
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780136523567
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780136523567
https://plusone.google.com/share?url=http://www.informit.com/title/9780136523567
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780136523567
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780136523567/Free-Sample-Chapter

Continuous Architecture
Principles

Principle 1: Architect products; evolve from projects to
products.

Principle 2: Focus on quality attributes, not on functional
requirements.

Principle 3: Delay design decisions until they are absolutely
necessary.

Principle 4: Architect for change—leverage the “power of
small.”

Principle 5: Architect for build, test, deploy, and operate.

Principle 6: Model the organization of your teams after the
design of the system you are working on.

9780136523567_Print.indb 1 20/04/21 7:28 PM

Praise for Continuous Architecture in Practice

“I am continuously delighted and inspired by the work of these authors. Their first
book laid the groundwork for understanding how to evolve the architecture of a
software-intensive system, and this latest one builds on it in some wonderfully
actionable ways.”

—Grady Booch, Chief Scientist for Software Engineering, IBM Research

“Continuous Architecture in Practice captures the key concerns of software archi-
tects today, including security, scalability and resilience, and provides valuable
insights into managing emerging technologies such as machine/deep learning and
blockchain. A recommended read!”

—Jan Bosch, Professor of Software Engineering and Director of the
Software Center at Chalmers University of Technology, Sweden

“Continuous Architecture in Practice is a great introduction to modern-day software
architecture, explaining the importance of shifting architectural thinking ‘left’ in order
to form a set of firm foundations for delivery and continuous architecture evolution.
I really liked the coverage of quality attributes, with a real-world case study providing a
way to highlight the real-world complexities of the trade-offs associated with different
solutions. The set of references to other material is impressive too, making this book
incredibly useful for readers new to the domain of software architecture.”

—Simon Brown, author of Software Architecture for Developers

“Focus on software architecture can get lost when talking about agile software prac-
tices. However, the importance of architecture in software systems has always been
and continues to be relevant. The authors address this important topic with their
second book on Continuous Architecture. This time they provide advice on aspects
that will make or break your system, from data to security, scalability and resilience.
A much recommended book that offers practical guidance for anyone developing
systems in today’s rapidly evolving technology landscape.”

—Ivar Jacobson

9780136523567_Print.indb 2 20/04/21 7:28 PM

“This book continues the journey where its predecessor left off. Software today is
never-ending, and true to its name, this book looks at continuing trends and applies
Continuous Architecture principles using practical examples. The authors avoid the
trap of picking popular tools whose relevance quickly expire, choosing instead to
look at those trends that should influence and shape architecture decisions. This
book will be essential reading for any person wanting to design and architect soft-
ware systems that continue to keep up with the times.”

—Patrick Kua, CTO Coach and Mentor

“In the two-decade-old conflict between ‘big upfront design’ and ‘emergent architec-
ture,’ software architects have often had a hard time finding a meaningful compro-
mise. In Continuous Architecture in Practice, Erder, Pureur, and Woods provide them
with a proven path. This book is a big leap forward: I liked the more systematic use
of architectural tactics—a design artifact that has not been exploited as much as it
should. And that they brought the concept of architectural technical debt to a more
prominent position in the process of making technical and managerial decisions.”

—Philippe Kruchten, software architect

“It’s high time that Agile architecture evolved from oxymoron to what it really needs
to be, a lean, enabling practice that accelerates development and delivery of the next
generation of resilient and scalable enterprise class systems. Continuous Architec-
ture in Practice is another quantum step toward that goal and provides practical
guidance toward creating designs that are responsive to changing requirements and
technologies.”

—Dean Leffingwell, creator of SAFe

9780136523567_Print.indb 3 20/04/21 7:28 PM

The Pearson Addison-Wesley Signature Series provides readers with
practical and authoritative information on the latest trends in modern
technology for computer professionals. The series is based on one
simple premise: great books come from great authors.

Vaughn Vernon is a champion of simplifying software architecture and
development, with an emphasis on reactive methods. He has a unique
ability to teach and lead with Domain-Driven Design using lightweight
tools to unveil unimagined value. He helps organizations achieve
competitive advantages using enduring tools such as architectures,
patterns, and approaches, and through partnerships between business
stakeholders and software developers.

Vaughn’s Signature Series guides readers toward advances in software
development maturity and greater success with business-centric
practices. The series emphasizes organic refinement with a variety
of approaches—reactive, object, and functional architecture and
programming; domain modeling; right-sized services; patterns; and
APIs—and covers best uses of the associated underlying technologies.

Visit informit.com/awss/vernon for a complete list of available publications.

Pearson Addison-Wesley
Signature Series

Make sure to connect with us!
informit.com/socialconnect

9780136523567_Print.indb 4 20/04/21 7:28 PM

http://informit.com/awss/vernon
http://informit.com/socialconnect

Continuous
Architecture
in Practice

Software Architecture in the
Age of Agility and DevOps

Murat Erder
Pierre Pureur
Eoin Woods

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City
São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

The Pearson Addison-Wesley Signature Series provides readers with
practical and authoritative information on the latest trends in modern
technology for computer professionals. The series is based on one
simple premise: great books come from great authors.

Vaughn Vernon is a champion of simplifying software architecture and
development, with an emphasis on reactive methods. He has a unique
ability to teach and lead with Domain-Driven Design using lightweight
tools to unveil unimagined value. He helps organizations achieve
competitive advantages using enduring tools such as architectures,
patterns, and approaches, and through partnerships between business
stakeholders and software developers.

Vaughn’s Signature Series guides readers toward advances in software
development maturity and greater success with business-centric
practices. The series emphasizes organic refinement with a variety
of approaches—reactive, object, and functional architecture and
programming; domain modeling; right-sized services; patterns; and
APIs—and covers best uses of the associated underlying technologies.

Visit informit.com/awss/vernon for a complete list of available publications.

Pearson Addison-Wesley
Signature Series

Make sure to connect with us!
informit.com/socialconnect

9780136523567_Print.indb 5 20/04/21 7:28 PM

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any
kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic
versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2021933714

Copyright © 2021 Pearson Education, Inc.

Cover image: KMNPhoto / Shutterstock

Page 12, Figure 1.2: welder, Factory_Easy/Shutterstock; bridge, Z-art/Shutterstock; architects, Indypendenz/Shutterstock;
Hotel Del Coronado, shippee/Shutterstock.

Page 18, Figure 1.5: toolbox, WilleeCole Photography/Shutterstock; checkmark, Alev Bagater/Shutterstock; wrench,
Bonezboyz/Shutterstock.

Page 38, Figure 2.6: Kruchten, P., R. Nord & I. Ozkaya. Managing Technical Debt: Reducing Friction in Software
Development, 1st Ed., 2019. Reprinted by permission of Pearson Education, Inc.

Page 145, Figure 5.7: cargo ship, Faraways/Shutterstock.

All rights reserved. This publication is protected by copyright, and permission must be obtained from the publisher prior to any
prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, request forms and the appropriate contacts
within the Pearson Education Global Rights & Permissions Department, please visit www.pearson.com/permissions/.

ISBN-13: 978-0-13-652356-7
ISBN-10: 0-13-652356-0

ScoutAutomatedPrintCode

9780136523567_Print.indb 6 22/04/21 2:44 PM

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearson.com/permissions/

To Hakan, Ozan, and Pinar
—M.E.

To Kathy
—P.P.

To my family
—E.W.

9780136523567_Print.indb 7 20/04/21 7:28 PM

This page intentionally left blank

ix

Contents

Foreword by Vaughn Vernon, Series Editor . xv

Foreword by Kurt Bittner . xix

Introduction . xxi

Acknowledgments .xxv

About the Authors . xxvii

Chapter 1: Why Software Architecture Is More Important than Ever 1

What Do We Mean by Architecture? . 1
Software Industry Today . 3
Current Challenges with Software Architecture . 5

Focus on Technology Details Rather than Business Context 6
Perception of Architects as Not Adding Value 6
Architectural Practices May Be Too Slow 7
Some Architects May Be Uncomfortable with Cloud

Platforms . 8
Software Architecture in an (Increasingly) Agile World 8

The Beginnings: Software Architecture and Extreme
Programming . 9

Where We Are: Architecture, Agility, and
Continuous Delivery . 10

Where We May Be Going . 11
Introducing Continuous Architecture . 11

Continuous Architecture Definition . 13
Continuous Architecture Benefits . 15

Applying Continuous Architecture . 17
Continuous Architecture Provides a Set of Principles

and Tools . 17
Introduction to the Case Study . 19

Case Study Context: Automating Trade Finance 20
Summary . 22

9780136523567_Print.indb 9 20/04/21 7:28 PM

Contentsx

Chapter 2: Architecture in Practice: Essential Activities 23

Essential Activities Overview . 24
Architectural Decisions . 26

Making and Governing Architectural Decisions 28
Quality Attributes . 32

Quality Attributes and Architectural Tactics 34
Working with Quality Attributes . 35
Building the Quality Attributes Utility Tree 35

Technical Debt . 36
Capturing Technical Debt . 39
How to Manage Technical Debt . 41

Feedback Loops: Evolving an Architecture . 42
Fitness Functions . 45
Continuous Testing . 45

Common Themes in Today’s Software Architecture Practice 48
Principles as Architecture Guidelines . 48
Team-Owned Architecture . 49
Models and Notations . 51
Patterns and Styles . 52
Architecture as a Flow of Decisions . 53

Summary . 54

Chapter 3: Data Architecture . 55

Data as an Architectural Concern . 56
What Is Data? . 57
Common Language . 58

Key Technology Trends . 60
Demise of SQL’s Dominance: NoSQL and Polyglot

Persistence . 60
Scale and Availability: Eventual Consistency 65
Events versus State: Event Sourcing . 67
Data Analytics: Wisdom and Knowledge from Information 70

Additional Architectural Considerations . 76
Data Ownership and Metadata . 76
Data Integration . 79
Data (Schema) Evolution . 82

Summary . 84
Further Reading . 85

9780136523567_Print.indb 10 20/04/21 7:28 PM

Contents xi

Chapter 4: Security as an Architectural Concern . 87

Security in an Architectural Context . 88
What’s Changed: Today’s Threat Landscape 89
What Do We Mean by Security? . 90
Moving Security from No to Yes . 91
Shifting Security Left . 91

Architecting for Security . 92
What Is a Security Threat? . 92
Continuous Threat Modeling and Mitigation 92
Techniques for Threat Identification . 95
Prioritizing Threats . 98
Other Approaches . 100

Architectural Tactics for Mitigation . 101
Authentication, Authorization, and Auditing 101
Information Privacy and Integrity . 102
Nonrepudiation . 103
System Availability . 104
Security Monitoring . 106
Secrets Management . 107
Social Engineering Mitigation . 109
Zero Trust Networks . 110
Achieving Security for TFX . 111

Maintaining Security . 115
Secure Implementation . 115
People, Process, Technology . 115
The Weakest Link . 116
Delivering Security Continuously . 116
Being Ready for the Inevitable Failure . 117
Security Theater versus Achieving Security 118

Summary . 119
Further Reading . 119

Chapter 5: Scalability as an Architectural Concern 123

Scalability in the Architectural Context . 124
What Changed: The Assumption of Scalability 127
Forces Affecting Scalability . 128

9780136523567_Print.indb 11 20/04/21 7:28 PM

Contentsxii

Types and Misunderstandings of Scalability 128
The Effect of Cloud Computing . 132

Architecting for Scalability: Architecture Tactics 134
TFX Scalability Requirements . 134
Database Scalability . 137
Data Distribution, Replication, and Partitioning 139
Caching for Scalability . 140
Using Asynchronous Communications for Scalability 142
Additional Application Architecture Considerations 145
Achieving Scalability for TFX . 151

Summary . 155
Further Reading . 156

Chapter 6: Performance as an Architectural Concern 159

Performance in the Architectural Context . 159
Forces Affecting Performance . 160
Architectural Concerns . 161

Architecting for Performance . 163
Performance Impact of Emerging Trends 163
Architecting Applications around Performance

Modeling and Testing . 167
Modern Application Performance Tactics 170
Modern Database Performance Tactics 174
Achieving Performance for TFX . 178

Summary . 183
Further Reading . 184

Chapter 7: Resilience as an Architectural Concern 187

Resilience in an Architectural Context . 188
What Changed: The Inevitability of Failure 190
Reliability in the Face of Failure . 191
The Business Context . 191
MTTR, Not (Just) MTBF . 192
MTBF and MTTR versus RPO and RTO 193
Getting Better over Time . 194
The Resilient Organization . 195

9780136523567_Print.indb 12 20/04/21 7:28 PM

Contents xiii

Architecting for Resilience . 195
Allowing for Failure . 195
Measurement and Learning. 199

Architectural Tactics for Resilience . 200
Fault Recognition Tactics . 200
Isolation Tactics . 202
Protection Tactics . 206
Mitigation Tactics . 210
Achieving Resilience for TFX . 214

Maintaining Resilience . 216
Operational Visibility . 216
Testing for Resilience . 217
The Role of DevOps . 218
Detection and Recovery, Prediction and Mitigation 219
Dealing with Incidents . 220
Disaster Recovery . 221

Summary . 222
Further Reading . 223

Chapter 8: Software Architecture and Emerging Technologies 225

Using Architecture to Deal with Technical Risk Introduced
by New Technologies . 226

Introduction to Artificial Intelligence, Machine Learning,
and Deep Learning . 227

Types of Machine Learning. 227
What about Deep Learning? . 229

Using Machine Learning for TFX . 230
Types of Problems Solved by ML,

Prerequisites and Architecture Concerns 230
Using Document Classification for TFX 232
Implementing a Chatbot for TFX . 239

Using a Shared Ledger for TFX . 246
Brief Introduction to Shared Ledgers,

Blockchain, and Distributed Ledger Technology 246
Types of Problems Solved by Shared Ledgers,

Prerequisites, and Architectural Concerns 247

9780136523567_Print.indb 13 20/04/21 7:28 PM

Contentsxiv

Shared Ledger Capabilities . 248
Implementing a Shared Ledger for TFX 250
Benefits of an Architecture-Led Approach 256

Summary . 257
Further Reading . 258

Chapter 9: Conclusion . 259

What Changed and What Remained the Same? 259
Updating Architecture Practice . 261
Data . 263
Key Quality Attributes . 264

Security . 265
Scalability . 265
Performance . 266
Resilience . 266

The Architect in the Modern Era . 267
Putting Continuous Architecture in Practice . 268

Appendix A: Case Study . 269

Appendix B: Comparison of Technical Implementations of
Shared Ledgers . 299

Glossary . 301

Index . 311

9780136523567_Print.indb 14 20/04/21 7:28 PM

xv

Series Editor Foreword

My Signature Series is designed and curated to guide readers toward advances in
software development maturity and greater success with business-centric practices.
The series emphasizes organic refinement with a variety of approaches—reactive,
object, as well as functional architecture and programming; domain modeling; right-
sized services; patterns; and APIs—and covers best uses of the associated underlying
technologies.

