
© 1999 - 2000 University of Southern California, Center for Software Engineering, all rights reserved

81,9(56,7<�2)�6287+(51�&$/,)251,$
CENTER FOR SOFTWARE ENGINEERING

COTS Software Integration
 Cost Modeling

USC COCOTS Model

Project Level COTS
Integration Experience Survey

Prepared by
Chris Abts

 (with Betsy Clark)

Version 0.7

3 March 2000

USC COCOTS Survey
Version 0.7

USC CENTER FOR SOFTWARE ENGINEERING

1

Table of Contents

I. Introduction……………………………………………………. p. 1

II. Definitions/Glossary………………………………………….. p. 3

III. Identifying Information…………………………………….. p. 9

IV. Systems Data…………………………………………………. p. 10

V. COTS Assessment Data……………………………………… p. 18

VI. COTS Tailoring Data………………………………………. p. 22

VII. COTS Glue Code Data…………………………………….. p. 25

VIII. Glue Code Development Cost Drivers..………………….. p. 29

IX. Application Effort Due to COTS Volatility Data…………. p. 46

X. Free Form Comments……………………………….……….. p. 48

USC COCOTS Survey
Version 0.7

USC CENTER FOR SOFTWARE ENGINEERING

1

I. Introduction

Purpose and Scope

The goal of this survey is to capture from software development organizations specific COTS
and NDI product integration experience at the project level; that is, at the level at which the
integration work is actually being performed. This information will be used to refine and
calibrate the Constructive COTS Integration Cost (COCOTS) model currently under
development at the University of Southern California. The intent of this modeling effort is to
create a tool which will be able to reasonably predict the expected initial cost of integrating
COTS and NDI software into a new software system development or system refresh. COCOTS is
a broad-based model, currently focusing on four major sources of integration costs: 1) COTS
product assessment, 2) COTS product tailoring, 3) Integration or “glue code” development, and
4) Application volatility due to use of COTS products. It currently does not account for costs
associated with licensing, life cycle issues beyond initial development, or post initial
development maintenance issues. While significant, these costs will be addressed in later stages
of the COCOTS modeling effort.

Disclaimer

NO INFORMATION DIVULGED IN THIS SURVEY WILL BE USED BY ANY
AGENCY OF THE FEDERAL GOVERNMENT OR ANY OTHER ORGANIZATION
EITHER PUBLIC OR PRIVATE FOR THE PURPOSES OF SOURCE SELECTION, OR
EVALUATIVE ASSESSMENT OF RESPONDING UNITS OR ORGANIZATIONS IN
ANY FASHION.

Execution

This is a detailed survey. We are looking for as much accuracy as possible, because we intend to
use this data to calibrate our model, making consistent and accurate responses crucial. To that
end, we would prefer the return of empirical project effort, productivity, and sizing data over best
“educated estimates, ” though we recognize the latter may be all that is available in some
circumstances. With that in mind, it is suggested that you quickly read through all the survey
questions once before trying to answer them so you can decide beforehand whether you might
need some help gathering the information requested in some of the questions.

Please record your answers to the survey directly on this form. We ask that you make the best
effort possible to provide an answer to all the questions. If you are unsure of an answer, or feel a
question does not apply to your project, please indicate so rather than leave a question blank.

USC COCOTS Survey
Version 0.7

USC CENTER FOR SOFTWARE ENGINEERING

2

Completed forms should be returned to the contact identified below under Survey Point of
Contact/Data Submission.

Time Required

Based upon pilot executions of the survey, WITH THE DATA AT HAND, it is expected that an
informed individual should need on average no more than two hours to complete the
questionnaire. However, gathering and preparing the information needed to complete the survey
could potentially require SIGNIFICANTLY MORE TIME, perhaps even some part time effort
spread over several days or weeks. Please keep this in mind if you have been asked to return this
survey within a specific time frame. Again, please skim through the survey quickly one time
upon first receiving it to decide how much time you will require to gather the necessary
information. Also, note that some sections ask for more detailed data than others. This is a
reflection of the weight placed on contribution to overall COTS integration costs. Those areas
with greater overall impact are examined in greater detail.

Survey Point of Contact/Data Submission

To return the completed survey, or if you have questions about it, or desire assistance in filling it
out, please contact either:

 Mr. Chris Abts Dr. Elizabeth (Betsy) Bailey Clark
 Center for Software Engineering Software Metrics, Inc.
 University of Southern California 4345 High Ridge Road
 Henry Salvatori Hall Room 328 or Haymarket, Virginia 20169
 Los Angeles, California 90089-0781 tel: 703.754.0115
 tel: 213.740.6470 fax: 703.754.0115
 fax: 213.740.4927 e-mail: BetsyClark@erols.com
 e-mail: cabts@sunset.usc.edu

COCOTS Information on the Web:

http://sunset.usc.edu/COCOTS/cocots.html

USC COCOTS Survey
Version 0.7

USC CENTER FOR SOFTWARE ENGINEERING

3

II. Definitions/Glossary

Application Volatility - creates difficulty in benchmarking stable system configurations, resulting
from the use of COTS products which may experience multiple or frequent product releases or
upgrades during system development.

Attribute - characteristic of a COTS package or associated products and services which are
evaluated and used in comparing alternative products and as input into a buy/no buy decision.

COTS Assessment - the activity of determining the appropriateness or feasibility of using
specific COTS products to fulfill required system functions.

COTS software - “commercial-off-the-shelf” software commercially available as stand-alone
products and which offer specific functionality needed by a larger system into which they might
be incorporated. Generally there is no access to source code for COTS products, which are
treated as black boxes with application program interfaces. (In some cases, however, some
access to COTS source code is available, in which case these products have been described as
“gray” or “white” box COTS.)

COTS Tailoring - the activity associated with setting or defining shell parameters or
configuration options available for a COTS product, but which do not require modification of
COTS source code, including defining I/O report formats, screens, etc.

NDI software - “non-developmental item” software available from some source other than the
organization developing the system into which the NDI component is to be integrated. The
source can be commercial, private, or public sector, just so long as the procuring organization
expended no resources on the NDI component’s initial development. Source code is usually
available for an NDI component, which may or may not be able to function as a stand-alone item.

Integration or “glue” code - software developed in-house and composed of 1) code needed to
facilitate data or information exchange between the COTS/NDI component and the system or
other COTS/NDI component into which it is being integrated, 2) coded needed to connect or
“hook” the COTS/NDI component into the system or other COTS/NDI component but does not
necessarily enable data exchange, and 3) code needed to provide required functionality missing
in the COTS/NDI component AND which depends upon or must interact with the COTS/NDI
component.

