journaling*: This method involves copying the journal or transaction log offsite on a regular schedule, in batches.
- *Tape vaulting*: This method involves creating backups over a direct communication line on a backup system at an offsite facility.
- Hierarchical storage management (HSM): This method involves storing frequently accessed data on faster media and less frequently accessed data on slower media.
- *Optical jukebox*: This method involves storing data on optical discs and uses robotics to load and unload the optical discs as needed. This method is ideal when 24/7 availability is required.
- **Replication:** This method involves copying data from one storage location to another. Synchronous replication uses constant data updates to ensure that the locations are close to the same, whereas asynchronous replication delays updates to a predefined schedule.
- *Cloud backup*: Another method growing in popularity is to back up data to a cloud location.

Redundant Array of Inexpensive Disks (RAID)

RAID is a hard drive technology in which data is written across multiple disks in such a way that a disk can fail, and the data can be made available quickly by remaking disks in the array without resorting to a backup tape. The most common types of RAID are:

■ *RAID 0*: Also called disk striping, this method writes the data across multiple drives. While it improves performance, it does not provide fault tolerance. RAID 0 is depicted in Figure 4-4.

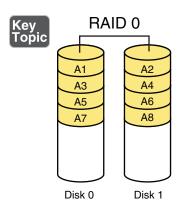


Figure 4-4 RAID 0

■ *RAID 1*: Also called disk mirroring, RAID 1 uses two disks and writes a copy of the data to both disks, providing fault tolerance in the event of a single drive failure. RAID 1 is depicted in Figure 4-5.

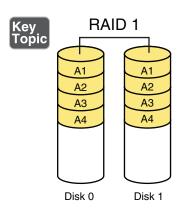
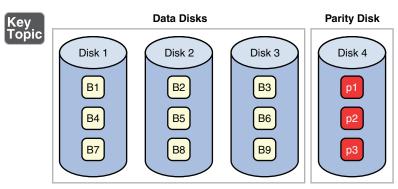



Figure 4-5 RAID 1

■ *RAID 3*: This method, which requires at least three drives, writes the data across all drives, as with striping, and then writes parity information to a single dedicated drive. The parity information is used to regenerate the data in the event of a single drive failure. The downfall of this method is that the parity drive is a single point of failure. RAID 3 is depicted in Figure 4-6.

RAID 3 - Bytes Striped (and Dedicated Parity Disk)

Figure 4-6 RAID 3

■ *RAID 5*: This method, which requires at least three drives, writes the data across all drives, as with striping, and then writes parity information across all drives as well. The parity information is used in the same way as in RAID 3, but it is not stored on a single drive, so there is no single point of failure for the parity data. With hardware RAID 5, the spare drives that replace the failed drives are usually hot swappable, meaning they can be replaced on the server while it is running. RAID 5 is depicted in Figure 4-7.

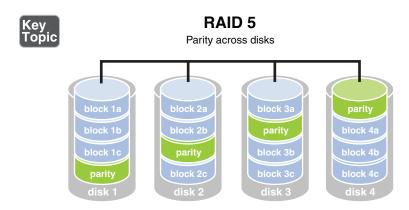


Figure 4-7 RAID 5

- *RAID* 7: While not a standard but a proprietary implementation, this system incorporates the same principles as RAID 5 but enables the drive array to continue to operate if any disk or any path to any disk fails. The multiple disks in the array operate as a single virtual disk.
- *RAID 10*: This method combines RAID 1 and RAID 0 and requires a minimum of four disks. However, most implementations of RAID 10 have four or

more drives. A RAID 10 deployment contains a striped disk that is mirrored on a separate striped disk. Figure 4-8 depicts RAID 10.

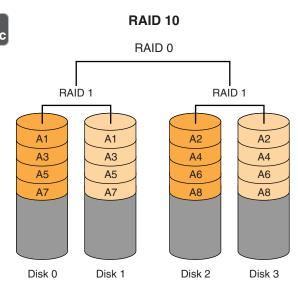


Figure 4-8 RAID 10

RAID can be implemented with software or with hardware, and certain types of RAID are faster when implemented with hardware. Both RAID 3 and 5 are examples of RAID types that are faster when implemented with hardware. Simple striping and mirroring (RAID 0 and 1), however, tend to perform well in software because they do not use the hardware-level parity drives. When software RAID is used, it is a function of the operating system. Table 4-3 summarizes the RAID types.

Table 4-3 RAID Types

RAID Level	Minimum Number of Drives	Description	Strengths	Weaknesses
RAID 0	2	Data striping without redundancy	Highest performance	No data protection; if one drive fails, all data is lost
RAID 1	2	Disk mirroring	Very high performance; very high data protection; very minimal penalty on write performance	High redundancy cost overhead; because all data is duplicated, twice the storage capacity is required

RAID Level	Minimum Number of Drives	Description	Strengths	Weaknesses
RAID 3	3	Byte-level data striping with a dedicated parity drive	Excellent performance for large, sequential data requests	Not well suited for transaction-oriented network applications; the single parity drive does not support multiple, simultaneous read and write requests
RAID 5	3	Block-level data striping with distributed parity	Best cost/ performance for transaction- oriented networks; very high performance and very high data protection; supports multiple simultaneous reads and writes; can also be optimized for large, sequential requests	Write performance is slower than with RAID 0 or RAID 1
RAID 10	4	Disk striping with mirroring	High data protection, which increases each time you add a new striped/mirror set	High redundancy cost overhead; because all data is duplicated, twice the storage capacity is required

Exam Preparation Tasks

As mentioned in the Introduction, you have a couple choices for exam preparation: the exercises here and the practice exams in the Pearson IT Certification test engine.

Review All Key Topics

Review the most important topics in this chapter, noted with the Key Topic icon in the outer margin of the page. Table 4-4 lists these key topics and the page number on which each is found.

Table 4-4 Key Topics for Chapter 4

Key Topic Element	Description	Page Number
Figure 4-1	Controlling the Use of USB Devices	126
Table 4-1	Advantages and Disadvantages of RDP	127
List	VDI models	128
Figure 4-2	VDI Streaming and Centralized VDI	128
List	VDI attributes	131
List	Data masking methods	132
Section	Data Life Cycle	132
Paragraph	Backup types	135
Table 4-2	Backup Types Comparison	136
Figure 4-3	Grandfather/Father/Son Backup Rotation Scheme	137
List	Electronic backup terms and solutions	138
Figure 4-4	RAID 0	139
Figure 4-5	RAID 1	139
Figure 4-6	RAID 3	140
Figure 4-7	RAID 5	140
Figure 4-8	RAID 10	141
Table 4-3	RAID Types	141

Define Key Terms

Define the following key terms from this chapter and check your answers in the glossary:

Remote Desktop Protocol (RDP), virtual desktop infrastructure (VDI), digital watermarking, digital rights management (DRM), deep packet inspection, Extensible Access Control Markup Language (XACML), obfuscation, tokenization, scrubbing, data masking, data anonymization, data inventory and mapping, Payment Card Industry Data Security Standard (PCI DSS), full backup, differential backup, incremental backup, first-in, first-out (FIFO), grandfather/father/son (GFS), electronic vaulting, remote journaling, tape vaulting, hierarchical storage management (HSM), optical jukebox, replication, cloud backup, RAID, RAID 0, RAID 1, RAID 3, RAID 5, RAID 7, RAID 10

Complete Tables and Lists from Memory

There are no memory tables or lists in this chapter.

Review Questions

- **1.** Which of the following forms of RAID places the parity information on a single drive?
 - **a.** RAID 0
 - **b.** RAID 1
 - c. RAID 3
 - **d.** RAID 5
- **2.** Which of the following techniques or tools is used to deploy print blocking?
 - a. DLP
 - **b.** RAID
 - c. RDP
 - d. VDI
- **3.** Which of the following is not a characteristic of RDP?
 - **a.** Server downtime can cause issues for many users.
 - b. Data is not kept in the data center, so disaster recovery is easier.
 - c. Network issues can cause problems for many users.
 - **d.** Insufficient processing power in the host system can cause bottlenecks.

- 4. In which of the following rotation schemes are three sets of backups defined?
 a. FIFO
 b. RAID
 c. GFS
 d. STP
 5. In which VDI model are desktops maintained by a service provider?
 a. Centralized model
 b. Hosted model
 c. Remote virtual desktops model
 d. Streaming model
 6. Which backup model is the fastest to back up but the slowest to restore?
 a. Full
 b. Copy
- **7.** Which backup type is used to capture all transactions that have occurred since the last backup?
 - a. Transaction log backup
 - **b.** Incremental backup
 - c. Full backup

c. Differentiald. Incremental

- **d.** Copy backup
- **8.** Which backup method involves copying files as modifications occur in real time?
 - a. Electronic vaulting
 - **b.** Optical jukebox
 - c. Remote journaling
 - **d.** Tape vaulting

- **9.** Which of the following enumerates requirements that payment card industry players should meet to secure and monitor their networks, protect cardholder data, manage vulnerabilities, implement strong access controls, and maintain security policies?
 - a. GLBA
 - b. PCI DSS
 - c. COPPA
 - d. SOX
- 10. Which RAID method can potentially survive two drive failures?
 - a. RAID 1
 - **b.** RAID 3
 - c. RAID 5
 - **d.** RAID 10

Index

Numbers	APTs (advanced persistent threats),
2-step verification, 173	233–234
3-D printing, 224	black hat, 236
3DES (Triple Digital Encryption	competitors, 234
Standard), 528	crackers, 236
128-bit AES encryption, 490	gray hat, 236
802.1X, 166–167	hackers, 236
,	hacktivists, 234
Α	identifying techniques, 237
ABAC (attribute-based access control),	insider threats, 234
161–162	organized crime, 235
accept strategy, 565	properties
acceptance testing, 107	create vulnerabilities, 236
access control, 159–160	resources, 235
attribute-based, 161–162	supply chain access, 235-236
discretionary, 160, 598	script kiddies, 235
mandatory, 160, 444	white hat, 236
kernel, 445	adb command, 445
middleware, 445	ADCs (application delivery
SEAndroid, 444–445	controllers), 3
SELinux (Security-Enhanced	advantages
Linux), 444	of firewalls, 14
natural, 361	of NAC (network access control), 10
role-based, 161	of NGFWs (next-generation
rule-based, 161	firewalls), 15
access logs, 255–256	of RDP (Remote Desktop Protocol),
accountability, 208, 482–483	127
ACLs (access control lists), 49, 267,	of SIEM, 35
612–613	of virtualization, 185
active scanners, 278	AEG (automatic exploit generation),
ActiveX, 327	219–220
actors	AES (Advanced Encryption Standard), 527
	J 4 1

agent-based vulnerability scanning,	analysis tools
276–277	Aircrack-ng, 403–404
Agile, 109–110, 111, 112–113	ExifTool, 403
AHEAD (authenticated encryption with	Nmap, 403
associated data), 536	Sleuth Kit, 405
AI (artificial intelligence), 219–220	Volatility, 404
air gap, 49	analytics, 348–349
Aircrack-ng, 403–404	Android
airplane mode, 427	fragmentation, 432
AJAX (Asynchronous JavaScript and	remote wipe feature, 422–423
XML), 327–328	rooting, 431
ALE (annualized loss expectancy), 561,	side loading, 431–432
563	anomaly-based IDS (intrusion detection
alert(s), 256	system), 4
antivirus, 259–260	anonymization, 132
DLP (data loss prevention), 257	anti-spam, 29
fatigue, 259	antivirus, 39, 259-260, 450, 618-619
FIM (file integrity monitoring), 257	APIs (application programming
IDS/IPS, 258	interfaces), 30
SIEM (security information and event	classic model, 88–89
management), 257	container, 88, 89
alerts, 480	management, 91
algorithms, 205. See also asymmetric	ROTs (roots of trust) and, 176-177
algorithms; hashing; symmetric	Apktool, 294
algorithms	application control, 353, 419, 451
asymmetric, 528–529	allow lists, 354
ECDSA (Elliptic-Curve Digital	atomicity, 355
Signature Algorithm), 531	block lists, 354
RSA (Rivest, Shamir, and Adleman),	license technologies, 353
530–531	time of check vs. time of use, 354-355
digital signature, 530	application integration
hashing, 519-520	CMDB (configuration management
key agreement, 529	database), 101
Diffie-Hellman, 529	CMS (content management system),
ECDH (Elliptic-Curve Diffie-	101
Hellman), 530	CRM (customer relationship
known flaws and weaknesses, 531	management), 100
Lucifer, 528	ERP (enterprise resource planning),
NFS (Number Field Sieve), 531	100–101
Rijndael, 527	integration enablers, 101
symmetric, 522	directory services, 101
alternative provider BCDR, 486	

