
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780136484226
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780136484226
https://plusone.google.com/share?url=http://www.informit.com/title/9780136484226
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780136484226
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780136484226/Free-Sample-Chapter

Learning
Progressive Web

Apps

The Pearson Addison-Wesley Learning Series is a collection of hands-
on programming guides that help you quickly learn a new technology or
language so you can apply what you’ve learned right away.

Each title comes with sample code for the application or applications built
in the text. This code is fully annotated and can be reused in your own
projects with no strings attached. Many chapters end with a series of
exercises to encourage you to reexamine what you have just learned and
to tweak or adjust the code as a way of learning.

Titles in this series take a simple approach: they get you going right away
and leave you with the ability to walk off and build your own application
and apply the language or technology to whatever you are working on.

Visit informit.com/learningseries for a complete list of available publications.

The Pearson Addison-Wesley
Learning Series

Make sure to connect with us!
informit.com/socialconnect

http://informit.com/learningseries
http://informit.com/socialconnect

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Learning
Progressive Web

Apps

Building Modern Web Apps
Using Service Workers

John M. Wargo

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the pub-
lisher was aware of a trademark claim, the designations have been printed with initial capital
letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to your
business, training goals, marketing focus, or branding interests), please contact our corpo-
rate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2019954833

Copyright © 2020 Pearson Education, Inc.

Cover: welcomia/Shutterstock

Microsoft and/or its respective suppliers make no representations about the suitability of
the information contained in the documents and related graphics published as part of the
services for any purpose. All such documents and related graphics are provided “as is” with-
out warranty of any kind. Microsoft and/or its respective suppliers hereby disclaim all war-
ranties and conditions with regard to this information, including all warranties and conditions
of merchantability, whether express, implied or statutory, fitness for a particular purpose,
title and non-infringement. In no event shall Microsoft and/or its respective suppliers be
liable for any special, indirect or consequential damages or any damages whatsoever result-
ing from loss of use, data or profits, whether in an action of contract, negligence or other
tortious action, arising out of or in connection with the use or performance of information
available from the services.

The documents and related graphics contained herein could include technical inaccuracies
or typographical errors. Changes are periodically added to the information herein. Microsoft
and/or its respective suppliers may make improvements and/or changes in the product(s)
and/or the program(s) described herein at any time. Partial screen shots may be viewed in
full within the software version specified.

Microsoft® Windows®, Microsoft Bing®, Microsoft Azure®, Microsoft Edge®, and Microsoft
Graph® are registered trademarks of the Microsoft Corporation in the U.S.A. and other coun-
tries. This book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

All rights reserved. This publication is protected by copyright, and permission must be
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopy-
ing, recording, or likewise. For information regarding permissions, request forms and the
appropriate contacts within the Pearson Education Global Rights & Permissions Department,
please visit www.pearson.com/permissions.

ISBN-13: 978-0-13-648422-6
ISBN-10: 0-13-648422-0

ScoutAutomatedPrintCode

http://informit.com/aw
http://www.pearson.com/permissions

I normally dedicate my books to my wife Anna, but for this one,
she suggested I do something different. With that in mind,

I hereby dedicate this book to the number 42.

This page intentionally left blank

Contents

Foreword xi

Preface xii

Acknowledgments xv

About the Author xvi

 1 Introducing Progressive Web Apps 1

First, a Little Bit of History 2

PWAs Are . . . 2

Making a Progressive Web App 4

PWA Market Impact 6

PWAs and App Stores 7

Wrap-Up 7

 2 Web App Manifest Files 9

Save to Home Screen 11

Making a Web App Installable 16

Anatomy of a Web App Manifest 17

Setting the App Name 18

Setting App Icons 18

Configuring Display Mode 19

Setting the Installed App’s Start URL 23

Setting App Options 25

Additional Options 25

Controlling the Installation Experience 26

Preparing to Code 27

Node.JS 28

Git Client 28

Visual Studio Code 29

App Installation in Action 29

Adding a Service Worker 30

Adding a Web Manifest File 33

Running the App 33

Enhancing the Installation Process 35

Troubleshooting 41

Manifest Generation and More 42

Wrap-Up 42

viii Contents

 3 Service Workers 43

PWA News 43

Introducing Service Workers 44

Preparing to Code 46

Prerequisites 47

Navigating the App Source 48

Configuring the Server API 49

Starting the Server 51

Registering a Service Worker 52

Service Worker Scope 60

The Service Worker Lifecycle 60

Forcing Activation 62

Claiming Additional Browser Tabs 63

Observing a Service Worker Change 64

Forcing a Service Worker Update 64

Service Worker ready Promise 66

Wrap-Up 66

 4 Resource Caching 67

Service Worker Cache Interface 67

Preparing to Code 69

Caching Application Resources 70

Cache Management 78

Return a Data Object on Error 83

Adding an Offline Page 86

Implementing Additional Caching Strategies 91

Cache-Only 92

Network First, Then Cache 93

Network First, Update Cache 94

Wrap-Up 98

 5 Going the Rest of the Way Offline with Background Sync 99

Introducing Background Sync 100

Offline Data Sync 103

Choosing a Sync Database 105

Create Database 105

Create Store 107

ixContents

Add Data 107

Delete Objects 108

Iterating through Data Using Cursors 109

Preparing to Code 110

Enhancing the PWA News Application 111

Preparing the Service Worker for Background Sync 111

Updating the Web App to Use Background Sync 112

Finishing the Service Worker 119

Dealing with Last Chances 125

Wrap-Up 128

 6 Push Notifications 129

Introducing Push Notifications 129

Remote Notification Architecture 132

Preparing to Code 134

Generating Encryption Keys 134

Validating Notification Support 138

Checking Notification Permission 138

Getting Permission for Notifications 139

Local Notifications 142

Notification Options 144

Subscribing to Notifications 148

Unsubscribing from Notifications 154

Remote Notifications 156

Dealing with Subscription Expiration 162

Sending Notifications to Push Services 162

Wrap-Up 164

 7 Passing Data between Service Workers and Web Applications 165

Preparing to Code 166

Send Data from a Web App to a Service Worker 167

Send Data from a Service Worker to a Web App 169

Two-Way Communication Using MessageChannel 171

Wrap-Up 180

x Contents

 8 Assessment, Automation, and Deployment 181

Assessing PWA Quality Using Lighthouse 181

Preparing to Code 182

Using the Lighthouse Plugin 182

Using the Lighthouse Tools in the Browser 187

Using the Lighthouse Node Module 189

PWABuilder 190

Using the PWABuilder UI 191

Creating Deployable Apps 195

Using the PWABuilder CLI 197

PWABuilder and Visual Studio 198

PWAs and the Microsoft Store 202

Wrap-Up 205

 9 Automating Service Workers with Google Workbox 207

Introducing Workbox 207

Generating a Precaching Service Worker 208

Add Precaching to an Existing Service Worker 215

Controlling Cache Strategies 218

Wrap-Up 224

 Index 225

Foreword
I remember how I first became acquainted with John Wargo. I was speaking at a PhoneGap Day
conference in Portland, Oregon, and I looked over to see Brian LeRoux speaking with someone I
didn’t recognize. I leaned over and asked a friend, “Hey, who’s the guy in the suit?,” to which the
friend responded, “Oh, that’s John Wargo. He’s an analyst.” The suit set John apart at this nerd
gathering, as most of the attendees were wearing t-shirts with funny slogans. This was before the
time when Mark Zuckerberg popularized the “coder wearing a hoodie” look.