USC COCOTS Survey
Version 0.7

USC CENTER FOR SOFTWARE ENGINEERING

4

AA Percentage of reuse effort due to assessment and assimilation

AAF Adaptation Adjustment Factor

AAM Adaptation Adjustment Multiplier

ASLOC Adapted Source Lines of Code

BRAK Breakage. The amount of controlled change allowed in a software development before requirements are
"frozen."

CASE Computer Aided Software Engineering

CM Percentage of code modified during reuse

COCOMO Constructive Cost Model

Cost Driver A particular characteristic of the software development that has the effect of increasing or decreasing the
amount of development effort, e.g. required product reliability, execution time constraints, project team
application experience.

COTS Commercial Off The Shelf

DI Degree of Influence

DM Percentage of design modified during reuse

ESLOC Equivalent Source Lines of Code

FP Function Points

GFS Government Furnished Software

IM Percentage of integration redone during reuse

KASLOC Thousands of Adapted Source Lines of Code

KESLOC Thousands of Equivalent Source Lines of Code

KSLOC Thousands of Source Lines of Code

PM Person Months. A person month is the amount of time one person spends working on the software
development project for one month.

SEI Software Engineering Institute

SLOC Source Lines of Code

SU Percentage of reuse effort due to software understanding

UNFM Programmer Unfamiliarity

USC COCOTS Survey
Version 0.7

USC CENTER FOR SOFTWARE ENGINEERING

5

ASSESSMENT ATTRIBUTE DEFINITIONS:

CORRECTNESS

Accuracy - The freedom of system output from error.

Correctness - The degree to which a COTS component is free from faults in its specification, design, and
implementation.

AVAILABILITY/ROBUSTNESS

Availability - The degree to which a COTS component is operational and accessible when required for use. Often
expressed as a probability.

Fail safe - Pertaining to a COTS component that automatically places itself in a safe operating mode in the event of a
failure.

Fail soft - Pertaining to a COTS component that continues to provide partial operational capability in the event of
certain failures.

Fault tolerance - Pertaining to a COTS component that is able to continue normal operation despite the presence of
faults.

Input Error tolerance - The ability of a COTS component to continue normal operation despite the presence of
erroneous inputs.

Redundancy - The presence of auxiliary components in a system to perform the same or similar functions as other
elements for the purpose of preventing or recovering from failures.

Reliability - The ability of a COTS component to perform its required functions under stated conditions for a
specified period of time; the probability that a COTS component will perform its intended functions satisfactorily for
a prescribed time and under stipulated conditions.

Robustness - The degree to which a COTS component can function correctly in the presence of invalid inputs or
stressful environmental conditions.

Safety - Protection against software or hardware faults that could result in harm to people, data or systems.

SECURITY

Security (Access Related) - the degree to which a system or component prevents unauthorized access to, or
modification of, computer programs or data.

Security (Sabotage Related) - Protection against exploitable weaknesses that could result in harm to people, data,
or systems.

USC COCOTS Survey
Version 0.7

USC CENTER FOR SOFTWARE ENGINEERING

6

PRODUCT PERFORMANCE

Execution Performance - The degree to which a COTS component performs its functions within given execution
timing constraints.

Information/data Capacity - The quantity of information or logical data items that can be stored or maintained by a
system or COTS component relative to the expected needs of the users.

Precision - The degree of exactness or discrimination with which a quantity is stated; for example, a precision of 2
decimal places versus a precision of 5 decimal places.

Memory Performance - The degree to which a COTS component performs its functions within given memory
constraints (hard storage and/or virtual storage).

Response time - The elapsed time between the end of an inquiry or command to an interactive computer system and
the beginning of the system’s response.

Throughput - The amount of work that can be performed by a COTS component in a given period of time, for
example, number of jobs per day.

UNDERSTANDABILITY

Documentation quality - The degree to which a COTS component contains enough information to explain its
objectives, operations, properties and other attributes to be useful in understanding, tailoring, verifying, and
operating it.

Simplicity - The degree to which a COTS component has a design and implementation that is straightforward and
easy to understand.

Testability - The degree to which a COTS component facilitates the establishment of test criteria and the
performance of tests to determine whether those criteria have been met.

EASE OF USE

Usability/Human Factors - The ease with which a user can learn to operate, prepare inputs for, and interpret
outputs of a system or component.

VERSION COMPATIBILITY

Downward compatibility - Pertaining to software that is compatible with an earlier or less complex version of
itself, for example, a COTS component that handles files created by an earlier version of itself.

Upward compatibility - Pertaining to software that is compatible with a later or more complex version of itself, for
example, a COTS component that handles files created by a later version of itself.

INTERCOMPONENT COMPATIBILITY

Compatibility with other components - The ability of two or more components to perform their required functions
while sharing the same hardware or software environment.

Interoperability - The ability of two or more systems or components to exchange information and to use the
information that has been exchanged.

USC COCOTS Survey
Version 0.7

USC CENTER FOR SOFTWARE ENGINEERING

7

FLEXIBILITY

Extendability - The ease with which features can be added to or around a COTS component in order to increase
storage or functional capability.

Flexibility - The ease with which a COTS component can be tailored for use in applications or environments other
than those for which it was specifically designed or is normally used.

INSTALLATION/UPGRADE EASE

Installation ease - The ease with which a COTS component can be installed within a hardware or software
environment.

Upgrade/refresh ease - The ease with which a new version of a COTS component can be installed within a
hardware or software environment.

PORTABILITY

Portability - The ease with which a COTS component can be transferred from one hardware or software
environment to another.

FUNCTIONALITY

Functionality - The degree to which a COTS component has the functional capability needed by a user to solve a
problem or achieve an objective; a functional capability that must be met or possessed by a COTS component to
satisfy a set of requirements.

PRICE

Initial purchase or lease – The upfront cost to buy or lease a COTS component.

Recurring costs – The periodic (usually annual) cost for maintenance and other COTS-related support.

MATURITY

Product Maturity - The length of time that a COTS component has been commercially available and/or the size and
diversity of its user base.

Vendor Maturity - The length of time that a vendor has been in the COTS software business and/or the size and
diversity of its user base.

VENDOR-SUPPORT

Response time for critical problems - The speed with which critical problems are addressed and solutions are put
in place by the vendor.

Support - Responsiveness in answering user questions, and in dealing with user problems in installing, testing, and
using the COTS component.

Warranty - The vendor’s written guarantee that the product will perform as specified and that instances of non-
compliance will be resolved according to a written agreement between the vendor and the buyer.

USC COCOTS Survey
Version 0.7

USC CENTER FOR SOFTWARE ENGINEERING

8

TRAINING

User training - The degree to which vendor training results in users who are proficient in using the COTS
component to solve problems or accomplish objectives.