DNS (Domain Name System),	persistence, 298
101–102	rainbow table, 393
ESB (enterprise service bus), 103	side-channel, 293
SOA (service-oriented architecture),	social engineering, 340, 374
102	identity theft, 341
application vetting process, 90-91	pharming, 340
application virtualization, 189	phishing, 340
application-level proxies, 13	shoulder surfing, 341
apps, system, 431	spear phishing, 28
APs (access points), 53, 295	whaling, 28
APTs (advanced persistent threats),	targeted, 232
233–234	VLAN hopping, 42–43
AR (augmented reality), 223	VM escape, 337–338
ARF (Asset Reporting Format), 282	XSS (cross-site scripting), 331
ARO (annualized rate of occurrence), 563	attestation, 179, 448
ASIC (application-specific integrated	audio conferencing, 491
circuit), 462	audit(ing), 155
ASLR (address space layout	cloud environments, 483
randomization), 442	events, 256
asset value, 558–559	requirements and frequency, 601
asymmetric encryption, 528-529	trails, 255-256
public/private keys, 508-511	authentication. See also credential
public/private keys, 508–511 RSA (Rivest, Shamir, and Adleman),	authentication. See also credential management
· ·	
RSA (Rivest, Shamir, and Adleman),	management
RSA (Rivest, Shamir, and Adleman), 530–531	management 2-step verification, 173
RSA (Rivest, Shamir, and Adleman), 530–531 atomicity, 355	management 2-step verification, 173 802.1X, 166–167
RSA (Rivest, Shamir, and Adleman), 530–531 atomicity, 355 attacks	management 2-step verification, 173 802.1X, 166–167 biometric systems, 170–171, 172–173
RSA (Rivest, Shamir, and Adleman), 530–531 atomicity, 355 attacks authentication bypass, 340	management 2-step verification, 173 802.1X, 166–167 biometric systems, 170–171, 172–173 behavioral, 171–172
RSA (Rivest, Shamir, and Adleman), 530–531 atomicity, 355 attacks authentication bypass, 340 Bluetooth, 424	management 2-step verification, 173 802.1X, 166–167 biometric systems, 170–171, 172–173 behavioral, 171–172 physiological, 170–171
RSA (Rivest, Shamir, and Adleman), 530–531 atomicity, 355 attacks authentication bypass, 340 Bluetooth, 424 CSRF (Cross-Site Request Forgery),	management 2-step verification, 173 802.1X, 166–167 biometric systems, 170–171, 172–173 behavioral, 171–172 physiological, 170–171 broken, 318–319
RSA (Rivest, Shamir, and Adleman), 530–531 atomicity, 355 attacks authentication bypass, 340 Bluetooth, 424 CSRF (Cross-Site Request Forgery), 331–332	management 2-step verification, 173 802.1X, 166–167 biometric systems, 170–171, 172–173 behavioral, 171–172 physiological, 170–171 broken, 318–319 bypass, 340
RSA (Rivest, Shamir, and Adleman), 530–531 atomicity, 355 attacks authentication bypass, 340 Bluetooth, 424 CSRF (Cross-Site Request Forgery), 331–332 DDoS (distributed DoS), 22	management 2-step verification, 173 802.1X, 166–167 biometric systems, 170–171, 172–173 behavioral, 171–172 physiological, 170–171 broken, 318–319 bypass, 340 characteristic factors, 170
RSA (Rivest, Shamir, and Adleman), 530–531 atomicity, 355 attacks authentication bypass, 340 Bluetooth, 424 CSRF (Cross-Site Request Forgery), 331–332 DDoS (distributed DoS), 22 directory traversal, 330	management 2-step verification, 173 802.1X, 166–167 biometric systems, 170–171, 172–173 behavioral, 171–172 physiological, 170–171 broken, 318–319 bypass, 340 characteristic factors, 170 client, 504
RSA (Rivest, Shamir, and Adleman), 530–531 atomicity, 355 attacks authentication bypass, 340 Bluetooth, 424 CSRF (Cross-Site Request Forgery), 331–332 DDoS (distributed DoS), 22 directory traversal, 330 DoS (denial-of-service), 22, 339–340	management 2-step verification, 173 802.1X, 166–167 biometric systems, 170–171, 172–173 behavioral, 171–172 physiological, 170–171 broken, 318–319 bypass, 340 characteristic factors, 170 client, 504 cross-domain, 61
RSA (Rivest, Shamir, and Adleman), 530–531 atomicity, 355 attacks authentication bypass, 340 Bluetooth, 424 CSRF (Cross-Site Request Forgery), 331–332 DDoS (distributed DoS), 22 directory traversal, 330 DoS (denial-of-service), 22, 339–340 downgrade, 514, 546	management 2-step verification, 173 802.1X, 166–167 biometric systems, 170–171, 172–173 behavioral, 171–172 physiological, 170–171 broken, 318–319 bypass, 340 characteristic factors, 170 client, 504 cross-domain, 61 Diameter, 164
RSA (Rivest, Shamir, and Adleman), 530–531 atomicity, 355 attacks authentication bypass, 340 Bluetooth, 424 CSRF (Cross-Site Request Forgery), 331–332 DDoS (distributed DoS), 22 directory traversal, 330 DoS (denial-of-service), 22, 339–340 downgrade, 514, 546 injection, 332	management 2-step verification, 173 802.1X, 166–167 biometric systems, 170–171, 172–173 behavioral, 171–172 physiological, 170–171 broken, 318–319 bypass, 340 characteristic factors, 170 client, 504 cross-domain, 61 Diameter, 164 EAP (Extensible Authentication
RSA (Rivest, Shamir, and Adleman), 530–531 atomicity, 355 attacks authentication bypass, 340 Bluetooth, 424 CSRF (Cross-Site Request Forgery), 331–332 DDoS (distributed DoS), 22 directory traversal, 330 DoS (denial-of-service), 22, 339–340 downgrade, 514, 546 injection, 332 command, 337	management 2-step verification, 173 802.1X, 166–167 biometric systems, 170–171, 172–173 behavioral, 171–172 physiological, 170–171 broken, 318–319 bypass, 340 characteristic factors, 170 client, 504 cross-domain, 61 Diameter, 164 EAP (Extensible Authentication Protocol), 167–168
RSA (Rivest, Shamir, and Adleman), 530–531 atomicity, 355 attacks authentication bypass, 340 Bluetooth, 424 CSRF (Cross-Site Request Forgery), 331–332 DDoS (distributed DoS), 22 directory traversal, 330 DoS (denial-of-service), 22, 339–340 downgrade, 514, 546 injection, 332 command, 337 LDAP, 335	management 2-step verification, 173 802.1X, 166–167 biometric systems, 170–171, 172–173 behavioral, 171–172 physiological, 170–171 broken, 318–319 bypass, 340 characteristic factors, 170 client, 504 cross-domain, 61 Diameter, 164 EAP (Extensible Authentication Protocol), 167–168 gesture, 420 IPsec, 534 Kerberos, 165–166
RSA (Rivest, Shamir, and Adleman), 530–531 atomicity, 355 attacks authentication bypass, 340 Bluetooth, 424 CSRF (Cross-Site Request Forgery), 331–332 DDoS (distributed DoS), 22 directory traversal, 330 DoS (denial-of-service), 22, 339–340 downgrade, 514, 546 injection, 332 command, 337 LDAP, 335 process, 337	management 2-step verification, 173 802.1X, 166–167 biometric systems, 170–171, 172–173 behavioral, 171–172 physiological, 170–171 broken, 318–319 bypass, 340 characteristic factors, 170 client, 504 cross-domain, 61 Diameter, 164 EAP (Extensible Authentication Protocol), 167–168 gesture, 420 IPsec, 534 Kerberos, 165–166 knowledge factors, 169
RSA (Rivest, Shamir, and Adleman), 530–531 atomicity, 355 attacks authentication bypass, 340 Bluetooth, 424 CSRF (Cross-Site Request Forgery), 331–332 DDoS (distributed DoS), 22 directory traversal, 330 DoS (denial-of-service), 22, 339–340 downgrade, 514, 546 injection, 332 command, 337 LDAP, 335 process, 337 SQL, 335–336	management 2-step verification, 173 802.1X, 166–167 biometric systems, 170–171, 172–173 behavioral, 171–172 physiological, 170–171 broken, 318–319 bypass, 340 characteristic factors, 170 client, 504 cross-domain, 61 Diameter, 164 EAP (Extensible Authentication Protocol), 167–168 gesture, 420 IPsec, 534 Kerberos, 165–166

multifactor, 168	Bash, 356
OAuth, 166	BCDR (business continuity and disaster
OpenID, 156–157	recovery), 486
ownership factors, 169–170	BCP (business continuity plan), 660-661.
passwordless, 224–225	See also disaster recovery
RADIUS (Remote Authentication	after-action reports, 666
Dial-in User Service), 162–163	business continuity steps, 662
router, 24–26	checklist, 666
server, 504	full interruption test, 667
smart card, 209–210	parallel/simulation test, 667
TACACS (Terminal Access Controller	personnel components, 661
Access Control System), 163–164	project scope, 661
two-factor, 168	tabletop exercises, 666
automated patch management, 284	walkthrough test, 666
automation, 76, 77, 213, 355	Bcrypt, 537
autoscaling, 76	behavioral biometric systems, 171–172
availability, 479, 593–594	benchmarks, 85–86
availability zone, 46–47	best practices
avoid strategy, 566	middleware, 91–92
awareness training, 599–601	stakeholder communication, 375–376
<i>U</i> ,	BGP route hijacking, 338
В	BIA (business impact analysis), 556,
backups, 134-135. See also storage	656–658
of cloud environments, 485–486	identify critical processes and
сору, 136	resources, 659
daily, 136	mission essential functions, 659
differential, 135	recovery service level, 659
electronic, 138	RPO (recovery point objective), 659
evidence preservation, 389	RTO (recovery time objective), 659
full, 135	big data, 222–223, 348
incremental, 136	binary analysis tools, 401
key management and, 207	binwalk, 401
rotation scheme, 136–137	file command, 403
storage, 136	GDB (GNU Project debugger), 401
transaction log, 136	Ghidra, 401
types comparison, 136	hexdump, 401
verification, 391	ldd, 402
BACnet (Building Automation and	objdump, 402
Control Network), 464–465	OllyDbg, 402
in-band interface, 174	readelf, 402
baseband processor, 422	strace, 402
baselines, 85, 86, 438	binding, 446

binwalk, 401	CAN (Controller Area Network), 465
biometric systems, 172–173, 420	CANVAS, 305
acceptability, 172	captured email messages, 29
accuracy, 172	CASB (cloud access security broker), 196
behavioral, 171–172	CBC (cipher block chaining), 524
CER (crossover error rate), 172	CCE (Common Configuration
enrollment time, 172	Enumeration), 282
facial scan, 421	CD (continuous delivery), 116
FAR (false acceptance rate), 172	CDN (content delivery network), 79–80
feature extraction, 172	CDP (continuous delivery pipeline), 116
fingerprint scan, 421	Censys, 243
FRR (false rejection rate), 172	CER (crossover error rate), 172
impersonation, 226	certificate(s)
iris scan, 421	chain issues, troubleshooting, 544-545
physiological, 170–171	classes, 543
throughput rate, 172	EV (extended validation), 502
BIOS (Basic Input/Output System),	extensions, 505
447–448	general purpose, 503
bit splitting, 493	life-cycle management, 507-508
BitLocker, 439	management, 426–427
black hat, 236	mismatched name, troubleshooting,
blob storage, 198	543–544
block ciphers, 527	multidomain, 502-503
block storage, 198	pinning, 512
blockchain, 220, 221-222	revocation list, 513-514
Bluesnarfing, 424	revoked, 543
Bluetooth, 424	signing requests, 513
bootstrapping, 77	stapling, 512–513
broken access control, 117	use cases
broken authentication, 318-319	client authentication, 504
browser extensions, 326	digital signatures, 504-505
ActiveX, 327	server authentication, 504
Flash, 327	validity dates, troubleshooting, 542
buffer overflow, 316–318	wildcard, 501
BYOD (bring your own device), 51, 429,	X.509, 503
432	CN (Common Name), 505
bytecode, 329	SAN (Subject Alternative Name),
	505
C	ChaCha, 528
CA (certificate authority), 499–500, 544	chain of custody, 385-386
caching, 80	change control process, 614
Cain and Abel, 306	change management, 611
	<i>z z</i> ,

