
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780136915713
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780136915713
https://plusone.google.com/share?url=http://www.informit.com/title/9780136915713
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780136915713
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780136915713/Free-Sample-Chapter

Praise for Clean Craftsmanship

“Bob’s Clean Craftsmanship has done a great job explaining the purposes of agile
technical practices, along with a deep historical basis for how they came into exist-
ence, as well as positioning for why they will always be important. His involvement
in history and formation of agility, thorough understanding of practices, and their
purposes reflect vividly throughout the manuscript.”

—Tim Ottinger, well-known
Agile Coach and author

“Bob’s writing style is excellent. It is easy to read and the concepts are explained in
perfect detail for even a new programmer to follow. Bob even has some funny mo-
ments, which pleasantly snap you out of focus. The true value of the book is really
in the cry for change, for something better . . . the cry for programmers to be profes-
sional . . . the realization that software is everywhere. Additionally, I believe there
is a lot of value in all the history Bob provides. I enjoy that he doesn’t waste time
laying blame for how we got to where we are now. Bob calls people to action, asking
them to take responsibility by increasing their standards and level of professional-
ism, even if that means pushing back sometimes.”

—Heather Kanser

“As software developers, we have to continually solve important problems for
our employers, customers, colleagues, and future selves. Getting the app to work,
though difficult, is not enough, it does not make you a craftsman. With an app
working, you have passed the app-titude test. You may have the aptitude to be a
craftsman, but there is more to master. In these pages, Bob expresses clearly the
techniques and responsibilities to go beyond the app-titude test and shows the way
of the serious software craftsman.”

—James Grenning, author of Test-Driven Development for
Embedded C and Agile Manifesto co-author

“Bob’s one of the very few famous developers with whom I’d like to work on a tech
project. It’s not because he’s a good developer, famous, or a good communicator;
it’s because Bob helps me be a better developer and a team member. He has spotted
every major development trend, years ahead of others, and has been able to explain its
importance, which encouraged me to learn. Back when I started—apart from being
honest and a good person—the idea of craftsmanship and ethics was completely miss-
ing from this field. Now, it seems to be the most important thing professional develop-
ers can learn, even ahead of coding itself. I’m happy to see Bob leading the way again.
I can’t wait to hear his perspective and incorporate it into my own practice.”

—Daniel Markham, Principal,
Bedford Technology Group, Inc.

9780136915713_Web.indb 1 20/08/21 3:43 PM

This page intentionally left blank

Clean Craftsmanship

9780136915713_Web.indb 3 20/08/21 3:43 PM

The Robert C. Martin Series is directed at software developers, team-
leaders, business analysts, and managers who want to increase their skills

and proficiency to the level of a Master Craftsman. The series contains books
that guide software professionals in the principles, patterns, and practices of
programming, software project management, requirements gathering, design,
analysis, testing, and others.

Visit informit.com/martinseries for a complete list of available publications.

Make sure to connect with us!
informit.com/socialconnect

Robert C. Martin Series

RobertCMartin_7x9_125_2017_PearsonBranding.indd 1 7/31/2019 3:43:34 PM

9780136915713_Web.indb 4 20/08/21 3:43 PM

http://informit.com/martinseries
http://informit.com/socialconnect

Clean Craftsmanship
Disciplines, Standards, and Ethics

Robert C. Martin

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

The Robert C. Martin Series is directed at software developers, team-
leaders, business analysts, and managers who want to increase their skills

and proficiency to the level of a Master Craftsman. The series contains books
that guide software professionals in the principles, patterns, and practices of
programming, software project management, requirements gathering, design,
analysis, testing, and others.

Visit informit.com/martinseries for a complete list of available publications.

Make sure to connect with us!
informit.com/socialconnect

Robert C. Martin Series

RobertCMartin_7x9_125_2017_PearsonBranding.indd 1 7/31/2019 3:43:34 PM

9780136915713_Web.indb 5 20/08/21 3:43 PM

Cover image: Tom Cross/Shutterstock
Page xxix: Author photo courtesy of Robert C. Martin
Page 6: “. . . we shall need . . . what we are doing.” A.M. Turing’s ACE Report of 1946 and Other Papers – Vol. 10, “In the
Charles Babbage Institute Reprint Series for the History of Computing”, (B.E. Carpenter, B.W. Doran, eds.). The MIT Press,
1986.
Page 62: Illustration by Angela Brooks
Page 227: “You aren’t gonna need it.” Jeffries, Ron, Ann Anderson, and Chet Hendrickson. Extreme Programming
Installed. Addison-Wesley, 2001.
Page 280: “We shall need . . . work of this kind to be done.” A.M. Turing’s ACE Report of 1946 and Other Papers –
Vol. 10, “In the Charles Babbage Institute Reprint Series for the History of Computing”, (B.E. Carpenter, B.W. Doran,
eds.). The MIT Press, 1986.
Page 281: “One of our difficulties . . . what we are doing.” A.M. Turing’s ACE Report of 1946 and Other Papers –
Vol. 10, “In the Charles Babbage Institute Reprint Series for the History of Computing”, (B.E. Carpenter, B.W. Doran,
eds.). The MIT Press, 1986.
Page 289: “This was a couple . . . for whatever reasons.” Volkswagen North America CEO Michael Horn prior to
testifying before the House Energy and Commerce Committee in Washington, October 8, 2015.
Page 310: “I have two . . . are never urgent.” In a 1954 speech to the Second Assembly of the World Council of
Churches, former U.S. President Dwight D. Eisenhower, who was quoting Dr J. Roscoe Miller, president of
Northwestern University.
Page 310: Dwight D. Eisenhower, President of the United States, photo, February 1959. Niday Picture Library/Alamy
Stock Photo.
Page 319: “Of course I . . . any size at all.” Edsger W. Dijkstra: Notes on Structured Programming in Pursuit of
Simplicity; the manuscripts of Edsger W. Dijkstra, Ed. Texas; 1969-1970; http://www.cs.utexas.edu/users/EWD/
ewd02xx/EWD249.PDF
Page 328: Photo courtesy of Robert C. Martin
Page 331: Photo courtesy of Robert C. Martin

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations
have been printed with initial capital letters or in all capitals.
The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty
of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or
consequential damages in connection with or arising out of the use of the information or programs contained herein.
For information about buying this title in bulk quantities, or for special sales opportunities (which may include
electronic versions; custom cover designs; and content particular to your business, training
goals, marketing focus, or branding interests), please contact our corporate sales department at corpsales@pearsoned.
com or (800) 382-3419.
For government sales inquiries, please contact governmentsales@pearsoned.com.
For questions about sales outside the U.S., please contact intlcs@pearson.com.
Visit us on the Web: informit.com/aw
Library of Congress Control Number: 2021942499
Copyright © 2022 Pearson Education, Inc.
All rights reserved. This publication is protected by copyright, and permission must be obtained from the publisher
prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, request forms and
the appropriate contacts within the Pearson Education Global Rights & Permissions Department, please visit www.
pearson.com/permissions.
ISBN-13: 978-0-13-691571-3
ISBN-10: 0-13-691571-X

ScoutAutomatedPrintCode

A01_Martin_FM_pi-xxx.indd 6 01/09/21 6:53 PM

http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF
mailto:corpsales@pearsoned.com
mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearson.com/permissions
http://www.pearson.com/permissions

In memory of Mike Beedle

9780136915713_Web.indb 7 20/08/21 3:43 PM

This page intentionally left blank

ix

Contents

Foreword xvii
Preface xxi
Acknowledgments xxvii
About the Author xxix

Chapter 1 Craftsmanship 1

PART 1 The Disciplines 11
Extreme Programming 13

The Circle of Life 14
Test-Driven Development 15
Refactoring 16
Simple Design 17
Collaborative Programming 17
Acceptance Tests 18

Chapter 2 Test-Driven Development 19
Overview 20

Software 22

9780136915713_Web.indb 9 20/08/21 3:43 PM

Contents

x

The Three Laws of TDD 23
The Fourth Law 34

The Basics 35
Simple Examples 36
Stack 36
Prime Factors 52
The Bowling Game 62

Conclusion 79

Chapter 3 Advanced TDD 81
Sort 1 82
Sort 2 87
Getting Stuck 95
Arrange, Act, Assert 103

