COCOMO' II Data Collection Questionnaire

1. Introduction

The Center for Software Engineering at the University of Southern California is conducting research to update
the software development cost estimation model called COCOMO. The project name is COCOMO 1I and is led
by Dr. Barry W. Boehm.

A fundamental requirement for such research is real-world software development project data. This data will be
used to test hypotheses and verify the model's postulations. In return the model will be open and made available
to the public. The contribution of your data will ensure the final model is useful.

The data that is contributed is important to us. We will safeguard your contribution so as not to compromise
company proprietary information. Some Affiliates have an active collection program and the data from past
projects is available for the COCOMO II data collection effort. This questionnaire can be used to extract
relevant COCOMO II data. A rosetta-stone that converts COCOMO ’81 data to COCOMO II data is also
available. Please contact us if you would like to get a copy.

This questionnaire attempts to address two different levels of data granularity: project level and component
level. The project level of granularity is data that is applicable for the whole project. This includes things like
application type and development activity being reported. Component level data are things like size, cost, and
component cost drivers. If the data being submitted is on a project that has multiple components then fill out
the project data once, and the component data for each of the identifiable component. If the data being
submitted is for the whole project fill out the form once. The data collection activity for the COCOMO II
research effort started in November 1994. The first calibration was published in 1997 based on 83 datapoints
collected. It became popular as COCOMO I1.1997 and produced estimates within 30% of the actuals 52% of
the time for effort. The second calibration was published in 1998 based on 161 datapoints. It is known as
COCOMO 1I.1998 and produces estimates within 30% of the actuals 71% of the time for effort. The aim of the
COCOMO II research team is to continually update the existing COCOMO II database and to publish annual
calibrations of the COCOMO II model. Hence by submitting your data to us, you play a significant role in the
model calibration.

COCOMO II Points of Contact

For questions on the COCOMO II Model and its extensions, data definitions, or project data collection and
management, contact:

A. Winsor Brown (Research Scientist) Voice: (213) 740-6599, Fax: (213) 740-4927
Barry Boehm (Project Leader) Voice: (213) 740-8163, Fax: (213) 740-4927
Internet Electronic-Mail cocomo-info@sunset.usc.edu

COCOMO II Data Submission Address:

COCOMO II Data Submission
Center for Software Engineering
Department of Computer Science
Henry Salvatori Room 330
University of Southern California
941 W. 37th Place

Los Angeles, CA 90089-0781
U.S.A.

! COnstructive Cost Modeling (COCOMO) is defined in Software Engineering Economics by Barry W. Boehm,
Prentice Hall, 1981

© 1998 University of Southern California - Version 1.9

This page has been left blank intentionally.

© 1998 University of Southern California - Version 1.9

2. Project Level Information

As described in the Introduction section of this questionnaire, project level information is applicable for the whole
project. This includes things like application type and development activity being reported.

2.A General Information

2.1 Affiliate Identification Number. Each separate software project contributing data will have a separate file
identification number of the form XXX. XXX will be one of a random set of three-digit organization identification
numbers, provided by USC Center for Software Engineering to the Affiliate.

2.2 Project Identification Number. The project identification is a three-digit number assigned by the organization.
Only the Affiliate knows the correspondence between YY'Y and the actual project. The same project identification
must be used with each data submission.

2.3 Date prepared. This is the date the data elements were collected for submission.

2.4 Application Type. This field captures a broad description of the type of activity this software application is
attempting to perform.

Circle One: Command and Control, MIS, Simulation,
Communication, Operating Systems, Software Dev. Tools,
Diagnostics, Process Control, Testing,
Engineering Signal processing, Utilities

and Science

Other:

2.5 Development Type.

Is the development a new software product or an upgrade of an existing product?

Circle One: New Product Upgrade

2.6 Development Process. This is a description of the software process used to control the software development,
e.g. waterfall, spiral, etc.

© 1998 University of Southern California - Version 1.9

2.7 Step in Process. This field captures information about the project’s position in its development process. The
answers depend on the process model being followed.

2.7.1 Waterfall Phase: Activity. This field captures the waterfall phase of development that the project is in. For
one-time reporting the activity is "completed'. It is assumed that data for completed projects includes data from
software requirements through integration/test. Please report the correct phasing if this is not the case.

Circle One: Requirements, Design, Code,
Unit Test, Integration/Test, Maintenance,
Completed

Other:

2.7.2 MBASE Phase. Phase refers to the aggregate of activities between the life cycle anchor points®. The four
phases, based on the Rational Unified Process (RUP) [nee Rational’s Objectory Process’], and the anchor points are
shown on the timeline below. Please see section 2 of the “CORADMO* Extensions of COCOMO II Schedule
Estimation Questionnaire” for more details.

Please circle the most advance anchor point (milestone) the project has achieved.