characteristic factors, 170	single platform hosting multiple data
chroot, 186	types/owners on multiple virtual
CI (configuration item), 481	machines, 192
CI (continuous integration), 116	erasure coding, 493
CIA triad, 128–129, 203, 204, 205–206,	extending appropriate on-premises
570–571	controls, 196
ciphers	Faas (function as a service), 486
block, 527	hosting models
stream-based, 526-527	multitenant, 193–194
circuit-level proxies, 13	single-tenant, 194
classic API model, 88–89	key management, 481–482
click-jacking, 320	accountability, 482–483
client-based application virtualization,	audits, 483
189	phases, 484–485
client-side processing, 325–326	survivability, 483
clipboard privacy controls, 127	live migration, 477
cloning, 388	load balancer, 3
cloud environments, 59. See also	logs, 478–479
virtualization	provider limitations
antivirus, 39	IP address scheme, 196
availability, 479	VPC peering, 196
backup and recovery, 485–486	segmentation, 50
BCDR (business continuity and	serverless, 486–487
disaster recovery), 486	service models
bit splitting, 493	IaaS (infrastructure as a service), 195
collaboration tools, 488	PaaS (platform as a service), 194
audio conferencing, 491	SaaS (software as a service), 194
storage and document, 491-492	SLAs (service-level agreements), 478
video conferencing, 489–491	storage configurations, 492
web conferencing, 488-489	virtualization, 79
deployment models	clustering, 76
community, 193	CMDB (configuration management
cost and, 191	database), 101
data protection and, 192	CMMI (Capability Maturity Model
hybrid, 193	Integration), 643–644
location and, 191	CMS (content management system), 101
private, 193	code, 617. See also testing
public, 193	byte, 329
scalability and, 191	dependency management, 307–308,
single physical server hosting mul-	323–324
tiple organizations' VMs, 192	disposal and reuse, 104
-	machine, 329

review, 98	HIDS/HIPS, 451
signing, 94	host-based firewall, 451
cold site, 663	redundant hardware, 452
collaboration tools, 488	self-healing hardware, 452
audio conferencing, 491	UEBA (user and entity behavior
storage and document, 491–492	analytics), 452
video conferencing, 489–491	compiler, 329
web conferencing, 488–489	conditional access policy, 419
COM (Component Object Model), 327	confidentiality, 205–206
command injection, 337	configuration lockdown, 614–615
commands	configuration management, 480–481
adb, 445	conntrack, 411
encapsulation ppp, 24	container APIs, 88, 89
Linux, 406	containerization, 78–79, 187–188, 419,
cron, 355–356, 357	432
dig, 242	containment, 371
file, 403	isolate, 371
foremost, 399-400	minimize, 371
ldd, 410	content analysis, 390
lsof, 410	contingency planning, 657-658
readelf, 402	contracting, 52–53
strace, 402	controls, 570–572
strings, 400–401	compensative, 572-573
vmstat, 409–410	corrective, 573
nc, 410	detective, 572
netstat, 407–409	deterrent, 573
nfdump, 37	protective, 572
nslookup, 242	recovery, 573
objdump, 402	cookies, 618, 619
ps, 409	COPE (corporate owned, personally
SFC, 35–36	enabled), 429
tcpdump, 411	COPPA (Children's Online Privacy
tshark, 252	Protection Act), 644
commodity malware, 231	copy backups, 136
Common Criteria, 432, 644–645	copyright, 632
communications analysis, 390	corporate-owned device deployment, 429
community cloud, 193	corrective controls, 573
compensation controls, 450, 572–573	COSO ERM Integrated Framework,
antivirus, 450	588–589
application control, 451	cost/benefit analysis, 347
EDR (endpoint detection and	countermeasures, 347
response), 451	

CPE (Common Platform Enumeration),	weak, 321–322, 545
279	CSA (Cloud Security Alliance), STAR
CPTED (Crime Prevention Through	(Security Trust Assurance and
Environmental Design), 361	Risk), 646
CPU virtualization, disabling, 439–440	CSP (cloud service provider), 607–608
crackers, 236	compute resources, 608
credential management, 149. See also	services, 608–609
password(s)	STAR (Security Trust Assurance and
hardware key manager, 150	Risk), 646
password repository application, 149	CSP (cryptographic service provider), 506
end-user password storage, 149	CSRF (Cross-Site Request Forgery),
on premises vs. cloud repository, 150	331–332
shared credentials, 619	CTR (Counter), 525
SSO (single sign-on), 177–178	custom DNS, 428
credentialed scans, 275-276	CVE (Common Vulnerabilities and
CRM (customer relationship	Exposures) database, 279
management), 100	CVSS (Common Vulnerability Scoring
cron command, 355–356, 357	System), 279–282
cross-certification, 506	Cyber Kill Chain, 246
cross-domain authentication, 61	CYOD (choose your own device), 429
cryptanalysis, 394	
cryptanarysis, 571	
crypto shredding, 548	D
crypto shredding, 548 cryptocurrency, 220	D DAC (discretionary access control), 160,
crypto shredding, 548 cryptocurrency, 220 cryptography, 203. <i>See also</i> certificate(s);	
crypto shredding, 548 cryptocurrency, 220 cryptography, 203. See also certificate(s); encryption	DAC (discretionary access control), 160,
crypto shredding, 548 cryptocurrency, 220 cryptography, 203. See also certificate(s); encryption CIA triad, 203	DAC (discretionary access control), 160, 598
crypto shredding, 548 cryptocurrency, 220 cryptography, 203. See also certificate(s); encryption CIA triad, 203 cipher mismatches, troubleshooting,	DAC (discretionary access control), 160, 598 daily backups, 136
crypto shredding, 548 cryptocurrency, 220 cryptography, 203. See also certificate(s); encryption CIA triad, 203 cipher mismatches, troubleshooting, 546	DAC (discretionary access control), 160, 598 daily backups, 136 DAM (database activity monitoring), 350
crypto shredding, 548 cryptocurrency, 220 cryptography, 203. See also certificate(s); encryption CIA triad, 203 cipher mismatches, troubleshooting, 546 cipher suites, troubleshooting, 545	DAC (discretionary access control), 160, 598 daily backups, 136 DAM (database activity monitoring), 350 architectures, 350
crypto shredding, 548 cryptocurrency, 220 cryptography, 203. See also certificate(s); encryption CIA triad, 203 cipher mismatches, troubleshooting, 546 cipher suites, troubleshooting, 545 elliptic curve, 209, 535	DAC (discretionary access control), 160, 598 daily backups, 136 DAM (database activity monitoring), 350 architectures, 350 limitations, 350
crypto shredding, 548 cryptocurrency, 220 cryptography, 203. See also certificate(s); encryption CIA triad, 203 cipher mismatches, troubleshooting, 546 cipher suites, troubleshooting, 545 elliptic curve, 209, 535 key management, 207–208	DAC (discretionary access control), 160, 598 daily backups, 136 DAM (database activity monitoring), 350 architectures, 350 limitations, 350 placement, 351
crypto shredding, 548 cryptocurrency, 220 cryptography, 203. <i>See also</i> certificate(s); encryption CIA triad, 203 cipher mismatches, troubleshooting, 546 cipher suites, troubleshooting, 545 elliptic curve, 209, 535 key management, 207–208 accountability, 208	DAC (discretionary access control), 160, 598 daily backups, 136 DAM (database activity monitoring), 350 architectures, 350 limitations, 350 placement, 351 DAST (dynamic application security
crypto shredding, 548 cryptocurrency, 220 cryptography, 203. See also certificate(s); encryption CIA triad, 203 cipher mismatches, troubleshooting, 546 cipher suites, troubleshooting, 545 elliptic curve, 209, 535 key management, 207–208 accountability, 208 audits, 208	DAC (discretionary access control), 160, 598 daily backups, 136 DAM (database activity monitoring), 350 architectures, 350 limitations, 350 placement, 351 DAST (dynamic application security testing), 95
crypto shredding, 548 cryptocurrency, 220 cryptography, 203. See also certificate(s); encryption CIA triad, 203 cipher mismatches, troubleshooting, 546 cipher suites, troubleshooting, 545 elliptic curve, 209, 535 key management, 207–208 accountability, 208 audits, 208 backups, 207	DAC (discretionary access control), 160, 598 daily backups, 136 DAM (database activity monitoring), 350 architectures, 350 limitations, 350 placement, 351 DAST (dynamic application security testing), 95 data
crypto shredding, 548 cryptocurrency, 220 cryptography, 203. See also certificate(s); encryption CIA triad, 203 cipher mismatches, troubleshooting, 546 cipher suites, troubleshooting, 545 elliptic curve, 209, 535 key management, 207–208 accountability, 208 audits, 208 backups, 207 survivability, 208	DAC (discretionary access control), 160, 598 daily backups, 136 DAM (database activity monitoring), 350 architectures, 350 limitations, 350 placement, 351 DAST (dynamic application security testing), 95 data classifications, 627–628
crypto shredding, 548 cryptocurrency, 220 cryptography, 203. See also certificate(s); encryption CIA triad, 203 cipher mismatches, troubleshooting, 546 cipher suites, troubleshooting, 545 elliptic curve, 209, 535 key management, 207–208 accountability, 208 audits, 208 backups, 207 survivability, 208 troubleshooting, 546–549	DAC (discretionary access control), 160, 598 daily backups, 136 DAM (database activity monitoring), 350 architectures, 350 limitations, 350 placement, 351 DAST (dynamic application security testing), 95 data classifications, 627–628 commercial business, 628
crypto shredding, 548 cryptocurrency, 220 cryptography, 203. See also certificate(s); encryption CIA triad, 203 cipher mismatches, troubleshooting, 546 cipher suites, troubleshooting, 545 elliptic curve, 209, 535 key management, 207–208 accountability, 208 audits, 208 backups, 207 survivability, 208 troubleshooting, 546–549 obfuscation, 548–549	DAC (discretionary access control), 160, 598 daily backups, 136 DAM (database activity monitoring), 350 architectures, 350 limitations, 350 placement, 351 DAST (dynamic application security testing), 95 data classifications, 627–628 commercial business, 628 military and government, 628–629 dispersion, 493 exfiltration, 373
crypto shredding, 548 cryptocurrency, 220 cryptography, 203. See also certificate(s); encryption CIA triad, 203 cipher mismatches, troubleshooting, 546 cipher suites, troubleshooting, 545 elliptic curve, 209, 535 key management, 207–208 accountability, 208 audits, 208 backups, 207 survivability, 208 troubleshooting, 546–549 obfuscation, 548–549 use cases	DAC (discretionary access control), 160, 598 daily backups, 136 DAM (database activity monitoring), 350 architectures, 350 limitations, 350 placement, 351 DAST (dynamic application security testing), 95 data classifications, 627–628 commercial business, 628 military and government, 628–629 dispersion, 493 exfiltration, 373 geographic considerations, 635–637
crypto shredding, 548 cryptocurrency, 220 cryptography, 203. See also certificate(s); encryption CIA triad, 203 cipher mismatches, troubleshooting, 546 cipher suites, troubleshooting, 545 elliptic curve, 209, 535 key management, 207–208 accountability, 208 audits, 208 backups, 207 survivability, 208 troubleshooting, 546–549 obfuscation, 548–549 use cases data at rest, 205	DAC (discretionary access control), 160, 598 daily backups, 136 DAM (database activity monitoring), 350 architectures, 350 limitations, 350 placement, 351 DAST (dynamic application security testing), 95 data classifications, 627–628 commercial business, 628 military and government, 628–629 dispersion, 493 exfiltration, 373 geographic considerations, 635–637 health/financial, 630
crypto shredding, 548 cryptocurrency, 220 cryptography, 203. See also certificate(s); encryption CIA triad, 203 cipher mismatches, troubleshooting, 546 cipher suites, troubleshooting, 545 elliptic curve, 209, 535 key management, 207–208 accountability, 208 audits, 208 backups, 207 survivability, 208 troubleshooting, 546–549 obfuscation, 548–549 use cases	DAC (discretionary access control), 160, 598 daily backups, 136 DAM (database activity monitoring), 350 architectures, 350 limitations, 350 placement, 351 DAST (dynamic application security testing), 95 data classifications, 627–628 commercial business, 628 military and government, 628–629 dispersion, 493 exfiltration, 373 geographic considerations, 635–637

