
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780136798330
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780136798330
https://plusone.google.com/share?url=http://www.informit.com/title/9780136798330
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780136798330
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780136798330/Free-Sample-Chapter

Exam Ref AZ-204
Developing Solutions for
Microsoft Azure

Santiago Fernández Muñoz

Exam Ref AZ-204 Developing Solutions for
Microsoft Azure
Published with the authorization of Microsoft Corporation by:
Pearson Education, Inc.

Copyright © 2021 by Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information
regarding permissions, request forms, and the appropriate contacts within the
Pearson Education Global Rights & Permissions Department, please visit
www.pearson.com/permissions. No patent liability is assumed with respect to
the use of the information contained herein. Although every precaution has
been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions. Nor is any liability assumed for damages
resulting from the use of the information contained herein.

ISBN-13: 978-0-13-679833-0
ISBN-10: 0-13-679833-0

Library of Congress Control Number: 2020942404

ScoutAutomatedPrintCode

TRADEMARKS

Microsoft and the trademarks listed at http://www.microsoft.com on the
“Trademarks” webpage are trademarks of the Microsoft group of companies.
All other marks are property of their respective owners.

WARNING AND DISCLAIMER

Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on
an “as is” basis. The author, the publisher, and Microsoft Corporation shall have
neither liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book or from
the use of the programs accompanying it.

SPECIAL SALES

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs;
and content particular to your business, training goals, marketing focus, or
branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact
governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact
intlcs@pearson.com.

CREDITS

EDITOR-IN-CHIEF
Brett Bartow

EXECUTIVE EDITOR
Loretta Yates

ASSOCIATE EDITOR
Charvi Arora

DEVELOPMENT EDITORS
Songlin Qiu, Charvi Arora

MANAGING EDITOR
Sandra Schroeder

SENIOR PROJECT EDITOR
Tracey Croom

COPY EDITOR
Charlotte Kughen

INDEXER
Cheryl Ann Lenser

PROOFREADER
Abigail Manheim

TECHNICAL EDITOR
Dave McCollough

EDITORIAL ASSISTANT
Cindy Teeters

COVER DESIGNER
Twist Creative, Seattle

COMPOSITOR
codeMantra

http://www.pearson.com/permissions
http://www.microsoft.com
mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com

To my wonderful wife, because of her support and inspiration,
especially in the hard times.

— Santiago Fernández Muñoz

This page intentionally left blank

Contents at a glance

Introduction xv
Important: How to use this book to
study for the exam xvii

CHAPTER 1 Develop Azure Infrastructure as a service
compute solution 1

CHAPTER 2 Develop for Azure storage 75

CHAPTER 3 Implement Azure security 127

CHAPTER 4 Monitor, troubleshoot, and optimize
Azure solutions 201

CHAPTER 5 Connect to and consume Azure services
and third-party services 241

Index 313

This page intentionally left blank

vii

Contents

 Introduction xv
Organization of this book xv

Microsoft certifications xv

Errata, updates, and book support xvi

Stay in touch xvi

 Important: How to use this book to
study for the exam xvii

Chapter 1 Develop Azure Infrastructure as a service
compute solution 1

Skill 1.1: Implement solutions that use virtual
machines (VM) . 2

Provision VMs 2

Configure VMs for remote access 7

Create ARM templates 12

Create container images for solutions by using Docker 21

Publish an image to the Azure Container Registry 24

Run containers by using Azure Container Instance 26

Skill 1.2: Create Azure App Service web apps . 27

Create an Azure App Service web app 28

Enable diagnostics logging 32

Deploy code to a web app 35

Configure web app settings including SSL, API,
and connection strings 38

Implement autoscaling rules, including scheduled
autoscaling, and scaling by operational or system metrics 41

Skill 1.3: Implement Azure Functions . 46

Implement input and output bindings for a function 46

Implement function triggers by using data operations,
timers, and webhooks 52

Implement Azure Durable Functions 63

Contentsviii

Chapter summary . 72

Thought experiment . 74

Thought experiment answers . 74

Chapter 2 Develop for Azure storage 75
Skill 2.1: Develop solutions that use Cosmos DB storage 75

Select the appropriate API for your solution 76

Implement partitioning schemes 79

Interact with data using the appropriate SDK 81

Set the appropriate consistency level for operations 91

Create Cosmos DB containers 94

Implement server-side programming including stored
procedures, triggers, and change feed notifications 98

Skill 2.2: Develop solutions that use Blob Storage .101

Move items in Blob Storage between Storage Accounts
or containers 102

Set and retrieve properties and metadata 104

Interact with data using the appropriate SDK 109

Implement data archiving and retention 117

Implement hot, cool, and archive storage 120

Chapter summary . 124

Thought experiment . 125

Thought experiment answers . 126

Chapter 3 Implement Azure security 127
Skill 3.1: Implement user authentication and authorization 127

Implement OAuth2 authentication 128

Create and implement shared access signatures 154

Register apps and use Azure Active Directory to
authenticate users 167

Control access to resources by using role-based
access controls (RBAC) 172

Skill 3.2: Implement secure cloud solutions . 175

Secure app configuration data by using the App
Configuration and KeyVault API 175

Contents ix

Manage keys, secrets, and certificates by using
the KeyVault API 183

Implement Managed Identities for Azure resources 191

Chapter summary . 196

Thought experiment . 198

Thought experiment answers . 199

Chapter 4 Monitor, troubleshoot, and optimize
Azure solutions 201

Skill 4.1: Integrate caching and content delivery within solutions 201

Develop code to implement CDNs in solutions 202

Configure cache and expiration policies for FrontDoor,
CDNs, and Redis caches 207

Store and retrieve data in Azure Redis Cache 212

Skill 4.2: Instrument solutions to support monitoring and logging 219

Configure instrumentation in an app or service by
using Application Insights 219

Analyze log data and troubleshoot solutions by using
Azure Monitor 227

Implement Application Insights Web Test and Alerts 231

Implement code that handles transient faults 234

Chapter summary . 238

Thought experiment . 239

Thought experiment answers . 239

Chapter 5 Connect to and consume Azure services
and third-party services 241

Skill 5.1: Develop an App Service Logic App . 241

Create a Logic App 242

Create a custom connector for Logic Apps 249

Create a custom template for Logic Apps 266

Skill 5.2: Implement API Management . 268

Create an APIM instance 269

Configure authentication for APIs 273

Define policies for APIs 275

Contentsx

Skill 5.3: Develop event-based solutions . 278

Implement solutions that use Azure Event Grid 279

Implement solutions that use Azure Notification Hubs 287

Implement solutions that use Azure Event Hub 291

Skill 5.4: Develop message-based solutions . 298

Implement solutions that use Azure Service Bus 299

Implement solutions that use Azure Queue Storage queues 305

Chapter summary . 309

Thought experiment . 310

Thought experiment answers .311

Index 313

xi

Acknowledgments

I want to say thank you to the people who gave me the opportunity to write this book and
who also helped me during the entire process. Without their support, this book would not be a
reality.

I also want to say thank you to my friend Rafa Hueso for his support and guidance during
the last years of my professional career.

This page intentionally left blank

xiii

About the author

I started my career as a Linux and Windows instructor. At
the same time, I also started to learn scripting programming
languages such as bash and VBS that were useful for my
work. During that period of my career, I realized scripting
languages were helpful, but they were not enough to meet
all my needs, so I started learning other languages like Java,
PHP, and finally C#.

I’ve been working as a Microsoft technologies consultant
for the last 14 years, and over the last 6 years, I’ve consulted
on Azure-related technologies. I’ve participated in different
types of projects, serving in a variety of capacities from .NET
developer to solution architect. Now I’m focused on devel-
oping custom industrial IoT solutions for my company and
clients.

This page intentionally left blank

xv

Introduction

Most books take a very low-level approach, teaching you how to use individual classes
and accomplish fine-grained tasks. Through this book, we review the main technolo-

gies that Microsoft offers for deploying different kinds of solutions into Azure. From the most
classical and conservative approaches using Azure virtual machines to the latest technologies,
implementing event-based or message-based patterns with Azure Event Grid or Azure Service
Bus, this book reviews the basics for developing most types of solutions using Azure services.
The book also provides code examples for illustrating how to implement most of the concepts
covered through the different sections.

This book is intended for those professionals who are planning to pass the exam AZ-204.
This book covers every major topic area found on the exam, but it does not cover every exam
question. Only the Microsoft exam team has access to the exam questions, and Microsoft
regularly adds new questions to the exam, making it impossible to cover specific questions.
You should consider this book a supplement to your relevant real-world experience and other
study materials. If you encounter a topic in this book that you do not feel completely comfort-
able with, use the “Need more review?” links in the text to find more information and take the
time to research and study the topic. Great information is available on MSDN and TechNet and
in blogs and forums.

Organization of this book

This book is organized by the “Skills measured” list published for the exam. The “Skills mea-
sured” list is available for each exam on the Microsoft Learn website: http://aka.ms/examlist.
Each chapter in this book corresponds to a major topic area in the list, and the technical tasks
in each topic area determine a chapter’s organization. If an exam covers six major topic areas,
for example, the book contains six chapters.

Microsoft certifications

Microsoft certifications distinguish you by proving your command of a broad set of skills and
experience with current Microsoft products and technologies. The exams and corresponding
certifications are developed to validate your mastery of critical competencies as you design
and develop, or implement and support, solutions with Microsoft products and technologies
both on premises and in the cloud. Certification brings a variety of benefits to the individual
and to employers and organizations.

http://aka.ms/examlist

Introductionxvi

Check back often to see what is new!

Errata, updates, and book support

We’ve made every effort to ensure the accuracy of this book and its companion content. You
can access updates to this book—in the form of a list of submitted errata and their related
corrections—at

MicrosoftPressStore.com/ExamRefAZ204/errata.

If you discover an error that is not already listed, please submit it to us at the same page.

For additional book support and information, please visit

http://www.MicrosoftPressStore.com/Support.

Please note that product support for Microsoft software and hardware is not offered
through the previous addresses. For help with Microsoft software or hardware, go to
http://support.microsoft.com.

Stay in touch

Let’s keep the conversation going! We’re on Twitter:

http://twitter.com/MicrosoftPress

MORE INFO ALL MICROSOFT CERTIFICATIONS

For information about Microsoft certifi cations, including a full list of available
certifi cations, go to http://www.microsoft.com/learn.

http://MicrosoftPressStore.com/ExamRefAZ204/errata
http://www.MicrosoftPressStore.com/Support
http://support.microsoft.com
http://twitter.com/MicrosoftPress
http://www.microsoft.com/learn

xvii

Important: How to use this book to
study for the exam

Certification exams validate your on-the-job experience and product knowledge. To gauge
your readiness to take an exam, use this Exam Ref to help you check your understanding of the
skills tested by the exam. Determine the topics you know well and the areas in which you need
more experience. To help you refresh your skills in specific areas, we have also provided “Need
more review?” pointers, which direct you to more in-depth information outside the book.

The Exam Ref is not a substitute for hands-on experience. This book is not designed to teach
you new skills.

We recommend that you round out your exam preparation by using a combination of avail-
able study materials and courses. Learn more about available classroom training and find free
online courses and live events at http://microsoft.com/learn. Microsoft Official Practice Tests
are available for many exams at http://aka.ms/practicetests.

This book is organized by the “Skills measured” list published for the exam.
The “Skills measured” list for each exam is available on the Microsoft Learn website:
http://aka.ms/examlist.