Life Cycle Life Cycle Initial Operational
Obiectives Architecture Capability

Inception | Elaboration Construction | Maintenance

See the Appendix A for definitions of the LCO, LCA, and IOC milestones. The COCOMO II model covers the effort
required from the completion of the LCO to IOC. If you are using a waterfall model, the corresponding milestones
are the Software Requirements Review, Preliminary Design Review, and Software Acceptance Test.

2.8 Development Process Iteration.

2.8a. If the product development process is iterative, e.g. spiral or represents a released version, which iteration is
this?

2.8b. If the development process phases are is iterative, e.g. spiral, how many iterations have there been?

Inception: Elaboration: Construction:

? Barry W. Boehm, “Anchoring the Software Process,” IEEE Software, 13,4, July 1996, pp. 73-82. An unabridged
version, dated November 1995, is in Appendix A.

? Rational Corp., "Rational Objectory Process 4.1 — Your UML Process", available at
http://www.rational.com/support/techpapers/toratobjprcs/.

* COnstructive RAD schedule and effort MOdel

© 1998 University of Southern California - Version 1.9

2.9 COCOMO Model. This specifies which COCOMO II model is being used in this data submission. If this is a
"historical" data submission, select the Post-Architecture model or the Applications Composition model.

e Application Composition: This model involves prototyping efforts to resolve potential high-risk issues such
as user interfaces, software/system interaction, performance, or technology maturity.

e Early Design: This model involves exploration of alternative software/system architectures and concepts of
operations. At this stage of development, not enough is known to support fine-grain cost estimation.

e Post-Architecture: This model involves the actual development and maintenance of a software product. This
stage of development proceeds most cost-effectively if a software life-cycle architecture has been
developed; validated with respect to the system's mission, concept of operation, and risk; and established as
the framework for the product.

Circle One: Application Composition, Early Design, Post-Architecture

2.10 Success Rating for Project. This specifies the degree of success for the project.
e Very successful; did almost everything right
e Successful; did the big things right
e OK; stayed out of trouble
e Some Problems; took some effort to keep viable

e Major Problems; would not do this project again

Circle One: Very Successful Successful OK Some Problems Major Problems

Schedule

2.11 Year of development. For reporting of historical data, please provide the year in which the software
development was completed. For periodic reporting put the year of this submission or leave blank.

2.12 Schedule Months. For reporting of historical data, provide the number of calendar months from the time the
development began through the time it completed. For periodic reporting, provide the number of months in this
development activity.

Circle the life-cycle phases that the schedule covers:

ife Cycle Life Cycle Initial Operational
bjectives Architecture Capability

Inception] Elaboration Construction | Maintenance

Schedule in months:

© 1998 University of Southern California - Version 1.9

Project Exponential Cost Drivers

Scale Factors Very Low Low Nominal High Very High Extra High
Wi)

Precedentedness | thoroughly largely somewhat generally largely Thoroughly
unprecedented | unprecedented unprecedented | familiar familiar familiar

Development rigorous occasional some general General

Flexibility relaxation relaxation conformity conformity goals

Architecture / little (20%) some (40%) often (60%) generally mostly (90%) | full (100%)

risk resolution™ (75%)

Team cohesion some difficult basically largely highly seamless

very difficult interactions cooperative cooperative cooperative interactions

interactions interactions

*% significant module interfaces specified, % significant risks eliminated.

Enter the rating level for the first four cost drivers.

2.13 Precedentedness (PREC). If the product is similar to several that have been developed before then the

precedentedness is high. See the Model Definition Manual for more details.

Very Low

Low

Nominal

High

Very High

Extra High

Don't Know

2.14 Development Flexibility (FLEX). This cost driver captures the amount of constraints the product has to meet.
The more flexible the requirements, schedules, interfaces, etc., the higher the rating. See the Model Definition
Manual for more details.

Very Low

Low

Nominal

High

Very High

Extra High

Don't Know

2.15 Architecture / Risk Resolution (RESL). This cost driver captures the thoroughness of definition and freedom
from risk of the software architecture used for the product. See the Model Definition Manual for more details.

Very Low

Low

Nominal

High

Very High

Extra High

Don't Know

2.16 Team Cohesion (TEAM). The Team Cohesion cost driver accounts for the sources of project turbulence and

extra effort due to difficulties in synchronizing the project's stakeholders: users, customers, developers, maintainers,

interfacers, others. See the Model Definition Manual for more details.

