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Praise for Modern Software Engineering
“Modern Software Engineering gets it right and describes the ways skilled practitioners actually engi-
neer software today. The techniques Farley presents are not rigid, prescriptive, or linear, but they are 
disciplined in exactly the ways software requires: empirical, iterative, feedback-driven, economical, 
and focused on running code.” 

—Glenn Vanderburg, Director of Engineering at Nubank

“There are lots of books that will tell you how to follow a particular software engineering practice; 
this book is different. What Dave does here is set out the very essence of what defines software  
engineering and how that is distinct from simple craft. He explains why and how in order to master 
software engineering you must become a master of both learning and of managing complexity, how 
practices that already exist support that, and how to judge other ideas on their software engineer-
ing merits. This is a book for anyone serious about treating software development as a true engi-
neering discipline, whether you are just starting out or have been building software for decades.” 

—Dave Hounslow, Software Engineer

“These are important topics and it’s great to have a compendium that brings them together as one 
package.” 

—Michael Nygard, author of Release IT, professional programmer,  
and software architect

“I’ve been reading the review copy of Dave Farley’s book and it’s what we need. It should be required 
reading for anyone aspiring to be a software engineer or who wants to master the craft. Pragmatic, 
practical advice on professional engineering. It should be required reading in universities and  
bootcamps.”

—Bryan Finster, Distinguished Engineer and  
Value Stream Architect at USAF Platform One

A01_Farley_FM_pi-xxviii_new1.indd   1 12/10/21   3:21 PM



A01_Farley_FM_pi-xxviii_new1.indd   4 07/10/21   1:25 PM

This page intentionally left blank 



MODERN SOFTWARE ENGINEERING

A01_Farley_FM_pi-xxviii_new1.indd   3 07/10/21   1:25 PM



A01_Farley_FM_pi-xxviii_new1.indd   4 07/10/21   1:25 PM

This page intentionally left blank 



MODERN SOFTWARE ENGINEERING

DOING WHAT WORKS TO BUILD  

BETTER SOFTWARE FASTER

David Farley

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town 
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City 

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

A01_Farley_FM_pi-xxviii_new1.indd   5 07/10/21   1:25 PM



Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those des-
ignations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital 
letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and 
assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or 
arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic versions; cus-
tom cover designs; and content particular to your business, training goals, marketing focus, or branding interests), please contact our 
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com. 

For questions about sales outside the U.S., please contact intlcs@pearson.com. 

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2021947543

Copyright © 2022 Pearson Education, Inc.

Cover image: spainter_vfx/Shutterstock

All rights reserved. This publication is protected by copyright, and permission must be obtained from the publisher prior to any pro-
hibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, 
recording, or likewise. For information regarding permissions, request forms and the appropriate contacts within the Pearson Education 
Global Rights & Permissions Department, please visit www.pearson.com/permissions.

ISBN-13: 978-0-13-731491-1  
ISBN-10: 0-13-731491-4

ScoutAutomatedPrintCode

A01_Farley_FM_pi-xxviii_new1.indd   6 07/10/21   1:25 PM

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearson.com/permissions


Pearson’s Commitment to Diversity, Equity, and Inclusion
Pearson is dedicated to creating bias-free content that reflects the diversity of all learners. We 
embrace the many dimensions of diversity, including but not limited to race, ethnicity, gender, 
socioeconomic status, ability, age, sexual orientation, and religious or political beliefs. 

Education is a powerful force for equity and change in our world. It has the potential to deliver 
opportunities that improve lives and enable economic mobility. As we work with authors to create 
content for every product and service, we acknowledge our responsibility to demonstrate inclusivity 
and incorporate diverse scholarship so that everyone can achieve their potential through learning. 
As the world’s leading learning company, we have a duty to help drive change and live up to our 
purpose to help more people create a better life for themselves and to create a better world.

Our ambition is to purposefully contribute to a world where:

• Everyone has an equitable and lifelong opportunity to succeed through learning.

• Our educational products and services are inclusive and represent the rich diversity of  
learners.

• Our educational content accurately reflects the histories and experiences of the learners we 
serve.

• Our educational content prompts deeper discussions with learners and motivates them to 
expand their own learning (and worldview).

While we work hard to present unbiased content, we want to hear from you about any concerns or 
needs with this Pearson product so that we can investigate and address them. 

• Please contact us with concerns about any potential bias at  
https://www.pearson.com/report-bias.html.

A01_Farley_FM_pi-xxviii_new1.indd   7 07/10/21   1:25 PM

https://www.pearson.com/report-bias.html


A01_Farley_FM_pi-xxviii_new1.indd   4 07/10/21   1:25 PM

This page intentionally left blank 



I would like to dedicate this book to my wife Kate and to my sons, Tom and Ben. 
Kate has been unfailingly supportive of my writing and my work over many years and is always an 

intellectually stimulating companion as well as my best friend. 
Tom and Ben are young men whom I admire as well as love as a parent, and it has been my plea-

sure, while working on this book, to have also had the privilege to work alongside them on several 
joint ventures. Thanks for your help and support.