VENDOR CONCESSIONS

Willingness to escrow source code - Willingness of the vendor to place the source code in the hands of a third-
party, thereby providing protection to the procurer in the event that the vendor goes out of business or stops
supporting the COTS component.

Willingness to Make Modifications - Willingness to make and maintain procurer-specific modifications to the
COTS product, rather than being driven solely by general market demands.

USC COCOTS Survey
Version 0.7

USC CENTER FOR SOFTWARE ENGINEERING

9

III. Identifying Information

Date Survey Completed:

Organization Name:

Name of Preparer:

Title of Preparer:

Voice Phone Number:

Fax Number:

E-mail Address:

Postal Address:

USC COCOTS Survey
Version 0.7

USC CENTER FOR SOFTWARE ENGINEERING

10

IV. Systems Data

4.1 Project Domain

Circle one:

Core System Functionality

Operational, Mission Critical

Operational, Non-mission Critical

Support (e.g., software development tools, logistical planning, etc.)

Communications, Navigation, and Surveillance

Operational, Mission Critical

Operational, Non-mission Critical

 Support (e.g., software development tools, logistical planning, etc.)

Administrative

Operational, Business Critical

Operational, Non-business Critical

Support (e.g., software development tools, logistical planning, etc.)

Other

Describe:

USC COCOTS Survey
Version 0.7

USC CENTER FOR SOFTWARE ENGINEERING

11

4.2 Development Type

Circle one: New System System Upgrade/Refresh

4.3 Development Process

Circle one: Waterfall Spiral Other:_________________________
 (Please describe on back of this page.)

4.4 Iteration

If the development process reported in 4.3 is iterative (e.g., spiral), indicate the iteration being
reported.

Iteration:__________________

USC COCOTS Survey
Version 0.7

USC CENTER FOR SOFTWARE ENGINEERING

12

4.5 Current Project Phase or Activity

Report the development phase or activity the project is currently undergoing based upon one of
the following three schemes:

1) It is recognized that there is always some overlap between activities even if a waterfall
process is being followed but you are being asked here for the phase or activity which is the
current major focus of the project. Circle that one phase.

2) It is also recognized that some modern development processes—particularly those involving

COTS/NDI components—perform certain activities concurrently. For example,
Requirements Definition and COTS/NDI Evaluation & Assessment may be undertaken
together because system requirements will influence the suitability of given COTS/NDI
components, but also the COTS/NDI components that are currently available or on the
market may help determine final system requirements. If this is the case, circle the phrase
“concurrent phasing” and circle all the major activities the project is currently undergoing

simultaneously
=.

3) Finally, if you report that the project is currently not undergoing any development phase or

activity because it is completed or in maintenance, it is assumed that the development phases
for this completed project include Software Requirements through Integration/Test, including
COTS/NDI Assessment. If this is not the case, please describe the correct phasing on the
back of this page.

Circle one or more as needed:
Concurrent Phasing

Requirements Definition
COTS/NDI Assessment

 Design
System Coding/COTS Integration

 Unit Test
 System Integration/Test

 Development Completed
 Maintenance

Where in the life-cycle does COTS/NDI assessment occur (For example, prior or post
requirements definition)?:__________________

USC COCOTS Survey
Version 0.7

USC CENTER FOR SOFTWARE ENGINEERING

13

4.6 Delivery Scheduling

Report the nature of the project delivery scheduling.

Circle one:

A B C D
Delivery acceptance
required at one
location, no on-going
maintenance

Delivery acceptance
required at one
location, maintenance
on-going

Phased delivery
acceptance required at
more than one
location, no on-going
maintenance

Phased delivery
acceptance required at
more than one
location, maintenance
on-going

4.7 Project Time Frame

1) For completed projects record the year of completion (i.e. the year of final delivery
acceptance); or 2) for projects in maintenance record the year of initial delivery acceptance; or 3)
for projects with a phased delivery schedule, the year of first site delivery acceptance; or 4) for
projects still in development indicate the current year.

Year:_____________ Year determined by criteria (circle one): 1 2 3 4

4.8 Schedule Duration

Record the number of calendar months from the time the development began (i.e. the start of
system requirements definition) through either 1) the date of final delivery acceptance if the
project was completed, 2) delivery to the first site if the project was/is undergoing a phased
delivery of copies at multiple locations, 3) the date of initial delivery acceptance if the project is
in maintenance, or 4) the current date if the project is still in development.

Months:___________ Months determined by criteria (circle one): 1 2 3 4

USC COCOTS Survey
Version 0.7

USC CENTER FOR SOFTWARE ENGINEERING

14

4.9 Development Schedule Life-cycle Phases

Circle all the life-cycle phases the schedule reported in 4.8 covers:

System
Requirements

COTS/NDI
Assessment

Detailed
Design

System
Integration
and Test

Software
Requirements

Preliminary
Design

Code/COTS
Integration

and Unit Test

Maintenance

4.10 Project Total Effort

Record the total effort expended in Person-Months from the time the development began (i.e. the
start of system requirements definition) through either 1) the date of final delivery acceptance if
the project was completed, 2) the date of initial delivery acceptance, and then from initial
delivery acceptance to the current date if the project is in maintenance, 3) the date of delivery
acceptance to the first site if multiple copies of the system have a phased installation schedule to
multiple locations, or 4) the current date if the project is still in development.

Development Person-Months:___________ (Maintenance Phase Person-Months:___________)

 Person-months determined by criteria (circle one): 1 2 3 4

4.11 Development Effort Life-cycle Phases

Circle all the life-cycle phases the total effort reported in 4.10 covers:

System
Requirements

COTS/NDI
Assessment

Detailed
Design

System
Integration
and Test

Software
Requirements

Preliminary
Design

Code/COTS
Integration

and Unit Test

Maintenance

(Note: items 4.9 and 4.11 may seem redundant, but sometimes schedule and effort data are not
available over precisely identical life-cycle phases.)

USC COCOTS Survey
Version 0.7

USC CENTER FOR SOFTWARE ENGINEERING

15

4.12 Standard Person-Month

Record the average number of work hours defining a person-month in your organization.

Hours per Person-Month:_____________

4.13 Total Delivered Source Code

Record the total number of lines of source delivered at project completion (or generated to date if
the project is still in development or in maintenance), including NDI code, and including COTS
glue code. (This question is intended to provide us with a sense of scale of your overall system
development.)

Total SLOC:_______________

4.14 SLOC Count Type

Record the unit definition for the SLOC count reported in 4.13.

Circle one:
Logical SLOC Physical SLOC (carriage returns)
Physical SLOC (semicolons) Non-commented/Non-blank SLOC
Other:

USC COCOTS Survey
Version 0.7

USC CENTER FOR SOFTWARE ENGINEERING

16

4.15 Programming Languages

Record all the various programming languages used in the development and the percentage of the
SLOC reported in 4.13 representing each language.

