
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780136702658
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780136702658
https://plusone.google.com/share?url=http://www.informit.com/title/9780136702658
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780136702658
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780136702658/Free-Sample-Chapter

Praise for Michael Hartl’s
Books and Videos
on Ruby on Rails

“My former company (CD Baby) was one of the first to loudly switch to Ruby on
Rails, and then even more loudly switch back to PHP. (Google me to read about the
drama.) This book by Michael Hartl came so highly recommended that I had to try it,
and the Ruby on RailsTM Tutorial is what I used to switch back to Rails again.”

—From the Foreword by Derek Sivers (sivers.org)
Formerly: founder of CD Baby
Currently: founder of Thoughts Ltd.

“Michael Hartl’s Rails Tutorial book is the #1 (and only, in my opinion) place to start
when it comes to books about learning Rails. . . . It’s an amazing piece of work and,
unusually, walks you through building a Rails app from start to finish with testing. If
you want to read just one book and feel like a Rails master by the end of it, pick the
Ruby on RailsTM Tutorial.”

—Peter Cooper, editor, Ruby Inside

“Michael Hartl’s Ruby on RailsTM Tutorial seamlessly taught me about not only Ruby
on Rails, but also the underlying Ruby language, HTML, CSS, a bit of JavaScript, and
even some SQL—but most importantly it showed me how to build a web application
(Twitter) in a short amount of time.”

—Mattan Griffel, co-founder & CEO of One Month

“Although I’m a Python/Django developer by trade, I can’t stress enough how much
this book has helped me. As an undergraduate, completely detached from industry,
this book showed me how to use version control, how to write tests, and, most
importantly—despite the steep learning curve for setting up and getting stuff running—
how the end result of perseverance is extremely gratifying. It made me fall in love with
technology all over again. This is the book I direct all my friends to who want to start
learning programming/building stuff. Thank you Michael!”

—Prakhar Srivastav, software engineer, Xcite.com, Kuwait

http://sivers.org
http://Xcite.com

“It has to be the best-written book of its type I’ve ever seen, and I can’t recommend it
enough.”

—Daniel Hollands, administrator of Birmingham.IO

“For those wanting to learn Ruby on Rails, Hartl’s Ruby on RailsTM Tutorial is (in my
opinion) the best way to do it.”

—David Young, software developer and author at deepinthecode.com

“This is a great tutorial for a lot of reasons, because aside from just teaching Rails, Hartl
is also teaching good development practices.”

—Michael Denomy, full-stack web developer

“Without a doubt, the best way I learned Ruby on Rails was by building an actual
working app. I used Michael Hartl’s Ruby on RailsTM Tutorial, which showed me how
to get a very basic Twitter-like app up and running from scratch. I cannot recommend
this tutorial enough; getting something up and going fast was key; it beats memorization
by a mile.”

—James Fend, serial entrepreneur, JamesFend.com

“The book gives you the theory and practice, while the videos focus on showing you
in person how it’s done. Highly recommended combo.”

—Antonio Cangiano, software engineer, IBM

“The author is clearly an expert at the Ruby language and the Rails framework,
but more than that, he is a working software engineer who introduces best practices
throughout the text.”

—Gregory Charles, principal software developer at Fairway Technologies

http://deepinthecode.com
http://JamesFend.com

RUBY ON RAILS
TM TUTORIAL

Sixth Edition

This page intentionally left blank

RUBY ON RAILSTM TUTORIAL

Learn Web Development with Rails

Sixth Edition

Michael Hartl

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town

Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business,
training goals, marketing focus, or branding interests), please contact our corporate sales
department at corpsales@pearsoned.com or (800) 382–3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the web: informit.com/aw

Library of Congress Control Number: 2020932223

Copyright © 2021 Michael Hartl

Cover image: Olga Altunina/Shutterstock

All rights reserved. This publication is protected by copyright, and permission must be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or
transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. For information regarding permissions, request forms and the appropriate contacts
within the Pearson Education Global Rights & Permissions Department, please visit
www.pearson.com/permissions.

The source code in Ruby on Rails™ Tutorial, Sixth Edition, is released under the MIT License.

ISBN-13: 978-0-13-670265-8
ISBN-10: 0-13-670265-1

ScoutAutomatedPrintCode

Vice President and Publisher
Mark L. Taub

Executive Editor
Debra Williams Cauley

Associate Editor
Manjula Anaskar

Managing Producer
Sandra Schroeder

Sr. Content Producer
Julie B. Nahil

Project Editor
diacriTech

Copy Editor
Jill Hobbs

Indexer
diacriTech

Proofreader
diacriTech

Cover Designer
Chuti Prasertsith

Compositor
diacriTech

mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearson.com/permissions
mailto:corpsales@pearsoned.com

Contents

Foreword xvii
Acknowledgments xix
About the Author xxi

Chapter 1 From Zero to Deploy 1

1.1 Up and Running 4
1.1.1 Development Environment 6
1.1.2 Installing Rails 9

1.2 The First Application 13
1.2.1 Bundler 17
1.2.2 rails server 22
1.2.3 Model-View-Controller (MVC) 27
1.2.4 Hello, World! 28

1.3 Version Control with Git 33
1.3.1 Installation and Setup 34
1.3.2 What Good Does Git Do for You? 38
1.3.3 GitHub 39
1.3.4 Branch, Edit, Commit, Merge 41

vii

viii Contents

1.4 Deploying 49
1.4.1 Heroku Setup and Deployment 49
1.4.2 Heroku Commands 54

1.5 Conclusion 55
1.5.1 What We Learned in this Chapter 56

1.6 Conventions Used in this Book 56

Chapter 2 A Toy App 59

2.1 Planning the Application 60
2.1.1 A Toy Model for Users 64
2.1.2 A Toy Model for Microposts 64

2.2 The Users Resource 65
2.2.1 A User Tour 68
2.2.2 MVC in Action 73
2.2.3 Weaknesses of this Users Resource 80

2.3 The Microposts Resource 80
2.3.1 A Micropost Microtour 81
2.3.2 Putting the Micro in Microposts 86
2.3.3 A User has_many Microposts 88
2.3.4 Inheritance Hierarchies 91
2.3.5 Deploying the Toy App 95

2.4 Conclusion 98
2.4.1 What We Learned in this Chapter 99

Chapter 3 Mostly Static Pages 101

3.1 Sample App Setup 101
3.2 Static Pages 108

3.2.1 Generated Static Pages 109
3.2.2 Custom Static Pages 118

3.3 Getting Started with Testing 118
3.3.1 Our First Test 121
3.3.2 Red 123
3.3.3 Green 125
3.3.4 Refactor 128

Contents ix

3.4 Slightly Dynamic Pages 128
3.4.1 Testing Titles (Red) 129
3.4.2 Adding Page Titles (Green) 131
3.4.3 Layouts and Embedded Ruby (Refactor) 135
3.4.4 Setting the Root Route 142

3.5 Conclusion 145
3.5.1 What We Learned in this Chapter 146

3.6 Advanced Testing Setup 146
3.6.1 Minitest Reporters 147
3.6.2 Automated Tests with Guard 148

Chapter 4 Rails-Flavored Ruby 153

4.1 Motivation 153
4.1.1 Built-in Helpers 154
4.1.2 Custom Helpers 155

4.2 Strings and Methods 159
4.2.1 Strings 160
4.2.2 Objects and Message Passing 164
4.2.3 Method Definitions 167
4.2.4 Back to the Title Helper 169

4.3 Other Data Structures 170
4.3.1 Arrays and Ranges 170
4.3.2 Blocks 175
4.3.3 Hashes and Symbols 178
4.3.4 CSS Revisited 183

4.4 Ruby Classes 185
4.4.1 Constructors 185
4.4.2 Class Inheritance 187
4.4.3 Modifying Built-in Classes 190
4.4.4 A Controller Class 192
4.4.5 A User Class 195

4.5 Conclusion 198
4.5.1 What We Learned in this Chapter 198

x Contents

Chapter 5 Filling in the Layout 201

5.1 Adding Some Structure 201
5.1.1 Site Navigation 202
5.1.2 Bootstrap and Custom CSS 210
5.1.3 Partials 220

5.2 Sass and the Asset Pipeline 225
5.2.1 The Asset Pipeline 226
5.2.2 Syntactically Awesome Stylesheets 228

5.3 Layout Links 235
5.3.1 Contact Page 236
5.3.2 Rails Routes 238
5.3.3 Using Named Routes 242
5.3.4 Layout Link Tests 244

5.4 User Signup: A First Step 248
5.4.1 Users Controller 248
5.4.2 Signup URL 250

5.5 Conclusion 253
5.5.1 What We Learned in this Chapter 254

Chapter 6 Modeling Users 255

6.1 User Model 256
6.1.1 Database Migrations 257
6.1.2 The Model File 263
6.1.3 Creating User Objects 264
6.1.4 Finding User Objects 268
6.1.5 Updating User Objects 270

6.2 User Validations 271
6.2.1 A Validity Test 272
6.2.2 Validating Presence 274
6.2.3 Length Validation 278
6.2.4 Format Validation 280
6.2.5 Uniqueness Validation 286

6.3 Adding a Secure Password 295
6.3.1 A Hashed Password 296
6.3.2 User Has Secure Password 299

Contents xi

6.3.3 Minimum Password Standards 301
6.3.4 Creating and Authenticating a User 303

6.4 Conclusion 305
6.4.1 What We Learned in this Chapter 306

Chapter 7 Sign Up 309

7.1 Showing Users 310
7.1.1 Debug and Rails Environments 311
7.1.2 A Users Resource 316
7.1.3 Debugger 322
7.1.4 A Gravatar Image and a Sidebar 324

7.2 Signup Form 331
7.2.1 Using form_with 332
7.2.2 Signup Form HTML 335

7.3 Unsuccessful Signups 339
7.3.1 A Working Form 339
7.3.2 Strong Parameters 343
7.3.3 Signup Error Messages 346
7.3.4 A Test for Invalid Submission 351

7.4 Successful Signups 355
7.4.1 The Finished Signup Form 355
7.4.2 The Flash 358
7.4.3 The First Signup 361
7.4.4 A Test for Valid Submission 364

7.5 Professional-Grade Deployment 367
7.5.1 SSL in Production 368
7.5.2 Production Webserver 369
7.5.3 Production Database Configuration 370
7.5.4 Production Deployment 371

7.6 Conclusion 373
7.6.1 What We Learned in this Chapter 373

Chapter 8 Basic Login 375

8.1 Sessions 376
8.1.1 Sessions Controller 376
8.1.2 Login Form 380

xii Contents

8.1.3 Finding and Authenticating a User 383
8.1.4 Rendering with a Flash Message 388
8.1.5 A Flash Test 390

8.2 Logging In 393
8.2.1 The log_in Method 394
8.2.2 Current User 396
8.2.3 Changing the Layout Links 401
8.2.4 Testing Layout Changes 416
8.2.5 Login Upon Signup 422

8.3 Logging Out 425
8.4 Conclusion 429

8.4.1 What We Learned in this Chapter 429

Chapter 9 Advanced Login 431

9.1 Remember Me 431
9.1.1 Remember Token and Digest 432
9.1.2 Login with Remembering 439
9.1.3 Forgetting Users 448
9.1.4 Two Subtle Bugs 451

9.2 “Remember Me” Checkbox 456
9.3 Remember Tests 462

9.3.1 Testing the “Remember Me” Checkbox 462
9.3.2 Testing the Remember Branch 468

9.4 Conclusion 472
9.4.1 What We Learned in this Chapter 472

Chapter 10 Updating, Showing, and Deleting Users 475

10.1 Updating Users 475
10.1.1 Edit Form 476
10.1.2 Unsuccessful Edits 483
10.1.3 Testing Unsuccessful Edits 484
10.1.4 Successful Edits (with TDD) 486

10.2 Authorization 491
10.2.1 Requiring Logged-in Users 491
10.2.2 Requiring the Right User 497
10.2.3 Friendly Forwarding 502

Contents xiii

10.3 Showing All Users 507
10.3.1 Users Index 507
10.3.2 Sample Users 513
10.3.3 Pagination 516
10.3.4 Users Index Test 520
10.3.5 Partial Refactoring 523

10.4 Deleting Users 525
10.4.1 Administrative Users 526
10.4.2 The destroy Action 530
10.4.3 User Destroy Tests 533

10.5 Conclusion 536
10.5.1 What We Learned in this Chapter 537

Chapter 11 Account Activation 539

11.1 Account Activations Resource 541
11.1.1 Account Activations Controller 541
11.1.2 Account Activation Data Model 542

11.2 Account Activation Emails 549
11.2.1 Mailer Templates 549
11.2.2 Email Previews 554
11.2.3 Email Tests 558
11.2.4 Updating the Users create Action 561

11.3 Activating the Account 565
11.3.1 Generalizing the authenticated? Method 565
11.3.2 Activation edit Action 571
11.3.3 Activation Test and Refactoring 574

11.4 Email in Production 581
11.5 Conclusion 584

11.5.1 What We Learned in this Chapter 584

Chapter 12 Password Reset 587

12.1 Password Resets Resource 590
12.1.1 Password Resets Controller 590
12.1.2 New Password Resets 593
12.1.3 Password Reset create Action 596

xiv Contents

12.2 Password Reset Emails 599
12.2.1 Password Reset Mailer and Templates 600
12.2.2 Email Tests 605

12.3 Resetting the Password 607
12.3.1 Reset edit Action 607
12.3.2 Updating the Reset 610
12.3.3 Password Reset Test 615

12.4 Email in Production (Take Two) 621
12.5 Conclusion 624

12.5.1 What We Learned in this Chapter 625
12.6 Proof of Expiration Comparison 625

Chapter 13 User Microposts 627

13.1 A Micropost Model 627
13.1.1 The Basic Model 628
13.1.2 Micropost Validations 631
13.1.3 User/Micropost Associations 634
13.1.4 Micropost Refinements 638

13.2 Showing Microposts 643
13.2.1 Rendering Microposts 644
13.2.2 Sample Microposts 649
13.2.3 Profile Micropost Tests 654

13.3 Manipulating Microposts 657
13.3.1 Micropost Access Control 658
13.3.2 Creating Microposts 662
13.3.3 A Proto-Feed 670
13.3.4 Destroying Microposts 680
13.3.5 Micropost Tests 684

13.4 Micropost Images 688
13.4.1 Basic Image Upload 689
13.4.2 Image Validation 696
13.4.3 Image Resizing 701
13.4.4 Image Upload in Production 705

13.5 Conclusion 714
13.5.1 What We Learned in this Chapter 716

Contents xv

Chapter 14 Following Users 717

14.1 The Relationship Model 718
14.1.1 A Problem with the Data Model (and a Solution) 719
14.1.2 User/Relationship Associations 725
14.1.3 Relationship Validations 728
14.1.4 Followed Users 730
14.1.5 Followers 733

14.2 A Web Interface for Following Users 736
14.2.1 Sample Following Data 736
14.2.2 Stats and a Follow Form 738
14.2.3 Following and Followers Pages 748
14.2.4 A Working Follow Button the Standard Way 757
14.2.5 A Working Follow Button with Ajax 759
14.2.6 Following Tests 765

14.3 The Status Feed 768
14.3.1 Motivation and Strategy 768
14.3.2 A First Feed Implementation 771
14.3.3 Subselects 774

14.4 Conclusion 780
14.4.1 Guide to Further Resources 780
14.4.2 What We Learned in this Chapter 781

Index 783

This page intentionally left blank

Foreword

My former company (CD Baby) was one of the first to loudly switch to Ruby on
Rails, and then even more loudly switch back to PHP (Google me to read about the
drama). This book by Michael Hartl came so highly recommended that I had to try
it, and the Ruby on Rails Tutorial is what I used to switch back to Rails again.

Though I’ve worked my way through many Rails books, this is the one that
finally made me “get” it. Everything is done very much “the Rails way”—a way that
felt very unnatural to me initially, but now after doing this book finally feels natural.
This is also the only Rails book that does test-driven development the entire time,
an approach that is highly recommended by the experts but that has never been so
clearly demonstrated before. Finally, by including Git, GitHub, and Heroku in the
demo examples, the author really gives you a feel for what it’s like to do a real-world
project. The tutorial’s code examples are not in isolation.