A01_Farley_FM_pi-xxviii_new1.indd   9 07/10/21   1:25 PM



A01_Farley_FM_pi-xxviii_new1.indd   4 07/10/21   1:25 PM

This page intentionally left blank 



xi

Contents
Foreword  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxv

About the Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvii 

Part I What Is Software Engineering? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Engineering—The Practical Application of Science . . . . . . . . . . . . . . . . . . . . . . . . 3

What Is Software Engineering?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Reclaiming “Software Engineering” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

How to Make Progress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

The Birth of Software Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Shifting the Paradigm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 What Is Engineering? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Production Is Not Our Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Design Engineering, Not Production Engineering . . . . . . . . . . . . . . . . . . . . . . . . 12

A Working Definition of Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Engineering != Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Why Does Engineering Matter? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

The Limits of “Craft” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Precision and Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Managing Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Repeatability and Accuracy of Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Engineering, Creativity, and Craft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Why What We Do Is Not Software Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Trade-Offs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

The Illusion of Progress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

A01_Farley_FM_pi-xxviii_new1.indd   11 07/10/21   1:25 PM



xii Contents

The Journey from Craft to Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Craft Is Not Enough . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Time for a Rethink? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Fundamentals of an Engineering Approach . . . . . . . . . . . . . . . . . . . . . . 31
An Industry of Change? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

The Importance of Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Applying Stability and Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

The Foundations of a Software Engineering Discipline . . . . . . . . . . . . . . . . . . . . 36

Experts at Learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Experts at Managing Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Part II Optimize for Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Working Iteratively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Practical Advantages of Working Iteratively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Iteration as a Defensive Design Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

The Lure of the Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Practicalities of Working Iteratively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
A Practical Example of the Importance of Feedback . . . . . . . . . . . . . . . . . . . . . . 58

Feedback in Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Feedback in Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Feedback in Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Feedback in Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Prefer Early Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Feedback in Product Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Feedback in Organization and Culture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

A01_Farley_FM_pi-xxviii_new1.indd   12 07/10/21   1:25 PM



xiiiContents

6 Incrementalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Importance of Modularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Organizational Incrementalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Tools of Incrementalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Limiting the Impact of Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Incremental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7 Empiricism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Grounded in Reality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Separating Empirical from Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

“I Know That Bug!” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Avoiding Self-Deception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Inventing a Reality to Suit Our Argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Guided by Reality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8 Being Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
What Does “Being Experimental” Mean? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Controlling the Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Automated Testing as Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Putting the Experimental Results of Testing into Context . . . . . . . . . . . . . . . . . . 98

Scope of an Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Part III Optimize for Managing Complexity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103

9 Modularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Hallmarks of Modularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Undervaluing the Importance of Good Design . . . . . . . . . . . . . . . . . . . . . . . . . 107

The Importance of Testability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

A01_Farley_FM_pi-xxviii_new1.indd   13 07/10/21   1:25 PM



xiv Contents

Designing for Testability Improves Modularity . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Services and Modularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Deployability and Modularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Modularity at Different Scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Modularity in Human Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

10 Cohesion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Modularity and Cohesion: Fundamentals of Design . . . . . . . . . . . . . . . . . . . . . 121

A Basic Reduction in Cohesion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Context Matters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

High-Performance Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Link to Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Driving High Cohesion with TDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

How to Achieve Cohesive Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Costs of Poor Cohesion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Cohesion in Human Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

11 Separation of Concerns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Dependency Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Separating Essential and Accidental Complexity . . . . . . . . . . . . . . . . . . . . . . . . 139

Importance of DDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Testability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Ports & Adapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

When to Adopt Ports & Adapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

What Is an API? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Using TDD to Drive Separation of Concerns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

12 Information Hiding and Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Abstraction or Information Hiding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

What Causes “Big Balls of Mud”? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Organizational and Cultural Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

A01_Farley_FM_pi-xxviii_new1.indd   14 07/10/21   1:25 PM



xvContents

Technical Problems and Problems of Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Fear of Over-Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Improving Abstraction Through Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Power of Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Leaky Abstractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Picking Appropriate Abstractions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Abstractions from the Problem Domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Abstract Accidental Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Isolate Third-Party Systems and Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Always Prefer to Hide Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

13 Managing Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Cost of Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Scaling Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Microservices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Decoupling May Mean More Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

Loose Coupling Isn’t the Only Kind That Matters . . . . . . . . . . . . . . . . . . . . . . . . 176

Prefer Loose Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

How Does This Differ from Separation of Concerns? . . . . . . . . . . . . . . . . . . . . . 178

DRY Is Too Simplistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Async as a Tool for Loose Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Designing for Loose Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Loose Coupling in Human Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