Enter BDD 104
Finite State Machines 105
BDD Again 107

Test Doubles 108
Dummy 111
Stub 115
Spy 118
Mock 121
Fake 124
The TDD Uncertainty Principle 126
London versus Chicago 139
The Certainty Problem 140
London 141
Chicago 142
Synthesis 143

Architecture 143
Conclusion 145

Chapter 4 Test Design 147
Testing Databases 148
Testing GUIs 150

GUI Input 153

9780136915713_Web.indb 10 20/08/21 3:43 PM

Contents

xi

Test Patterns 154
Test-Specific Subclass 155
Self-Shunt 156
Humble Object 157

Test Design 160
The Fragile Test Problem 160
The One-to-One Correspondence 161
Breaking the Correspondence 163
The Video Store 164
Specificity versus Generality 183

Transformation Priority Premise 184
{} → Nil 186
Nil → Constant 187
Unconditional → Selection 188
Value → List 189
Statement → Recursion 189
Selection → Iteration 190
Value → Mutated Value 190
Example: Fibonacci 191
The Transformation Priority Premise 195

Conclusion 196

Chapter 5 Refactoring 197
What Is Refactoring? 199
The Basic Toolkit 200

Rename 200
Extract Method 201
Extract Variable 202
Extract Field 204
Rubik’s Cube 217

The Disciplines 217
Tests 218
Quick Tests 218
Break Deep One-to-One Correspondences 218
Refactor Continuously 219
Refactor Mercilessly 219

9780136915713_Web.indb 11 20/08/21 3:43 PM

Contents

xii

Keep the Tests Passing! 219
Leave Yourself an Out 220

Conclusion 221

Chapter 6 Simple Design 223
YAGNI 226
Covered by Tests 228

Coverage 230
An Asymptotic Goal 231
Design? 232
But There’s More 232

Maximize Expression 233
The Underlying Abstraction 235
Tests: The Other Half of the Problem 236

Minimize Duplication 237
Accidental Duplication 238

Minimize Size 239
Simple Design 239

Chapter 7 Collaborative Programming 241

Chapter 8 Acceptance Tests 245
The Discipline 248
The Continuous Build 249

PART 1I The Standards 251
Your New CTO 252

Chapter 9 Productivity 253
We Will Never Ship S**T 254
Inexpensive Adaptability 256
We Will Always Be Ready 258
Stable Productivity 259

Chapter 10 Quality 261
Continuous Improvement 262

A01_Martin_FM_pi-xxx_new.indd 12 09/09/21 12:30 PM

Contents

xiii

Fearless Competence 263
Extreme Quality 264
We Will Not Dump on QA 265

The QA Disease 266
QA Will Find Nothing 266
Test Automation 267
Automated Testing and User Interfaces 268
Testing the User Interface 269

Chapter 11 Courage 271
We Cover for Each Other 272
Honest Estimates 274
You Must Say NO 276
Continuous Aggressive Learning 277
Mentoring 278

PART 1I1 The Ethics 279
The First Programmer 280
Seventy-Five Years 281
Nerds and Saviors 286
Role Models and Villains 289
We Rule the World 290
Catastrophes 291
The Oath 293

Chapter 12 Harm 295
First, Do No Harm 296

No Harm to Society 297
Harm to Function 299
No Harm to Structure 302
Soft 303
Tests 305

Best Work 306
Making It Right 307
What Is Good Structure? 308
Eisenhower’s Matrix 310

A01_Martin_FM_pi-xxx_new.indd 13 02/09/21 10:32 PM

Contents

xiv

Programmers Are Stakeholders 312
Your Best 314

Repeatable Proof 316
Dijkstra 316
Proving Correctness 317
Structured Programming 319
Functional Decomposition 322
Test-Driven Development 323

Chapter 13 Integrity 327
Small Cycles 328

The History of Source Code Control 328
Git 334
Short Cycles 336
Continuous Integration 337
Branches versus Toggles 338
Continuous Deployment 340
Continuous Build 341

Relentless Improvement 342
Test Coverage 343
Mutation Testing 344
Semantic Stability 344
Cleaning 345
Creations 346

Maintain High Productivity 346
Viscosity 347
Managing Distractions 349
Time Management 352

Chapter 14 Teamwork 355
Work as a Team 356

Open/Virtual Office 356
Estimate Honestly and Fairly 358

Lies 359
Honesty, Accuracy, Precision 360
Story 1: Vectors 361

9780136915713_Web.indb 14 20/08/21 3:43 PM

Contents

xv

Story 2: pCCU 363
The Lesson 365
Accuracy 365
Precision 367
Aggregation 369
Honesty 370

Respect 372
Never Stop Learning 373

Index 375

9780136915713_Web.indb 15 20/08/21 3:43 PM

This page intentionally left blank

xvii

Foreword

I remember meeting Uncle Bob in the spring of 2003, soon after Scrum was
introduced to our company and technology teams. As a skeptical, fledgling
ScrumMaster, I remember listening to Bob teach us about TDD and a little
tool called FitNesse, and I remember thinking to myself, “Why would we ever
write test cases that fail first? Doesn’t testing come after coding?” I often
walked away scratching my head, as did many of my team members, and yet
to this day I distinctly remember Bob’s palpable exuberance for code
craftsmanship like it was only yesterday. I recall his directness one day as he
was looking at our bug backlog and asking us why on earth we would make
such poor decisions about software systems that we did not in fact own—
“These systems are company assets, not your own personal assets.” His
passion piqued our curiosity, and a year and half later, we had refactored our
way to about 80 percent automated test coverage and a clean code base that
made pivoting much easier, resulting in much happier customers—and
happier teams. We moved lightning fast after that, wielding our definition of
done like armor to protect us from the always-lurking code goblins; we had
learned, in essence, how to protect us from ourselves. Over time, we
developed a warmth for Uncle Bob, who came to truly feel like an uncle to
us—a warm, determined, and courageous man who would over time help us
learn to stand up for ourselves and do what was right. While some kids’ Uncle

9780136915713_Web.indb 17 20/08/21 3:43 PM

Foreword

xviii

Bobs taught them how to ride bicycles or fish, our Uncle Bob taught us to not
compromise our integrity—and to this day, the ability and desire to show up
to every situation with courage and curiosity has been the best lesson of
my career.

I brought Bob’s early lessons with me on my journey as I ventured into the
world as an agile coach and quickly observed for myself that the best product
development teams figured out how to package up their own best practices
for their unique contexts, for their particular customers, in their respective
industries. I remembered Bob’s lessons when I observed that the best
development tools in the world were only as good as their human operators—
the teams who would figure out the best applications of those tools within
their own domains. I observed that, sure, teams can reach high percentages of
unit test coverage to check the box and meet the metric, only to find that a
large percentage of those tests are flaky—metric was met, but value was not
delivered. The best teams didn’t really need to care about metrics; they had
purpose, discipline, pride, and responsibility—and the metrics in every case
spoke for themselves. Clean Craftsmanship weaves all of these lessons and
principles into practical code examples and experiences to illustrate the
difference between writing something to meet a deadline versus actually
building something sustainable for the future.

Clean Craftsmanship reminds us to never settle for less, to walk the Earth
with fearless competence. This book, like an old friend, will remind you of
what matters, what works, what doesn’t, what creates risk, and what
diminishes it. These lessons are timeless. You may find that you already
practice some of the techniques contained within, and I bet you’ll find
something new, or at least something that you dropped because at some point
you caved to deadlines or other pressures in your career. If you are new to the
development world—whether in business or technology—you will learn from
the very best, and even the most practiced and battle weary will find ways to
improve themselves. Perhaps this book will help you find your passion again,
renew your desire to improve your craft, or rededicate your energy to the
search for perfection, regardless of the impediments on your horizon.