copyright, 632	DDoS (distributed DoS) attack, 22
patent, 631	de facto standards, 639
securing, 632–633	decoy files, 348
trade secret, 631–632	deep fakes, 226
trademark, 632	deep learning, 225
inventory and mapping, 133	deep packet inspection, 19, 130
labeling and tagging	deep web, 237–238
attributes, 130	Delphi technique, 557
blocking, 128-129	dependency management, 307–308,
LDAP attributes, 131	323–324
metadata, 130	deperimeterization, 49–50
XACML (Extensible Access Control	deployment scenarios, mobile device
Markup Language), 130–131	BYOD (bring your own device), 429
life cycle, 132	COPE (corporate owned, personally
archive or destroy, 133	enabled), 429
create, 132	corporate-owned, 429
share, 133	CYOD (choose your own device), 429
store, 133	DES (Data Encryption Standard)
use, 133	CBC (cipher block chaining), 524
loss detection, 129	CTR (Counter), 525
deep packet inspection, 130	ECB (electronic codebook), 523
DRM (digital rights management),	GCM (Galois/Counter Mode),
129–130	525–526
network traffic analysis, 130	OFB (output feedback), 524-525
network traffic decryption, 130	detective controls, 572, 596
watermarking, 129	deterrent controls, 573
ownership, 627	development environment. See also
PII (personally identifiable	software development
information), 633-634	DevOps, 93–94
processing pipeline, 349	DevSecOps, 109
remnants, 478, 634	dex2jar, 294
removal and destruction, 634-635	Diameter, 164
retention, 629	Diamond Model of Intrusion Analysis,
sovereignty, 626–627	245
third-party attestation of compliance,	differential backup, 135
637	Diffie-Hellman, 529
types, 629	dig command, 242
zones, 44–45	digital
Data Distribution Service, 468	forensics, 430–431
database storage, 197–198	signatures, 504–505
dd command, 406	watermarking, 129

directory	DNSSEC (Domain Name System
services, 61–62, 101	Security Extensions), 11, 101–102
traversal, 330	documentation
DISA STIGs, 90	data life cycle, 132-133
disaster recovery, 660-661	test plans, 105
after-action reports, 666	DoH (DNS over HTTPS), 428
cold site, 663	DoS (denial-of-service) attacks, 22,
full interruption test, 667	339–340
hot site, 663	downgrade attack, 514, 546
mobile site, 664	DRM (digital rights management),
parallel/simulation test, 667	129–130
recovery and multiple site strategies,	DTP (Dynamic Trunking Protocol), 41
662–663	due diligence team, 61
recovery service level, 659	dumpster diving, 341
RTO (recovery time objective), 659	dynamic analysis, 293
warm site, 663	dynamic linking, 405
disclosure of information, email and, 30	dynamic NAT (network address
disk imaging, 389	translation), 21
diStorm3, 294	dynamic packet filtering, 13
distributed	dynamic testing, 98–99
allocation, 76	
consensus, 221–222	E
diversity, 75	EAM (enterprise access management),
DLP (data loss prevention), 37-38, 125	178
alerts, 257	EAP (Extensible Authentication
blocking of external media, 125-126	Protocol), 167–168
clipboard privacy controls, 127	ECB (electronic codebook), 523
data classification blocking, 128-129	ECC (elliptic curve cryptography), 209,
print blocking, 126	535
RDP (Remote Desktop Protocol)	ECDH (Elliptic-Curve Diffie-Hellman),
blocking, 126–127	530
rules, 268	ECDSA (Elliptic-Curve Digital Signature
VDI (virtual desktop infrastructure)	Algorithm), 531
and, 128	edb-debugger, 294
DNP3 (Distributed Network Protocol 3),	e-discovery, 391–392, 648
466–467	EDR (endpoint detection and response),
DNS (Domain Name System), 101–102	451
custom, 428	EF (exposure factor), 558
harvesting, 240	eFuse, 432
record types, 240	electronic backups, 138
threat intelligence information and,	email. See also social engineering attacks
239–242	captured messages, 29

disclosure of information and, 30	configuration, 477–478
malware, 30	cryptanalysis, 394
messaging protocols	CTR (Counter), 525
IMAP (Internet Message Access	ECB (electronic codebook), 523
Protocol), 26	ECC (elliptic curve cryptography), 209
POP (Post Office Protocol), 27	full device, 427
SMTP (Simple Mail Transfer	GCM (Galois/Counter Mode),
Protocol), 27	525–526
MIME (Multipurpose Internet Mail	homomorphic, 221
Extensions), 210	incorrect permissions, troubleshooting,
S/MIME (Secure MIME), 533	546
spam, 28–29	keys, 205
spear phishing, 28	local drive, 439
spoofing, 27	memory, 440–441
whaling, 28	military-grade, 489–490
embedded systems, 206–207, 459	OFB (output feedback), 524-525
analysis, 391	SEDs (self-encrypted drives), 450
ASIC (application-specific integrated	shared responsibility model and, 609
circuit), 462	stream-based ciphers, 526-527
FPGA (field-programmable gate array),	end-of-support, 438
462	end-user password storage, 149
IoT (Internet of Things), 459–460	energy sector, 469
examples, 460	erasure coding, 493
methods of securing devices, 461	ERP (enterprise resource planning),
PLD (programmable logic device),	100–101
461–462	ESB (enterprise service bus), 103
SoC (system on a chip), 461	EV (extended validation) certificates, 502
employment and termination procedures,	event classifications
598–599	false negative, 367
emulation, 188, 329	false positive, 367
encapsulation ppp command, 24	true negative, 367
encryption, 132, 203-204. See also	true positive, 367
algorithms; homomorphic	evidence
encryption	chain of custody, 385–386
128-bit AES, 490	cloning, 388
algorithm, 205	integrity preservation, 392
asymmetric, public and private keys,	memory snapshots, 387
508–511	order of volatility, 386–387
bit splitting, 493	presentation, 391–392
block ciphers, 527	preservation, 388–389
CBC (cipher block chaining), 524	backups, 389

secure storage, 389	updating your exams, 675
relevance, 388	suggested plan for final review/study,
reliability, 388	676–677
system image, 388	Financial Services Information Sharing
ExifTool, 403	and Analysis Center, 104, 617
exploit frameworks, 304–305	fingerprint scan, 421
export controls, 647–648	FIPS 199 (Standards for Security
extensions, certificate, 505	Categorization of Federal
	Information and Information
F	Systems), 570–571
FaaS (function as a service), 486	firewalls, 12
facial scan, 421	advantages of, 14
false negative, 367	deep packet inspection, 19
false positive, 367	host-based, 451
FAR (false acceptance rate), 172	next-generation, 14-15
fault tolerance, 74–75	packet-filtering, 12
feature extraction, 172	placement, 15–19
federation, 61, 156, 211-212	proxy, 13
OpenID, 156–157	application-level, 13
SAML (Security Assertion Markup	circuit-level, 13
Language), 157–158	kernel, 14
Shibboleth, 158	rules, 265–266
transitive trust, 156	stateful, 12
FERMA (Federation of European Risk	firmware, patching, 442–443
Management Associations) Risk	Flash, 327
Management Standard, 589-590	foremost command, 399-400
field kit, 388	forensics, 385
fielding, 104	analysis, 389
FIFO (first-in, first-out) rotation, 137	Aircrack-ng, 403–404
file carving, 399	content, 390
foremost command, 399–400	ExifTool, 403
strings command, 400-401	hardware/embedded device, 391
file command, 403	media, 389–390
file-based storage, 197	network, 390
FIM (file integrity monitoring), 35–36,	Nmap, 403
257	Sleuth Kit, 405
final preparation, 672	software, 390
Pearson Test Prep practice test	Volatility, 404
software, 672	backup verification, 391
accessing offline, 673-674	binary analysis tools, 401
accessing online, 673	binwalk, 401
customizing your exams, 674-675	file command, 403

GDB (GNU Project debugger), 401	formal methods of software engineering,
Ghidra, 401	103
hexdump, 401	forward proxy, 22
ldd, 402	forward secrecy, 536
objdump, 402	FPGA (field-programmable gate array),
OllyDbg, 402	462
readelf, 402	fragmentation, 432
strace, 402	frameworks, 243. See also NIST (National
collection of evidence	Institute of Standards and
chain of custody, 385-386	Technology)
cloning, 388	Cyber Kill Chain, 246
memory snapshots, 387	Diamond Model of Intrusion Analysis,
order of volatility, 386–387	245
system image, 388	exploit, 304–305
digital, 430–431	MITRE ATT&CK (Adversarial
field kit, 388	Tactics, Techniques, & Common
file carving tools, 399	Knowledge), 243–245
foremost command, 399-400	risk, 573
strings command, 400-401	COSO ERM Integrated Framework,
hashing utilities, 407	588–589
sha256sum, 407	FERMA (Federation of European
ssdeep, 407	Risk Management Associations),
identification, 385	589–590
imaging tools, 405	ISO/IEC 27005:2008, 587–588
dd, 406	NIST, 574–587
FTK (Forensic Toolkit), 405–406	OSSTMM (Open Source Security
live collection tools	Testing Methodology Manual),
conntrack, 411	588
ldd command, 410	vulnerable, 323
lsof command, 410	FRR (false rejection rate), 172
netcat, 410	FTK (Forensic Toolkit), 405–406
netstat, 407–409	full backup, 135
ps command, 409	full device encryption, 427
tcpdump command, 411	fuzz testing, 95–97, 296–297
vmstat command, 409-410	fuzzy hashing, 407
Wireshark, 412-413	
presentation of evidence, 391–392	G
preservation of evidence, 388–389	gap analysis, 564
backups, 389	GCM (Galois/Counter Mode), 525–526
integrity preservation, 392	GDB (GNU Project debugger), 401
secure storage, 389	

GDPR (General Data Protection	hashing, 392, 407
Regulation), 640	Berypt, 537
general purpose certificates, 503	collisions, 393
generation-based fuzzing, 96, 297	fuzzy, 407
geofencing, 425	HMAC (hash-based message
geotagging, 426	authentication code), 520
gestures, 420	limitations, 392
GFS (grandfather/father/son) rotation,	MAC (message authentication code),
137	Poly1305, 521
Ghidra, 401	MD5, 393
GPG (GNU Privacy Guard), 211	message digest, 393, 521
gray hat, 236	one-way, 392
Group Policy, 47–48, 125, 255, 438	passwords, 393–394
guest environments, 45	RIPEMD (RACE Integrity Primitives
GUI testing, 100	Evaluation Message Digest), 521
	SHA (Secure Hashing Algorithm),
Н	519–520
H.323, 490	tools
HA (high availability), 75	sha256sum, 407
hackers, 236	ssdeep, 407
hacktivists, 234	HDFS (Hadoop Distributed File System),
Hadoop, 222–223	222–223
hardening techniques, 437	healthcare, 470
ASLR (address space layout	heterogeneity, 75
randomization), 442	hexdump utility, 401
CPU virtualization support, disabling,	H-ISAC (Health Information Sharing
439–440	and Analysis Center), 470
disabling unused services, 438	historian server, 463
enabling No Execute (NX)/Execute	HMAC (hash-based message
Never (XN) bit, 439	authentication code), 520
end-of-life devices, removing, 438	homomorphic encryption, 221
end-of-support device, removing, 438	distributed consensus, 221–222
images/templates, 438	PFE (private function evaluation), 221
local drive encryption, 439	PIR (private information retrieval), 221
memory encryption, 440-441	SFE (secure function evaluation), 221
removing unneeded services, 437	honeypots, 348
secure encrypted enclaves, 440	horizontal scaling, 74
shell restrictions, 441	host-based IDS (intrusion detection
hardware	system), 5
analysis, 391	hosting models
key manager, 150	multitenant, 193–194