The linear narrative is such a great format. Personally, I powered through the Rails
Tutorial in three long days doing all the examples and challenges at the end of each
chapter. [This is not typical! Most readers take much longer to finish the tutorial.
—Michael] Do it from start to finish, without jumping around, and you’ll get the
ultimate benefit.

Enjoy!

—Derek Sivers (sivers.org)
Founder, CD Baby

xvii

http://sivers.org

This page intentionally left blank

Acknowledgments

The Ruby on Rails Tutorial owes a lot to my previous Rails book, RailsSpace, and hence
to my coauthor Aurelius Prochazka. I’d like to thank Aure both for the work he did
on that book and for his support of this one. I’d also like to thank Debra Williams
Cauley, my editor on both RailsSpace and the Ruby on Rails Tutorial; as long as she
keeps taking me to baseball games, I’ll keep writing books for her.

I’d like to acknowledge a long list of Rubyists who have taught and inspired
me over the years: David Heinemeier Hansson, Yehuda Katz, Carl Lerche, Jeremy
Kemper, Xavier Noria, Ryan Bates, Geoffrey Grosenbach, Peter Cooper, Matt
Aimonetti, Mark Bates, Gregg Pollack, Wayne E. Seguin, Amy Hoy, Dave Chelimsky,
Pat Maddox, Tom Preston-Werner, Chris Wanstrath, Chad Fowler, Josh Susser,
Obie Fernandez, Ian McFarland, Steph Bristol, Pratik Naik, Sarah Mei, Sarah
Allen, Wolfram Arnold, Alex Chaffee, Giles Bowkett, Evan Dorn, Long Nguyen,
James Lindenbaum, Adam Wiggins, Tikhon Bernstam, Ron Evans, Wyatt Greene,
Miles Forrest, Sandi Metz, Ryan Davis, Aaron Patterson, Aja Hammerly, Richard
“Schneems” Schneeman, the good people at Pivotal Labs, the Heroku gang, the
thoughtbot folks, and the GitHub crew.

I’d like to thank technical reviewer Andrew Thai for his careful reading of the
original manuscript and for his helpful suggestions. I’d also like to thank my cofounders

xix

xx Acknowledgments

at Learn Enough, Nick Merwin and Lee Donahoe, for all their help in preparing this
tutorial.

Finally, many, many readers—far too many to list—have contributed a huge num-
ber of bug reports and suggestions during the writing of this book, and I gratefully
acknowledge their help in making it as good as it can be.

About the Author

Michael Hartl is the creator of the Ruby on RailsTM Tutorial, one of the lead-
ing introductions to web development, and is cofounder and principal author at
LearnEnough.com. Previously, he was a physics instructor at the California Insti-
tute of Technology (Caltech), where he received a Lifetime Achievement Award for
Excellence in Teaching. He is a graduate of Harvard College, has a PhD in Physics
from Caltech, and is an alumnus of the Y Combinator entrepreneur program.

xxi

http://LearnEnough.com

This page intentionally left blank

CHAPTER 2
A Toy App

In this chapter, we develop a toy demo application to show off some of the power of
Rails. The purpose is to get a high-level overview of Ruby on Rails programming
(and web development in general) by rapidly generating an application using scaffold
generators, which create a large amount of functionality automatically. As discussed
in Box 2.1, the rest of the book will take the opposite approach, developing a full
sample application incrementally and explaining each new concept as it arises, but for
a quick overview (and some instant gratification) there is no substitute for scaffolding.
The resulting toy app will enable us to interact with it through its URLs, giving us
insight into the structure of a Rails application, including a first example of the REST
architecture favored by Rails.

As with the forthcoming sample application, the toy app will consist of users and
their associated microposts (thus constituting a minimalist Twitter-style app). The func-
tionality will be utterly under-developed, and many of the steps will seem like magic,
but worry not: We will develop a similar application from the ground up starting in
Chapter 3, and I will provide plentiful forward-references to later material. In the
meantime, have patience and a little faith—the whole point of this tutorial is to take
you beyond this superficial, scaffold-driven approach to achieve a deeper understanding
of Rails.

59

60 Chapter 2: A Toy App

Box 2.1: Scaffolding: Quicker, Easier, More Seductive

From the beginning, Rails has benefited from a palpable sense of excitement, starting
with the famous 15-minute weblog video (youtu.be/Gzj723LkRJY) by Rails creator
David Heinemeier Hansson. That video and its successors are a great way to get
a taste of Rails’ power, and I recommend watching them. But be warned: They
accomplish their amazing 15-minute feat using a feature called scaffolding, which
relies heavily on generated code, magically created by the Rails generate scaffold
command.

When writing a Ruby on Rails tutorial, it is tempting to rely on the scaffold-
ing approach—it’s quicker, easier, more seductive. But the complexity and sheer
amount of code in the scaffolding can be utterly overwhelming to a beginning Rails
developer; you may be able to use it, but you probably won’t understand it. Follow-
ing the scaffolding approach risks turning you into a virtuoso script generator with
little (and brittle) actual knowledge of Rails.

In the Ruby on Rails Tutorial, we’ll take the (nearly) polar opposite approach:
Although this chapter will develop a small toy app using scaffolding, the core of
the Rails Tutorial is the sample app, which we’ll start writing in Chapter 3. At each
stage of developing the sample application, we will write small, bite-sized pieces
of code—simple enough to understand, yet novel enough to be challenging. The
cumulative effect will be a deeper, more flexible knowledge of Rails, giving you a
good background for writing nearly any type of web application.

2.1 Planning the Application
In this section, we’ll outline our plans for the toy application. As in Section 1.2, we’ll
start by generating the application skeleton using the rails new command with a
specific Rails version number:

$ cd ~/environment
$ rails _6.0.2.1_ new toy_app
$ cd toy_app/

If you’re using the cloud IDE as recommended in Section 1.1.1, note that this second
app can be created in the same environment as the first. It is not necessary to create a
new environment. To get the files to appear, you may need to click the gear icon in
the file navigator area and select “Refresh File Tree.”

http://youtu.be/Gzj723LkRJY)byRailscreator

2.1 Planning the Application 61

Next, we’ll use a text editor to update the Gemfile needed by Bundler with the
contents of Listing 2.1.

Important note: For all the Gemfiles in this book, you should use the ver-
sion numbers listed at gemfiles-6th-ed.railstutorial.org instead of the ones
listed below (although they should be identical if you are reading this online).

Listing 2.1: A Gemfile for the toy app.

source 'https://rubygems.org'
git_source(:github) { |repo| "https://github.com/#{repo}.git" }

gem 'rails', '6.0.2.1'
gem 'puma', '3.12.2'
gem 'sass-rails', '5.1.0'
gem 'webpacker', '4.0.7'
gem 'turbolinks', '5.2.0'
gem 'jbuilder', '2.9.1'
gem 'bootsnap', '1.4.5', require: false

group :development, :test do
gem 'sqlite3', '1.4.1'
gem 'byebug', '11.0.1', platforms: [:mri, :mingw, :x64_mingw]

end

group :development do
gem 'web-console', '4.0.1'
gem 'listen', '3.1.5'
gem 'spring', '2.1.0'
gem 'spring-watcher-listen', '2.0.1'

end

group :test do
gem 'capybara', '3.28.0'
gem 'selenium-webdriver', '3.142.4'
gem 'webdrivers', '4.1.2'

end

group :production do
gem 'pg', '1.1.4'

end

Windows does not include zoneinfo files, so bundle the tzinfo-data gem
gem 'tzinfo-data', platforms: [:mingw, :mswin, :x64_mingw, :jruby]

Note that Listing 2.1 is identical to Listing 1.18.

http://gemfiles-6th-ed.railstutorial.org

62 Chapter 2: A Toy App

As in Section 1.4.1, we’ll install the local gems while preventing the installation
of production gems using the --without production option:

$ bundle install --without production

As noted in Section 1.2.1, you may need to run bundle update as well
(Box 1.2).

Finally, we’ll put the toy app under version control with Git:

$ git init
$ git add -A
$ git commit -m "Initialize repository"

You should also create a new repository at GitHub by following the same steps as in
Section 1.3.3 (taking care to make it private as in Figure 2.1), and then push up to the
remote repository:

Figure 2.1: Creating the toy app repository at GitHub.

2.1 Planning the Application 63

$ git remote add origin https://github.com/<username>/toy_app.git
$ git push -u origin master

Finally, it’s never too early to deploy, which I suggest doing by following the same
“hello, world!” steps from Section 1.2.4, as shown in Listing 2.2 and Listing 2.3.

Listing 2.2: Adding a hello action to the Application controller.
app/controllers/application_controller.rb

class ApplicationController < ActionController::Base

def hello
render html: "hello, world!"

end
end

Listing 2.3: Setting the root route.
config/routes.rb

Rails.application.routes.draw do
root 'application#hello'

end

Then commit the changes and push up to Heroku, and, at the same time,
GitHub—it’s a good idea to keep the two copies in sync:

$ git commit -am "Add hello"
$ heroku create
$ git push && git push heroku master

Here we’ve used the double ampersand operator && (read “and”) to combine the
pushes to GitHub and Heroku; the second command will execute only if the first one
succeeds.1

1. The && operator is described in Chapter 4 of Learn Enough Command Line to Be Dangerous
(www.learnenough.com/command-line).

http://www.learnenough.com/command-line

64 Chapter 2: A Toy App

As in Section 1.4, you may see some warning messages, which you should ignore
for now. We’ll deal with them in Section 7.5. Apart from the URL of the Heroku
app, the result should be the same as in Figure 1.31.

2.1.1 A Toy Model for Users

Now we’re ready to start making the app itself. The typical first step when making
a web application is to create a data model, which is a representation of the structures
needed by our application, including the relationships between them. In our case,
the toy app will be a Twitter-style microblog, with only users and short (micro)posts.
Thus, we’ll begin with a model for users of the app in this section, and then we’ll add
a model for microposts (Section 2.1.2).

There are as many choices for a user data model as there are different registration
forms on the web; for simplicity, we’ll go with a distinctly minimalist approach. Users
of our toy app will have a unique identifier called id (of type integer), a publicly
viewable name (of type string), and an email address (also of type string) that
will double as a unique username. (Note that there is no password attribute at this
point, which is part of what makes this app a “toy.” We’ll cover passwords starting in
Chapter 6.) A summary of the data model for users appears in Figure 2.2.

As we’ll see starting in Section 6.1.1, the label users in Figure 2.2 corresponds to
a table in a database, and the id, name, and email attributes are columns in that table.

2.1.2 A Toy Model for Microposts

Recall from the introduction that a micropost is simply a short post, essentially a generic
term for the brand-specific “tweet” (with the prefix “micro” motivated by Twitter’s
original description as a “micro-blog”). The core of the micropost data model is even

integer
string
string

id
users

name
email

Figure 2.2: The data model for users.

2.2 The Users Resource 65

simpler than the one for users: A micropost has only an id and a content field for the
micropost’s text (of type text).2 There’s an additional complication, though: We want
to associate each micropost with a particular user. We’ll accomplish this by recording
the user_id of the owner of the post. The results are shown in Figure 2.3.

We’ll see in Section 2.3.3 (and more fully in Chapter 13) how this user_id
attribute allows us to succinctly express the notion that a user potentially has many
associated microposts.

2.2 The Users Resource
In this section, we’ll implement the users data model in Section 2.1.1, along with a
web interface to that model. The combination will constitute a Users resource, which
will allow us to think of users as objects that can be created, read, updated, and deleted
through the web via the HTTP protocol. As promised in the introduction, our Users
resource will be created by a scaffold generator program, which comes standard with
each Rails project. I urge you not to look too closely at the generated code; at this
stage, it will only serve to confuse you.

Rails scaffolding is generated by passing the scaffold command to the rails
generate script. The argument of the scaffold command is the singular version of

integer
text

microposts

user_id
content
id

integer

Figure 2.3: The data model for microposts.

2. Because microposts are short by design, the string type might actually be big enough to contain them, but
using text better expresses our intent, while also giving us greater flexibility should we ever wish to relax the
length constraint. Indeed, Twitter’s change from allowing 140 to 280 characters in English-language tweets
is a perfect example of why such flexibility is important: A string typically allows 255 (28 − 1) characters,
which is big enough for 140-character tweets but not for 280-character ones. Using text allows a unified
treatment of both cases.

66 Chapter 2: A Toy App

the resource name (in this case, User), together with optional parameters for the data
model’s attributes:3

$ rails generate scaffold User name:string email:string

invoke active_record
create db/migrate/<timestamp>_create_users.rb
create app/models/user.rb
invoke test_unit
create test/models/user_test.rb
create test/fixtures/users.yml
invoke resource_route
route resources :users
invoke scaffold_controller
create app/controllers/users_controller.rb
invoke erb
create app/views/users
create app/views/users/index.html.erb
create app/views/users/edit.html.erb
create app/views/users/show.html.erb
create app/views/users/new.html.erb
create app/views/users/_form.html.erb
invoke test_unit
create test/controllers/users_controller_test.rb
create test/system/users_test.rb
invoke helper
create app/helpers/users_helper.rb
invoke test_unit
invoke jbuilder
create app/views/users/index.json.jbuilder
create app/views/users/show.json.jbuilder
create app/views/users/_user.json.jbuilder
invoke assets
invoke scss
create app/assets/stylesheets/users.scss
invoke scss
create app/assets/stylesheets/scaffolds.scss

By including name:string and email:string, we have arranged for the User model
to have the form shown in Figure 2.2. (Note that there is no need to include a
parameter for id; Rails creates it automatically for use as the primary key in the
database.)

3. The name of the scaffold follows the convention of models, which are singular, rather than resources and
controllers, which are plural. Thus, we have User instead of Users.

2.2 The Users Resource 67

To proceed with the toy application, we first need to migrate the database using
rails db:migrate, as shown in Listing 2.4.

Listing 2.4: Migrating the database.

$ rails db:migrate
== CreateUsers: migrating ======================================
-- create_table(:users)

-> 0.0027s
== CreateUsers: migrated (0.0036s) =============================

The effect of Listing 2.4 is to update the database with our new users data model.
(We’ll learn more about database migrations starting in Section 6.1.1.)

Having run the migration in Listing 2.4, we can run the local webserver in a sepa-
rate tab (Figure 1.15). Users of the cloud IDE should first add the same configuration
as in Section 1.2.2 to allow the toy app to be served (Listing 2.5).

Listing 2.5: Allowing connections to the local web server.
config/environments/development.rb

Rails.application.configure do
.
.
.
Allow Cloud9 connections.
config.hosts.clear

end

Then run the Rails server as in Section 1.2.2:

$ rails server

Now the toy application should be available on the local server as described in
Section 1.2.2. In particular, if we visit the root URL at / (read “slash”, as noted
in Section 1.2.4), we get the same “hello, world!” page shown in Figure 1.20.

68 Chapter 2: A Toy App

2.2.1 A User Tour

In generating the Users resource scaffolding in Section 2.2, Rails created a large num-
ber of pages for manipulating users. For example, the page for listing all users is at
/users, and the page for making a new user is at /users/new. The rest of this section is
dedicated to taking a whirlwind tour through these user pages. As we proceed, it may
help to refer to Table 2.1, which shows the correspondence between pages and URLs.

We start with the page that shows all the users in our application, called index and
located at /users. As you might expect, initially there are no users at all (Figure 2.4).

Table 2.1: The correspondence between pages and URLs for the Users resource.

URL Action Purpose

/users index page to list all users
/users/1 show page to show user with id 1
/users/new new page to make a new user
/users/1/edit edit page to edit user with id 1

Figure 2.4: The initial index page for the Users resource (/users).

2.2 The Users Resource 69

To make a new user, we can click on the New User link in Figure 2.4 to visit the
new page at /users/new, as shown in Figure 2.5. In Chapter 7, this will become the
user signup page.