If I remember correctly, my t-shirt had a pig on it with a speech bubble that said, “Mmmm . . .
bacon,” and as I reflect back on that time, it wasn’t even a suit John was wearing—it was just a
blazer. However, it’s not an exaggeration to say he was the best-dressed man at the conference, but
I digress.

“Oh boy!” I thought, “An analyst.” You see, I had just recently transitioned from the telecom
industry to full-on software development. In telecom, analysts do not have the greatest of
reputations. Then I talked to John. He proceeded to ask me insightful questions about my work
on PhoneGap and in the Apache Cordova community.

Folks, at this point, I’m resisting the urge to insert a don’t judge a book by its cover joke, and I’ve
never been good at not making a bad joke.

John went on to become an important member and educator of the Apache Cordova community
and to write not one, but four authoritative books on the subject, not unlike the one you hold in
your hands now on Progressive Web Apps.

One of the oft-cited tenets of the PhoneGap/Cordova project was to ultimately “cease to exist,”
but the other less-mentioned tenet was to “make the web a first-class development platform.”
Now that promise of being a first-class platform has been fulfilled by Progressive Web Apps. Being
a major part of the Apache Cordova community for so long puts John in a great position, as he
has been there every step of the way to see the evolution of the mobile web.

Should you happen to bump into John at a conference or at a book-signing someday, come
prepared with a recommendation on where to get a fresh, delicious doughnut. This is one of the
two traits we share in common. The other being a dry, sardonic wit.

You have made an excellent decision in picking up this book. If I were just starting on my learning
path to mastery of Progressive Web Apps, there are not many folks I would trust more than John
to get me there. I only wish that you could hear John’s voice while you are reading this book like
I did.

—Simon MacDonald, Developer Advocate, Adobe
November 2019

Preface
When building apps targeting desktops, laptops, smartphones, and tablets, developers have
generally two options to use: native apps built specifically for the target platform or web apps that
ultimately can run on most any system due to the abstraction layer provided by web browsers.
Building native apps for any target platform is a time-consuming and expensive proposition,
especially when your app targets multiple types of systems (desktop computers, smartphones,
televisions, etc.).

Web apps were challenging because a user’s experience could vary dramatically depending on
which type of system the user accessed the app from. Desktop browsers are fully capable, but
mobile device browsers have limitations due to reduced screen real estate, processor speed,
network bandwidth, and more. Many of these limitations have disappeared, but there’s still
considerable disparity between native app and web app capabilities.

Web developers have a lot of tools and technologies at their disposal to help them build rich,
engaging apps. Over the years, different technologies such as Sun Microsystems’ Java1 and Adobe
Flash2 appeared with the expectation that they’d change the world for web apps—delivering a
more engaging experiences for users. Both did that but ultimately disappeared from the browser
for good reason.

What developers and users need is a way to enable web apps to work more like native apps. If
we had that, our web apps would soar and enable us to more easily deliver cross-platform apps
through the browser rather than handcrafting native apps for each supported platform.

Over the years, web browsers, especially those running on mobile devices such as smartphones
and tablets, started exposing more native capabilities to web apps. For example, modern web apps
can access the device’s file system and let a browser-based app know the device’s geolocation. This
enables web apps to work more like native apps, but there were still limitations. Service workers
are a relatively new technology that makes it easier for web apps to bridge the gap between native
and web capabilities, removing many limitations from web apps.

This is a book about service workers.

Yes, I know, the title says the book is about Progressive Web Apps (PWAs), and it is, but the book
focuses on how to use service workers to enhance the capabilities of a web app and create PWAs.

There are several books out there that focus on the engagement impact of PWAs; how to build
PWAs that delight and inspire users to do more in the app. This isn’t that kind of book.

This book is focused as much as possible on the technologies enabling PWAs and how to use them
to enhance your web apps to deliver a more native-like experience in your web apps.

I come to you with 15 years of experience with mobile development (I wrote the first book on
BlackBerry development so many years ago), and, as Simon said in the Foreword, PWAs are the

1. https://en.wikipedia.org/wiki/Java_(software_platform)

2. https://en.wikipedia.org/wiki/Adobe_Flash

https://en.wikipedia.org/wiki/Java_(software_platform)
https://en.wikipedia.org/wiki/Adobe_Flash

next step in making the web a first-class development platform—especially for mobile apps. My
interest in writing this book focuses on PWAs’ impact on mobile developers, but everything here
applies to web apps running on a desktop browser as well.

If you’ve read any of my books, you already know that this manuscript contains no phrases or
content in any language but English (I refuse to make you put down the book to go look up some
obscure phrase in Latin or French to understand a point). This book also contains no pop culture
references (well, except for one that I describe completely so you won’t feel left out if you don’t
already know it).

Unlike my previous technical books, which were focused on the technologies and how to use
them (with lots of code examples), this book is project- based. As you work through the chapters,
at different points you’ll start with one of three complete, standalone web apps, then convert
them into PWAs using service workers and other technologies.

The sample apps for this book were written specifically to be simple and easy to understand, so
they’re not fancy. I could have built them as amazing, reactive, modern web apps, leveraging
JavaScript frameworks such as VueJS3 or React,4 but instead I built them using plain, vanilla
HTML, CSS, and JavaScript. This approach removes a lot of extraneous code from the apps and
leaves just what you need to understand the topic at hand.

You can find all of the source code for the sample apps on GitHub at https://github.com/
johnwargo/learning-pwa-code. To make it easier for readers consuming the printed version of
this book, I added a resources.md5 file to the source code folder for each chapter; it lists all of
the links used in the chapter. Rather than typing in long URLs from the chapter content, you can
simply open the resources file in a browser and quickly access any link from the chapter.

Unlike the source code repositories for other books, the book’s source code doesn’t contain only
before and after versions of the apps. Instead, as you complete a chapter section, you’ll find the
source code modifications for just that section in a separate file. This enables you to more easily
build the app along with the chapter content while having just that section’s code available
in case you have an issue and want to compare the completed code with yours. This approach
should streamline your following along, especially if you create typos or bugs as you work.

If you have any questions or comments about the book or if you find an error in the text or
code, please submit them through the issues area in the book’s GitHub repository at https://
github.com/johnwargo/learning-pwa-code/issues. The code there is open source, so feel free to
use it in your applications (it would be especially nice if you referenced the source for the code so
others can learn about this book).