Very Low

Low

Nominal

High

Very High

Extra High

Don't Know

© 1998 University of Southern California - Version 1.9

2.17 Process Maturity (PMAT). The procedure for determining PMAT is organized around the Software
Engineering Institute's Capability Maturity Model (CMM). The time period for reporting process maturity is at the
time the project was underway. We are interested in the capabilities practiced at the project level more than the
overall organization's capabilities. There are three ways of responding to this question: choose only one. "Key
Process Area Evaluation" requires a response for each Key Process Area (KPA). We have provided enough
information for you to self-evaluate the project's enactment of a KPA (we hope will you will take the time to
complete this section). "Overall Maturity Level" is a response that captures the result of an organized evaluation
based on the CMM. "No Response" means you do not know or will not report the process maturity either at the
Capability Maturity Model or Key Process Area level.

(J No Response

Overall Maturity Level

O CMM Level 1 (lower half)

J CMM Level 1 (upper half)

0 CMM Level 2

0O CMM Level 3

0O CMM Level 4

0 CMM Level 5

Basis of estimate:

(J Software Process Assessment (SPA)
(O Software Capability Evaluation (SCE)
(3 Interim Process Assessment (IPA)

3 Other:

Key Process Area Evaluation

Enough information is provided in the following table so that you can assess the degree to which a KPA was
exercised on the project.

e Almost Always (over 90% of the time) when the goals are consistently achieved and are well established in
standard operating procedures.

e Frequently (about 60 to 90% of the time) when the goals are achieved relatively often, but sometimes are
omitted under difficult circumstances.

e About Half (about 40 to 60% of the time) when the goals are achieved about half of the time.
e Occasionally (about 10 to 40% of the time) when the goals are sometimes achieved, but less often.
e Rarely If Ever (less than 10% of the time) when the goals are rarely if ever achieved.

e Does Not Apply when you have the required knowledge about your project or organization and the KPA, but
you feel the KPA does not apply to your circumstances (e.g. Subcontract Management).

e Don't Know when you are uncertain about how to respond for the KPA.

© 1998 University of Southern California - Version 1.9

This page has been left blank intentionally.

© 1998 University of Southern California - Version 1.9

Almost | Very | About | Some | Rarely | Does Not | Don't
Key Process Area Goals of each KPA Always | Often Half | Times | If Ever Apply Know

Requirements Management: involves System requirements allocated to software are
establishing and maintaining an agreement with controlled to establish a baseline for software
the customer on the requirements for the engineering and management use. Software plans, a a0 0 0 O O a
software project. products, and activities are kept consistent with the

system requirements allocated to software.
Software Project Planning: establishes Software estimates are documented for use in
reasonable plans for performing the software planning and tracking the software project.
engineering activities and for managing the Software project activities and commitments are a a0 0 0 O O a
software project. planned and documented. Affected groups and

individuals agree to their commitments related to

the software project.
Software Project Tracking and Oversight: Actual results and performances are tracked against
provides adequate visibility into actual progress the software plans. Corrective actions are taken and
so that management can take corrective actions managed to closure when actual results and a a0 0 0 O O a
when the software project's performance deviates | performance deviate significantly from the software
significantly from the software plans. plans. Changes to software commitments are agreed

to by the affected groups and individuals.
Software Subcontract Management: involves The prime contractor selects qualified software
selecting a software subcontractor, establishing subcontractors. The prime contractor and the
commitments with the subcontractor, and software subcontractor agree to their commitments a a0 0 0 O O a
tracking and reviewing the subcontractor's to each other. The prime contractor and the
performance and results. software subcontractor maintain ongoing

communications. The prime contractor tracks the

software subcontractor's actual results and

performance against its commitments.
Software Quality Assurance: provides Software quality assurance activities are planned.
management with appropriate visibility into the Adherence of software products and activities to the
process being used by the software project and of | applicable standards, procedures, and requirements a a 0 0 O O a
the products being built. is verified objectively. Affected groups and

individuals are informed of software quality

assurance activities and results. Noncompliance

issues that cannot be resolved within the software

project are addressed by senior management.