We can create a user by entering name and email values in the text fields and then
clicking the Create User button. The result is the user show page at /users/1, as seen in
Figure 2.6. (The green welcome message is accomplished using the flash, which we’ll
learn about in Section 7.4.2.) Note that the URL is /users/1; as you might suspect,
the number 1 is simply the user’s id attribute from Figure 2.2. In Section 7.1, this
page will become the user’s profile page.

To change a user’s information, we click the Edit link to visit the edit page at
/users/1/edit (Figure 2.7). By modifying the user information and clicking the Update
User button, we arrange to change the information for the user in the toy application
(Figure 2.8). (As we’ll see in detail starting in Chapter 6, this user data is stored in a
database back end.) We’ll add user edit/update functionality to the sample application
in Section 10.1.

Now we’ll create a second user by revisiting the new page at /users/new and
submitting a second set of user information. The resulting user index is shown in

Figure 2.5: The new user page (/users/new).

70 Chapter 2: A Toy App

Figure 2.6: The page to show a user (/users/1).

Figure 2.7: The user edit page (/users/1/edit).

2.2 The Users Resource 71

Figure 2.8: A user with updated information.

Figure 2.9. In Section 7.1, we will develop the user index into a more polished page
for showing all users.

Having shown how to create, show, and edit users, we come finally to destroying
them (Figure 2.10). You should verify that clicking on the link in Figure 2.10 destroys
the second user, yielding an index page with only one user. (If it doesn’t work, be sure
that JavaScript is enabled in your browser; Rails uses JavaScript to issue the request
needed to destroy a user.) Section 10.4 adds user deletion to the sample app, taking
care to restrict its use to a special class of administrative users.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers at https://
www.railstutorial.org/aw-solutions.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

https://www.railstutorial.org/aw-solutions
https://www.railstutorial.org/aw-solutions

72 Chapter 2: A Toy App

Figure 2.9: The user index page (/users) with a second user.

Figure 2.10: Destroying a user.

2.2 The Users Resource 73

1. (For readers who know CSS) Create a new user, then use your browser’s HTML
inspector to determine the CSS id for the text “User was successfully created.”
What happens when you refresh your browser?

2. What happens if you try to create a user with a name but no email address?

3. What happens if you try create a user with an invalid email address, like
“@example.com”?

4. Destroy each of the users created in the previous exercises. Does Rails display a
message by default when a user is destroyed?

2.2.2 MVC in Action

Now that we’ve completed a quick overview of the Users resource, let’s examine
one particular part of it in the context of the model-view-controller (MVC) pattern
introduced in Section 1.2.3. Our strategy will be to describe the results of a typical
browser hit—a visit to the user index page at /users—in terms of MVC (Figure 2.11).

Here is a summary of the steps shown in Figure 2.11:

1. The browser issues a request for the /users URL.

2. Rails routes /users to the index action in the Users controller.

3. The index action asks the User model to retrieve all users (User.all).
4. The User model pulls all the users from the database.

5. The User model returns the list of users to the controller.

6. The controller captures the users in the @users variable, which is passed to the
index view.

7. The view uses embedded Ruby to render the page as HTML.

8. The controller passes the HTML back to the browser.4

Now let’s take a look at the these steps in more detail. We start with a request issued
from the browser—that is, the result of typing a URL in the address bar or clicking
on a link (Step 1 in Figure 2.11). This request hits the Rails router (Step 2), which

4. Some references indicate that the view returns the HTML directly to the browser (via a webserver such
as Apache or Nginx). Regardless of the implementation details, I find it helpful to think of the controller as
a central hub through which all the application’s information flows.

74 Chapter 2: A Toy App

View
(index.html.erb)

6 7

5

index

HTML

2

8

1 /users

Rails
router

3
4

@users

User.all

HTML

Controller
(users_controller.rb)

Model
(user.rb)

Database

Figure 2.11: A detailed diagram of MVC in Rails.

dispatches the request to the proper controller action based on the URL (and, as we’ll
see in Box 3.2, the type of request). The code to create the mapping of user URLs to
controller actions for the Users resource appears in Listing 2.6. This code effectively
sets up the table of URL/action pairs seen in Table 2.1. (The strange notation :users
is a symbol, which we’ll learn about in Section 4.3.3.)

Listing 2.6: The Rails routes, with a rule for the Users resource.
config/routes.rb

Rails.application.routes.draw do
resources :users
root 'application#hello'

end

http://index.html.erb

2.2 The Users Resource 75

While we’re looking at the routes file, let’s take a moment to associate the root
route with the users index, so that “slash” goes to /users. Recall from Listing 2.3 that
we added the root route

root 'application#hello'

so that the root route went to the hello action in the Application controller. In the
present case, we want to use the index action in the Users controller, which we can
arrange using the code shown in Listing 2.7.

Listing 2.7: Adding a root route for users.
config/routes.rb

Rails.application.routes.draw do
resources :users
root 'users#index'

end

A controller contains a collection of related actions, and the pages from the tour
in Section 2.2.1 correspond to actions in the Users controller. The controller gener-
ated by the scaffolding is shown schematically in Listing 2.8. Note the code class
UsersController < ApplicationController, which is an example of a Ruby
class with inheritance. (We’ll discuss inheritance briefly in Section 2.3.4 and cover both
subjects in more detail in Section 4.4.)

Listing 2.8: The Users controller in schematic form.
app/controllers/users_controller.rb

class UsersController < ApplicationController
.
.
.
def index

.

.

.
end

76 Chapter 2: A Toy App

def show
.
.
.

end

def new
.
.
.

end

def edit
.
.
.

end

def create
.
.
.

end

def update
.
.
.

end

def destroy
.
.
.

end
end

You might notice that there are more actions than there are pages. The index, show,
new, and edit actions all correspond to pages from Section 2.2.1, but there are addi-
tional create, update, and destroy actions as well. These actions don’t typically
render pages (although they can); instead, their main purpose is to modify information
about users in the database.

This full suite of controller actions, summarized in Table 2.2, represents the imple-
mentation of the REST architecture in Rails (Box 2.2), which is based on the idea
of representational state transfer, a concept identified and named by computer scientist

2.2 The Users Resource 77

Table 2.2: RESTful routes provided by the Users resource in Listing 2.6.

HTTP request URL Action Purpose

GET /users index page to list all users
GET /users/1 show page to show user with id 1
GET /users/new new page to make a new user
POST /users create create a new user
GET /users/1/edit edit page to edit user with id 1
PATCH /users/1 update update user with id 1
DELETE /users/1 destroy delete user with id 1

Roy Fielding.5 Note from Table 2.2 that there is some overlap in the URLs; for exam-
ple, both the user show action and the update action correspond to the URL /users/1.
The difference between them is the HTTP request method they respond to. We’ll
learn more about HTTP request methods starting in Section 3.3.

Box 2.2: REpresentational State Transfer (REST)

If you read much about Ruby on Rails web development, you’ll see a lot of refer-
ences to “REST,” which is an acronym for REpresentational State Transfer. REST is
an architectural style for developing distributed, networked systems and software
applications such as the World Wide Web and web applications. Although REST
theory is rather abstract, in the context of Rails applications REST means that most
application components (such as users and microposts) are modeled as resources
that can be created, read, updated, and deleted—operations that correspond both
to the CRUD operations of relational databases and to the four fundamental HTTP
request methods: POST, GET, PATCH, and DELETE. (We’ll learn more about HTTP
requests in Section 3.3 and especially Box 3.2.)

As a Rails application developer, the RESTful style of development helps you
make choices about which controllers and actions to write: You simply structure
the application using resources that get created, read, updated, and deleted. In
the case of users and microposts, this process is straightforward, since they are
naturally resources in their own right. In Chapter 14, we’ll see an example where

5. Fielding, Roy Thomas. Architectural Styles and the Design of Network-Based Software Architectures. Doctoral
dissertation, University of California, Irvine, 2000.

78 Chapter 2: A Toy App

REST principles allow us to model a subtler problem, “following users,” in a natural
and convenient way.

To examine the relationship between the Users controller and the User model,
let’s focus on the index action, shown in Listing 2.9. (Learning how to read code even
when you don’t fully understand it is an important aspect of technical sophistication
(Box 1.2).)

Listing 2.9: The simplified user index action for the toy application.
app/controllers/users_controller.rb

class UsersController < ApplicationController
.
.
.
def index
@users = User.all

end
.
.
.

end

This index action includes the line @users = User.all (Step 3 in Figure 2.11),
which asks the User model to retrieve a list of all the users from the database (Step 4),
and then places them in the variable @users (pronounced “at-users”) (Step 5).

The User model itself appears in Listing 2.10. Although it is rather plain, it comes
equipped with a large amount of functionality because of inheritance (Section 2.3.4
and Section 4.4). In particular, by using the Rails library called Active Record, the code
in Listing 2.10 arranges for User.all to return all the users in the database.

Listing 2.10: The User model for the toy application.
app/models/user.rb

class User < ApplicationRecord
end

2.2 The Users Resource 79

Once the @users variable is defined, the controller calls the view (Step 6), shown
in Listing 2.11. Variables that start with the @ sign, called instance variables, are auto-
matically available in the views; in this case, the index.html.erb view in Listing 2.11
iterates through the @users list and outputs a line of HTML for each one. (Remem-
ber, you aren’t supposed to understand this code right now. It is shown only for
purposes of illustration.)

Listing 2.11: The view for the users index.
app/views/users/index.html.erb

<p id="notice"><%= notice %></p>

<h1>Users</h1>

<table>
<thead>

<tr>
<th>Name</th>
<th>Email</th>
<th colspan="3"></th>

</tr>
</thead>

<tbody>
<% @users.each do |user| %>

<tr>
<td><%= user.name %></td>
<td><%= user.email %></td>
<td><%= link_to 'Show', user %></td>
<td><%= link_to 'Edit', edit_user_path(user) %></td>
<td><%= link_to 'Destroy', user, method: :delete,

data: { confirm: 'Are you sure?' } %></td>
</tr>

<% end %>
</tbody>

</table>

<%= link_to 'New User', new_user_path %>

The view converts its contents to HTML (Step 7), which is then returned by the
controller to the browser for display (Step 8).

http://index.html.erb
http://app/views/users/index.html.erb

80 Chapter 2: A Toy App

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers at https://
www.railstutorial.org/aw-solutions.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. By referring to Figure 2.11, write out the analogous steps for visiting the URL
/users/1/edit.

2. Find the line in the scaffolding code that retrieves the user from the database in
the previous exercise. Hint: It’s in a special location called set_user.

3. What is the name of the view file for the user edit page?

2.2.3 Weaknesses of this Users Resource

Though good for getting a general overview of Rails, the scaffold Users resource
suffers from a number of severe weaknesses.

• No data validations. Our User model accepts data such as blank names and
invalid email addresses without complaint.

• No authentication. We have no notion of logging in or out, and no way to
prevent any user from performing any operation.

• No tests. This isn’t technically true—the scaffolding includes rudimentary tests—
but the generated tests don’t test for data validation, authentication, or any other
custom requirements.

• No style or layout. There is no consistent site styling or navigation.

• No real understanding. If you understand the scaffold code, you probably
shouldn’t be reading this book.

2.3 The Microposts Resource
Having generated and explored the Users resource, we turn now to the associated
Microposts resource. Throughout this section, I recommend comparing the elements
of the Microposts resource with the analogous user elements from Section 2.2; you
should see that the two resources parallel each other in many ways. The RESTful
structure of Rails applications is best absorbed by this sort of repetition of form.
Indeed, seeing the parallel structure of Users and Microposts even at this early stage is
one of the prime motivations for this chapter.

https://www.railstutorial.org/aw-solutions
https://www.railstutorial.org/aw-solutions

2.3 The Microposts Resource 81

2.3.1 A Micropost Microtour

As with the Users resource, we’ll generate scaffold code for the Microposts resource
using rails generate scaffold, in this case implementing the data model from
Figure 2.3:6

$ rails generate scaffold Micropost content:text user_id:integer

invoke active_record
create db/migrate/<timestamp>_create_microposts.rb
create app/models/micropost.rb
invoke test_unit
create test/models/micropost_test.rb
create test/fixtures/microposts.yml
invoke resource_route
route resources :microposts
invoke scaffold_controller
create app/controllers/microposts_controller.rb
invoke erb
create app/views/microposts
create app/views/microposts/index.html.erb
create app/views/microposts/edit.html.erb
create app/views/microposts/show.html.erb
create app/views/microposts/new.html.erb
create app/views/microposts/_form.html.erb
invoke test_unit
create test/controllers/microposts_controller_test.rb
create test/system/microposts_test.rb
invoke helper
create app/helpers/microposts_helper.rb
invoke test_unit
invoke jbuilder
create app/views/microposts/index.json.jbuilder
create app/views/microposts/show.json.jbuilder
create app/views/microposts/_micropost.json.jbuilder
invoke assets
invoke scss
create app/assets/stylesheets/microposts.scss
invoke scss

identical app/assets/stylesheets/scaffolds.scss

To update our database with the new data model, we need to run a migration as in
Section 2.2:

6. As with the User scaffold, the scaffold generator for microposts follows the singular convention of Rails
models; thus, we have generate Micropost.

82 Chapter 2: A Toy App

$ rails db:migrate

== CreateMicroposts: migrating ===
-- create_table(:microposts)

-> 0.0023s
== CreateMicroposts: migrated (0.0026s) ======================================

Now we are in a position to create microposts in the same way we created users
in Section 2.2.1. As you might guess, the scaffold generator has updated the Rails
routes file with a rule for Microposts resource, as seen in Listing 2.12.7 As with users,
the resources :microposts routing rule maps micropost URLs to actions in the
Microposts controller, as seen in Table 2.3.

Listing 2.12: The Rails routes, with a new rule for Microposts resources.
config/routes.rb

Rails.application.routes.draw do
resources :microposts
resources :users
root 'users#index'

end

Table 2.3: RESTful routes provided by the Microposts resource in Listing 2.12.

HTTP request URL Action Purpose

GET /microposts index page to list all microposts
GET /microposts/1 show page to show micropost with id 1
GET /microposts/new new page to make a new micropost
POST /microposts create create a new micropost
GET /microposts/1/edit edit page to edit micropost with id 1
PATCH /microposts/1 update update micropost with id 1
DELETE /microposts/1 destroy delete micropost with id 1

7. The scaffold code may have extra blank lines compared to Listing 2.12. This is not a cause for concern, as
Ruby ignores such extra space.

2.3 The Microposts Resource 83

The Microposts controller itself appears in schematic form in Listing 2.13. Note
that, apart from having MicropostsController in place of UsersController,
Listing 2.13 is identical to the code in Listing 2.8. This is a reflection of the REST
architecture that is common to both resources.

Listing 2.13: The Microposts controller in schematic form.
app/controllers/microposts_controller.rb

class MicropostsController < ApplicationController
.
.
.
def index

.

.

.
end

def show
.
.
.

end

def new
.
.
.

end

def edit
.
.
.

end

def create
.
.
.

end

def update
.
.
.

end

84 Chapter 2: A Toy App

def destroy
.
.
.

end
end

To make some actual microposts, we click on New Micropost on the micropost
index page (Figure 2.12). We then enter information at the new microposts page,
/microposts/new, as seen in Figure 2.13.

At this point, go ahead and create a micropost or two, taking care to make sure that
at least one has a user_id of 1 to match the id of the first user created in Section 2.2.1.
The result should look something like Figure 2.14.

Figure 2.12: The micropost index page (/microposts).

2.3 The Microposts Resource 85

Figure 2.13: The new micropost page (/microposts/new).

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers at https://
www.railstutorial.org/aw-solutions.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. (For readers who know CSS) Create a new micropost, then use your browser’s
HTML inspector to determine the CSS id for the text “Micropost was successfully
created.” What happens when you refresh your browser?

2. Try to create a micropost with empty content and no user id.

3. Try to create a micropost with more than 140 characters of content (say, the first
paragraph from the Wikipedia article on Ruby).

4. Destroy the microposts from the previous exercises.

https://www.railstutorial.org/aw-solutions
https://www.railstutorial.org/aw-solutions

86 Chapter 2: A Toy App

Figure 2.14: The micropost index page with a couple of posts.