Note that this Exam Ref is based on this publicly available information and the author’s
experience. To safeguard the integrity of the exam, authors do not have access to the exam
questions.

http://microsoft.com/learn
http://aka.ms/practicetests
http://aka.ms/examlist

This page intentionally left blank

75

C H A P T E R 2

Develop for Azure storage
All applications work with information or data. Applications create, transform, model, or
operate with that information. Regardless of the type or volume of the data that your appli-
cation uses, sooner or later, you need to save it persistently so that it can be used later.

Storing data is not a simple task, and designing storage systems for that purpose is even
more complicated. Perhaps your application needs to deal with terabytes of information, or you
may work with an application that needs to be accessed from different countries, and you need
to minimize the time required to access it. Also, cost efficiency is a requirement in any project. In
general, many requirements make designing and maintaining storage systems difficult.

Microsoft Azure offers different storage solutions in the cloud to satisfy your application
storage requirements. Azure offers solutions for making your storage cost-effective and
minimizing latency.

Skills covered in this chapter:
■■ Skill 2.1: Develop solutions that use Cosmos DB storage

■■ Skill 2.2: Develop solutions that use Blob Storage

Skill 2.1: Develop solutions that use Cosmos DB
storage

Cosmos DB is a premium storage service that Azure provides for satisfying your need for
a globally distributed, low-latency, highly responsive, and always-online database service.
Cosmos DB has been designed with scalability and throughput in mind. One of the most sig-
nificant differences between Cosmos DB and other storage services offered by Azure is how
easily you can scale your Cosmos DB solution across the globe by merely clicking a button
and adding a new region to your database.

Another essential feature that you should consider when evaluating this type of stor-
age service is how you can access this service from your code and how hard it would be to
migrate your existing code to a Cosmos DB–based storage solution. The good news is that
Cosmos DB offers different APIs for accessing the service. The best API for you depends on
the type of data that you want to store in your Cosmos DB database. You store your data
using Key-Value, Column-Family, Documents, or Graph approaches. Each of the different
APIs that Cosmos DB offers allows you to store your data with different schemas. Currently,
you can access Cosmos DB using SQL, Cassandra, Table, Gremlin, and MongoDB APIs.

CHAPTER 2 Develop for Azure storage76

Select the appropriate API for your solution
When you are planning how to store the information that your application needs to work, you
need to consider the structure that you need to use for storing that information. You may fi nd
that some parts of your application need to store information using a Key-Value structure. In
contrast, others may need a more fl exible, schemaless structure in which you need to save the
information into documents. Maybe one fundamental characteristic of your application is that
you need to store the relationship between entities, and you need to use a graph structure for
storing your data.

Cosmos DB offers a variety of APIs for storing and accessing your data, depending on the
requirements that your application has:

■■ SQL This is the core and default API for accessing your data in your Cosmos DB
account. This core API allows you to query JSON objects using SQL syntax, which means
you don’t need to learn another query language. Under the hood, the SQL API uses
the JavaScript programming model for expression evaluation, function invocations,
and typing system. You use this API when you need to use a data structure based on
documents.

■■ Table You can think of the Table API as the evolution of the Azure Table Storage
service. This API benefi ts from the high-performance, low-latency, and high-scalability
features of Cosmos DB. You can migrate from your current Azure Table Storage service
with no code modifi cation in your application. Another critical difference between Table
API for Cosmos DB and Azure Table Storage is that you can defi ne your own indexes in
your tables. In the same way that you can do with the Table Storage service, Table API
allows you to store information in your Cosmos DB account using a data structure based
on documents.

■■ Cassandra Cosmos DB implements the wire protocol for the Apache Cassandra
database into the options for storing and accessing data in the Cosmos DB database.
This allows you to forget about operations and performance-management tasks related
to managing Cassandra databases. In most situations, you can migrate your application
from your current Cassandra database to Cosmos DB using the Cassandra API by merely

This skill covers how to
■ Select the appropriate API for your solution

■ Implement partitioning schemes

■ Interact with data using the appropriate SDK

■ Set the appropriate consistency level for operations

■ Create Cosmos DB containers

■ Implement server-side programming including stored procedures, triggers, and
change feed notifi cations

Skill 2.1: Develop solutions that use Cosmos DB storage CHAPTER 2 77

changing the connection string. Azure Cosmos DB Cassandra API is compatible with
the CQLv4 wire protocol. Cassandra is a column-based database that stores information
using a key-value approach.

■■ MongoDB You can access your Cosmos DB account by using the MongoDB API. This
NoSQL database allows you to store the information for your application in a document-
based structure. Cosmos DB implements the wire protocol compatible with MongoDB
3.2. This means that any MongoDB 3.2 client driver that implements and understands
this protocol definition can connect seamlessly with your Cosmos DB database using the
MongoDB API.

■■ Gremlin Based on the Apache TinkerPop graph transversal language or Gremlin, this
API allows you to store information in Cosmos DB using a graph structure. This means
that instead of storing only entities, you store

■■ Vertices You can think of a vertex as an entity in other information structures. In a
typical graph structure, a vertex could be a person, a device, or an event.

■■ Edges These are the relationships between vertices. A person can know another
person, a person might own a type of device, or a person may attend an event.

■■ Properties These are each of the attributes that you can assign to a vertex or an
edge.

Beware that you cannot mix these APIs in a single Cosmos DB account. You need to define
the API that you want to use for accessing your Cosmos DB account when you are creating
the account. Once you have created the account, you won’t be able to change the API for
accessing it.

Azure offers SDKs for working with the different APIs that you can use for connecting to
Cosmos DB. Supported languages are .NET, Java, Node.js, and Python. Depending on the
API that you want to use for working with Cosmos DB, you can also use other languages like
Xamarin, Golang, or PHP. In this section, you can review an example of each API and learn how
to create, read, update, and delete data using the different APIs.

Before starting with the examples, you need to create a Cosmos DB account for storing
your data. The following procedure shows how to create a Cosmos DB free account with the
SQL API. You can use this same procedure for creating accounts with the other APIs we have
reviewed in this skill:

1. Sign in to the Azure portal (http://portal.azure.com).

2. In the top-left corner in the Azure portal, click the menu icon represented by three
horizontal bars, and then click Create A Resource.

3. On the New panel, under the Azure Marketplace column, click Databases. On the
Featured column, click Azure Cosmos DB.

4. On the Create Azure Cosmos DB Account blade, in the Resource Group drop-down
menu, click the Create New link below the drop-down menu. In the pop-up dialog
box, type a name for the new Resource Group. Alternatively, you can select an existing
Resource Group from the drop-down menu.

http://portal.azure.com

CHAPTER 2 Develop for Azure storage78

5. In the Instance Details section, type an Account Name.

6. In the API drop-down menu, ensure that you have selected the option Core (SQL), as
shown in Figure 2-1.

FIGURE 2-1 Selecting a Cosmos DB API

7. Ensure that the Notebooks switch is set to Off.

8. Ensure that the Apply Free Tier Discount switch is set to Apply.

9. On the Location drop-down menu, select the region most appropriate for you. If you
are using App Services or virtual machines, you should select the same region in which
you deployed those services.

10. In the Account Type, set the value Non-Production.

11. Leave Geo-Redundancy and Multi-Region Write disabled.

12. In the bottom-left corner of the Create Azure Cosmos DB Account blade, click the
Review + Create button.

13. In the bottom-left corner of the Review + Create tab, click the Create button to start the
deployment of your Cosmos DB account.

EXAM TIP

You can use different APIs for accessing your Cosmos DB database. Each API offers different
feature depending on the way you need to represent your data. Remember that you cannot
change the API once you have created your Cosmos DB database.

NOTE AZURE COSMOS DB EMULATOR

You can use the Azure Cosmos DB emulator during the development stage of your applica-
tion. You should bear in mind that there are some limitations when working with the emulator
instead of a real Cosmos DB account. The emulator is only supported on Windows platforms
or Docker for Windows. You can review all characteristics of the Cosmos DB emulator at
https://docs.microsoft.com/en-us/azure/cosmos-db/local-emulator.

https://docs.microsoft.com/en-us/azure/cosmos-db/local-emulator

Skill 2.1: Develop solutions that use Cosmos DB storage CHAPTER 2 79

Implement partitioning schemes
When you save data to your Cosmos DB account—independently of the API that you decide
to use for accessing your data—Azure places the data in different servers to accommodate the
performance and throughput that you require from a premium storage service like Cosmos
DB. The storage services use partitions to distribute the data. Cosmos DB slices your data into
smaller pieces called partitions that are placed on the storage server. There are two different
types of partitions when working with Cosmos DB:

■■ Logical You can divide a Cosmos DB container into smaller pieces based on your
criteria. Each of these smaller pieces is a logical partition. All items stored in a logical
partition share the same partition key.

■■ Physical These partitions are a group of replicas of your data that is physically stored
on the servers. Azure automatically manages this group of replicas or replica sets. A
physical partition can contain one or more logical partitions.

By default, any logical partition has a limit of 20 GB for storing data. When you are configur-
ing a new collection, you need to decide whether you want your collection to be stored in a
single logical partition and keep it under the limit of 20 GB or allow it to grow over that limit
and span across different logical partitions. If you need your container to split over several
partitions, Cosmos DB needs some way to know how to distribute your data across the dif-
ferent logical partitions. This is where the partition key comes into play. Bear in mind that this
partition key is immutable, which means you cannot change the property that you want to use
as the partition key once you have selected it.

Choosing the correct partition key is critical for achieving the best performance. The reason
choosing the proper partition key is so important is because Azure creates a logical partition
for each distinct value of your partition key. Listing 2-1 shows an example of a JSON document.

LISTING 2-1 Example JSON document

{

 "id": "1",

 "firstName": "Santiago",

 "lastName": "Fernández",

 "city": "Sevilla",

 "country": "Spain"

}

NEED MORE REVIEW? PHYSICAL PARTITION

The only control that you have on how the data is distributed across physical partitions is set-
ting the partition keys. If you want to review how the logical partitions and physical partitions
are related to each other, consult the following article: https://docs.microsoft.com/en-us/
azure/cosmos-db/partition-data#physical-partitions.

https://docs.microsoft.com/en-us/azure/cosmos-db/partition-data#physical-partitions
https://docs.microsoft.com/en-us/azure/cosmos-db/partition-data#physical-partitions

CHAPTER 2 Develop for Azure storage80

Depending on your data, city or country properties would be the right choice for the parti-
tion key. You can find in your data that some documents have the same value for the country
property, so they are stored together in the same logical partition. Using the id property as
the partition key means that you end with a logical partition with a single document on each
partition. This configuration can be beneficial when your application usually performs read
workloads and uses parallelization techniques for getting the data.

On the other hand, if you select a partition key with just a few possible values, you can end
with “hot” partitions. A “hot” partition is a partition that receives most of the requests when
working with your data. The main implication for these “hot” partitions is that they usually
reach the throughput limit for the partition, which means you need to provision more through-
put. Another potential drawback is that you can reach the limit of 20 GB for a single logical
partition. Because a logical partition is the scope for efficient multidocument transactions,
selecting a partition key with a few possible values allows you to execute transactions on many
documents inside the same partition.

Use the following guidelines when selecting your partition key:

■■ The storage limit for a single logical partition is 20 GB. If you foresee that your data
would require more space for each value of the partition, you should select another
partition key.

■■ The requests to a single logical partition cannot exceed the throughput limit for that
partition. If your requests reach that limit, they are throttled to avoid exceeding the
limit. If you reach this limit frequently, you should select another partition key because
there is a good chance that you have a “hot” partition. The minimum throughput limit is
different from databases to containers. The minimum throughput for databases is 100
request units per second (RU/s). The minimum throughput for containers is 400 RU/s.

