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Preface
Thoughts on doing science

Before diving into the subject of mobile DNA and my adventures in
the field, I’d like to provide a few personal tips from my experience
on working with some success in science for the past 45 years. Doing
science is often very difficult and extremely hard work, requiring long
hours. In my view, the first thing necessary is very high personal moti-
vation. My original and long-time mentor, Barton Childs, an
esteemed Professor of Pediatrics and the “father of pediatric genet-
ics,” always used to say, “You’ve got to burn to do research!” You can’t
go at it with a half-hearted enthusiasm or self-doubt. 

If you do have high personal motivation, you then need to get
excellent training, both in didactic class work and in the nuts and
bolts of how to do research. You need to find a subject or area that
really interests you, no matter what the field. Then find the investiga-
tor who is doing excellent research in your field of interest, hopefully
someone at the forefront, but also consider that the person’s lab is not
too large so that he or she will have sufficient time to spend with you.
You want someone who will discuss your research with you on a daily
basis, perhaps so much so that you feel that he or she is pestering you
all the time for new data. That kind of attention means that that indi-
vidual has great interest in your work. You need that kind of person
for both your predoc and your postdoc training. Your trainers also
need to be available for discussion of all kinds of problems, both those
that you face in the lab and those that are related to other aspects of
your life. 

Next, you need a dependable mentor. Your mentor could be
either your predoc or your postdoc trainer, or it could be a member of
your thesis committee or another senior investigator from down the
hall. However, you’d like a mentor that you can carry over from your



training days into your first 5–10 years as a faculty member. That
mentor can help you with all kinds of problems and questions, giving
advice for how to approach various professional and daily life situa-
tions. Having an interested, accessible, and experienced mentor is
crucial to success in science. Behind every good scientist is an out-
standing mentor. I certainly had one in Barton Childs, even if I didn’t
follow his advice at every turn. He was probably my major mentor for
at least 20 years.

I’ve talked about mentorship from the aspect of the trainee, but
what about the importance of being a good mentor? From your first
academic job to becoming a long-term lab director, you have the
responsibility for mentoring predoc and postdoc trainees. I have usu-
ally found it rewarding to give trainees considerable independence,
letting them pick their own problems from a wide variety of problems
available in the lab. This works well when the trainee is very bright
and picks one or more problems that are of real interest to the lab
director. When the problem is of little interest to the lab director,
there is a good chance that the work will flounder. However, if the
problem is important to the mentor, the mentor will add ideas and
enthusiasm to the work. I have dealt with both situations over my
career, as the reader will discover in this book. A third situation occurs
when the student or postdoc needs to finish a period of training and
hasn’t had much success up to that point. The trick at that time is to
find a project that is important for the field (so that the student will
take pride in his or her accomplishment), has a clear-cut endpoint,
and uses techniques already available in the lab. The design of this
project usually requires considerable input from the lab director.

Then there is the question of how one should approach other sci-
entists. Should one be open in discussing new data even with col-
leagues in the same field, or should one be secretive to avoid being
“scooped?” My view has always been that it is better to be open but
prudent. It is good to discuss your unpublished work at meetings. If
your work is important, your colleagues will respect you for talking
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about new data and not rehashing work that has been published and
that they’ve heard previously. Moreover, it is very, very rare that
another investigator can start a new experimental tack or line and
actually beat you to publication. After all, you’ve probably been work-
ing on that same question for a year or two, so you’ve got a major
head start. It’s a rare investigator indeed who would sail off in a new
direction hoping to beat you to publication of data that you’ve just
presented. As a general rule, openness in presenting and discussing
new data is the best approach.

A corollary to openness is to discuss your science with a wide
range of other scientists, including those within your immediate field,
e.g., mobile DNA, those in the broader field, e.g. human genetics,
and those in other fields of biomedical science, e.g., immunology or
developmental biology. You never know from where the next good
experimental idea will come. The reader will find throughout this
book that members of my lab and I personally have gotten ideas from
a wide variety of sources who are mentioned at some future time.
This plethora of good ideas has come from discussing the work with a
large number of other scientists and sources and being as open as
possible to new ideas. 

I once knew a well-trained, smart young researcher who had a
great deal of trouble gaining traction in his field. I always thought that
his problem was that he stayed in his lab and did not seek discussion
of his science with colleagues. At the other extreme was and still is the
Medical Research Council (MRC) laboratory at Cambridge, Eng-
land, whose investigators have had enormous success over many
decades. The Cambridge MRC labs have housed a number of Nobel
Laureates, including Francis Crick, Fred Sanger, Sydney Brenner,
Aaron Klug, and others. After spending a few months at the MRC
early in my career, I felt that a major factor in the success of that lab
was the English tradition at that time of a common coffee break in the
morning and a common tea break in the afternoon. At 10:30 AM,
every investigator, from the trainees to the most senior people, would
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gather in the cafeteria for morning coffee and, importantly, discuss
science for 30 minutes over coffee. A similar gathering would occur at
3:30 PM over afternoon tea. The number of great new ideas passed
from one investigator to another, from past and future Nobel Prize
winners to beginning postdocs, and vice versa, was astonishing. Open
discussion of science is wonderful for the development of new ideas.