From here I am focusing now on only two words: organic refinement.
The first word, organic, stood out to me recently when a friend and colleague

used it to describe software architecture. I have heard and used the word organic in
connection with software development, but I didn’t think about that word as care-
fully as I did then when I personally consumed the two used together: organic
architecture.

Think about the word organic, and even the word organism. For the most part
these are used when referring to living things, but are also used to describe inanimate
things that feature some characteristics that resemble life forms. Organic originates
in Greek. Its etymology is with reference to a functioning organ of the body. If you
read the etymology of organ, it has a broader use, and in fact organic followed suit:
body organs; to implement; describes a tool for making or doing; a musical
instrument.

We can readily think of numerous organic objects—living organisms—from the
very large to the microscopic single-celled life forms. With the second use of organ-
ism, though, examples may not as readily pop into our mind. One example is an
organization, which includes the prefix of both organic and organism. In this use of
organism, I’m describing something that is structured with bidirectional dependen-
cies. An organization is an organism because it has organized parts. This kind of
organism cannot survive without the parts, and the parts cannot survive without the
organism.

Taking that perspective, we can continue applying this thinking to nonliving
things because they exhibit characteristics of living organisms. Consider the atom.
Every single atom is a system unto itself, and all living things are composed of atoms.
Yet, atoms are inorganic and do not reproduce. Even so, it’s not difficult to think of
atoms as living things in the sense that they are endlessly moving, functioning. Atoms
even bond with other atoms. When this occurs, each atom is not only a single system

9780136523567_Print.indb 15 20/04/21 7:28 PM

Series Editor Forewordxvi

unto itself, but becomes a subsystem along with other atoms as subsystems, with
their combined behaviors yielding a greater whole system.

So then, all kinds of concepts regarding software are quite organic in that non-
living things are still “characterized” by aspects of living organisms. When we dis-
cuss software model concepts using concrete scenarios, or draw an architecture
diagram, or write a unit test and its corresponding domain model unit, software
starts to come alive. It isn’t static, because we continue to discuss how to make it bet-
ter, subjecting it to refinement, where one scenario leads to another, and that has an
impact on the architecture and the domain model. As we continue to iterate, the
increasing value in refinements leads to incremental growth of the organism. As time
progresses so does the software. We wrangle with and tackle complexity through
useful abstractions, and the software grows and changes shapes, all with the explicit
purpose of making work better for real living organisms at global scales.

Sadly, software organics tend to grow poorly more often than they grow well. Even
if they start out life in good health they tend to get diseases, become deformed, grow
unnatural appendages, atrophy, and deteriorate. Worse still is that these symptoms
are caused by efforts to refine the software, that go wrong instead of making things
better. The worst part is that with every failed refinement, everything that goes wrong
with these complexly ill bodies doesn’t cause their death. Oh, if they could just die!
Instead, we have to kill them and killing them requires nerves, skills, and the intestinal
fortitude of a dragon slayer. No, not one, but dozens of vigorous dragon slayers. Actu-
ally, make that dozens of dragon slayers who have really big brains.

That’s where this series comes into play. I am curating a series designed to help
you mature and reach greater success with a variety of approaches—reactive, object,
and functional architecture and programming; domain modeling; right-sized ser-
vices; patterns; and APIs. And along with that, the series covers best uses of the asso-
ciated underlying technologies. It’s not accomplished at one fell swoop. It requires
organic refinement with purpose and skill. I and the other authors are here to help.
To that end, we’ve delivered our very best to achieve our goal.

That’s why I and other authors in this series have chosen this book to be among
our own. We know value when we see it. Here’s what we thought of Continuous
Architecture in Practice.

We sensed the power of Continuous Architecture in Practice. Do you? An archi-
tecture that is continuous is such because it possesses distinct organic properties.
Having characteristics of living organisms, it changes with its circumstances and
stands as a sound foundation and protection from numerous negative influences.
Such architectures are continually improved by organic refinement because they are
driven by, and rapidly respond to, new and changing nonfunctional requirements
that support the ongoing call for innovative functional requirements. Further, this
book provides instruments for organization and tooling that will help make

9780136523567_Print.indb 16 20/04/21 7:28 PM

Series Editor Foreword xvii

architectures provide structure and evolve with the growing software. The in practice
part calls for learning from the practices of experienced and mature architects, and
leveraging them in one’s own work.

If followed as the authors have intended, the wisdom embodied in Continuous
Architecture in Practice will help you make wise, practical decisions, not merely
intellectual ones. The wisdom between the covers has been provided by software pro-
fessionals with several decades of hard-won experience working in large and com-
plex enterprises. Murat Erder, Pierre Pureur, and Eoin Woods have likewise delivered
their very best, an end-to-end set of decision-making tools, patterns, and advice. You
will not regret learning from them.

—Vaughn Vernon, series editor

9780136523567_Print.indb 17 20/04/21 7:28 PM

This page intentionally left blank

xix

Foreword

Viewed from a sufficiently great distance, the Earth looks serene and peaceful, a
beautiful arc of sea and cloud and continents. The view at ground level is often any-
thing but serene; conflicts and messy trade-offs abound, and there are few clear
answers and little agreement on the path forward.

Software architecture is a lot like this. At the conceptual level presented by many
authors, it seems so simple: apply some proven patterns or perspectives, document
specific aspects, and refactor frequently, and it all works out. The reality is much
messier, especially once an organization has released something and the forces of
entropy take over.

Perhaps the root problem is our choice of using the “architecture” metaphor; we
have a grand idea of the master builder pulling beautiful designs from pure imagina-
tion. In reality, even in the great buildings, the work of the architect involves a con-
stant struggle between the opposing forces of site, budget, taste, function, and
physics.

This book deals with the practical, day-to-day struggles that development teams
face, especially once they have something running. It recognizes that software
architecture is not the merely conceptual domain of disconnected experts but is the
rough-and-tumble, give-and-take daily tussle of team members who have to balance
tradeoffs and competing forces to deliver resilient, high-performing, secure
applications.

While balancing these architectural forces is challenging, the set of principles that
the authors of this book describe help to calm the chaos, and the examples that they
use help to bring the principles to life. In doing so, their book bridges the
significant gap between the Earth-from-orbit view and the pavement-level view of
refactoring microservice code.

Happy architecting!

—Kurt Bittner

9780136523567_Print.indb 19 20/04/21 7:28 PM

This page intentionally left blank

xxi

Introduction

It has been a few years since we (Murat and Pierre) published Continuous
Architecture,1 and much has changed in that time, especially in the technology
domain. Along with Eoin Woods, we therefore set out to update that book. What
started as a simple revision, however, became a new book in its own right: Con-
tinuous Architecture in Practice.

While Continuous Architecture was more concerned with outlining and discussing
concepts, ideas, and tools, Continuous Architecture in Practice provides more hands-
on advice. It focuses on giving guidance on how to leverage the continuous architec-
ture approach and includes in-depth and up-to-date information on topics such as
security, performance, scalability, resilience, data, and emerging technologies.

We revisit the role of architecture in the age of agile, DevSecOps, cloud, and
cloud-centric platforms. We provide technologists with a practical guide on how to
update classical software architectural practice in order to meet the complex chal-
lenges of today’s applications. We also revisit some of the core topics of software
architecture: the role of the architect in the development team, meeting stakeholders’
quality attribute needs, and the importance of architecture in achieving key cross-
cutting concerns, including security, scalability, performance, and resilience. For each
of these areas, we provide an updated approach to making the architectural practice
relevant, often building on conventional advice found in the previous generation of
software architecture books and explaining how to meet the challenges of these areas
in a modern software development context.

Continuous Architecture in Practice is organized as follows:

 • In Chapter 1, we provide context, define terms, and provide an overview of the
case study that will be used throughout each chapter (more details for the case
study are included in Appendix A).

 • In Chapter 2, our key ideas are laid out, providing the reader with an under-
standing of how to perform architectural work in today’s software develop-
ment environment.

1. Murat Erder and Pierre Pureur, Continuous Architecture: Sustainable Architecture in an Agile and
Cloud-Centric World (Morgan Kaufmann, 2015).

9780136523567_Print.indb 21 20/04/21 7:28 PM

Introductionxxii

 • In Chapters 3 through 7, we explore a number of architecture topics that are
central to developing modern applications: data, security, scalability, perfor-
mance, and resilience. We explain how software architecture, in particular the
Continuous Architecture approach, can help to address each of those archi-
tectural concerns while maintaining an agile way of working that aims to con-
tinually deliver change to production.

 • In Chapters 8 and 9, we look at what is ahead. We discuss the role of architec-
ture in dealing with emerging technologies and conclude with the challenges of
practicing architecture today in the era of agile and DevOps as well as poten-
tial ways to meet those challenges.

We expect some of our readers to be software architects who understand the
classical fundamentals of the field (perhaps from a book such as Software Archi-
tecture in Practice2 or Software Systems Architecture3), but who recognize the
need to update their approach to meet the challenges of today’s fast-moving soft-
ware development environment. The book is also likely to be of interest to soft-
ware engineers who want to learn about software architecture and design and
who will be attracted by our practical, delivery-oriented focus.

To keep the scope of this book manageable and focused on what has changed
since our last book, we assume that readers are familiar with the basics of main-
stream technical topics such as information security, cloud computing, microser-
vice-based architecture, and common automation techniques such as automated
testing and deployment pipelines. We expect that our readers are also familiar
with the fundamental techniques of architectural design, how to create a visual
model of their software, and associated techniques such as the domain-driven
design (DDD) approach.4 For those who feel unsure about architectural design
fundamentals, we suggest starting with a well-defined approach such as the Soft-
ware Engineering Institute’s attribute-driven design5 or a simpler approach such
as the one outlined in chapter 7 of Software Systems Architecture. Software
modeling, although neglected for a few years, seems to be returning to main-
stream practice. For those who missed it first time around, chapter 12 of

2. Len Bass, Paul Clements, and Rick Kazman, Software Architecture in Practice (Addison-Wesley, 2012).

3. Nick Rozanski and Eoin Woods, Software Systems Architecture: Working with Stakeholders Using
Viewpoints and Perspectives (Addison-Wesley, 2012).

4. For more information on DDD, please see Vaughn Vernon, Implementing Domain-Driven Design
(Addison-Wesley, 2013).

5. Humberto Cervantes and Rick Kazman, Designing Software Architectures: A Practical Approach
(Addison-Wesley, 2016). The AAD approach is also outlined in Bass, Clements, and Kazman, Software
Architecture in Practice, chapter 17.

9780136523567_Print.indb 22 20/04/21 7:28 PM

Introduction xxiii

Software Systems Architecture provides a starting point, and Simon Brown’s
books6,7 are a more recent and very accessible introduction to it.

The other foundational architectural practice that we don’t discuss in this book is
how to assess a software architecture. This topic is covered in chapter 6 of our previ-
ous book, chapter 14 of Software Systems Architecture, and chapter 21 of Software
Architecture in Practice. You can also find a lot of information about architectural
evaluation methods such as the Architecture Tradeoff Analysis Method (ATAM) via
an Internet search.

We also assume an existing knowledge of agile development and so do not
provide in-depth discussions of software development life cycle processes such as
agile, Scrum, and the Scaled Agile Framework (SAFe), nor do we discuss soft-
ware deployment and operation approaches, such as DevSecOps, in any depth.
We deliberately do not include details on any specific technology domain (e.g.,
database, security, automation). We of course refer to these topics where rele-
vant, but we assume our readers are generally familiar with them. We covered
these topics, except for technology details, in Continuous Architecture. Also,
please note that terms defined in the glossary are highlighted in bold the first
time they appear in this book.

The foundations of software architecture haven’t changed in the last four
years. The overall goal of architecture remains to enable early and continuous
delivery of business value from the software being developed. Unfortunately, this
goal isn’t always prioritized or even understood by many architecture
practitioners.

The three of us call ourselves architects because we believe there is still no
better explanation of what we do every day at work. Throughout our careers
covering software and hardware vendors, management consultancy firms, and
large financial institutions, we have predominantly done work that can be labeled
as software and enterprise architecture. Yet, when we say we are architects, we
feel a need to qualify it, as if an explanation is required to separate ourselves
from the stereotype of an IT architect who adds no value. Readers may be famil-
iar with an expression that goes something like this: “I am an architect, but I also
deliver/write code/engage with clients _____ [fill in your choice of an activity
that you perceive as valuable].”

No matter what the perception, we are confident that architects who exhibit the
notorious qualities of abstract mad scientists, technology tinkerers, or presentation

6. Simon Brown, Software Architecture for Developers: Volume 1—Technical Leadership and the Bal-
ance with Agility (Lean Pub, 2016). https://leanpub.com/b/software-architecture

7. Simon Brown, Software Architecture for Developers: Volume 2—Visualise, Document and Explore
Your Software Architecture (Lean Pub, 2020). https://leanpub.com/b/software-architecture

9780136523567_Print.indb 23 20/04/21 7:28 PM

https://leanpub.com/b/software-architecture
https://leanpub.com/b/software-architecture

Introductionxxiv

junkies are a minority of practitioners. A majority of architects work effectively as
part of software delivery teams, most of the time probably not even calling them-
selves architects. In reality, all software has an architecture (whether or not it is well
understood), and most software products have a small set of senior developers who
create a workable architecture whether or not they document it. So perhaps it is bet-
ter to consider architecture to be a skill rather than a role.

We believe that the pendulum has permanently swung away from historical,
document-centric software architectural practices and perhaps from conventional
enterprise architecture as well. However, based on our collective experience, we
believe that there is still a need for an architectural approach that can encompass
agile, continuous delivery, DevSecOps, and cloud-centric computing, providing a
broad architectural perspective to unite and integrate these approaches to deliver
against our business priorities. The main topic of this book is to explain such an
approach, which we call Continuous Architecture, and show how to effectively uti-
lize this approach in practice.

Register your copy of Continuous Architecture in Practice on the InformIT site
for convenient access to updates and/or corrections as they become available. To
start the registration process, go to informit.com/register and log in or create an
account. Enter the product ISBN (9780136523567) and click Submit. Look on the
Registered Products tab for an Access Bonus Content link next to this product,
and follow that link to access any available bonus materials. If you would like to
be notified of exclusive offers on new editions and updates, please check the box
to receive email from us.

9780136523567_Print.indb 24 20/04/21 7:28 PM

http://informit.com/register

Acknowledgments

Soon after the first edition of Continuous Architecture was published, we started
getting feedback from our readers along the lines of great book, but I wish you had
provided more practical advice on how to implement Continuous Architecture prin-
ciples and tools. What happened to Data? That topic seems to be missing from your
book. In the spirit of Continuous Architecture, we immediately started applying this
feedback to the book, and planned for a revised edition.