9780136915713_Web.indb 18 20/08/21 3:43 PM

Foreword

xix

Software developers rule the world, and Uncle Bob is here again to remind us
of the professional discipline of those with such power. He picks up where he
left off with Clean Code; because software developers literally write the rules
of humankind, Uncle Bob reminds us that we must practice a strict code of
ethics, a responsibility to know what the code does, how people use it, and
where it breaks. Software mistakes cost people their livelihoods—and their
lives. Software influences the way we think, the decisions we make, and as a
result of artificial intelligence and predictive analytics, it influences social and
herd behavior. Therefore, we must be responsible and act with great care and
empathy—the health and well-being of people depend on it. Uncle Bob helps
us face this responsibility and become the professionals that our society
expects, and demands, us to be.

As the Agile Manifesto nears its twentieth birthday at the writing of this
foreword, this book is a perfect opportunity to go back to basics: a timely and
humble reminder of the ever-increasing complexity of our programmatic
world and how we owe it to the legacy of humankind—and to ourselves—to
practice ethical development. Take your time reading Clean Craftsmanship.
Let the principles seep into you. Practice them. Improve them. Mentor others.
Keep this book on your go-to bookshelf. Let this book be your old friend—
your Uncle Bob, your guide—as you make your way through this world with
curiosity and courage.

—Stacia Heimgartner Viscardi, CST & Agile Mentor

9780136915713_Web.indb 19 20/08/21 3:43 PM

This page intentionally left blank

xxi

Preface

Before we begin, there are two issues we need to deal with in order to ensure
that you, my gentle reader, understand the frame of reference in which this
book is presented.

On the Term Craftsmanship

The beginning of the twenty-first century has been marked by some
controversy over language. We in the software industry have seen our share of
this controversy. One term that is often called out as a failure to be inclusive is
craftsman.

I’ve given this issue quite a bit of thought and talked with many people of
varying opinions, and I’ve come to the conclusion that there is no better term
to use in the context of this book.

Alternatives to craftsman were considered, including craftsperson, craftsfolk,
and crafter, among others. But none of those terms carries the historical gravitas
of craftsman. And that historical gravitas is important to the message here.

9780136915713_Web.indb 21 20/08/21 3:43 PM

Preface

xxii

Craftsman brings to mind a person who is deeply skilled and accomplished in
a particular activity—someone who is comfortable with their tools and their
trade, who takes pride in their work, and who can be trusted to behave with
the dignity and professionalism of their calling.

It may be that some of you will disagree with my decision. I understand why
that might be. I only hope you will not interpret it as an attempt to be
exclusive in any way—for that is, by no means, my intent.

On the One True Path

As you read Clean Craftsmanship: Disciplines, Standards, and Ethics, you
may get the feeling that this is the One True Path to Craftsmanship. It may be
that for me, but not necessarily for you. I am offering this book to you as an
example of my path. You will, of course, need to choose your own.

Will we eventually need One True Path? I don’t know. Perhaps. As you will
read in these pages, the pressure for a strict definition of a software profession
is mounting. We may be able to get away with several different paths,
depending on the criticality of the software being created. But, as you will
read in what follows, it may not be so easy to separate critical from
noncritical software.

One thing I am certain of. The days of “Judges”1 are over. It is no longer
sufficient that every programmer does what is right in their own eyes. Some
disciplines, standards, and ethics will come. The decision before us today is
whether we programmers will define them for ourselves or have them forced
upon us by those who don’t know us.

1. A reference to the Old Testament book of Judges.

9780136915713_Web.indb 22 20/08/21 3:43 PM

Preface

xxiii

Introduction to the Book

This book is written for programmers and for managers of programmers. But
in another sense, this book is written for all of human society. For it is we,
programmers, who have inadvertently found ourselves at the very fulcrum of
that society.

For Yourself

If you are a programmer of several years’ experience, you probably know the
satisfaction of getting a system deployed and working. There is a certain
pride you feel at having been part of such an accomplishment. You are proud
of getting the system out the door.

But are you proud of the way you got that system out the door? Is your pride
the pride of finishing? Or is your pride the pride of workmanship? Are you
proud that the system has been deployed? Or are you proud of the way you
built that system?

When you go home after a hard day of writing code, do you look at yourself
in the mirror and say, “I did a good job today”? Or do you have to take a
shower?

Too many of us feel dirty at the end of the day. Too many of us feel trapped
into doing substandard work. Too many of us feel that low quality is
expected and is necessary for high speed. Too many of us think that
productivity and quality are inversely related.

In this book, I strive to break that mindset. This is a book about working
well. This is a book about doing a good job. This is a book that describes the
disciplines and practices that every programmer should know in order to
work fast, be productive, and be proud of what they write every single day.

9780136915713_Web.indb 23 20/08/21 3:43 PM

Preface

xxiv

For Society

The twenty-first century marks the first time in human history that our
society has become dependent, for its survival, on a technology that has
acquired virtually no semblance of discipline or control. Software has invaded
every facet of modern life, from brewing our morning coffee to providing our
evening entertainment, from washing our clothes to driving our cars, from
connecting us in a world-spanning network to dividing us socially and
politically. There is literally no aspect of life in the modern world that is not
dominated by software. And yet those of us who build this software are little
more than a ragtag batch of tinkerers who barely have any idea what we
are doing.

If we programmers had had a better grasp on what we do, would the 2020
Iowa Caucus results have been ready when promised? Would 346 people have
died in the two 737 Max crashes? Would Knight Capital Group have lost
$460 million in 45 minutes? Would 89 people have lost their lives in Toyota’s
unintended acceleration accidents?

Every five years, the number of programmers in the world doubles. Those
programmers are taught very little about their craft. They are shown the
tools, given a few toy projects to develop, and are then tossed into an
exponentially growing workforce to answer the exponentially growing
demand for more and more software. Every day, the house of cards that we
call software insinuates itself deeper and deeper into our infrastructure, our
institutions, our governments, and our lives. And with every day, the risk of
catastrophe grows.

Of what catastrophe do I speak? It is not the collapse of our civilization nor
the sudden dissolution of all the software systems at once. The house of cards
that is due to collapse is not composed of the software systems themselves.
Rather, it is the fragile foundation of public trust that is at risk.

Too many more 737 Max incidents, Toyota unintended acceleration incidents,
Volkswagen California EPA incidents, or Iowa Caucus incidents—too many

9780136915713_Web.indb 24 20/08/21 3:43 PM

Preface

xxv

more cases of high-profile software failures or malfeasance—and the lack of
our discipline, ethics, and standards will become the focus of a distrustful
and enraged public. And then the regulations will follow: regulations that
none of us should desire; regulations that will cripple our ability to freely
explore and expand the craft of software development; regulations that will
put severe restrictions on the growth of our technology and economy.

It is not the goal of this book to stop the headlong rush into ever-more
software adoption. Nor is it the goal to slow the rate of software production.
Such goals would be a waste of effort. Our society needs software, and it will
get it no matter what. Attempting to throttle that need will not stop the
looming catastrophe of public trust.

Rather, it is the goal of this book to impress upon software developers and
their managers the need for discipline and to teach those developers and
managers the disciplines, standards, and ethics that are most effective at
maximizing their ability to produce robust, fault-tolerant, effective software.
It is only by changing the way that we programmers work, by upping our
discipline, ethics, and standards, that the house of cards can be shored up and
prevented from collapse.

The Structure of This Book

This book is written in three parts that describe three levels: disciplines,
standards, and ethics.

Disciplines are the lowest level. This part of the book is pragmatic, technical,
and prescriptive. Programmers of all stripes will benefit from reading and
understanding this part. Within the pages of this part are several references to
videos. These videos show the rhythm of the test-driven development and
refactoring disciplines in real time. The written pages of the book try to
capture that rhythm as well, but nothing serves quite so well as videos for
that purpose.

9780136915713_Web.indb 25 20/08/21 3:43 PM

Preface

xxvi

Standards are the middle level. This section outlines the expectations that the
world has of our profession. This is a good section for managers to read, so
that they know what to expect of professional programmers.

Ethics are at the highest level. This section describes the ethical context of the
profession of programming. It does so in the form of an oath, or a set of
promises. It is laced with a great deal of historical and philosophical
discussion. It should be read by programmers and managers alike.