© 1998 University of Southern California - Version 1.9 9

Almost | Very | About | Some | Rarely | Does Not | Don't
Key Process Area Goals of each KPA Always | Often Half | Times | If Ever Apply Know
Software Configuration Management: establishes | Software configuration management activities are
and maintains the integrity of the products of the | planned. Selected software work products are
software project throughout the project's software | identified, controlled, and available. Changes to a a0 0 0 O O a
life cycle. identified software work products are controlled.
Affected groups and individuals are informed of the
status and content of software baselines.
Organization Process Focus: establishes the Software process development and improvement
organizational responsibility for software process | activities are coordinated across the organization.
activities that improve the organization's overall | The strengths and weaknesses of the software a a0 0 0 O O a
software process capability. processes used are identified relative to a process
standard. Organization-level process development
and improvement activities are planned.
Organization Process Definition: develops and A standard software process for the organization is
maintains a usable set of software process assets | developed and maintained. Information related to
that improve process performance across the the use of the organization's standard software a a0 0 0 O O a
projects and provides a basis for cumulative, process by the software projects is collected,
long- term benefits to the organization. reviewed, and made available.
Training Program: develops the skills and Training activities are planned. Training for
knowledge of individuals so they can perform developing the skills and knowledge needed to
their roles effectively and efficiently. perform software management and technical roles is a a0 0 0 O O a
provided. Individuals in the software engineering
group and software-related groups receive the
training necessary to perform their roles.
Integrated Software Management: integrates the | The project's defined software process is a tailored
software engineering and management activities | version of the organization's standard software
into a coherent, defined software process that is process. The project is planned and managed a a0 0 0 O O a
tailored from the organization's standard software | according to the project's defined software process.
process and related process assets.
Software Product Engineering: integrates all the | The software engineering tasks are defined,
software engineering activities to produce and integrated, and consistently performed to produce
support correct, consistent software products the software. Software work products are kept a a0 0 0 O O a
effectively and efficiently. consistent with each other.
Intergroup Coordination: establishes a means for | The customer's requirements are agreed to by all
the software engineering group to participate affected groups. The commitments between the
actively with the other engineering groups so the | engineering groups are agreed to by the affected a a0 0 0 O O a
project is better able to satisfy the customer's groups. The engineering groups identify, track, and
needs effectively and efficiently. resolve intergroup issues.
© 1998 University of Southern California - Version 1.9 10

Almost | Very | About | Some | Rarely | Does Not | Don't
Key Process Area Goals of each KPA Always | Often Half | Times | If Ever Apply Know
Peer Review: removes defects from the software | Peer review activities are planned. Defects in the 0 0 0 0 0 0 0
work products early and efficiently. software work products are identified and removed.
Quantitative Process Management: controls the The quantitative process management activities are
process performance of the software project planned. The process performance of the project's
quantitatively. defined software process is controlled a a0 0 0 O O a
quantitatively. The process capability of the
organization's standard software process is known
in quantitative terms.
Software Quality Management: involves defining | The project's software quality management
quality goals for the software products, activities are planned. Measurable goals for
establishing plans to achieve these goals, and software product quality and their priorities are a a0 0 0 O O a
monitoring and adjusting the software plans, defined. Actual progress toward achieving the
software work products, activities, and quality quality goals for the software products is quantified
goals to satisfy the needs and desires of the and managed.
customer and end user.
Defect Prevention: analyzes defects that were Defect prevention activities are planned. Common
encountered in the past and takes specific actions | causes of defects are sought out and identified.
to prevent the occurrence of those types of Common causes of defects are prioritized and a a0 0 0 O O a
defects in the future. systematically eliminated.
Technology Change Management: involves Incorporation of technology changes are planned.
identifying, selecting, and evaluating new New technologies are evaluated to determine their
technologies, and incorporating effective effect on quality and productivity. Appropriate new a a0 0 0 O O a
technologies into the organization. technologies are transferred into normal practice
across the organization.
Process Change Management: involves defining | Continuous process improvement is planned.
process improvement goals and, with senior Participation in the organization's software process
management sponsorship, proactively and improvement activities is organization wide. The a a 0 0 a O a
systematically identifying, evaluating, and organization's standard software process and the
implementing improvements to the organization's | projects' defined software processes are improved
standard software process and the projects' continuously.
defined software processes on a continuous basis.
© 1998 University of Southern California - Version 1.9 11

2.C Distribution of Effort and Schedule By Phase

This subsection has additional metrics that are required to calibrate the distribution of effort and schedule by phase. Please fill this out if the necessary information
is available.

2.21 Total Effort (Person Months). Divide the total effort required for the project into effort (in Person Months) required for each of the following three phases:
Inception, Elaboration and Construction.

LCO LCA 10C

Inception Elaboration Construction

Effort Distribution

2.22 Schedule Months. Divide the total time for development (schedule) required for the project into schedule (in Calendar Months) required for each of the
following three phases: Inception, Elaboration and Construction.

LCO LCA 10C

Inception Elaboration Construction

Schedule Distribution

© 1998 University of Southern California - Version 1.9 12

3. Component Level Information

Component ID
If the whole project is being reported as a single component then skip to the next section.

If the data being submitted is for multiple components that comprise a single project then it is necessary to
identify each component with its project. Please fill out this section for each component and attach all of the
component sections to the project sections describing the overall project data.

3.1 Affiliate Identification Number. Each separate software project contributing data will have a separate file
identification number of the form XXX. XXX will be one of a random set of three-digit organization identification
numbers, provided by USC Center for Software Engineering to the Affiliate.

3.2 Project Identification Number. The project identification is a three digit number assigned by the organization.
Only the Affiliate knows the correspondence between YY'Y and the actual project. The same project identification
must be used with each data submission.

3.3 Component Identification (if applicable). This is a unique sequential letter that identifies a software module that
is part of a project.