However, it soon became apparent to us that we needed more than a new edition
of Continuous Architecture to fully address all that feedback. What was needed was
a new book, one that explains how Continuous Architecture may help with the prac-
tical, day-to-day challenges that development teams face in today’s complex environ-
ment of rapidly changing technologies, growing masses of data, and stringent
quality attribute requirements associated with modern systems, such as security,
scalability, performance, and resiliency. As you can guess, this project took longer
than initially anticipated due to its increased scope and the unforeseen challenges of
writing a manuscript in the middle of a pandemic. However, we have managed to
bring this project past the finish line and would like to thank the following people for
encouraging us and helping us in this endeavor.

Kurt Bittner and John Klein for taking the time to review our manuscript and pro-
viding invaluable feedback and guidance. Grady Booch, Jan Bosch, Simon Brown,
Ivar Jacobson, Patrick Kua, Philippe Kruchten, and Dean Leffingwell for their feed-
back and endorsements, and Peter Eeles, George Fairbanks, Eltjo Poort, and Nick
Rozanski for many thought-provoking discussions over the years.

Richard Gendal Brown, CTO of R3, for providing us with invaluable advice on
distributed ledger technologies and blockchain. Andrew Graham for sense-checking
our trade finance case study. Mark Stokell for providing content for data science-
related further reading. Philippe Kruchten, Robert Nord, and Ipek Ozkaya for per-
mission to reference content and diagrams from their book, Managing Technical
Debt. And, of course, all of our Continuous Architecture readers for providing the
feedback that led us to create this book.

Finally, we would like to thank Haze Humbert, Julie Nahil, and Menka Mehta
from Pearson, who supported and collaborated with us during the entire process;
and Vaughn Vernon, who thought that this book would be a valuable addition to his
Addison-Wesley Signature Series.

xxv

9780136523567_Print.indb 25 20/04/21 7:28 PM

This page intentionally left blank

About the Authors

Murat Erder has more than twenty-five years’ experience in the software industry
working for software vendors, management consultancies and large international
banks. During his career Murat has had a variety of roles, from developer, to soft-
ware architect, to management consultant. Murat’s corporate IT roles cover the
areas of data, integration, architecture and working as a CTO. He is co-author of
the book Continuous Architecture: Sustainable Architecture in an Agile and Cloud-
Centric World (2015) and has presented on this topic at a range of conferences,
including SEI Saturn, O’Reilly Software Architecture and GOTOLondon.

Pierre Pureur is an experienced software architect, with extensive innovation and
application development background, vast exposure to the financial services indus-
try, broad consulting experience and comprehensive technology infrastructure
knowledge. His past roles include serving as Chief Enterprise Architect for a major
financial services company, leading large architecture teams, managing large-scale
concurrent application development projects and directing innovation initiatives, as
well as developing strategies and business plans. He is coauthor of the book Contin-
uous Architecture: Sustainable Architecture in an Agile and Cloud-Centric World
(2015) and has published many articles and presented at multiple software architec-
ture conferences on this topic.

Eoin Woods is the Chief Technology Officer of Endava, where he guides technical
strategy, leads capability development and directs investment in emerging technolo-
gies. Prior to joining Endava, Eoin worked in the software engineering industry for
twenty years, developing system software products and complex applications in the
capital markets domain. His main technical interests are software architecture,
DevOps and software security and resilience. He is coauthor of the book Software
Systems Architecture, is a frequent speaker at industry events and was the recipient
of the 2018 Linda M. Northrup Award for Software Architecture, awarded by the SEI
at Carnegie Mellon University.

xxvii

9780136523567_Print.indb 27 20/04/21 7:28 PM

This page intentionally left blank

23

Chapter 2

Architecture in Practice:
Essential Activities

The architect should strive continually to simplify.
—Frank Lloyd Wright

Why is architecture important? What are the essential activities of architecture? And
what practical implications do these activities have? These topics are addressed in
this chapter. We already covered the definition of architecture and its relevance in
Chapter 1, “Why Software Architecture Is More Important than Ever.”

To put architecture in perspective, let us focus on the development of a software
system. This is an outcome of applying principle 1, Architect products; evolve from
projects to products. For the remainder of this book, we use the term software sys-
tem (or just system) to refer to the product being developed; in our case study, this is
the Trade Finance eXchange (TFX) system.

As stated in our first book,1 there are three key sets of activities (or roles) for any
successful software system (see Figure 2.1).

Within this context, the goal of architecture is to balance customer demand and
delivery capacity to create a sustainable and coherent system. The system not only
should meet its functional requirements but also should satisfy the relevant quality
attributes, which we discuss later in this chapter.

A key aspect about the topic of architecture and architects is that it tradition-
ally assumes one all-seeing and wise individual is doing architecture. In Continuous
Architecture, we propose to move away from this model. We refer to “architec-
ture work” and “architectural responsibility” instead. These terms point to the

1. Murat Erder and Pierre Pureur, “Role of the Architect,” in Continuous Architecture: Sustainable
Architecture in an Agile and Cloud-centric World (Morgan Kaufmann, 2015), 187–213.

9780136523567_Print.indb 23 20/04/21 7:28 PM

Chapter 2 Architecture in Practice: Essential Activities24

importance of the activities, while emphasizing the responsibility of the team rather
than of a single person.

In his seminal book, The Mythical Man Month,2 Frederick Brooks puts a high
priority on conceptual integrity and says that having the architecture come from a
single mind is necessary to achieve that integrity. We wholeheartedly agree with the
importance of the conceptual integrity but believe that the same can be achieved by
close collaboration in a team.

Combining the Continuous Architecture principles and essential activities out-
lined in this section helps you protect the conceptual integrity of a software system
while allowing the responsibility to be shared by the team. This should not be inter-
preted to mean that one individual should never undertake the role of architect, if
that is appropriate for the team. What is key is that if people do undertake the role,
they must be part of the team and not some external entity.

Essential Activities Overview

From a Continuous Architecture perspective, we define the following essential activi-
ties for architecture:

 • Focus on quality attributes, which represent the key cross-cutting requirements
that a good architecture should address. Quality attributes—performance,

2. Frederick P. Brooks Jr., The Mythical Man-Month: Essays on Software Engineering (Addison-
Wesley, 1995).

Delivery
Management

Product
Management

Architecture

Customer Demand

Delivery Demand

Conceptual Integrity

Figure 2.1 Balancing role of architecture

9780136523567_Print.indb 24 20/04/21 7:28 PM

Essential Activities Overview 25

scalability, and security, among others—are important because they drive the
most significant architectural decisions that can make or break a software sys-
tem. In subsequent chapters, we discuss in detail architectural tactics that help
us address quality attributes.

 • Drive architectural decisions, which are the primary unit of work of architec-
tural activities. Continuous Architecture recommends explicitly focusing on
architectural decisions because if we do not understand and capture architec-
tural decisions, we lose the knowledge of tradeoffs made in a particular con-
text. Without this knowledge, the team is inhibited from being able to support
the long-term evolution of the software product. As we refer to our case study,
we highlight key architectural decisions the team has made.

 • Know your technical debt, the understanding and management of which is key
for a sustainable architecture. Lack of awareness of technical debt will eventu-
ally result in a software product that cannot respond to new feature demands
in a cost-effective manner. Instead, most of the team’s effort will be spent on
working around the technical debt challenges—that is, paying back the debt.

 • Implement feedback loops, which enable us to iterate through the software
development life cycle and understand the impact of architectural decisions.
Feedback loops are required so that the team can react quickly to develop-
ments in requirements and any unforeseen impact of architectural decisions.
In today’s rapid development cycles, we need to be able to course-correct as
quickly as possible. Automation is a key aspect of effective feedback loops.

Figure 2.2 depicts the Continuous Architecture loop that combines these elements.
Clearly, the main objective of the essential activities of architecture is to influence

the code running in the production environment.3 As stated by Bass, Clements, and
Kazman, “Every software system has a software architecture.”4 The main relation-
ships among the activities are summarized as follows:

 • Architectural decisions directly impact the production environment.

 • Feedback loops measure the impact of architectural decisions and how the
software system is fulfilling quality attribute requirements.

3. In the original Continuous Architecture, we refer to this as the realized architecture.

4. Len Bass, Paul Clements, and Rick Kazman, Software Architecture in Practice, 3rd ed. (Addison-Wes-
ley, 2012), 6. Also, according to ISO/IEC/IEEE 42010:2011, Systems and Software Engineering—Archi-
tecture Description, “Every system has an architecture, whether understood or not; whether recorded
or conceptual.”

9780136523567_Print.indb 25 20/04/21 7:28 PM

Chapter 2 Architecture in Practice: Essential Activities26

 • Quality attribute requirements and technical debt help us prioritize architec-
tural decisions.

 • Architectural decisions can add or remove technical debt.

It might come as a surprise that we do not talk about models, perspectives, views,
and other architecture artifacts. These are incredibly valuable tools that can be lever-
aged to describe and communicate the architecture. However, if you do not under-
take the essential activities we emphasize, architecture artifacts on their own will
be insufficient. In other words, models, perspectives, views, and other architecture
artifacts should be considered as a means to an end—which is to create a sustainable
software system.

The following sections discuss each of the essential activities in more detail. We
complete this chapter with a summary view of common themes we have observed in
today’s software architectural practice that complement the essential activities.

Architectural Decisions

If you ask software practitioners what the most visible output is from architectural
activities, many will likely point to a fancy diagram that highlights the key compo-
nents and their interactions. Usually, the more color and complexity, the better.

Production Environment

Quality

Feedback
Loops

prioritize

add/remove

impact

measure

Quality
Attributes Technical Debt

Architectural Decisions

Figure 2.2 Essential activities of architecture

9780136523567_Print.indb 26 20/04/21 7:28 PM

Architectural Decisions 27

The diagram is typically too difficult to read on a normal page and requires a special
large-scale printer to produce. Architects want to look smart, and producing a com-
plex diagram shows that the architect can solve extremely difficult problems! Though
such diagrams give the authors and readers the false sense of being in control, they
normally have limited impact on driving any architectural change. In general, these
diagrams are rarely understood in a consistent manner and provide limited insight
without a voiceover from the diagram’s author. In addition, diagrams are hard to
change, which ends up in a divergence from the code running in the production envi-
ronment that adds confusion when making architectural decisions.

This brings us to the question, What is the unit of work of an architect (or archi-
tectural work)? Is it a fancy diagram, a logical model, a running prototype? Con-
tinuous Architecture states that the unit of work of an architect is an architectural
decision. As a result, one of the most important outputs of any architectural activity
is the set of decisions made along the software development journey. We are always
surprised that so little effort is spent in most organizations on arriving at and docu-
menting architectural decisions in a consistent and understandable manner, though
we have seen a trend in the last few years to rectify this gap. A good example is the
focus on architectural decision records in GitHub.5

In our original book,6 we discussed in detail what an architectural decision should
look like. Following are the key points:

 • It is important to clearly articulate all constraints related to a decision—
architecture is, in essence, about finding the best (i.e., good enough) solution
within the constraints given to us.

 • As stated in principle 2, Focus on quality attributes, not on functional require-
ments, it is important to explicitly address quality attribute requirements.

 • All options considered and rationale for coming to the decision have to be
articulated.

 • Tradeoff between the different options and impact on quality attributes should
be considered.

Finally, the following information is critical for an architectural decision: Who
made this decision, and when? Appropriate accountability increases the trust in the
decisions being made.

5. https://adr.github.io

6. Erder and Pureur, “Evolving the Architecture,” in Continuous Architecture, 63–101.

9780136523567_Print.indb 27 20/04/21 7:28 PM

https://adr.github.io

Chapter 2 Architecture in Practice: Essential Activities28

Making and Governing Architectural Decisions

Let us look at the different types of architectural decisions in an enterprise. Figure 2.3
demonstrates our recommended approach to making architectural decisions in a
typical enterprise.7

If we assume that an enterprise has set up governance bodies that ratify decisions,
it is only natural that the higher up you go, the fewer decisions are made and the
fewer reviews are conducted. For example, enterprise architecture boards make far
fewer decisions than product-level governance boards. Note that the scope and sig-
nificance of architectural decisions also increase with scale. However, most decisions
that can impact an architecture are driven on the ground by development teams.
The closer you get to implementation, the more decisions are made. Although they
tend to be of a more limited scope, over time, these decisions significantly impact
the overall architecture. There is nothing wrong with making more decisions at this
level. The last thing we recommend is to create unnecessary burden and bureaucracy
on development teams that need to be agile; they must quickly make decisions to
deliver their software system. From a Continuous Architecture perspective, two ele-
ments enable us to take advantage of aligning agile project teams to wider govern-
ance around architectural decisions:

 • Guidelines: In reality, the probability of development teams compromising the
architecture is greatly reduced if they are given clear guidelines to adhere to.

7. A similar view is provided by Ruth Malan and Dana Bredemeyer, “Less Is More with Minimalist Archi-
tecture,” IT Professional 4, no. 5 (2002): 48–47.

Guidelines

Development Teams Architectural
Decisions

Visibility

Enterprise
Architecture

Board

Product
Architecture

Boards

Product
Architecture

Boards

Product
Architecture

Boards

Product
Architecture

Boards

Departmental
Architecture

Board

Departmental
Architecture

Board

Departmental
Architecture

Board

Figure 2.3 Levels of architectural decisions

9780136523567_Print.indb 28 20/04/21 7:28 PM

Architectural Decisions 29

For example, if there are clear guidelines around where and how to implement
stored procedures, then the risk of creating a brittle architecture by writing
stored procedures in random parts of the architecture can be avoided.8 If you
go back to Figure 2.3, you see that the main job of higher governance bodies
is not to make decisions but to define guidelines. The recommended approach
is that there should be fewer principles the higher you go in the organization.

 • Visibility: As stated before, we do not want to stop teams from making deci-
sions aligned with their rhythm of delivery. At the same time, we do not want
the overall architecture of a system or enterprise compromised by development
team decisions. To go back to our stored procedure example, we can imagine a
scenario where teams put a stored procedure here and there to meet their imme-
diate deliverables. In some cases, even the existence of these stored procedures
can be forgotten, resulting in a brittle architecture that is expensive to refac-
tor. Creating visibility of architectural decisions at all levels of the organization
and sharing these decisions among different teams will greatly reduce the prob-
ability of significant architectural compromises occurring. It is not technically
difficult to create visibility; all you need to do is agree on how to document
an architectural decision. You can use a version of the template presented in
our original book or utilize architectural decision records. You can utilize exist-
ing communication and social media channels available in the organization
to share these decisions. Though technically not difficult, creating the culture
for sharing architectural decisions is still difficult to realize, mainly because it
requires discipline, perseverance, and open communication. There is also a nat-
ural tension between having your decisions visible to everyone but at the same
time close to the team when working (e.g., checked into their Git repository).