Language Percent SLOC

USC COCOTS Survey
Version 0.7

USC CENTER FOR SOFTWARE ENGINEERING

17

4.16 Total System Function Points

Record the total number of unadjusted function points counted for system at project completion
(or to date if still in development or in maintenance), including NDI functionality, and including
COTS glue functionality. (Again, This question is intended to provide us with a sense of scale of
your overall system development, this time using an alternate measure.)

Total FP:_______________

4.17 System Architecture

Record the nature of the overall system architecture. If the architecture is essentially uniform or
homogenous, circle the one style descriptor below which best describes that architecture. If the
architecture is substantially a mix of multiple architectural styles, circle as many style
descriptors as needed to describe the overall system architecture.

Circle as needed:

Pipe & Filter Distributed Main/Subroutine Event Based

Multithreaded Blackboard/Single Layer
General Repository

Closed Loop Feedback
Control

Real Time

Rule Based Transactional Database
Centric

Layered Other:_____________

4.18 System Architecting Process

Describe the process which was followed to arrive at the system architecture recorded in 4.17 in
the space below. (For example, was there a paper analysis relative to project specifications, at
least on the highest risk system elements? Was any prototyping performed or simulations on
performance issues conducted? Were formal Architectural Review Boards used? Or was no
formal architecting process used at all?):

USC COCOTS Survey
Version 0.7

USC CENTER FOR SOFTWARE ENGINEERING

18

V. COTS Assessment Data

The COTS Assessment sub-model presumes COTS component assessment is done in a two-pass
manner. The first pass is a “quick and dirty” activity in which minimal effort is expended, based
mainly on engineering judgment of vendor supplied product specifications, and designed to
rapidly remove from consideration those COTS products which on the face are not viable
candidates for further consideration. The second pass is a more careful examination of the
remaining COTS candidates, evaluating each product according to certain desirable attributes.

In this section, the data being requested is an aggregate of the total amount of effort expended
doing COTS/NDI assessment during the system development.

Initial Filtering Effort:

5.1 Total number of candidate COTS products filtered:__________

5.2 Total effort spent doing initial filtering of all COTS candidates:__________(person-months)

5.3 Average filtering effort per COTS candidate:___________(person-hours or person-months)
 circle the correct units
Attribute Assessment Effort:

5.4. Total number of COTS products assessed:__________

5.5. Total number of unique COTS products finally integrated:_________

5.6. Total effort spent on attribute assessment of all COTS candidates:_________(person-months)

5.7. Total number of calendar months spent assessing all candidate COTS products:__________

5.8. For each attribute listed in the table following, indicate the total amount of effort expended
assessing COTS products during system development in aggregate in terms of the given attribute
by checking the appropriate box according to the column definitions indicated below:

U - “Unknown” - don’t know effort expended assessing this attribute.
EL - “Extra Low” - no effort expended.
VL - “Very Low” - less than or equal to one person-hour.
L - “Low” - more than one person-hour and less than or equal to one person-day.
N - “Nominal” - more than one person-day and less than or equal to one person-week.
H - “High” - more than one person-week and less than or equal to one person-month.
VH - “Very High” - more than one person-month and less than or equal to three person-months.
EH - “Extra High” - more than three person-months and less than or equal to N person-years.

 (Please indicate your value of N in person-years: N = __________)

USC COCOTS Survey
Version 0.7

USC CENTER FOR SOFTWARE ENGINEERING

19

Note: In the table on the following pages, the composite attributes we want you to rate are
highlighted in the shaded rows. Underneath each composite attribute is at least one and
sometimes several lower level attributes which are being aggregated into the composite attribute.

Place a check mark in the appropriate box of a given composite attribute to indicate how much
effort was expended assessing any or all of the lower level attributes listed under that particular
composite attribute.

Also, place a check mark in the first box to the right of the lower level attributes you actually
considered when determining the effort expended assessing a given composite attribute.

For example, for “Correctness,” you may indicate that the assessment effort was Very High, and
you considered both of the lower level attributes accuracy and correctness as defined in the
glossary. Thus you would put a check in the VH box in the shaded row for “Correctness,” and
put checks in both of the boxes immediately to the right of the two lower level attributes.

But moving on to “Availability/Robustness,” you may determine only a Nominal amount of
effort was expended assessing this composite attribute, and in this case the only lower level
attributes considered were availability, fail safe, reliability, and safety. So you would put check
marks in the N box in the shaded row for “Availability/Robustness,” and check marks in the first
box to the right of availability, fail safe, reliability, and safety.

Finally, space has been left at the end of the table for you to specify your own assessment
attributes if you find that you have assessment effort that is not accounted for by the existing set
of pre-defined attributes.

USC COCOTS Survey
Version 0.7

USC CENTER FOR SOFTWARE ENGINEERING

20

Attributes\Effort U EL VL L N H VH EH
Correctness:

Accuracy
Correctness

Availability/Robustness:
Availability

Fail Safe
Fail Soft

Fault Tolerance
Input Error Tolerance

Redundancy
Reliability

Robustness
Safety

Security:
Security (Access Related)

Security (Sabotage Related)
Product Performance:

Execution Performance
Information/Data Capacity

Precision
Memory Performance

Response Time
Throughput

Understandability:
Documentation Quality

Simplicity
Testability

Ease of Use:
Usability/Human Factors

Version Compatibility:
Downward Compatibility

Upward Compatibility
Intercomponent Compatibility:
Compatibility with Other Components

Interoperability
Flexibility:

Extendibility
Flexibility

Installation/Upgrade Ease:
Installation Ease

Upgrade/Refresh Ease

(Table continued on following page.)

USC COCOTS Survey
Version 0.7

USC CENTER FOR SOFTWARE ENGINEERING

21

Attributes\Effort U EL VL L N H VH EH
Portability:

Portability
Functionality:

Functionality
Price:

Initial Purchase or Lease
Recurring Costs

Maturity:
Product Maturity
Vendor Maturity

Vendor Support:
Response Time for Critical Problems

Support
Warranty

Training:
User Training

Vendor Concessions:
Willingness to Escrow Source Code
Willingness to Make Modifications

Other (Please define)
1)

2)

3)

4)

5)

6)

USC COCOTS Survey
Version 0.7

USC CENTER FOR SOFTWARE ENGINEERING

22

VI. COTS Tailoring Data

COTS tailoring involves those normal activities required to prepare or initialize a COTS
component for use in a specific system WITHOUT adapting or modifying the normal or
available functionality of the COTS component.