2.3.2 Putting the Micro in Microposts

Any micropost worthy of the name should have some means of enforcing the rules
governing the length of the post. Implementing this constraint in Rails is easy
with validations; to accept microposts with at most 140 characters (à la the original
design of Twitter), we use a length validation. At this point, you should open the file
app/models/micropost.rb in your text editor or IDE and fill it with the contents
of Listing 2.14.

Listing 2.14: Constraining microposts to be at most 140 characters.
app/models/micropost.rb

class Micropost < ApplicationRecord
validates :content, length: { maximum: 140 }

end

2.3 The Microposts Resource 87

Figure 2.15: Error messages for a failed micropost creation.

The code in Listing 2.14 may look rather mysterious—we’ll cover validations
more thoroughly starting in Section 6.2—but its effects are readily apparent if we go
to the new micropost page and enter more than 140 characters for the content of the
post. As seen in Figure 2.15, Rails renders error messages indicating that the micropost’s
content is too long. (We’ll learn more about error messages in Section 7.3.3.)

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers at https://
www.railstutorial.org/aw-solutions.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Try to create a micropost with the same long content used in a previous exercise
(Section 2.3.1). How has the behavior changed?

2. (For readers who know CSS) Use your browser’s HTML inspector to determine
the CSS id of the error message produced by the previous exercise.

https://www.railstutorial.org/aw-solutions
https://www.railstutorial.org/aw-solutions

88 Chapter 2: A Toy App

1
id content user_id id name email

microposts users

2
3

1
1
2

1
2

Michael Hartl mhartl@example.com
foo@bar.comFoo Bar

First post!
Second post
Another post

Figure 2.16: The association between microposts and users.

2.3.3 A User has_many Microposts

One of the most powerful features of Rails is the ability to form associations between
different data models. In the case of our User model, each user potentially has
many microposts. We can express this relationship in code by updating the User and
Micropost models as in Listing 2.15 and Listing 2.16, respectively.

Listing 2.15: A user has many microposts.
app/models/user.rb

class User < ApplicationRecord
has_many :microposts

end

Listing 2.16: A micropost belongs to a user.
app/models/micropost.rb

class Micropost < ApplicationRecord
belongs_to :user
validates :content, length: { maximum: 140 }

end

We can visualize the result of this association in Figure 2.16. Because of the
user_id column in the microposts table, Rails (using Active Record) can infer
the microposts associated with each user.

In Chapter 13 and Chapter 14, we will use the association of users and microposts
both to display all of a user’s microposts and to construct a Twitter-like micropost feed.
For now, we can examine the implications of the user–micropost association by using

2.3 The Microposts Resource 89

the console, which is a useful tool for interacting with Rails applications. We first invoke
the console with rails console at the command line, and then retrieve the first user
from the database using User.first (putting the results in the variable first_user),
as shown in Listing 2.17.8 (I include exit in the last line just to demonstrate how to
exit the console. On most systems, you can also use Ctrl-D for the same purpose.)9

Listing 2.17: Investigating the state of the application using the Rails console.

$ rails console
>> first_user = User.first

(0.5ms) SELECT sqlite_version(*)
User Load (0.2ms) SELECT "users".* FROM "users" ORDER BY "users"."id" ASC
LIMIT ? [["LIMIT", 1]]
=> #<User id: 1, name: "Michael Hartl", email: "michael@example.org",
created_at: "2019-08-20 00:39:14", updated_at: "2019-08-20 00:41:24">
>> first_user.microposts
Micropost Load (3.2ms) SELECT "microposts".* FROM "microposts" WHERE
"microposts"."user_id" = ? LIMIT ? [["user_id", 1], ["LIMIT", 11]]
=> #<ActiveRecord::Associations::CollectionProxy [#<Micropost id: 1, content:
"First micropost!", user_id: 1, created_at: "2019-08-20 02:04:13", updated_at:
"2019-08-20 02:04:13">, #<Micropost id: 2, content: "Second micropost",
user_id: 1, created_at: "2019-08-20 02:04:30", updated_at: "2019-08-20
02:04:30">]>
>> micropost = first_user.microposts.first

Micropost Load (0.2ms) SELECT "microposts".* FROM "microposts" WHERE
"microposts"."user_id" = ? ORDER BY "microposts"."id" ASC LIMIT ?
[["user_id", 1], ["LIMIT", 1]]
=> #<Micropost id: 1, content: "First micropost!", user_id: 1, created_at:
"2019-08-20 02:04:13", updated_at: "2019-08-20 02:04:13">
>> micropost.user
=> #<User id: 1, name: "Michael Hartl", email: "michael@example.org",
created_at: "2019-08-20 00:39:14", updated_at: "2019-08-20 00:41:24"
>> exit

There’s a lot going on in Listing 2.17, and teasing out the relevant parts is a good
exercise in technical sophistication (Box 1.2). The output includes the actual return

8. Your console prompt might be something like 2.6.3 :001 >, but the examples use >> since Ruby versions
will vary.

9. As in the case of Ctrl-C, the capital “D” refers to the key on the keyboard, not the capital letter, so you
don’t have to hold down the Shift key along with the Ctrl key.

90 Chapter 2: A Toy App

values, which are raw Ruby objects, as well as the structured query language (SQL)
code that produced them.

In addition to retrieving the first user with User.first, Listing 2.17 shows
two other things: (1) how to access the first user’s microposts using the code
first_user.microposts, which automatically returns all the microposts with
user_id equal to the id of first_user (in this case, 1); and (2) how to return the
user corresponding to a particular post using micropost.user. We’ll learn much
more about the Ruby involved in Listing 2.17 in Chapter 4, and more about the
association facilities in Active Record in Chapter 13 and Chapter 14.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers at https://
www.railstutorial.org/aw-solutions.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Edit the user show page to display the content of the user’s first micropost. (Use
your technical sophistication (Box 1.2) to guess the syntax based on the other
content in the file.) Visit /users/1 to confirm that it worked.

2. The code in Listing 2.18 shows how to add a validation for the presence of micro-
post content to ensure that microposts can’t be blank. Verify that you get the
behavior shown in Figure 2.17.

3. Update Listing 2.19 by replacing FILL_IN with the appropriate code to validate
the presence of name and email attributes in the User model (Figure 2.18).

Listing 2.18: Code to validate the presence of micropost content.
app/models/micropost.rb

class Micropost < ApplicationRecord
belongs_to :user
validates :content, length: { maximum: 140 },

presence: true
end

https://www.railstutorial.org/aw-solutions
https://www.railstutorial.org/aw-solutions

2.3 The Microposts Resource 91

Figure 2.17: The effect of a micropost presence validation.

Listing 2.19: Adding presence validations to the User model.
app/models/user.rb

class User < ApplicationRecord
has_many :microposts
validates FILL_IN, presence: true # Replace FILL_IN with the right code.
validates FILL_IN, presence: true # Replace FILL_IN with the right code.

end

2.3.4 Inheritance Hierarchies

We end our discussion of the toy application with a brief description of the controller
and model class hierarchies in Rails. This discussion will make more sense if you

92 Chapter 2: A Toy App

Figure 2.18: The effect of presence validations on the User model.

have some experience with object-oriented programming (OOP), particularly classes.
Don’t worry if it’s confusing for now; we’ll discuss these ideas more thoroughly in
Section 4.4.

We start with the inheritance structure for models. Comparing Listing 2.20 and
Listing 2.21, we see that both the User model and the Micropost model inherit (via
the left angle bracket <) from ApplicationRecord, which in turn inherits from
ActiveRecord::Base, which is the base class for models provided by Active Record;
a diagram summarizing this relationship appears in Figure 2.19. By inheriting from
ActiveRecord::Base, our model objects gain the ability to communicate with the
database, treat the database columns as Ruby attributes, and so on.

2.3 The Microposts Resource 93

ActiveRecord::Base

ApplicationRecord

MicropostUser

Figure 2.19: The inheritance hierarchy for the User and Micropost models.

Listing 2.20: The User class, highlighting inheritance.
app/models/user.rb

class User < ApplicationRecord
.
.
.

end

Listing 2.21: The Micropost class, highlighting inheritance.
app/models/micropost.rb

class Micropost < ApplicationRecord
.
.
.

end

The inheritance structure for controllers is essentially the same as that for
models. Comparing Listing 2.22 and Listing 2.23, we see that both the Users
controller and the Microposts controller inherit from the Application controller.
Examining Listing 2.24, we see that ApplicationController itself inherits from
ActionController::Base, which is the base class for controllers provided by the
Rails library Action Pack. The relationships between these classes are illustrated in
Figure 2.20.

94 Chapter 2: A Toy App

ActionController::Base

ApplicationController

MicropostsControllerUsersController

Figure 2.20: The inheritance hierarchy for the Users and Microposts controllers.

Listing 2.22: The UsersController class, highlighting inheritance.
app/controllers/users_controller.rb

class UsersController < ApplicationController
.
.
.

end

Listing 2.23: The MicropostsController class, highlighting inheritance.
app/controllers/microposts_controller.rb

class MicropostsController < ApplicationController
.
.
.

end

Listing 2.24: The ApplicationController class, highlighting inheritance.
app/controllers/application_controller.rb

class ApplicationController < ActionController::Base
.
.
.

end

2.3 The Microposts Resource 95

As with model inheritance, both the Users and Microposts controllers gain
a large amount of functionality by inheriting from a base class (in this case,
ActionController::Base), including the capability to manipulate model objects,
filter inbound HTTP requests, and render views as HTML. Since all Rails controllers
inherit from ApplicationController, all rules defined in the Application controller
automatically apply to every action in the application. For example, in Section 9.1
we’ll see how to include helpers for logging in and logging out of all of the sample
application’s controllers.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers at https://
www.railstutorial.org/aw-solutions.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. By examining the contents of the Application controller file, find the line that
causes ApplicationController to inherit from ActionController::Base.

2. Is there an analogous file containing a line where ApplicationRecord inherits
from ActiveRecord::Base? Hint: It would probably be a file called something
like application_record.rb in the app/models directory.

2.3.5 Deploying the Toy App

With the completion of the Microposts resource, now is a good time to push the
repository up to GitHub:

$ git status # It's a good habit to check the status before adding
$ git add -A
$ git commit -m "Finish toy app"
$ git push

Ordinarily, you should make smaller, more frequent commits, but for the purposes of
this chapter a single big commit at the end is fine.

At this point, you can also deploy the toy app to Heroku as is described in
Section 1.4:

$ git push heroku

https://www.railstutorial.org/aw-solutions
https://www.railstutorial.org/aw-solutions

96 Chapter 2: A Toy App

(This assumes you created the Heroku app in Section 2.1. Otherwise, you should run
heroku create and then git push heroku master.)

At this point, visiting the page at Heroku yields an error message, as shown in
Figure 2.21. We can track down the problem by inspecting the Heroku logs:

$ heroku logs

Scrolling up in the logs, you should see a line that includes something like this:

ActionView::Template::Error (PG::UndefinedTable: ERROR: relation "users" does
not exist

This line is a big hint that there is a missing users table. Luckily, we learned how to
handle that problem way back in Listing 2.4: All we need to do is run the database
migrations (which will create the microposts table as well).

Figure 2.21: An error page at Heroku.

2.3 The Microposts Resource 97

The way to execute this sort of command at Heroku is to prefix the usual Rails
command with heroku run, like this:

$ heroku run rails db:migrate

This updates the database at Heroku with the user and micropost data models as
required. After running the migration, you should be able to use the toy app in
production, with a real PostgreSQL database back end (Figure 2.22).10

Finally, if you completed the exercises in Section 2.3.3, you will have to remove
the code to display the first user’s micropost to get the app to load properly. In this case,
simply delete the offending code, make another commit, and push again to Heroku.

Figure 2.22: Running the toy app in production.

10. The production database should work without any additional configuration, but in fact some con-
figuration is recommended by the official Heroku documentation. We’ll take care of this detail in
Section 7.5.3.

98 Chapter 2: A Toy App

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers at https://
www.railstutorial.org/aw-solutions.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Create a few users on the production app.

2. Create a few production microposts for the first user.

3. By trying to create a micropost with content exceeding 140 characters, confirm
that the validation from Listing 2.14 works on the production app.

2.4 Conclusion
We’ve come now to the end of the high-level overview of a Rails application. The
toy app developed in this chapter has several strengths and a host of weaknesses.

Strengths

• High-level overview of Rails

• Introduction to MVC

• First taste of the REST architecture

• Beginning data modeling

• A live, database-backed web application in production

Weaknesses

• No custom layout or styling

• No static pages (such as “Home” or “About”)

• No user passwords

• No user images

• No logging in

• No security

• No automatic user/micropost association

https://www.railstutorial.org/aw-solutions
https://www.railstutorial.org/aw-solutions

2.4 Conclusion 99

• No notion of “following” or “followed”

• No micropost feed

• No meaningful tests

• No real understanding

The rest of this tutorial is dedicated to building on the strengths and eliminating the
weaknesses.

2.4.1 What We Learned in this Chapter

• Scaffolding automatically creates code to model data and interact with it through
the web.

• Scaffolding is good for getting started quickly but is bad for understanding.

• Rails uses the model-view-controller (MVC) pattern for structuring web appli-
cations.

• As interpreted by Rails, the REST architecture includes a standard set of URLs
and controller actions for interacting with data models.

• Rails supports data validations to place constraints on the values of data model
attributes.

• Rails comes with built-in functions for defining associations between different
data models.

• We can interact with Rails applications at the command line using the Rails
console.

This page intentionally left blank

Index

Symbols
..(double dots), 285–286
\\ (literal backslash), 163
\n (newline), 160, 162–163
||(or) operator, 165
||= (or equals) operator, 398
|i|, block variable syntax, 175–176
+ (plus) operator, 161
== (equality comparison operator), 172, 442
=> (hashrocket), hashes, 179, 180
!(not) operator, 165
#{ } (interpolation) of strings, 161–162
%w [] technique, arrays of strings, 280–281
&& (“and”) operator, 63, 165
[] (square brackets), arrays, 171
{ } (curly braces), 175, 179
<< (shovel operator), arrays, 173
>> (append) command, 9

A
about action

generating controllers, 110
testing static pages, 125–126

About page
adding titles for static pages, 132–134
testing static pages, 124–125, 127–128
viewing with embedded Ruby title,

137–139

viewing with HTML structure removed,
140–141

Access control
admin, 534
micropost, 658–661
tests for relationships, 757–758

Account activation
controller, 541–542
data model, 542–548
edit action, 571–574
email generally, 549
email in production, 581–584
exercises, 542
generalizing authenticated? 565–570
mailer templates, 549–554
modeling as resource, 541–549
overview of, 539
previewing email, 554–558
review, 584–585
sequence for, 539–540
testing and refactoring, 574–581
testing email, 558–561
token callback, 545–547
updating create action, 561–565

account_activation method, 549–554
Accounts

creating/configuring Heroku, 51
signing up for GitHub, 39

783

784 Index

Actions. See also by individual types
adding controller action, 28–31, 739
adding for Contact page, 238
creating set of, 108
generating controllers, 110
Micropost controller, 83–84
organizing functions, 116–117
routes and, 113–115
Sessions controller, 376–377, 384–385
testing static pages, 125–127
Users controller, 71–72, 76–77, 249

activate method, 576, 579
activated attribute
activated_at timestamp, 571
User model, 543

Activation digest
account activation data model, 543–544
account activation sequence, 539–540
activating account, 566–567
activation token callback, 545–547
testing account activation, 580

Active Record
ApplicationRecord class inherits from

ActiveRecord::Base, 92–94
associations, 631
creating, saving, and finding data objects, 257
creating user objects, 265
finding users, 268–269
uniqueness validation and, 289
User model based on