Part IV Tools to Support Engineering in Software  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185

14 The Tools of an Engineering Discipline . . . . . . . . . . . . . . . . . . . . . . . . . 187
What Is Software Development? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Testability as a Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Measurement Points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Problems with Achieving Testability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

A01_Farley_FM_pi-xxviii_new1.indd   15 07/10/21   1:25 PM



xvi Contents

How to Improve Testability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

Deployability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Controlling the Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

Continuous Delivery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

General Tools to Support Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

15 The Modern Software Engineer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Engineering as a Human Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

Digitally Disruptive Organizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

Outcomes vs. Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

Durable and Generally Applicable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

Foundations of an Engineering Discipline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

A01_Farley_FM_pi-xxviii_new1.indd   16 07/10/21   1:25 PM



xvii

Foreword
I studied computer science at university, and of course I completed several modules called “software 
engineering” or variations on the name. 

I was not new to programming when I started my degree and had already implemented a fully 
working inventory system for my high school’s Careers Library. I remember being extremely  
confused by “software engineering.” It all seemed designed to get in the way of actually writing code 
and delivering an application.

When I graduated in the early years of this century, I worked in the IT department for a large car 
company. As you’d expect, they were big on software engineering. It’s here I saw my first (but  
certainly not my last!) Gantt chart, and it’s where I experienced waterfall development. That is, I saw 
software teams spending significant amounts of time and effort in the requirements gathering and 
design stages and much less time in implementation (coding), which of course overran into testing 
time and then the testing...well, there wasn’t much time left for that. 

It seemed like what we were told was “software engineering” was actually getting in the way of 
creating quality applications that were useful to our customers.

Like many developers, I felt there must be a better way.

I read about Extreme Programming and Scrum. I wanted to work in an agile team and moved jobs 
a few times trying to find one. Plenty said they were agile, but often this boiled down to putting 
requirements or tasks on index cards, sticking them on the wall, calling a week a sprint, and then 
demanding the development team deliver “x” many cards in each sprint to meet some arbitrary 
deadline. Getting rid of the traditional “software engineering” approach didn’t seem to work either.

Ten years into my career as a developer, I interviewed to work for a financial exchange in London. 
The head of software told me they did Extreme Programming, including TDD and pair programming.  
He told me they were doing something called continuous delivery, which was like continuous 
integration but all the way into production. 

I’d been working for big investment banks where deployment took a minimum of three hours and 
was “automated” by the means of a 12-page document of manual steps to follow and commands to 
type. Continuous delivery seemed like a lovely idea but surely was not possible.

The head of software was Dave Farley, and he was in the process of writing his Continuous Delivery 
book when I joined the company. 

I worked with him there for four life-changing, career-making years. We really did do pair programming, 
TDD, and continuous delivery. I also learned about behavior-driven development, automated  
acceptance testing, domain-driven design, separation of concerns, anti-corruption layers, mechanical 
sympathy, and levels of indirection. 

I learned about how to create high-performance, low-latency applications in Java. I finally 
understood what big O notation really meant and how it applied to real-world coding. In short, all 
that stuff I had learned at university and read in books was actually used. 
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It was applied in a way that made sense, worked, and delivered an extremely high-quality, high- 
performance application that offered something not previously available. More than that, we were 
happy in our jobs and satisfied as developers. We didn’t work overtime, we didn’t have crunch times 
close to releases, the code did not become more tangled and unmaintainable over those years, and 
we consistently and regularly delivered new features and “business value.”

How did we achieve this? By following the practices Dave outlines in this book. It wasn’t formalized 
like this, and Dave has clearly brought in his experiences from many other organizations to narrow 
down to the specific concepts that are applicable for a wider range of teams and business domains. 

What works for two or three co-located teams on a high-performance financial exchange isn’t going 
to be exactly the same thing that works for a large enterprise project in a manufacturing firm or for a 
fast-moving startup. 

In my current role as a developer advocate, I speak to hundreds of developers from all sorts of 
companies and business domains, and I hear about their pain points (many of them, even now, not 
dissimilar to my own experiences 20 years ago) and success stories. The concepts Dave has covered 
in this book are general enough to work in all these environments and specific enough to be practi-
cally helpful.

Funnily enough, it was after I left Dave’s team that I started being uncomfortable with the title 
software engineer. I didn’t think that what we do as developers is engineering; I didn’t think that it 
was engineering that had made that team successful. I thought engineering was too structured a 
discipline for what we do when we’re developing complex systems. I like the idea of it being a “craft,” 
as that encapsulates the idea of both creativity and productivity, even if it doesn’t place enough 
emphasis on the teamwork that’s needed for working on software problems at scale. Reading this 
book has changed my mind. 

