COQUALMO' Data Collection Questionnaire

1. Introduction

The Center for Software Engineering at the University of Southern California is conducting research to update
the software development cost estimation model called COCOMO. The project name is COCOMO 1I and is led
by Dr. Barry W. Boehm.

A fundamental requirement for such research is real-world software development project data. This data will be
used to test hypotheses and verify the model's postulations. In return the model will be open and made available
to the public. The contribution of your data will ensure the final model is useful.

The data that is contributed is important to us. We will safeguard your contribution so as not to compromise
company proprietary information. Some Affiliates have an active collection program and the data from past
projects is available for the COCOMO II data collection effort. This questionnaire can be used to extract
relevant COCOMO II data. A rosetta-stone that converts COCOMO ’81 data to COCOMO II data is also
available. Please contact us if you would like to get a copy.

This questionnaire attempts to address two different levels of data granularity: project level and component
level. The project level of granularity is data that is applicable for the whole project. This includes things like
application type and development activity being reported. Component level data are things like size, cost, and
component cost drivers. If the data being submitted is on a project that has multiple components then fill out
the project data once, and the component data for each of the identifiable component. If the data being
submitted is for the whole project fill out the form once. The data collection activity for the COCOMO II
research effort started in November 1994. The first calibration was published in 1997 based on 83 datapoints
collected. It became popular as COCOMO I1.1997 and produced estimates within 30% of the actuals 52% of
the time for effort. The second calibration was published in 1998 based on 161 datapoints. It is known as
COCOMO 1I.1998 and produces estimates within 30% of the actuals 71% of the time for effort. The aim of the
COCOMO II research team is to continually update the existing COCOMO II database and to publish annual
calibrations of the COCOMO II model. Hence by submitting your data to us, you play a significant role in the
model calibration.

COCOMO II Points of Contact

For questions on the COCOMO II Model and its extensions, data definitions, or project data collection and
management, contact:

A. Winsor Brown (Research Scientist) Voice: (213) 740-6599, Fax: (213) 740-4927
Barry Boehm (Project Leader) Voice: (213) 740-8163, Fax: (213) 740-4927
Internet Electronic-Mail cocomo-info@sunset.usc.edu

COCOMO II Data Submission Address:

COQUALMO Data Submission
Center for Software Engineering
Department of Computer Science
Henry Salvatori Room 330
University of Southern California
941 W. 37th Place

Los Angeles, CA 90089-0781
U.S.A.

! COnstructive QUALity MOdel (COQUALMO) is the quality model extension to COCOMOIL.

© 1998 University of Southern California - Version 1.9

2. Project Level Information

As described in the Introduction section of this questionnaire, project level information is applicable for the whole
project. This includes things like application type and development activity being reported.

2.A General Information

2.1 Affiliate Identification Number. Each separate software project contributing data will have a separate file
identification number of the form XXX. XXX will be one of a random set of three-digit organization identification
numbers, provided by USC Center for Software Engineering to the Affiliate.

2.2 Project Identification Number. The project identification is a three digit number assigned by the organization.
Only the Affiliate knows the correspondence between YY'Y and the actual project. The same project identification
must be used with each data submission.

2.3 Date prepared. This is the date the data elements were collected for submission.

2.4 Application Type. This field captures a broad description of the type of activity this software application is
attempting to perform.

Circle One: Command and Control, MIS, Simulation,
Communication, Operating Systems, Software Dev. Tools,
Diagnostics, Process Control, Testing,
Engineering Signal processing, Utilities

and Science

Other:

2.5 Development Type.

Is the development a new software product or an upgrade of an existing product?

Circle One: New Product Upgrade

2.6 Development Process. This is a description of the software process used to control the software development,
e.g. waterfall, spiral, etc.

© 1998 University of Southern California - Version 1.9

2.7 Step in Process. This field captures information about the project’s position in its development process. The
answers depend on the process model being followed.

2.7.1 Activity. This field captures the waterfall phase of development that the project is in. For one-time reporting
the activity is “completed'. It is assumed that data for completed projects includes data from software requirements
through integration/test. Please report the correct phasing if this is not the case.

Circle One: Requirements, Design, Code,
Unit Test, Integration/Test, Maintenance,
Completed

Other:

2.7.2 Stage. “Stage” refers to the aggregate of activities between the life cycle anchor points®. The four stages,
based on Rational’s Objectory Process®, and the anchor points are shown on the timeline below. Please see section 2
of the “CORADMO* Extensions of COCOMO II Schedule Estimation Questionnaire” for more details.

Please circle the most advance anchor point (milestone) the project has achieved.

Life Cycle Life Cycle Initial Operational
Obiectives Architecture Capability

Inception | Elaboration Construction | Maintenance

See the Appendix A for definitions of the LCO, LCA, and IOC milestones. The COCOMO II model covers the effort
required from the completion of the LCO to IOC. If you are using a waterfall model, the corresponding milestones
are the Software Requirements Review, Preliminary Design Review, and Software Acceptance Test.