■■ Choose partition keys with a wide range of values and access patterns that can evenly
distribute requests across logical partitions. This allows you to achieve the right bal-
ance between being able to execute cross-document transactions and scalability. Using
timestamp-based partition keys is usually a lousy choice for a partition key.

■■ Review your workload requirements. The partition key that you choose should allow
your application to perform well on reading and writing workloads.

■■ The parameters that you usually use on your requests and filtering queries are good
candidates for a partition key.

There could be situations where none of the properties of your items are appropriate for the
partition keys. In those situations, you can create synthetic partition keys. A synthetic partition

NEED MORE REVIEW? PARTITIONING

You can review more information about how partitioning works reviewing the following
article: https://docs.microsoft.com/en-us/azure/cosmos-db/partitioning-overview

https://docs.microsoft.com/en-us/azure/cosmos-db/partitioning-overview

Skill 2.1: Develop solutions that use Cosmos DB storage CHAPTER 2 81

key is a key compound of two concatenated properties. In our previous document example
shown in Listing 2-1, you created a new property named partitionKey containing a string
that concatenates the values of city and country. For the example document, the value of the
partitionKey should be Sevilla-Spain.

EXAM TIP

Remember that your data is distributed across the different logic partitions by using the
partition key. For this reason, once you have chosen a partition key, you cannot change it.

Interact with data using the appropriate SDK
Cosmos DB allows you to access data using different types of APIs. Once you have your Cosmos
DB account ready, you can start creating your databases and containers for working with data.
Remember that once you choose the API for your Cosmos DB account, you cannot change it.

The following example shows how to create a console application using .NET Core. The fi rst
example uses Cosmos DB SQL API for creating, updating, and deleting some elements in the
Cosmos DB account:

1. Open Visual Studio Code and create a directory for storing the example project.

2. Open the Terminal, switch to the project’s directory, and type the following command:

dotnet new console

3. Install the NuGet package for interacting with your Cosmos DB account using the SQL
API. Type the following command in the Terminal:

dotnet add package Microsoft.Azure.Cosmos

4. Change the content of the Program.cs fi le using the content provided in Listing 2-2. You
need to change the namespace according to your project’s name.

5. Sign in to the Azure portal (http://portal.azure.com).

6. In the Search box at the top of the Azure portal, type the name of your Cosmos DB
account and click the name of the account.

7. On your Cosmos DB Account blade, in the Settings section, click Keys.

8. On the Keys panel, copy the URI and Primary Keys values from the Read-Write Keys
tab. You need to provide these values to the EndpointUri and Key Constants in the
code shown in Listing 2-2. (The most important parts of the code are shown with bold
format.)

LISTING 2-2 Cosmos DB SQL API example

//C# .NET Core. Program.cs

using System.Collections.Immutable;

using System.Xml.Linq;

using System.Diagnostics;

using System.Runtime.CompilerServices;

http://portal.azure.com

CHAPTER 2 Develop for Azure storage82

using System;

using System.Linq;

using Microsoft.Azure.Cosmos;

using System.Threading.Tasks;

using ch2_1_3_SQL.Model;

using System.Net;

namespace ch2_1_3_SQL

{

 class Program

 {

 private const string EndpointUri = "<PUT YOUR ENDPOINT URL HERE>";

 private const string Key = "<PUT YOUR COSMOS DB KEY HERE>";

 private CosmosClient client;

 private Database database;

 private Container container;

 static void Main(string[] args)

 {

 try

 {

 Program demo = new Program();

 demo.StartDemo().Wait();

 }

 catch (CosmosException ce)

 {

 Exception baseException = ce.GetBaseException();

 System.Console.WriteLine($"{ce.StatusCode} error ocurred:

{ce.Message}, Message: {baseException.Message}");

 }

 catch (Exception ex)

 {

 Exception baseException = ex.GetBaseException();

 System.Console.WriteLine($"Error ocurred: {ex.Message}, Message:

{baseException.Message}");

 }

 }

 private async Task StartDemo()

 {

 Console.WriteLine("Starting Cosmos DB SQL API Demo!");

 //Create a new demo database

Skill 2.1: Develop solutions that use Cosmos DB storage CHAPTER 2 83

 string databaseName = "demoDB_" + Guid.NewGuid().ToString().

Substring(0, 5);

 this.SendMessageToConsoleAndWait($"Creating database {databaseName}...");

 this.client = new CosmosClient(EndpointUri, Key);

 this.database = await this.client.CreateDatabaseIfNotExistsAsync

(databaseName);

 //Create a new demo collection inside the demo database.

 //This creates a collection with a reserved throughput. You can customize

the options using a ContainerProperties object

 //This operation has pricing implications.

 string containerName = "collection_" + Guid.NewGuid().ToString().

Substring(0, 5);

 this.SendMessageToConsoleAndWait($"Creating collection demo

{containerName}...");

 this.container = await this.database.CreateContainerIfNotExistsAsync

(containerName, "/LastName");

 //Create some documents in the collection

 Person person1 = new Person

 {

 Id = "Person.1",

 FirstName = "Santiago",

 LastName = "Fernandez",

 Devices = new Device[]

 {

 new Device { OperatingSystem = "iOS", CameraMegaPixels = 7,

 Ram = 16, Usage = "Personal"},

 new Device { OperatingSystem = "Android", CameraMegaPixels = 12,

 Ram = 64, Usage = "Work"}

 },

 Gender = "Male",

 Address = new Address

 {

 City = "Seville",

 Country = "Spain",

 PostalCode = "28973",

 Street = "Diagonal",

 State = "Andalucia"

 },

CHAPTER 2 Develop for Azure storage84

 IsRegistered = true

 };

 await this.CreateDocumentIfNotExistsAsync(databaseName, containerName,

person1);

 Person person2 = new Person

 {

 Id = "Person.2",

 FirstName = "Agatha",

 LastName = "Smith",

 Devices = new Device[]

 {

 new Device { OperatingSystem = "iOS", CameraMegaPixels = 12,

 Ram = 32, Usage = "Work"},

 new Device { OperatingSystem = "Windows", CameraMegaPixels = 12,

 Ram = 64, Usage = "Personal"}

 },

 Gender = "Female",

 Address = new Address

 {

 City = "Laguna Beach",

 Country = "United States",

 PostalCode = "12345",

 Street = "Main",

 State = "CA"

 },

 IsRegistered = true

 };

 await this.CreateDocumentIfNotExistsAsync(databaseName, containerName,

person2);

 //Make some queries to the collection

 this.SendMessageToConsoleAndWait($"Getting documents from the collection

{containerName}...");

 //Find documents using LINQ

 IQueryable<Person> queryablePeople = this.container.GetItemLinqQueryable

<Person>(true)

 .Where(p => p.Gender == "Male");

 System.Console.WriteLine("Running LINQ query for finding men...");

Skill 2.1: Develop solutions that use Cosmos DB storage CHAPTER 2 85

 foreach (Person foundPerson in queryablePeople)

 {

 System.Console.WriteLine($"\tPerson: {foundPerson}");

 }

 //Find documents using SQL

 var sqlQuery = "SELECT * FROM Person WHERE Person.Gender = 'Female'";

 QueryDefinition queryDefinition = new QueryDefinition(sqlQuery);

 FeedIterator<Person> peopleResultSetIterator = this.container.GetItemQuery

Iterator<Person>(queryDefinition);

 System.Console.WriteLine("Running SQL query for finding women...");

 while (peopleResultSetIterator.HasMoreResults)

 {

 FeedResponse<Person> currentResultSet = await peopleResultSetIterator.

ReadNextAsync();

 foreach (Person foundPerson in currentResultSet)

 {

 System.Console.WriteLine($"\tPerson: {foundPerson}");

 }

 }

 Console.WriteLine("Press any key to continue...");

 Console.ReadKey();

 //Update documents in a collection

 this.SendMessageToConsoleAndWait($"Updating documents in the collection

{containerName}...");

 person2.FirstName = "Mathew";

 person2.Gender = "Male";

 await this.container.UpsertItemAsync(person2);

 this.SendMessageToConsoleAndWait($"Document modified {person2}");

 //Delete a single document from the collection

 this.SendMessageToConsoleAndWait($"Deleting documents from the collection

{containerName}...");

 PartitionKey partitionKey = new PartitionKey(person1.LastName);

 await this.container.DeleteItemAsync<Person>(person1.Id, partitionKey);

 this.SendMessageToConsoleAndWait($"Document deleted {person1}");

 //Delete created demo database and all its children elements

 this.SendMessageToConsoleAndWait("Cleaning-up your Cosmos DB account...");

CHAPTER 2 Develop for Azure storage86

 await this.database.DeleteAsync();

 }

 private void SendMessageToConsoleAndWait(string message)

 {

 Console.WriteLine(message);

 Console.WriteLine("Press any key to continue...");

 Console.ReadKey();

 }

 private async Task CreateDocumentIfNotExistsAsync(string database,

string collection, Person person)

 {

 try

 {

 await this?.container.ReadItemAsync<Person>(person.Id,

new PartitionKey(person.LastName));

 this.SendMessageToConsoleAndWait($"Document {person.Id} already exists

in collection {collection}");

 }

 catch (CosmosException dce)

 {

 if (dce.StatusCode == HttpStatusCode.NotFound)

 {

 await this?.container.CreateItemAsync<Person>(person,

new PartitionKey(person.LastName));

 this.SendMessageToConsoleAndWait($"Created new document

{person.Id} in collection {collection}");

 }

 }

 }

 }

}

When you work with the SQL API, the Azure Cosmos DB SDK provides you with the appro-
priate classes for working with the different elements of the account. In the example shown
in Listing 2-2, you need to create a CosmosClient object before you can access your Azure
Cosmos DB account. The Azure Cosmos DB SDK also provides you with the classes Database
and Container for working with these elements. When you need to create a Database or a
Container, you can use CreateDatabaseIfNotExistsAsync or CreateContainerIfNotExistsAsync,
respectively. These IfNotExists methods automatically check to determine whether the

Skill 2.1: Develop solutions that use Cosmos DB storage CHAPTER 2 87

Container or Database exists in your Cosmos DB account; if they don’t exist, the method
automatically creates the Container or the Database. When you create a new container in your
database, notice that in this example, you have provided the PartitionKey using the appropri-
ate constructor overload.

However, when you need to create a new document in the database, you don’t have avail-
able this type of IfNotExists method. In this situation, you have two options:

1. Use the method UpsertItemAsync, which creates a new document if the document
doesn’t exist or updates an existing document.

2. Implement your own version of the IfNotExists method, so you need to check whether
the document already exists in the container. If the document doesn’t exist, then you
create the actual document, as shown in the following fragment from Listing 2-2. (The
code in bold shows the methods that you need to use for creating a document.)

try
{

 await this?.container.ReadItemAsync<Person>(person.Id, new PartitionKey
(person.LastName));

 this.SendMessageToConsoleAndWait($"Document {person.Id} already exists in
collection {collection}");
}
catch (CosmosException dce)
{
 if (dce.StatusCode == HttpStatusCode.NotFound)
 {

 await this?.container.CreateItemAsync<Person>(person,
new PartitionKey(person.LastName));

 this.SendMessageToConsoleAndWait($"Created new document {person.Id} in
collection {collection}");
 }
}

When you create the document using the CreateItemAsync method, notice that you
can provide the value for the partition key by using the following code snippet new
PartitionKey(person.LastName). If you don’t provide the value for the partition key, the correct
value is inferred from the document that you are trying to insert into the database.