Dave clearly explains why we have misconceptions of what “real” engineering is. He shows how 
engineering is a science-based discipline, but it does not have to be rigid. He walks through how 
scientific principles and engineering techniques apply to software development and talks about 
why the production-based techniques we thought were engineering are not appropriate to software 
development.

What I love about what Dave has done with this book is that he takes concepts that might seem 
abstract and difficult to apply to the real code we have to work with in our jobs and shows how to 
use them as tools to think about our specific problems.

The book embraces the messy reality of developing code, or should I say, software engineering:  
there is no single correct answer. Things will change. What was correct at one point in time is 
sometimes very wrong even a short time later. 

The first half of the book offers practical solutions for not only surviving this reality but thriving in 
it. The second half takes topics that might be considered abstract or academic by some and shows 
how to apply them to design better (e.g., more robust or more maintainable or other characteristics 
of “better”) code. 

Here, design absolutely does not mean pages and pages of design documents or UML diagrams 
but may be as simple as “thinking about the code before or during writing it.” (One of the things I 
noticed when I pair programmed with Dave was how little time he spends actually typing the code. 

A01_Farley_FM_pi-xxviii_new1.indd   18 07/10/21   1:25 PM



xixForeword

Turns out, thinking about what we write before we write it can actually save us a lot of time and 
effort.)

Dave doesn’t avoid, or try to explain away, any contradictions in using the practices together or 
potential confusion that can be caused by a single one. Instead, because he takes the time to talk 
about the trade-offs and common areas of confusion, I found myself understanding for the first time 
that it is precisely the balance and the tension between these things that creates “better” systems. 
It’s about understanding that these things are guidelines, understanding their costs and benefits, 
and thinking of them as lenses to use to look at the code/design/architecture, and occasionally dials 
to twiddle, rather than binary, black-and-white, right-or-wrong rules.

Reading this book made me understand why we were so successful, and satisfied, as “software 
engineers” during that time I worked with Dave. I hope that by reading this book, you benefit from 
Dave’s experience and advice, without having to hire a Dave Farley for your team.

Happy engineering!

—Trisha Gee, developer advocate and Java champion
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Preface
This book puts the engineering back into software engineering. In it, I describe a practical approach 
to software development that applies a consciously rational, scientific style of thinking to solving 
problems. These ideas stem from consistently applying what we have learned about software devel-
opment over the last few decades. 

My ambition for this book is to convince you that engineering is perhaps not what you think it is and that 
it is completely appropriate and effective when applied to software development. I will then proceed to 
describe the foundations of such an engineering approach to software and how and why it works.

This is not about the latest fads in process or technology, but rather proven, practical approaches 
where we have the data that shows us what works and what doesn’t. 

Working iteratively in small steps works better than not. Organizing our work into a series of small, 
informal experiments and gathering feedback to inform our learning allows us to proceed more 
deliberately and to explore the problem and solution spaces that we inhabit. Compartmentalizing 
our work so that each part is focused, clear, and understandable allows us to evolve our systems 
safely and deliberately even when we don’t understand the destination before we begin.

This approach provides us with guidance on where to focus and what to focus on, even when we 
don’t know the answers. It improves our chances of success, whatever the nature of the challenge 
that we are presented with.

In this book, I define a model for how we organize ourselves to create great software and how we 
can do that efficiently, and at any scale, for genuinely complex systems, as well as for simpler ones.

There have always been groups of people who have done excellent work. We have benefitted from 
innovative pioneers who have shown us what is possible. In recent years, though, our industry has 
learned how to better explain what really works. We now better understand what ideas are more 
generic and can be applied more widely, and we have data to back up this learning. 

We can more reliably build software better and faster, and we have data to back that up. We can 
solve world-class, difficult problems, and we have experience with many successful projects, and  
companies, to back those claims, too.

This approach assembles a collection of important foundational ideas and builds on the work that 
went before. At one level there is nothing that is new here in terms of novel practices, but the 
approach that I describe assembles important ideas and practices into a coherent whole and gives 
us principles on which a software engineering discipline may be built. 

This is not a random collection of disparate ideas. These ideas are intimately entwined and mutually 
reinforcing. When they come together and are applied consistently to how we think about, organize, 
and undertake our work, they have a significant impact on the efficiency and the quality of that 
work. This is a fundamentally different way of thinking about what it is that we do, even though 
each idea in isolation may be familiar. When these things come together and are applied as guiding 
principles for decision-making in software, it represents a new paradigm for development.

We are learning what software engineering really means, and it is not always what we expected.
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Engineering is about adopting a scientific, rationalist approach to solving practical problems within 
economic constraints, but that doesn’t mean that such an approach is either theoretical or bureau-
cratic. Almost by definition, engineering is pragmatic.

Past attempts at defining software engineering have made the mistake of being too proscriptive, 
defining specific tools or technologies. Software engineering is more than the code that we write 
and the tools that we use. Software engineering is not production engineering in any form; that is 
not our problem. If when I say engineering it makes you think bureaucracy, please read this book and 
think again.