A Note for Managers

These pages contain a great deal of information that you will find beneficial.
They also contain quite a bit of technical information that you probably don’t
need. My advice is that you read the introduction of each chapter and stop
reading when the content becomes more technical than you need. Then go to
the next chapter and start again.

Make sure you read Part II, “The Standards,” and Part III, “The Ethics.”
Make sure you read the introductions to each of the five disciplines.

Register your copy of Clean Craftsmanship on the InformIT site for convenient
access to the companion videos, along with updates and/or corrections as they
become available. To start the registration process, go to informit.com/register
and log in or create an account. Enter the product ISBN (9780136915713) and
click Submit. Look on the Registered Products tab for an Access Bonus Content
link next to this product, and follow that link to access the companion videos.
If you would like to be notified of exclusive offers on new editions and updates,
please check the box to receive email from us.

9780136915713_Web.indb 26 20/08/21 3:43 PM

xxvii

Acknowledgments

Thank you to my intrepid reviewers: Damon Poole, Eric Crichlow, Heather
Kanser, Tim Ottinger, Jeff Langr, and Stacia Viscardi. They saved me from
many a faltering step.

Thank you also to Julie Phifer, Chris Zahn, Menka Mehta, Carol Lallier, and
to all those at Pearson who work so tirelessly to make these books work out
so well.

As always, thank you to my creative and talented illustrator, Jennifer Kohnke.
Her pictures always make me smile.

And, of course, thank you to my lovely wife and wonderful family.

9780136915713_Web.indb 27 20/08/21 3:43 PM

This page intentionally left blank

xxix

About the Author

Robert C. Martin (Uncle Bob) wrote his first line of code at the age of 12 in
1964. He has been employed as a programmer since 1970. He is cofounder of
cleancoders.com, offering online video training for software developers, and
founder of Uncle Bob Consulting LLC, offering software consulting, training,
and skill development services to major corporations worldwide. He served
as the Master Craftsman at 8th Light, Inc., a Chicago-based software
consulting firm.

9780136915713_Web.indb 29 20/08/21 3:43 PM

http://cleancoders.com

About the Author

xxx

Mr. Martin has published dozens of articles in various trade journals and is a
regular speaker at international conferences and trade shows. He is also the
creator of the acclaimed educational video series at cleancoders.com.

Mr. Martin has authored and edited many books, including the following:

Designing Object-Oriented C++ Applications Using the Booch Method
Patterns Languages of Program Design 3
More C++ Gems
Extreme Programming in Practice
Agile Software Development: Principles, Patterns, and Practices
UML for Java Programmers
Clean Code
The Clean Coder
Clean Architecture: A Craftsman’s Guide to Software Structure and Design
Clean Agile: Back to Basics

A leader in the industry of software development, Mr. Martin served three
years as the editor-in-chief of the C++ Report, and he served as the first
chairperson of the Agile Alliance.

9780136915713_Web.indb 30 20/08/21 3:43 PM

http://cleancoders.com

1

1Craftsmanship

9780136915713_Web.indb 1 20/08/21 3:43 PM

Chapter 1 Craftsmanship

2

The dream of flying is almost certainly as old as humanity. The ancient
Greek myth describing the flight of Daedalus and Icarus dates from around
1550 bce. In the millennia that followed, a number of brave, if foolish, souls
have strapped ungainly contraptions to their bodies and leapt off cliffs and
towers to their doom in pursuit of that dream.

Things began to change about five hundred years ago when Leonardo
DaVinci drew sketches of machines that, though not truly capable of flight,
showed some reasoned thought. It was DaVinci who realized that flight could
be possible because air resistance works in both directions. The resistance
caused by pushing down on the air creates lift of the same amount. This is
the mechanism by which all modern airplanes fly.

DaVinci’s ideas were lost until the middle of the eighteenth century. But then
began an almost frantic exploration into the possibility of flight. The
eighteenth and nineteenth centuries were a time of intense aeronautical
research and experimentation. Unpowered prototypes were built, tried,
discarded, and improved. The science of aeronautics began to take shape. The
forces of lift, drag, thrust, and gravity were identified and understood. Some
brave souls made the attempt.

And some crashed and died.

In the closing years of the eighteenth century, and for the half century that
followed, Sir George Cayley, the father of modern aerodynamics, built
experimental rigs, prototypes, and full-sized models culminating in the first
manned flight of a glider.

And some still crashed and died.

Then came the age of steam and the possibility of powered manned flight.
Dozens of prototypes and experiments were performed. Scientists and
enthusiasts alike joined the gaggle of people exploring the potential of flight.
In 1890, Clément Ader flew a twin-engine steam-powered machine for
50 meters.

9780136915713_Web.indb 2 20/08/21 3:43 PM

Craftsmanship

3

And some still crashed and died.

But the internal combustion engine was the real game-changer. In all
likelihood, the first powered and controlled manned flight took place in 1901
by Gustave Whitehead. But it was the Wright Brothers who, on December 17,
1903, at Kill Devil Hills, North Carolina, conducted the first truly sustained,
powered, and controlled manned flight of a heavier-than-air machine.

And some still crashed and died.

But the world changed overnight. Eleven years later, in 1914, biplanes were
dogfighting in the air over Europe.

And though many crashed and died under enemy fire, a similar number
crashed and died just learning to fly. The principles of flight might have been
mastered, but the technique of flight was barely understood.

Another two decades, and the truly terrible fighters and bombers of World
War II were wreaking havoc over France and Germany. They flew at extreme
altitudes. They bristled with guns. They carried devastating destructive power.

During the war, 65,000 American aircraft were lost. But only 23,000 of those
were lost in combat. The pilots flew and died in battle. But more often they
flew and died when no one was shooting. We still didn’t know how to fly.

Another decade saw jet-powered craft, the breaking of the sound barrier, and
the explosion of commercial airlines and civilian air travel. It was the
beginning of the jet age, when people of means (the so-called jet set) could
leap from city to city and country to country in a matter of hours.

And the jet airliners tore themselves to shreds and fell out of the sky in
terrifying numbers. There was so much we still didn’t understand about
making and flying aircraft.

9780136915713_Web.indb 3 20/08/21 3:43 PM

Chapter 1 Craftsmanship

4

That brings us to the 1950s. Boeing 707s would be flying passengers from here
to there across the world by the end of the decade. Two more decades would
see the first wide-body jumbo jet, the 747.

Aeronautics and air travel settled down to become the safest and most
efficient means of travel in the history of the world. It took a long time, and
cost many lives, but we had finally learned how to safely build and fly
airplanes.1

Chesley Sullenberger was born in 1951 in Denison, Texas. He was a child of
the jet age. He learned to fly at age sixteen and eventually flew F4 Phantoms
for the Air Force. He became a pilot for US Airways in 1980.

On January 15, 2009, just after departure from LaGuardia, his Airbus A320
carrying 155 souls struck a flock of geese and lost both jet engines. Captain
Sullenberger, relying on over twenty thousand hours of experience in the air,
guided his disabled craft to a “water landing” in the Hudson River and,
through sheer indomitable skill, saved every one of those 155 souls. Captain
Sullenberger excelled at his craft. Captain Sullenberger was a craftsman.

The dream of fast, reliable computation and data management is almost
certainly as old as humanity. Counting on fingers, sticks, and beads dates
back thousands of years. People were building and using abacuses over four
thousand years ago. Mechanical devices were used to predict the movement of
stars and planets some two thousand years ago. Slide rules were invented
about four hundred years ago.

In the early nineteenth century, Charles Babbage started building crank-
powered calculating machines. These were true digital computers with
memory and arithmetic processing. But they were difficult to build with the
metalworking technology of the day, and though he built a few prototypes,
they were not a commercial success.

1. The 737 Max notwithstanding.

M01_Martin_C01_p001-010.indd 4 27/09/21 4:56 PM

Craftsmanship

5

In the mid-1800s, Babbage attempted to build a much more powerful
machine. It would have been steam powered and capable of executing true
programs. He dubbed it the Analytical Engine.