(Adapting or modifying functionality, e.g., to account for mismatches between your business
process and a COTS product’s functionality, is typically done in the glue code and is handled by
the COCOTS glue code sub-model through proper sizing of the glue code effort and rating of the
glue code parameters. Large scale database population or conversion is also not considered
“tailoring.” This effort is captured in the COCOMO II model with the DATA parameter.
However, specification of data definition templates and formats is considered tailoring if this is
part of the normal activity needed to initialize a given COTS component.)

Major tailoring activities include parameter specification, script writing, I/O report and GUI
screen specification, and set-up of security/user access protocols.

The COTS Tailoring sub-model presumes that aggregate project COTS tailoring activity can be
characterized by an overall level of complexity, which in turn has implications for the overall
effort expended on tailoring all the COTS components in a system.

Tailoring Effort:

6.1. Total number of COTS components in system tailored:__________

6.2. Total effort spent tailoring all COTS components in system:_________(person-months)

6.3. Total number of calendar months spent tailoring all COTS components:__________

Tailoring Activity Complexity:

Complexity of aggregate COTS tailoring activities is determined in the model using a subjective
average of the individual complexity of five equally weighted factors (four tailoring activities
plus one tailoring aid) presented in table VI.A on the following page. To determine aggregate
tailoring complexity, first rate the five factors in table VI.A individually according to the criteria
given in the table. (Again, keep in mind that you are doing a mental averaging of each factor
as it was performed or applied across all COTS components in the system.) Next, sum the total
point score as described in the table for the combination of ratings you selected. Then determine
which gross category that score corresponds to on the rating scale provided on the page following
the table. Finally, using your best engineering judgment, adjust your final rating for aggregate
complexity above or below the center mark of the gross category as needed.

USC COCOTS Survey
Version 0.7

USC CENTER FOR SOFTWARE ENGINEERING

23

Individual Activity & Aid Complexity Ratings
Tailoring

Activities & Aids
Very Low

(point value = 1)
Low

(point value = 2)
Nominal

(point value = 3)
High

(point value = 4)
Very High

(point value = 5)
Corre-

sponding
Points

Parameter
Specification

Zero to 50 parms to
be initialized.

51 to 100 parms to
be initialized.

101 to 500 parms
to be initialized.

501 to 1000 parms
to be initialized.

1001 or more
parms to be
initialized.

Script Writing Menu driven;

 1 to 5 line scripts;
 1 to 5 scripts

needed.

Menu driven;
 6 to 10 line scripts;

 6 to 15 scripts
needed.

Hand written;
 11 to 25 line

scripts;
 16 to 30 scripts

needed.

Hand written;
 26 to 50 line

scripts;
 31 to 50 scripts

needed.

Hand written;
 51 or more line

scripts;
 51 or more scripts

needed.

I/O Report & GUI
Screen Specification &

Layout

Automated or
standard templates

used;
 1 to 5

reports/screens
needed.

Automated or
standard templates

used;
 6 to 15

reports/screens
needed.

Automated or
standard templates

used;
 16 to 25

reports/screens
needed.

Hand written or
custom designed;

 26 to 50
reports/screens

needed.

Hand written or
custom designed;

 51 or more
reports/screens

needed. -------

Security/Access
Protocol Initialization

& Set-up

1 security level;
1 to 20 user

profiles;
1 input screen/user.

2 security levels
21 to 50 user

profiles;
2 input

screens/user.

3 security levels
51 to 75 user

profiles;
3 input

screens/user.

4 security levels
76 to 100 user

profiles;
4 input

screens/user.

5 or more security
levels

101 or more user
profiles;

5 or more input
screens/user.

Availability of COTS
Tailoring Tools

Tools were highly
useful.

Tools were very
useful.

Tools were
moderately useful.

Tools were
somewhat useful.

No tools available.

Total Point Score =

Table VI.A - Aggregate Tailoring Activity Complexity

USC COCOTS Survey
Version 0.7

USC CENTER FOR SOFTWARE ENGINEERING

24

Example: individual ratings of Low for Parameter Spec, Very Low for Scripts ,Very High for
I/O Reports, Nominal for Security, and Very High for Tailoring Tools would result in a point
total of 16, indicating a gross combined rating of Nominal. To recognize the existence of at least
one individual rating of Very Low, however, it might be reasonable to circle the tic mark exactly
halfway between the Low and Nominal categories on the scale below when assigning a final
complexity rating for aggregate COTS tailoring activity. Note that the minimum point total
possible is 5 and the maximum is 30.

6.4 - Aggregate Tailoring Complexity.

Circle the appropriate tic mark based upon the criteria in the preceding table:

Very Low Low Nominal High Very High
Point total is between

5 and 10.
Point total is between

11 and 15.
Point total is between

16 and 20.
Point total is between

21 and 25.
Point total is between

26 and 30.

VL L N H VH

Explain rationale for your rating:

USC COCOTS Survey
Version 0.7

USC CENTER FOR SOFTWARE ENGINEERING

25

VII. COTS Glue Code Data

The COTS Glue Code model refers to the total amount of COTS glue code developed for the
system in aggregate, including glue code created for COTS products layered beneath other COTS
products, as opposed to being integrated directly into the main system.

7.1 Total number of COTS components represented by glue code described in this section.

No. Components:___________

7.2 All functions provided by the COTS components counted in question 7.1.

Circle as needed:

Spreadsheet Communications Message Handling
Word Processing User Display CASE Environment
Scheduling Database Diagnostics
Mathematical Utilities Signal Processing Compiler
Other:

7.3 Component Integration Nature

Indicate the percentage of COTS components counted in question 7.1 for which the
integration activity is a:

New Component Integration:__________%

Component Upgrade/Refresh:__________%

USC COCOTS Survey
Version 0.7

USC CENTER FOR SOFTWARE ENGINEERING

26

7.4 Specific Glue Code Development Activity Duration

Record the number of calendar months needed to complete all the glue code from the time the
first COTS component counted in question 7.1 was integrated to the last COTS component.

Months:___________

7.5 Specific Glue Code Development Activity Effort

Record the total effort expended in Person-Months needed to complete all the glue code from the
time the first COTS component counted in question 7.1 was integrated to the last COTS
component.

Person-Months:___________

 * * * *

We would like to collect integration or “glue” code sizing and breakage data in
physical and logical lines of code as well as unadjusted function points. Please
submit all size measures that are available.

Note: Glue code as defined for the purposes of this survey is composed of 1)
code needed to facilitate data or information exchange between the COTS/NDI
component and the system into which it is being integrated, 2) coded needed to
connect or “hook” the COTS/NDI component into the system but does not
necessarily enable data exchange, and 3) code needed to provide required
functionality missing in the COTS/NDI component AND which depends upon
or must interact with the COTS/NDI component.

USC COCOTS Survey
Version 0.7

USC CENTER FOR SOFTWARE ENGINEERING

27

7.6 Total Delivered Lines of Component Glue Code

Record the total number of lines of glue code delivered for all COTS components.