Software engineering is not the same thing as computer science, though we often confuse the two. 
We need both software engineers and computer scientists. This book is about the discipline, process, 
and ideas that we need to apply to reliably and repeatably create better software. 

To be worthy of the name, we would expect an engineering discipline for software to help us solve 
the problems that face us with higher quality and more efficiency. 

Such an engineering approach would also help us solve problems that we haven’t thought of yet, 
using technologies that haven’t been invented yet. The ideas of such a discipline would be general, 
durable, and pervasive. 

This book is an attempt to define a collection of such closely related, interlinked ideas. My aim is to 
assemble them into something coherent that we can treat as an approach that informs nearly all of 
the decisions that we make as software developers and software development teams.

Software engineering as a concept, if it is to have any meaning at all, must provide us with an 
advantage, not merely an opportunity to adopt new tools.

All ideas aren’t equal. There are good ideas, and there are bad ideas, so how can we tell the 
difference? What principles could we apply that will allow us to evaluate any new idea in software 
and software development and decide if it will likely be good or bad?

Anything that can justifiably be classified as an engineering approach to solving problems in 
software will be generally applicable and foundational in scope. This book is about those ideas. What 
criteria should you use to choose your tools? How should you organize your work? How should you 
organize the systems that you build and the code that you write to increase your chances of success 
in their creation?

A Definition of Software Engineering?
I make the claim in this book that we should think of software engineering in these terms:

Software engineering is the application of an empirical, scientific approach to finding efficient,  
economic solutions to practical problems in software.  

My aim is an ambitious one. I want to propose an outline, a structure, an approach that we could 
consider to be a genuine engineering discipline for software. At the root this is based in three key 
ideas. 
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• Science and its practical application “engineering” are vital tools in making effective progress 
in technical disciplines. 

• Our discipline is fundamentally one of learning and discovery, so we need to become experts 
at learning to succeed, and science and engineering are how we learn most effectively.

• Finally, the systems that we build are often complex and are increasingly so. Meaning, to cope 
with their development, we need to become experts at managing that complexity.

What Is in This Book?
Part I, “What Is Software Engineering?”, begins by looking at what engineering really means in the 
context of software. This is about the principles and philosophy of engineering and how we can 
apply these ideas to software. This is a technical philosophy for software development.

Part II, “Optimize for Learning,” looks at how we organize our work to allow us to make progress in 
small steps. How do we evaluate if we are making good progress or merely creating tomorrow’s 
legacy system today?

Part III, “Optimize for Managing Complexity,” explores the principles and techniques necessary for 
managing complexity. This explores each of these principles in more depth and their meaning and 
applicability in the creation of high-quality software, whatever its nature. 

The final section, Part IV, “Tools to Support Engineering in Software,” describes the ideas and 
approaches to work that maximize our opportunities to learn and facilitate our ability to make 
progress in small steps and to manage the complexity of our systems as they grow.

Sprinkled throughout this book, as sidebars, are reflections on the history and philosophy of 
software engineering and how thinking has progressed. These inserts provide helpful context to 
many of the ideas in this book. 

Preface
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31

Fundamentals of an Engineering Approach
Engineering in different disciplines varies. Bridge building is not the same as aerospace engineering, 
and neither is it the same as electrical engineering or chemical engineering, but all of these disci-
plines share some common ideas. They are all firmly grounded in scientific rationalism and take a 
pragmatic, empirical approach to making progress.

If we are to achieve our goal of trying to define a collection of long-lasting thoughts, ideas, prac-
tices, and behaviors that we could collectively group together under the name software engineering, 
these ideas must be fairly fundamental to the reality of software development and robust in the 
face of change.

An Industry of Change?
We talk a lot about change in our industry. We get excited about new technologies and new 
products, but do these changes really “move the dial” on software development? Many of the 
changes that exercise us don’t seem to make as much difference as we sometimes seem to think 
that they will. 

My favorite example of this was demonstrated in a lovely conference presentation by “Christin 
Gorman.”1 In it, Christin demonstrates that when using the then popular open source object rela-
tional mapping library Hibernate, it was actually more code to write than the equivalent behavior 
written in SQL, subjectively at least; the SQL was also easier to understand. Christin goes on to 
amusingly contrast software development with making cakes. Do you make your cake with a cake 
mix or choose fresh ingredients and make it from scratch?

1. Source: “Gordon Ramsay Doesn’t Use Cake Mixes” by Christin Gorman, https://bit.ly/3g02cWO

3
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Much of the change in our industry is ephemeral and does not improve things. Some, like in the 
Hibernate example, actually make things worse.

My impression is that our industry struggles to learn and struggles to make progress. This relative 
lack of advancement has been masked by the incredible progress that has been made in the 
hardware on which our code runs.