single-tenant, 194	federated, 156
hot site, 663	OpenID, 156–157
HOTP (HMAC-based one-time	SAML (Security Assertion Markup
password), 175	Language), 157-158
hotspots, 427	transitive trust, 156
HSM (hardware security module),	IDS (intrusion detection system), 3
448–449	alerts, 258
HSTS (HTTP Strict Transport Security),	anomaly-based, 4
514	host-based, 5, 451
HTML5 (Hypertext Markup Language	network, 5
5), 327	rule- or heuristic-based, 4
HTTP (Hypertext Transfer Protocol)	rules, 267
headers, 117–118	signature-based, 3–4
interceptors, 304	wireless, 5
human intelligence, 243	IKE (Internet Key Exchange), 534
human interface, 462	images, 438
hunt teaming, 232–233	imaging tools, 405
hybrid cloud, 193	dd, 406
hybrid SDN (software-defined	FTK (Forensic Toolkit), 405–406
networking), 64	IMAP (Internet Message Access
hypervisor, 185	Protocol), 26
Type 1, 186	immutable systems, 352
Type 2, 187	IMPACT, 305
	incident response, 368–369, 372
I	analysis, 371
IaaS (infrastructure as a service), 195	automated, 374
IAST (interactive application security	runbooks, 374–375
testing), 95	SOAR, 375
ICS (industrial control system), 462.	containment, 371
See also protocol(s); SCADA	isolate, 371
(supervisory control and data	minimize, 371
acquisition)	detection, 370–371
BACnet (Building Automation and	forensic process, 385
Control Network), 464–465	evidence collection, 385–388
MITRE ATT&CK for, 245	identification, 385
PLC (programmable logic controller),	law enforcement and, 378-379
463	legal vs. internal corporate purposes,
historian server, 463	385
ladder logic, 463–464	lessons learned, 372
safety instrumented system, 464	non-automated response methods, 374
identity management, 155	plans, 664–665

preparation and, 369	Intel TXT (Trusted Execution
recovery, 371–372	Technology), 449
regulatory bodies and, 379	intellectual property, 630–631
reporting requirements, 616	copyright, 632
roles, 665–666	patent, 631
human resources, 377	securing, 632–633
internal and external stakeholders,	trade secret, 631–632
378	trademark, 632
legal department, 377	interception attacks, 339
public relations, 378	interface testing, 100
selecting team members, 377	Internet gateway, 21
senior leadership and, 379	interpretation, 329
testing, 370	IoC (indicator of compromise), 251
training, 369–370	alerts, 256
incremental backup, 136	antivirus, 259–260
indexing, 350	DLP, 257
inherent risk, 567	FIM, 257
injection attacks, 332	IDS/IPS, 258
command, 337	SIEM, 257
LDAP, 335	logs, 252–253
process, 337	access, 255–256
SQL, 335–336	NetFlow, 256
XML, 332–334	network, 253–254
input validation, 324	operating system, 254–255
insider threats, 234	vulnerability, 254
integer overflow, 318	responses
integrating diverse industries	ACL rules, 267
data considerations, 626–635	behavior rules, 268
policies, 626	DLP rules, 268
regulations, 626	firewall rules, 265–266
rules and, 625-626	IPS/IDS rules, 267
integration enablers, 101	signature rules, 267
directory services, 101	unusual process activity, 263-264
DNS (Domain Name System),	iOS, 432
101–102	jailbreaking, 431
ESB (enterprise service bus), 103	remote wipe feature, 422
SOA (service-oriented architecture),	side loading, 431–432
102	Xcode 7, 432
integration testing, 108	IoT (Internet of Things), 206, 459–460
integrity, 204, 205–206	examples, 460
	methods of securing devices, 461

IP video systems, 359–360	key management, 207-208, 481-482.
iPhone. See iOS	See also PKI (public key
IPS (intrusion prevention system), 3–5, 6	infrastructure)
alerts, 258	accountability, 208, 482-483
host-based, 451	audits, 208, 483
network, 6	backups, 207
rules, 267	phases, 484–485
wireless, 6	public and private keys, 508-511
IPsec, 534	states, 483–484
iptables, 265–266	survivability, 208, 483
iris scan, 421	troubleshooting, 546–549
ISA (interconnection security agreement),	key stretching, 536–537
650–651	keychain, router authentication, 25-26
ISACs (information sharing and analysis	knowledge factors, 169
centers), 287	KPIs (key performance indicators),
ISO (International Organization for	591–593
Standardization), 283, 641-643	availability, 593–594
ISO/IEC 27005:2008, 587–588	reliability, 593
IVRE, 243	scalability, 593
	KRIs (key risk indicators), 594
J	
J	
Jad Debugger, 294	L
Jad Debugger, 294	L L2TP (Layer 2 Tunneling Protocol), 213 ladder logic, 463–464
Jad Debugger, 294 jailbreaking, 431	L2TP (Layer 2 Tunneling Protocol), 213
Jad Debugger, 294 jailbreaking, 431 JavaSnoop, 294	L2TP (Layer 2 Tunneling Protocol), 213 ladder logic, 463–464
Jad Debugger, 294 jailbreaking, 431 JavaSnoop, 294 job rotation, 596	L2TP (Layer 2 Tunneling Protocol), 213 ladder logic, 463–464 LAN (local area network), 40
Jad Debugger, 294 jailbreaking, 431 JavaSnoop, 294 job rotation, 596 John the Ripper, 306–307	L2TP (Layer 2 Tunneling Protocol), 213 ladder logic, 463–464 LAN (local area network), 40 law enforcement, incident response and,
Jad Debugger, 294 jailbreaking, 431 JavaSnoop, 294 job rotation, 596 John the Ripper, 306–307 JSON, 326	L2TP (Layer 2 Tunneling Protocol), 213 ladder logic, 463–464 LAN (local area network), 40 law enforcement, incident response and, 378–379
Jad Debugger, 294 jailbreaking, 431 JavaSnoop, 294 job rotation, 596 John the Ripper, 306–307 JSON, 326 jump box, 43–44	L2TP (Layer 2 Tunneling Protocol), 213 ladder logic, 463–464 LAN (local area network), 40 law enforcement, incident response and, 378–379 LDAP (Lightweight Directory Access
Jad Debugger, 294 jailbreaking, 431 JavaSnoop, 294 job rotation, 596 John the Ripper, 306–307 JSON, 326 jump box, 43–44 jurisdictions, 615	L2TP (Layer 2 Tunneling Protocol), 213 ladder logic, 463–464 LAN (local area network), 40 law enforcement, incident response and, 378–379 LDAP (Lightweight Directory Access Protocol), 164–165, 335 ldd command, 402, 410
Jad Debugger, 294 jailbreaking, 431 JavaSnoop, 294 job rotation, 596 John the Ripper, 306–307 JSON, 326 jump box, 43–44 jurisdictions, 615	L2TP (Layer 2 Tunneling Protocol), 213 ladder logic, 463–464 LAN (local area network), 40 law enforcement, incident response and, 378–379 LDAP (Lightweight Directory Access Protocol), 164–165, 335 ldd command, 402, 410 least privilege, 597–598
Jad Debugger, 294 jailbreaking, 431 JavaSnoop, 294 job rotation, 596 John the Ripper, 306–307 JSON, 326 jump box, 43–44 jurisdictions, 615 JWT (JSON Web Token), 178–179	L2TP (Layer 2 Tunneling Protocol), 213 ladder logic, 463–464 LAN (local area network), 40 law enforcement, incident response and, 378–379 LDAP (Lightweight Directory Access Protocol), 164–165, 335 ldd command, 402, 410 least privilege, 597–598 legal compliance, 204
Jad Debugger, 294 jailbreaking, 431 JavaSnoop, 294 job rotation, 596 John the Ripper, 306–307 JSON, 326 jump box, 43–44 jurisdictions, 615 JWT (JSON Web Token), 178–179 K Kerberos, 165–166	L2TP (Layer 2 Tunneling Protocol), 213 ladder logic, 463–464 LAN (local area network), 40 law enforcement, incident response and, 378–379 LDAP (Lightweight Directory Access Protocol), 164–165, 335 ldd command, 402, 410 least privilege, 597–598 legal compliance, 204 legal holds, 648
Jad Debugger, 294 jailbreaking, 431 JavaSnoop, 294 job rotation, 596 John the Ripper, 306–307 JSON, 326 jump box, 43–44 jurisdictions, 615 JWT (JSON Web Token), 178–179 K Kerberos, 165–166 kernel, 445	L2TP (Layer 2 Tunneling Protocol), 213 ladder logic, 463–464 LAN (local area network), 40 law enforcement, incident response and, 378–379 LDAP (Lightweight Directory Access Protocol), 164–165, 335 ldd command, 402, 410 least privilege, 597–598 legal compliance, 204
Jad Debugger, 294 jailbreaking, 431 JavaSnoop, 294 job rotation, 596 John the Ripper, 306–307 JSON, 326 jump box, 43–44 jurisdictions, 615 JWT (JSON Web Token), 178–179 K Kerberos, 165–166 kernel, 445 kernel proxy firewalls, 14	L2TP (Layer 2 Tunneling Protocol), 213 ladder logic, 463–464 LAN (local area network), 40 law enforcement, incident response and, 378–379 LDAP (Lightweight Directory Access Protocol), 164–165, 335 ldd command, 402, 410 least privilege, 597–598 legal compliance, 204 legal holds, 648 lessons-learned/after-action review,
Jad Debugger, 294 jailbreaking, 431 JavaSnoop, 294 job rotation, 596 John the Ripper, 306–307 JSON, 326 jump box, 43–44 jurisdictions, 615 JWT (JSON Web Token), 178–179 K Kerberos, 165–166 kernel, 445 kernel proxy firewalls, 14 key agreement algorithms, 529	L2TP (Layer 2 Tunneling Protocol), 213 ladder logic, 463–464 LAN (local area network), 40 law enforcement, incident response and, 378–379 LDAP (Lightweight Directory Access Protocol), 164–165, 335 ldd command, 402, 410 least privilege, 597–598 legal compliance, 204 legal holds, 648 lessons-learned/after-action review, 297–298 libraries
Jad Debugger, 294 jailbreaking, 431 JavaSnoop, 294 job rotation, 596 John the Ripper, 306–307 JSON, 326 jump box, 43–44 jurisdictions, 615 JWT (JSON Web Token), 178–179 K Kerberos, 165–166 kernel, 445 kernel proxy firewalls, 14 key agreement algorithms, 529 Diffie-Hellman, 529	L2TP (Layer 2 Tunneling Protocol), 213 ladder logic, 463–464 LAN (local area network), 40 law enforcement, incident response and, 378–379 LDAP (Lightweight Directory Access Protocol), 164–165, 335 ldd command, 402, 410 least privilege, 597–598 legal compliance, 204 legal holds, 648 lessons-learned/after-action review, 297–298
Jad Debugger, 294 jailbreaking, 431 JavaSnoop, 294 job rotation, 596 John the Ripper, 306–307 JSON, 326 jump box, 43–44 jurisdictions, 615 JWT (JSON Web Token), 178–179 K Kerberos, 165–166 kernel, 445 kernel proxy firewalls, 14 key agreement algorithms, 529 Diffie-Hellman, 529 ECDH (Elliptic-Curve Diffie-	L2TP (Layer 2 Tunneling Protocol), 213 ladder logic, 463–464 LAN (local area network), 40 law enforcement, incident response and, 378–379 LDAP (Lightweight Directory Access Protocol), 164–165, 335 ldd command, 402, 410 least privilege, 597–598 legal compliance, 204 legal holds, 648 lessons-learned/after-action review, 297–298 libraries dependencies, 323–324 standard software, 323
Jad Debugger, 294 jailbreaking, 431 JavaSnoop, 294 job rotation, 596 John the Ripper, 306–307 JSON, 326 jump box, 43–44 jurisdictions, 615 JWT (JSON Web Token), 178–179 K Kerberos, 165–166 kernel, 445 kernel proxy firewalls, 14 key agreement algorithms, 529 Diffie-Hellman, 529	L2TP (Layer 2 Tunneling Protocol), 213 ladder logic, 463–464 LAN (local area network), 40 law enforcement, incident response and, 378–379 LDAP (Lightweight Directory Access Protocol), 164–165, 335 ldd command, 402, 410 least privilege, 597–598 legal compliance, 204 legal holds, 648 lessons-learned/after-action review, 297–298 libraries dependencies, 323–324 standard software, 323 license technologies, 353
Jad Debugger, 294 jailbreaking, 431 JavaSnoop, 294 job rotation, 596 John the Ripper, 306–307 JSON, 326 jump box, 43–44 jurisdictions, 615 JWT (JSON Web Token), 178–179 K Kerberos, 165–166 kernel, 445 kernel proxy firewalls, 14 key agreement algorithms, 529 Diffie-Hellman, 529 ECDH (Elliptic-Curve Diffie-	L2TP (Layer 2 Tunneling Protocol), 213 ladder logic, 463–464 LAN (local area network), 40 law enforcement, incident response and, 378–379 LDAP (Lightweight Directory Access Protocol), 164–165, 335 ldd command, 402, 410 least privilege, 597–598 legal compliance, 204 legal holds, 648 lessons-learned/after-action review, 297–298 libraries dependencies, 323–324 standard software, 323