You need to do this verification because you get a CosmosException with StatusCode 409
(Conflict) if you try to create a document with the same Id of an already existing document in
the collection. Similarly, you get a CosmosException with StatusCode 404 (Not Found) if you
try to delete a document that doesn’t exist in the container using the DeleteItemAsync method
or if you try to replace a document that doesn’t exist in the container using the ReplaceItem-
Async method. Notice that these two methods also accept a partition key parameter.

When you create a document, you need to provide an Id property of type string to your docu-
ment. This property needs to identify your document inside the collection uniquely. If you don’t pro-
vide this property, Cosmos DB automatically adds it to the document for you, using a GUID string.

CHAPTER 2 Develop for Azure storage88

As you can see in the example code in Listing 2-2, you can query your documents using
LINQ or SQL sentences. In this example, I have used a pretty simple SQL query for getting
documents that represent a person with the male gender. However, you can construct more
complex sentences like a query that returns all people who live in a specific country, using the
WHERE Address.Country = ‘Spain’ expression, or people that have an Android device using the
WHERE ARRAY_CONTAINS(Person.Devices, { ‘OperatingSystem’: ‘Android’}, true) expression.

Once you have modified the Program.cs file, you need to create some additional classes
that you use in the main program for managing documents. You can find these new classes in
Listings 2-3 to 2-5.

1. In the Visual Studio Code window, create a new folder named Model in the project
folder.

2. Create a new C# class file in the Model folder and name it Person.cs.

3. Replace the content of the Person.cs file with the content of Listing 2-3. Change the
namespace as needed for your project.

4. Create a new C# class file in the Model folder and name it Device.cs.

5. Replace the content of the Device.cs file with the content of Listing 2-4. Change the
namespace as needed for your project.

6. Create a new C# class file in the Model folder and name it Address.cs.

7. Replace the content of the Address.cs file with the content of Listing 2-5. Change the
namespace as needed for your project.

8. At this point, you can run the project by pressing F5 in the Visual Studio Code window.
Check to see how your code is creating and modifying the different databases, docu-
ment collections, and documents in your Cosmos DB account. You can review the
changes in your Cosmos DB account using the Data Explorer tool in your Cosmos DB
account in the Azure portal.

LISTING 2-3 Cosmos DB SQL API example: Person.cs

//C# .NET Core.
using Newtonsoft.Json;

namespace ch2_1_3_SQL.Model

{

NEED MORE REVIEW? SQL QUERIES WITH COSMOS DB

You can review all the capabilities and features of the SQL language that Cosmos DB
implements by reviewing this article:

■■ SQL Language Reference for Azure Cosmos DB https://docs.microsoft.com/en-us/
azure/cosmos-db/sql-api-query-reference

https://docs.microsoft.com/en-us/azure/cosmos-db/sql-api-query-reference
https://docs.microsoft.com/en-us/azure/cosmos-db/sql-api-query-reference

Skill 2.1: Develop solutions that use Cosmos DB storage CHAPTER 2 89

 public class Person

 {

 [JsonProperty(PropertyName="id")]

 public string Id { get; set; }

 public string FirstName { get; set; }

 public string LastName { get; set; }

 public Device[] Devices { get; set; }

 public Address Address { get; set; }

 public string Gender { get; set; }

 public bool IsRegistered { get; set; }

 public override string ToString()

 {

 return JsonConvert.SerializeObject(this);

 }

 }

}

LISTING 2-4 Cosmos DB SQL API example: Device.cs

//C# .NET Core.

namespace ch2_1_3_SQL.Model

{

 public class Device

 {

 public int Ram { get; set; }

 public string OperatingSystem { get; set; }

 public int CameraMegaPixels { get; set; }

 public string Usage { get; set; }

 }

}

LISTING 2-5 Cosmos DB SQL API example: Address.cs

//C# .NET Core.

namespace ch2_1_3_SQL.Model

{

 public class Address

 {

 public string City { get; set; }

 public string State { get; set; }

 public string PostalCode { get; set; }

 public string Country { get; set; }

 public string Street { get; set; }

 }

}

CHAPTER 2 Develop for Azure storage90

At this point, you can press F5 in your Visual Studio Code window to execute the code. The
code stops on each step for you to be able to view the result of the operation directly on the
Azure portal. Use the following steps for viewing the modifications in your Cosmos DB account:

1. Sign in to the Azure portal (http://portal.azure.com).

2. In the Search box at the top of the Azure portal, type the name of your Cosmos DB
account and click the name of the account.

3. On your Cosmos DB Account blade, click Data Explorer.

4. On the Data Explorer blade, on the left side of the panel, under the label SQL API, you
should be able to see the list of databases created in your Cosmos DB account.

Working with the MongoDB API for Cosmos DB is as easy as working with any other Mongo
DB library. You only need to use the connection string that you can find in the Connection
String panel under the Settings section in your Azure Cosmos DB account.

The following example shows how to use Cosmos DB in your MongoDB project. For this
example, you are going to use MERN (MongoDB, Express, React, and Node), which is a
full-stack framework for working with MongoDB and NodeJS. Also, you need to meet the
following requirements:

■■ You must have the latest version of NodeJS installed on your computer.

■■ You must have an Azure Cosmos DB account configured for using MongoDB API.
Remember that you can use the same procedure used earlier for creating a Cosmos DB
with the SQL API to create an Azure Cosmos DB account with the MongoDB API. You
only need to select the correct API when you are creating your Cosmos DB account.

■■ You need one of the connection strings that you can find in the Connection String panel
in your Azure Cosmos DB account in the Azure portal. You need to copy one of these
connection strings because you need to use it later in the code.

Use the following steps to connect a MERN project with Cosmos DB using the
MongoDB API:

1. Create a new folder for your project.

2. Open the terminal and run the following commands:

git clone https://github.com/Hashnode/mern-starter.git
cd mern-starter
npm install

3. Open your preferred editor and open the mern-starter folder. Don’t close the terminal
window that you opened before.

4. In the mern-starter folder, in the server subfolder, open the config.js file and replace the
content of the file with the following code:

const config = {
 mongoURL: process.env.MONGO_URL || '<YOUR_COSMOSDB_CONNECTION_STRING>',
 port: process.env.PORT || 8000,
};
export default config;

http://portal.azure.com
https://github.com/Hashnode/mern-starter.git

Skill 2.1: Develop solutions that use Cosmos DB storage CHAPTER 2 91

5. On the terminal window, run the command npm start. This command starts the NodeJS
project and creates a Node server listening on port 8000.

6. Open a web browser and navigate to http://localhost:8000. This opens the MERN web
project.

7. Open a new browser window, navigate to the Azure portal, and open the Data Explorer
browser in your Azure Cosmos DB account.

8. In the MERN project, create, modify, or delete some posts. Review how the document is
created, modified, and deleted from your Cosmos DB account.

Set the appropriate consistency level for operations
One of the main benefits offered by Cosmos DB is the ability to have your data distributed
across the globe with low latency when accessing the data. This means that you can configure
Cosmos DB for replicating your data between any of the available Azure regions while achiev-
ing minimal latency when your application accesses the data from the nearest region. If you
need to replicate your data to an additional region, you only need to add to the list of regions
in which your data should be available.

This replication across the different regions has a drawback—the consistency of your data.
To avoid corruption, your data needs to be consistent between all copies of your database.
Fortunately, the Cosmos DB protocol offers five levels of consistency replication. Going from
consistency to performance, you can select how the replication protocol behaves when copy-
ing your data between all the replicas that are configured across the globe. These consistency
levels are region agnostic, which means the region that started the read or write operation or
the number of regions associated with your Cosmos DB account doesn’t matter, even if you
configured a single region for your account. You configure this consistency level at the Cosmos
DB level, and it applies to all databases, collections, and documents stored inside the same

NEED MORE REVIEW? GREMLIN AND CASSANDRA EXAMPLES

As you can see in the previous examples, integrating your existing code with Cosmos DB
doesn’t require too much effort or many changes to your code. For the sake of brevity, we
decided to omit the examples of how to connect your Cassandra or Gremlin applications
with Cosmos DB. You can learn how to do these integrations by reviewing the following
articles:

■■ Quickstart: Build a .NET Framework or Core application Using the Azure Cosmos
DB Gremlin API account https://docs.microsoft.com/en-us/azure/cosmos-db/
create-graph-dotnet

■■ Quickstart: Build a Cassandra App with .NET SDK and Azure Cosmos DB https://
docs.microsoft.com/en-us/azure/cosmos-db/create-cassandra-dotnet

http://localhost:8000
https://docs.microsoft.com/en-us/azure/cosmos-db/create-graph-dotnet
https://docs.microsoft.com/en-us/azure/cosmos-db/create-graph-dotnet
https://docs.microsoft.com/en-us/azure/cosmos-db/create-cassandra-dotnet
https://docs.microsoft.com/en-us/azure/cosmos-db/create-cassandra-dotnet

CHAPTER 2 Develop for Azure storage92

account. You can choose among the consistency levels shown in Figure 2-2. Use the following
procedure to select the consistency level:

1. Sign in to the Azure portal (http://portal.azure.com).

2. In the Search box at the top of the Azure portal, type the name of your Cosmos DB
account and click the name of the account.

3. On your Cosmos DB account blade, click Default Consistency in the Settings section.

4. On the Default Consistency blade, select the desired consistency level. Your choices are
Strong, Bounded Staleness, Session, Consistent Prefix, and Eventual.

5. Click the Save icon in the top-left corner of the Default Consistency blade.

FIGURE 2-2 Selecting the consistency level

■■ Strong The read operations are guaranteed to return the most recently committed
version of an element; that is, the user always reads the latest committed write. This
consistency level is the only one that offers a linearizability guarantee. This guarantee
comes at a price. It has higher latency because of the time needed to write operation
confirmations, and the availability can be affected during failures.

■■ Bounded Staleness The reads are guaranteed to be consistent within a precon-
figured lag. This lag can consist of a number of the most recent (K) versions or a time
interval (T). This means that if you make write operations, the read of these operations
happens in the same order but with a maximum delay of K versions of the written data
or T seconds since you wrote the data in the database. For reading operations that hap-
pen within a region that accepts writes, the consistency level is identical to the Strong
consistency level. This level is also known as “time-delayed linearizability guarantee.”

■■ Session Scoped to a client session, this consistency level offers the best balance
between a strong consistency level and the performance provided by the eventual
consistency level. It best fits applications in which write operations occur in the context
of a user session.

■■ Consistent Prefix This level guarantees that you always read data in the same order
that you wrote the data, but there’s no guarantee that you can read all the data. This
means that if you write “A, B, C” you can read “A”, “A, B” or “A, B, C” but never “A, C” or
“B, A, C.”

■■ Eventual There is no guarantee for the order in which you read the data. In the
absence of a write operation, the replicas eventually converge. This consistency level
offers better performance at the cost of the complexity of the programming. Use this
consistency level if the order of the data is not essential for your application.

http://portal.azure.com

Skill 2.1: Develop solutions that use Cosmos DB storage CHAPTER 2 93

The best consistency level choice depends on your application and the API that you want to
use to store data. As you can see in the different consistency levels, your application’s require-
ments regarding data read consistency versus availability, latency, and throughput are critical
factors that you need to consider when making your selection.

You should consider the following points when you use SQL or Table API for your Cosmos
DB account:

■■ The recommended option for most applications is the level of session consistency.

■■ If you are considering the strong consistency level, we recommend that you use the
bonded staleness consistency level because it provides a linearizability guarantee with a
configurable delay.

■■ If you are considering the eventual consistency level, we recommend that you use the
consistent prefix consistency level because it provides comparable levels of availability
and latency with the advantage of guaranteed read orders.