I don’t mean to imply that there has been no progress in software—far from it—but I do believe 
that the pace of progress is much slower than many of us think. Consider, for a moment, what 
changes in your career have had a significant impact on the way in which you think about and 
practice software development. What ideas made a difference to the quality, scale, or complexity of 
the problems that you can solve?

The list is shorter than we usually assume. 

For example, I have employed something like 15 or 20 different programming languages during 
my professional career. Although I have preferences, only two changes in language have radically 
changed how I think about software and design. 

Those steps were the step from Assembler to C and the step from procedural to OO programming. 
The individual languages are less important than the programming paradigm to my mind. Those 
steps represented significant changes in the level of abstraction that I could deal with in writing 
code. Each represented a step-change in the complexity of the systems that we could build. 

When Fred Brooks wrote that there were no order-of-magnitude gains, he missed something. There 
may not be any 10x gains, but there are certainly 10x losses. 

I have seen organizations that were hamstrung by their approach to software development, 
sometimes by technology, more often by process. I once consulted in a large organization that 
hadn’t released any software into production for more than five years.

We not only seem to find it difficult to learn new ideas; we seem to find it almost impossible to 
discard old ideas, however discredited they may have become.

The Importance of Measurement
One of the reasons that we find it difficult to discard bad ideas is that we don’t really measure our 
performance in software development very effectively. 

Most metrics applied to software development are either irrelevant (velocity) or sometimes 
positively harmful (lines of code or test coverage).

In agile development circles it has been a long-held view that measurement of software team, or 
project performance, is not possible. Martin Fowler wrote about one aspect of this in his widely read 
Bliki in 2003.2

2. Source: “Cannot Measure Productivity” by Martin Fowler, https://bit.ly/3mDO2fB
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Fowler’s point is correct; we don’t have a defensible measure for productivity, but that is not the 
same as saying that we can’t measure anything useful.

The valuable work carried out by Nicole Fosgren, Jez Humble, and Gene Kim in the “State of 
DevOps” reports3 and in their book Accelerate: The Science of Lean Software & DevOps4 represents 
an important step forward in being able to make stronger, more evidence-based decisions. They 
present an interesting and compelling model for the useful measurement of the performance of 
software teams.

Interestingly, they don’t attempt to measure productivity; rather, they evaluate the effectiveness of 
software development teams based on two key attributes. The measures are then used as a part of a 
predictive model. They cannot prove that these measures have a causal relationship with the perfor-
mance of software development teams, but they can demonstrate a statistical correlation.

The measures are stability and throughput. Teams with high stability and high throughput 
are classified as “high performers,” while teams with low scores against these measures are “low 
performers.” 

The interesting part is that if you analyze the activities of these high- and low-performing groups, 
they are consistently correlated. High-performing teams share common behaviors. Equally, if we 
look at the activities and behaviors of a team, we can predict their score, against these measures, 
and it too is correlated. Some activities can be used to predict performance on this scale.

For example, if your team employs test automation, trunk-based development, deployment 
automation, and about ten other practices, their model predicts that you will be practicing 
continuous delivery. If you practice continuous delivery, the model predicts that you will be “high 
performing” in terms of software delivery performance and organizational performance.

Alternatively, if we look at organizations that are seen as high performers, then there are common 
behaviors, such as continuous delivery and being organized into small teams, that they share.

Measures of stability and throughput, then, give us a model that we can use to predict team 
outcomes.

Stability and throughput are each tracked by two measures. 

Stability is tracked by the following:

• Change Failure Rate: The rate at which a change introduces a defect at a particular point in 
the process

• Recovery Failure Time: How long to recover from a failure at a particular point in the process

3. Source: Nicole Fosgren, Jez Humble, Gene Kim, https://bit.ly/2PWyjw7

4. The Accelerate Book describes how teams that take a more disciplined approach to development spend “44% 
more time on new work” than teams that don’t. See https://amzn.to/2YYf5Z8.
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Measuring stability is important because it is really a measure of the quality of work done. It doesn’t 
say anything about whether the team is building the right things, but it does measure that their 
effectiveness in delivering software with measurable quality.

 Throughput is tracked by the following:

• Lead Time: A measure of the efficiency of the development process. How long for a single-line 
change to go from “idea” to “working software”?

• Frequency: A measure of speed. How often are changes deployed into production?

Throughput is a measure of a team’s efficiency at delivering ideas, in the form of working software. 

How long does it take to get a change into the hands of users, and how often is that achieved? This 
is, among other things, an indication of a team’s opportunities to learn. A team may not take those 
opportunities, but without a good score in throughput, any team’s chance of learning is reduced.

These are technical measures of our development approach. They answer the questions “what is the 
quality of our work?” and “how efficiently can we produce work of that quality?” 