Now I’d like to make a general comment on picking problems in
your field on which to work. I’ve always believed that the problem
should be important but potentially solvable with hard effort. All
researchers are gamblers. A colleague used to tell me to pick prob-
lems with 5 to 1 or 10 to 1 odds of success. Those problems were
about right in terms of difficulty. Odds of 50 to 1 or 100 to 1 were too
long, and success on those problems was too unlikely. Odds of 2 to 1
meant that the problem was too easy and relatively unimportant, so
called “low-hanging fruit.” I’ve also felt that it is best to pick problems
that are logical next steps in the project but are important to the field
and have those reasonable odds of success, which would be 5–10:1.

My last point is to keep one’s mind alert for possible collabora-
tion. Collaborations with other scientists should be welcomed as a
way to broaden one’s scientific outlook and scope. If two investigators
have differing expertise that can be applied to solve a particular prob-
lem, this is an ideal situation for collaboration. I once heard it said
that collaboration finds its own level, meaning that in order to work
best, collaborators should be on the same level of experience and
respect in the field. In this way, I’ve had good collaborations as a post-
doc with another postdoc and as a senior scientist with other senior
scientists. Many of these collaborations are discussed throughout the
book.
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Introduction to Mobile DNA

Charles Darwin would be surprised. Indeed, even present day scien-
tists are surprised by the existence of mobile DNA. Consider the
skepticism within the scientific community that greeted Barbara
McClintock, already a highly-respected scientist, when she
announced that she had found what appeared to be mobile DNA in
maize plants (McClintock, 1950). DNA was the genetic material, so it
must be static, stable, and immobile. The mutation rate had been
determined to be ~10-8 per nucleotide, or building block, of DNA per
generation—very low indeed. How and why would some DNA move
from place to place in a genome? Scientists are still grappling with
these questions. Two hundred years removed from Darwin’s birth,
and we’re still wondering how mobile DNA with all its detrimental
effects on organisms could have reached such high proportions in the
genomes of mammals and plants. Yet mobile DNA is found in all
forms of living things, including plants, animals, bacteria, and archea.
The genome seems to cherish its ability to make rapid changes by
rearranging some of its parts as opposed to the slow change afforded
by the nucleotide mutation rate.

One theme of this book is that biological scientists have come to
expect the unexpected. The study of living things is full of surprises.
One of them is the prevalence of mobile DNA in genomes. Another is
that most genes are broken up by sections of DNA called introns that
need to be removed at the RNA stage in order for the genes to func-
tion. A third is that the protein-coding regions of genes make up a
very small fraction of mammalian genomes. A fourth surprise is the
importance of reverse transcriptase, the enzyme that synthesizes
DNA from an RNA template. These are just a few examples of old
surprises, or unexpected findings, that have now become hard facts in

1
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all biology textbooks. Many more will be highlighted in the research
adventures outlined in this book. These “unexpected observations”
provide excitement and anticipation for even the most experienced
researchers. What finding will be the next to shatter our present view
of the biological world? One can be sure that the future will bring
many more surprises to delight the graduate student just beginning
his or her studies.

Prior to 1970, scientists thought that the genome was composed
mostly of genes lined up like balls on a string with some repetitive
DNA in between the balls. Then in the late 1970s, introns were found
to break up the regions of genes that encode proteins (Berget et al.,
1977; Chow et al., 1977). Protein-coding regions were disrupted by
intervening sequences (introns) that required removal from pre-
messenger RNA before the intact protein could be synthesized. Soon,
we knew that introns were much larger than protein-coding regions,
then called exons. The DNA between the genes along with most of
the intronic sequences of genes was thought to be functionless, and
was called “junk DNA” (Orgel and Crick, 1980). However, now we
know that introns make up about 30% of human and mammalian
genomes, and exons encode only between 1 and 2% of the human
genome (Lander et al., 2001). What a comedown for protein-coding
regions! Thus, over 98% of human DNA had been dismissed as
“junk.”

Transposable elements were then found in human DNA, and this
active mobile DNA along with the remnants of many transposition
events over hundreds of millions of years is now known to account for
at least 50% of human genomic DNA. This transposable element
DNA, both those relatively few sequences that are presently mobile,
and the many remnants of old events are now demonstrating func-
tion. However, this function is evident only in the many ways mobile
DNA can modify the genome over evolutionary time. It can be co-
opted for useful purposes but has not yet been definitively shown to
have a useful function in the individual organism. Moreover, DNA
encoding small RNAs of different types and functions has been dis-
covered amidst the “junk.” Enhancer sequences at great distances
from the genes upon which they act are being found continually. Seg-
mental duplications of hundreds to many thousands of nucleotide
pairs of DNA are strewn around the genome and are further grist in
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the mill of genome plasticity and malleability. The bottom line is that
“junk” DNA is gradually being eroded away as function is found for a
greater and greater fraction of genomic DNA. In this book, I concen-
trate on the “junk” DNA that is mobile or has been over the millen-
nia. This is the DNA that those of us in the mobile DNA field have
come to treasure.

In the next several chapters, I provide details on important topics
in the mobile DNA field as well as discuss a number of top scientists
who have been pioneers in many areas involving mobile DNA. I then
discuss the state of the human mobile DNA field prior to my involve-
ment in it, what led to my fascination with mobile DNA, and why I
jumped at the chance to work on it when the opportunity presented
itself. Later, I discuss many of the people who worked in my lab up to
the present time, their most important work, and the relationship of
that work to what is known about L1 biology today. This is followed
by important findings of other labs working on mammalian mobile
DNA, ending with some thoughts about the future of the field. Yes,
DNA as genetic material would have surprised Charles Darwin, but
mobile DNA would have really made his head spin!
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