Circle One: A B C D E F G H 1

J K L M N O P Q R

Cost
3.4 Total Effort (Person Months). Circle the life-cycle phases that the effort estimate covers:

Life Cycle Life Cycle Initial Operational
Objectives Architecture Capability

Inception | Elaboration

Construction | Maintenance

Total Effort

3.5 Hours / Person Month. Indicate the average number of hours per person month experienced by your organization.

© 1998 University of Southern California - Version 1.9 13

3.6 Labor Breakout. Indicate the percentage of labor for different categories,e.g. Managers, S/W Requirement
Analysts, Designers, CM/QA Personnel, Programmers, Testers, and Interfacers for each phase of software
development:

Categories Rqts. | Design | Code Test Manage- CM, QA,
ment Documentation

Phase

Inception

Elaboration

Construction

Size

The project would like to collect size in application points, logical lines of code, and unadjusted function
points. Please submit all size measures that are available, e.g. if you have a component in lines of code and
unadjusted function points then submit both numbers.

3.7 Percentage of Code Breakage. This is an estimate of how much the requirements have changed over the lifetime
of the project. It is the percentage of code thrown away due to requirements volatility. For example, a project which
delivers 100,000 instructions but discards the equivalent of an additional 20,000 instructions would have a breakage
of value of 20. See the Model Definition Manual for more detail.

3.8 Application Points. If the COCOMO II Applications Programming model was used then enter the application
point count.

3.9 New Unique SLOC. This is the number of new source lines of code (SLOC) generated.

3.10 SLOC Count Type. When reporting size in source lines of code, please indicate if the count was for logical
SLOC or physical SLOC. If both are available, please submit both types of counts. If neither type of count applies to
the way the code was counted, please describe the method. An extensive definition for logical source lines of code is
given in an Appendix in the Model Definition Manual.

Circle One: Logical SLOC Physical SLOC (carriage returns)
Physical SLOC (semicolons) Non-Commented/Non-Blank SLOC
Other:

3.11 Unadjusted Function Points. If you are using the Early Design or Post-Architecture model, provide the total
Unadjusted Function Points for each type. An Unadjusted Function Point is the product of the function point count
and the weight for that type of point. Function Points are discussed in the Model Definition Manual.

© 1998 University of Southern California - Version 1.9

14

3.12 Programming [.anguage. If you are using the Early Design or Post-Architecture model, enter the language name
that was used in this component, e.g. Ada, C, C++, COBOL, FORTRAN and the amount of usage if more than one
language was used.

Language Used I Percentage Used

3.13 Software Maintenance Parameters. For software maintenance, use items 3.8 - 3.12 to describe the size of the
base software product, and use the same units to describe the following parameters:

a. Amount of software added:

b. Amount of software modified:

c. Amount of software deleted:

3.14 Application Points Reused. If you are using the Application Composition model, enter the number of
application points reused. Do not fill in the fields on DM, CM, IM, SU, or AA.

3.15 ASLOC Adapted. If you are using the Early Design or Post-Architecture model enter the amounts for the SLOC
adapted.

3.16 ASLOC Count Type. When reporting size in source lines of code, please indicate if the count was for logical
ASLOC or physical ASLOC. If both are available, please submit both types of counts. If neither type of count
applies to the way the code was counted, please describe the method. An extensive definition for logical source lines
of code is given in an Appendix in the Model Definition Manual.

Circle One: Logical ASLOC Physical ASLOC (carriage returns)
Physical ASLOC (semicolons) Non-Commented/Non-Blank ASLOC
Other:

3.17 Design Modified - DM. The percentage of design modified.

3.18 Code Modified - CM. The percentage of code modified.

3.19 Integration and Test - IM. The percentage of the adapted software's original integration & test effort expended.

© 1998 University of Southern California - Version 1.9 15

3.20 Software Understanding - SU.

Very Low Low Nom High Very High
Structure Very low Moderately low | Reasonably High cohesion, Strong modularity
cohesion, high cohesion, high well-structured; | low coupling. information hiding in
coupling, coupling. some weak data / control
spaghetti code. areas. structures.
Application No match Some correlation | Moderate Good correlation | Clear match between
Clarity between between correlation between program | program and
program and program and between and application. | application world-
application application. program and views.
world views. application.