■■ Carefully evaluate the strong and eventual consistency levels because they are the most
extreme options. In most situations, other consistency levels can provide a better bal-
ance between performance, latency, and data consistency.

When you use Cassandra or MongoDB APIs, Cosmos DB maps the consistency levels offered
by Cassandra and MongoDB to the consistency level offered by Cosmos DB. The reason for
doing this is because when you use these APIs, neither Cassandra nor MongoDB offers a well-
defined consistency level. Instead, Cassandra provides write or read consistency levels that
map to the Cosmos DB consistency level in the following ways:

■■ Cassandra write consistency level This level maps to the default Cosmos DB account
consistency level.

■■ Cassandra read consistency level Cosmos DB dynamically maps the consistency
level specified by the Cassandra driver client to one of the Cosmos DB consistency levels.

NOTE CONSISTENCY, AVAILABILITY, AND PERFORMANCE TRADEOFFS

Every consistency level shown in this section has its implications in terms of data consistency,
data availability, and application performanace. You can review the implications of choosing
each of the consistency levels by reviewing the following article: https://docs.microsoft.com/
en-us/azure/cosmos-db/consistency-levels-tradeoffs.

NEED MORE REVIEW? CONSISTENCY LEVELS TRADE-OFF

Each consistency level comes at a price. You can review the implications of choosing each
consistency level by reading the article “Consistency, Availability, and Performance Tradeoffs”
at https://docs.microsoft.com/en-us/azure/cosmos-db/consistency-levels-tradeoffs.

https://docs.microsoft.com/en-us/azure/cosmos-db/consistency-levels-tradeoffs
https://docs.microsoft.com/en-us/azure/cosmos-db/consistency-levels-tradeoffs
https://docs.microsoft.com/en-us/azure/cosmos-db/consistency-levels-tradeoffs

CHAPTER 2 Develop for Azure storage94

On the other hand, MongoDB allows you to confi gure the following consistency levels:
Write Concern, Read Concern, and Master Directive. Similar to the mapping of Cassandra
consistency levels, Cosmos DB consistency levels map to MongoDB consistency levels in the
following ways:

■■ MongoDB write concern consistency level This level maps to the default Cosmos
DB account consistency level.

■■ MongoDB read concern consistency level Cosmos DB dynamically maps the
consistency level specifi ed by the MongoDB driver client to one of the Cosmos DB
consistency levels.

■■ Confi guring a master region You can confi gure a region as the MongoDB “master”
by confi guring the region as the fi rst writable region.

EXAM TIP

The consistency level impacts the latency and availability of the data. In general terms,
you should avoid the most extreme levels as they have a more signifi cant impact on your
program that should be carefully evaluated. If you are unsure of which level of consistency
should use, you should use the session level, as this is the best-balanced level.

Create Cosmos DB containers
When you are working with Cosmos DB, you have several layers in the hierarchy of entities
managed by the Cosmos DB account. The fi rst layer is the Azure Cosmos DB account, where
you choose the API that you want to use for accessing your data. Remember that this API has
implications about how the data is stored in the databases.

The second layer in the hierarchy is the database. You can create as many databases as you
need in your Cosmos DB account. Databases are a way of grouping containers, and you can
think in databases like in namespaces. At this level, you can confi gure the throughput associ-
ated to the containers included in the database. Depending on the API that you are using, the
database has a different name:

■■ SQL API Database.

■■ Cassandra API Keyspace.

■■ MongoDB API Database.

NEED MORE REVIEW? CASSANDRA AND MONGODB CONSISTENCY LEVEL MAPPINGS

You can review how the different consistency levels map between Cassandra and MongoDB
and Cosmos DB consistency levels in the article “Consistency Levels and Azure Cosmos DB
APIs” at https://docs.microsoft.com/en-us/azure/cosmos-db/consistency-levels-across-apis.

https://docs.microsoft.com/en-us/azure/cosmos-db/consistency-levels-across-apis

Skill 2.1: Develop solutions that use Cosmos DB storage CHAPTER 2 95

■■ Gremlin API Database.

■■ Table API This concept does not apply to Table API, although under the hood when
you create your first Table, Cosmos DB creates a default database for you.

A container in an Azure Cosmos DB account is the unit of scalability for throughput and
storage. When you create a new container, you need to set the partition key for establish-
ing the way that the items that are going to be stored in the container are distributed across
the different logical and physical partitions. As we reviewed in the “Implement partitioning
schemes” section earlier in this chapter, the throughput is distributed across the logical parti-
tions defined by the partition key.

When you create a new container, you can decide if the throughput for the container is one
of the two following modes:

■■ Dedicated All the throughput is provisioned for a container. In this mode, Azure
makes a reservation of resources for the container that is backed by SLAs.

■■ Shared The throughput is shared between all the containers configured in the data-
base, excluding those containers that have been configured as dedicated throughput
mode. The shared throughput is configured at the database level.

When you create a Cosmos DB container, there are a set of properties that you can config-
ure. These properties affect different aspects of the container or the way the items are stored
or managed. The following list shows those properties of a container that can be configured.
Bear in mind that not all properties are available for all APIs:

■■ IndexingPolicy When you add an item to a container, by default, all the properties
of the item are automatically indexed. It doesn’t matter if all the items in the collection
share the same schema, or each item has its own schema. This property allows you to
configure how to index the items in the container. You can configure different types of
indexes and include or exclude some properties from the indexes.

■■ TimeToLive (TTL) You can configure your container to delete items after a period of
time automatically. TimeToLive is expressed in seconds. You can configure the TTL value at
the container or item level. If you configure the TTL at the container level, all items in the
container have the same TTL, except if you configure a TTL for a specific item. A value of -1
in the TTL means that the item does not expire. If you set a TTL value to an item where its
container does not have a TTL value configured, then the TTL at item level has no effect.

■■ ChangeFeedPolicy You can read the changes made to an item in a container. The
change feed provides you with the original and modified values of an item. Because
the changes are persisted, you can process the changes asynchronously. You can use
this feature for triggering notifications or calling APIs when a new item is inserted or an
existing item is modified.

■■ UniqueKeyPolicy You can configure which property of the item is used as the unique
key. Using unique keys, you ensure that you cannot insert two items with the same value
for the same item. Bear in mind that the uniqueness is scoped to the logical partition.

CHAPTER 2 Develop for Azure storage96

For example, if your item has the properties email, firstname, lastname, and company,
and you define email as the unique key and company as the partition key, you cannot
insert an item with the same email and company values. You can also create compound
unique keys, like email and firstname. Once you have created a unique key, you can-
not change it. You can only define the unique key during the creation process of the
container.

Use the following procedure to create a new collection in your Cosmos DB account. This
procedure could be slightly different depending on the API that you use for your Cosmos DB
account. In this procedure, you use a Cosmos DB account configured with the SQL API:

1. Sign in to the Azure portal (http://portal.azure.com).

2. In the Search box at the top of the Azure portal, type the name of your Cosmos DB
account and click the name of the account.

3. On your Cosmos DB account blade, click Data Explorer.

4. On the Data Explorer blade, click the New Container icon in the top-left corner of the
blade.

5. On the Add Container panel, shown in Figure 2-3, provide a name for the new database.
If you want to add a container to an existing database, you can select the database by
clicking the Use Existing radio button.

6. Ensure that the Provision database throughput check is selected. Using this option, you
are configuring this container as a shared throughput container. If you want to create a
dedicated throughput container, uncheck this option.

7. Leave the Throughput value set to 400. This is the value for the database throughput if
the previous option is checked. Otherwise, this value represents the dedicated through-
put reserved for the container.

8. In the Container Id text box, type a name for the container.

9. In the Partition Key text box, type a partition key, starting with the slash character.

10. If you want to create a unique key for this container, click the Add Unique Key button.

11. Click the OK button at the bottom of the panel.

NOTE CONTAINERS’ PROPERTIES

The properties available to the containers depends on the API that you configured for
your Azure Cosmos DB account. For a complete list of properties available for each
API please review the article at https://docs.microsoft.com/en-us/azure/cosmos-db/
databases-containers-items#azure-cosmos-containers.

http://portal.azure.com
https://docs.microsoft.com/en-us/azure/cosmos-db/databases-containers-items#azure-cosmos-containers
https://docs.microsoft.com/en-us/azure/cosmos-db/databases-containers-items#azure-cosmos-containers

Skill 2.1: Develop solutions that use Cosmos DB storage CHAPTER 2 97

FIGURE 2-3 Creating a new collection

EXAM TIP

You need to plan carefully how to create a new container in Azure Cosmos DB. You can set
some of the properties that you can confi gure only during the creation process. Once you
have created the container if you need to modify those properties, you need to create a new
container with the needed values and migrate the data to the new container.

NEED MORE REVIEW? TIME TO LIVE, INDEXES, AND CHANGES FEED

You can review the details of how to confi gure the Time To Live, Index Policies, and Changes
Feed by reading the following articles:

■■ Confi gure Time to Live in Azure Cosmos DB https://docs.microsoft.com/en-us/
azure/cosmos-db/how-to-time-to-live

■■ Unique Key Constraints in Azure Cosmos DB https://docs.microsoft.com/en-us/
azure/cosmos-db/unique-keys

■■ Change Feed Design Patterns in Azure Cosmos DB https://docs.microsoft.com/
en-us/azure/cosmos-db/change-feed-design-patterns

https://docs.microsoft.com/en-us/azure/cosmos-db/how-to-time-to-live
https://docs.microsoft.com/en-us/azure/cosmos-db/how-to-time-to-live
https://docs.microsoft.com/en-us/azure/cosmos-db/unique-keys
https://docs.microsoft.com/en-us/azure/cosmos-db/unique-keys
https://docs.microsoft.com/en-us/azure/cosmos-db/change-feed-design-patterns
https://docs.microsoft.com/en-us/azure/cosmos-db/change-feed-design-patterns

CHAPTER 2 Develop for Azure storage98

Implement server-side programming including stored
procedures, triggers, and change feed notifications
When you work with Cosmos DB API, Azure allows you to write your triggers, stored pro-
cedures, and user-defined functions. You can write these procedures and functions using
JavaScript. Before you can call a stored procedure, trigger, or user-defined function, you
need to register it. You can use the Azure portal, the JavaScript language integrated query
API in Cosmos DB, or the Cosmos DB SQL API client SDK for creating and calling your stored
procedures, triggers, and user-defined functions.

Any stored procedure, trigger, or user-defined function that you write is registered on a
container basis. That means that you need to register the stored procedure on each container
where you want to execute your stored procedure. You also need to consider that stored
procedures and triggers are scoped to partitions. Any item with a partition key value different
from the partition key of the item that fired the trigger or the stored procedure is not visible.

When you are writing a stored procedure, trigger, or user-defined function, you need to
create a reference to the execution context. This context gives you access to the requests that
fired the stored procedure or trigger and allows you to work with the responses and items that
you want to insert into the database. In general terms, the context gives you access to all the
operations that you can perform in the Azure Cosmos DB database. The following procedure
shows how to create a stored procedure in an Azure Cosmos DB SQL API account:

1. Open the Azure portal (https://portal.azure.com).

2. In the Search text box in the top area of the portal, type the name of your Cosmos DB
account. Remember that this needs to be an SQL API Cosmos DB account.

3. On your Cosmos DB SQL API account, click Data Explorer.

4. Click an existing database. If you don’t have any database, create a new one for testing
purposes.

5. Click an existing container, or you can create a testing container following the
procedure that we reviewed in a previous section.

6. Click the New Stored Procedure button. This button creates a new sample stored
procedure that you can use as a template for your stored procedures.