If you find a bug in the code and want to fix it yourself, do so, then submit a pull request against
the repository, and I’ll take a look. I’m usually very good about responding, so you should hear
back from me in a day or so. Please be nice—GitHub is a very public forum, and we should all
treat people there as we expect to be treated by others.

3. https://vuejs.org/

4. https://reactjs.org/

5. https://github.com/johnwargo/learning-pwa-code/blob/master/chapter-01/resources.md

Preface xiii

https://github.com/johnwargo/learning-pwa-code
https://github.com/johnwargo/learning-pwa-code
https://github.com/johnwargo/learning-pwa-code/issues
https://github.com/johnwargo/learning-pwa-code/issues
https://vuejs.org/4
https://vuejs.org/4
https://reactjs.org/5
https://reactjs.org/5
https://github.com/johnwargo/learning-pwa-code/blob/master/chapter-01/resources.md

I created a public web site for the book at https://learningpwa.com. I’ll publish errata and,
hopefully, related content there over time. Forestalling any complaints, as I write this, the site
isn’t a PWA. It isn’t a PWA because it doesn’t need to be a PWA. It’s just a marketing landing page
for the book, and there are no browser notifications I want to send to visitors, nor is there a need
to cache the site’s content for increased performance or offline use. Just because I can make the
site into a PWA doesn’t mean that I should. Use the power of PWAs only for those sites that really
need them.

Two of the three sample apps from the book are published online as well. The first is the Tip
Calculator from Chapter 2, which you can access at https://learningpwa.com/tipcalc/. The other
is the PWA News site from Chapters 3, 4, and 5—you can find that app at https://pwa-news.com.
The Learning Progressive Web Apps site is a static site hosted at Netlify,6 so that one will probably
stay active as long as the book is publicly available. The PWA News site requires computing
resources (its server-side is a node.js7 application), so I’ll leave the site up as long as there is
interest in the book. Eventually, I’ll shut it down, but the full source for the server is included
with the book’s source code, so you’ll always be able to run a local copy of the server or host the
site somewhere else yourself.

That’s it! This preface contains everything I wanted to tell you about the book. I believe in PWAs
and think they are the future of mobile app development, so that’s why I worked to put this book
into your hands. I really enjoyed writing it, and I hope you enjoy reading it as much or more.

6. https://www.netlify.com/

7. https://nodejs.org/

xiv Preface

https://learningpwa.com
https://learningpwa.com/tipcalc/
https://pwa-news.com
http://informit.com/register
https://www.netlify.com/7
https://www.netlify.com/7
https://nodejs.org/x
https://nodejs.org/x

Acknowledgments
This book wouldn’t exist except for the work of several people. Thank you, Greg Doench at
Pearson, for having the faith in me to publish this book (this is our sixth book together). I’m an
experienced software developer, but I suck at making apps beautiful, so the only reason you have
cool-looking sample apps to work with herein is due to the styling magic of my friend Scott Good.

Thank you, Simon MacDonald, for your kind words in the Foreword and for sharing the same
love for doughnuts that I have. It’s so cool to know that when I speak at a developer conference
somewhere, Simon will be there to lead me to another cool doughnut shop.

Thank you, Maxim Salnikov, for providing feedback on the first draft of the manuscript and
connecting me to the PWA community.

Thanks to Jeff Burtoft, David Rousset, and Justin Willis from the PWABuilder team for bringing
me up to speed on PWABuilder and helping me with the content for Chapter 8.

This book absolutely wouldn’t exist except for the hard work from the Pearson production team
to bring it to print. Thanks to Julie Nahil, Carol Lallier, Vaishnavi Venkatesan, and others at
Pearson working diligently behind the scenes to finish the manuscript and take it to print.

Finally, I would never be able to even write a sentence of this book without the full support of my
wife Anna. I spend a lot of time in my office tinkering, writing apps, and learning new technologies
for fun, profit, and career growth. Whenever I start a book project (this is my seventh, the eighth
if you count the collection of magazine articles I wrote that ultimately became a book), I make
sure she understands how the effort is going to consume a lot of my time. She always laughs and
reminds me that a book project isn’t any different in her eyes, as it’s just a bunch of time I spend
toiling away in my office while she hangs out with the kids and the dogs. I do get away without
doing many dishes while working on a book, but I try to make up for that later.

About the Author
John M. Wargo is a product manager, software developer, writer, presenter, father, husband, and
geek. He spent more than 30 years working as a professional software developer first as a hobbyist,
then in enterprise software, and finally, for the last 15 years, in mobile development. He authored
six books on mobile development, and was a long-time contributor to the open source Apache
Cordova project.

By day, he’s a Principal Program Manager on the App + Cloud Experiences team at Microsoft.

He loves tinkering with IoT, building and writing about projects for Arduino, Particle Photon,
Raspberry Pi, Tessel 2, and more. His latest project was a remote-controlled, flame-throwing
pumpkin.

He lives in Charlotte, North Carolina, with his wife Anna, 16-year-old twins, and two dogs.

3
Service Workers

If building Progressive Web Apps (PWAs) is like building a house, the web app manifest file is like
a real estate agent working to get people interested in buying your house and prepping it so that
it’s move-in ready for buyers. Service workers, on the other hand, are live-in general contractors
working behind the scenes to make sure the house has a solid foundation and all the walls stay up
after the buyer moves in.

This chapter introduces service workers and shows how to use them to enable cool background
processing in your web app. Here we build a foundation of what service workers do and how
they do it, starting with simple web app resource caching and the service worker lifecycle. In the
 chapters that follow, I show how to add additional functionality to an app’s service worker to give
the app some pizazz.

PWA News
For this and the next few chapters of the book, you’ll work with the PWA News web app shown in
Figure 3.1. The app is publicly available at https://pwa-news.com, but you’ll run a version of the
app on a local server as you work through the chapter. I’d like to give a special shout out to my
friend Scott Good who created the app UI and, through the application of some masterful styling,
made it into the beautiful app you see in the figure.

The app is a simple news site, aggregating news articles on PWAs from sites around the world. The
app’s server process uses the Microsoft Bing News Search API1 to locate articles with the keyword
PWA and displays the top 20 results. The app hosts a simple About page describing the site (and
promoting the book) plus a Feedback page that renders data about how people feel about the site.
You’ll play with that one in a later chapter. In Chapter 5, “Going the Rest of the Way Offline with
Background Sync,” we’ll add the ability for visitors to submit their feedback when we talk about
going offline.

1. https://azure.microsoft.com/en-us/services/cognitive-services/bing-news-search-api/

https://pwa-news.com
https://azure.microsoft.com/en-us/services/cognitive-services/bing-news-search-api/

44 Chapter 3 Service Workers

Figure 3.1 PWA News Web Site

Introducing Service Workers
A service worker is a block of JavaScript code a web app installs in the browser under certain
 conditions and runs when the browser needs it to (based on events that fire). Web apps use service
workers to add additional capabilities to the app, capabilities that aren’t generally available to web
apps but are available in many mobile apps.