Lord Byron’s daughter, Ada—the Countess of Lovelace—translated the notes
of a lecture given by Babbage and discerned a fact that had apparently not
occurred to anyone else at the time: the numbers in a computer need not
represent numbers at all but can represent things in the real world. For that
insight, she is often called the world’s first true programmer.

Problems of precise metalworking continued to frustrate Babbage, and in the
end, his project failed. No further progress was made on digital computers
throughout the rest of the nineteenth and early twentieth centuries. During
that time, however, mechanical analog computers reached their heyday.

In 1936, Alan Turing showed that there is no general way to prove that a given
Diophantine2 equation has solutions. He constructed this proof by imagining
a simple, if infinite, digital computer and then proving that there were
numbers that this computer could not calculate. As a consequence of this
proof, he invented finite state machines, machine language, symbolic
language, macros, and primitive subroutines. He invented, what we would call
today, software.

At almost exactly the same time, Alonzo Church constructed a completely
different proof for the same problem and consequently developed the lambda
calculus—the core concept of functional programming.

In 1941, Konrad Zuse built the first electromechanical programmable digital
computer, the Z3. It consisted of more than 2,000 relays and operated at a
clock rate of 5 to 10Hz. The machine used binary arithmetic organized into
22-bit words.

During World War II, Turing was recruited to help the “boffins” at Bletchley
Park decrypt the German Enigma codes. The Enigma machine was a simple

2. Equations of integers.

9780136915713_Web.indb 5 20/08/21 3:43 PM

Chapter 1 Craftsmanship

6

digital computer that randomized the characters of textual messages that were
typically broadcast using radio telegraphs. Turing aided in the construction of
an electromechanical digital search engine to find the keys to those codes.

After the war, Turing was instrumental in building and programming one of
the world’s first electronic vacuum tube computers—the Automatic
Computing Engine, or ACE. The original prototype used 1,000 vacuum tubes
and manipulated binary numbers at a speed of a million bits per second.

In 1947, after writing some programs for this machine and researching its
capabilities, Turing gave a lecture in which he made these prescient
statements:

We shall need a great number of mathematicians of ability [to put the problems]
into a form for computation.

One of our difficulties will be the maintenance of an appropriate discipline, so that
we do not lose track of what we are doing.

And the world changed overnight.

Within a few years, core memory had been developed. The possibility of
having hundreds of thousands, if not millions, of bits of memory accessible
within microseconds became a reality. At the same time, mass production of
vacuum tubes made computers cheaper and more reliable. Limited mass
production was becoming a reality. By 1960, IBM had sold 140 model 70x
computers. These were huge vacuum tube machines worth millions of dollars.

Turing had programmed his machine in binary, but everyone understood that
was impractical. In 1949, Grace Hopper had coined the word compiler and by
1952 had created the first one: A-0. In late 1953, John Bachus submitted the
first FORTRAN specification. ALGOL and LISP followed by 1958.

The first working transistor was created by John Bardeen, Walter Brattain,
and William Shockley in 1947. They made their way into computers in 1953.
Replacing vacuum tubes with transistors changed the game entirely.
Computers became smaller, faster, cheaper, and much more reliable.

9780136915713_Web.indb 6 20/08/21 3:43 PM

Craftsmanship

7

By 1965, IBM had produced 10,000 model 1401 computers. They rented for
$2,500 per month. This was well within the reach of midsized businesses.
Those businesses needed programmers, and so the demand for programmers
began to accelerate.

Who was programming all these machines? There were no university courses.
Nobody went to school to learn to program in 1965. These programmers
were drawn from business. They were mature folks who had worked in their
businesses for some time. They were in their 30s, 40s, and 50s.

By 1966, IBM was producing 1,000 model 360 computers every month.
Businesses could not get enough. These machines had memory sizes that
reached 64kB and more. They could execute hundreds of thousands of
instructions per second.

That same year, working on a Univac 1107 at the Norwegian Computer
Center, Ole-Johan Dahl and Kristen Nygard invented Simula 67, an extension
of ALGOL. It was the first object-oriented language.

Alan Turing’s lecture was only two decades in the past!

Two years later, in March 1968, Edsger Dijkstra wrote his famous letter to
the Communications of the ACM (CACM). The editor gave that letter the
title “Go To Statement Considered Harmful.”3 Structured programming was
born.

In 1972, at Bell Labs in New Jersey, Ken Thompson and Dennis Ritchie were
between projects. They begged time on a PDP 7 from a different project team
and invented UNIX and C.

Now the pace picked up to near breakneck speeds. I’m going to give you a
few key dates. For each one, ask yourself how many computers are in the

3. Edsger W. Dijkstra, “Go To Statement Considered Harmful,” Communications of the ACM 11,
no. 3 (1968).

9780136915713_Web.indb 7 20/08/21 3:43 PM

Chapter 1 Craftsmanship

8

world? How many programmers are in the world? And where did those
programmers come from?

1970—Digital Equipment Corporation had produced 50,000 PDP-8
computers since 1965.

1970—Winston Royce wrote the “waterfall” paper, “Managing the
Development of Large Software Systems.”

1971—Intel released the 4004 single-chip microcomputer.
1974—Intel released the 8080 single-chip microcomputer.
1977—Apple released the Apple II.
1979—Motorola released the 68000, a 16-bit single-chip microcomputer.
1980—Bjarne Stroustrup invented C with Classes (a preprocessor that makes

C look like Simula).
1980—Alan Kay invented Smalltalk.
1981—IBM released the IBM PC.
1983—Apple released the 128K Macintosh.
1983—Stroustrup renamed C with Classes to C++.
1985—The US Department of Defense adopted waterfall as the official

software process (DOD-STD-2167A).
1986—Stroustrup published The C++ Programming Language

(Addison-Wesley).
1991—Grady Booch published Object-Oriented Design with Applications

(Benjamin/Cummings).
1991—James Gosling invented Java (called Oak at the time).
1991—Guido Van Rossum released Python.
1995—Design Patterns: Elements of Reusable Object-Oriented Software

(Addison-Wesley) was written by Erich Gamma, Richard Helm, John
Vlissides, and Ralph Johnson.

1995—Yukihiro Matsumoto released Ruby.
1995—Brendan Eich created JavaScript.
1996—Sun Microsystems released Java.
1999—Microsoft invented C#/.NET (then called Cool).

9780136915713_Web.indb 8 20/08/21 3:43 PM

Craftsmanship

9

2000—Y2K! The Millennium Bug.
2001—The Agile Manifesto was written.

Between 1970 and 2000, the clock rates of computers increased by three
orders of magnitude. Density increased by four orders of magnitude. Disk
space increased by six or seven orders of magnitude. RAM capacity increased
by six or seven orders of magnitude. Costs had fallen from dollars per bit to
dollars per gigabit. The change in the hardware is hard to visualize, but just
summing up all the orders of magnitude I mentioned leads us to about a
thirty orders of magnitude increase in capability.

And all this in just over fifty years since Alan Turing’s lecture.

How many programmers are there now? How many lines of code have been
written? How good is all that code?

Compare this timeline with the aeronautical timeline. Do you see the
similarity? Do you see the gradual increase in theory, the rush and failure of
the enthusiasts, the gradual increase in competence? The decades of not
knowing what we were doing?

And now, with our society depending, for its very existence, on our skills, do
we have the Sullenbergers whom our society needs? Have we groomed the
programmers who understand their craft as deeply as today’s airline pilots
understand theirs? Do we have the craftsmen whom we shall certainly require?

Craftsmanship is the state of knowing how to do something well and is the
outcome of good tutelage and lots of experience. Until recently, the software
industry had far too little of either. Programmers tended not to remain
programmers for long, because they viewed programming as a steppingstone
into management. This meant that there were few programmers who acquired
enough experience to teach the craft to others. To make matters worse, the
number of new programmers entering the field doubles every five years or so,
keeping the ratio of experienced programmers far too low.