ActiveRecord::Base, 264
Active Storage

adding gem for validation, 696
has_many_attached method, 690–691

add_index, 291
add_password_digest_to_users, 297
admin attribute

deleting users, 526–530
restricting destroy action to administrative

users, 533–536
signup failure page, 344, 346

Administrative users
deleting users, 526–530
granting users administrative access, 709

making fixture user an admin, 533–534
restricting destroy action to administrative

users, 533–536
Advanced login. See Login, advanced
Ajax

buttons for follow/unfollow, 759–761
form for follow/unfollow, 761–763
responding to Ajax requests in Relationships

controller, 763
alert-danger

form submission error message, 348
iterating through flash hash in console, 359

Alignment, applying universal styling on pages,
216

all method, finding users, 269
Amazon Web Services. See AWS (Amazon Web

Services)
“And” (&&) operator, 63, 165
Anonymous function, ”stabby lambda” syntax,

641
API, Ruby, 160
Append (>>) command, 9
ApplicationController class

deploying toy app, 63
inheritance hierarchy, 93–95

application.css, 154–155
ApplicationHelper class, 156
ApplicationMailer class, 550–551
ApplicationRecord class

model file for User model, 264
User class inherits from, 92–93

Arrays
arrays of strings (%w []) technique, 280–281
blocks and, 175–178
constructors and, 186
hashes resemble, 178–183
overview of, 170–173
ranges and, 173–174

aside tag, adding sidebar to profile page,
327–331

assert method, validity test, 273
assert_difference method, 364–365, 535
assert_equal method, 470
assert_match method, 559, 657

Index 785

assert_no_difference method, 352–354
assert_not method, 274–275
assert_select

compared with asset_match, 657
testing invalid signup submission,

352–355
testing user login with valid information, 420
uses of, 246–248

assert_template, 353
Asset directories, 226
Asset pipeline

defining variables using Sass, 231–233
directories, 226
manifest files, 226–228
nested elements in stylesheets, 229–231
nesting and variables used in converting

SCSS file, 233–235
overview of, 225–226
preprocessor engines, 228
production efficiency of, 228
Sass and, 228–229

Assignment operators, 398
assigns method, testing account activation,

576
Associations

Active Record, 631
adding followers association, 733–735
adding following association, 730–732
belongs_to and has_many examples,

636–637
micropost, 634–638
between microposts and users, 88–91
summary of micropost association methods,

635
summary of relationship association methods,

728
testing followers association, 735
testing following utility methods, 732–733
User/Micropost, 634
between users and relationships, 725–728

attr_accessible method, 344
attr_accessor method

activation account, 546–547
database migrations, 258

User class, 195–197
attribute variable

activating accounts, 567
User class, 196

authenticate method, 303–305
authenticated? method

account activation and, 540
data model for account activation, 543
generalizing for activating accounts, 565–570
storing user id in cookies, 442–443
testing logging out, 452–453
testing nonexistent digest, 454–455
testing remember branch, 470
updating to handle nonexistent digest, 455

Authentication. See also Account activation
commenting out authentication code,

420–421
comparing with authorization, 491
data model for account activation, 543
in login system, 256–257
Rails using HTTP, 54
of users, 303–305, 383–385, 387–388

authenticity token, in signup form, 339
Authorization

adding store_location to logged-in user,
505–506

create action used with friendly
forwarding, 506–507

current_user? method, 500–502
friendly forwarding, 502–503
implementing friendly forwarding, 504
logging in test user, 494–495
overview of, 491
protecting edit/update pages, 499
requiring login, 491–494
requiring right user, 497–498
testing editing by wrong user, 498
testing friendly forwarding, 503–504
testing Micropost controller, 659
testing protection of edit and update,

495–497
Automated tests

overview of, 118
using Guard, 148–151

786 Index

AWS (Amazon Web Services)
configuring for image upload, 706–711
downloading, 208–210
hiding all images, 220
IAM (Identity and Access Management),

707–711
production AWS, 711–714
signing up for, 707

B
Bang methods, array, 172
base_title, 155–158
Basecamp collaboration tool, 2
Bash, Unix command line and, 14
BasicObject superclass, 187–188
bcrypt

creating password digest, 416–417
creating password digest with bcrypt gem,

298
storing user id in cookies with bcrypt gem,

441–442
Before filters

commenting out, 495
for correct user, 500–502
implementing with before_action

command, 491
protecting edit/update pages, 499–500
requiring logged-in users, 491–494
restricting destroy action to administrative

users, 533–536
uncommenting, 496

before_action command, 491
before_create callback, activation tokens,

545–546
before_save callback, converting email to

lowercase, 292, 294–295, 545
belongs_to method

association model, 627
user/relationship associations, 634–637,

725–728
blank? method, modifying built-in classes, 191
Block variable syntax (|i|), 175–176
Blocks, 175–178
Booleans

admin attribute, 526–527
checking login status, 424
control flow with, 165
current_user? Boolean method, 500–501
following? Boolean method, 731–733

Bootstrap
adding Bootstrap CSS, 213–214
adding bootstrap-sass gem to Gemfile,

212–213
applying CSS to site logo, 218–219
commenting out embedded Ruby, 219
creating dropdown menus, 404–406
creating menu, 401–402
hiding all images, 220
overview of, 210–212
pagination styles, 516
partials used for HTML shim, 221
partials used for site footer, 222–225
partials used for site header, 221–222
partials used for stylesheets and header,

220–221
replacing default head with a call to render,

225
for typographic effect, 216–218
for universal styling on all pages, 214–216

bootstrap-sass gem, 212–213
box_sizing mixin, 314–315, 333
Branches, GitHub, 43–44
Built-in classes, modifying, 190–192
Built-in helpers, 154–155
bundle install

Heroku setup for deployment, 51
installing gems, 22
for sample app, 103
without production gems, 51, 62

bundle update
installing gems, 22
planning toy app, 62
for sample app, 104

Bundler
installing gems for new Rails app, 17–22
planning toy app, 61–62

Buttons
Ajax buttons for follow/unfollow, 759–761

Index 787

standard buttons for follow/unfollow,
757–759

testing follow/unfollow buttons, 766–767
byebug gem, debug information, 322–323

C
Callback
before_save callback, 294–295
alternative implementation, 295
standardizing all lower-case addresses via, 292
token callback, 545–547

Cascading Style Sheets. See CSS (Cascading
Style Sheets)

Case
CamelCase for class names, 111
testing email uniqueness for case-insensitivity,

287–290
Certificate, SSL, 369
CGI.escape, escaping email, 554
change method, 260, 263
Character sets, unicode, 139
Characters
length returns number of string, 164
literal strings contain typed, 163
ranges work with, 174
strings contain, 160
symbols start with letter/using normal word,

180
check_expiration method, password reset,

611
Checkbox

making, 456–462
testing, 462–468

checkout command, 43–44
Classes

assigning to HTML elements, 205
CamelCase for names, 111
class methods, 186, 417–418
constructors, 185–187
Controller class, 192–195
hierarchy, 193
hierarchy and inheritance, 187–190, 193–194
mixing modules into, 170
modifying built-in, 190–192

static pages, 116
User class, 195–198

Clients, testing application code, 120
Cloud IDE

account activation email previews, 556–558
development environment on, 7
Git system setup, 34–35

Cloud9, AWS
creating new work environment with, 7–9
getting started with, 4–5

Code
commenting out, 219, 420–421
simplifying, 422
undoing, 112–113

Color, HTML, 218–219
Command-line

cloud IDE terminal, 7
conventions used in this book, 56–58
Heroku setup for deployment, 51–52

Comments
commenting out authentication code,

420–421
commenting out before filters, 495
commenting out embedded Ruby, 219
Ruby ignores, 160
signup failure page, 341

commit command, Git repository, 37, 45–47,
95

config.force_ssl, forcing browsers to use
SSL, 368–369

Configuration settings, installing Rails, 9–10
Console, AWS, 710–711
Console, Rails
console command, 89
creating user objects, 270–271
creating/authenticating user, 303–305
exploring strings, 160–162
iterating through flash hash in, 359
as learning tool, 159–160
making user profile page, 316–322
running in different environment, 313
simulating user session in, 400
simulating user sessions, 400
starting in sandbox for rollback, 264

788 Index

Constructors, 185–187
Contact page

code for, 142
layout links, 236–238

content field, in data model for toy app, 65
Content Security Policy (CSP), 140
Control flow, Booleans for, 165–166
Controllers

Account Activation, 541–542
actions in, 108
authorization tests for Micropost controller,

659
Controller class, 192–195
correcting invalid micropost on Home page,

677–678
creating Users controller, 248–250
destroy action in Micropost controller, 682
before filters use with, 493
generating for static page app, 109–112
inheritance hierarchy, 93–95
Micropost controller, 82–86
for password reset, 590–593
responding to Ajax requests in Relationships

controller, 763
test options, 121
user views browser hits using MVC, 74–75
Users controller, 76–78

Conventions, used in this book, 56–58
Cookies

creating permanent, 432–439
implementing sessions, 376
login with permanent, 439–448
session hijacking attacks and, 394
testing remember me checkbox, 465

cookies method, 432–439
cookies.permanent method, 439–441
correct_user, 498, 500–502
count

displaying number of microposts, 647
displaying signup error messages, 348–349
testing invalid signup submission, 352–355

create
account activation emails, 549
creating/authenticating users, 303–305

finished signup form, 355–358
friendly forwarding and, 506–507
handling signup failure, 341
microposts, 662–663
Microposts controller, 83
new session, 384–385
parameters in, 345
password reset, 596–599
profile page, 316–322
signup failure page, 339
testing invalid signup submission, 353
updating users, 561–565
user objects, 264–268
Users controller, 76–77

Create User button, 69–70
create_activation_digest method,

545–546, 549
create_table method, 260
created_at column

creating user objects, 265–268
Micropost migration with, 630
updating user objects, 271

Cross-site request forgery (CSRF) attack, 339
Cross-site scripting attacks (XSS), 140
Cryptography, persistent cookie sessions and,

432
CSP (Content Security Policy), 140
CSRF (cross-site request forgery) attack, 339
CSS (Cascading Style Sheets)

adding styling to users index, 511
applying to site logo, 218–219
commenting out embedded Ruby, 219
custom CSS. See Bootstrap
debug output using rules, 314–315
hiding all images, 220
HTML code produced by, 183–185
partials for stylesheets, 220–221
for remember me checkbox, 458
styling error messages, 349–350
styling microposts, 651–653
styling user show page with SCSS,

328–329
for typographic effect, 216–218
for universal styling on all pages, 214–216

Index 789

updating footer CSS, 414–416
user signup form, 334–335

Curly braces ({ }), 175, 179
current_user? 500–502
current_user

defining, 396–401
generalized authenticated? method,

569–570
subtle bugs, 451–453
testing remember branch, 468–471
updating for persistent sessions, 444–447

Custom CSS. See Bootstrap
Custom helpers, 155–156

D
Data, as resources in REST, 317
Data models

account activation, 542–548
associations between microposts and users,

88–91
creating User data model, 257–263
for following users, 719–725
inheritance structures, 92–93
Micropost model, 64–65, 627–628
for user relationships, 723–724
for web application, 64

Databases
creating micropost table in, 629–630
creating SQLite, 261–262
indices, 290–291
migrations, 257–263
reseeding user database, 528
sample of following data, 736–738
saving user object to, 265–266
seeding user database (db:seed), 515
working with long-term data storage in

Rails, 257
DB Browser, viewing SQLite database, 261–262
db/ directory, 263
db:migrate

creating Users resource, 66
migrating database, 105
migrating up, 261
rerunning migration, 263

undoing migration, 112–113
db:rollback:, 263
db:seed

reseeding user database, 528
sample of following data, 736–738
seeding user database, 515

Debug
adding CSS rules to output, 314–315
adding information to site layout, 312,

314–316
remembering user in login, 451–456
signup error messages, 345–346
signup failure page, 342–343

debugger, Users controller with, 322–324
Default scope, micropost, 638–641
Delete

administrative user privilege required,
526–530

destroy action, 530–533
microposts, 680–681
testing, 533–536
user objects, 267
users, 525–526

delete logout_path, 453
DELETE operation, HTTP, 114–115
DELETE requests, adding Users resource to

routes file, 319
deliveries array, 576
Dependability, advantages of Rails, 2
dependent: :destroy, micropost, 641–643
Deployment

with Heroku, 49–55
signup page, 367–373
testing suite before, 146
too early, 107–108
toy app, 63, 95–98

destroy
deleting microposts, 680–684
deleting user objects, 267
deleting users, 530–533
Microposts controller, 84
testing destroying users, 533–536
undoing code generation, 112
Users controller, 71–72, 76

790 Index

Development environment
account activation email previews, 555
as default console, 159, 313
restricting debug information to, 312

Devise gem, authentication with, 255
digest method

activation token callback, 546
use in fixtures, 417–418

Directory
asset directories, 226
conventions in this book for separators, 57
for Rails projects, 14
structure for newly created Rails app, 16–17

div, Home page element, 205–206
do.end, longer/multi-line blocks, 175–176
Don’t Repeat Yourself (DRY), code guideline,

135
Double dots (.), 285–286
Double-quoted strings, 161–164
downcase method

converting email to lowercase, 545
enforcing email uniqueness, 292–295

drop_table command, rollback migration,
263

Dropdown menus, 404–406
DRY (Don’t Repeat Yourself), code guideline,

135
Duck typing, object manipulation, 269
Duplicate email addresses, test for, 286–287

E
each method

email format validation, 281
hashes, 181–182

echo command
installing Rails, 9–10
printing strings, 162

Edit, GitHub, 44–45
edit action

account activation, 541, 571–574
editing users, 476–477
Microposts controller, 83
password reset, 607–609
testing protection of, 495–498
Users controller, 76–77

Edit form
HTML for, 479
partials use with, 482–483

Edit pages
friendly forwarding, 502–503
protecting, 499

edit view, 478, 482
Editing users

adding URL to ”Settings” link in site layout,
480–481

overview of, 476–480
partials use for, 481–483
successful edits, 486–488
testing editing by wrong user, 498
testing successful edits, 488
testing unsuccessful edits, 484–486
unsuccessful edits, 483–484
updating user editing errors, 668–670

elsif value, Booleans, 165
Email. See also Uniqueness validation, email

account activation, 549
account activation in production,

581–584
adding secure password, 295–305
development of password reset, 599
disallowing double dots in domain names,

285–286
first signup, 362
”forgot password” form, 599
Git system setup, 34
mailer and templates for password reset,

600–605
previewing, 554–558
production of password reset, 621–624
testing, 558–561
testing password reset, 605–606
as unique username, 257–261
user profile page with Gravatar, 324

email attribute
creating user objects, 265
data model for, 64
database migrations, 257–261
imposing constraints (validations) on, 271
signup failure page, 343
testing format validation, 280–286

Index 791

testing length validation, 278–280
testing presence validation, 276–277

@email variable, User class, 195–197
Embedded Ruby. See ERb (Embedded Ruby)
empty? method

signup error messages, 348–349
strings, 164–166

encrypted method, storing user id in cookies,
441

ENV variables, Heroku, 711
environment directory, for Rails project, 14
Environments, Rails

overview of, 313–314
types of, 159

Equality comparison operator (==), 172, 442
ERb (Embedded Ruby)

About page with embedded Ruby title,
137–139

commenting out, 219
filename extension for, 228
Help page with embedded Ruby title, 137
Home page with embedded Ruby title,

136–137
static page layouts and, 135

Error messages
object errors, 666–667
password reset errors, 668
presence validation, 276
routing error, 679
signup failure page, 346–351
styling, 349–350
Update form, 485
user editing errors, 668–670

Error page, at Heroku, 96–97
error_explanation, 349–350
Exceptions

finding users, 268
testing remember branch, 468–471

Expiration, of passwords, 625–626
expires date, cookies, 439–440

F
Failed login, flash message for, 388–390
faker gem, adding to Gemfile, 514–517

false value
Booleans, 165
nil object as only object with, 166

feed method, in User model, 671
Feeds. See Status feed
field_with_errors, 349–350
Filename extensions, for Sass and ERb, 228
Files

allowing only valid image formats, 699–701
checking file size with jQuery, 698–699

Filesystem navigator, cloud IDE, 7
Find

current user in a session, 399–400
current user with find method, 396–397
user objects, 268–269
users by name (find_by_name), 269
users with find method, 268–269