For install conditions, a browser installs a service worker if

 The browser supports service workers.

 The browser loaded the web app using a TLS (HTTPS) connection or from the system’s
localhost address (referring to the local device running the browser).

 The web app loads the service worker code within the same context (from the same server
location) as the web app for which it’s associated.

Unlike with web app manifest files, most modern browsers support service workers; you can check
the current support matrix on Can I Use.2 As I write this, the following browsers support service
workers: Chrome (Google), Edge (Microsoft), Firefox (Mozilla), Opera (Opera), and Safari (Apple).

2. https://caniuse.com/#feat=serviceworkers

https://caniuse.com/#feat=serviceworkers

45Introducing Service Workers

Many other browsers support them as well; check first if you know your app’s target audience
 prefers a specific browser that’s not in that list.

Depending on how web developers take advantage of service workers in their apps, service workers:

 Cache app content. Google calls service workers programmable network proxies; as you’ll see
in this chapter and the next, you have a lot of options for controlling which resources the
browser caches and which ones are pulled from the server when requested by the app. You
can even replace requested resources (files or data) dynamically at runtime using a service
worker.

 Perform background processing. Web apps use service workers to deliver background
data synchronization and offline support. Service workers install in the browser, they’re
associated with the web app, but they run in the browser’s execution context. This means
they’re available to do work whenever the browser is open, even when the app is not
loaded. You’ll learn more about this in Chapter 5, “Going the Rest of the Way Offline with
Background Sync” and Chapter 6, “Push Notifications.”

 Receive push notifications. With the right protocols and a backend server to send
notifications, web apps use the background processing capabilities of service workers to
enable the processing and display of push notifications sent to the app. You’ll learn more
about this in Chapter 7, “Passing Data between Service Workers and Web Applications.”

The primary reasons browsers require a TLS connection to install and enable a service worker are
those included in the bulleted list you just read through. Considering all you can do with the
capabilities described in that list, the service worker has complete control over data coming in
and out of the app. Browsers require the TLS connection to enforce that the web app and service
worker load from the same location.

Without a TLS connection and the requirement that the service worker loads from the same con-
text as the web app, hackers could compromise a site and load service worker code from another
location and take complete control of the app. A rogue service worker could redirect all requests
to alternate servers, capture auth and push tokens, and more.

The Dreadful Application Cache
Earlier, I said, “Web apps use service workers to add additional capabilities to the app, capabil-
ities that aren’t generally available to web apps,” but that wasn’t exactly true. Web developers
have been able to implement resource caching in web apps for some time now, through an old
feature in many browsers called the Application Cache3 (or just AppCache).

Unfortunately, AppCache is a pretty horrible technology, as famously described in Jake
Archibald’s “Application Cache Is a Douchebag.”4 It’s so bad that the AppCache page at the
above link starts with two warnings against using it in your apps. Furthermore, it also warns
that the technology has been removed from many browsers and that the feature may cease to
work at any time. How’s that? Don’t use it.

3. https://developer.mozilla.org/en-US/docs/Web/HTML/Using_the_application_cache

4. https://alistapart.com/article/application-cache-is-a-douchebag/

https://developer.mozilla.org/en-US/docs/Web/HTML/Using_the_application_cache
https://alistapart.com/article/application-cache-is-a-douchebag/

46 Chapter 3 Service Workers

Of course, service workers have limitations:

 Service workers don’t run unless the browser is open. The web app doesn’t have to be open,
but the browser does.

 Service workers don’t have access to the web app’s document object model (DOM), but
we’ll discuss workarounds for this in Chapter 7.

The first limitation may not be a big deal depending on the browser and operating system (OS).
On many mobile devices, the browser always runs, so it’s there to run the service worker. On
 desktop systems, some browsers run in the background as well or can be configured to do so.
Chrome exposes an advanced setting. Continue running background apps when Google Chrome
is closed, as highlighted in Figure 3.2.

Figure 3.2 Chrome Advanced Settings

I’ll show you more about what service workers can do and how they do it as we work through the
rest of the chapter.

Preparing to Code
Throughout the remainder of the chapter, you’ll start with a base version of the PWA News site
and add a service worker to it. Then we’ll tweak and tune the service worker to demonstrate its
capabilities. Before we do that, you must configure your local development environment with the
components you’ll need.

5. https://developer.mozilla.org/en-US/docs/Web/API/CacheStorage

Developers used it because AppCache support was built into many browsers, but few devel-
opers were happy with it. Writing your own cache implementation was problematic as well,
because, for performance reasons, it must run on a separate thread, which was challenging in
web apps as well.

The CacheStorage5 API described in Chapter 4, “Resource Caching,” was the community’s
attempt to fix AppCache, and it’s one of the key technologies that make PWAs interesting and
useful today. My apologies for lying to you, but hopefully now you see why I did.

https://developer.mozilla.org/en-US/docs/Web/API/CacheStorage

47Preparing to Code

Prerequisites
Before we start modifying code to enhance the PWA News app, you must install some software
prerequisites you’ll use as you follow along. Who knows, you may already have them installed
(you should). This setup is different from previous chapters, so please don’t skip ahead until
you’ve ensured that you have everything you need in place.

Node.js

I built the PWA News site using Node.js and Express (a web framework for Node.js). It hosts the
static PWA News web site plus the application programming interface (API) used by the web
app. If your development workstation already has Node.js installed, then skip ahead to the next
 section. If not, hop over to https://nodejs.org and follow the instructions to install the client on
your development workstation.

To confirm that you have Node.js installed, open a new terminal window and execute the
 following command:

node -v

If the terminal returns a version number (mine reports v10.16.0), then Node.js is properly
installed. If you see an error message, then you have some work to do resolving the error before
continuing.

TypeScript

With Node.js installed, now it’s time to install the TypeScript compiler. In the terminal window,
execute the following command:

npm install -g typescript

This installs the tsc command you’ll use many times through the remainder of the book to
 compile the web server app TypeScript code into JavaScript.

Git Client

I published the source code for the book in a GitHub repository at https://github.com/johnwargo/
learning-pwa-code. The easiest way to get the code, and to update your local copy when I publish
changes, is through Git. If your development workstation already has Git installed, then you’re
good. If not, hop over to https://git-scm.com and follow the instructions to install the client on
your development workstation.

To confirm that you have Git installed, open a new terminal window and execute the following
command:

git --version

If the terminal returns a version number (mine reports git version 2.22.0.windows.1), then
Git is properly installed. If you see an error message, then you have some work to do resolving the
error before continuing.

https://nodejs.org
https://github.com/johnwargo/learning-pwa-code
https://github.com/johnwargo/learning-pwa-code
https://git-scm.com

48 Chapter 3 Service Workers

With Git installed, open a terminal window or command prompt, navigate to the folder where
you want to store the book’s code, and then execute the following command:

git clone https://github.com/johnwargo/learning-pwa-code

Once the cloning process completes, navigate the terminal into the cloned project’s
\learning-pwa-code\chapter-03\ folder. This folder contains the PWA News server app,
and that’s where we’ll work.