Let us look briefly at how the Continuous Architecture principles help us in deal-
ing with architectural decisions. These principles are aligned with Domain-Driven
Design,9 which is an extremely powerful approach to software development that
addresses challenges similar to those addressed by Continuous Architecture.

 • Applying principle 4, Architect for change—leverage the “power of small,”
results in loosely coupled cohesive components. The architectural decisions
within a component will have limited impact on other components. Some
architectural decisions will still cut across components (e.g., minimally how to
define the components and their integration patterns), but these decisions can
also be addressed independently of component-specific decisions.

8. It can be argued that stored procedures are more of a design decision than an architecture. A decision is
a decision, and the difference between design and architecture is scale. Continuous Architecture applies
at all scales.

9. https://dddcommunity.org/learning-ddd/what_is_ddd

9780136523567_Print.indb 29 20/04/21 7:28 PM

https://dddcommunity.org/learning-ddd/what_is_ddd

Chapter 2 Architecture in Practice: Essential Activities30

 • Applying principle 6, Model the organization of your teams after the design
of the system you are working on, results in collaborative teams that focus on
delivering a set of components. This means that the knowledge sharing of rel-
evant architectural decisions is more natural because the team is already oper-
ating in a collaborative manner.

Architectural Decisions in Agile Projects
Let us now investigate architectural decisions within the context of agile develop-
ment. Most technology practitioners are wary of high-level architectural direction
from the ivory tower. The team will make the necessary decisions and refactor them
when the need arises. We are supportive of this view. Continuous Architecture
emphasizes explicitly focusing on architectural decisions rather than forgetting them
in the heat of the battle: architectural decisions should be treated as a key software
artifact. Making architectural decisions an explicit artifact is key for agile to scale to
and link with the wider enterprise context.

By clearly defining all known architectural decisions, we are basically creating an
architectural backlog. This list includes the decisions you have made and the ones you
know you have to make. Obviously, the list of architectural decisions will evolve as you
make decisions and develop your product. What is important is to have a list of known
architectural decisions and decide on which ones you need to address immediately.
Remember principle 3, Delay design decisions until they are absolutely necessary.

There are two main ways in which you can integrate your architectural decisions
with your product backlog. One option is to keep the architectural decision back-
log separate. The second option is to have them as part of your product backlog
but tagged separately. The exact approach you take will be based on what works
within your context. The key point is to not lose track of these architectural deci-
sions. Figure 2.4 illustrates how the architectural decision backlog logically relates to
individual product backlogs.

If you take a risk-based approach for prioritization, you will end up focusing on
architecturally significant scenarios first. Then your initial set of sprints becomes
focused on making key architectural decisions.

If you then make your architectural backlog visible to other teams and relevant
architecture groups, then you have created full transparency into how you are evolv-
ing your architecture.

Although focusing on architectural decisions is an essential activity, it is still nec-
essary to create a level of architectural description to communicate and socialize the
architecture. We believe that more than 50 percent of architecture is communication
and collaboration. You need such to be able to train new team members as well as
explain your system to different stakeholders. Communication and collaboration are
addressed in detail in the original Continuous Architecture.10

10. Erder and Pureur, “Continuous Architecture in the Enterprise,” in Continuous Architecture, 215–254.

9780136523567_Print.indb 30 20/04/21 7:28 PM

Architectural Decisions 31

As we expand on our case study in subsequent chapters, we highlight key archi-
tectural decisions. These are examples and are not meant as a full set of decisions. In
addition, we capture only some basic information for each decision, as exemplified
in Table 2.1. For most architectural decisions, we expect that more information is
captured, including constraints and detail regarding analysis and rationale.

Project
Backlogs

Architecture
Backlog

Figure 2.4 Architectural decision and product backlogs

Table 2.1 Decision Log Entry Example

Type Name ID Brief Description Options Rationale

Foundational Native
Mobile
Apps

FDN-1 The user interface
on mobile
devices will be
implemented
as native iOS
and Android
applications.

Option 1,
Develop native
applications.

Option 2,
Implement a
responsive design
via a browser.

Better end-user
experience.
Better platform
integration.
However, there is
duplicated effort for
the two platforms
and possible
inconsistency across
platforms.

9780136523567_Print.indb 31 20/04/21 7:28 PM

Chapter 2 Architecture in Practice: Essential Activities32

Quality Attributes

For any software system, requirements fall in the following two categories:

 • Functional requirements: These describe the business capabilities that the sys-
tem must provide as well as its behavior at runtime.

 • Quality attribute (nonfunctional) requirements: These describe the quality
attributes that the system must meet in delivering functional requirements.

Quality attributes can be viewed as the -ilities (e.g., scalability, usability, reliabil-
ity, etc.) that a software system needs to provide. Although the term nonfunctional
requirements has widespread use in corporate software departments, the increas-
ingly common term used in the industry is quality attributes. This term more specifi-
cally addresses the concern of dealing with critical attributes of a software system.11

If a system does not meet any of its quality attribute requirements, it will not
function as required. Experienced technologists can point to several examples of
systems that fulfill all of their functional requirements but fail because of perfor-
mance or scalability challenges. Waiting for a screen to update is probably one of the
most frustrating user experiences you can think of. A security breach is not an inci-
dent that any technologist would want to deal with. These examples highlight why
addressing quality attributes is so critical. Quality attributes are strongly associated
with architecture perspectives, where a perspective is reusable architectural advice on
how to achieve a quality property.12

Formal definition of quality attributes is pretty established in the standards world,
although few practitioners are aware of them. For example, the product quality
model defined in ISO/IEC 25010,13 part of the SQuaRe model, comprises the eight
quality characteristics shown in Figure 2.5.

11. A more humorous criticism of nonfunctional requirements is the view that the term indicates that the
requirement itself is nonfunctional.

12. Nick Rozanski and Eoin Woods, Software Systems Architecture: Working with Stakeholders Using
Viewpoints and Perspectives (Addison-Wesley, 2012).

13. International Organization for Standardization and International Electrotechnical Commission, ISO/
IEC 25010:2011 Systems and Software Engineering — Systems and Software Quality Requirements
and Evaluation (SQuaRE) — System and Software Quality Models (2011). https://iso25000.com/
index.php/en/iso-25000-standards/iso-25010

9780136523567_Print.indb 32 20/04/21 7:28 PM

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

Quality Attributes 33

It is difficult to express quality attributes outside of a particular system context.
For example, latency may be nice to have in a tax-filing application but disastrous for
an autopilot. This makes it challenging to adopt such frameworks in their entirety,

SOFTWARE PRODUCT
QUALITY

Functional Suitability
∙ Functional Completeness
∙ Functional Correctness
∙ Functional Appropriateness

performance Efficiency
∙ Time Behavior
∙ Resource Utilization
∙ Capacity

Compatibility
∙ Coexistence
∙ Interoperability

Usability
∙ Appropriateness Recognizability
∙ Learnability
∙ Operability
∙ User Error Protection
∙ User Interface Aesthetics
∙ Accessibility

Reliability
∙ Maturity
∙ Availability
∙ Fault Tolerance
∙ Recoverability

Security
∙ Confidentiality
∙ Integrity
∙ Nonrepudiation
∙ Authenticity
∙ Accountability

∙ Modularity
∙ Reusability
∙ Analyzability
∙ Modifiability
∙ Testability

Maintainability

∙ Adaptability
∙ Installability
∙ Replaceability

Portability

Figure 2.5 Product quality model

9780136523567_Print.indb 33 20/04/21 7:28 PM

Chapter 2 Architecture in Practice: Essential Activities34

and defining a complete list of all quality attributes can be seen as an unnecessary
academic exercise.

However, addressing the key quality attributes of your software system is one of
the most important architectural considerations. The most important quality attrib-
utes need to be selected and prioritized. In practice, we can say that approximately
10 quality attribute scenarios are a manageable list for most software systems. This
set is equivalent to what can be considered as architecturally significant scenarios.
Architecturally significant implies that the scenarios have the most impact on the
architecture of the software system. These are normally driven by the quality attrib-
ute requirements that are difficult to achieve (e.g., low latency, high scalability). In
addition, these scenarios are the ones that impact how the fundamental components
of the system are defined, implying that changing the structure of these components
in the future will be a costly and difficult exercise.

Experienced software practitioners know that a given set of functional capabili-
ties can often be implemented by several different architectures with varying quality
attribute capabilities. You can say that architectural decisions are about trying to
balance tradeoffs to find a good enough solution to meet your functional and quality
attribute requirements.

Quality Attributes and Architectural Tactics

Functional requirements are usually well documented and carefully reviewed by the
business stakeholders, whereas quality attributes are documented in a much briefer
manner. They may be provided as a simple list that fits on a single page and are not
usually as carefully scrutinized and tend to be truisms, such as “must be scalable”
and “must be highly usable.”

However, our view is that quality attributes drive the architecture design. As stated
by Bass, Clements, and Kazman, “Whether a system will be able to exhibit its desired
(or required) quality attributes is substantially determined by its architecture.”14 We
need to make architectural decisions to satisfy quality attributes, and those deci-
sions often are compromises, because a decision made to better implement a given
quality attribute may have a negative impact on the implementation of other quality
attributes. Accurately understanding quality attribute requirements and tradeoffs is
one of the most critical prerequisites to adequately architect a system. Architectural
decisions are often targeted to find the least-worst option to balance the tradeoffs
between competing quality attributes.

Architectural tactics are how we address quality attributes from an architectural
perspective. An architectural tactic is a decision that affects the control of one or
more quality attribute responses. Tactics are often documented in catalogs in order

14. Bass, Clements, and Kazman, Software Architecture in Practice, 26.

9780136523567_Print.indb 34 20/04/21 7:28 PM

Quality Attributes 35

to promote reuse of this knowledge among architects. We refer to architectural tac-
tics throughout the book, in particular in chapters 5 through 7, that focus on specific
quality attributes.

Working with Quality Attributes

In the Continuous Architecture approach, our recommendation is to elicit and
describe the quality attribute requirements that will be used to drive architectural
decisions. But how do we describe quality attributes? A quality attribute name by
itself does not provide sufficiently specific information. For example, what do we
mean by configurability? Configurability could refer to a requirement to adapt a sys-
tem to different infrastructures—or it could refer to a totally different requirement to
change the business rules of a system. Attribute names such as “availability,” “secu-
rity,” and “usability” can be just as ambiguous. Attempting to document quality
attribute requirements using an unstructured approach is not satisfactory, as the
vocabulary used to describe the quality attributes may vary a lot depending on the
perspective of the author.

A problem in many modern systems is that the quality attributes cannot be accu-
rately predicted. Applications can grow exponentially in term of users and transac-
tions. On the flip side, we can overengineer the application for expected volumes that
might never materialize. We need to apply principle 3, Delay design decisions until
they are absolutely necessary, to avoid overengineering. At the same time, we need
to implement effective feedback loops (discussed later in this chapter) and associated
measurements so that we can react quickly to changes.

We recommend leveraging the utility tree technique from the architecture trade-
off analysis method, or ATAM.15 Documenting architecture scenarios that illustrate
quality attribute requirements is a key aspect of this technique.

Building the Quality Attributes Utility Tree

We do not go into details of the ATAM utility tree, which is covered in our original
book.16 The most important aspect is to clearly understand the following three
attributes for each scenario:

 • Stimulus: This portion of the architecture scenario describes what a user or
any external stimulus (e.g., temporal event, external or internal failure) of the
system would do to initiate the architecture scenario.

15. Software Engineering Institute, Architecture Tradeoff Analysis Method Collection. https://
resources.sei.cmu.edu/library/asset-view.cfm?assetid=513908

16. Erder and Pureur, “Getting Started with Continuous Architecture: Requirements Management,” in
Continuous Architecture, 39–62.

9780136523567_Print.indb 35 20/04/21 7:28 PM

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=513908
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=513908

Chapter 2 Architecture in Practice: Essential Activities36

 • Response: This portion of the architecture scenario describes how the system
should be expected to respond to the stimulus.

 • Measurement: The final portion of the architecture scenario quantifies the
response to the stimulus. The measurement does not have to be extremely pre-
cise. It can be a range as well. What is important is the ability to capture the
end-user expectations and drive architectural decisions.

Another attribute you can include in defining the scenario is

 • Environment: The context in which the stimulus occurs, including the system’s
state or any unusual conditions in effect. For example, is the scenario con-
cerned with the response time under typical load or peak load?

Following is an example of a quality attribute scenario for scalability:

 • Scenario 1 Stimulus: The volume of issuances of import letters of credit (L/Cs)
increases by 10 percent every 6 months after TFX is implemented.

 • Scenario 1 Response: TFX is able to cope with this volume increase. Response
time and availability measurements do not change significantly.

 • Scenario 1 Measurement: The cost of operating TFX in the cloud does not
increase by more than 10 percent for each volume increase. Average response
time does not increase by more than 5 percent overall. Availability does not
decrease by more than 2 percent. Refactoring the TFX architecture is not
required.

As we evolve the case study throughout this book, we provide several more exam-
ples using the same technique.

Technical Debt

The term technical debt has gained a lot of traction in the software industry. It is a
metaphor that addresses the challenge caused by several short-term decisions result-
ing in long-term challenges. It draws comparison with how financial debt works.
Technical debt is not always bad—it is sometimes beneficial (e.g., quick solutions to
get a product to market). The concept was first introduced by Ward Cunningham:

Shipping first time code is like going into debt. A little debt speeds development so
long as it is paid back promptly with a rewrite. . . . The danger occurs when the debt is

9780136523567_Print.indb 36 20/04/21 7:28 PM

Technical Debt 37

not repaid. Every minute spent on not-quite-right code counts as interest on that debt.
Entire engineering organizations can be brought to a stand-still under the debt load of
an unconsolidated implementation, object-oriented or otherwise.17

Although the term is used widely in the industry, it is not clearly defined. It is simi-
lar to how the term use case gained wide usage—but lost its original intent and clear
definition. In their book Managing Technical Debt, Kruchten, Nord, and Ozkaya
address this ambiguity and provide a comprehensive overview of the concept of tech-
nical debt and how to manage it. Their definition of technical debt is as follows:

In software-intensive systems, technical debt consists of design or implementation con-
structs that are expedient in the short term but that set up a technical context that can
make future change more costly or impossible. Technical debt is a contingent liability
whose impact is limited to internal system qualities—primarily, but not only, maintain-
ability and evolvability.18

This is a good definition because it focuses more on the impact of technical debt
and does not strictly follow the financial debt metaphor—which, though useful, is
not a fully accurate way to represent the topic. The focus on maintainability and
evolvability is key to how to think about technical debt. It implies that if your sys-
tem is not expected to evolve, the focus on technical debt should be minimal. For
example, software written for the Voyager spacecraft should have very limited focus
on technical debt19 because it is not expected to evolve and has limited maintenance
opportunities.