limitations	NetFlow, 256
of hashing, 392	network, 253–254
of IDS (intrusion detection systems),	notifications, 260–261
4–5	operating system, 254–255
of NAC (network access control), 9	patch management and, 443
linking, 405	Syslog, 261–263
Linux	visitor, 359
Bash, 356	vulnerability, 254
cron command, 355–356, 357	lsof command, 410
dd command, 406	
dig command, 242	M
file command, 403	M2M (machine-to-machine)
foremost command, 399-400	communication, 206
hexdump utility, 401	MAC (mandatory access control), 160
iptables, 265–266	MAC (message authentication code), 392,
ldd command, 410	520, 521
lsof command, 410	MAC filters, 58
readelf command, 402	malware, 30
strace command, 402	commodity, 231
strings command, 400-401	ransomware, 373
traceroute tool, 240	managed configurations
virtualization and, 186	airplane mode, 427
vmstat command, 409-410	application control, 419
live collection tools	Bluetooth, 424
conntrack, 411	certificate management, 426–427
ldd command, 410	custom DNS, 428
lsof command, 410	DoH (DNS over HTTPS), 428
netcat, 410	full device encryption, 427
netstat, 407–409	geofencing, 425
ps command, 409	geotagging, 426
tcpdump command, 411	location services, 427
vmstat command, 409-410	MFA requirements, 420
Wireshark, 412-413	facial scan, 421
live migration, 477	fingerprint scan, 421
load balancers, 3	iris scan, 421
local drive encryption, 439	NFC (near-field communication),
location services, 427	424–425
logs, 252–253, 350, 478–479	over-the-air update, 422
access, 255–256	passwords, 419–420
alerts, 480	patch repository, 422
analysis, 390	peripherals, 425
configuration settings, 480	profiles, 424
-	<u> </u>

remote wipe, 422–423	IMAP (Internet Message Access
tethering, 427	Protocol), 26
token-based access, 421	POP (Post Office Protocol), 27
VPN settings, 425–426	SMTP (Simple Mail Transfer
WiFi, 423	Protocol), 27
SCEP (Simple Certificate	metadata, 130, 190
Enrollment Protocol), 423	Metasploit, 305
WPA2/3, 423	MFA (multifactor authentication), 168
management interfaces	biometrics, 420
in-band, 174	facial scan, 421
out-of-band, 174-175	fingerprint scan, 421
mandatory access control, 444	iris scan, 421
kernel, 445	microsegmentation, 40
middleware, 445	Microsoft NAP (network access
SEAndroid, 444–445	protection), 8
SELinux (Security-Enhanced Linux),	agent vs. agentless, 9
444	persistent and non-persistent agents, 9
mandatory vacation, 596-597	quarantine/remediation, 9
manual patch management, 284	middleware, 91–92, 190, 445, 468
manufacturing, 469-470. See also ICS	military-grade encryption, 489-490
(industrial control system)	misuse case testing, 99
masking, 132	mitigate strategy, 566
MD5 (message-digest 5), 393, 520	MITRE
MDM (mobile device management), 51,	ATT&CK (Adversarial Tactics,
424	Techniques, & Common
measured boot, 449-450	Knowledge), 243–245
media analysis, 389-390	CVE (Common Vulnerabilities and
memory	Exposures) database, 90
card, 169–170	ML (machine learning, 219, 220
encryption, 440–441	mobile devices, 50–52
snapshots, 387	containerization, 432
mergers and acquisitions, 60	deployment scenarios
cross-domain authentication, 61	BYOD (bring your own device), 429
data considerations, 626–635	COPE (corporate owned, personally
data sensitivity levels, 59-60	enabled), 429
due diligence team, 61	corporate-owned, 429
policies, 626	CYOD (choose your own device),
regulations, 626	429
message digest, 392, 393, 521	digital forensics, 430–431
messages, Syslog, 261–263	ECC (elliptic curve cryptography), 209
messaging protocols	jailbreaking, 431
	managed configurations

airplane mode, 427	N
airplane mode, 427 application control, 419 Bluetooth, 424 certificate management, 426–427 custom DNS, 428 DoH (DNS over HTTPS), 428 full device encryption, 427 geofencing, 425 geotagging, 426 location services, 427 MFA requirements, 420–421 NFC (near-field communication), 424–425 over-the-air update, 422 passwords, 419–420 patch repository, 422 peripherals, 425 profiles, 424 tethering, 427 token-based access, 421 VPN settings, 425–426 WiFi, 423 OEM (original equipment manufacturer), 432 remote wipe feature, 309, 422–423 ROTs (roots of trust), 176–177 side loading, 431–432 supply chain issues, 432 unauthorized application stores, 431 Modbus, 466 monitoring, 443–444 MOU (memorandum of understanding), 650 MSA (master service agreement), 649–650 MSSPs (managed security service providers), 505–506 MTBF (mean time between failure), 562	NAC (network access control), 8. See also
MSSPs (managed security service	
± '	Interagency Report 7924, "Reference Certificate Policy", 507–508 SP 800–24 Rev. 1, 657–658
multidomain certificate, 502–503 multitenancy, 193–194 mutation fuzzing, 96, 297	SP 800–34 Rev. 1, 662
Ο, ,	

SP 800-37 Rev. 1, 581-583	shared responsibility model and, 609
SP 800-39, 583-585	operational threat information, 232
SP 800-53 Rev. 4, 576-578	threat emulation, 233
SP 800-57 Revision 5, 508-511	threat hunting, 232–233
SP 800-60 Vol. 1 Rev. 1, 575-576	orchestration, 75–76, 213
SP 800–82, 463	order of volatility, 386–387
SP 800–160, 578–580	organized crime, 235
system life-cycle processes, 580–581	OSA (Open System Authentication), 58
NLP (natural language processing),	OSINT (open-source intelligence),
225–226	238–239
Nmap, 302–303, 403	OSSTMM (Open Source Security
non-credentialed scans, 275–276	Testing Methodology Manual),
non-persistent agents, 9	588
non-repudiation, 204	OTP (one-time password), 175
NPV (net present value), 562	HMAC-based, 175
nslookup command, 242	time-based, 175–176
NX (no-execute) bit, 439	out-of-band interface, 174-175
	outsourcing, 52–53
0	OVAL (Open Vulnerability and
OAuth, 166	Assessment Language), 279
obfuscation, 131, 548–549	overflows, 315
anonymization, 132	buffer, 316–318
data scrubbing, 131	integer, 318
masking, 132	over-the-air update, 422
tokenization, 131	OWASP, ZAP (Zed Attack Proxy), 319
objdump, 402	ownership factors, 169–170
object-based storage, 197	_
OCSP (Online Certificate Status	P
Protocol), 512–514	P256/P384, 535
OEM (original equipment manufacturer),	PaaS (platform as a service), 194
432	packet-filtering
OFB (output feedback), 524–525	dynamic, 13
OLA (operation-level agreement), 651	firewalls, 12
OllyDbg, 402	PA-DSS (Payment Application Data
one-way hash, 392	Security Standard), 90
open SDN (software-defined	PAP (Password Authentication Protocol),
networking), 63	24–25
open standards, 638	passive scanners, 278
OpenID, 156–157	passwordless authentication, 224-225
operating systems. See also Linux	password(s). See also identity management
logs, 254–255	crackers, 306
secure enclaves, 440	Cain and Abel, 306

John the Ripper, 306–307	invasive vs. non-invasive, 308
hash values, 393–394	permissions and access, 309-310
mobile device, 419-420	physical security considerations, 310
one-time, 175	rescanning, 310
policies, 151–156	rules of engagement, 308
repository application, 149	scope of work, 308
end-user password storage, 149	performance, 77–78
on premises vs. cloud repository, 150	peripherals, 425
patch management, 283, 442	persistence attacks, 298
automated, 284	persistent agents, 9
firmware, 442–443	PFE (private function evaluation), 221
logging and, 443	PFS (perfect forward secrecy), 536
manual, 284	PGP (Pretty Good Privacy), 29, 211
patch repository, 422	pharming, 340
patents, 631	PHI (protected health information), 470
on-path attacks, 477–478	phishing, 340
path tracing, 390	physical security, 358
pattern matching, 4	CPTED (Crime Prevention Through
payback, 561	Environmental Design), 361
PBKDF2 (Password-Based Key	IP video systems, 359–360
Derivation Function 2), 537	lighting, 358–359
PCAP (packet capture), 251	natural access control, 361
protocol analyzers, 252	natural surveillance, 361
tshark command, 252	natural territorial reinforcement, 361
PCI DSS (Payment Card Industry Data	visitor logs, 359
Security Standard), 639–640	physiological biometric systems, 170–171
Peach, 97	PII (personally identifiable information),
Pearson Test Prep practice test software	633–634
accessing offline, 673–674	PIN code, 420
accessing online, 673	PIR (private information retrieval), 221
customizing your exams, 674–675	pivoting, 297
updating your exams, 675	PKI (public key infrastructure), 202, 210
peer review, 109	499
peering, 59	CA (certificate authority), 499-500
peer-to-peer networks, 49	profiles, 507
PEnE (Policy Enforcement Engine), 176,	RA (registration authority), 499
177	subordinate/intermediate CA, 500
penetration testing	use cases
asset inventory, 308–309	email, 210
corporate policy considerations, 310	federation, 211–212
facility considerations, 310	GPG (GNU Privacy Guard), 211

trust models, 212	separation of duties, 595-596
web services, 210	PRI (product release information), 422
PLA (privacy-level agreement), 651	primary provider BCDR, 486
placement	principle of least privilege, 597-598
DAM (database activity monitoring),	print blocking, 126
351	privacy
firewall, 15–19	anonymization, 132
WAF (web application firewall), 7	impact assessment, 660
PLCs (programmable logic controllers),	personal health information, 430
462, 463	private cloud, 193
historian server, 463	private keys, 508–511
ladder logic, 463–464	privilege
PLD (programmable logic device),	escalation, 151
461–462	management, 151
policies, 38, 48, 595	PRL (preferred roaming list), 422
change control, 614	proactive and detection techniques, 347
conditional access, 419	developing countermeasures, 347
contingency planning, 658	dynamic network configurations, 348
corporate, 310	honeypots, 348
employment and termination	simulators, 348
procedures, 598–599	process injection, 337
job rotation, 596	processing pipeline, 349
mandatory vacation, 596-597	data, 349
mergers and acquisitions, 626	stream, 349
password, 151–156	profiles
separation of duties, 595-596	MDM configuration, 424
social media, 239	PKI (public key infrastructure), 507
Poly1305, 521	protective controls, 572
POP (Post Office Protocol), 27	protocol(s)
port mirroring, 31	analyzers, 252, 302
port scanners, 302–303	anomaly-based IDS (intrusion
PowerShell, 357	detection system), 4
PPP (Point-to-Point Protocol)	authentication
encapsulation, 24	802.1X, 166–167
PPTP (Point-to-Point Tunneling	Diameter, 164
Protocol), 213	EAP (Extensible Authentication
preescalation tasks, 368	Protocol), 167–168
preventive controls, 351–352	Kerberos, 165–166
hardening, 352	LDAP (Lightweight Directory
immutable systems, 352	Access Protocol), 164–165
sandbox detonation, 352-353	