9780136915713_Web.indb 9 20/08/21 3:43 PM

Chapter 1 Craftsmanship

10

The result has been that most programmers never learn the disciplines,
standards, and ethics that could define their craft. During their relatively brief
career of writing code, they remain unapprenticed novices. And this, of course,
means that much of the code produced by those inexperienced programmers is
substandard, ill structured, insecure, buggy, and generally a mess.

In this book, I describe the standards, disciplines, and ethics that I believe
every programmer should know and follow in order to gradually acquire the
knowledge and skill that their craft truly requires.

9780136915713_Web.indb 10 20/08/21 3:43 PM

375

Index

A
Abstraction

clarifying levels of, 201
Dijkstra’s development of, 317–319,

320
polymorphism for, 225
stepdown rule for, 202
underlying, 235–236

Acceptance tests, 14, 18, 246–249
Accidental duplication, 237–238
Accounting, 20–22, 23
Accurate estimates, 360–361, 365–367
Ada, Countess of Lovelace, 5, 280.

See also N345TS
Adaptability, inexpensive, 256–257
Ader, Clément, 2
Aeronautics, 1–4
Aggregate estimates, 369–370
Agile methods

readiness via, 258, 259
story points, 275
test automation via, 226
XP as, 14

ALGOL, 6, 7, 282

Algorithms
bowling game scoring, 62–79
bubble sorting, 82–87
to find prime factors, 52–62
incremental derivation of, 61, 82,

86
integer stacking, 36–52
proving correctness of, 316–323
quick sorting, 94–95
sine calculation, 127–138
text wrapping, 95–103
video store rentals, 164–183

API function, 269
Architecture, 143–145
Arrange/Act/Assert test pattern,

103–104, 247, 267
Authenticator interface, 111
Automated tests, 246, 267–269, 340
Automatic Computing Engine (ACE),

6, 280

B
Babbage, Charles, 4–5, 280
Backus, John, 6, 282, 333

9780136915713_Web.indb 375 20/08/21 3:45 PM

Index

376

Balance, 20
Beck, Kent

design principles of, 226, 239
Extreme Programming, 14
on making it right, 306
on refactoring, 219
on simple design, 224, 228

Behavior
anticipating, 300
refactoring to preserve, 199
vs. structure, 72, 303–304, 307, 311

Behavior-Driven Development (BDD),
104–105, 107

Bergensten, Jens, 289
Best work, 306–315
Boeing, 4
Boundaries, 143–144
Bowling score computation, 62–79,

104, 203
Branches, toggles vs., 338–340
Bubble sort algorithms, 87, 164
Bugs. See also Debugging

accumulation of, 314
as found by QA, 266, 267
quick patches for, 302
quick tests for, 218
as unacceptable, 264

Builds
continuous, 249, 341–342
speeding up, 347–348

Business analysis (BA) teams, 246, 248
Business rules

decoupling databases from, 148
isolated from tests, 268–269
testing the, 150
user interface vs., 141, 142

C
C language, 284
Cascading Style Sheets (CSS) code,

255–256
Catastrophes, 291–293
Cayley, Sir George, 2

CCU-CMU, 364
Certainty

cost of, 358, 370
fragile tests and, 139, 140
London school of, 141

Changes
fear of making, 31–32, 219, 263
inexpensive, 256–257, 262
keeping up with, 373–374
learning to prepare for, 277
as software necessity, 303–304, 307
to user interface, 268
via git, 335
via good structure, 308–310

Chicago school of TDD, 142
Chief Technical Officer (CTO), 252
Church, Alonzo, 5, 62
Circle of Life, 14–15
Clean Agile (Martin), 358
Clean Architecture (Martin), 143, 145
Clean Code (Martin), 198
Clean Craftsmanship (Martin), xxv–xxvi
COBOL, 282, 283
Code

building blocks of, 321
cleaning of, 32–34, 306, 342, 345
decoupled, 30–31, 232
decoupling tests from, 161–184,

218, 232
designing testable, 30
do no harm to, 302–303
early example of, 233
expressive, 233–235
fear of broken, 31–32, 219
fragile tests and, 160–161
by the inexperienced, 9–10
proving correctness of, 316–323
structural vs behavioral changes, 72
test and code communication, 236
test coverage of, 230
two schools of TDD, 140–142

Coding
history of, 280–286

9780136915713_Web.indb 376 20/08/21 3:45 PM

Index

377

specific tests for generic code, 59,
82, 183–184

test suite holes, 28–29
and three laws of TDD, 23–26
transformations, 185

Collaborating components, 144–145
Collaborative programming

discipline of, 242–244
improvement via, 356
remotely, 357
to replace yourself, 272, 273
as XP practice, 14, 17–18

COLT (Central Office Line Tester), 361
Commitments, 368–369, 370–372
Competence, fearless, 263–264
Compilation tests, 36–52
Complexity, incremental, 92
Components, 144–145
Computers

history of, 4–9, 280–286
in pop culture, 287

Concurrent Versions System (CVS), 333,
334, 336

Constant to variable transformation,
187–188

Continuous build, 249, 341–342
Continuous integration, 337
Continuous learning, 277–278, 373–374
Controllers

in component hierarchy, 144–145
and GUI input tests, 153–154
in Humble Object test pattern, 159
testing, 153

Countess. See Ada
Coupling. See also Decoupling

fragile test problem and, 139
high- and low-level details, 152,

218, 224–225
minimizing, 184
one-to-one, 161–162

Courage, 271–278
Coverage, test, 229–231, 239, 343–344

Craftsmanship
in the aeronautics industry, 4
defined, xxi–xxii
as developer responsibility, 303
foundation disciplines of, 14–18, 293
history of computer, 4–9
by programmers, 9–10
provable code as, 324–325

Craig, Philip, 108

D
Dahl, Ole-Johann, 283
Database testing, 148–150
DaVinci, Leonardo, 2
Debugging

avoiding, 199
commitment to total, 264, 266
minimizing, 26–27
by QA, 265–267
speeding up, 349

Decidability problem, 62
Decision matrix, Eisenhower’s,

310–312
Decision problem, 280
Decomposition, functional, 322–323
Decoupling

code, for testability, 232
databases, 148
high- and low-level details, 236,

308
importance of, 224–225
production code/test, 161–184, 218

Degenerate tests
solutions via, 83–84, 98–99
stairstep tests as, 66
as TDD rule, 53–54

Dependencies
dependency inversion principle, 143
eliminating unnecessary,

112–113, 114
management of, via SOLID, 309–310
with production data, 116

Dependency Rule, 144–145

9780136915713_Web.indb 377 20/08/21 3:45 PM

Index

378

Deployment
and best work, 307
continuous, 340–341
readiness for, 258
speeding up, 349
for startups, 304–305
and structural changes, 308

Derivation, incremental. See Incremental
derivation

Design
changes to, 232
four principles of, 239
fragility as problematic, 160–161
high test coverage, 230–232
holes, 28–29
minimal size in, 239
outside-in vs. inside-out, 141–142
prompt fixing of flaws, 70–71
simple, 17, 224–226, 228–229
smells, 308, 309
test design, 160–184
YAGNI, 226–228

Development, test-driven. See Test-
driven development (TDD)

Digital Equipment Corporation, 284
Digital switching, 364
Dijkstra, Edsger, 7, 282, 316–323
Diophantine equation, 62
Disciplines

acceptance tests, 18, 248–249
Alan Turing on, 281
in Clean Craftsmanship, xxv
collaborative programming, 17–18
failing at, 255, 256
focus and, 13
refactoring, 16, 217–221
self- vs. other-imposed, xxv
simple design, 17
test-driven development (TDD),

15–16
YAGNI, 227

Distractions, managing, 349–354

Double-entry bookkeeping, 20–22
Dummies, 111–114
Duplication

accidental, 238
duplicate tests, 66
minimizing code, 237–238

E
Eisenhower’s decision matrix, 310–312
Elements variable, 47, 51
Emotional stress, 351
“Endo-Testing: Unit Testing with Mock

Objects” (Freeman, McKinnon,
Craig), 108

Engineering practices, 14
Enigma machine, 5
Entangled software, 224
Enumeration, 317, 321
Errors, 70, 71
Estimates, honest and fair, 274–275,