As shown in Figure 2.6, technical debt can be divided into three categories:

 • Code: This category includes expediently written code that is difficult to main-
tain and evolve (i.e., introduce new features). The Object Management Group
(OMG)’s Automated Technical Debt Measure specification20 can be used by
source code analysis tools to measure this aspect. You can view the specifica-
tion as standardized best practices for common topics such as managing loops,

17. Ward Cunningham, “The WyCash Portfolio Management System,” ACM SIGPLAN OOPS Messen-
ger 4, no. 2 (1992): 29–30.

18. Philippe Kruchten, Rod Nord, and Ipek Ozkaya, Managing Technical Debt: Reducing Friction in
Software Development (Addison-Wesley, 2019).

19. Or at least no intentional debt. It is almost impossible to avoid creating unintentional debt. See
Kruchten, Nord, and Ozkaya, Managing Technical Debt, principle 3, “All systems have technical
debt.”

20. Object Management Group, Automated Technical Debt Measure (December 2017). https://
www.omg.org/spec/ATDM

9780136523567_Print.indb 37 20/04/21 7:28 PM

http://www.omg.org/spec/ATDM
http://www.omg.org/spec/ATDM

Chapter 2 Architecture in Practice: Essential Activities38

initialization of variables, and so on. Because this book is more about architec-
ture than implementation, we do not discuss this aspect of technical debt any
further.

 • Architecture: Debt in this category is the result of architectural decisions made
during the software development process. This type of technical debt is dif-
ficult to measure via tools but usually has a more significant impact on the
system than other types of debt. For example, the decision to use a database
technology that cannot provide the quality attributes required (e.g., using a
relational database when a basic key–value database would do) has a signifi-
cant impact on the scalability and maintainability of a system.

 • Production infrastructure: This category of technical debt deals with decisions
focused on the infrastructure and code that are used to build, test, and deploy
a software system. Build-test-deploy is becoming increasingly integral to soft-
ware development and is the main focus of DevOps. Continuous Architecture
sees the build-test-deploy environment as part of the overall architecture, as
stated by principle 5, Architect for build, test, deploy, and operate.

We refer readers to Managing Technical Debt and other books for more in-depth
information on this important topic. In the next sections, we focus on recommen-
dations of incorporating practices to identify and manage technical debt from the
perspective of the architecture of a product.

Architecture

Evolution Issues: Evolvability

Visible Mostly Invisible Visible

Quality Issues: Manitainability

Code

Production Infrastructure

Te
ch

no
lo

gi
ca

l G
ap Architecture Smells

Pattern Violations
Structural Complexity

Low Internal Quality
Code Complexity

Code Smells
Coding Style Violations

Build, Test, and Deploy Issues

Defects

Low External Quality

New Features

Additional Functionality

Figure 2.6 Technical debt landscape. (Source: Kruchten, P., R. Nord & I. Ozkaya,
Managing Technical Debt, SEI Series in Software Engineering, Addison-Wesley, 2019.)

9780136523567_Print.indb 38 20/04/21 7:28 PM

Technical Debt 39

In an interesting article, Alex Yates21 proposes the term technical debt
singularity.

Technology singularity is defined as the point where computer (or arti-
ficial) intelligence will exceed the capacity of humans. After this point,
all events will be unpredictable. The term was first attributed to John von
Neumann:

Ever accelerating progress of technology and changes in the mode of human
life, which gives the appearance of approaching some essential singularity in
the history of the race beyond which human affairs, as we know them, could
not continue.22

Although the technical debt singularity does not have such dire con-
sequences for human kind, it is still significant for impacted teams. Yates
defined the technical debt singularity as follows:

So what happens if the interest we owe on our technical debt starts to exceed
the number of man-hours in a working day? Well, I call that the technical debt
singularity. This is the point at which software development grinds to a halt. If
you spend practically all your time firefighting and you can’t release often (or
ever?) with confidence, I’m afraid I’m talking about you. You’ve pretty much
reached a dead-end with little hope of making significant progress.23

We can expand this to the wider enterprise and say that an enterprise has
reached an architectural debt singularity when it cannot balance delivery of
business demand and ongoing stability of the IT landscape in a cost-efficient
manner.

Capturing Technical Debt212223

We recommend creating a technical debt registry as a key artifact for managing the
architecture of a system. In terms of visibility and linkage to product backlogs, it
should be managed in a similar manner to the architectural decision backlog.

21. Alex Yates, “The Technical Debt Singularity,” Observations (2015). http://workingwithdevs.com/
technical-debt-singularity

22. Stanislaw Ulam, “Tribute to John von Neumann,” Bulletin of the American Mathematical Society 64,
no. 3 (1958): 1–49.

23. Yates, “The Technical Debt Singularity.”

9780136523567_Print.indb 39 20/04/21 7:28 PM

http://workingwithdevs.com/technical-debt-singularity
http://workingwithdevs.com/technical-debt-singularity

Chapter 2 Architecture in Practice: Essential Activities40

For each technical item, it is important to capture the following relevant
information:

 • Consequences of not addressing the technical debt item. The consequences
can be articulated in terms of inability to meet future business requirements or
limitations to the quality attributes of the product. These should be defined in
a business-friendly manner because, at the end of the day, addressing technical
debt will be prioritized against meeting immediate business demand.

 • Remediation approach for addressing the technical debt item. The clearer this
approach can be defined, the easier it is to make decisions on prioritization of
a technical debt item against other features.

Just like the architectural decision backlog, the technical debt registry should be
viewable separately. However, it does not need to be managed as a separate item.24
One effective approach we have observed is to have product backlog items tagged as
technical debt. When required, you can easily pull in all technical debt items from the
individual project backlogs, as shown in Figure 2.7.

24. See Kruchten, Nord, and Ozkaya, Managing Technical Debt, chapter 13, for practical advice on this
topic.

Architecture
Backlog

Product
Backlogs

Technical
Debt Register

Figure 2.7 Technical debt registry and backlogs

9780136523567_Print.indb 40 20/04/21 7:28 PM

Technical Debt 41

How to Manage Technical Debt

Once you have the technical debt registry in place, it is also important to agree on a
process for the prioritization of the technical debt items. We recommend basing pri-
oritization on the consequences of the technical debt items and not worrying too
much about “technical purity.” For example, converting a file-based batch interface
to an API-based real-time interface might seem like a good thing to do, but if there is
limited impact on the system’s business value, it should not be prioritized.

We see two main drivers for the architectural focus on technical debt: to make
appropriate architectural decisions and to influence prioritization of future releases.

While making an architectural decision, it is important to understand if we are
alleviating any existing technical debt items or introducing new technical debt. This
ensures that we keep the perspective of the long-term conceptual integrity of the
product at each step.

Now, let us look at how prioritization of backlog items works. In an agile model,
it is the product owner who decides what items should be prioritized. Even if you do
not operate in a fully agile model, you still have conversations about prioritization
and budget with your business stakeholders. If technical debt and its impact is not
visible to the business stakeholders, it will always take a back seat to new features.
Technical debt items are, by their nature, not clearly visible as features, and they have
an impact predominantly on quality attributes.25 This is where an architectural focus
comes in.26 The objective is to articulate the impact of delaying addressing technical
debt items. If we delay addressing technical debt for too long, the software system
can hit the technical debt singularity.

Another tactic for making sure technical debt is not lost in the rush for new fea-
tures is to carve out a proportion of each release to address technical debt. How to
categorize your backlog items is a wide area that is not in the scope of this book;
however, a compelling view is offered by Mik Kersten.27 He states that there are four
types of items (i.e., flow items) to be considered in the backlog: features, defects,
technical debt, and risk (e.g., security, regulatory).

To limit our scope to an achievable size, we decided not to discuss technical debt
in the rest of this book. However, we believe that it is an important area for architects
to actively manage and refer you to the references provided.

25. It is obvious that significantly failing a quality attribute requirement (e.g., uptime) is very visible.
However, most technical debt items are not that clear and usually affect the ability to respond to
future capabilities in an efficient manner.

26. See Kruchten, Nord, and Ozkaya, Managing Technical Debt, principle 6, “Architecture technical debt
has the highest cost of ownership.”

27. Mik Kersten, Project to Product: How to Survive and Thrive in the Age of Digital Disruption with the
Flow Framework (IT Revolution Press, 2018).

9780136523567_Print.indb 41 20/04/21 7:28 PM

Chapter 2 Architecture in Practice: Essential Activities42

Controller Heater Actual
Temperature

Desired
Temperature

Feedback Loop

Sensor

Figure 2.8 Feedback loop example

Feedback Loops: Evolving an Architecture

Feedback loops exist in all complex systems from biological systems such as the
human body to electrical control systems. The simplest way to think about feedback
loops is that the output of any process is fed back as an input into the same process.
An extremely simplified example is an electrical system that is used to control the
temperature of a room (see Figure 2.8).

In this simple example, a sensor provides a reading of the actual temperature,
which allows the system to keep the actual temperature as close as possible to the
desired temperature.

Let us consider software development as a process, with the output being a system
that ideally meets all functional requirements and desired quality attributes. The key
goal of agile and DevOps has been to achieve greater flow of change while increas-
ing the number of feedback loops in this process and minimizing the time between
change happening and feedback being received. The ability to automate devel-
opment, deployment, and testing activities is a key to this success. In Continuous
Architecture, we emphasize the importance of frequent and effective feedback loops.
Feedback loops are the only way that we can respond to the increasing demand to
deliver software solutions in a rapid manner while addressing all quality attribute
requirements.

What is a feedback loop? In simple terms, a process has a feedback loop when the
results of running the process are used to improve how the process itself works in the
future.

9780136523567_Print.indb 42 20/04/21 7:28 PM

Feedback Loops: Evolving an Architecture 43

Collect
Feedback

Assess
Feedback

Schedule
Incrementally

Implement
Changes

Figure 2.9 Continuous architecture feedback loop

The steps of implementing a continuous feedback loop can be summarized as fol-
lows and are shown in Figure 2.9:

 1. Collect measurements: Metrics can be gathered from many sources, including
fitness functions, deployment pipelines, production defects, testing results, or
direct feedback from the users of the system. The key is to not start the process
by implementing a complex dashboard that may take a significant amount of
time and money to get up and running. The point is to collect a small number
of meaningful measurements that are important for the architecture.

 2. Assess: Form a multidisciplinary team that includes developers, operations,
architects, and testers. The goal of this team is to analyze the output of the
feedback—for example, why a certain quality attribute is not being addressed.

 3. Schedule incrementally: Determine incremental changes to the architecture
based on the analysis. These changes can be categorized as either defects or
technical debt. Again, this step is a joint effort involving all the stakeholders.

 4. Implement changes: Go back to step 1 (collect measurement).

9780136523567_Print.indb 43 20/04/21 7:28 PM

Chapter 2 Architecture in Practice: Essential Activities44

Feedback is essential for effective software delivery. Agile processes use some of
the following tools to obtain feedback:

 • Pair programming

 • Unit tests

 • Continuous integration

 • Daily Scrums

 • Sprints

 • Demonstrations for product owners

From an architectural perspective, the most important feedback loop we are inter-
ested in is the ability to measure the impact of architectural decisions on the pro-
duction environment. Additional measurements that will help improve the software
system include the following:

 • Amount of technical debt being introduced/reduced over time or with each
release

 • Number of architectural decisions being made and their impact on quality
attributes

 • Adherence to existing guidelines or standards

 • Interface dependencies and coupling between components

This is not an exhaustive list, and our objective is not to develop a full set of meas-
urements and associated feedback loops. Such an exercise would end up in a generic
model that would be interesting but not useful outside of a specific context. We rec-
ommend that you think about what measurement and feedback loops you want to
focus on that are important in your context. It is important to remember that a feed-
back loop measures some output and takes action to keep the measurement in some
allowable range.

As architectural activities get closer to the development life cycle and are owned by
the team rather than a separate group, it is important to think about how to integrate
them as much as possible into the delivery life cycle. Linking architectural decisions
and technical debt into the product backlogs, as discussed earlier, is one technique.
Focus on measurement and automation of architectural decisions; quality attributes
is another aspect that is worthwhile to investigate.

9780136523567_Print.indb 44 20/04/21 7:28 PM

Feedback Loops: Evolving an Architecture 45

One way to think about architectural decisions is look at every decision as an
assertion about a possible solution that needs to be tested and proved valid or
rejected. The quicker we can validate the architectural decision, ideally by executing
tests, the more efficient we become. This activity in its own is another feedback loop.
Architectural decisions that are not validated quickly are at risk of causing chal-
lenges as the system evolves.

Fitness Functions

A key challenge for architects is an effective mechanism to provide feedback loops
into the development process of how the architecture is evolving to address quality
attributes. In Building Evolutionary Architectures,28 Ford, Parsons, and Kua intro-
duced the concept of the fitness function to address this challenge. They define fit-
ness functions as “an architectural fitness function provides an objective integrity
assessment of some architectural characteristics”—where architectural characteris-
tics are what we have defined as quality attributes of a system. These are like the
architecturally significant quality attribute scenarios discussed earlier in the chapter.

In their book, they go into detail on how to define and automate fitness functions
so that a continuous feedback loop regarding the architecture can be created.

The recommendation is to define the fitness functions as early as possible. Doing
so enables the team to determine the quality attributes that are relevant to the soft-
ware product. Building capabilities to automate and test the fitness functions also
enables the team to test out different options for the architectural decisions it needs
to make.

Fitness functions are inherently interlinked with the four essential activities we
have discussed. They are a powerful tool that should be visible to all stakeholders
involved in the software delivery life cycle.

Continuous Testing

As previously mentioned, testing and automation are key to implementing effective
feedback loops. Continuous testing implements a shift-left approach, which uses
automated processes to significantly improve the speed of testing. This approach
integrates the quality assurance and development phases. It includes a set of auto-
mated testing activities, which can be combined with analytics and metrics to pro-
vide a clear, fact-based picture of the quality attributes of the software being
delivered. This process is illustrated in Figure 2.10.