MFA (multifactor authentication),	public keys, 508–511
168	public services, 470–471
OAuth, 166	Python, 357–358
RADIUS (Remote Authentication	
Dial-in User Service), 162	Q
TACACS (Terminal Access	qualitative risk analysis, 557
Controller Access Control	quantitative risk analysis, 558
System), 163–164	ALE (annualized loss expectancy), 563
CAN (Controller Area Network), 465	ARO (annualized rate of occurrence),
CIP (Common Industrial Protocol),	563
467–468	asset value, 558-559
Data Distribution Service, 468	EF (exposure factor), 558
decoy files, 348	MTBF (mean time between failure),
DNP3 (Distributed Network Protocol	562
3), 466–467	MTTR (mean time to recovery), 562
IPsec, 534	NPV (net present value), 562
messaging	payback, 561
IMAP (Internet Message Access	ROI (return on investment), 560-561
Protocol), 26	SLE (single loss of expectancy),
POP (Post Office Protocol), 27	563–564
SMTP (Simple Mail Transfer	TCO (total cost of ownership),
Protocol), 27	559–560
Modbus, 466	quantum computing, 220
OSCP (Online Certificate Status	quarantine/remediation, Microsoft NAP
Protocol), 513–514	(network access protection), 9
S/MIME (Secure MIME), 533	_
SSH (Secure Shell), 534–535	R
SSL (Secure Sockets Layer), 532–533	RA (registration authority), 499
Syslog, 261–263	race conditions, 315, 355
TLS (Transport Layer Security), 533	RADIUS (Remote Authentication Dial-in
tunneling, 213	User Service), 162–163
VPNs (virtual private networks)	RAID (redundant array of inexpensive
and, 10	disks), 138–142
Zigbee, 467	rainbow table attack, 393
provisioning/deprovisioning, 189 proxy firewalls, 13	ransomware, 373
application-level, 13	RBAC (role-based access control), 161
circuit-level, 13	RDP (Remote Desktop Protocol),
kernel, 14	126–127
ps command, 409	readelf command, 402
public cloud, 193	recovery controls, 573
public cloud, 173	redundant hardware, 452

Regex Fuzzer, 97	software, 294
regions, 49	tools, 294
regression, 107, 108–109, 324	reverse proxy, 22
regular expressions, 268	revoked certificates, 543
regulations, 637	Rijndael algorithm, 527
due diligence/due care, 646–647	RIPEMD (RACE Integrity Primitives
export controls, 647–648	Evaluation Message Digest), 521
GDPR (General Data Protection	risk
Regulation), 640	analysis. See also qualitative risk
legal holds, 648	analysis; quantitative risk analysis
relevance, 388	qualitative, 557
reliability, 593	quantitative, 558
remote wipe, 422–423	appetite, 594
remote work, 50	assessment, 555–556
remote-access VPN (virtual private	impact, 556–557
network), 11	likelihood, 556
Replicant, 461	exceptions, 567–568
replication, 76	frameworks, 573. See also NIST
reports, lessons-learned/after-action,	(National Institute of Standards
297–298	and Technology)
repositories, 93	COSO ERM Integrated Framework,
residual risk, 567	588–589
resiliency, 74	FERMA (Federation of European
automation, 76	Risk Management Associations),
autoscaling, 76	589–590
bootstrapping, 77	ISO/IEC 27005:2008, 587–588
caching, 80	NIST, 574–587
CDN (content delivery network),	OSSTMM (Open Source Security
79–80	Testing Methodology Manual),
clustering, 76	588
distributed allocation, 76	handling techniques, 565
diversity, 75	accept, 565
fault tolerance, 74–75	avoid, 566
HA (high availability), 75	mitigate, 566
orchestration, 75-76	transfer, 565
replication, 76	inherent, 567
REST (representational state transfer),	management lifecycle, 568-569
326	assess, 570
reverse engineering, 294	control, 570–573
Ghidra, 401	identify, 569–570
hardware, 294–295	review, 573

register, 590–591	sandbox(ing), 92–93
residual, 567	detonation, 352-353
tolerance, 594	escape, 337
tracking, 590	SAST (static application security
rogue access points, 295	testing), 95
ROI (return on investment), 560–561	SCA (software composition analysis), 296
rooting, 431	SCADA (supervisory control and data
rotation schemes, 136–137	acquisition), 462–463
ROTs (roots of trust), 176–177	scalability, 73, 191, 593
routers, 22–23	horizontal, 74
authentication, 24-26	vertical, 73–74
PPP (Point-to-Point Protocol)	SCAP (Security Content Automation
encapsulation, 24	Protocol), 278, 298
routing table, 23–24, 239	ARF (Asset Reporting Format), 282
RPO (recovery point objective), 659	CCE (Common Configuration
RSA (Rivest, Shamir, and Adleman),	Enumeration), 282
530–531	CPE (Common Platform
RTO (recovery time objective), 659	Enumeration), 279
RTUs (remote terminal units), 462	CVE (Common Vulnerabilities and
rule- or heuristic-based IDS (intrusion	Exposures), 279
detection system), 4	CVSS (Common Vulnerability Scoring
rule sets, 613	System), 279–282
rule-based access control, 161	OVAL (Open Vulnerability and
rules	Assessment Language), 279
ACL, 267, 612–613	XCCDF (Extensible Configuration
behavior, 268	Checklist Description Format),
DLP (data loss prevention), 268	278–279
of engagement, 308	SCEP (Simple Certificate Enrollment
firewall, 265–266	Protocol), 423
IPS/IDS, 267	screened subnet, 44
signature, 267	script kiddie, 235
Snort, 258	scrubbing, 131
RUM (real user monitoring), 99	SDN (software-defined networking),
runbooks, 374–375	62–63
	hybrid, 64
S	open, 63
SaaS (software as a service), 194	overlay, 64–65
safety instrumented system, 464	sealing, 446
Salsa20, 528	SEAndroid, 444–445. See also Android
SAML (Security Assertion Markup	search engines, threat intelligence
Language), 157–158	information and, 242-243

searching, 350	lighting, 358–359
sectors	natural access control, 361
energy, 469	natural surveillance, 361
facility services, 471	natural territorial reinforcement, 361
healthcare, 470	templates, 86–87
manufacturing, 469-470	wireless network, 56
public services, 470–471	MAC filter, 58
public utilities, 470	OSA (Open System Authentication),
secure boot, 446–447	58
secure coding standards, 89-90	SKA (Shared Key Authentication),
application vetting process, 90-91	58
CVE (Common Vulnerabilities and	SSID broadcast, 57
Exposures) database, 90	WPA (Wi-Fi Protected Access),
DISA STIGs, 90	56, 57
PA-DSS (Payment Application Data	WPA3 (Wi-Fi Protected Access
Security Standard), 90	3), 57
secure enclaves, 440	SEDs (self-encrypted drives), 450
security	segmentation, 39
accreditation, 638	ACLs (access control lists), 49
analytics, 348–349	air gap, 49
automation, 77, 355–356	availability zone, 46–47
awareness training, 369-370, 599-601	cloud, 50
baselines, 438	data zones, 44–45
controls, 556–557, 570–572	deperimeterization, 49–50
by default, 87	guest environments, 45
by deployment, 87	jump box, 43–44
by design, 87	LAN (local area network), 40
frameworks, 243	micro, 40
Cyber Kill Chain, 246	mobile, 50–52
Diamond Model of Intrusion	peer-to-peer networks, 49
Analysis, 245	regions, 49
MITRE ATT&CK (Adversarial	remote work, 50
Tactics, Techniques, & Common	screened subnet, 44
Knowledge), 243–245	staging environments, 45
legal compliance, 204	VLAN (virtual local area network),
misconfiguration, 319–320	40–41
mobile, 209	hopping, 42–43
physical	trunk links, 41–42
CPTED (Crime Prevention	VPC (virtual private cloud), 46
Through Environmental	VPN (virtual private network), 45–46
Design), 361	wireless network, 53
IP video systems, 359–360	APs (access points), 53

infrastructure mode vs. ad hoc	IDS (intrusion detection system), 3
mode, 54	anomaly-based, 4
SSID (service set identifier), 53	limitations of, 4–5
zero trust, 49–50	network, 5
self-assessment, 283	rule- or heuristic-based, 4
self-healing hardware, 452	signature-based, 3-4
self-signed certificates, 544–545	wireless, 5
SELinux (Security-Enhanced Linux), 444	IPS (intrusion prevention system), 6
sensors, 32, 462	network, 6
antivirus, 39	wireless, 6
DLP (data loss prevention), 37-38	Microsoft NAP (network access
FIM (file integrity monitoring), 35–36	protection)
netflow, 36–37	agent vs. agentless, 9
SIEM (security information and event management), 33–34	persistent and non-persistent agents,
advantages and disadvantages of, 35	quarantine/remediation, 9
agent-based collection, 33	NAC (network access control), 8, 10
agentless collection, 33	NAT (network address translation),
log sources, 34	19–20
when to use, 35	dynamic, 21
SNMP (Simple Network Management	stateful, 20
Protocol) traps, 36	static, 21
separation of duties, 595-596	UTM (unified threat management), 11
server-based	VPN (virtual private network), 10–11
application virtualization, 189	WAF (web application firewall), 6–7
vulnerability scanning, 276–277	wireless network
serverless computing, 486-487	WEP (Wired Equivalent Privacy, 56
server-side processing, 325–326	WPA2 (Wi-Fi Protected Access 2, 57
services	SFC command, 35–36
DNSSEC (Domain Name System	SFE (secure function evaluation), 221
Security Extensions), 11	SHA (Secure Hashing Algorithm),
firewalls, 12	519–520
advantages of, 14	sha256sum, 407
deep packet inspection, 19	shared credentials, 619
NGFWs (next-generation firewalls),	shared responsibility model, 607
14–15	client, 609
packet-filtering, 12	application, 609
placement, 15-19	data, 609
proxy, 13–14	encryption, 609
stateful, 12	operating systems, 609

cloud service provider, 607	SOA (service-oriented architecture), 102
compute resources, 608	SOAP (Simple Object Access Protocol),
geographic location, 608	206, 329
infrastructure, 608	SOAR (security orchestration,
services, 608–609	automation, and response), 77, 375
shell restrictions, 441	SoC (system on a chip), 461
Shibboleth, 158	social engineering attacks, 340, 374
Shodan, 243	dumpster diving, 341
shoulder surfing, 341	identity theft, 341
side loading, 431–432	pharming, 340
side-channel analysis, 293	phishing, 340
SIEM (security information and event	shoulder surfing, 341
management), 33-34, 479	spear phishing, 28
advantages and disadvantages of, 35	whaling, 28
agent-based collection, 33	social media, threat intelligence
agentless collection, 33	information and, 238-239
log sources, 34	software, 91-92. See also testing
Snort, 258	analysis, 390
when to use, 35	assurance, 92
signature rules, 267	composition analysis, 322-323
signature-based IDS (intrusion detection	fielding, 104
system), 3–4	insertions, 104
simulators, 348	libraries, 481, 612
single-tenancy, 194	modules, 323
site-to-site VPN (virtual private network),	patch management, 283
11	automated, 284
SKA (Shared Key Authentication), 58	manual, 284
slack space analysis, 390	reverse engineering, 294
SLAs (service-level agreements), 478,	sandboxing, 92–93
607, 649	upgrades, 104
SLE (single loss of expectancy), 563–564	validating third-party libraries, 93
Sleuth Kit, 405	Waterfall model, 113
smart cards, 170, 209-210	software development
S/MIME (Secure MIME), 210, 533	Agile, 109–110, 111, 112–113
SMTP (Simple Mail Transfer Protocol),	DevSecOps, 109
27	spiral model, 111–112, 114
sniffers, 302, 412-413. See also protocol	versioning, 114–116
analyzers	Waterfall method, 110
SNMP (Simple Network Management	software engineering
Protocol), 36	CD (continuous delivery), 116
Snort, 258	CI (continuous integration), 116