7. In the Stored Procedure Id text box, provide a name for the stored procedure.

8. Replace the content of the New Stored Procedure tab with the content of Listing 2-6.

LISTING 2-6 Cosmos DB SQL API stored procedure

//JavaScript

function createNewDocument(docToCreate) {

 var context = getContext();

 var container = context.getCollection();

 var response = context.getResponse();

 console.log(docToCreate);

https://portal.azure.com

Skill 2.1: Develop solutions that use Cosmos DB storage CHAPTER 2 99

 var accepted = container.createDocument(container.getSelfLink(),

 docToCreate,

 function (err, docCreated) {

 if (err) throw new Error('Error creating a new document: ' + err.message);

 response.setBody(docCreated);

 });

 if (!accepted) return;

}

9. Click the Save button.

10. Click the Execute button. This button opens the Input Parameters blade.

11. In the Input Parameters blade, in the Partition Key Value section, change the type from
Custom to String.

12. In the Partition Key Value section, in the Value text box, type a value to the partition
key. Remember that this partition key is the one that you have defined for the container
where you are creating this stored procedure.

13. In the Type drop-down menu in the Enter Input Parameters section, ensure that the
value String is selected.

14. In the Param text box, type the document in JSON format that you want to insert. For
the sake of simplicity, use a string with a structure similar to {“id”: “12345”, “key”: “value”}.

15. Click the Execute button at the bottom of the Input Parameters panel.

16. In the Data Explorer navigation tree, click on the Items leaf below the container where
you are creating the stored procedure.

17. Ensure that the new document has been correctly inserted in your container.

Although the previous example is quite simple, there are some interesting points that we
should review. One of the essential points that you need to consider when programming your
stored procedures, user-defined functions or trigger, is the fact that the input parameters
always have the string type. This means that if you need to pass an object to the stored pro-
cedure, you need to stringify the object, and then convert back to a JSON object by using the
JSON.parse() method.

NOTE BADREQUEST ERROR

If you get a BadRequest error when you execute the previous example, review the values of
the input parameters. Remember that you cannot insert a document in a different partition
from the one that you select in the Partition Key Value. For example, if your partition key is the
field “city” and the value you provide is “Seville”, you need to include this value in the Enter
Input Parameters section. For this example, your document should look similar to { “country”:
“Spain”, “city”: “Seville”}.

CHAPTER 2 Develop for Azure storage100

As you can see, we use the global getContext() method for getting a reference to the
context. That context gives us access to the features of the Cosmos DB account. Then we got a
reference to the current container by using the getContainer() method in the context. We also
use the getResponse() method from the context for sending back information to the client.

Because we are going to create a new document in the container, we need to use the
createDocument() method in the container. This method requires a link to the container where
we are going to insert the document, and the document itself. Because the methods require a
JSON document, if the value of the input parameter is not a valid JSON string, you get a JSON
parse error here. We also provided an optional anonymous function for managing any error
that may arise during the creation of the document. If you don’t provide a callback function,
any error is thrown as an exception.

Creating a trigger is quite similar to create a stored procedure. The concepts are equiva-
lent, but you need to consider when you need to execute the action of your trigger. If you
need to make an operation before the item is inserted into the container, you need to use a
pre-trigger. If you need to make an action after the item has been successfully inserted in the
container, you need to use a post-trigger.

Pre-triggers cannot have input parameters. Because the item is not actually in the database,
you need to work with the request that fired the trigger. This request contains the information
needed for inserting the new item into the collection. You can get a reference to the request by
using the getRequest() method from the context object. Once you have made your modifica-
tions to the original item, you can send the modified item to the database by using the request.
setBody() method.

 NEED MORE REVIEW? MORE SAMPLES

Although the sample that we reviewed in this section could seem simplistic, it covers some
important points that you need to be aware of when programming your server-side items.
The following articles provide more detailed examples of how to create and register stored
procedures, user-defined functions, or triggers using JavaScript or C#:

■■ How to write stored procedures, triggers, and user-defined functions in
Azure Cosmos DB https://docs.microsoft.com/en-us/azure/cosmos-db/
how-to-write-stored-procedures-triggers-udfs

■■ How to write stored procedures and triggers in Azure Cosmos DB by using
the JavaScript query API https://docs.microsoft.com/en-us/azure/cosmos-db/
how-to-write-javascript-query-api

■■ How to register and use stored procedures, triggers, and user-defined functions
in Azure Cosmos DB https://docs.microsoft.com/en-us/azure/cosmos-db/
how-to-use-stored-procedures-triggers-udfs

https://docs.microsoft.com/en-us/azure/cosmos-db/how-to-write-stored-procedures-triggers-udfs
https://docs.microsoft.com/en-us/azure/cosmos-db/how-to-write-stored-procedures-triggers-udfs
https://docs.microsoft.com/en-us/azure/cosmos-db/how-to-write-javascript-query-api
https://docs.microsoft.com/en-us/azure/cosmos-db/how-to-write-javascript-query-api
https://docs.microsoft.com/en-us/azure/cosmos-db/how-to-use-stored-procedures-triggers-udfs
https://docs.microsoft.com/en-us/azure/cosmos-db/how-to-use-stored-procedures-triggers-udfs

313

Index

SYMBOLS
$schema in ARM, 13

A
access control. See authentication; authorization
access keys for storage accounts, 154
access tiers for Blob Storage, 117–118, 120–124
account SAS, 155

token creation, 157–158
URI parameters, 156–157

accounts (Cosmos DB), creating, 77–78
ACI (Azure Container Instance), running container
images, 26–27
ACR (Azure Container Registry), publshing container
images, 24–25
action sets, 118
actions

defined, 242
workflows and, 244

Active Directory. See Azure Active Directory
activity functions, 63–64, 68–69
activity triggers, 64
AllowInsecureHttp, 137
APIM (Azure API Management), 268–278

adding APIs to, 270–272
associating APIs and products, 272–273
authentication for APIs, 273–275
creating instances, 269–273
policies for APIs, 275–278
pricing tiers, 270

APIs. See also APIM (Azure API Management)
creating custom connectors, 249–266
selecting for Cosmos DB, 76–78

App Configuration, 175–183
accessing stores, 178–182
creating stores, 176
key-value pairs, 177

App Service. See Azure App Service
application diagnostics, 32–33
Application Insights, 219–227

accessing, 222–223
adding to apps, 221–222
custom events and metrics, 223–225
sending messages to, 225–226, 227
viewing custom metrics, 226
web tests and alerts, 231–234

apps. See web apps
AppSettings.cs

Listing 2–8, 106
Listing 2–13, 110–111
Listing 2–19, 121
Listing 3–22, 178–179

AppSettings.json configuration file
Listing 2–7, 105
Listing 2–12, 110
Listing 2–18, 121
Listing 5–6, 281

archive storage tier, 117, 120–124
archiving for Blob Storage, 117–120
ARM templates

creating, 12–21
custom for Logic Apps, 266–268
defined, 13
deploying web apps, 35

authentication
for APIs, 273–275
Azure Active Directory, 167–172
defined, 127
for endpoints, 60–61
form-based, 128
Identity Framework, 130
OAuth2, 128–154

authorization servers, creating, 135–146
client applications, creating, 149–152
resource servers, creating, 146–148

314

authentication

creating web apps, 28–32
deploying code to web apps, 35–38
enabling diagnostics logging, 32–35
Logic Apps, 241–268

creating, 242–249
custom connectors, 249–266
custom templates, 266–268
pricing tiers, 245, 248

settings, 175–176
Azure Blob Storage, 101–124

data archiving and retention, 117–120
.NET Core example, 109–114
hot, cool, archive storage tiers, 120–124
leases, 114–117
moving items between storage accounts/containers,
102–104, 109–114
service SAS URI parameters, 158–159
setting and retrieving properties/metadata, 104–109

Azure Cache for Redis, 212–219
accessing, 214–218
caching rules, 209
creating database, 213–214
implementation patterns, 212–213
pricing tiers, 212

Azure Cloud Services, autoscaling rules, 43
Azure Container Instance (ACI), running container
images, 26–27
Azure Container Registry (ACR), publshing container
images, 24–25
Azure Cosmos DB emulator, 78
Azure Durable Functions, 63–72
Azure Event Grid, 279–287

custom topics, 279–280
processing events, 282–285
publishing events to topics, 280–282

Azure Event Hub, 291–298
Azure Front Door, caching rules, 210–212
Azure Functions, 46

Azure Durable Functions, 63–72
input and output bindings, 46–52
triggers, 52–63
versions of, 55

Azure Instance Metadata Service (IMDS), 192
Azure Key Vault, 176, 183–191
Azure Monitor, 227–231

Azure App Service integration, 34
Log Analytics, 229–231
Metric Analytics, 227–228

Azure Notification Hubs, 287–291

authentication, continued
roles in, 133–134
testing, 153
token acquisition steps, 133–135
for web apps, 131–132

running container images, 26–27
shared access signatures, 154–166

accessing storage accounts, 163–166
account SAS token creation, 157–158
account SAS URI parameters, 156–157
service SAS token creation, 159–161
service SAS URI parameters, 158–159
Stored Access Policies and, 161
types of, 155
user delegation SAS token creation, 161–163

token-based, 128–130
authorization

defined, 127
RBAC (role-based access controls), 172–174

authorization servers in OAth2, 133, 135–146
AuthorizationCodeProvider, 138
AuthorizationPermissionMismatch error code, 163
Authorize.cshtml (Listing 3–13), 145
AuthorizeEndpointPath, 137
AuthorizeError.cshtml (Listing 3–14), 146
autoscaling rules for web apps, 41–46
availability

of VMs (virtual machines), 7
of web apps, 231–234

available state (leases), 115
AzCopy, 102
Azure Active Directory, 167–172

authentication, 168–172
registering web apps, 167–168

Azure API Management (APIM), 268–278
adding APIs to, 270–272
associating APIs and products, 272–273
authentication for APIs, 273–275
creating instances, 269–273
policies for APIs, 275–278
pricing tiers, 270

Azure App Configuration, 175–183
accessing stores, 178–182
creating stores, 176
key-value pairs, 177

Azure App Service, 27
autoscaling rules for web apps, 41–46
configuring web app settings, 38–41
connecting to Notification Hub, 288–289

315

containers (Cosmos DB), creating

Azure Pipelines, 36
Azure Queue Storage, 305–309
Azure Repos, 36
Azure Resource Manager (ARM) templates

creating, 12–21
defined, 13
deploying web apps, 35

Azure Service Bus, 299–305
Azure Service Fabric, autoscaling rules, 43
Azure Storage Explorer, 102
azureauth.properties (Listing 1–1), 4
Azure.Storage.Blobs SDK, 114

B
BadRequest errors, 99
binding expressions, 50
bindings

in functions, 46–52
triggers versus, 46–47

Blob Storage, 101–124
.NET Core example, 109–114
data archiving and retention, 117–120
hot, cool, archive storage tiers, 120–124
leases, 114–117
moving items between storage accounts/containers,
102–104, 109–114
service SAS URI parameters, 158–159
setting and retrieving properties/metadata, 104–109

Book.cs (Listing 5–1), 251
BooksController.cs (Listing 5–5), 256–259
BooksSingleton.cs (Listing 5–3), 253–254
bounded staleness consistency level (Cosmos DB), 92
breaking state (leases), 115
broken state (leases), 115
built-in connectors, 244
business processes, Logic Apps and, 243

C
Cache-Aside, 213
caching

with Azure Cache for Redis, 212–219
with CDNs (Content Delivery Networks), 202–206
configuring policies for, 207–212