358–372
Ethics

in Clean Craftsmanship, xxvi
oath of, 293
single vs. multiple, xxii

Expectations, 252
Explanatory variables, 204
Exploratory testing, 267
Expressivity

code language for, 233–234
as design principle, 239
and real vs. accidental duplicates, 238
role of code and tests in, 236

External services, 108, 110
Extract Field refactoring, 204–216
Extract Method refactoring, 68,

201–202, 208
Extract Superclass refactoring, 214
Extract Variable refactoring, 202–204
Extreme Programming Explained

(Beck), 228
Extreme Programming (XP), 13–14, 219,

226, 258

9780136915713_Web.indb 378 20/08/21 3:45 PM

Index

379

F
Factors variable, 54–55
Failure tests

algorithms via, 82
input/output (IO), 108
for integer sort algorithm, 83
in integer stack example, 36–52
multiple solutions to, 88
in prime factors example, 52–62

Fakes, 124–126
Fear

of broken code, 31–32, 219
fearless competence, 263–264

Fibonacci kata, 191–194
Finite state machines, 105–107
First-in-last-out (FILO) behavior test,

50, 52
FitNesse, 247, 337
Flaws, design, 70–71
Flexibility, 141, 142, 345
Flight, history of, 1–4
Flow, the, 352
Fortran, 282, 319–320
Fowler, Martin

Chicago school of TDD, 142
on refactoring, 164, 198, 221
on simple design, 229

Fragile tests
certainty and, 139, 140
as design problem, 160–161
mocks and, 139–140
refactoring to prevent, 218
test specificity to prevent, 59, 232
user interface links and, 268

Fragility, software, 308
Freeman, Steve, 108, 141
Fun, 30
Functional decomposition, 322–323
Functional programming, 62, 196
Functions

extract refactoring of, 201
function to nil transformation,

186–187

harm to, 299–301
minimizing size of, 239
misplaced responsibility of, 71
replacing comments with, 75
testing query, 148–150
tests as constraining, 127
tests tied to implementation of, 120
uncertainty principle in, 132
and underlying abstraction, 235
vs. cleaning code, 306

G
Gateway interface, 149
Generalization, 59, 183–184
Generic code, 59
Git, 334–336
Git reset —hard, 220
Given-When-Then (GWT), 104, 105, 248
Goethe, Johann Wolfgang von, 21
GOTO statements, 320, 321, 322
Green step

as transformative, 185
in video rental algorithm, 165, 166,

167, 169, 173
GUI (graphic user interface)

inputs, 153–154
testing, 150–153

H
Haines, Corey, 229
Handwashing, 12–13
Harm, do no

to function, 299–301
to society, 296–297
to structure, 302–303
via easy changeability, 303–304
via tests, 305–306

HealthCare.gov, 297–298
Hendrickson, Chet, 224
History of flight, 1–4
Honest estimates, 274–275, 360–364,

370–372
Hooks, 226, 227–228

9780136915713_Web.indb 379 20/08/21 3:45 PM

http://HealthCare.gov

Index

380

Hopper, Grace, 6, 282
Horn, Michael, 289
Humble Object pattern, 157–160

I
IBM, 6, 7, 282, 283
If statements, 58, 60, 202
Immobility, 309
Implement Interface command, 114
Implementation, function, 120
Improvement, continuous, 262, 342–346
Incremental derivation

as solution to getting stuck, 95, 98
solving failing tests as, 86
TDD as technique for, 61, 82
writing tests via, 103

Induction, 317, 321
Inflexible software, 256–257
Inside-out design, 142
Integration tests, 182–183
Integrity

via high productivity, 346–354
via relentless improvement, 342–346
via small cycles, 328–342

Interactors
in component hierarchy, 144–145
GUI, 152, 154

Iteration, 321

J
JBehave, 104
Jennings, Jean, 282
JUnit Recipes (Rainsberger and

Stirling), 154

K
Keogh, Liz, 105
Knight Capital Group, 299–300, 302
Koss, Bob, 62–79

L
Languages

continuous learning of, 277, 373–374

expressive code, 233–234
first programming, 7, 282–284

Law of trichotomy, 89
Learning

continuous, 277–278, 373–374
from mentors, 278, 286
via cleaning code, 345

Lies, estimates as, 359
Login test, 348
London school of TDD, 141
Loops, unwound, 57
Lovelace, Countess of, 5. See also Ada

M
MacKinnon, Tim, 108, 120
Managers

commitments to, 370–372
emotional confrontation by, 276
information for, xxvi
perspective of, 252

Manual testing, 267, 270
Marick, Brian, 305
Matz, Chris, 104
McCarthy, John, 282
Mean and sigma, 365–367
Meetings, 350
Memory, core, 6
Mentoring, 278, 286
Merges, 332, 334, 336, 337
Meszaros, Gerard, 110, 154
Minimizing size, 237, 239
Misplaced responsibility, 71
Mob programming, 242, 244, 357
Mock objects

defined, 109
fragility of testing with, 139
in test doubles, 108–110, 121–123
when to use, 126

Mojang, 289
Mood, 351
Music, 350–351
Mutation testing, 344

9780136915713_Web.indb 380 20/08/21 3:45 PM

Index

381

N
Nil to constant transformation, 187
“No,” saying, 276, 371
North, Dan, 104
N345TS. See Ada
Nygard, Kristen, 283

O
Object-oriented models, 64
One-to-one correspondences, 161–162,

218
Open offices, 356–358
Optimistic locking, 333
Outside-in design, 141

P
Pair programming, 242, 244, 352, 357
Parent-child algorithms, 299
Patterns, test, 155–160
Perspective, 252
Pessimistic locking, 334
Polymorphism, 110, 225
Pomodoro technique, 242, 352–354
Power Peg code, 299, 302
Precise estimates, 360–361, 367–369
Presenters

in component hierarchy, 144–145
defined, 151
GUI, 151–152
in Humble Object test pattern,

157–159
Pride, 33–34
Prime factors algorithm, 52–62, 185
Probability distributions, 365
Procedural Programming, 62
Production data, 116
Production releases, 340
Productivity

high, 346–354
inexpensive adaptability in, 256–257
perpetual readiness in, 258–259
quality standard for, 254–256

stable, 259–260
Program Evaluation and Review

Technique (PERT), 369–370
Programmer tests, 182
Programmers

continuous improvement by, 262
as craftsmen, xxi
demographics of, 284–286
Edsger Dijkstra, 316–323
as heroes and villains, 289–290
history of, 5–9, 280–286
inexperience of, 9–10
as nerds and saviors, 287–288
one path for, xxii
perspective of, 252
pop culture depictions of, 287–288
responsibility of. See Responsibility
senior, 297
senior/junior partnerships, 244
as stakeholders, 312–313
teaching new, 278
undisciplined, 256

Programming
collaborative, 17–18, 242–244, 356
decidability problem in, 62
as finite state transitions, 107
functional, 196
history of, 280–286
London school of, 141
modular, 330–332
procedural and functional, 62
structured, 319–322

Proof, repeatable, 316
Property testing, 140
Pryce, Nat, 141
Public class stack, 36–52
Public trust, xxiv–xxv
Push function, 41

Q
Quality

continuously improved, 262

9780136915713_Web.indb 381 20/08/21 3:45 PM

Index

382

definition of poor, 255
extreme, 264
fearless competence on, 263–264
readiness for QA review, 265–267
test automation, 267–269
testing the user interface, 269–270

Quality assurance (QA) department
acceptance test readability by, 246
readiness for review by, 265–267
tests by, 248

Queries, testing, 148–150
Quick sort algorithm, 94–95
Quick tests, 218, 324

R
Rainsberger, J.B., 154
Readiness, 258–259
RealAuthenticator, 111–112, 116
Recursion, 100
Red/Green/Refactor loop

cleanup via, 39
as continuous, 219
as fourth TDD law, 34–35
as functional decomposition, 323
moral foundation for, 312
as refactor cycle, 199
transformative priorities and, 185