Glue SLOC:_______________

7.7 Glue SLOC Count Type

Record the unit definition for the SLOC count reported in question 7.6.

Circle one:
Logical SLOC Physical SLOC (carriage returns)
Physical SLOC (semicolons) Non-commented/Non-blank SLOC
Other:

7.8 Glue Code Programming Languages

Record all the various programming languages used in the development of the glue code and the
percentage of the SLOC reported in question 7.6 representing each language.

Language Percent SLOC

USC COCOTS Survey
Version 0.7

USC CENTER FOR SOFTWARE ENGINEERING

28

7.9 Glue Code by Unadjusted Function Points

Record the total number of unadjusted function points attributable to data function types
(internal logical files, external interface files) and transaction function types (external inputs,
external outputs, external inquiries) counted for the glue code delivered with all COTS
components.

Glue UFP:_______________

7.18 Glue Code Breakage

Record the percentage breakage in the glue code that occurred by project completion. “Breakage”
is defined to be code that had to be discarded or reworked as a result of a change in system
requirements OR the need to integrate a newer or upgraded version of a COTS product. It does
NOT include code that had to be reworked as result of bugs found during testing or improper
implementation of requirements.

Percentage Breakage (Glue SLOC):________

Percentage Breakage (Glue UFP):________

USC COCOTS Survey
Version 0.7

USC CENTER FOR SOFTWARE ENGINEERING

29

VIII. Glue Code Development Cost Drivers

These drivers should be assessed while considering the total amount of COTS glue code
developed for the system, as described in Section VII. That is, where the criteria given below
refer to “a COTS component,” think in terms of how a given driver would most accurately be
rated when considering all COTS components taken together. You’re doing a kind of mental
averaging here across all COTS components integrated. The key here is to remember that you
are trying to qualify the average or overall conditions that obtained when all the glue code was
being developed, whether or not that glue code was written to accommodate only one or many
different COTS components.

Fourteen Cost Drivers have been defined for the COTS integration cost estimation model. You
are asked to rate each driver according to a specific metric defined for each driver on a scale
ranging from Very Low to Very High as the given metric applies to the circumstances of the
component integration effort being reported. Descriptions of the concepts being captured by
each driver have been provided to help you make your assessment. (Note that these descriptions
are usually more encompassing than the specific metric by which you are asked to make your
rating.) Also, a graduated scale has been provided to allow you to make incremental ratings
between the five gross ratings. Record your answers by circling the tic marks on the scales, one
mark per cost driver. Note that some of the cost drivers do not allow ratings at all levels (i.e.,
Very Low, Low, etc.). Finally, for each question in this section, the word “UNKNOWN” has
been placed just above each rating scale. If for any driver you do not know with any reasonable
confidence the appropriate rating and cannot determine that information, please circle
“UNKNOWN” rather than indicating either nominal or some other rating on the scale.

USC COCOTS Survey
Version 0.7

USC CENTER FOR SOFTWARE ENGINEERING

30

Circle the appropriate tic mark on the scales below:

Integration Personnel Drivers

8.1 ACIEP - COTS/NDI Integrator Experience with Product

How much experience did/does the development staff have with running, integrating, and
maintaining the COTS/NDI products?

Metric: months/years of experience with product.

UNKNOWN

Very Low Low Nominal High Very High
Staff on average has no

experience with the
products.

Staff on average has
less than 6 month’s
experience with the

products.

Staff on average has
between 6 month’s and

1 year’s experience
with the products.

Staff on average has
between 1 and 2 years’

experience with the
products.

Staff on average has
more than 2 years’
experience with the

products.

VL L N H VH

Explain rationale for your rating:

USC COCOTS Survey
Version 0.7

USC CENTER FOR SOFTWARE ENGINEERING

31

8.2 ACIPC - COTS/NDI Integrator Personnel Capability

What were/are the overall software development skills and abilities which your team as a whole
on average brought/bring to the product integration tasks AS WELL AS experience with the
specific tools, languages, platforms, and operating systems used/being used in the integration
tasks?

Metric: months/years of experience.

UNKNOWN

Very Low Low Nominal High Very High
Staff on average has no
development experience

or with the specific
environmental items

listed.

Staff on average has
less than 6 month’s

development experience
or with the specific
environmental items

listed.

Staff on average has
between 6 month’s and
1 year’s development
experience or with the
specific environmental

items listed.

Staff on average has
between 1 and 2 years’
development experience

or with the specific
environmental items

listed..

Staff on average has
more than 2 years’

development experience
or with the specific
environmental items

listed..

VL L N H VH

Explain rationale for your rating:

USC COCOTS Survey
Version 0.7

USC CENTER FOR SOFTWARE ENGINEERING

32

8.3 AXCIP - Integrator Experience with COTS/NDI Integration Processes

Does a formal and validated COTS/NDI integration process exist within your organization and
how experienced was/is the development staff in that formal process?

Metric: a mix of conditions including SEI CMM level, ISO 9001 certification, and number of
times integration team as a whole on average has used the defined COTS/NDI integration
process.

UNKNOWN

Low Nominal High Very High
CMM level =1

OR
there is no formally
defined COTS/NDI
integration process.

[CMM level =2
OR

 ISO 9001 certified]
AND

there is a formally
defined COTS/NDI
integration process

AND
the integration team has
never used the process

before.

[CMM level =3
OR

 ISO 9001 certified]
AND

there is a formally
defined COTS/NDI
integration process

AND
the integration team has
used the process 1 or 2

times before.

[CMM level > 3
OR

 ISO 9001 certified]
AND

there is a formally
defined COTS/NDI
integration process

AND
the integration team has

used the process 3 or
more times before.

L N H VH

Explain rationale for your rating:

USC COCOTS Survey
Version 0.7

USC CENTER FOR SOFTWARE ENGINEERING

33

8.4 APCON - Integrator Personnel Continuity

How stable was/is your integration team? Are the same people staying around for the duration of
the tasks, or must you keep bringing in new people and familiarizing them with the particulars of
the project because experienced personnel leave?

Metric: annual integration personnel turnover rate (a high personnel turnover rate implies a low
personnel continuity).

UNKNOWN

Very Low Low Nominal High Very High
48% or more per year. Between 24% and 47%

per year.
Between 12% and 23%

per year.
Between 6% and 11%

per year.
5% or less per year.

VL L N H VH

Explain rationale for your rating:

USC COCOTS Survey
Version 0.7

USC CENTER FOR SOFTWARE ENGINEERING

34

COTS/NDI Component Drivers

8.5 ACPMT - COTS/NDI Product Maturity

How many copies have been sold or used previously of the major versions (as opposed to release
of those versions) of the COTS/NDI components you integrated or intend to integrate? How
long have the versions been on the market or available for use? How large are the versions’
market shares or installed user bases? How thoroughly have the versions been used by others in
the manner you used or intend to use them?