Callback.cs (Listing 5–2), 252
CallbacksSingleton.cs (Listing 5–4), 254–256

Cassandra API, 76–77
consistency levels, 93

CDNs (Content Delivery Networks)
caching rules, 208–210
creating, 202–206

certificate management with KeyVault API, 183–191
change feed notifications in Cosmos DB, 98–101
ChangeFeedPolicy property, 95
child elements, dependencies versus, 21
client functions, 64, 66–67
client IDs, 192
clients in OAth2, 133, 149–152
Clients.cs (Listing 3–10), 141–142
cloud security, 175–196

Azure App Configuration, 175–183
accessing stores, 178–182
creating stores, 176
key-value pairs, 177

KeyVault API, 183–191
managed identities, 191–196

cloud synchronization, deploying web apps, 35
Common.cs

Listing 2–9, 106–107
Listing 2–14, 111
Listing 2–20, 122
Listing 3–23, 179–180

configuring
API authentication, 273–275
bindings in functions, 46–52
caching policies, 207–212
profiles (Azure CDN), 202–205
triggers in functions, 52–63
VMs (virtual machines) for remote access, 7–12
web app settings, 38–41

connection strings for web apps, 38, 40
connections between services. See information
exchange
connectors

creating custom, 249–266
defined, 242
types of, 244–245

consistency levels in Cosmos DB, 91–94
consistent prefix consistency level (Cosmos DB), 92
consumer groups, 292
container images

creating with Docker, 21–24
publishing to Azure Container Registry, 24–25
running with Azure Container Instance, 26–27

containers (Cosmos DB), creating, 94–97

316

content, types of

deployment slots, 37
detailed error logging, 32
diagnostics logging, enabling, 32–35
distributed transactions, 213
Docker, creating container images, 21–24
Docker Compose, 23–24
Dockerfile (Listing 1–5), 23
.NET Core

Blob Storage example, 109–114
console applications, creating VMs (virtual
machines), 4
SDK versions, 114

downloading log files, 34
DSA (Dynamic Site Acceleration), 206
durable functions. See Azure Durable Functions
dynamic content, 201

E
edges in Gremlin API, 77
emulators, Cosmos DB, 78
enabling diagnostics logging, 32–35
Enterprise Integration Pack, 242
error levels for log files, 33
Event Grid, 279–287

custom topics, 279–280
processing events, 282–285
publishing events to topics, 280–282

event handlers, 279
Event Hub, 291–298
event sources, 279
event subscriptions, 279
event-based solutions for information exchange,
278–298

Azure Event Grid, 279–287
custom topics, 279–280
processing events, 282–285
publishing events to topics, 280–282

Azure Event Hub, 291–298
Azure Notification Hubs, 287–291

events
defined, 279
in partitions, 292
processing, 282–285
publishing

to Event Hub, 291–292
to topics (in Event Grid), 280–282

content, types of, 201
content caching, 213
Content Delivery Networks (CDNs)

caching rules, 208–210
creating, 202–206

contentVersion in ARM, 13
continuous deployment of web apps, 35
contributors (RBAC), 173
cool storage tier, 117, 120–124
Cosmos DB, 75–101

consistency levels, 91–94
creating account, 77–78
creating containers, 94–97
data operation trigger (Listing 1–10), 53
emulator for, 78
MongoDB API example, 90–91
partitioning schemes, 79–81
selecting APIs, 76–78
server-side programming, 98–101
SQL API example, 81–90

custom connectors, creating, 249–266
custom roles (RBAC), 174
custom templates, creating, 266–268
custom topics, creating, 279–280
custom Track Availability tests, 231

D
data access in Cosmos DB

MongoDB API example, 90–91
SQL API example, 81–90

data archiving for Blob Storage, 117–120
data exchange. See information exchange
data operations, as trigger type, 53–54
data retention for Blob Storage, 117–120
data security. See security
databases

in Azure Cache for Redis
accessing, 214–218
creating, 213–214

in Cosmos DB, 94–95
dedicated throughput, 95
dependencies in ARM, 20–21
deploying

code to web apps, 35–38
VMs (virtual machines), 2–7

deployment diagnostics, 33

317

Infrastructure as a Service (IaaS)

eventual consistency level (Cosmos DB), 92
expired state (leases), 115
extensions for VMs (virtual machines), 3

F
failed request tracing, 32
filter sets, 118
Forbidden Access Errors, 188
form-based authentication, 128
Front Door, caching rules, 210–212
FTP, deploying web apps, 35
function keys, 61
Function1.cs

Listing 5–10, 283–284
Listing 5–11, 293–294

function.json
bindings (Listing 1–8), 51
timer triggers (Listing 1–11), 56

functions
in ARM, 14, 19
Azure Functions, 46

Azure Durable Functions, 63–72
input and output bindings, 46–52
triggers, 52–63
versions of, 55

G
geographical regions for VMs (virtual machines), 3
Git repository, deploying web apps, 35
Gremlin API, 77
groups (RBAC), 172

H
handler validation, 286
HomeController class (Listing 4–3), 223–225
HomeController RedisCache method (Listing 4–1),
216–217
horizontal scaling, 42
host keys, 61
host properties, 62
“hot” partitions, 80
hot storage tier, 117, 120–124
HTTP triggers, 53, 58–62
hybrid connections for web apps, 29

I
IaaS (Infrastructure as a Service), 1

VMs (virtual machines), 2
configuring for remote access, 7–12
creating ARM templates, 12–21
creating container images with Docker, 21–24
provisioning, 2–7
publishing container images to Azure Container
Registry, 24–25
running container images with Azure Container
Instance, 26–27

Identity Framework, 130
IfNotExists methods in Azure Cosmos DB SDK, 86–87
images. See container images
IMDS (Azure Instance Metadata Service), 192
implementation patterns for Azure Cache for Redis,
212–213
IndexingPolicy property, 95
information exchange

APIM (Azure API Management), 268–278
adding APIs to, 270–272
associating APIs and products, 272–273
authentication for APIs, 273–275
creating instances, 269–273
policies for APIs, 275–278
pricing tiers, 270

event-based solutions, 278–298
Azure Event Grid, 279–287
Azure Event Hub, 291–298
Azure Notification Hubs, 287–291

Logic Apps, 241–268
creating, 242–249
custom connectors, 249–266
custom templates, 266–268
pricing tiers, 245, 248

message-based solutions, 298–309
Azure Queue Storage, 305–309
Azure Service Bus, 299–305

information security. See security
Infrastructure as a Service (IaaS), 1

VMs (virtual machines), 2
configuring for remote access, 7–12
creating ARM templates, 12–21
creating container images with Docker, 21–24
provisioning, 2–7
publishing container images to Azure Container
Registry, 24–25
running container images with Azure Container
Instance, 26–27

318

input bindings in functions

Azure Durable Functions activity function code,
68–69
Azure Durable Functions activity function JSON
configuration file, 68, 69
Azure Durable Functions client function code, 66
Azure Durable Functions orchestrator function
code, 67
azureauth.properties, 4
Book.cs, 251
BooksController.cs, 256–259
BooksSingleton.cs, 253–254
Callback.cs, 252
CallbacksSingleton.cs, 254–256
Clients.cs, 141–142
Common.cs, 179–180
Common.cs C# class, 106–107, 111, 122
configuring a timer trigger in function.json, 56
configuring CosmosDB trigger, 53
configuring HTTP trigger, 58–59
configuring input and output bindings, 48–49
configuring input and output bindings in function.
json, 51
Cosmos DB SQL API example, 81–86
Cosmos DB SQL API example: Address.cs, 89
Cosmos DB SQL API example: Device.cs, 89
Cosmos DB SQL API example: Person.cs, 88–89
Cosmos DB SQL API stored procedure, 98–99
creating, deleting, updating, and reading Key Vault
items, 185–188
creating service principal password, 26–27
Dockerfile example, 23
durable functions-client function JSON configuration
file, 66–67
durable functions-orchestrator function JSON con-
figuration file, 67
example JSON document, 79
Function1.cs, 283–284, 293–294
getting secret from key vault, 194–195
HomeController class, 223–225
HomeController RedisCache method, 216–217
index method in ManageController.cs, 150–151
lifecycle management policy definition, 119
MeController.cs, 147
NewItemCreatedEvent.cs, 281, 283
OAuthController.cs, 143–144
OnGrantClientCredientials delegate, 139–140
OnGrantResourceOwnerCredentials delegate, 139
OnValidateClientAuthentication delegate, 138–139
OnValidateClientRedirectUri delegate, 138

input bindings in functions, 46–52
instances (APIM), creating, 269–273
instrumentation with Application Insights, 219–227

accessing, 222–223
adding to apps, 221–222
custom events and metrics, 223–225
sending messages to, 225–226, 227
viewing custom metrics, 226

Integration Account connectors, 244
interconnected services. See information exchange
ISE (Integration Service Environment) connectors,
245, 249

J
job and message queuing, 213
JSON Web Token (JWT), 129–130

K
key management with KeyVault API, 183–191
key-value pairs, creating, 177
KeyVault API, 183–191
Kudu, 36

L
leased state (leases), 115
leases collection, 54
leases for Blob Storage, 114–117
lifecycle management policies for Blob Storage, 118–120
Linux App Services, 32
listings

adding OAuth authorization server, 136–137
adding secret information to home page, 195
AppSettings.cs, 178–179
AppSettings.cs C# class, 106, 110–111, 121
AppSettings.json configuration file, 105, 110, 121
AppSettings.json file, 281
ARM template for deploying VM, 14–18
authorization code for OnCreate delegate, 140
authorization code for OnReceive delegate, 140
authorization code grant section, 152
Authorize.cshtml, 145
AuthorizeError.cshtml, 146

319

OnCreate delegate refresh token (Listing 3–8)

Paths.cs, 142–143
Program.cs, 4–6, 162–163, 180–181, 297, 302–305,
307–308
Program.cs C# class, 107–108, 112–113, 122–124
Program.cs extension, 164–166, 171
Program.cs Main method, 282
Program.cs modifications, 8–11, 115–116
RedisCache view, 217–218
refresh token for OnCreate delegate, 140
refresh token for OnReceive delegate, 140
setting user-defined metadata, 108–109
SimpleEventProcessor.cs, 295–296
Startup.WebApi.cs, 148
using bindings in JavaScript, 52
using timer trigger with JavaScript, 56–57

local environment functions, troubleshooting, 57
Log Analytics, 229–231
log streams, 34
logging

diagnostics logging, enabling, 32–35
transient faults, 237

Logic Apps, 241–268
creating, 242–249
custom connectors, 249–266
custom templates, 266–268
pricing tiers, 245, 248

logical partitions
defined, 79
partition keys, 79–81
size limitations, 79

M
ManageController.cs index method (Listing 3–17),
150–151
managed connectors, 242, 244
managed identities, 191–196

in RBAC, 172
types of, 192

Managed Service Identity. See managed identities
MeController.cs (Listing 3–15), 147
message-based solutions for information exchange,
298–309

Azure Queue Storage, 305–309
Azure Service Bus, 299–305

metadata in Blob Storage, 104–109
Metric Analytics, 227–228
Microsoft.Azure.Storage.Blob SDK, 114

mobile apps, push notifications, 287–291
MongoDB API, 77

consistency levels, 94
example usage, 90–91

monitoring
with Application Insights, 219–227

accessing, 222–223
adding to apps, 221–222
custom events and metrics, 223–225
sending messages to, 225–226, 227
viewing custom metrics, 226
web tests and alerts, 231–234

with Azure Monitor, 227–231
Log Analytics, 229–231
Metric Analytics, 227–228

moving Blob Storage items, 102–104, 109–114
multifactor authentication, 127
multi-step web tests, 231