While we’re here, we might as well install all the dependencies required by the app. In the
 terminal window pointing to the project folder (\learning-pwa-code\chapter-03\), execute
the following command:

npm install

This command uses the Node Package Manager (npm) to install Node.js modules used by the server.

Visual Studio Code

I use Visual Studio Code as my primary code editor for most projects; this is not because I work for
Microsoft (I do), but because it’s a very capable editor, and the large catalog of available extensions
enables me to configure the editor environment with some really cool capabilities to make coding
easier. If you haven’t tried it out yet, hop over to https://code.visualstudio.com/ and give it a try.

Navigating the App Source
The folder structure for the PWA News app source is shown in Figure 3.3. The public folder shown
in the figure holds the web app files we’ll use in this chapter. The code you’re looking at is for a web
server app, and the public folder is where the web server looks for the static files it serves.

Figure 3.3 PWA News App Source Folder

https://github.com/johnwargo/learning-pwa-code
https://code.visualstudio.com/

49Preparing to Code

I wrote server code (the APIs the web app uses) using TypeScript,6 a typed superset of JavaScript.
Using TypeScript allowed me to define types for all my app’s variables and more easily find errors
(based on that typing). TypeScript code compiles to JavaScript using the TypeScript Compiler
(tsc), so the .js files you see in the figure are compiled versions of my code located in the
 project’s app folder.

If you decide you want to make changes to how the server and API work, you must make your
modifications in the app folder. Once you’re ready to apply your changes, open a terminal
 window, navigate to the root project folder (the one shown in Figure 3.3), and execute the
 following command:

tsc

This compiles the server’s .ts files into the .js files you see in the root folder shown in the
 figure. You’ll see some errors and warnings from the code’s references to some of the objects, but
the unmodified code runs as is, so look for errors from the code you modified.

Configuring the Server API
The server process consumes the Bing News Search API from Microsoft Azure to collect the news
data displayed in the app. You’ll need an Azure account and a Bing API key to work with the code
in this chapter.

If you already have an Azure account, log in to your account at https://portal.azure.com. If you
don’t have an account, create a free one at https://azure.microsoft.com/en-us/free/. Once you’ve
created the account, log in to the portal using your new account at https://portal.azure.com.

To use the Bing Search API, you must first generate an API key for the service. The key is free,
and you can use up to 3,000 searches per month in the free tier. Point your browser of choice to
https://portal.azure.com/#create/Microsoft.CognitiveServicesBingSearch-v7 and log in. Populate
the form with the following information:

 Name: Enter a name for the resource (use something such as Learning PWA, or PWA News).

 Subscription: Select Pay-As-You-Go.

 Location: Select an Azure Region from the drop-down. It doesn’t matter which one you
pick; I suggest you pick one near your current location (I selected East US).

 Pricing Tier: Select the free tier.

 Resource Group: Create a new one, and give it any name you want (use something such as
RG-PWA or RG-PWA-News).

Click the Create button when you’re done with the form.

6. https://www.typescriptlang.org/

https://portal.azure.com
https://azure.microsoft.com/en-us/free/
https://portal.azure.com
https://portal.azure.com/#create/Microsoft.CognitiveServicesBingSearch-v7
https://www.typescriptlang.org/

50 Chapter 3 Service Workers

Note
Microsoft Azure offers a robust free tier you can use as you work through this chapter. The
free tier gives customers three transactions per second (up to 3,000 per month), so in your
testing of this app, you’re unlikely to exceed the free plan limits. To help even further, I coded
the server app to restrict how often it connects to Bing to get news articles. By default, it only
checks every 15 minutes, no matter how often a client hits the server API. If you do the math,
you’ll see there’s no way for the server to ever exceed that free limit.

When you get to the page shown in Figure 3.4, click the copy icon to the far right of either the
KEY 1 or KEY 2 field to copy the selected key to the clipboard. You’ll need one of these keys in the
next step.

Figure 3.4 Azure Portal

Next, in the project source code folder, open the project’s app/congfig.ts file. This file exports
a single property, the BING_ACCESS_KEY shown in Listing 3.1. Paste the key you just copied to the
clipboard between the empty quotes in the file.

Listing 3.1 PWA News app/config.ts File

export const config = {
 // enter your private Bing Search API access key
 BING_ACCESS_KEY: ''
};

51Preparing to Code

For example, you’ll change

BING_ACCESS_KEY: ''

to something like this:

BING_ACCESS_KEY: 'your-super-secret-api-key'

Save the file, then open a terminal window, navigate to the root project folder (the one shown in
Figure 3.3), and execute the following command:

tsc

This step invokes the TypeScript compiler to compile the config.ts file into a new config.js
file in the project root folder (not shown in Figure 3.3). With this in place, you’re all set to start
the server process and begin interacting with the app.

You’ll need this same config.js file as you work through the code in subsequent chapters, so
I included a batch file and shell script to automate copying the compiled file to the other project
folders. If your development system runs Windows, in the terminal window pointing to
\learning-pwa-code\chapter-03\, execute the following command:

copy-config.cmd

If your development system runs macOS, in the terminal window pointing to
\learning-pwa-code\chapter-03\, execute the following command:

./copy-config.sh

At the end of either process, you should see the config.js file copied into the root project folder
for each chapter folder that uses the PWA News app.

Starting the Server
With all the parts in place, it’s time to start the server. If you don’t have a terminal window open point-
ing to the project folder, open one now, and navigate to the \learning-pwa-code\chapter-03\
folder. Once there, execute the following command:

npm start

If everything’s set up properly in the code, the server will respond with the following text in the
terminal:

pwa-news-server@0.0.1 start D:\learning-pwa-code\chapter-03
node ./bin/www

At this point, you’re all set—the server is up and running and ready to serve content. If you see an
error message, you must dig through any reported errors and resolve them before continuing.

To see the web app in its current state, open Google Chrome or one of the browsers that supports
service workers and navigate to

http://localhost:3000

http://localhost:3000

52 Chapter 3 Service Workers

After a short delay, the server should render the app as shown in Figure 3.1. When you look in
the terminal window, you should see the server process start, then log messages as it serves the
 different parts of the app, as shown here:

> pwa-news-server@0.0.1 start D:\learning-pwa-code\chapter-03
> node ./bin/www

2019-07-29T22:27:25.054Z GET / 304 8.365 ms - -
2019-07-29T22:27:25.075Z GET /css/custom.css 304 2.004 ms - -
2019-07-29T22:27:25.079Z GET /img/bing-logo.png 304 0.935 ms - -
2019-07-29T22:27:25.104Z GET /js/sw-reg.js 304 0.746 ms - -
2019-07-29T22:27:25.114Z GET /js/utils.js 304 0.756 ms - -
2019-07-29T22:27:25.115Z GET /js/index.js 304 0.731 ms - -
Router: GET /api/news
2019-07-29T22:27:26.376Z GET /sw-34.js 404 1132.392 ms - 565
2019-07-29T22:27:26.381Z GET /app.webmanifest 304 1.766 ms - -
2019-07-29T22:27:26.420Z GET /icons/android-icon-192x192.png 404 20.681 ms - 565
Returning result (1)
2019-07-29T22:27:26.788Z GET /api/news 200 1645.317 ms - 12222

The server hosts the app at port 3000 by default (the port number is the numeric value after the
last colon in the example), but if your system has another process listening on that port, then it’s
not going to work. To change the port number used by the app, open the project’s bin/www file
and look for the following line:

var port = normalizePort(process.env.PORT || '3000');

Change the '3000' to another port (hopefully an available one), save your changes, then restart
the server and access the site at the new port. You can also set the port using local environment
variables7 if you want.