These are meaningful ideas, but they leave some gaps. They don’t say anything about whether we 
are building the right things, only if we are building them right, but just because they aren’t perfect 
does not diminish their utility. 

Interestingly, the correlative model that I described goes further than predicting team size and 
whether you are applying continuous delivery. The Accelerate authors have data that shows 
significant correlations with much more important things. 

For example, organizations made up of high-performing teams, based on this model, make 
more money than orgs that don’t. Here is data that says that there is a correlation between a 
development approach and the commercial outcome for the company that practices it. 

It also goes on to dispel a commonly held belief that “you can have either speed or quality but not 
both.” This is simply not true. Speed and quality are clearly correlated in the data from this research. 
The route to speed is high-quality software, the route to high-quality software is speed of feedback, 
and the route to both is great engineering.

Applying Stability and Throughput
The correlation of good scores in these measures with high-quality results is important. It offers us 
an opportunity to use them to evaluate changes to our process, organization, culture, or technology.

Imagine, for example, that we are concerned with the quality of our software. How could we 
improve it? We could decide to make a change to our process. Let us add a change approval  
board (CAB). 
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Clearly the addition of extra review and sign-offs are going to adversely impact on throughput, and 
such changes will inevitably slow down the process. However, do they increase stability?

For this particular example the data is in. Perhaps surprisingly, change approval boards don’t 
improve stability. However, the slowing down of the process does impact stability adversely.

We found that external approvals were negatively correlated with lead-time, deployment frequency, 
and restore-time, and had no correlation with change fail rate. In short, approval by an external body 
(such as a manager or CAB) simply doesn’t work to increase the stability of production systems, mea-
sured by time to restore service and change fail rate. However, it certainly slows things down. It is, in 
fact, worse than having no change approval process at all.5

My real point here is not to poke fun at change approval boards, but rather to show the importance 
of making decisions based on evidence rather than guesswork. 

It is not obvious that CABs are a bad idea. They sound sensible, and in reality that is how many, 
probably most, organizations try to manage quality. The trouble is that it doesn’t work. 

Without effective measurement, we can’t tell that it doesn’t work; we can only make guesses.

If we are to start applying a more evidence-based, scientifically rational approach to decision-
making, you shouldn’t take my word, or the word of Forsgren and her co-authors, on this or 
anything else. 

Instead, you could make this measurement for yourself, in your team. Measure the throughput and 
stability of your existing approach, whatever that may be. Make a change, whatever that may be. 
Does the change move the dial on either of these measures?

You can read more about this correlative model in the excellent Accelerate book. It describes the 
approach to measurement and the model that is evolving as research continues. My point here is 
not to duplicate those ideas, but to point out the important, maybe even profound, impact that this 
should have on our industry. We finally have a useful measuring stick.

We can use this model of stability and throughput to measure the effect of any change. 

We can see the impact of changes in organization, process, culture, and technology. “If I adopt this 
new language, does it increase my throughput or stability?” 

We can also use these measures to evaluate different parts of our process. “If I have a significant 
amount of manual testing, it is certainly going to be slower than automated testing, but does it 
improve stability?”

We still have to think carefully. We need to consider the meaning of the results. What does it mean if 
something reduces throughput but increases stability? 

Nevertheless, having meaningful measures that allow us to evaluate actions is important, even vital, 
to taking a more evidence-based approach to decision-making.

5. Accelerate by Nicole Forsgren, Jez Humble, and Gene Kim, 2018
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The Foundations of a Software Engineering Discipline
So, what are some of these foundational ideas? What are the ideas that we could expect to be 
correct in 100 years’ time and applicable whatever our problem and whatever our technology?

There are two categories: process, or maybe even philosophical approach, and technique or design. 

More simply, our discipline should focus on two core competencies. 

We should become experts at learning. We should recognize and accept that our discipline is a  
creative design discipline and has no meaningful relationship to production-engineering and 
instead focus on mastery of the skills of exploration, discovery, and learning. This is a practical 
application of a scientific style of reasoning.

We also need to focus on improving our skills in managing complexity. We build systems that don’t 
fit into our heads. We build systems on a large scale with large groups of people working on them. 
We need to become expert at managing complexity to cope with this, both at the technical level 
and at the organizational level.

Experts at Learning
Science is humanity’s best problem-solving technique. If we are to become experts at learning, we 
need to adopt and become skilled at the kind of practical science-informed approach to problem-
solving that is the essence of other engineering disciplines. 

It must be tailored to our problems. Software engineering will be different from other forms of 
engineering, specific to software, in the same way that aerospace engineering is different from 
chemical engineering. It needs to be practical, light weight, and pervasive in our approach to 
solving problems in software.

There is considerable consensus among people who many of us consider to be thought leaders in 
our industry on this topic. Despite being well known, these ideas are not currently universally or 
even widely practiced as the foundations of how we approach much of software development.