formal methods, 103	static
source code escrows, 616	analysis, 293
spam, 28–29	linking, 405
SPAN (switched port analyzer) ports, 31	NAT (network address translation), 21
spear phishing, 28	testing, 98
SPF (Sender Policy Framework), 27	statistical anomaly-based IDS (intrusion
spiral model, 111–112, 114	detection system), 4
spoofing, email, 27	steganalysis, 390, 394
SQL (Structured Query Language)	steganography, 129
injection, 335–336	storage
SRTM (security requirements traceability	backup, 136
matrix), 103	bit splitting, 493
ssdeep, 407	blob, 198
SSH (Secure Shell), 534–535	block, 198
SSHDroid, 445	collaboration tools, 491-492
SSID (service set identifier), 53	configurations, 492
SSL (Secure Sockets Layer), 212,	database, 197–198
532–533	design patterns, 87–88
SSO (single sign-on), 157, 177–178	evidence, 389
staging environments, 45	file-based, 197
stakeholder management	object-based, 197
best practices, 375–376	password repository application
selecting the incident response	end-user password storage, 149
team, 377	on premises vs. cloud repository, 150
standard software library, 323	RAID (redundant array of inexpensive
standards, 637-638	disks), 138–142
adherence to, 638	replication, 76
competing, 639	smart cards, 209-210
de facto, 639	USB, controlling the use of, 125-126
ISO (International Organization for	strace, 402
Standardization), 641–643	strategic threat information, 232
lack of, 639	stream pipeline, 349
open, 638	stream-based ciphers, 526-527
PCI DSS (Payment Card Industry	strings command, 400–401
Data Security Standard), 639-640	Stuxnet virus, 462
STAR (Security Trust Assurance and	subordinate/intermediate CA, 500
Risk), 646	supply chain, 615-616
stateful	surveillance, natural, 361
firewalls, 12	survivability, key management, 483
matching, 4	swipe patterns, 420
NAT (network address translation), 20	switches, SFC command, 35–36

symmetric algorithms, 522	IAST (interactive application security
3DES (Triple Digital Encryption	testing), 95
Standard), 528	incident response and, 370
AES (Advanced Encryption Standard),	integration, 108
527	interface, 100
DES	misuse case, 99
CBC (cipher block chaining), 524	peer review, 109
CTR (Counter), 525	plans, 105
ECB (electronic codebook), 523	regression, 107, 108–109
GCM (Galois/Counter Mode),	SAST (static application security
525–526	testing), 95
OFB (output feedback), 524-525	software composition analysis, 322–323
SYN flood, 339	static, 98
synthetic transaction monitoring, 98–99	technical, 618
Sysinternals, 264	templates, 105–107
Syslog, 261–263	unit, 107–108
system apps, 431	user acceptance, 108
system image, 388	validation, 107
•	tethering, 427
Т	third-party
TACACS (Terminal Access Controller	assessment, 283
Access Control System), 163–164	dependencies, 616
tactical threat information, 231	code, 617
tags, 190	hardware, 617
tampering, 309	mitigating risks, 618-619
targeted attacks, 232	modules, 618
Task Manager, 263–264	libraries, validating, 93
TCO (total cost of ownership), 50,	threat intelligence information, 231.
559–560	See also actors
tcpdump command, 411	collection methods
teardrop attack, 340	DNS records, 239–242
telecommuting, 50	routing tables, 239
telemetry system, 462	search engines, 242–243
templates, 86–87, 105–107, 438	operational, 232
test coverage analysis, 99–100	threat emulation, 233
testing	threat hunting, 232–233
acceptance, 107	sources, 237
DAST (dynamic application security	advisories, 285
testing), 95	bulletins, 286
dynamic, 98–99	deep web, 237–238
fuzz, 95–97, 296–297	intelligence feeds, 237
	ISACs, 287

news reports, 287	chapter-ending review, 676
OSINT (open-source intelligence),	Pearson Test Prep practice test soft-
238–239	ware, 672
proprietary, 238	fuzzers, 96–97
vendor websites, 287	hashing, 407
strategic, 232	sha256sum, 407
tactical, 231	ssdeep, 407
TLS (Transport Layer Security), 212, 533	HTTP interceptors, 304
token device, 169	imaging, 405
token-based access, 421	dd, 406
tokenization, 131	FTK (Forensic Toolkit), 405-406
tools	live collection
analysis	conntrack, 411
Aircrack-ng, 403–404	ldd command, 410
ExifTool, 403	lsof command, 410
Nmap, 403	netcat, 410
Sleuth Kit, 405	netstat, 407–409
Volatility, 404	ps command, 409
binary analysis, 401	tcpdump command, 411
binwalk, 401	vmstat command, 409-410
file command, 403	Wireshark, 412-413
GDB (GNU Project debugger), 401	password crackers, 306
Ghidra, 401	Cain and Abel, 306
hexdump, 401	John the Ripper, 306–307
ldd, 402	port scanners, 302–303
objdump, 402	PowerShell, 357
OllyDbg, 402	protocol analyzers, 302
readelf, 402	reverse engineering, 294
strace, 402	SCA (software composition analysis),
Censys, 243	296
collaboration, 488	SCAP (Security Content Automation
audio conferencing, 491	Protocol) scanner, 298
storage and document, 491–492	SIEM (security information and event
video conferencing, 489-491	management), 479
web conferencing, 488–489	Snort, 258
dependency management, 308	Task Manager, 263–264
eFuse, 432	traceroute/tracert, 240
exploit frameworks, 304–305	traffic analyzers, 299
file carving, 399	vendor assessment, 616
foremost command, 399-400	vulnerability scanners, 300–301
strings command, 400–401	Windows Software Licensing
for final preparation, 672	Management, 353

WLAN vulnerability scanners, 295	trunk links, 41–42
TOTP (time-based one-time password),	trust models, 212, 506
175–176	Trusted Foundry program, 616
TPM (Trusted Platform Module) chip,	trusted providers, 505-506
179, 445–446	trustworthy computing
traceroute tool, 240	attestation, 448
tracert, 240	HSM (hardware security module),
trade secret, 631–632	448–449
trademark, 632	measured boot, 449-450
tradeoff analysis, 595	secure boot, 446-447
traffic analyzers, 299	SEDs (self-encrypted drives), 450
traffic anomaly-based IDS (intrusion	TPM (Trusted Platform Module) chip,
detection system), 4	445–446
traffic mirroring, 30	UEFI (Unified Extensible Firmware
network tap, 32	Interface), 447–448
port mirroring, 31	tshark command, 252
SPAN (switched port analyzer)	tunneling protocols, 213
ports, 31	two-factor authentication, 168
VPC (virtual private cloud), 32	Type 1 hypervisor, 186
training, security awareness, 369–370,	Type 2 hypervisor, 187
599–601	
transaction log backups, 136	U
Transaction Signature (TSIG), 11	UEBA (user and entity behavior
transfer strategy, 565	analytics), 452
transitive trust, 156	UEFI (Unified Extensible Firmware
transmission control, 618–619	Interface), 447–448
triage event, 367–368	United States, COPPA (Children's
troubleshooting	Online Privacy Protection
certificates	Act), 644
chain issues, 544-545	unsigned applications, 431
incorrect name, 543-544	unstructured data, 222–223
revoked, 543	updates
validity dates, 542	over-the-air, 422
wrong type, 543	PRI (product release information), 422
cryptography	PRL (preferred roaming list), 422
cipher mismatches, 546	US EPA (Environmental Protection
cipher suites, 545	Agency), 567–568
incorrect permissions, 546	US NSA (National Security Agency),
keys, 546–549	489–490
weak signing algorithm, 545	usability, 595
true negative, 367	USB devices, controlling the use of,
true positive, 367	125–126

user acceptance testing, 108	provisioning/deprovisioning, 189
utilities, 470	VM (virtual machine), 185
UTM (unified threat management), 11	visitor logs, 359
	VLAN (virtual local area network), 11,
V	40–41
validating third-party libraries, 93	hopping, 42–43
validation testing, 107	trunk links, 41–42
VDI (virtual desktop infrastructure),	VM (virtual machine), 92-93, 185
128, 189	escape, 337–338
vendor(s)	hopping, 337
assessment tools, 616	live migration, 477
geographical considerations, 615	sandbox escape, 337
lock-in/lock-out, 610	vmstat command, 409-410
meeting client requirements, 610	Volatility, 404
change management, 611	VPC (virtual private cloud), 32, 46, 196
configuration management, 611–612	VPN (virtual private network), 10–11,
device and technical configurations,	45–46, 212
612–615	IPsec, 534
legal, 610–611	PFS (perfect forward secrecy), 536
staff turnover, 612	remote-access, 11
source code escrows, 616	settings, 425–426
supply chain, 615-616	site-to-site, 11
support availability, 615	SSL (Secure Sockets Layer), 212
third-party dependencies, 616	TLS (Transport Layer Security), 212
code, 617	tunneling protocols, 213
hardware, 617	VR (virtual reality), 223–224
modules, 618	vulnerability(ies), 315
viability, 610	AJAX (Asynchronous JavaScript and
verification, of backups, 391	XML), 327–328
versioning, 114–116	assessment
vertical scaling, 73–74	corporate policy considerations, 310
video conferencing, 489-491	facility considerations, 310
virtualization, 79, 186	invasive vs. non-invasive, 308
advantages of, 185	permissions and access, 309–310
application, 189	physical security considerations, 310
containers, 187–188	rescanning, 310
CPU, 439–440	scope of work, 308
emulation, 188	broken authentication, 318–319
hypervisor, 185	browser extensions, 326
Type 1, 186	ActiveX, 327
Type 2, 187	Flash, 327
on Linux machines, 186	certificate errors, 321

end of support/end of life, 324 frameworks, 323	W WAF (web application firewall), 6–7
HTML5 (Hypertext Markup Language	warm site, 663
5), 327	Waterfall model, 110, 113
improper headers, 320	watermarking, 129
information disclosure, 321	wearable devices, security issues
logs, 254	encrypted and unencrypted
overflow, 315	communication, 430
buffer, 316–318	health privacy, 430
integer, 318	personal data theft, 430
poor exception handling, 319	physical reconnaissance, 430
race conditions, 315	unauthorized remote activation/
regression issues, 324	deactivation of devices or
rules of engagement, 308	features, 430
scans, 275, 300-301. See also event	web conferencing, 488–489
classifications	web security, 206
active, 278	HTTP (Hypertext Transfer Protocol)
agent-based, 276–277	headers, 117–118
cloud-based, 300	OWASP (Open Web Application
credentialed, 275–276	Security Project), 117
criticality ranking, 277	websites, OWASP, 117
CVSS (Common Vulnerability	WEP (Wired Equivalent Privacy, 56
Scoring System), 279–282	whaling, 28
non-credentialed, 275–276	WhatsUp Gold, 299
passive, 278	white hat, 236
premises-based, 300–301	WIDS (wireless intrusion detection
SCAP (Security Content Automation	system), 5
Protocol), 278	WiFi, 423
server-based, 276–277	SCEP (Simple Certificate Enrollment
wireless, 295	Protocol), 423
XCCDF (Extensible Configuration	WPA2/3, 423
Checklist Description Format),	wildcard certificate, 501
278–279	Windows
security misconfiguration, 319–320	Group Policy. See Group Policy
SOAP (Simple Object Access Protocol),	Task Manager, 263–264
329	WIPS (wireless intrusion prevention
unsafe functions, 323	system), 6
unsecure references, 319	wireless networks
weak ciphers, 322, , 322	802.11
weak cryptography implementations, 321–322	APs (access points), 53

423

infrastructure mode vs. ad hoc mode, 54	WPA3 (Wi-Fi Protected Access 3), 57, 423
SSID (service set identifier), 53	WSS (Web Services Security), 206
security, 56	
MAC filter, 58	X-Y
OSA (Open System Authentication),	X.500, 164
58	X.509 certificate, 503
SKA (Shared Key Authentication),	CN (Common Name), 505
58	SAN (Subject Alternative Name), 505
SSID broadcast, 57	XACML (Extensible Access Control
WEP (Wired Equivalent Privacy, 56	Markup Language), 130-131
WPA (Wi-Fi Protected Access),	XCCDF (Extensible Configuration
56, 57	Checklist Description Format),
WPA2 (Wi-Fi Protected Access 2, 57	278–279
WPA3 (Wi-Fi Protected Access	Xcode 7, 432
3), 57	XML (Extensible Markup Language), 30,
standards	332–334
802.11a, 54	XN (never execute) bit, 439
802.11ac, 55	XSS (cross-site scripting) attacks, 331
802.11ax, 55	
802.11b, 54	Z
802.11f, 54	ZAP (Zed Attack Proxy), 319
802.11g, 55	Zenmap, 302–303
802.11n, 55	zero trust, 49–50
Wireshark, 412–413	Zigbee, 467
WPA (Wi-Fi Protected Access), 56, 57	
WPA2 (Wi-Fi Protected Access 2, 57,	