Registering a Service Worker
Web apps follow a specific process to install a service worker; there’s no automatic way to do it
today. The app basically executes some JavaScript code to register the service worker with the
browser. In the Tip Calculator app in Chapter 1, “Introducing Progressive Web Apps,” I added the
code to do this directly in the app’s index.html file. For the PWA News app, we use a different
approach.

In this section, you’ll modify the project’s existing public/index.html file plus add two
JavaScript files: public/js/sw-reg.js and public/sw.js.

In the <head> section of the project’s public/index.html file, add the following code:

<!-- Register the service worker -->
<script src='js/sw-reg.js'></script>

7. https://stackoverflow.com/questions/18008620/node-js-express-js-app-only-works-on-port-3000

http://index.html
http://public/index.html
http://public/index.html
https://stackoverflow.com/questions/18008620/node-js-express-js-app-only-works-on-port-3000

53Registering a Service Worker

This tells the web app to load a JavaScript file that registers the service worker for us. Next, let’s
create that file. Create a new file called public/js/sw-reg.js and populate the file with the
code shown in Listing 3.2.

Listing 3.2 PWA News sw-reg.js File

// does the browser support service workers?
if ('serviceWorker' in navigator) {
 // then register our service worker
 navigator.serviceWorker.register('/sw.js')
 .then(reg => {
 // display a success message
 console.log(`Service Worker Registration (Scope: ${reg.scope})`);
 })
 .catch(error => {
 // display an error message
 let msg = `Service Worker Error (${error})`;
 console.error(msg);
 // display a warning dialog (using Sweet Alert 2)
 Swal.fire('', msg, 'error');
 });
} else {
 // happens when the app isn't served over a TLS connection (HTTPS)
 // or if the browser doesn't support service workers
 console.warn('Service Worker not available');
}

The code here isn’t very complicated; it all centers around the call to
navigator.serviceWorker.register. The code first checks to see if the serviceWorker
object exists in the browser’s navigator object. If it does, then this browser supports service
workers. After the code verifies it can register the service worker, it does so through the call to
navigator.serviceWorker.register.

The register method returns a promise, so the code includes then and catch methods to
act depending on whether the installation succeeded or failed. If it succeeds, it tosses a simple
 message out to the console. If the call to register fails (caught with the catch method), we
warn the user with an alert dialog.

Two potential error conditions exist here: if the browser doesn’t support service workers and if
service worker registration fails. When the browser doesn’t support service workers, I log a simple
warning to the console (using console.warn). I don’t do anything special to warn the user because
this is progressive enhancement, right? If the browser doesn’t support service workers, the user just
continues to use the app as is, with no special capabilities provided through service workers.

On the other hand, if registration fails, then the code is broken (because we already know the
browser supports service workers), and I want to let you know more obnoxiously with an alert
dialog. I did this because you’re learning how this works, and I wanted the error condition to be
easily recognized. I probably wouldn’t do this for production apps because if the service worker
doesn’t register, the app simply falls back to the normal mode of operation.

54 Chapter 3 Service Workers

Service workers don’t start working until the next page loads anyway, so to keep things clean, you
can defer registering the service worker until the app finishes loading, as shown in Listing 3.3.

Listing 3.3 PWA News sw-reg.js File (Alternate Version)

// does the browser support service workers?
if ('serviceWorker' in navigator) {
 // Defer service worker installation until the page completes loading
 window.addEventListener('load', () => {
 // then register our service worker
 navigator.serviceWorker.register('/sw.js')
 .then(reg => {
 // display a success message
 console.log(`Service Worker Registration (Scope: ${reg.scope})`);
 })
 .catch(error) => {
 // display an error message
 let msg = `Service Worker Error (${error})`;
 console.error(msg);
 // display a warning dialog (using Sweet Alert 2)
 Swal.fire('', msg, 'error');
 });
 })
} else {
 // happens when the app isn't served over a TLS connection (HTTPS)
 // or if the browser doesn't support service workers
 console.warn('Service Worker not available');
}

In this example, the code adds an event listener for the load event and starts service worker reg-
istration after that event fires. All this does is defer the additional work until the app is done with
all its other startup stuff and shouldn’t even be noticeable to the user.

Next, let’s create a service worker. Create a new file called public/sw.js and populate it with the
code shown in Listing 3.4. Notice that we created the service worker registration file in the proj-
ect’s public/js/ folder, but this one goes into the web app’s root folder (public/); I’ll explain
why in “Service Worker Scope” later in this chapter—I’m just mentioning it now to save you a
potential problem later if you put it in the wrong place.

Listing 3.4 First Service Worker Example: sw-34.js

self.addEventListener('fetch', event => {
 // fires whenever the app requests a resource (file or data)
 console.log(`SW: Fetching ${event.request.url}`);
});

Note
To save you typing in all the service worker example code, I’ve placed each service worker
example, named using the listing number, in a folder called public/service-workers. You
can see the file name in the listing heading above: sw-34.js for Listing 3.4.

55Registering a Service Worker

This code is simple as well. All it does is create an event listener for the browser’s fetch event,
then logs the requested resource to the console. The fetch event fires whenever the browser, or
an app running in the browser, requests an external resource (such as a file or data). This is differ-
ent from the JavaScript fetch method, which enables an app’s JavaScript code to request data or
resources from the network. The browser requesting resources (such as a JavaScript or image file
referenced in an HTML script or img tag) and a web app’s JavaScript code requesting a resource
using the fetch method will both cause the fetch event to fire.

This is the core functionality of a service worker, intercepting fetch events and doing some-
thing with the request—such as getting the requested resource from the network, pulling the
requested file from cache, or even sending something completely different to the app requesting
the resource. It’s all up to you: your service worker delivers as much or as little enhancement as
needed for your app.

With this file in place, refresh the app in the browser and watch what happens. Nothing, right?
There’s not much to see here since, everything happens under the covers. In this example, the
service worker does nothing except log the event; as you can see in the browser, the app loaded as
expected, so the app’s still working the same as it did before.

Open the browser’s developer tools and look for a tab labeled Application (or something similar)
and a side tab labeled Service Workers. If you did everything right, you should see your service
worker properly registered in the browser, as shown in Figure 3.5 (in Google Chrome).