2.8 Development Process Iteration. If the process is iterative, e.g. spiral, which iteration is this?

2.9 COCOMO Model. This specifies which COCOMO II model is being used in this data submission. If this is a
"historical" data submission, select the Post-Architecture model or the Applications Composition model.

e Application Composition: This model involves prototyping efforts to resolve potential high risk issues such
as user interfaces, software/system interaction, performance, or technology maturity.

¢ Early Design: This model involves exploration of alternative software/system architectures and concepts of
operations. At this stage of development, not enough is known to support fine-grain cost estimation.

¢ Post-Architecture: This model involves the actual development and maintenance of a software product. This
stage of development proceeds most cost-effectively if a software life-cycle architecture has been
developed; validated with respect to the system's mission, concept of operation, and risk; and established as
the framework for the product.

Circle One: Application Composition, Early Design, Post-Architecture

? Barry W. Boehm, “Anchoring the Software Process,” IEEE Software, 13,4, July 1996, pp. 73-82. An unabridged
version, dated November 1995, is in Appendix A.
? Rational Corp., "Rational Objectory Process 4.1 — Your UML Process", available at

http://www.rational.com/support/techpapers/toratobjprcs/.
* COnstructive RAD schedule and effort MOdel

© 1998 University of Southern California - Version 1.9

2.10 Success Rating for Project. This specifies the degree of success for the project.
* Very successful; did almost everything right
e Successful; did the big things right
¢ OK; stayed out of trouble
¢ Some Problems; took some effort to keep viable

* Major Problems; would not do this project again

Circle One: Very Successful Successful OK Some Problems Major Problems

Schedule

2.11 Year of development. For reporting of historical data, please provide the year in which the software
development was completed. For periodic reporting put the year of this submission or leave blank.

2.12 Schedule Months. For reporting of historical data, provide the number of calendar months from the time the
development began through the time it completed. For periodic reporting, provide the number of months in this
development activity.

Circle the life-cycle stages that the schedule covers:

Life Cycle Life Cycle Initial Operational
Objectives Architecture Capability

Inception | Elaboration

Construction | Maintenance

Schedule in months:

© 1998 University of Southern California - Version 1.9

2.B COQUALMO (COCOMO QUALITY MODEL)

This subsection has additional questions related to the COCOMO QUALITY MODEL. Please fill this out if you
have data on quality metrics.

2.18 Severity of Defects. Categorize the several defects based on their severity using the following classification’
information:

e Critical

Causes a system crash or unrecoverable data loss or jeopardizes personnel.

The product is unusable (and in mission/safety software would prevent the completion of the mission).
* High

Causes impairment of critical system functions and no workaround solution exists.

Some aspects of the product do not work (and the defect adversely affects successful completion of mission
in mission/safety software), but some attributes do work in its current situation.

* Medium
Causes impairment of critical system function, though a workaround solution does exist.

The product can be used, but a workaround (from a customer's preferred method of operation) must be used
to achieve some capabilities. The presence of medium priority defects usually degrades the work.

* Low
Causes a low level of inconvenience or annoyance.

The product meets its requirements and can be used with just a little inconvenience. Typos in displays such
as spelling, punctuation, and grammar which generally do not cause operational problems are usually
categorized as low severity.

e None
Concerns a duplicate or completely trivial problem, such as a minor typo in supporting documentation.

COQUALMO accounts for only Critical, High and Medium severity defects.

2.19 Defect Introduction by Artifact, Stage and Severity. The software development process can be viewed as
introducing a certain number of defects into each software product artifact. Stage refers to the aggregate of activities
between the life cycle anchor points. The four stages, based on Rational’s UML Process, and the anchor points are
shown on the timeline below. Please see section 2 of the “CORADMO Extensions of COCOMO II Schedule
Estimation Questionnaire” for more details. Enter the number of defects introduced in the several artifacts involved
in the software development process.

A Requirements Defect is a defect introduced in the Requirements Activity and a Design Defect is a defect
introduced in the Design activity and so on and so forth.

LCO LCA 10C

Stage Inception Elaboration Construction

Artifact
Requirements

Design

Code

> Adapted from IEEE Std 1044.1-1995

© 1998 University of Southern California - Version 1.9

2.19.1 Requirements Defects

Severity Urgent High Medium Low None

No. of Requirements Defects

2.19.2 Design Defects

Severity Urgent High Medium Low None

No. of Design Defects

2.19.3 Code Defects

Severity Urgent High Medium Low None

No. of Code Defects

2.20 Defect Removal by Artifact, Stage and Capability
Throughout the development life cycle, defect removal techniques are incorporated to eliminate defects before the
product is delivered. Enter the number of defects removed in each stage of the software development process.

LCO LCA 10C

Stage Inception Elaboration Construction

Artifact
Requirements

Design

Code

© 1998 University of Southern California - Version 1.9

COQUALMO models defect removal by classifying defect removal capabilities into three relatively orthogonal
profiles with each profile having 5 levels of increasing defect removal capability, namely ‘Very Low’, ‘Low’,
‘Nominal’, ‘High’ and ‘Very High’ with ‘Very Low’ being the least effective and ‘Very High’ being the most
effective in defect removal.