Metric: time on market (if COTS)/time available for use (if NDI).

UNKNOWN

Very Low Low Nominal High Very High
Versions in pre-release

beta test.
Versions on

market/available
 less than 6 months.

Versions on
market/available

between 6 months and 1
year.

Versions on
market/available

between 1 and 2 years.

Versions on
market/available more

than 2 years.

VL L N H VH

Explain rationale for your rating:

USC COCOTS Survey
Version 0.7

USC CENTER FOR SOFTWARE ENGINEERING

35

8.6 ACSEW - COTS/NDI Supplier Product Extension Willingness

How willing were/are the suppliers of the COTS/NDI products to modify the design of their
software to meet your specific needs, either by adding or removing functionality or by changing
the way it operates? In the case of COTS components, this refers to changes that would appear
in market releases of the product. In the case of NDI components, this refers to changes that
would appear in copies being distributed to all users of the component. This does NOT include
specialty changes in the COTS/NDI component that would appear in your copy only.

Metric: number and nature of changes supplier will make.

UNKNOWN

Low Nominal High Very High
Suppliers will not make

any changes.
Suppliers will make a
few minor changes.

Suppliers will make one
major change and

several minor ones.

Suppliers will make two
or more major changes
along with any minor

changes needed.

L N H VH

Explain rationale for your rating:

USC COCOTS Survey
Version 0.7

USC CENTER FOR SOFTWARE ENGINEERING

36

8.7 APCPX - COTS/NDI Product Interface Complexity

What are the nature of the interfaces between the COTS/NDI components and the glue code
connecting them to the main application? Are there difficult synchronization issues? Must the
interfaces balance conflicting criteria (e.g., security, safety, accuracy, ease of use, speed)?

Metric: the scale for this driver uses a subjective average of the three equally weighted facets of
interface complexity described in table VIII.A on the following page. To rate this driver, first
rate the three items (interface conventions, control aspects, data) in table VIII.A individually
according to the criteria given in the table. Next, sum the total point score as described in the
table for the combination of ratings you selected, and determine which gross category that score
corresponds to on the scale below. Finally, using your best engineering judgment, adjust your
final rating for this driver above or below the center mark of the gross category as needed.

Example: individual ratings of Low for Interface , Low for Control , and Very High for Data
would result in a point total of 9, indicating a gross combined rating of Nominal. To recognize
the existence of at least one individual rating of Very High, however, it might be reasonable to
circle the tic mark immediately to the right of the center tic mark in the Nominal category on the
scale below when assigning a final rating for this driver.

UNKNOWN

Low Nominal High Very High
Point total is between

5 and 7.
Point total is between

 8 and 10.
Point total is between

11 and 13.
Point total is between

14 and 15.

L N H VH

Explain rationale for your rating:

USC COCOTS Survey
Version 0.7

USC CENTER FOR SOFTWARE ENGINEERING

37

Complexity Elements Very Low
(point value

= 1)

Low
(point value

= 2)

Nominal
(point value

= 3)

High
(point value

= 4)

Very High
(point value

= 5)

Corre-
sponding

Points
Interface Conventions
(e.g., naming, relevant

usage scenarios, service
signature, service

order)

N/A Nearly all
API

conventions
are clear and
consistent.

Most API
conventions
are clear and
consistent.

Few API
conventions
are clear and
consistent.

 API
conventions

are non-
existent.

Control Aspects

 (e.g., consistent and
clear error

handling/recovery)

N/A Nearly all
control

aspects are
well defined

and
consistently

applied.

Most control
aspects are

well defined
and

consistently
applied.

Few control
aspects are

well defined
and

consistently
applied.

 No control
aspects are

well defined
and

consistently
applied.

Data

(e.g., conversion,
number/range typing)

No data
conversion
required.

Little data
conversion

required and
standard data
types used.

Some data
conversion

required and
standard data
types used.

Significant
data

conversion
required

and/or use of
non-standard
data types.

Extensive
data

conversion
required

and/or use of
non-standard
data types. -------

Total Point Score =

Table VIII.A - Facets of Complexity

Use this table in evaluating complexity drivers 8.7 (APCPX) and 8.11 (AACPX).
Use it once for APCPX, then repeat its use for AACPX. Rate each complexity
element described in the table individually, recording the point value associated
with your rating in the far right column. Then sum all three point values to arrive
at a total point score (minimum score possible is 5, maximum score is 15). Then
apply that total point score to the scales provided for each of the two cost drivers
as indicated under their descriptions.

USC COCOTS Survey
Version 0.7

USC CENTER FOR SOFTWARE ENGINEERING

38

8.8 ACPPS - COTS/NDI Supplier Product Support

What is the nature of the technical support for the COTS/NDI components that was/is available
AND PROCURED for the integration team during the development, either directly from the
component suppliers or through third parties?

Metric: the level of support available and procured.

UNKNOWN

Low Nominal High Very High
Products are
unsupported.

Help desk support. Trained technical
support.

Formal consulting help.

L N H VH

Explain rationale for your rating:

USC COCOTS Survey
Version 0.7

USC CENTER FOR SOFTWARE ENGINEERING

39

8.9 ACPTD - COTS/NDI Supplier Provided Training and Documentation

How much training and/or documentation for the COTS/NDI components was/is available AND
PROCURED for the integration team during the development, either directly from the
component suppliers or through third parties?

Metric: the amount of training and/or documentation available and procured.

UNKNOWN

Very Low Low Nominal High Very High
No training and very
little documentation

procured.

Roughly ¼ of the
needed training and/or

documentation
procured.

Roughly ½ of the
needed training and

documentation
procured.

Roughly ¾ of the
needed training and/or

documentation
procured.

As much training and/or
documentation procured

as needed.

VL L N H VH

Explain rationale for your rating:

USC COCOTS Survey
Version 0.7

USC CENTER FOR SOFTWARE ENGINEERING

40

APPLICATION/SYSTEM Drivers

8.10 ACREL - Constraints on System/Subsystem Reliability

How severe are the overall reliability constraints on the system or subsystem into which the
COTS/NDI components was/is being integrated? What are the potential consequences if the
components fail to perform as required in any given time frame? (Note that availability is
considered an issue different than reliability and is NOT addressed in this cost driver.)

Metric: the potential threat if the component fails to perform as expected.

UNKNOWN

Low Nominal High Very High
Threat is low; if a

failure occurs losses are
easily recoverable (e.g.,
document publishing).

Threat is moderate; if a
failure occurs losses are
fairly easily recoverable
(e.g., support systems).