Figure 3.5 Chrome Developer Tools Application Tab

56 Chapter 3 Service Workers

If the browser can’t register the service worker, it displays error messages in this panel to let
you know.

In the latest Chrome browser and the Chromium-based Edge browser, you can also open a special
page that displays information about all service workers registered in the browser. Open the
browser and enter the following value in the address bar:

chrome://serviceworker-internals/

The browser opens the page shown in Figure 3.6, listing all registered service workers.

Figure 3.6 Chrome Service Worker Internals Page

The one thing missing from the service worker as it stands today is for it to actually do something
with the fetch request. Listing 3.5 adds an additional line of code to our existing service worker:

event.respondWith(fetch(event.request));

This code instructs the browser to go ahead and get the requested file from the network. Without
this statement in the event listener, the browser was doing this anyway. Since the event listener
didn’t act on the request and return a promise telling the browser it was dealing with it, then the
browser goes ahead and gets the file anyway. That’s why the app works without this line. Adding
the line just completes the event listener.

57Registering a Service Worker

Listing 3.5 Second Service Worker Example: sw-35.js

self.addEventListener('fetch', event => {
 // fires whenever the app requests a resource (file or data)
 console.log(`SW: Fetching ${event.request.url}`);
 // next, go get the requested resource from the network,
 // nothing fancy going on here.
 event.respondWith(fetch(event.request));
});

The browser passes the fetch event listener an event object service workers query to determine
which resource was requested. Service workers use this mechanism to determine whether to get
the resource from cache or request it from the network. I cover this in more detail later (in this
chapter and the next), but for now this extra line of code simply enforces what we’ve already seen
the browser do—get the requested resource from the network.

The browser fires two other events of interest to the service worker developer: install and
 activate. Listing 3.6 shows a service worker with event listeners for both included.

Listing 3.6 Third Service Worker Example: sw-36.js

self.addEventListener('install', event => {
 // fires when the browser installs the app
 // here we're just logging the event and the contents
 // of the object passed to the event. the purpose of this event
 // is to give the service worker a place to setup the local
 // environment after the installation completes.
 console.log(`SW: Event fired: ${event.type}`);
 console.dir(event);
});

self.addEventListener('activate', event => {
 // fires after the service worker completes its installation.
 // It's a place for the service worker to clean up from
 // previous service worker versions.
 console.log(`SW: Event fired: ${event.type}`);
 console.dir(event);
});

self.addEventListener('fetch', event => {
 // fires whenever the app requests a resource (file or data)
 console.log(`SW: Fetching ${event.request.url}`);
 // next, go get the requested resource from the network,
 // nothing fancy going on here.
 event.respondWith(fetch(event.request));
});

58 Chapter 3 Service Workers

The browser fires the install event when it completes installation of the service worker. The
event provides the app with an opportunity to do the setup work required by the service worker.
At this point, the service worker is installed but not yet operational (it doesn’t do anything yet).

The browser fires the activate event when the current service worker becomes the active service
worker for the app. A service worker works at the browser level, not the app level, so when the
browser installs it, it doesn’t become active until the app reloads in all browser tabs running the
app. Once it activates, it stays active for any browser tabs running the app until the browser closes
all tabs for the app or the browser restarts.

The activate event provides service workers with an opportunity to perform tasks when the
service worker becomes the active service worker. Usually, this means cleaning up any cached
data from a previous version of the app (or service worker). You’ll learn a lot more about this in
Chapter 4, “Resource Caching”; for now, let’s add this code to our existing service worker and see
what happens.

Once you’ve updated the code, reload the page in the browser, then open the developer tools
console panel and look for the output shown in Figure 3.7. Chances are, you won’t see it—that’s
because the previous version of the service worker is still active. You should see the install event
fire but not the activate event.

Figure 3.7 Chrome Browser Tools Console Pane with Installation Output

59Registering a Service Worker

You have several options for activating this new service worker. I explain two here and cover
 programmatic options in “The Service Worker Lifecycle” later in the chapter. One option is to
close and reopen the browser, then reload the app; this automatically enables the registered
 service worker.

Another option is to configure the browser developer tools to automatically activate the new
service worker once it registers the service worker; this approach is useful only when debugging
or testing a PWA. At the top of the service workers pane shown in Figure 3.5 is a checkbox labeled
Update on reload; when you enable (check) this checkbox, the browser automatically updates
and activates new service workers every time you reload the page with a new service worker.

Force the browser to activate the new service worker, then look at the console page. You should
now see the output shown in Figure 3.8 with each network request logged to the console.

Figure 3.8 Chrome Browser Tools Console Pane with Service Worker Output

At this point, the app has a functioning service worker listening for all relevant events and
 fetching all requested resources from the network. In the next sections, we talk about service
worker scope (as promised) and the service worker lifecycle; then I’ll show you more you can do
with service workers.

60 Chapter 3 Service Workers

Service Worker Scope
Remember early on when I said that one of the requirements for PWAs was that the browser
accesses the app using a TLS (HTTPS) or localhost connection? This layer of security helps protect
apps from rogue agents loading a service worker from another location.

As another layer of security, the location of the service worker file matters. When an app registers
a service worker, by default the service worker can work only with resources hosted in the same
folder location and below; anything higher up in the folder structure is ignored.

If you remember the code that registers the app’s service worker (Listing 3.2), when registration
completes successfully, the code executes the following line:

console.log(`Service Worker Registration (Scope: ${reg.scope})`);

This lets the developer know that the service worker registered correctly, and it outputs the
 contents of the reg object’s scope property:

Service Worker Registration (Scope: http://localhost:3000/)

This scope defines the service worker’s operational domain, the part of the web app over which
the service worker has providence. In this example, the service worker scope begins at localhost
and covers anything available under that host.

If your app includes content and code in subfolders, for example, app1 and app2, and you want
to register a separate service worker for each, you can easily do that. One option is to place the
appropriate service worker in each folder; they automatically inherit scope from the folder where
the service worker code is hosted when you register the service worker.

Another option is to set the scope for the service worker during registration; as an example, look
at the following code:

navigator.serviceWorker.register('/sw1.js', {scope: '/app1/'})

This example registers the sw1.js service worker and sets the scope for the service worker to the
app1 folder. With this in place, this service worker will process fetch requests only for resources
located in the app1 folder and below (subfolders).

The Service Worker Lifecycle
Each service worker cycles through multiple states from the moment the browser calls
 navigator.serviceworker.register until it’s discarded or replaced by the browser. The
states defined in the service worker specification are

 Installing

 Waiting

 Active

http://localhost:3000/

61The Service Worker Lifecycle

When an app registers a service worker, the browser

 Locates the service worker (requests it from a server)

 Downloads the service worker

 Parses and executes the service worker

If the browser can’t download or execute the service worker, it discards the service worker (if it has
it) and informs the code that called navigator.serviceworker.register. In Listing 3.3, that
means that the catch clause executes and whatever code is there executes.