Self-Descriptiveness Obscure code; Some code Moderate level Good code Self-descriptive code;
do'cu.mentatlon commentary and | Of code commentary and | documentation up-to-
missing, obscure headers; some commentary, headers; useful date, well-organized,
or obsolete useful headers,] documentation; with design rationale.

documentation. | documentations. | some weak areas.
SU Increment to ESLOC 50 40 30 20 10

Table 1: Rating Scale for Software Understanding Increment SU

The Software Understanding increment (SU) is obtained from Table 1. SU is expressed quantitatively as a
percentage. If the software is rated very high on structure, applications clarity, and self-descriptiveness, the software
understanding and interface checking penalty is 10%. If the software is rated very low on these factors, the penalty is
50%. SU is determined by taking the subjective average of the three categories. Enter the percentage of SU:

3.21 Assessment and Assimilation - AA.

AA Increment

Level of AA Effort

None

Basic module search and documentation

Some module Test and Evaluation (T&E), documentation

Considerable module T&E, documentation

[ce} oY IE-N [\S) (e}

Extensive module T&E, documentation

Table 2: Rating Scale for Assessment and Assimilation Increment (AA)

The other nonlinear reuse increment deals with the degree of Assessment and Assimilation (AA) needed to determine
whether a fully-reused software module is appropriate to the application, and to integrate its description into the
overall product description. Table 2 provides the rating scale and values for the assessment and assimilation
increment. Enter the percentage of AA:

© 1998 University of Southern California - Version 1.9

3.22 Programmer Unfamiliarity - UNFM.

UNFM Increment I Level of Unfamiliarity
0.0 Completely familiar
0.2 Mostly familiar
0.4 Somewhat familiar
0.6 Considerably familiar
0.8 Mostly unfamiliar
1.0 Completely unfamiliar

Table 3: Rating Scale for Programmer Unfamiliarity (UNFM)

The amount of effort required to modify existing software is a function not only of the amount of modification
(AAF) and understandability of the existing software (SU), but also of the programmer's relative unfamiliarity with
the software (UNFM). The UNFM parameter is applied multiplicatively to the software understanding effort
increment. If the programmer works with the software every day, the 0.0 multiplier for UNFM will add no software
understanding increment. If the programmer has never seen the software before, the 1.0 multiplier will add the full
software understanding effort increment. The rating of UNFM is in Table 3. Enter the Level of Unfamiliarity:

© 1998 University of Southern California - Version 1.9

17

Post-Architecture Cost Drivers.

These are the 17 effort multipliers used in the COCOMO II Post-Architecture model used to adjust the nominal
effort, Person Months, to reflect the software product under development. They are grouped into four categories:
product, platform, personnel, and project.

Product Cost Drivers.

For maintenance projects, identify any differences between the base code and modified code Product Cost Drivers
(e.g. complexity).

needs uncovered

uncovered.

cycle needs

cycle needs

life-cycle needs

Very Low Low Nominal High Very High Extra High

RELY [slight Low, easily moderate, easily high financial risk to human life
inconvenience recoverable losses recoverable losses | loss
DATA DB bytes/Pgm SLOC | 10 <D/P <100 100 <D/P <1000 | D/P > 1000
<10
RUSE None across project across program across product line | across multiple
product lines

DOCU | Many life-cycle Some life-cycle needs | Right-sized to life- | Excessive for life- | Very excessive for

3.23 Required Software Reliability (RELY). This is the measure of the extent to which the software must perform its
intended function over a period of time. See the Model Definition Manual for more details.

Very Low Low Nominal High Very High Don't Know

3.24 Data Size (DATA). This measure attempts to capture the affect large data requirements have on product
development e.g. testing. The rating is determined by calculating D/P, where D is the number of bytes of data in the
database at the end of (and necessary for) testing and P is the number of SLOC. See the Model Definition Manual for
more details.

Low Nominal High Very High Don't Know

3.25 Develop for Reuse (RUSE). This cost driver accounts for the additional effort needed to construct components
intended for reuse on the current or future projects. See the Model Definition Manual for more details.

Low Nominal High Very High Don't Know

3.26 Documentation match to life-cycle needs (DOCU). This captures the suitability of the project's documentation
to its life-cycle needs. See the Model Definition Manual for more details.

Very Low Low Nominal High Very High Don't Know

© 1998 University of Southern California - Version 1.9 18

3.27 Product Complexity (CPLX):

Control Operations Computational Device-dependent Data Management | User Interface
Operations Operations Operations Management
Operations

Very | Straight-line code with a few non- | Evaluation of simple Simple read, write Simple arrays in Simple input

Low | nested structured programming expressions: e.g., statements with simple | main memory. forms, report
operators: DOs, CASEs, A=B+C*(D-E) formats. Simple COTS-DB generators.
IFTHENELSEs. Simple module queries, updates.
composition via procedure calls
or simple scripts.

Low | Straightforward nesting of Evaluation of moderate- | No cognizance needed | Single file subsetting | Use of simple
structured programming level expressions: e.g., of particular processor | with no data graphic user
operators. Mostly simple D=SQRT(B**2-4.*4*C) | or I/O device structure changes, no | interface (GUI)
predicates characteristics. I/0 edits, no intermediate | builders.

done at GET/PUT files. Moderately
level. complex COTS-DB
queries, updates.