Threat is high; if a
failure occurs the risk is

to mission critical
requirements.

Threat is very high; if a
failure occurs the risk is

to safety critical
requirements.

L N H VH

Explain rationale for your rating:

USC COCOTS Survey
Version 0.7

USC CENTER FOR SOFTWARE ENGINEERING

41

8.11 AACPX - Application Interface Complexity

What are the nature of the interfaces between the main application system or subsystem and the
glue code used to connect the system to the COTS/NDI components? Are there difficult
synchronization issues? Must the interface balance conflicting criteria (e.g., security, safety,
accuracy, ease of use, speed)?

Metric: the same subjective averaging of the items in table VIII.A as used for the driver APCPX.
See the explanation provided for rating that driver under item 8.7, and then repeat the use of
table VIII.A to evaluate this current driver.

UNKNOWN

Low Nominal High Very High
Point total is between

5 and 7.
Point total is between

 8 and 10.
Point total is between

11 and 13.
Point total is between

14 and 15.

L N H VH

Explain rationale for your rating:

USC COCOTS Survey
Version 0.7

USC CENTER FOR SOFTWARE ENGINEERING

42

Complexity Elements Very Low
(point value

= 1)

Low
(point value

= 2)

Nominal
(point value

= 3)

High
(point value

= 4)

Very High
(point value

= 5)

Corre-
sponding

Points
Interface Conventions
(e.g., naming, relevant

usage scenarios, service
signature, service

order)

N/A Nearly all
API

conventions
are clear and
consistent.

Most API
conventions
are clear and
consistent.

Few API
conventions
are clear and
consistent.

 API
conventions

are non-
existent.

Control Aspects

 (e.g., consistent and
clear error

handling/recovery)

N/A Nearly all
control

aspects are
well defined

and
consistently

applied.

Most control
aspects are

well defined
and

consistently
applied.

Few control
aspects are

well defined
and

consistently
applied.

 No control
aspects are

well defined
and

consistently
applied.

Data

(e.g., conversion,
number/range typing)

No data
conversion
required.

Little data
conversion

required and
standard data
types used.

Some data
conversion

required and
standard data
types used.

Significant
data

conversion
required

and/or use of
non-standard
data types.

Extensive
data

conversion
required

and/or use of
non-standard
data types. -------

Total Point Score =

Repeat of Table VIII.A for 8.11 calculation

USC COCOTS Survey
Version 0.7

USC CENTER FOR SOFTWARE ENGINEERING

43

8.12 ACPER - Constraints on System/subsystem Technical Performance

How severe were/are the technical performance constraints (e.g., storage, memory, reserve, flow
through capacity, etc.) on the application system or subsystem that the COTS/NDI components
needed to/must meet?

Metric: the presence or absence of constraints.

UNKNOWN

Nominal High Very High
There are no technical
constraints or real time

processing needs.

Real time processing
must be performed

OR
other technical

constraints exist.

Real time processing
must be performed

AND
other technical

constraints exist.

N H VH

Explain rationale for your rating:

USC COCOTS Survey
Version 0.7

USC CENTER FOR SOFTWARE ENGINEERING

44

8.13 ASPRT - System Portability

What were/are the overall system or subsystem portability requirements that the COTS/NDI
component needed to/must meet?

Metric: the nature of portability requirements.

UNKNOWN

Nominal High Very High
There are no portability

requirements at the
system/subsystem level.

System must be
portable across

platforms within the
same family (e.g.,
across different

versions of UNIX).

System must be
portable across

divergent platforms
(e.g., from UNIX to

VMS).

N H VH

Explain rationale for your rating:

USC COCOTS Survey
Version 0.7

USC CENTER FOR SOFTWARE ENGINEERING

45

8.14 AAREN - Application Architectural Engineering

How adequate/sophisticated were the techniques used to define and validate the overall systems
architecture?

Metric: architecture validation techniques.

UNKNOWN

Very Low Low Nominal High Very High
No architecture
validation done.

Paper analysis
performed.

Peer reviews of
architectural design
(including interface

definitions).

Prototyping/demos of
the architecture

performed.

Simulations of the
architecture created.

VL L N H VH

Explain rationale for your rating:

USC COCOTS Survey
Version 0.7

USC CENTER FOR SOFTWARE ENGINEERING

46

IX. Application Effort Due to COTS Volatility Data

The Application Effort Due to COTS Volatility Model is defined in both approximate and
detailed versions. The Approximate model determines added effort as simply a percentage of
overall new application effort based on the percentage of code breakage due to COTS volatility
as determined in question 7.18. The Detailed model adds the refinement of including the
COCOMO II non-linear scale factors. (When used to perform an estimate, rather than ask for
the actual new application effort, both models will assume an original Application development
effort has been estimated using COCOMO II.)

9.1 New application coding effort excluding effort due to COTS integration, i.e., exclusive of
glue code and tailoring:

 New application code effort:_________________(person-months)

9.2 Percentage of new application coding effort due to breakage excluding breakage related to

COTS integration, i.e., as a result of requirements change, but not due to design or
programming error (this is the same breakage term as defined for COCOMO II):

 Application code breakage due to requirements change:____________%

9.3 Percentage of new application coding effort due to breakage as a result of COTS product

volatility, i.e., as a result of releases by the vendor of updated versions of COTS components.

 Application code breakage due to COTS volatility:____________%

USC COCOTS Survey
Version 0.7

USC CENTER FOR SOFTWARE ENGINEERING

47

9.4 COCOMO II Scale Factor Ratings:

Circle the appropriate box for each factor, one box per row:

Scale Factor Very Low Low Nominal High Very High Extra High
Precedentedness thoroughly

unprecedented
Largely

unprecedented
somewhat

unprecedented
generally
familiar

largely familiar thoroughly
familiar

Development
Flexibility

rigorous Occasional
Relaxation

some
relaxation

general
conformity

some
conformity

general goals

Architecture/Risk
Resolution

little (20%) some (40%) often (60%) generally
(75%)

mostly (90%) full (100%)

Team Cohesion some difficult
interactions

Basically
cooperative
interactions

largely
cooperative

highly
cooperative

seamless
interactions

N/A

Process Maturity Chaos CMM Level 1 CMM Level 2 CMM Level 3 CMM Level 4 CMM Level 5
* percentage of module interfaces specified, percentage of significant risks eliminated.

USC COCOTS Survey
Version 0.7

USC CENTER FOR SOFTWARE ENGINEERING

48

X. Free Form Comments

Please write down any comments or descriptions of items you feel are important to COTS
integration but that were missing from this survey:

This concludes this survey. Thank you for your efforts. Your cooperation is greatly
appreciated and goes a long way to ensuring the usefulness of the

COCOTS software integration cost estimation tool.