Finished signup form, successful signups,
355–358

First application
creating, 13–17
Hello, World! 28–33
model-view-controller (MVC), 27–28
rails server command, 22–27
using Bundler to install gems, 17–22

first method, 269
First signup, 361–364
first user variable, 89–90
Fixtures

activating by default, 548
adding 30 users to fixture file, 521
adding digest method for use with, 417–418
adding second user to fixture file, 497–498
downloading fixture image for use in tests,

695–696
for following/follower tests, 755
with generated microposts, 655–656
loading data into test database, 416–417
making fixture user an admin, 533–534
micropost, 639–640
removing contents of relationship fixture, 729
testing default, 291
testing empty file, 292
testing user login, 418–419

792 Index

Flash messages
adding to user signup form, 358–361
for failed login, 388–390
first signup, 362
testing flash behavior, 390–393

flash method, 358–361
Flash persistence, 390–392
follow method, 731–733, 744
follow_redirect! method, 365
followers

action, 750–751
adding followers action to User

Controller, 739
adding followers association, 733–735
pages for followed and followers,

748–750
partial for follower stats, 740–744
relationships, 723
rendering, 751–755
testing, 735, 755–757
testing followers association, 735

following
action, 750–751
adding following action to User

Controller, 739
adding following association, 730–732
pages for followed and followers,

748–750
relationships, 723
rendering, 751–755
testing, 732–733, 755–757

following? Boolean method, 731–733
Following users

adding followers association, 733–735
adding following and followers actions

to User Controller, 739
adding following association, 730–732
adding forms and stats to user profile,

746–748
Ajax buttons for follow/unfollow, 759–761
Ajax form for follow/unfollow, 761–763
associations between users and relationships,

725–728
conclusion, 780–782

creating/destroying following relationship
with JavaScript, 765

data model for, 719–725
degradation of form submission, 763–765
following and followers actions,

750–751
forms for follow/unfollow, 745–746
implementing status feed, 771–774
join method for making status feed, 780
overview of, 717–718
pages for followed and followers, 748–750
partial for follow/unfollow, 744
relationship model, 718–719
rendering following and followers,

751–755
responding to Ajax requests in Relationships

controller, 763
routes for user relationships, 744–745
sample data, 736–738
standard buttons for follow/unfollow,

757–759
stats, 738, 740–744
status feed, 768–771
subselects in implementing status feed,

774–779
testing followers association, 735
testing following utility methods, 732–733
testing following/follower, 755–757
testing status feed HTML, 779–780
testing Web interface, 765–768
validating relationships, 728–730
Web interface for, 736

footer
partial with links, 243
partials for site footer, 222–225
updating footer CSS, 414–416

forget method, adding to User model,
449–451

Forgetting users, 448–451
”Forgot password” form, 596, 599
form tag, HTML, 338–339
form_with

HTML for signup, 335–339
user signup form, 332–335

Index 793

Formats
allowing only valid image formats, 699–701
validating email address, 280–286
validating email format, 282–283

formatted_email method, User class,
196–197

Forms
adding to user profile, 746–748
Ajax form for follow/unfollow, 761–763
for basic login, 380–383
degradation of form submission, 763–765
for follow/unfollow, 745–746
”forgot password” form, 596
new password resets form, 593–595
password reset, 610

Forms, signup page
HTML, 335–339
overview of, 331–332
using form_with, 332–335

Friendly forwarding
adding store_location to logged-in user,

505–506
code for implementing, 504
create action used with, 506–507
overview of, 502–503
testing, 503–504

from address, mailer with new default, 550–551
full_title helper, 155–157, 169–170,

247–248
full-table scan, 290
Functions

as methods in Ruby, 164
packaging, 393
static pages, 116

G
gem command, 10–11, 20
Gemfile

adding bootstrap-sass gem, 212–213
adding faker gem, 514–517
Heroku setup for deployment, 50–51
installing gems for new Rails app, 17–22
making password digest, 298
overview of, 101

planning toy app, 61
setting up static page app, 102–104
version control when deploying to Heroku,

372–373
.gemrc file, 10
Gems

for Active Storage validation, 696
adding bootstrap-sass gem, 212–213
for image processing, 702–703
installing, 10–11
installing with Bundler, 20
for new Rails app, 17–22
planning toy app, 62

generate
script, 109–112
Sessions controller, 378
Static Pages controller, 110, 146
testing, 122
undoing, 112
user mailer, 549
Users controller, 248–249
Users resource, 65–66

generate model, 259, 628
generate scaffold

Microposts resource, 81–82
as scaffold generator, 60
Users resource, 66

GET operation, HTTP, 114–115
GET requests

adding Users resource to routes file, 317–321
testing invalid signup submission, 352–354

Getter methods, User class, 195
Git. See also GitHub

advantages of, 38–39
Heroku deployment using, 52–53
installation and setup, 34–38
putting toy app under version control, 62–63
version control with, 33–34

git add -A command, 36, 46
git branch command, 43
git checkout (git co)

command, 35
git commit, 46, 105
git init command, 36

794 Index

git log command, 38
git push heroku master command, 63, 96
GitHub

branch, 43–44
commit, 45–47
commit and push sequence, 111
creating new repository, 62–63, 106–107
as dependable developer platform, 2
deploying toy app to, 95–97
edit, 44–45
merge, 47–48
push, 48
signing up for, 39–42

.gitignore file, 36
goodbye action, Heroku deployment, 54
Gravatar

adding sidebar to user profile page, 327–329
image-editing interface, 486–487
profile page with, 322–326, 330–331
specifying Users file size, 511

gravatar_for helper method, 325–326
@greeting variable, 550
Guard, automating tests, 148–151
Guardfile, 148–151

H
Hamburger menu

markup for, 411
for mobile device, 412
mobile styling, 409–410
view, 413

Hansson, David Heinemeier, 2, 60
has_error, 349–350
has_many

associating models, 627
associations, 634–637
dependent: :destroy, 642
microposts, 88–91
relationship model, 718, 720
user/relationship associations, 725–728

has_many :through, 730
has_many_attached method, 690–691
has_secure_password

adding to User model, 299–300

creating/authenticating user, 303–305
enforcing minimum password standards,

301–302
hashed passwords, 296–299
password validation, 489–490
testing login, 417–418

Hashes
constructors and, 186
hashed passwords, 296–299
symbols and, 178–183

Hashrocket (=>), 179–180
header

Home page elements, 205–206
partial with links, 242
partials for, 220–222
replacing default headgith a call to render,

225
testing application header, 247

Hello, world!
adding controller action, 28–31
creating first application, 13–17
exercises, 32–33
installing gems with Bundler, 17–22
rails server command, 22–27

hello action, 63, 107
Hello app, 3
help action

generated view for Help page, 117
generating controllers, 110
organizing functions, 116
in routes file, 113
setting routes for static page app, 114–116

help method, StaticPagesController,
192–195

Help page
adding titles for static pages, 132–134
customizing HTML, 118
generated view, 117
viewing with embedded Ruby title, 137
viewing with HTML structure removed,

140–141
Helper modules, Session helper, 393
Helpers

built-in, 154–155

Index 795

custom, 155–158
defined, 155
Gravatar helper specifying Users file size, 511

Heroku
CLI, 51–52
commands, 54–55
configuring email sent in production,

581–584
database recommendation, 103
deploying sign up page, 372
deploying to, 623
deploying too early, 107–108
deploying toy app, 63, 95–97
ENV variables, 711
error page, 96–97
exercises, 54
setup and deployment, 49–53
SSL use by default, 368
viewing app in production

environment, 314
heroku, 52
heroku create, 52–53, 96
heroku help, 55
heroku run

creating/authenticating user, 305
deploying toy app, 97

hexdigest, profile page with Gravatar, 325
Hidden fields, using with password reset,

607–608
Highlighted lines, conventions in this book

using, 58
home action

adding feed instance to, 673–674
adding micropost instance variable to,

665–666
generated view for Home page, 117
generating controllers, 110
organizing functions, 116–117
in routes file, 113
setting root route, 142–143
setting routes for static page app, 114–116
testing static pages, 126–127

home method, Static Pages Controller, 192–195
Home page

adding follower stats to, 741–742
adding micropost creation to, 663–666
adding status feed to, 674–675
adding titles for static pages, 132–135
customizing HTML, 118
with delete links, 683
elements, 203–207
error messages on, 666–670
with footer added, 224
generated view, 117
invalid micropost on, 677
with link to signup page, 207–208
micropost form, 676
proto-feed option on, 670–675
setting root route to, 142–143
setting to Home page, 143–144
with status feed and following count, 722
viewing with embedded Ruby title, 136–137
viewing with HTML structure removed,

140–141
HTML

account activation, 550, 554
color, 218–219
customizing for Home page, 118
for edit form, 479
for login form, 383
for password reset email, 602
for signup form, 335–339
structure of typical web page, 129–131
testing status feed HTML, 779–780
titles for static pages, 131–135
viewing Home, Help, and About pages with

HTML structure removed, 140–141
HTML shim (shiv)

making old browser accessible, 204
partials for, 221

HTTP (Hypertext Transfer Protocol)
basic authentication using, 54
GET, POST, PATCH, and DELETE

operations, 114–115
as stateless protocol, 376

I
IAM (Identity and Access Management),

707–711

796 Index

id attribute
assigning to HTML elements, 205
creating user objects, 266
data model for microposts, 64–65
data model for users, 64
finding users, 268–269
following table, 720

Identity and Access Management (IAM),
707–711

if keyword, 165–166
if-else, 340
if-then, 460
ImageMagick, for image processing, 702, 713
Images, micropost

configuring AWS for image upload, 706–711
downloading fixture image for use in tests,

695–696
overview of, 688–689
production AWS, 711–714
resizing, 701–705
upload, 689–693
upload in production, 705–706
validation, 696–701

Implicit return, of functions, 168
include method, mixing modules into classes,

170
Indentation, Cloud9, 8–9, 13
Index, Micropost migration with, 630
Index, of users

adding styling, 511
adding URL to users link, 512–513
helper for specifying Users file size, 511
index action, 510
index view, 510–511
Microposts controller, 83
overview of, 507–508
paginating users, 516–520
refactoring for compact views, 523–525
requiring logged-in user for, 509–510
sample users, 513–516
showing all users, 507
testing, 520–523
testing redirect, 508–509
Users controller, 76–78

viewing browser hits using MVC, 73–74
index -1, ranges, 174
index action

listing, 510
paginating users, 518
requiring logged-in user, 509–510
for showing all users, 507
verifying proper redirection, 508–509

index page
with one user, 513
with pagination, 519–520
verifying proper redirection, 508

index view, 510–511, 523
Inheritance

class, 187–190
for controllers, 93–94
for models, 92–93
overview of, 91–92
for static pages, 116, 193–194
for String class, 187–188

Initialization hash, creating user objects, 265
initialize method, User class, 196–197
Innovation, advantages of Rails, 2
input tags, 337, 343
inspect method, 182, 282
Installing Git, 34–38
Installing Rails, 9–13
Instance methods, 186
Instance of a class, 186
Instance variables, 646–647, 665–666
Instantiation, literal constructor for

strings, 185
integer data type, 64–65
Integration, advantages of Rails, 1–2
Integration tests

adding account activation to test user signup,
574–581

for micropost interface, 686
options, 121
password reset, 616–618, 620–621
testing links, 244–248
verifying user destroyed, 535–536

Interpolation
exercise, 164

Index 797

single-quoted strings and, 163
of strings (#{ }), 161–162

Introduction to Rails
conventions used in this book, 56–58
creating first application, 13–17
deploying with Heroku, 49–55
deployment options, 49
developing application using rails server

command, 22–27
development environment, 6–9
getting started, 2–3
Hello, World! 28–33
installing gems using Bundler, 17–22
installing Rails, 9–13
many advantages of Rails, 1–2
model-view-controller (MVC), 27–28
principal teaching method of this

tutorial, 3–5
review, 55–56
technical sophistication and, 6
up and running with AWS Cloud9, 4–5
up and running with cloud IDE, 5
up and running with native OS setup, 5–6
version control with Git. See Git

Invalid submission, testing signup page,
351–355

irb (interactive Ruby) configuration, Rails
console, 159

is password? 442

J
JavaScript embedded Ruby (js.erb), 764–765
JavaScript libraries, 405–406
join method

converting array to string, 173
making status feed, 780

jQuery
checking file size with, 698–699
making available, 405

js.erb (JavaScript embedded Ruby), 764–765

K
Keys, hash, 178–183
Key-value pairs, using in status feed where

method, 775–776

L
Lambda, ”stabby lambda” syntax, 641
Layout

adding Bootstrap CSS, 213–214
adding structure, 201–202
asset pipeline, 226–228
Bootstrap with CSS classes, 210–212
bootstrap-sass gem added to Gemfile,

212–213
changing layout links, 401–402
changing layout links for logged-in users,

404–405
commenting out embedded Ruby, 219
conclusion, 253–254
Contact page, 236–238
creating signup URL, 250–253
creating Users controller, 248–250
defining variables using Sass, 231–233
downloading images, 208–210
hiding all images, 220
Home page elements, 203–207
Home page with link to signup page,

207–208
links, 235–236
named routes, 242–244
nested elements in stylesheets, 229–231
nesting and variables used in converting

SCSS file, 233–235
overview of, 201
partials used for HTML shim, 221
partials used for site footer, 222–225
partials used for site header, 221–222
partials used for stylesheets and header,

220–221
replacing default head with a call to render,

225
routes added to static pages, 238–241
Sass, 228–229
site navigation, 202–203
static pages, 135
styling site logo, 218–219
testing changes, 416–417
testing links, 244–248
typographic effect, 216–218

798 Index

universal styling on all pages, 214–216
user signup, 248
viewing application site layout, 139–140,

154–155
what we learned, 254

Learn Enough All Access Bundle, 54
Learn Enough Command Line to Be Dangerous, 2,

14, 38, 162
Learn Enough Dev Environment to be Dangerous, 6
Learn Enough Git to be Dangerous, 34, 38
Learn Enough Ruby to be Dangerous, 2–3
Learn Enough tutorials, 2–3, 6
Length, validating email address, 278–280
length method

activating accounts, 567
arrays, 172
enforcing minimum password, 301–302
finding length of User.all, 269
strings, 164

Libraries, importing JavaScript libraries,
405–406

Links
adding URL to users link, 512–513
changing layout links, 401–402
changing layout links for logged-in users,

404–405
Contact page, 236–238
delete link added to micropost partial,

680–681
footer partial with, 243
header partial with, 242
layout links, 235–236
layout links for logged_in users, 404
micropost pagination, 654
named routes, 242–244
”Next” link on Home page, 678
to password reset resource, 591
routes added to static pages, 238–241
to signup page, 207–208, 251–252
testing, 244–248

Literal backslash (\\), 163
Literal constructors

named constructors more explicit than, 185
for strings, 185

Local webserver, allowing connections to,
23–27, 66

log command, 37
log_in

calling log_out only if logged in, 453–454
logging a user in, 394–396
logging in on signup, 422–425
remembering logged in user, 443–444

log_in_as helper, 462–465
log_out, 426, 453–454
logged_in

authorization tests for Micropost controller,
659–661

helper method, 402–403
layout links for, 404

Logged-in users
adding store_location to, 505–506
requiring, 491–494, 509–510

Logging out
overview of, 425–429
from persistent sessions, 448–451
testing logging out, 452–453

Login
analogy, 540
authorization, 491–494
changing layout links, 401–402
changing layout links for logged-in users,

404–405
commenting out authentication code,

420–421
conclusion, 429–430
current_user method, 396–401
digest method for use in fixtures, 417–418
entering Safari’s Responsive Design Mode,

407–409
finding and authenticating users, 383–385,

387–388
finding current user in a session, 399–400
form for, 380–383
hamburger menu, 409–414
importing JavaScript libraries, 405–406
logged_in helper method, 402–403
logging a user in, 393–396
logging in on signup, 422–425

Index 799

logging in test user, 494–495
logging out, 425–429
login page with ”forgot password” link, 592
making JQuery available, 405
mobile styling, 406–407
new session, 385
overview of, 375
rendering using flash message, 388–390
session routes, 379–380
sessions, 376
Sessions controller, 376–378
simplifying login code, 422
simulating user session, 400
test case with valid email and invalid

password, 421
testing layout changes, 416–417
testing login behavior, 390–393
testing user login with valid information,