28. Neal Ford, Rebecca Parsons, and Patrick Kau, Building Evolutionary Architectures (O’Reilly Media,
2017), 15.

9780136523567_Print.indb 45 20/04/21 7:28 PM

Chapter 2 Architecture in Practice: Essential Activities46

Leveraging a continuous testing approach provides project teams with feedback
loops for the quality attributes of the software that they are building. It also allows
them to test earlier and with greater coverage by removing testing bottlenecks, such
as access to shared testing environments and having to wait for the user interface to
stabilize. Some of the benefits of continuous testing include the following:

 • Shifting performance testing activities to the “left” of the software develop-
ment life cycle (SDLC) and integrating them into software development
activities

 • Integrating the testing, development, and operations teams in each step of the
SDLC

 • Automating quality attribute testing (e.g., for performance) as much as pos-
sible to continuously test key capabilities being delivered

 • Providing business partners with early and continuous feedback on the quality
attributes of a system

 • Removing test environment availability bottlenecks so that those environments
are continuously available

 • Actively and continuously managing quality attributes across the whole deliv-
ery pipeline

Write/Commit
Code to

Implement a
Feature Set

Automated
Testing

Automated
Testing

Analytics &
Metrics

Figure 2.10 Sample automated testing process

9780136523567_Print.indb 46 20/04/21 7:28 PM

Feedback Loops: Evolving an Architecture 47

Test Data
Creation/

Generation

Data Upload

Data Aging Interface with
Testing Tools

Dataset
Management
and Library

Data Refresh Data
Extraction

Production
Extract

Data
Transformation
and Masking

Figure 2.11 Test data management capabilities

Some of the challenges of continuous testing include creation and maintenance of
test data sets, setup and updating of environments, time taken to run the tests, and
stability of results during development.

Continuous testing relies on extensive automation of the testing and deployment
processes and on ensuring that every component of the software system can be tested
as soon as it is developed. For example, the following tactics29 can be used by the
TFX team for continuous performance testing:

 • Designing API-testable services and components. Services need to be fully
tested independently of the other TFX software system components. The goal
is to fully test each service as it is built, so that there are very few unpleasant
surprises when the services are put together during the full system testing pro-
cess. The key question for architects following the Continuous Architecture
approach when creating a new service should be, “Can this service be easily
and fully tested as a standalone unit?”

 • Architecting test data for continuous testing. Having a robust and fully auto-
mated test data management solution in place is a prerequisite for continuous
testing. That solution needs to be properly architected as part of the Continu-
ous Architecture approach. An effective test data management solution needs
to include several key capabilities, summarized in Figure 2.11.

29. For additional details on those tactics, see Erder and Pureur, “Continuous Architecture and Continu-
ous Delivery,” in Continuous Architecture, 103–129.

9780136523567_Print.indb 47 20/04/21 7:28 PM

Chapter 2 Architecture in Practice: Essential Activities48

 • Leveraging an interface-mocking approach when some of the TFX ser-
vices have not been delivered yet. Using an interface-mocking tool, the TFX
team can create a virtual service by analyzing its service interface definition
(inbound/outbound messages) as well as its runtime behavior. Once a mock
interface has been created, it can be deployed to test environments and used to
test the TFX software system until the actual service becomes available.

Common Themes in Today’s Software Architecture
Practice

We end this chapter with views on key trends that we see in software architectural
practice. We provide only a brief overview of each topic and highlight relevant
points. A detailed overview of these topics is out of the scope of this book.

Principles as Architecture Guidelines

Principles are one of the most widely used type of guidelines by architecture practi-
tioners. We define a principle as

A declarative statement made with the intention of guiding architectural design deci-
sions in order to achieve one or more qualities of a system.30

A small set of key principles is extremely valuable if the principles are fully
embraced by a team and influence the decisions they make. Principles are very valu-
able in communicating and negotiating decisions with key stakeholders. They allow
us to have an effective dialogue highlighting future problems that can occur if the
principles are violated.

For example, a team might decide to build a user interface (UI) quickly by direct
access to the backend database to meet a deadline. In doing so, the team has violated
the principle of “integration through APIs.” Bypassing the API will tightly couple
the UI to the backend database and make future challenges in both components more
difficult. Common awareness of such a principle up front will make the conversa-
tions with stakeholders much easier. They can still make the decision to go forward
with the direct access route but with the understanding that they are building techni-
cal debt for their software product.

30. Eoin Woods, “Harnessing the Power of Architectural Design Principles,” IEEE Software 33, no. 4
(2016): 15–17.

9780136523567_Print.indb 48 20/04/21 7:28 PM

Common Themes in Today’s Software Architecture Practice 49

A common bad practice in the industry is to create a complete set of principles
that cover all eventualities. This usually results in a long list of principles written in
excruciating detail—and usually requiring lengthy editorial efforts. However, quite
often, these principles end up not being embedded in the thought process of the
teams that actually make the decisions.

Another challenge we have seen is how principles are written. At times, they are
truisms—for example, “all software should be written in a scalable manner.” It is
highly unlikely that a team would set out to develop software that is not scalable.
The principles should be written in a manner that enable teams to make decisions.

As stated earlier, the most valuable principles are those that a team live and
breathe while they develop a software system and make architectural decisions. They
are normally a handful of basic statements.

A simple but good example for such an architectural principle is “Buy before
build.” It has the following characteristics that make a good principle:

 • Clear: Principles should be like marketing slogans—easy to understand and
remember.

 • Provides guidance for decisions: When making a decision, you can easily look
to the principle for guidance. In this instance, it means that if you have a viable
software product to buy, you should do that before building a solution.

 • Atomic: The principle does not require any other context or knowledge to be
understood.

Team-Owned Architecture

A key benefit of agile practices has been the focus on cross-functional and empow-
ered teams. Effective teams can create tremendous value to an organization. It can be
said that, while organizations used to look for the star developers who were multiple
times more effective than an average developer, they now recognize the need for
building and maintaining effective teams. This does not mean that star developers
and engineers should not be acknowledged but that they are hard to find, and build-
ing effective teams in the long run is a more achievable model.

In that context, architecture activities become a team responsibility. Architecture
is increasingly becoming a discipline (or skill) rather than a role. We can highlight
the key skills required for conducting architectural activities as follows:31

31. Eoin Woods, “Return of the Pragmatic Architect,” IEEE Software 31, no. 3 (2014): 10–13. https://
doi.org/10.1109/MS.2014.69

9780136523567_Print.indb 49 20/04/21 7:28 PM

https://doi.org/10.1109/MS.2014.69
https://doi.org/10.1109/MS.2014.69

Chapter 2 Architecture in Practice: Essential Activities50

 • Ability to design. Architecture is a design-oriented activity. An architect might
design something quite concrete, such as a network, or something less tangi-
ble, such as a process, but design is core to the activity.

 • Leadership. Architects are not just technical experts in their areas of specializa-
tion: they’re technical leaders who shape and direct the technical work in their
spheres of influence.

 • Stakeholder focus. Architecture is inherently about serving a wide constitu-
ency of stakeholders, balancing their needs, communicating clearly, clarifying
poorly defined problems, and identifying risks and opportunities.

 • Ability to conceptualize and address systemwide concerns. Architects are con-
cerned about an entire system (or system of systems), not just one part of it, so
they tend to focus on systemic qualities rather than on detailed functions.

 • Life cycle involvement. An architect might be involved in all phases of a sys-
tem’s life cycle, not just building it. Architectural involvement often spans a
system’s entire life cycle, from establishing the need for the system to its even-
tual decommissioning and replacement.

 • Ability to balance concerns. Finally, across all these aspects of the job, there is
rarely one right answer in architecture work.

Although we state that architecture is becoming more of a skill than a role, it is
still good to have a definition of the role. As mentioned earlier, in The Mythical Man-
Month,32 Brooks talks about the conceptual integrity of a software product. This is a
good place to start for defining the role of architects—basically, they are accountable
for the conceptual integrity of the entity that is being architected or designed.

Continuous Architecture states that an architect is responsible for enabling the imple-
mentation of a software system by driving architectural decisions in a manner that pro-
tects the conceptual integrity of the software system.

In our first book, Continuous Architecture,33 we provide a detailed overview of
the personality traits, skills, and communication mechanisms required for the role of
an architect (or to be able to do architectural work).

32. Brooks, The Mythical Man-Month.

33. Erder and Pureur, “Role of the Architect,” in Continuous Architecture, 187–213.

9780136523567_Print.indb 50 20/04/21 7:28 PM

Common Themes in Today’s Software Architecture Practice 51

Models and Notations

Communication is key to the success of architectural activities. Unfortunately, in the
IT world, we spend a long time discussing the exact meaning of different terms (e.g.,
use case vs. user story), notation, and architectural artifacts (e.g., conceptual vs. log-
ical vs. physical architectures).

One of the most successful attempts at creating a common notation in the soft-
ware industry was the Unified Modeling Language (UML), which became an OMG
standard in 1997.34 In the late 1990s and 2000s, it felt as though UML was going to
become the default standard for visualizing software. However, it has been waning in
popularity in recent years. We are not exactly sure why this is, but one factor is that
software engineering is a rapidly expanding and very young profession. As a result,
most formalisms are overpowered by new technologies, fads, and ways of working.
You can say that the only relevant artifact for developers is code. Any other represen-
tation requires extra effort to maintain and therefore becomes quickly outdated as a
development team evolves the system.

Another attempt at creating a visual language for software is ArchiMate, which
was originally developed in Netherlands and became an Open Group standard in
2008.35 Unlike UML, which is system focused, ArchiMate attempts to model enter-
prise architecture artifacts.

Although UML has gained much larger traction, there is still not an agreed-
upon notation to communicate software and architecture artifacts in the industry.
Paradoxically, UML and ArchiMate can make communication harder because few
developers and stakeholders understand them well. Most technologists and teams
normally end up drawing freeform diagrams to depict the architecture. This is a
major challenge because communication is key to the success of developing and
maintaining a system or enterprise architecture.

A more recent attempt at addressing this gap is the C4 model that was created
by Simon Brown.36 This is an interesting approach that addresses some of the chal-
lenges with more formal notations. As a philosophy, it tries to create an approach
whereby the representation of the architecture is close to the code and can be used by
developers.

From a Continuous Architecture perspective, we can make the following observa-
tions. As stated at the beginning of the chapter, the core elements required to drive
a sustainable architecture are focus on quality attributes, architectural decisions,
technical debt, and feedback loops. However, effective communication is critical: We
cannot overcommunicate! As a result, utilizing a common language to define and

34. https://www.omg.org/spec/UML/About-UML

35. https://pubs.opengroup.org/architecture/archimate3-doc

36. https://c4model.com

9780136523567_Print.indb 51 20/04/21 7:28 PM

https://www.omg.org/spec/UML/About-UML
https://pubs.opengroup.org/architecture/archimate3-doc
https://c4model.com

Chapter 2 Architecture in Practice: Essential Activities52

communicate architectural artifacts just makes common sense. That the industry
has still not found its way does not mean you should not strive for this in your area,
be it a system, division, or enterprise.

Although we do not recommend a certain notation, that does not mean graphi-
cal communication and effective modeling are unimportant. Following are a few key
characteristics that should be considered in determining your approach:37

 • Simplicity: Diagrams and models should be easy to understand and should
convey the key messages. A common technique is to use separate diagrams to
depict different concerns (logical, security, deployment, etc.).

 • Accessibility to target audience: Each diagram has a target audience and
should be able to convey the key message to them.

 • Consistency: Shapes and connections used should have the same meaning.
Having a key that identifies the meaning of each shape and color promotes con-
sistency and enables clearer communication among teams and stakeholders.

Finally, note that for the purpose of this book, we used the UML-like notation to
reflect our case study.

Patterns and Styles

In 1994, the Gang of Four—Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides—published their seminal book, Design Patterns.38 In this book, they iden-
tified 23 patterns that address well-known challenges in object-oriented software
development. Almost as important as the solutions they provided is that they intro-
duced the concept of the design pattern and defined a manner to explain the patterns
consistently.

Several subsequent publications have expanded the pattern concept to different
areas, from analysis to enterprise applications. More important, software designers
were able to communicate with each other by referring to design patterns.

The challenge we see in the industry is that most technologists do not understand
patterns or choose not to use any rigor when using them. This is particularly true
when looking at tradeoffs as a result of using a pattern. Nonetheless, there is signifi-
cant value in having a common pattern library within the organization. The more
the patterns can be demonstrated in code or running software, the better.

37. https://www.edwardtufte.com

38. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns: Elements of
Reusable Software Architecture (Addison-Wesley, 1995).

9780136523567_Print.indb 52 20/04/21 7:28 PM

https://www.edwardtufte.com

Common Themes in Today’s Software Architecture Practice 53

Backlog In Progress Ready for Decision Decision Made

Decision

Decision

Decision

Decision

Decision

Decision

Decision

Decision

Decision

Decision

Decision

Decision

Decision

Decision

Figure 2.12 Architectural decision Kanban board

Architecture as a Flow of Decisions

As mentioned, the key unit of work of architecture is an architectural decision. The
topic of architectural decisions collectively defining the architecture has been preva-
lent in the industry for some time39 and is becoming even more prominent in today’s
world. If you use a Kanban board to combine the view of architectural decisions as a
unit of work with common software development practices focused on managing
tasks, you can easily say that architecture is just a flow of decisions. Figure 2.12
depicts a simple Kanban board setup that can be used to track the architectural
decisions.

This example is helpful to manage architectural decisions as a flow from an exe-
cution perspective. We recommend not only documenting architectural decisions but
defining the architectural decisions you need to make up front and identifying the
dependencies among them.

39. Anton Jansen and Jan Bosch, “Software Architecture as a Set of Architectural Design Decisions,” in
5th Working IEEE/IFIP Conference on Software Architecture (WICSA’05), pp. 109–120.

9780136523567_Print.indb 53 20/04/21 7:28 PM

Chapter 2 Architecture in Practice: Essential Activities54

Summary

This chapter discussed the essential activities of architecture and their practical
implications in today’s world of agile and cloud—where we are expected to deliver
solutions in increasingly shorter timeframes and at increasingly larger scale. We
started by defining the following essential activities that highlight why architecture is
important:

 • Quality attributes, which represent the key cross-cutting requirements that a
good architecture should address.

 • Architectural decisions, which are the unit of work of architecture.

 • Technical debt, the understanding and management of which is key for a sus-
tainable architecture.

 • Feedback loops, which enable us to evolve the architecture in an agile manner.

We emphasized that the objective of the essential activities of architecture is
to influence the code running in the production environment. We spoke about the
importance of architecture artifacts such as models, perspectives, and views. We
explained that these are incredibly valuable tools that can be leveraged to describe
and communicate the architecture. However, our view is that if you do not utilize the
essential activities we emphasize, they are insufficient on their own.

We then focused on each of the four essential activities, providing definitions,
examples, and references to existing material in the industry. We emphasized the
importance of automation and testing for feedback loops.

There is no single way of implementing these activities. We recommend adopting
tools and techniques that work in your own environment and development culture.