Nom- | Mostly simple nesting. Some Use of standard math I/O processing Multi-file input and | Simple use of

inal | intermodule control. Decision and statistical routines. includes device single file output. widget set.
tables. Simple callbacks or Basic matrix/vector selection, status Simple structural
message passing, including operations. checking and error changes, simple
middleware-supported distributed processing. edits. Complex
processing COTS-DB queries,

updates.

High [Highly nested structured Basic numerlcal analysis: | Operations at physical | Simple triggers Widget set
programming operators with multlvarlgte] /O level (physical activated by data development
many compound predicates. 1gtemolgt10n, 0rdmary storage address stream contents. and extension.
Queue and stack control. dlfﬁ'arentlal equanons. translations; seeks, Complex data Simple voice
Homogeneous, distributed Basic truncation, reads, etc.). Optimized | restructuring. 1/0,
processing. Single processor soft | foundoff concerns. /O overlap. multimedia.
real-time control.

Very | Reentrant and recursive coding. Difficult but structured | Routines for interrupt | Distributed database | Moderately

High | Fixed-priority interrupt handling. | numerical analysis: near- | diagnosis, servicing, coordination. complex
Task synchronization, complex singular matrix masking. Complex triggers. 2D/3D,
callbacks, heterogeneous equations, partial Communication line Search optimization. | dynamic
distributed processing. Single- differential equations. handling. graphics,
processor hard real-time control. | Simple parallelization. Performance-intensive multimedia.

embedded systems.

Extra | Multiple resource scheduling Difficult and Device timing- Highly coupled, Complex

High | with dynamically changing unstructured numerical | dependent coding, dynamic relational multimedia,
priorities. Microcode-level analysis: highly accurate | micro-programmed and object structures. | virtual reality.
control. Distributed hard real- analysis of noisy, operations. Natural language
time control. stochastic data. Complex | Performance-critical | data management.

parallelization. embedded systems.

Complexity is divided into five areas: control operations, computational operations, device-dependent operations,

data management operations, and user interface management operations. Select the area or combination of areas that
characterize the product or a sub-system of the product. The complexity rating is the subjective weighted average of
these areas.

Very Low

Low

Nominal

High

Very High

Extra High

Don't Know

© 1998 University of Southern California - Version 1.9

19

Platform Cost Drivers. The platform refers to the target-machine complex of hardware and infrastructure

software.
Very Low Low Nominal High Very High Extra High
TIME = 50% use of 70% 85% 95%
available
execution time
STOR =50% use of 70% 85% 95%
available
storage
PVOL major change | major: 6 mo.; major: 2 mo.; | major: 2 wk.;
every 12 mo.; | minor: 2 wk. minor: 1 wk. | minor: 2 days
minor change
every 1 mo.

3.28 Execution Time Constraint (TIME). This is a measure of the execution time constraint imposed upon a software

system. See the Model Definition Manual for more details.

Nominal

High

Very High

Extra High

Don't Know

3.29 Main Storage Constraint (STOR). This rating represents the degree of main storage constraint imposed on a

software system or subsystem. See the Model Definition Manual for more details.

Nominal

High

Very High

Extra High

Don't Know

3.30 Platform Volatility (PVOL). "Platform" is used here to mean the complex of hardware and software (OS,
DBMS, etc.) the software product calls on to perform its tasks. See the Model Definition Manual for more details.

Low Nominal High Very High Don't Know

© 1998 University of Southern California - Version 1.9

Personnel Cost Drivers.

I Very Low Low Nominal High Very High
ACAP <15th percentile | 35th percentile 55th percentile | 75th percentile | >90th percentile
PCAP <15th percentile | 35th percentile 55th percentile | 75th percentile | >90th percentile
PCON >48% / year 24% / year 12% / year 6% / year <3% / year
APEX < 2 months 6 months 1 year 3 years >6 years
PEXP < 2 months 6 months 1 year 3 years >6 years
LTEX < 2 months 6 months 1 year 3 years >6 years

3.31 Analyst Capability (ACAP). Analysts are personnel that work on requirements, high level design and detailed
design. See the Model Definition Manual for more details.

Very Low Low Nominal High Very High Don't Know

3.32 Programmer Capability (PCAP). Evaluation should be based on the capability of the programmers as a team
rather than as individuals. Major factors which should be considered in the rating are ability, efficiency and
thoroughness, and the ability to communicate and cooperate. See the Model Definition Manual for more details.

Very Low Low Nominal High Very High Don't Know

3.33 Applications Experience (APEX). This rating is dependent on the level of applications experience of the project
team developing the software system or subsystem. The ratings are defined in terms of the project team's equivalent
level of experience with this type of application. See the Model Definition Manual for more details.

Very Low Low Nominal High Very High Don't Know

3.34 Platform Experience (PEXP). The Post-Architecture model broadens the productivity influence of PEXP,
recognizing the importance of understanding the use of more powerful platforms, including more graphic user
interface, database, networking, and distributed middleware capabilities. See the Model Definition Manual for more
details.