419–420
updating footer CSS, 414–416
using fixture for testing user login, 418–419

Login, advanced
forgetting users, 448–451
only logging out if logged in, 453–454
overview of, 431
remember me checkbox, 456–462
remember tests, 462–468
remember token and digest, 432–439
with remembering, 439–448
remembering me, overview, 431–432
review, 472–473
testing remember branch, 468–471
two subtle bugs, 451–456

Logo, applying CSS to site logo, 218–219
log.out method, 451–453
Lowercase, downcasing email attribute,

292–293

M
Mailer. See User mailer, email for account

activation
Mailer templates

account activation email, 549–554
password reset, 600–605

Manifest files, 226–228
map method, block, 176
Mass assignment, 343
master branch, signup page deployment,

367–368
maximum parameter, length validation, 279–280
MD5 hashing algorithm, 325
Media query, 411
Menus

creating dropdown menus, 404–406
creating with Bootstrap, 401–402

Merge, GitHub, 47–48
Message passing, 164–167
meta tag, viewport, 407–408
Metaprogramming, 566–567
Methods. See also Functions

defining, 167–169
as functions in Ruby, 164
message passed to objects as, 164
method reference code, 545

Micropost class, 93
Micropost model

adding image to, 690–691
associations, 634–638
creating, 627–631
default scope, 638–641
dependent: :destroy, 641–643
validations, 631–634
where method, 671

Microposts
access control, 658–661
adding @microposts instance variable,

646–647
adding creation to Home page, 663–666
adding image display to, 693–694
adding to sample data, 649–651
adding to show page, 647–648
associations, 634–638
conclusion, 714–716
configuring AWS for image upload, 706–711
constraining size of, 86–87
creating, 662–663
creating Micropost model, 627–631
data model for toy app, 64–65

800 Index

default scope, 638–641
dependent: :destroy, 641–643
destroying, 680–684
error messages on Home page, 666–670
fixtures with generated microposts, 655–656
Home page form, 676
image resizing, 701–705
image upload, 689–693, 705–706
image validation, 696–701
images, 688–689
inheritance hierarchies, 91–95
invalid micropost on Home page, 677
manipulating, 657–658
microtour of, 81–85
”Next” link on, 678
overview of, 627
pagination links, 654
parallel structure of Users and, 80
partial for showing single micropost, 645–646
production AWS, 711–714
proto-feed option on Home page, 670–675
rendering, 644–645
routing error, 679
sample, 649
showing, 643–644
styling, 651–653
testing, 684–688
testing profile page, 654–656
User has_many, 88–91
validating, 631–634

@microposts instance variable, 646–647
MicropostsController class, 94
micropost.user, 89–90
Migration

for account activation, 544
creating micropost table in database, 629–630
creating Users resource, 66
creating/authenticating user, 305
database migrations, 257–263
enforcing email uniqueness, 290–291
generate model creating migration file,

259
generating for remember digest, 433–434
for password_digest column, 297–298

in Rail, 257
undoing, 112–113
of User model to create users table,

259–261
mini_magick, for image processing,

702–703
Minitest reporters, 147–148
Mixin facility, 314–315, 333
Mobile devices, styling tweaks, 406–412
Mockups, 202
Model file, User model, 263–264
Models

data models. See Data models
Micropost model. See Micropost model
Relationship model. See Relationship model
test options, 121
User model. See User model

model-view-controller. See MVC
(model-view-controller) pattern

Modules
packaging functions, 393
packaging related materials, 170
SessionsHelper, 402–403

Mutation, array, 172
MVC (model-view-controller) pattern

default data structure for data model, 257
Rails apps and, 27–28
Users resource, 73–80

N
name attribute

creating user objects, 265
data model for users, 64
database migrations, 257–261
imposing constraints (validations) on,

271–272
signup failure page, 343
signup form HTML, 337
testing length validation, 278–280
validating presence of, 274–275

Name field, Git system setup, 34
@name variable, User class, 195–197
Named constructors, 185–186
Named routes

Index 801

added to static pages, 240–241
using, 242–244

Naming conventions
function arguments, 168
literal strings, 161
migration files, 260
new work environment at AWS

Cloud9, 8–9
nano editor

Git system setup, 34–35
irb configuration, 159

nav, for navigation links, 205–206
Navigation. See Site navigation
Nesting

converting SCSS file, 233–235
nested elements in stylesheets, 229–231
nested hashes, 181, 386

new
constructors, 185–186
creating layout file, 129
first application, 13–17
initializing Git repository, 35
Microposts controller, 83
mixing string types and, 147
planning toy app, 60
running with specific version number, 15–17
Users controller, 76–77

New hotness problem, Rails not prone to, 2
New password resets form, 593–595
New user, 361–364
new_token method, 435
Newline (\n), 160, 162–163
”Next” link, on Home page, 678
nil object

a subtle bug, 451–453
understanding, 165–166

nil values, 265–266
Not (!) operator, 165

O
Objects

class inheritance and, 187–190
creating user, 264–268
error messages, 666–667

finding user, 268–269
instantiating classes to create, 185
message passing and, 164–167
updating user, 270–271
validity test for, 272–274

Operators, combining Booleans with, 165
Or (||) operator, 165
Or equals (||=) operator, 398
Output, conventions in this book for, 57

P
Padding, universal styling on all pages, 215–216
Pagination

link to second page, 680
microposts, 646, 654
users index, 516–520

palindrome? method, 188, 190–192
Palindrome tester, 167, 169
Parameters, strong, 343–346
params hash

login form with “remember me” checkbox,
458–459

nested hashes, 386
signup failure page, 342–344
testing invalid signup submission, 353

Partials
adding delete link to micropost partial,

680–681
for editing users, 481–483
for follow/unfollow, 744
for footer with links, 243
for header with links, 242
for HTML shim, 221
for microposts, 665
showing single micropost, 645–646
for site footer, 222–225
for site header, 221–222
for stats, 740–744
for stylesheets and header, 220–221
for user info sidebar, 664–665

Password digest, 296
Password reset

conclusion, 624–625
create action, 596–599

802 Index

edit action, 607–609
email function in development, 599
email function in production, 621–624
email test, 605–606
expiration, 625–626
generating controller for, 590–593
mailer and templates, 600–605
new password, 593–596
overview of, 587–589
as resource, 590
testing, 615–621
update action, 610–615
updating errors for, 668

password_digest attribute, 303–304
password_digest column, 296–299
password_digest:string, 298
password_reset method

creating reset email, 600
generating user mailer, 549, 551–552
user mailer previews, 556–557

password_reset_expired method,
613–614

Passwords
account activation, 543
configuring email, 582–583
creating password digest with bcrypt,

416–417
expiration of, 625–626
resetting, 607–610
setting length of time for, 35–36
signup form with fields for, 337–338
storing user id in cookies, 441
test case with valid email and invalid

password, 421
two users can have same, 434
validating, 489–491

Passwords, secure
creating and authenticating user, 303–305
enforcing minimum standards, 301–302
has_secure_password added to User

model, 299–300
hashed passwords, 296–299
overview of, 295–296
reset, 540

PATCH operation, HTTP, 114–115
PATCH requests

account activation, 541
adding Users resource to routes file, 319
issuing, 485
routing to update action, 496

Permanent cookies
creating, 432, 444
implementing ”remember me,” 431
storing remember token as, 439–440
vulnerability to session hijacking, 394

permanent method, 441
Persistence

creating User data model, 257–263
with database for long-term data

storage, 257
Persistent sessions

logging out from, 448–451
remember token and digest, 432–439
storing id and remember token as cookies

via, 439–448
testing remember branch, 469–470

pg gem, Heroku deployment setup, 49–51
pluralize text helper, signup error messages,

349
Plus (+) operator, 161
post method, signup form, 338
POST operation, HTTP, 114–115
POST requests

adding Users resource to routes file, 319
signup failure page, 339–340
testing invalid signup submission, 352–353

PostgreSQL database, 49–50
Preprocessor engines, 228
Presence validation

email addresses, 274–278
ensuring non-blank passwords, 302

Previews, account activation email, 554–558
Printing strings, to screen, 162
private keyword

activation token callback, 545
strong parameters, 344–345

Proc (procedure), ”stabby lambda”
syntax, 641

Index 803

Production environment
sending email in, 581–584
signup page deployment, 367–373
types of Rails environments, 159
viewing app in, 313–314

Professional-grade deployment, signup page,
367–373

Profile pages
adding forms and stats, 746–748
current user, 718
with microposts, 644, 647, 652–653
testing, 654–656
with unstyled microposts, 650

Proto-feed
feed options, 670–673
on Home page, 670–675
with micropost delete links, 681

Push
deploying toy app, 63, 95–96
GitHub, 48

push method, 172
puts method, 162

Q
Query parameter, 553

R
Rails console. See Console, Rails
rails test:models, validity test, 274
Ranges, 173–174, 175–178
README file

branches, 43–44
commit message, 45–47
editing, 44–45
Git rendering, 41–43
merge, 47–48
pushing changes up to GitHub, 48
setting up static page app, 104–105

:RecordNotFound exception, finding users,
268

redirect_back_or method, 504–506
redirect_to method, 355–358
Refactoring

account activation testing and, 574–581
layouts and embedded Ruby, 135

users index for compact views, 523–525
when to test, 120

references, Micropost model, 629
Regression, testing to prevent, 120
Regular expressions (regex), email formats,

283–285
Relationship model

adding followers association, 733–735
adding following association, 730–732
associations between users and relationships,

725–728
data model for, 719–725
overview of, 718–719
testing followers association, 735
testing following utility methods, 732–733
validating relationships, 728–730

Relationships controller
responding to Ajax requests in Relationships

controller, 763
tests for relationships, 757–759

relationships table, 724–725
reload, user objects, 270
remember

activation token callback, 546
associating remember token with user,

436–437
remembering logged in user, 436–437
testing remember branch, 469

remember helper, 443–444
Remember me

checkbox, 456–462
forgetting users, 448–451
login with remembering, 439–448
remember token and digest, 432–439
review, 472–473
testing checkbox, 462–468
testing remember branch, 468–471
two subtle bugs, 451–456

Remember tokens
account activation data model, 543
associating with user, 436–437
creating persistent sessions, 432–433
generating, 434–435
testing “remember me” checkbox, 465–467

804 Index

remember_digest
generalizing authenticated? method, 566
generating migration for remember digest,

433–434
storing user id in cookies, 441–443

remember_token
analogy, 540
associating remember token with user,

436–437
exercises, 437–439
storing user id in cookies, 441
testing remember me checkbox, 465

render
flash message for failed login, 389
replacing default head with a call to render,

225
signup error messages, 347
signup failure page, 340

Rendering
following and followers,

751–755
microposts, 644–645

Repositories
creating for static page app, 106
optimizing/sharing, 39–42
setting up, 35–38

REpresentational State Transfer. See REST
(REpresentational State Transfer)

request.referrer method, 682–683
Resizing images, 701–705
Resources
create action, 596–599
creating new password reset, 593–596
generating controller for password reset,

590–593
password reset, 590
password reset as, 590
REST represents data as, 317
user microposts. See Microposts

resources :microposts, 81–82
resources :users

adding to routes.rb file, 318
routing rule, 66, 74–75
signup failure page, 339

response.body, count assertion
using, 656

Responsive Design Mode (Safari), 407–409
REST (REpresentational State Transfer)

account activation using REST URL, 541
collection of static pages, 116
controllers implementing, 76–78
destroy action, 525–526
Micropost controller actions, 83–84
representing data as resources, 317
Sessions controller actions, 376–378
treating password reset as a resource, 590

RESTful routes
adding Users resource to routes file, 317–319
for following and followers, 739
provided by Microposts resource, 82–83, 658
provided by Password Resets resource, 591

return keyword
defining methods, 168
updating authenticated? to handle

nonexistent digest, 455
-rf flag, 38
RJS (Ruby JavaScript), 765
Rollback

migrations, 263
starting console in sandbox for, 264

root route
adding for users, 75
setting for app deployment, 63
setting for static page app, 107–108, 142–143
setting to Home page, 143–144
testing, 144–145

Routes
added to static pages, 238–241
adding for Contact page, 237–238
for home and help actions, 114–116
login sessions, 379–380
mapping for site links, 236
micropost routing error, 679
named routes, 242–244
RESTful routes, 658
setting root route for Home page, 143–144
setting root route for static page app,

107–108, 142–143

Index 805

for signup page, 250–251
testing root route, 144–145
testing static pages, 125–128
for user relationships, 744–745

Routes file, 74–75
routes.rb file

adding resources :users to, 317–318
signup failure page, 339

Rubular regular expression editor, 284
Ruby, Rails subset

arrays and ranges, 170–174
blocks, 175–178
built-in helpers, 154–155
classes. See Classes
conclusion, 198
custom helpers, 155–156
CVS revisited, 183–185
hashes and symbols, 178–183
method definitions, 167–169
motivation, 153–158
objects and message passing, 164–167
review, 198–199
strings and methods, 159–164
title_helper, 169–170

Ruby JavaScript (RJS), 765

S
S3

configuring production environment for, 712
creating S3 bucket, 710–711

Safari’s Responsive Design Mode, 407–409
Sandbox, creating user objects, 270–271
Sass (Syntactically Awesome Stylesheets)

defining variables, 231–233
filename extension, 228
nested elements in stylesheets, 229–231
nesting and variables used in converting

SCSS file, 233–235
overview of, 228–229

save method, 265–266
scaffold command, 65–66
Scaffolding

code for Microposts resource, 81–82
code for Users resource, 65–66

overview of, 60
pages for User resource, 68–71

Scalability, advantages of Rails, 2
schema.rb file, 263
Scope, micropost default, 638–641
SCSS. See also CSS (Cascading Style Sheets)

adding styling to users index, 511
for Home page with follow stats,

742–744
nesting and variables used in converting,

233–235
Sass support for, 228–229
styling microposts, 651–653
styling user show page, 328–329

section element, Home page, 205–206
Secure Sockets Layer (SSL), 367–368
SecureRandom module, 434
Seed users, activating by default, 547
self keyword

class inheritance, 189
email uniqueness validation, 292–293

self.email, 436–437
send, activating accounts, 566–567
send_activation_email, 577
SendGrid, sending email in production,

581–584, 621–623
server command

allowing connections to local webserver,
23–24

default Rails page served by, 28
routes and, 114
running in separate tab, 24–27

Servers
byebug prompt in, 323
password reset email in server log, 602

Session helper module, 393, 504
Session hijacking attacks, 394
Sessions, for basic login

overview of, 376
routes, 379–380
Sessions controller, 376–378

Sessions controller, 376–378, 384–385
SessionsHelper module, 402–403
Setter methods, User class, 195

806 Index

Settings link, adding URL to ”Settings” link in
site layout, 480–481

setup method
adding page titles, 134
validity test, 272–273

shared/ directory, 347–348
Shim (shiv)

making old browser accessible, 204
partials for, 221

Shopify, 2
Shortcuts, Rails, 110–111
Shovel operator (<<), arrays, 173
show action

adding @microposts instance variable to,
646–647

adding sidebar to user, 328
and GET requests, 317–318, 320–321
Microposts controller, 83
test for valid signup, 365–366
Users controller, 76–77
Users controller with debugger removed,

323–324
show pages

adding microposts to, 647–648
showing microposts, 643
showing users, 507

show_follow view, 751–755
Sidebar

adding initial version to user profile page,
327–329

for micropost count test, 688–689
partial for user info sidebar, 664–665
SCSS for Home page with follow stats,

742–744
Signup. See also Profile pages

creating signup URL, 250–253
creating Users controller, 248–250
debug, 311
debug output using CSS rules, 314–315
debugger, 322–324
form for, 331–339
Gravatar image and sidebar, 324–331
Home page with link to signup page,

207–208

logging in on signup, 422–425
overview of, 248, 309
professional-grade deployment,