There are five linked behaviors in this category:

• Working iteratively

• Employing fast, high-quality feedback

• Working incrementally

• Being experimental

• Being empirical

If you have not thought about this before, these five practices may seem abstract and rather 
divorced from the day-to-day activities of software development, let alone software engineering.
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Software development is an exercise in exploration and discovery. We are always trying to learn 
more about what our customers or users want from the system, how to better solve the problems 
presented to us, and how to better apply the tools and techniques at our disposal. 

We learn that we have missed something and have to fix things. We learn how to organize ourselves 
to work better, and we learn to more deeply understand the problems that we are working on.

Learning is at the heart of everything that we do. These practices are the foundations of any 
effective approach to software development, but they also rule out some less effective approaches. 

Waterfall development approaches don’t exhibit these properties, for example. Nevertheless, these 
behaviors are all correlated with high performance in software development teams and have been 
the hallmarks of successful teams for decades.

Part II explores each of these ideas in more depth from a practical perspective: How do we become 
experts at learning, and how do we apply that to our daily work?

Experts at Managing Complexity
As a software developer, I see the world through the lens of software development. As a result, my 
perception of the failures in software development and the culture that surrounds it can largely be 
thought of in terms of two information science ideas: concurrency and coupling. 

These are difficult in general, not just in software design. So, these ideas leak out from the design of 
our systems and affect the ways in which the organizations in which we work operate. 

You can explain this with ideas like Conway’s law,6 but Conway’s law is more like an emergent 
property of these deeper truths. 

You can profitably think of this in more technical terms. A human organization is just as much an 
information system as any computer system. It is almost certainly more complex, but the same 
fundamental ideas apply. Things that are fundamentally difficult, like concurrency and coupling, are 
difficult in the real world of people, too.

If we want to build systems any more complex than the simplest of toy programming exercises, we 
need to take these ideas seriously. We need to manage the complexity of the systems that we create 
as we create them, and if we want to do this at any kind of scale beyond the scope of a single, small 
team, we need to manage the complexity of the organizational information systems as well as the 
more technical software information systems.

As an industry, it is my impression that we pay too little attention to these ideas, so much so that all 
of us who have spent any time around software are familiar with the results: big-ball-of-mud sys-
tems, out-of-control technical debt, crippling bug counts, and organizations afraid to make changes 
to the systems that they own. 

6. In 1967, Mervin Conway observed that “Any organization that designs a system (defined broadly) will produce 
a design whose structure is a copy of the organization’s communication structure.” See https://bit.ly/3s2KZP2.
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I perceive all of these as a symptom of teams that have lost control of the complexity of the systems 
that they are working on.

If you are working on a simple, throwaway software system, then the quality of its design matters 
little. If you want to build something more complex, then you must divide the problem up so that 
you can think about parts of it without becoming overwhelmed by the complexity. 

Where you draw those lines depends on a lot of variables: the nature of the problem that you are 
solving, the technologies that you are employing, and probably even how smart you are, to some 
extent, but you must draw the lines if you want to solve harder problems.

Immediately as you buy in to this idea, we are talking about ideas that have a big impact in terms of 
the design and architecture of the systems that we create. I was a little wary, in the previous para-
graph, of mentioning “smartness” as a parameter, but it is one. The problem that I was wary of is that 
most of us overestimate our abilities to solve a problem in code. 

This is one of the many lessons that we can learn from an informal take on science. It’s best to start 
off assuming that our ideas are wrong and work to that assumption. So we should be much more 
wary about the potential explosion of complexity in the systems that we create and work to man-
age it diligently and with care as we make progress.

There are five ideas in this category, too. These ideas are closely related to one another and linked to 
the ideas involved in becoming experts at learning. Nevertheless, these five ideas are worth think-
ing about if we are to manage complexity in a structured way for any information system:

• Modularity

• Cohesion

• Separation of concerns

• Information hiding/abstraction

• Coupling

We will explore each of these ideas in much more depth in Part III.

Summary
The tools of our trade are often not really what we think they are. The languages, tools, and frame-
works that we use change over time and from project to project. The ideas that facilitate our learn-
ing and allow us to deal with the complexity of the systems that we create are the real tools of our 
trade. By focusing on these things, it will help us to better choose the languages, wield the tools, 
and apply the frameworks in ways that help us do a more effective job of solving problems with 
software. 
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Having a “yardstick” that allows us to evaluate these things is an enormous advantage if we want 
to make decisions based on evidence and data, rather than fashion or guesswork. When making a 
choice, we should ask ourselves, “does this increase the quality of the software that we create?” mea-
sured by the metrics of stability. Or “does this increase the efficiency with which we create software 
of that quality” measured by throughput. If it doesn’t make either of these things worse, we can 
pick what we prefer; otherwise, why would we choose to do something that makes either of these 
things worse?
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