N
namespaces (in Azure Service Bus)

creating, 299–300
defined, 299

naming VMs (virtual machines), 3
network interfaces for VMs (virtual machines), 3
network security groups

managing, 12
for VMs (virtual machines), 8

NewItemCreatedEvent.cs
Listing 5–7, 281
Listing 5–9, 283

Notification Hubs, 287–291

O
OAuth2 authentication, 128–154

authorization servers, creating, 135–146
client applications, creating, 149–152
resource servers, creating, 146–148
roles in, 133–134
testing, 153
token acquisition steps, 133–135
for web apps, 131–132

OAuthController.cs (Listing 3–12), 143–144
OnCreate delegate authorization code (Listing 3–6), 140
OnCreate delegate refresh token (Listing 3–8), 140

320

OnGrantClientCredientials delegate (Listing 3–5)

physical partitions, 79
Platform as a Service (PaaS), 1

Azure Functions, 46
Azure Durable Functions, 63–72
input and output bindings, 46–52
triggers, 52–63

web apps, 27
autoscaling rules, 41–46
configuring settings, 38–41
creating, 28–32
deploying code to, 35–38
enabling diagnostics logging, 32–35

PNS (Platform Notification System), 287
policies for APIs, 275–278
Polling triggers, 244
post-triggers, 100
pre-triggers, 100
pricing tiers

for Azure API Management, 270
for Azure Cache for Redis, 212
for Logic Apps, 245, 248
for web apps, 29, 31–32

principal IDs, 192
processing events, 282–285
profile conditions in autoscaling, 43–44
profiles (Azure CDN), configuring, 202–205
Program.cs

extension
Listing 3–20, 164–166
Listing 3–21, 171

Listing 1–2, 4–6
Listing 1–3, 8–11
Listing 2–10, 107–108
Listing 2–15, 112–113
Listing 2–16, 115–116
Listing 2–21, 122–124
Listing 3–19, 162–163
Listing 3–24, 180–181
Listing 5–13, 297
Listing 5–14, 302–303
Listing 5–15, 303–305
Listing 5–16, 307–308
Main method (Listing 5–8), 282

properties
in Blob Storage, 104–109
for Cosmos DB containers, 95–96
in Gremlin API, 77

providers, 137–138
provisioning VMs (virtual machines), 2–7
public IPs for VMs (virtual machines), 8

OnGrantClientCredientials delegate (Listing 3–5),
139–140
OnGrantResourceOwnerCredentials delegate (Listing
3–4), 139
on-premises connectors, 244
OnReceive delegate authorization code (Listing 3–7),
140
OnReceive delegate refresh token (Listing 3–9), 140
OnValidateClientAuthentication delegate (Listing 3–3),
138–139
OnValidateClientRedirectUri delegate (Listing 3–2), 138
operating systems

for VMs (virtual machines), 2
for web apps, 28

optimizing performance. See performance optimization
orchestration triggers, 64
orchestrator functions, 64, 67
output bindings in functions, 46–52
outputs in ARM, 14
owners (RBAC), 173

P
PaaS (Platform as a Service), 1

Azure Functions, 46
Azure Durable Functions, 63–72
input and output bindings, 46–52
triggers, 52–63

web apps, 27
autoscaling rules, 41–46
configuring settings, 38–41
creating, 28–32
deploying code to, 35–38
enabling diagnostics logging, 32–35

parameters in ARM, 13, 18–19
partition keys, 79–81
partitioning schemes for Cosmos DB, 79–81
partitions, events in, 292
Paths.cs (LIsting 3–11), 142–143
performance optimization, 201–219

caching
with Azure Cache for Redis, 212–219
configuring policies for, 207–212

CDNs (Content Delivery Networks)
caching rules, 208–210
creating, 202–206

transient faults, 234–238
permissions (RBAC), 172

321

selecting

publishing
container images to Azure Container Registry, 24–25
events

to Event Hub, 291–292
to topics (in Event Grid), 280–282

push notifications, 287–291
Push triggers, 244
Python, 102

Q
queues

Azure Queue Storage, 305–309
Azure Service Bus, 299

quota limits for VMs (virtual machines), 3

R
RBAC (role-based access controls), 172–174
readers (RBAC), 173
Recurrence triggers, 243
Redis, 212–219

accessing, 214–218
caching rules, 209
creating database, 213–214
implementation patterns, 212–213
pricing tiers, 212

RedisCache view (Listing 4–2), 217–218
RefreshTokenProvider, 138
registering web apps in Azure Active Directory, 167–168
remote access, configuring VMs (virtual machines) for,
7–12
resource groups

in ARM, 12, 13
for VMs (virtual machines), 3

resource owners in OAth2, 133
resource providers in ARM, 12–13
resource servers in OAth2, 133, 146–148
resources

in ARM, 12, 14
number of, 3
related, 3

retention for Blob Storage, 117–120
retrying operations, 234–238
role assignment (RBAC), 173
role definitions (RBAC), 173
role-based access controls (RBAC), 172–174

routing rules, caching in, 210–211
running container images with Azure Container
Instance, 26–27

S
SAS (shared access signatures), 154–166

accessing storage accounts, 163–166
account SAS token creation, 157–158
account SAS URI parameters, 156–157
service SAS token creation, 159–161
service SAS URI parameters, 158–159
Stored Access Policies and, 161
types of, 155
user delegation SAS token creation, 161–163

Scale-In rules, 45
Scale-Out rules, 45
scaling rules for web apps, 41–46
$schema in ARM, 13
scope (RBAC), 173
secret management with KeyVault API, 183–191
security

authentication
authorization servers, creating, 135–146
Azure Active Directory, 167–172
client applications, creating, 149–152
defined, 127
form-based, 128
Identity Framework, 130
OAuth2, 128–154
resource servers, creating, 146–148
shared access signatures, 154–166
testing, 153
token-based, 128–130

authorization
defined, 127
RBAC (role-based access controls), 172–174

best practices, storing connection strings, 216
cloud solutions, 175–196

Azure App Configuration, 175–183
KeyVault API, 183–191
managed identities, 191–196

dimensions of, 127
security principals (RBAC), 172
security rules for VMs (virtual machines), 8
selecting

APIs for Cosmos DB, 76–78
consistency levels for Cosmos DB, 91–94

322

server-side programming in Cosmos DB

creating containers, 94–97
emulator for, 78
MongoDB API example, 90–91
partitioning schemes, 79–81
selecting APIs, 76–78
server-side programming, 98–101
SQL API example, 81–90

Stored Access Policies, 161
stored procedures in Cosmos DB, 98–101
stores (Azure App Configuration)

accessing, 178–182
creating, 176

storing log files, 33–34, 35
strong consistency level (Cosmos DB), 92
subscription deployments in ARM, 13
subscriptions

for API authentication, 273–275
event subscriptions, 279

synthetic partition keys, 80–81
system-assigned managed identities, 192

T
Table API, 76

consistency levels, 93
tagging container images, 24
telemetry with Application Insights, 219–227

accessing, 222–223
adding to apps, 221–222
custom events and metrics, 223–225
sending messages to, 225–226, 227
viewing custom metrics, 226

template reference in ARM, 19
templates (ARM)

creating, 12–21
custom for Logic Apps, 266–268
defined, 13
deploying web apps, 35

testing OAuth2 authentication, 153
throughput for Cosmos DB containers, 95
timers as trigger type, 53, 55–57
TimeToLive (TTL) property, 95, 207–208, 209
token-based authentication, 128–130

account SAS token creation, 157–158
service SAS token creation, 159–161
token acquisition steps, 133–135
user delegation SAS token creation, 161–163

TokenEndpointPath, 137

server-side programming in Cosmos DB, 98–101
service principal passwords, creating, 26–27
service principals (RBAC), 172
service SAS, 155

token creation, 159–161
URI parameters, 158–159

services in Docker, 24
session consistency level (Cosmos DB), 92
shared access signatures (SAS), 154–166

accessing storage accounts, 163–166
account SAS token creation, 157–158
account SAS URI parameters, 156–157
service SAS token creation, 159–161
service SAS URI parameters, 158–159
Stored Access Policies and, 161
types of, 155
user delegation SAS token creation, 161–163

shared key authorization, 154
shared throughput, 95
SimpleEventProcessor.cs (Listing 5–12), 295–296
Sliding WIndow triggers, 243
social media authentication for web apps, 130
SQL API, 76

consistency levels, 93
example usage, 81–90

SQL queries, 88
SSIS (SQL Server Integration Service), 102
SSL settings for web apps, 40–41
Startup.WebApi.cs (Listing 3–16), 148
stateful functions. See Azure Durable Functions
static content, 201
storage accounts

shared access signatures, 154–166
for VMs (virtual machines), 3

storage solutions
Blob Storage, 101–124

data archiving and retention, 117–120
.NET Core example, 109–114
hot, cool, archive storage tiers, 120–124
leases, 114–117
moving items between storage accounts/contain-
ers, 102–104, 109–114
service SAS URI parameters, 158–159
setting and retrieving properties/metadata,
104–109

Cosmos DB, 75–101
consistency levels, 91–94
creating account, 77–78

323

ZIP files, deploying web apps

topics
Azure Service Bus

creating, 299–300
defined, 299

Event Grid
creating custom, 279–280
defined, 279
publishing events to, 280–282

transient faults, 234–238
triggers

bindings versus, 46–47
in Cosmos DB, 98–101
defined, 242
for durable functions, 64
in functions, 52–63
workflows and, 243–244

troubleshooting local environment functions, 57
TTL (TimeToLive) property, 95, 207–208, 209

U
UniqueKeyPolicy property, 95–96
URL ping tests, 231–234
user access administrators (RBAC), 173
user delegation SAS, 155

token creation, 161–163
user session caching, 213
user-assigned managed identities, 192
user-defined functions in Cosmos DB, 98–101
users (RBAC), 172

V
variables

in ARM, 14
in workflows, 266

versions of Azure Functions, 55
vertical scaling, 42
vertices in Gremlin API, 77
virtual networks for VMs (virtual machines), 3
VMs (virtual machines), 2

autoscaling rules, 43
configuring for remote access, 7–12
creating ARM templates, 12–21
creating container images with Docker, 21–24
provisioning, 2–7
publishing container images to Azure Container
Registry, 24–25
running container images with Azure Container
Instance, 26–27

VNet integration for web apps, 29

W
WAR files, deploying web apps, 35
web apps, 27

autoscaling rules, 41–46
checking availability, 231–234
configuration data security, 175–183

accessing stores, 178–182
creating stores, 176
key-value pairs, 177

configuring settings, 38–41
creating, 28–32
deploying code to, 35–38
enabling diagnostics logging, 32–35
OAuth2 authentication for, 131–132
registering in Azure Active Directory, 167–168
social media authentication for, 130

web server diagnostics, 32
web server logging, 32
webhooks as trigger type, 53, 58–62
workflows

actions and, 244
creating, 245–248
defined, 242
triggers and, 243–244
variables in, 266

Z
ZIP files, deploying web apps, 35

	Cover
	Title Page
	Copyright Page
	Dedication
	Contents at a glance
	Contents
	Acknowledgments
	About the author
	Introduction
	Organization of this book
	Microsoft certifications
	Errata, updates, and book support
	Stay in touch

	Important: How to use this book to study for the exam
	Chapter 2 Develop for Azure storage
	Skill 2.1: Develop solutions that use Cosmos DB storage
	Select the appropriate API for your solution
	Implement partitioning schemes
	Interact with data using the appropriate SDK
	Set the appropriate consistency level for operations
	Create Cosmos DB containers
	Implement server-side programming including stored procedures, triggers, and change feed notifications

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