367–373
Rails environments, 313–314
rendering of user signup errors, 667
review, 373–374
showing users, 310–311
testing account activation, 575–578
users resource for, 316–322

Signup failure
error messages, 346–351
strong parameters, 343–346
test for invalid submission, 351–355
a working form, 340–343

Signup pages
link to, 251–252
routes for, 250–251

Signup success
finished signup form, 355–358
first signup, 361–364
the flash, 358–361
overview of, 355
test for valid submission, 364–367

Signup URL, 250–253
signup view, 482–483
Simulating user session, in console, 400
Single-quoted strings (.”), 163–164
Site footer, partials for, 222–225
Site header, partials for, 221–222
Site layout, adding URL to ”Settings” link in,

480–481
Site logo, applying CSS to, 218–219
Site navigation

downloading images, 208–210
Home page elements, 203–207
Home page with link to signup page,

207–208
overview of, 202–203

Source code, version control. See Git
Spacing, universal styling on all pages, 215–216
split method, 171
SQL injection attacks, 672
SQL statements

Index 807

escaping variables, 672
user.save and, 266

Square brackets ([]), arrays, 171
SSL (Secure Sockets Layer), 367–368
”stabby lambda” syntax, 641
Staging area, setting up Git repository, 37
Standards, password, 301–302
Stateless protocol, HTTP as, 376
Static pages

adding hello action, 107
adding minitest reporters, 147–148
adding titles, 131–135
advanced testing, 146–147
allowing connection to local webserver,

106–107
automating tests, 148–151
classes, functions, inheritance, 116
code for Contact page, 142
conclusion, 145–146
controller for, 109–112
creating repository for, 106
customizing, 118
developing sample app, 108–109
green (passed tests), 125–128
inheritance hierarchy for, 193–194
layouts and embedded Ruby, 135
making slightly dynamic, 128–129
overview of, 101
red (failed tests), 123–125
routes added to, 238–241
routes for home and help actions,

114–116
running first test, 122–123
setting root route, 107–108, 142–144
setting up gems, 101–104
setting up README file, 104–105
testing options, 118–121
testing root route, 144–145
testing titles, 129–131
undoing code generation, 112–113
verifying test suite passes, 141–142
viewing About page, 137–139, 140–141
viewing application site layout, 139–140
viewing Help page, 137, 140–141

viewing Home page, 136–137, 140–141
views, 117

StaticPagesController, 192–195
Stats

adding forms and stats to user profile,
746–748

partial for follower stats, 740–744
sample of following data, 738

Status feed
adding feed instance to home action,

673–674
adding to Home page, 674–675
for following users, 768–770
Home page with status feed and following

count, 722
implementing, 771–774
join method for making, 780
overview of, 657
proto-feed option, 670–673
subselects in implementing, 774–779
testing, 771
testing HTML, 779–780

store_location method, 504–506
String literals (literal strings), 161
string type, 64
Strings

constructors and, 185–186
converting any object to, 165
dividing into arrays with split, 171
exercises, 163–164
exploring, 160–162
as hash keys, 178–179
inheritance hierarchy for String class,

187–188
and methods, 159–160
objects, message passing and, 164–167
printing, 162
single-quoted, 162–163
string type, 64

Stub view, 252, 319–320
stylesheet_link_tag, 154–155
Stylesheets. See CSS (Cascading Style Sheets);

Sass (Syntactically Awesome Stylesheets)
Subselects, implementing status feed, 774–779

808 Index

:success key, 358–360
superclass method, 187–188
Symbols, hashes using, 179–183
Symbol-to-proc, 176
Synonyms, commonly accessed arrays, 171–172
Syntactically Awesome Stylesheets. See Sass

(Syntactically Awesome Stylesheets)

T
Tables. See also Databases

creating micropost table in database, 629–630
following table, 720
full-table scan, 290
relationships table, 724–725
user_id column in microposts table, 88–89
users table, 258–261
users table, 303

TDD (test-driven development)
successful user edits, 486–488
validity test, 272–274
when to use, 119–120
writing failing tests (Red) first, 123–125

Technical sophistication, developing, 6
Templates

mailer for account activation, 549–554
password reset emails, 600–601
previews of account activation email,

554–558
for sidebar micropost count test, 688–689
testing flash message, 366–367
for update_columns in account activation

email, 619–620
Ternary operator

login form with “remember me” checkbox,
460

understanding, 461
test command

automating tests using Guard, 148–149
beginning test cycle, 123
Green (passed tests), 125–127
Red (failed tests), 123–125
testing dynamic ERb titles, 137, 141
testing suite before deploying, 146
testing titles, 131

Test environment, 159, 313
Test suites, 119
test_helper, 157–158, 465
Test-driven development. See TDD (test-driven

development)
Tests/testing

account activation, 574–581
account activation email, 558–561
advanced setup, 146–147
automating tests, 148–151
Contact page, 236–238
conventions used in this book for, 58
dependability of Rails and, 2
destroying users, 533–536
editing by wrong user, 498
flash behavior, 390–393
following users, 765–768
following/follower, 755–757
friendly forwarding, 503–504
green (passed tests), 125–128
index redirection, 508–509
layout changes, 416–417
layout links, 244–248
login, 418–421
micropost profile page, 654–656
micropost validation, 632–633
microposts, 684–688
minitest reporters, 147–148
options, 118–121
password reset, 615–621
protection of edit and update, 495–497
red (failed tests), 123–125
remember branch, 468–471
remember me checkbox, 462–468
root route, 144–145
running first test, 122–123
signup form, 364–367
signup page, 351–355
status feed, 779–780
temporarily commenting out failing,

562–563
titles for static pages, 129–135
user edits, 484–486, 488
user page, 249–250

Index 809

users index, 520–523
validity, 272–274
verifying test suite passes, 141–142

Text, signup form with fields for, 337–338
Text editor

cloud IDE, 7
Git system setup, 34–35
installing gems for new Rails app, 17–22
planning toy app, 61

text type, 65
Text view, 550, 553
time_ago_in_words, 653
Timestamp, 260
title_helper, 169–170
Titles

adding for static pages, 131–135
testing for static pages, 129–131
viewing About page with embedded Ruby

title, 137–139
viewing Help page with embedded Ruby

title, 137
viewing Home page with embedded Ruby

title, 136–137
Token callback, activation, 545–547
token method, 546
touch command, Unix, 127
Toy app

beginning of, 3–4
deploying, 95–98
overview of, 59
planning, 60–64
review, 99
strengths and weaknesses of, 98–99
toy model for microposts, 64–65
toy model for users, 64

true value
Booleans, 165
objects and, 167

t.timestamps command, 260

U
Ubuntu server, 8, 10
Undo, code generation, 112–113
unfollow method, 731–733, 744

Unicode, character sets, 139
:uniqueness, validates method, 286
uniqueness: true, 287
Uniqueness validation, email

alternative callback implementation, 295
database indices and, 290
of email addresses, 286–295
ensuring by downcasing email attribute,

292–293
migration for enforcing, 291
overview of, 286
restoring original test for, 293–294
testing default user fixtures, 291
testing empty fixtures files, 292
testing for case-insensitivity, 287–290
testing for email downcasing, 294–295
testing for rejection of duplicate addresses,

286–287
Unix

common commands, 15
touch command, 127
using command line, 14

unless keyword, 166
upcase method, 288
Update

password reset errors, 668
rendering of user signup errors, 667
user editing errors, 668–670
user objects, 270–271
users for account activation email, 561–565

update action
account activation, 541
Microposts controller, 83
password reset, 610–615
testing protection of, 495–497
in unsuccessful user edits, 483–484
user update, 488–489
Users controller, 76–77

update method, 270–271
Update pages, 499
Update users

adding URL to ”Settings” link in site layout,
480–481

editing, 476–480

810 Index

overview of, 475
partials use for editing, 481–483
password validation, 489–491
successful edits, 486–488
testing successful edits, 488
testing unsuccessful edits, 484–486
unsuccessful edits, 483–484
update action, 488–489

update_attribute
associating remember token with user,

436–437
migration for account activation, 546
updating user objects, 271
user profile page with custom Gravatar,

326–327
update_columns, 579–580, 619–620
updated_at, 265–268
Uploading images

configuring AWS for, 706
microposts, 689–693
in production, 705–706

URLs
adding to ”Settings” link in site layout,

480–481
adding to users link, 512–513
email previews as, 554–558
mailing account activation link,

552–553
mapping for site links, 236
mapping to actions in Microposts

controller, 82
signup URL, 250–253
updating users create action,

561–565
user profile page with Gravatar, 324–325
Users resource pages and, 68–69
users viewing browser hits using MVC,

73–74
urlsafe_base64 method, SecureRandom

module, 434
User class, 93, 195–198
User fixtures. See Fixtures
User info sidebar, 664–665
User mailer, email for account activation

adding account activation to user signup,
561–552

previews, 555–556
sample from server log, 564–565
template, 549–554
tests, 559–561

User microposts. See Microposts
User mismatch, 685–686
User model

adding account activation attributes, 544
adding activation account code, 546–547
adding password reset methods to User

model, 597–598
creating user objects, 264–268
data structure to capture sign up data,

256–257
database migrations, 257–263
feed method in, 671
finding user objects, 268–269
generalized authenticated? method,

568–569
model file, 263–264
overview of, 255
own authentication system, 255–256
review, 305–307
secure passwords, 295–305
for toy app, 64
updating user objects, 270–271

User profile. See Profile pages
User signup. See Signup
@user variable
index action for toy application, 78
showing user information in Stub view,

319–320
signup form HTML, 338
testing authenticated? with nonexistent

digest, 454–455
testing rejection of duplicate email addresses,

287
testing remember me checkbox,

465–466
user signup form, 332–333
users viewing browser hits using MVC,

73–74

Index 811

validating presence, 274
validity test, 272–273

user_id
associating each micropost with

particular, 65
encrypting cookies, 440–441
Micropost migration with, 630
microposts table, 88–89
remembering user in login, 452
storing in cookies, 440
validating microposts, 632

user_name, 582–583
user_params

call to update users, 484
password reset, 613
strong parameters, 344–345

user_url, 357–358
!user.activated? 571–572
User.all

finding users, 269
index action for toy application, 78
users viewing browser hits using MVC,

73–74
user.authenticated?

method, 540
User.count method, 365
User.digest method

account activation, 540
associating remember token with user,

436–438
User.first, 89–90
user.forget method

logging out from persistent session, 448–451
a subtle bug, 451

UserMailer.account_activation, 556
User.new (user object)

creating user objects, 265
signup failure page, 339, 341, 343–344
signup form page, 333
testing invalid signup submission, 353

User.new_token method
account activation, 540
associating remember token with user,

436–438

user.remember method
associates remember token with user, 436
logging in and remembering user,

443–444
undoing via user.forget, 448–451

Users
activating seed and fixture, 547–548
adding password reset methods, 597–598
adding store_location to logged-in user,

505–506
adding styling to users index, 511
adding URL to ”Settings” link in site layout,

480–481
adding URL to users link, 512–513
administrative, 526–530
associating micropost with, 65
associations, 725–728
authorization, 491
conclusion, 536–538
create action used with friendly

forwarding, 506–507
current_user? method, 500–502
deleting, 525–526
destroy action, 530–533
editing, 476–480
finding and authenticating, 383–385,

387–388
following. See Following users
friendly forwarding, 502–504
granting administrative access, 709
index action, 510
index view, 510–511
logging in, 393–396, 494–495
paginating, 516–520
partials for editing, 481–483
password validation, 489–491
profile page, 718
protecting edit/update pages, 499
refactoring users index for compact views,

523–525
rendering signup errors, 667
requiring logged-in user for index action,

509–510
requiring login, 491–494

812 Index

requiring right user, 497–498
sample users, 513–516
showing all, 507
specifying Users file size, 511
successful edits, 486–488
testing destroying, 533–536
testing editing by wrong user, 498
testing edits, 483–486, 488
testing friendly forwarding, 503–504
testing index action redirect, 508–509
testing login, 418–420
testing protection of edit and update,

495–497
testing users index, 520–523
update action, 488–489
updating, 475
updating create action for account

activation email, 561–565
user index, 507–508
validation. See Validation

Users controller
creating, 248–250
with debugger, 322–323
with debugger removed, 323–324
updating, 251
UsersController class, 94

Users index. See Index, of users
Users resource

adding presence validations to User model,
92–93

associations between microposts and users,
88–91

destroying user, 71–72
edit page, 69–70
exercises, 71–73
index page, 68–72
inheritance structures for, 92–98
MVC in action, 73–79
new page, 69–71
overview of, 65–67
parallel structure of Microposts and, 80
show page, 69–70
tour of, 68–73
weaknesses of, 80

:users symbol, 74
users table, 258–261
users table, 303
users_signup file, 352–355
@user.save, 340
UsersController class, 94
Utf-8, character sets, 139

V
-v command, for version number, 11, 26
valid? method

creating user objects, 265
validating user variable, 276
validity test, 273

Valid submission
frozen page on signup form in, 355–358
of signup page, 364–367

VALID_EMAIL_REGEX, 283
validates method, 275
Validation

adding gem for, 696
creating user objects, 265
formats, 280–286
images, 696–701
length, 278–280
micropost, 631–634
micropost presence, 90–91
micropost rules for length, 76–77
overview of, 271–272
presence, 91–92, 274–278
relationships, 728–730
uniqueness, 286–295
validity test, 272–274

Validity test, 272–274
value, cookies contain, 439
Variables

adding instance variable to home action,
665–666

adding instance variable to show action,
646–647

defining using Sass, 231–233
escaping in SQL statements, 672
Heroku ENV variables, 711
use in converting SCSS file, 233–235

Index 813

Version control
for all Gemfiles in this book, 21
deploying to Heroku and, 372–373
exercises, 26
with Git. See Git
installing gems with Bundler, 20–22
installing Rails with, 11
planning toy app, 60

Viewport meta tag, 407–408
Views

adding for Contact page, 238
creating set of, 108
creating Users controller, 249
edit view, 478, 482
index view, 510–511, 523
model-view-controller (MVC), 27–28,

73–80
show_follow view, 751–755
signup view, 482–483
static pages, 117
stub view, 252, 319–320
text view, 550, 553

W
Warning message, for not-yet activated user, 573
Web interface, for following users

adding following and followers actions
to User Controller, 739

adding forms and stats to user profile,
746–748

Ajax buttons for follow/unfollow, 759–761
Ajax form for follow/unfollow, 761–763
creating/destroying following relationship

with JavaScript, 765
degradation of form submission, 763–765
following and followers actions,

750–751
forms for follow/unfollow, 745–746
overview of, 736

pages for followed and followers, 748–750
partial for follow/unfollow, 744
rendering following and followers,

751–755
responding to Ajax requests in Relationships

controller, 763
routes for user relationships, 744–745
sample data, 736–738
standard buttons for follow/unfollow,

757–759
stats, 738, 740–744
testing following/follower, 755–757
tests, 765–768

Webpack
adding jQuery to, 405
asset pipeline, 225–226

Webserver, allowing static page app to connect
to, 106–107

where method
key-value pairs in status feed where method,

775–776
Micropost model, 671

will_paginate
correcting invalid micropost on Home page,

677
paginating microposts, 646
paginating users, 518–519

Wireframes. See Mockups
–without production option, 62

X
XSS (cross-site scripting attacks), 140

Y
YAML (YAML Ain’t Markup Language), 315
Yarn, 225–226

Z
Zero-offset, Ruby arrays as, 171

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	Foreword
	Acknowledgments
	About the Author
	Chapter 2 A Toy App
	2.1 Planning the Application
	2.1.1 A Toy Model for Users
	2.1.2 A Toy Model for Microposts

	2.2 The Users Resource
	2.2.1 A User Tour
	2.2.2 MVC in Action
	2.2.3 Weaknesses of this Users Resource

	2.3 The Microposts Resource
	2.3.1 A Micropost Microtour
	2.3.2 Putting the Micro in Microposts
	2.3.3 A User has_many Microposts
	2.3.4 Inheritance Hierarchies
	2.3.5 Deploying the Toy App

	2.4 Conclusion
	2.4.1 What We Learned in this Chapter

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