2.20.1 Automated Analysis

Very Low Low Nominal High Very High Don’t
know
Simple Simple compiler Intermediate- More elaborate Formal
compiler extensions for static | level code syntax | requirements/design | specification and
extensions module-level code and semantic view consistency verification.
Rating for static analysis, syntax, analysis. Simple | checking. Basic Advanced
Scale | module-level | type-checking. Basic | requirements/ distributed- distributed
code requirements and design view processing and processing and
analysis, design consistency, consistency temporal analysis, temporal analysis,
syntax, type- | traceability checking [checking model checking, model checking,
checking. symbolic execution |symbolic execution
Your
rating
2.20.2 People Reviews
Very Low Low Nominal High Very High Don’t
know
Ad-hoc All to the left, All to the left, | All to the left, plus All to the left, plus
informal plus well- plus formal formal review roles and | formal review roles and
walkthroughs | defined review roles procedures applied to | procedures for fixes,
Rating Minimal sequence of and specification, design change control.
Scale | Ppreparation, | preparation, procedures code, test, Extensive review
follow-up review, follow- | applied to documentation artifacts. | checklists, root cause
up. Informal detailed design | Basic review checklists, | analysis. Continuous
review roles and code root cause analysis review process
and procedures | reviews improvement
Your
rating
2.20.3 Execution Testing and Tools
Very Low Low Nominal High Very High Don’t
know
Rating Ad-hoc Basic unit test, | In Well-defined test | More advanced test | Highly advanced tools
Scale | testing and | integration sequence tailored to | tools, test data for test oracles,
debugging. | test, system organization preparation, basic distributed monitoring
Basic text- | test process (acceptance / alpha / | test oracle support, and analysis, assertion
based Basic test data | beta / flight / etc.) distributed checking
debugger | management, |test. Basic test monitoring and Integration of
problem coverage tools, test | analysis, assertion automated analysis
tracking support system. checking and test tools
support Basic test process Metrics-based test Model-based test
management process management. | process management
Your
rating

© 1998 University of Southern California - Version 1.9

2.C Distribution of Effort and Schedule By Stage

This subsection has additional metrics that are required to calibrate the distribution of effort and schedule by stage.
Please fill this out if the necessary information is available.

2.21 Total Effort (Person Months). Divide the total effort required for the project into effort (in Person Months)
required for each of the following three stages: Inception, Elaboration and Construction.

LCO LCA 10C

Inception Elaboration Construction

Effort Distribution

2.22 Schedule Months. Divide the total time for development (schedule) required for the project into schedule (in
Calendar Months) required for each of the following three stages: Inception, Elaboration and Construction.

LCO LCA 10C

Inception Elaboration Construction

Schedule Distribution

© 1998 University of Southern California - Version 1.9

Activities &

Representative

Amounts

Appendix A
The lifecycle anchoring concepts are discussed by Boehm®. The anchor points are defined as Life Cycle Objectives
(LCO), Life Cycle Architecture (LCA), and Initial Operational Capability (IOC). An enhanced version of an
illustration from Rational Corporation’ showing the phases around the anchor points is shown below.

v

Time
< >
LCO LCA 10C
Stages Inception | Elaboration| Construction Transition
A
Process Activities |
Requirements Capture T
Analysis & Design /
) - ~
Implementation I, S
Test By P
Supporting Activities
Management —— =]
Environment P
Deployment — e
preliminary | iter. |iter. iter. | iter. |iter. I iter. | IteLI
iteration(s) * #1 | #2 #n | gn+l n+2 ' o#m #m+1'

Iterations

The correspondence between phases, COCOMOII’s submodels and the life cycle anchor points is shown in the
following table for the MBASE spiral lifecycle model. The table also has indications of the relative amounts of the

different activities.

/

qualification test.

cocoMo 11 Earlv Desi / Post-Archi Mai
Submodel Usage arly Design / / ost-Architecture aintenance
LCO LCA 10C
Activities Inception Elaboration Construction Transition
\ Phase
Requirements Capture | Some usually Most, peaks here Minor None
Analysis & Design A little Majority, mostly Some Some, for repair
constant effort during ODT&E
Implementation Practically Some, usually for Bulk; mostly constant effort Some, for repair
none risk reduction during ODT&E
Test None Some, for prototypes| Most for unit, integration and Some, for repaired

code.

COCOMOIT's effort and schedule estimates are focused on Elaboration and Construction (the phases between LCO
and IOC. Inception corresponds to the COCOMO's "Requirements" activity in a waterfall process model.
COCOMO'’s effort for the “Requirements” activity is an additional, fixed percentage of the effort calculated by
COCOMO for the development activities. The table also indicates the areas in which the COCOMO II Early Design
and Post-Architecture submodels are normally used.

®Barry W. Boehm, “Anchoring the Software Process,” IEEE Software, 13, 4, July 1996, pp. 73-82
7 Rational Corp., "Rational Objectory Process 4.1 — Your UML Process", available at
http://www.rational.com/support/techpapers/toratobjprcs/.

© 1998 University of Southern California - Version 1.9