We ended the chapter with views on select key trends that we see in the software
architectural practice: principles, team-owned architecture, models and notations,
patterns and styles, and architecture as a flow of decisions. For each of these trends,
we provided a Continuous Architecture perspective. We believe that these trends are
relevant in today’s software industry and, like all, trends have benefits and pitfalls.

In the remainder of this book, we discuss a range of other aspects of software
architecture and, where relevant, refer to the essential activities presented in this
chapter to put their use into context.

9780136523567_Print.indb 54 20/04/21 7:28 PM

311

Index

Numerics
2FA (two-factor authentication), 101–102, 103,

109–110
2PC (two-phase commit) algorithm, 210

A
ABAC (attribute-based access control), 94
Abadi, D., 65, 175
Abbott, M. L., 140
ACID (atomicity, consistency, isolation, and

durability), 61, 64, 210
ACORD (Association for Cooperative

Operations Research and
Development), 248

agile, 8–9, 17, 49
architectural decisions, 30–31
and architecture, 10
feedback loops, 44
frameworks, 10

AI (artificial intelligence), 127–128, 225, 227,
231. See also emerging technologies

chatbots, 238
benefits of an architecture-led

approach, 245
Elsie, 239–240, 241–245
for TFX, 239

alerts, 201–202
Allspaw, J., 193
Amazon, 11, 56, 63, 71, 123, 124, 125, 128,

148, 155, 164, 185, 190, 198, 234, 263,
270, 286, 290, 297

Amazon.com, 128, 185
API, 4, 41, 47, 48, 61, 71, 72, 74, 79, 81–84,

97, 98, 107, 108, 111, 113, 114, 121,
133, 141, 148, 149, 153, 154, 169, 171,
177, 181, 196, 197, 201, 207, 209, 211,
214–216, 250, 254, 257, 273–277,
285–287, 294

analytics, 55
Apple, 56, 263
application architecture, 6–7

microservices and serverless scalability,
147–150

performance tactics, 170
increaase resources, 172
increase concurrency, 172–173
increase resource efficiency, 171
limit rates and resources, 171
prioritize requests, 170
reduce overhead, 171
use caching, 173–174

stateless and stateful services, 145–146
applying, Continuous Architecture, 16, 17–18
ArchiMate, 51
architectural decisions, 26–27, 34, 44, 168

accountability, 27
and agile development, 30–31
and Continuous Architecture principles,

29–30
decision log, 31
delaying, 30, 35
guidelines, 28
integrating with product backlog, 30
Kanban board, 53
making, 28
measurement, 44
performance, 161
and scalability, 128
scalability, 126–127
technical debt, 36, 39

architecture, 38
capturing, 39–40
code, 37
definitions, 37
managing, 41
production infrastructure, 38

TFX (Trade Finance eXchange) system,
287–295

visibility, 28–29

9780136523567_Print.indb 311 22/04/21 2:44 PM

http://Amazon.com

Index312

architecture, 1, 2, 7, 10, 20–22, 262. See also
application architecture; Continuous
Architecture

and agile, 10
application

microservices, 147
serverless scalability, 147–150
stateless and stateful services, 145–146

architecture. See also software architecture
and availability, 104–105
balancing role of, 23–24
big data, 165
building, 260–261
conceptual integrity, 24
continuous, 12
and data, 263–264
data, 55, 56, 57–58
and emerging technologies, 226
essential activities, 24, 25–26

drive architectural decisions, 25
feedback loops, 25
focus on quality attributes, 24
managing technical debt, 25

feedback loops, 44
intentional, 10
and ML (machine learning), 232, 233–234
in the modern era, 267–268
and performance, 159–160
principles, 49
and resilience, 188–190
and scalability, 124, 134
security, 88–89
serverless, 148, 165–166–167
tactics definition, 34, 35
team-owned, 49–50
and threat mitigation, 101

artificial Intelligence. See AI
ASVS (application security verification

standard), 91
asynchronous communications, 201–202
ATAM utility tree, 35
attack trees, 97–98, 120
auditing, 101, 106
authentication, 101–102, 103, 109–110
authorization, 101
automation, 25
availability, 104–105, 162–163, 189, 191–192

high, 187, 189–190, 196
MTBF (mean time between failures),

192–193
RPO (recovery point objective), 193–194

RTO (recovery time objective), 193–194
and security, 89

B
backpressure, 206–207
backups, 213–214
Barth, D., Zero Trust Networks, 110
Bass, L., 34

Software Architecture in Practice, 160, 170
Beck, K., 8
benefits

of Continuous Architecture, 15
of continuous testing, 46–48

Benioff, M., 187
big data, 165, 225

MapReduce, 177–178
Bitcoin, 246, 248, 299
Bittner, K., xix
blockchains, 246. See also DLTs (distributed

ledger technologies); shared ledger
51% attack on, 300
capabilities, 248, 249

blueprints, 2–3, 6
Bondi, A. B., Foundations of Software

and System Performance
Engineering: Process, Performance
Modeling,Requirements, Testing,
Scalability, and Practice, 168

Brewer, E., 65, 212
Brooks, F., The Mythical Man Month, 24, 50
Brown, S., 10, 51
bulkheads, 204–205

C
C4, 51
caching, 140–141, 173–174, 205–206

application object, 141
CDN (content delivery network), 142
database object, 141
lookaside, 205
precompute, 142
proxy, 141–142, 205
static, 142

CAP theorem, 65, 212
CAPEC (Common Attack Pattern

Enumeration and Classification),
100, 120

CDN (content delivery network), 142

9780136523567_Print.indb 312 20/04/21 7:28 PM

Index 313

chaos engineering, 218
chatbots, 238

for TFX, 239
CIA (confidentiality, integrity, availability)

triad, 90–91
circuit breakers, 208–209
classification, 227
Clements, P., Software Architecture in Practice,

34, 160, 170
client analytics, 71–72
cloud computing, 4, 11, 161

containers, 133
FaaS (Function as a Service), 147
horizontal scalability, 132–134
load balancers, 133
public/commercial, performance, 165–166
scalability, 127
secrets management, 108
and software architecture, 8

cluster analysis, 228
commands, 69
compensation (for database consistency),

211–212
confidentiality, 90–91
configurability, 35
Continuous Architecture, 12, 23, 24, 25, 27, 28,

30, 31, 35, 38, 50, 51, 55, 56, 159, 167,
259, 261–262, 268

applying, 16, 17–18
benefits, 15
cost effectiveness, 162–163
cost-quality-time triangle, 15–16
and data, 55, 57
data ownership, 76–77, 78
definitions, 13–15
feedback loops, 42

continuous testing, 45–48
fitness function, 45
implementing, 43–44

microservices, 147
versus other software architecture

approaches, 14–15
principles, 13, 29–30
scale dimension, 17–18
schema evolution

Expand and Contract pattern, 83
intercomponent, 82
intracomponent, 83
Postel’s law, 83

and software architecture, 14
software delivery speed, 17

and sustainability, 16–17
Corda Alastria, 299
Corda Network, 299
Corda R3, 299
cost effectiveness, 162–163
cost-quality-time triangle, 15–16
CQRS (Command Query Responsibility

Segregation), 69
cross-tenant analytics, 73
cryptographic hashing, 102, 246
Cunningham, W., 36

D
DaD (Disciplined Agile Delivery), 10
data, 55, 56, 65, 83, 263. See also metadata

and architecture, 263–264
and Continuous Architecture, 57
creating a common language, 58–60
denormalization, 174–175
distribution, 81
Domain-Driven Design, 58–59

bounded contexts, 59
ubiquitous language, 59

integration, 79–80
lineage, 56, 79
managing, 60
NoSQL, 64

document database schema, 62, 66
graphs, 63
key-value, 62
technology type comparison, 63
wide columns, 62

ownership, 76–77, 78
polyglot persistence, 61
race conditions, 78
schema evolution, 82–84

Expand and Contract pattern, 83
intercomponent, 82
intracomponent, 83
Postel’s law, 83

data analytics, 70–71
client analytics, 71–72
cross-tenant analytics, 73
schema on read, 70
tenant analytics, 73
TFX analytics approach, 74–76

data architecture, 56
databases, 67–68. See also data technology;

NoSQL; TFX (Trade Finance
eXchange) system

9780136523567_Print.indb 313 20/04/21 7:28 PM

Index314

backups, 213–214
caching, 140–141

application object, 141
CDN (content delivery network), 142
database object, 141
precompute, 142
proxy, 141–142
static, 142

checking, 213
data distribution, 139–140
partitioning, 139–140
performance tactics, 174

data denormalization, 174–175
full-text search, 176–177
indexes, 174
materialized views, 174
NoSQL, 175–176

relational, 65, 66, 68
replication, 73, 139–140, 212–213
scalability, 137–139

DDD (Domain-Driven Design), 163, 171
denial of service, 95–97, 104–105, 111
deep learning. See DL
DevOps, 5, 38, 218–219, 220
DevSecOps, 5

shifting security left, 91–92
DIKW pyramid, 57, 70
disaster recovery, 221–222
Distributed Saga pattern, 211–212
DL (deep learning), 227, 229. See also

emerging technologies
neural networks, 229

DLTs (distributed ledger technologies), 246,
254–255

capabilities, 248, 249
smart contracts, 249
use cases, 247–248

Doctorow, C., 87
Domain-Driven Design, 29, 58–59

bounded contexts, 59
ubiquitous language, 59

E
elastic scalability, 166
elevation of privilege, 96
emerging technologies, 226

AI (artificial intelligence), 227, 231
chatbots, 238, 239, 245
Elsie, 239–240, 241–245

and architecture, 226
blockchains, 246
DL (deep learning), 227, 229
DLTs (distributed ledger technologies), 246

capabilities, 249
smart contracts, 249

ML (machine learning), 227
architecture concerns, 232
document classification for TFX,

232–233
reinforcement learning, 228–229
supervised learning, 227–228
for TFX, 230–231, 233–234–236–237,

238
training, 231
unsupervised learning, 228

and nontechnical stakeholders, 250
shared ledgers

benefits of an architecture-led
approach, 256–257

capabilities, 248–250
comparison of technical

implementations, 299–300
permissioned, 248–249
for TFX, 250–251, 254–255
use cases, 247–248

enterprise architects, 6–7, 12
Erder, M., Continuous Architecture:

Sustainable Architecture in an Agile and
Cloud-Centric World, 23, 50, 125, 147

Ethereum, 246, 248, 299
Evans, E., 59
Event Sourcing, 55, 67–69
events, 69
eventual consistency, 65, 211
Expand and Contract pattern, 83
expected maximum load testing, 169
Extreme Programming Explained, 8

F
FAANG (Facebook, Amazon, Apple, Netflix,

and Google), 56, 263
FaaS (Function as a Service), 147
Facebook, 5, 56, 124, 125, 164, 190, 263
failures, 189. See also availability; resilience

allowing for, 195–199
inevitability of, 190–191
learning from success, 199

9780136523567_Print.indb 314 22/04/21 2:44 PM

Index 315

MTBF (mean time between failures),
192–193

MTTR (mean time to recover), 192–193
prevention, 191

Fairbanks, G., 10
faults, 189
feedback loops, 25, 42

agile, 44
and architecture, 44
continuous testing, 45–48
fitness function, 45
implementing, 43–44

Fisher, M. T., 140
five ages of software systems, 4–5
Ford, N., Building Evolutionary

Architectures, 45
frameworks, agile, 10
full-text search engines, 176–177
functional requirements, 34

G
Gamma, E., Design Patterns, 52
Gang of Four, 52
GDPR (General Data Protection Regulation),

87, 99
Gilman, E., Zero Trust Networks, 110
GitHub, 27
Google, 5, 11, 56, 110, 123, 124, 125, 152, 155,

157, 164, 166, 187, 190, 221, 223, 263,
297, 306

Gorton, I., 165, 175
guidelines, 28, 48–49

H
Hacking Team, 109
health checks, 200–201
Helm, R., Design Patterns, 52
high availability, 189–190. See also availability;

resilience
horizontal scalability, 129–132–134

I
International Federation for Information

Processing (IFIP), 2
International Standards Organization and

Institute of Electrical and Electronics
Engineers (IEEE), 2

incident management, 202, 220–221
indexes, 174
information disclosure, 96
information integrity, 102–103
information privacy, 102–103
injection attacks, 113
intentional architecture, 10
intercomponent schema evolution, 82
Internet, 4, 56, 89
intracomponent schema evolution, 83
ISO/IEC 25010, 32

J-K
Johnson, R., Design Patterns, 52
Kanban board, 53
Kazman, R., Software Architecture in Practice,

34, 160, 170
Keras, 227
Kersten, M., 41
key rotation, 108
key-value, 62
KMIP (key management interoperability

protocol), 108
Klein, J., 165, 175
Kruchten, P., 37

L
lambdas, 148, 149
latency, 160, 161, 167–168. See also

performance
L/C (letters of credit), 58, 60, 97–98, 134, 226,

232, 270
issuance, 251–254

Leffingwell, D., 10
LeSS (Large Scale Scrum), 10
load balancers, 133, 200–201
load shredding, 207–208
logs, 217, 219–220

M
making architectural decisions, 28
managing

data, 60
technical debt, 41

machine learning. See ML

Z04_Erder_Index_p311-324.indd 315 20/04/21 8:23 PM

Index316

MapReduce, 177–178
materialized views, 174
measurement

performance, 161–163, 180–182
resilience, 199–200
TFX scalability, 151–152

message logging, 106–107
message-based asynchronous communication,

201–202
metadata, 79
metrics, 217, 219–220
microservices, 61, 147

and performance, 163–164
Microsoft, 3, 11, 95, 120, 171, 297, 304
minimum viable products (MVPs), 16
ML (machine learning), 225, 227. See also AI

(artificial intelligence)
architecture concerns, 232
document classification for TFX, 232–233
pipelines, 233, 234, 235, 236, 238, 241
reinforcement learning, 228–229
supervised learning, 227–228
for TFX, 230–231, 233–234

benefits of an architecture-led
approach, 238

common services, 238
data ingestion, 234–235
data preparation, 235–236
model deployment, 236–237
model monitoring, 237

training, 231
unsupervised learning, 228

monitoring, 217, 219
MTBF (mean time between failures), 192–193
MTTR (mean time to recover), 192–193
MVPs (minimum viable products), 16

N
Netflix, 56, 123, 124, 125, 152, 155, 164, 169,

190, 218, 223, 263
NLU (natural language understanding), 239,

241, 242, 244, 245
nonrepudiation, 103–104
Nord, R., Managing Technical Debt, 37
normal load testing, 169
NoSQL, 55, 60, 64, 65

CAP theorem, 65
data denormalization, 174–175
document database schema, 62, 66

eventual consistency, 65
graphs, 63
key-value, 62
performance, 164–165, 175–176
technology choices, 64, 164–165
technology type comparison, 63
wide columns, 62