Red step
as additive, 185
in video rental algorithm, 165, 166,

168–169, 172
Refactor step

as restorative, 185
in video rental algorithm, 165–166

Refactoring
basic toolkit for, 200–217
basis of, 232–233
cleaning as, 345
code generalization via, 184
consistent, 219
defined, 72, 199
disciplines of, 16, 217–221
as fourth TDD law, 34–35

and fragile tests, 139
IDE’s Extract Method, 68
Red/Green/Refactor loop, 34–35,

39, 185
restorative, 185
as Rubik’s cube solutions, 215
in video rental algorithm, 164–183
vs. placing hooks, 227
as XP practice, 14

Refactoring (Fowler), 198, 221
Remote work, 357
Rename refactoring, 200–201
Respect, 372–373
Responsibility

and collaborative programming,
243

of continuous learning, 374
to do no harm, 296–303
misplaced, 71
of programmers, 290–293, xxiv
recognition of, 306
to replace yourself, 273
single responsibility principle, 201,

214
of software developers, xxiv
as a stakeholder, 312–313

Revision Control System, 333
Rigidity, 308
Ritchie, Dennis, 284
Rochkind, Marc, 333
Role Models, 289
RSpec, 104
Rubik’s cube, 215

S
Science, software, 323–324
Scrum, 258
Selection, 321
Selection to iteration transformation, 190
Self-Shunt pattern, 156
Semantic stability, 344–345
Semmelweis, Ignaz, 13
Sequence, 321

9780136915713_Web.indb 382 20/08/21 3:45 PM

Index

383

Setup method, 103
Short cycles, 334–336
Sieve of Eratosthenes, 53, 61
Sigma, 366, 369
Simplicity

design, 14, 17, 224–226
fundamental aspect of, 235
incremental derivation, 61, 82, 86
rule of test, 95–96, 103
via expressive language, 233–234
via technology advances, 227

Simula 67, 7, 283
Sine calculation, 127–138
Single responsibility principle, 201, 214,

239, 246
Small cycles, 328–342
Smalltalk, 108
Society

dependence on software, 9, 291,
306

harm to, 297–298
responsibility to, 292
views on programmers, 286–288

Software
catastrophes, 291–293
changes to, 224, 226, 303–304
failed estimates on, 358
GUI, 150–151
invention of, 5
messy, harmful, 302
pervasiveness of, 290–291
proofs, 316–323
public trust in, xxiv–xxv
rigid, fragile, immobile, 256,

308–309, 345
as a science, 323–324
similarity to accounting, 23
tests as documentation of, 26–28
untangled, 224

SOLID principles, 17, 143, 309–310
Sorting algorithms

bubble sort, 82–87, 95
quick sort, 94–95

Source code
continuous build of, 249
control, 328–334
dependencies, 143, 153, 225
editors, 237
harm to, 303

Source Code Control System (SCCS),
333

Specificity, 183–184, 202
Spies

fragility of testing with, 138, 139
mocks as, 121
in sine calculation algorithm,

133–135
in test doubles, 118–120
for testing across boundaries, 144

Stabilization sprints, 258
Stack of integers, writing a, 36–52
StackTest, 37
Stairstep tests, 66
Stakeholders, 312–313
Standards

in Clean Craftsmanship, xxvi
courage, 271–278
defined, 252
differing perspectives on, 252
productivity, 253–260
provable code, 324–325
quality, 261–270
responsibility and, xix
single vs. multiple, xxii

Startups, 304
State/Transition diagram, 105–106
Statement to recursion transformation,

189–190
Stepdown rule, 202
Stevenson, Chris, 104
Stirling, Scott, 154
Story points, 275
Structure

behavior vs., 303–304, 307, 311
and collaborative programming, 244
duplication and, 237

9780136915713_Web.indb 383 20/08/21 3:45 PM

Index

384

good, 308–310
harm to, 302–303

Structured programming, 7, 319–323
Stubs

and business rule isolation, 269–270
spies as, 118–119
in test double process, 115–117

Subversion, 334
Subway turnstiles, 105–106
Sullenberger, Chesley, 4
Surviving mutations, 344

T
Taylor series, 128, 130, 132–133
Teamwork

collaborative programming, 242–244
continuous integration and, 337
covering for each other, 272
honest/fair estimates as, 358–372
knowledge sharing via, 356
open/virtual offices, 356–358
respect, 372–373

Technological advances, 227–228
Teradyne, 361
Test doubles

boundary crossing and, 144
dummies, 111–114
fakes, 124–126
mock objects, 108–110, 121–123
spies, 118–120
structure of, 109–110
stubs, 115–117

Test-driven development (TDD)
algorithm simplicity via, 61–62,

78–79
Arrange/Act/Assert pattern in, 104
BDD as, 105
benefits of, 26–34
continuous integration and, 337
as design technique, 312
documentation in, 26–28
as double-entry bookkeeping, 23
examples, 36–79

as foundational discipline, 14, 15–16
four laws of, 23–35
fragile test problem and, 160–161
getting stuck with, 95–103
incremental complexity in, 92
long-term mastery of, 148
necessity for, 305–306
proofs of, 323–325
test suite holes, 28–29
two schools of, 140–143
uncertainty principle, 126–139

Test-Specific Subclass pattern, 155–156
Tests

acceptance, 18, 246–249
Arrange/Act/Assert pattern, 103–104
assertions and spy behavior, 123
automated, 246, 267–269, 340
code and test communication, 236
continuous running of, 249
coverage by, 229–231, 239,

343–344
for databases, 148–150
decoupling production code from,

161–184, 218
degenerate, 53–54, 57, 66
deleting stairstep, 66
design of, 160–184
excluding production data from, 116
as finite state transitions, 107
fragile, 59, 139–140, 160–161
functions constrained by, 127
for GUIs, 150–154
historic, 226
integration, 182–183
mutation testing, 344
patterns, 100, 155–160
to prevent harm, 305–306
programmer, 182–183
as refactoring discipline, 218,

219–220, 221
rule of simplicity for, 95–96
semantic stability of, 344–345

9780136915713_Web.indb 384 20/08/21 3:45 PM

Index

385

specificity of, for generic code, 59,
82, 183–184

speeding up, 348–349
streamlining, 113
as theories, 323
transformations for passing, 184–196
vs. placing hooks, 227
written by/for BA and QA, 248–249

Thompson, Ken, 284
ThoughtWorks, 142
Tichy, Walter, 333
Time management, 352–354
Toggles, branches vs., 338–340
Toyota, 300–301, 302
Transformation priority premise,

195–196
Transformations, 184–196
Transistors, 6
Transition triplets, 106
Traversal code, 237–238
Trim call, 101
Turing, Alan, 5–6, 62, 280–281

U
UML diagrams, 64, 73, 144
Uncertainty principle, 126–139, 140
Unconditional to selection

transformation, 188–189
Underflow exceptions, 47
UNIX, 284
Untangling software, 224
Unwound loops, 57, 60
User interface

and the Chicago school, 142
and the London school, 141
product as changed via, 304, 308
and test automation, 268–269
testing the, 269–270, 348

User perspective, 252

V
Vacuum tube computer, 6
Values

testing, 140
value to list transformation, 189
value to mutated value

transformation, 190–191
Variables, 202–204, 235
View model, 151
Virtual teamwork, 356–358
Viscardi, Stacia, xix
Viscosity, 347–349
Volkswagen, 289, 296, 297
Von Neumann, Jon, 282

W
Wake, Bill, 103
While statements, 58, 60, 202
Whitehead, Gustave, 3
Work, best, 306–315
Work breakdown structure (WBS),

366–367
World War II, 3, 5
Wrap call, 100
Wright brothers, 3

X
XRay class, 155
XUnit Test Patterns (Meszaros), 110,

154

Y
YAGNI, 226–228

Z
Zuse, Konrad, 5

9780136915713_Web.indb 385 20/08/21 3:45 PM

	Cover
	Half Title
	Title Page
	Copyright Page
	Dedication
	Table of Contents
	Foreword
	Preface
	Acknowledgments
	About the Author
	Chapter 1 Craftsmanship
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