Very Low Low Nominal High Very High Don't Know

3.35 Language and Tool Experience (LTEX). This is a measure of the level of programming language and software
tool experience of the project team developing the software system or subsystem. See the Model Definition Manual
for more details.

Very Low Low Nominal High Very High Don't Know

3.36 Personnel Continuity (PCON). The rating scale for PCON is in terms of the project's annual personnel turnover.
See the Model Definition Manual for more details.

Very Low Low Nominal High Very High Don't Know

© 1998 University of Southern California - Version 1.9 21

Project Cost Drivers. This table gives a summary of the criteria used to select a rating level for project cost

drivers.
Very Low Low Nominal High Very High Extra High
TOOL edit, code, simple, basic lifecycle | strong, mature strong, mature,
debug frontend, tools, lifecycle tools, proactive
backend CASE, | moderately moderately lifecycle tools,
little integration | integrated integrated well integrated
with processes,
methods, reuse
SITE: International | Multi-city and | Multi-city or Same city or Same building or | Fully
Collocation Multi-company | Multi-company | metro area complex collocated
SITE: Some phone, | Individual Narrowband Wideband Wideband Interactive
Communications | mail phone, FAX email electronic electronic multimedia
communications | communications,
occasional video
conferencing.
SCED 75% of 85% of nominal 100% of 130% of nominal | 160% of nominal
nominal nominal

3.37 Use of Software Tools (TOOL). See the Model Definition Manual.

Very Low

Low

Nominal

High

Very High

Don't Know

3.38 Multisite Development (SITE). Given the increasing frequency of multisite developments, and indications that
multisite development effects are significant, the SITE cost driver has been added in COCOMO II. Determining its
cost driver rating involves the assessment and averaging of two factors: site collocation (from fully collocated to

international distribution) and communication support (from surface mail and some phone access to full interactive
multimedia). See the Model Definition Manual for more details.

Very Low

Low

Nominal

High

Very High

Extra High

Don't Know

3.39 Required Development Schedule (SCED). This rating measures the schedule constraint imposed on the project
team developing the software. The ratings are defined in terms of the percentage of schedule stretch-out or
acceleration with respect to a nominal schedule for a project requiring a given amount of effort. See the Model
Definition Manual for more details.

Very Low

Low

Nominal

High

Very High

Don't Know

© 1998 University of Southern California - Version 1.9

22

illustration from Rational Corporation® showing the phases around the anchor points is shown below.

Activities &
Representative
Amounts

Appendix A

The lifecycle anchoring concepts are discussed by Boehm®. The anchor points are defined as Life Cycle Objectives
(LCO), Life Cycle Architecture (LCA), and Initial Operational Capability (IOC). An enhanced version of an

Stages
Process Activities
Requirements Capture
Pnalvsis & Desian

Implemerntation
Test__ ..

Supporting Activities

hianagement
Environment

Deploymert

Tirne
-l | .
- Lol

LCO LCA 1ac
In Geption | Elaburation | Construction | Trnzition
[l [i

arel Irﬂ'ﬁ'llﬁ.llﬁ. II|H. | |H.||B.I e Il Ihr.l
leralorns ¥ g 4 g Al VA2 T A An+ 1

herations

The correspondence between phases, COCOMO II’s submodels and the life cycle anchor points is shown in the
following table for the MBASE spiral lifecycle model. The table also has indications of the relative amounts of the

different activities.

7
cocomMo 11
Submodel Usage Early Design / /—/ Post-Architecture Maintenance
LCO LCA 10C
Activities Inception Elaboration Construction Transition
\ Phase
Requirements Capture [Some usually Most, peaks here Minor None
Analysis & Design A little Majority, mostly Some Some, for repair
constant effort during ODT&E
Implementation Practically Some, usually for Bulk; mostly constant effort Some, for repair
none risk reduction during ODT&E
Test None Some, for prototypes| Most for unit, integration and Some, for repaired
qualification test. code.

COCOMO II's effort and schedule estimates are focused on Elaboration and Construction (the phases between LCO
and IOC. Inception corresponds to the COCOMO's "Requirements" activity in a waterfall process model.
COCOMO'’s effort for the “Requirements” activity is an additional, fixed percentage of the effort calculated by
COCOMO for the development activities. The table also indicates the areas in which the COCOMO II Early Design
and Post-Architecture submodels are normally used.

> Barry W. Boehm, “Anchoring the Software Process,” IEEE Software, 13, 4, July 1996, pp. 73-82
® Rational Corp., "Rational Objectory Process 4.1 — Your UML Process", available at

http://www.rational.com/support/techpapers/toratobjprcs/.

© 1998 University of Southern California - Version 1.9

23