O
OCR (optical character recognition),

231, 233, 235
OCTAVE (Operationally Critical Threat,

Asset and Vulnerability Evaluation),
100, 120

Open Source, 7
operational visibility, 216–217, 219
OMG (Object Management Group), 51
OWASP (Open Web Application Security

Project), 91, 115, 121
Ozkaya, I., Managing Technical Debt, 37

P
PACELC, 65, 175
Parsons, R., Building Evolutionary

Architectures, 45
PASTA (Process for Attack Simulation and

Threat Analysis), 100, 120
performance, 159, 266

achieving for TFX, 178–180
application architecture tactics, 170

increase resources, 172
increase concurrency, 172–173
increase resource efficiency, 171
limit rates and resources, 171
modeling and testing, 167, 168
prioritize requests, 170
reduce overhead, 171
use caching, 173–174

and architecture, 159–160
bottlenecks, 182–183, 243
databases, 174

data denormalization, 174–175
full-text search, 176–177
indexes, 174
materialized views, 174
NoSQL, 175–176

latency, 160, 161

9780136523567_Print.indb 316 20/04/21 7:28 PM

Index 317

MapReduce, 177–178
measurements, 161–163
measuring, 180–182
and microservice architectures, 163–164
modeling, 167–168
and NoSQL technology, 164–165
and public/commercial clouds, 165–166
resource demand, 161
and scalability, 160
and serverless architectures, 166–167
testing, 168–170
throughput, 160, 161
turnaround time, 161

polyglot persistence, 55, 61
Postel’s law, 83
principles, 48–49

of Continuous Architecture, 13, 29–30
privacy, 87. See also security

confidentiality, 90
information, 102–103

product backlog, integrating with
architectural decisions, 30

Pureur, P., Continuous Architecture:
Sustainable Architecture in an Agile
and Cloud-Centric World, 23, 50, 125,
147

Q
quality attributes, 32–34, 125

and architectural tactics, 34, 213
availability, 189, 191–192

MTBF (mean time between failures),
192–193

RPO (recovery point objective),
193–194

performance, 159–160, 174, 266
architectural concerns, 161–163
bottlenecks, 182–183
data denormalization, 174–175
forces affecting, 160–161
full-text search, 176–177
increase resources, 172
increase concurrency, 172–173
increase resource efficiency, 171
indexes, 174
limit rates and resources, 171
MapReduce, 177–178
materialized views, 174
and microservice architectures, 163–164
modeling, 167–168

and NoSQL technology, 164–165,
175–176

prioritizing requests, 170
and public/commercial clouds, 165–166
reduce overhead, 171
serverless architecture, 166–167
testing, 168–170
TFX requirements and tactics, 178–180
use caching, 173–174

resilience, 187, 190, 194–195, 266–267
achieving, 214–215
allowing for failure, 195–199
architectural tactics, 200
backpressure, 206–207
backups, 213–214
bulkheads, 204–205
defaults and caches, 205–206
disaster recovery, 221–222
health checks, 200–201
incident management, 220–221
inevitability of failures, 190–191
load shredding, 207–208
maintaining, 216
measurement, 199–200
message-based asynchronous

communication, 201–202
operational visibility, 216–217
in organizations, 195
replication, 212–213
rollback and compensation, 210–212
RPO (recovery point objective),

193–194
RTO (recovery time objective), 193–194
testing for, 217–218
TFX system requirements, 196–199
timeouts and circuit breakers, 208–209
watchdogs and alerts, 201–202

scalability, 123, 124, 125–127, 162–163,
265–266
architectural context, 124
and architecture, 134
asynchronous communications,

142–145
caching, 140–142
cloud computing, 127
database, 137–139
elastic, 166
failures caused by, 152
horizontal, 129–132–134
microservices, 147
and performance, 160
requirements, 125

9780136523567_Print.indb 317 20/04/21 7:28 PM

Index318

serverless, 147–150
stateless and stateful services, 145–146
supply-and-demand forces, 128
TFX (Trade Finance eXchange) system,

128–129, 134–137, 151–152
vertical, 129

security, 87, 88–89, 90, 92, 94, 101, 264–265
architectural context, 88–89
availability, 104–105
CIA triad, 90–91
confidentiality, 90
continuous delivery, 116–117
implementation, 115
incident management, 202
information integrity, 102–103
Internet, 89
message logging, 106–107
monitoring, 106–107
nonrepudiation, 103–104
people, process, and technology,

115–116
preparing for failure, 117–118
secrets management, 107–109
shifting left, 91–92
social engineering mitigation, 109–110
specialists, 91
STRIDE, 95–97
TFX (Trade Finance eXchange) system,

111–115
threat modeling and mitigation, 92- 93,

97–98, 100, 101–102
threats, 92, 95–96, 98–99
weakest link principle, 116
zero-trust networks, 110–111

utility tree, 35–36
working with, 35

Quorum, 299

R
ransomware attacks, 105
Rasa Open Source, 239
rate limiting, 207–208
RBAC (role-based access control), 94, 101
relational databases, 65, 66, 68
reliability, 189, 191. See also availability
replication, 212–213
repudiation, 96
resilience, 187, 190, 194–195, 266–267

architectural tactics, 200
backpressure, 206–207
backups, 213–214
bulkheads, 204–205
checks (for data consistency), 213
defaults and caches, 205–206
health checks, 200–201
load shredding, 207–208
message-based asynchronous

communication, 202–203
replication, 212–213
rollback and compensation (for data

consistency), 210–212
timeouts and circuit breakers, 208–209
watchdogs and alerts, 201–202

and architecture, 188–190
and continual improvement, 194–195
and DevOps, 218–219
disaster recovery, 221–222
failures, 189, 190–191, 195–199
faults, 189
four aspects of, 191
five nines, 192
incident management, 220–221
the inevitability of failure, 190–191
maintaining, 216
measurement, 199–200
MTBF (mean time between failures),

192–194
MTTR (mean time to recover), 192–193
operational visibility, 216–217
in organizations, 195
testing for, 217–218
types of resilience mechanisms, 198
RTO (recovery time objective), 193–194
testing for, 217–218
TFX (Trade Finance eXchange) system

achieving, 214–215
requirements, 196–199

resources, 81
increasing efficiency, 171
limiting, 171
and performance, 161

REST (representational state transfer), 81–82,
143, 163

robustness principle, 83
rollbacks, 210–212
RPO (recovery point objective), 193–194
RTO (recovery time objective), 193–194
RUP (Rational Unified Process), 9

9780136523567_Print.indb 318 22/04/21 2:44 PM

Index 319

S
SaaS (Software as a Service), 8
SAFe (Scaled Agile Framework), 10
SAFECode, 115, 121
Salesforce, 11, 297
scalability, 123, 124, 125–127, 162–163,

265–266
architectural context, 124
and architecture, 134
asynchronous communications, 142–145
caching, 140–141

application object, 141
CDN (content delivery network), 142
database object, 141
precompute, 142
proxy, 141–142
static, 142

cloud computing, 127
database, 137–139
elastic, 166
failures caused by, 152
horizontal, 129–132–134
microservices, 147
and performance, 160
requirements, 125
serverless, 147–150
stateless and stateful services, 145–146
supply-and-demand forces, 128
TFX (Trade Finance eXchange) system,

128–129, 134–137
achieving, 151
measuring, 151–152

vertical, 129
schema

evolution, 82–84
Expand and Contract pattern, 83
intercomponent, 82
intracomponent, 83
Postel’s law, 83

on read, 70
Schneier, B., 118
SDM (service delivery management), 220
secrets management, 107–109

key rotation, 108
passwords, 108–109

security, 87, 90, 264–265
architectural context, 88–89
availability, 104–105
CIA triad, 90–91

confidentiality, 90
continuous delivery, 116–117
implementation, 115
incident management, 202
information integrity, 102–103
Internet, 89
message logging, 106–107
monitoring, 106–107
nonrepudiation, 103–104
people, process, and technology, 115–116
preparing for failure, 117–118
secrets management, 107–109
shifting left, 91–92
social engineering mitigation, 109–110
specialists, 91
STRIDE, 95–97
TFX (Trade Finance eXchange) system,

111–115
theater, 118–119
threat modeling and mitigation,

92–93, 100
analyze, 93
architectural tactics for mitigation,

101
attack trees, 97–98
authentication, authorization, and

auditing, 101–102
mitigate, 94
understand, 93

threats, 92
high-impact, 99
identification, 95–96
prioritizing, 98–99

weakest link, 116
zero-trust networks, 110–111

SEI (Software Engineering Institute), 27, 35,
38, 64, 121, 176, 185, 231, 256

Semantic Web, 80
serverless architecture

performance, 166–167
scalability, 147–150

shared ledgers, 225. See also DLTs (distributed
ledger technologies); emerging
technologies

benefits of an architecture-led approach,
256–257

capabilities, 248–250
comparison of technical implementations,

299–300
permissioned, 248–249

9780136523567_Print.indb 319 20/04/21 7:28 PM

Index320

for TFX, 250–251
L/C issuance using a DLT, 251–254
L/C payment using a DLT, 254–255

use cases, 247–248
shifting security left, 91–92
smart contracts, 249
social engineering mitigation, 109–110
software architecture, 1–2, 11–12, 225, 259.

See also Continuous Architecture
and agile, 8–9
blueprints, 2–3, 6
challenges, 5–6

cloud computing, 8
focus on business content, 6
perception of architects as not adding

value, 6–7
slow architectural practices, 7–8

Continuous Architecture, 14–15
definitions, 2
deployment, 5
five ages of software systems, 4–5
future directions, 11
goals, 2–3
and the Internet, 4
key skills, 49–50
trends

models and notations, 51–52
patterns and styles, 52
principles as architecture guidelines,

48–49
team-owned architecture, 49–50

value of, 261
software delivery life cycle (SDLC), 15
software industry, 3
software systems

AI (artificial intelligence), 127–128
cloud computing, 166
functional requirements, 34
performance modeling, 167–168
quality attributes, 32–34

and architectural tactics, 34
utility tree, 35–36
working with, 35

scalability, 128
software supply chain, 89
solution architects, 6–7
spoofing, 96
sprints, 30
SQL, 60, 64. See also NoSQL
SSO (single sign on), 94
stateful services, 145–146

stateless services, 145–146
stress testing, 137, 138, 139, 169
STRIDE, 95–97
sustainability, 16–17
SWIFT (Society for Worldwide Interbank

Financial Telecommunication),
248, 257

T
tampering, 96
team-owned architecture, 49–50
technical debt, 25, 36, 39

architecture, 38
capturing, 39–40
code, 37
definitions, 37
managing, 41
production infrastructure, 38

technology singularity, 39
tenant analytics, 73
TFX (Trade Finance eXchange) system, 19–20,

23, 47, 55, 59, 66, 99, 159, 214, 226, 270.
See also security; trade finance case
study

achieving performance, 178–180
achieving resilience, 214
achieving scalability, 151
achieving security, 111–115
architectural decisions, 287–295
architectural description, 271–272

deployment view, 285–287
functional view, 272–276
information view, 283–285
usage scenarios, 276–282

attack trees, 97–98
authentication, authorization, and

auditing, 101–102
and availability, 105
bulkheads, 204–205
caching, 142, 205–206
chatbots, 239
data analytics, 70–71–72
database technology choices, 65
databases, 61–62

data distribution, replication, and
partitioning, 139–140

technology choices, 64, 164–165
domain events, 69
Elsie, 239–240

federated architecture, 243–245

9780136523567_Print.indb 320 20/04/21 7:28 PM

natural language interface, 241–242
performance and scalability, 242–243
query handling, 243

Good Tracking Service, 66
horizontal scalability, 129–132
information privacy and integrity, 103
L/C (letters of credit), 270
letter of credit use cases, 20–22
message bus, 144
ML (machine learning), 230–231

architecture approach, 233–234
common services, 238
data ingestion, 234–235
data preparation, 235–236
document classification, 232–233
model deployment, 236–237
model monitoring, 237

multitenancy, 296–297
performance

bottlenecks, 182–183
caching, 173–174
increasing concurrency, 172–173
increasing resource efficiency, 171
increasing resources, 172
limiting rates and resources, 171
measuring, 180–182
prioritizing requests, 170
reducing overhead, 171
requirements and tactics, 178–180

quality attribute requirements, 297
resilience, 187–188

achieving, 214–215
requirements, 196–199

RPO (recovery point objective), 194
RTO (recovery time objective), 194
scalability, 124, 128–129

achieving, 151
asynchronous communications,

142–145
bottlenecks, 136
database, 137–139
failures caused by, 152
measuring, 151–152
requirements, 134–137
stateless and stateful services, 145–146

security monitoring, 106–107
sensors, 127–128
shared ledgers, 250–251

L/C issuance using a DLT, 251–254

L/C payment using a DLT, 254–255
and STRIDE, 96–97
timeouts and circuit breakers, 209

threat modeling and mitigation, 92–93, 100.
See also STRIDE

analyze, 93
architectural tactics for mitigation, 101
attack trees, 97–98
authentication, authorization, and

auditing, 101–102
high-impact threats, 99
injection attacks, 113
mitigate, 94
nonrepudiation, 103–104
prioritizing threats, 98–99
ransomware attacks, 105
STRIDE, 95–97
understand, 93

throughput, 160, 161. See also performance
timeouts, 208–209
traces, 217, 219–220

U-V-W
UML (Unified Modeling Language), 51, 208,

214
URIs (uniform resource identifiers), 59
usability, 162–163
VAST (Visual Agile and Simple Threat)

modeling, 100, 120
vertical scalability, 129
von Neumann, J., 39
watchdogs, 201–202
Web Service Definition Language

(WSDL), 147
weakest link principle, 116
Weir, C., 120
Workday, 11

X-Y-Z
XP (Extreme Programming), 8, 9
Yates, A., 38
zero-trust networks, 110–111
zones of trust, 110

9780136523567_Print.indb 321 20/04/21 7:28 PM

	Cover
	Half Title
	Title
	Copyright
	Dedication
	Contents
	Series Editor Foreword
	Foreword
	Introduction
	Acknowledgments
	About the Authors
	Chapter 2: Architecture in Practice: Essential Activities
	Essential Activities Overview
	Architectural Decisions
	Making and Governing Architectural Decisions

	Quality Attributes
	Quality Attributes and Architectural Tactics
	Working with Quality Attributes
	Building the Quality Attributes Utility Tree

	Technical Debt
	Capturing Technical Debt
	How to Manage Technical Debt

	Feedback Loops: Evolving an Architecture
	Fitness Functions
	Continuous Testing

	Common Themes in Today’s Software Architecture Practice
	Principles as Architecture Guidelines
	Team-Owned Architecture
	Models and Notations
	Patterns and Styles
	Architecture as a Flow of Decisions

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U-V-W
	X-Y-Z