If the browser successfully downloads the service worker, it executes the service worker, and
that’s how the service worker registers the install and activate event listeners in the service
worker code.

At this point, the install event listener fires; that’s where a service worker creates its local cache
and performs any additional setup steps. A representation of the service worker (version 1) at the
Installing state is shown in Figure 3.9.

Figure 3.9 Service Worker 1 Installing

If a service worker isn’t currently registered, the service worker transitions to the Active state, and
it’s ready to process fetch requests the next time the app reloads, as shown in Figure 3.10.

Figure 3.10 Service Worker 1 Active

If the web app attempts to install a new version of the service worker (version 2, for example),
then the process starts all over again for the new service worker. The browser downloads and
 executes service worker v2, the v2 install event fires, and it completes its initial setup.

At this point, the app is still active and has an active service worker (v1) in play. Remember, the
current service worker remains active until you close the browser (or at least all tabs running
the web app) or the browser is configured to force reloading the service worker. With an existing
 service worker active, service worker v2 goes into a waiting state, as shown in Figure 3.11.

62 Chapter 3 Service Workers

Figure 3.11 Two Service Workers in Play

Once the user closes all browser tabs running the app or restarts the browser, the browser discards
service worker v1 and sets service worker v2 to active as shown in Figure 3.12.

Figure 3.12 Service Worker V2 Active

When you update the service worker and a user navigates to the app, the browser attempts to
download the service worker again. If the newly downloaded service worker is as little as one
byte different from the one currently registered, the browser registers the new service worker and
the activation process kicks off again. Regardless of whether or not it has changed, the browser
 downloads the service worker every time the page reloads.

Forcing Activation
Earlier I described ways to force the browser to activate a service worker by reloading the page or
enabling the Reload option in the browser developer tools. Both of those options are great but
require some action by the user. To force the browser to activate a service worker programmati-
cally, simply execute the following line of code somewhere in your service worker:

// force service worker activation
self.skipWaiting();

You’ll typically perform this action during the install event, as shown in Listing 3.7.

Listing 3.7 Fourth Service Worker Example: sw-37.js

self.addEventListener('install', event => {
 // fires when the browser installs the app
 // here we're just logging the event and the contents
 // of the object passed to the event. the purpose of this event
 // is to give the service worker a place to setup the local
 // environment after the installation completes.
 console.log(`SW: Event fired: ${event.type}`);

63The Service Worker Lifecycle

 console.dir(event);
 // force service worker activation
 self.skipWaiting();
});

self.addEventListener('activate', event => {
 // fires after the service worker completes its installation.
 // It's a place for the service worker to clean up from previous
 // service worker versions
 console.log(`SW: Event fired: ${event.type}`);
 console.dir(event);
});

self.addEventListener('fetch', event => {
 // fires whenever the app requests a resource (file or data)
 console.log(`SW: Fetching ${event.request.url}`);
 // next, go get the requested resource from the network,
 // nothing fancy going on here.
 event.respondWith(fetch(event.request));
});

Claiming Additional Browser Tabs
In some cases, users may have multiple instances of your app running in separate browser tabs.
When you register a new service worker, you can apply that new service worker across all relevant
tabs. To do this, in the service worker’s activate event listener, add the following code:

// apply this service worker to all tabs running the app
self.clients.claim()

A complete listing for a service worker using this feature is provided in Listing 3.8.

Listing 3.8 Fifth Service Worker Example: sw-38.js

self.addEventListener('install', event => {
 // fires when the browser installs the app
 // here we're just logging the event and the contents
 // of the object passed to the event. the purpose of this event
 // is to give the service worker a place to setup the local
 // environment after the installation completes.
 console.log(`SW: Event fired: ${event.type}`);
 console.dir(event);
 // force service worker activation
 self.skipWaiting();
});

64 Chapter 3 Service Workers

self.addEventListener('activate', event => {
 // fires after the service worker completes its installation.
 // It's a place for the service worker to clean up from previous
 // service worker versions
 console.log(`SW: Event fired: ${event.type}`);
 console.dir(event);
 // apply this service worker to all tabs running the app
 self.clients.claim()
});

self.addEventListener('fetch', event => {
 // fires whenever the app requests a resource (file or data)
 console.log(`SW: Fetching ${event.request.url}`);
 // next, go get the requested resource from the network,
 // nothing fancy going on here.
 event.respondWith(fetch(event.request));
});

Observing a Service Worker Change
In the previous section, I showed how to claim service worker control over other browser tabs
running the same web app after a new service worker activation. In this case, you have at least two
browser tabs open running the same app, and in one tab a new version of the service worker was
just activated.

To enable the app running in the other tabs to recognize the activation of the new service worker,
add the following event listener to the bottom of the project’s sw.js file:

navigator.serviceWorker.addEventListener('controllerchange', () => {
 console.log("Hmmm, we’re operating under a new service worker");
});

The service worker controllerchange event fires when the browser detects a new service worker
in play, and you’ll use this event listener to inform the user or force the current tab to reload.

Forcing a Service Worker Update
In the world of single-page apps (SPAs), browsers load the framework of a web app once, and the
app then swaps in the variable content as often as needed while the user works. These apps don’t
get reloaded much because users simply don’t need to. This is kind of a stretch case, but if you’re
doing frequent development on the app or know you’re going to update your app’s service worker
frequently, the service worker’s registration object (reg in all the source code examples so far)
 provides a way to request an update check from the app’s code

To enable this, simply execute the following line of code periodically to check for updates:

reg.update();

65The Service Worker Lifecycle

The trick is that you must maintain access to the registration object long enough that you can do
this. In Listing 3.9, I took the service worker registration code from Listing 3.2 and modified it a bit.

First, I created a variable called regObject, which the code uses to capture a pointer to the reg
object exposed by the call to navigator.serviceWorker.register. Next, I added some code
to the registration success case (the .then method) that stores a pointer to the reg object in
the regObject variable and sets up an interval timer for every 10 minutes. Finally, I added a
requestUpgrade function that triggers every 10 minutes to check for a service worker update.

Listing 3.9 Alternate Service Worker Registration: sw-reg2.js

// define a variable to hold a reference to the
// registration object (reg)
var regObject;

// does the browser support service workers?
if ('serviceWorker' in navigator) {
 // then register our service worker
 navigator.serviceWorker.register('/sw.js')
 .then(reg => {
 // display a success message
 console.log(`Service Worker Registration (Scope: ${reg.scope})`);
 // Store the `reg` object away for later use
 regObject = reg;
 // setup the interval timer
 setInterval(requestUpgrade, 600000);
 })
 .catch(error => {
 // display an error message
 let msg = `Service Worker Error (${error})`;
 console.error(msg);
 // display a warning dialog (using Sweet Alert 2)
 Swal.fire('Registration Error', msg, 'error');
 });
} else {
 // happens when the app isn't served over a TLS connection
 // (HTTPS) or if the browser doesn't support service workers
 console.warn('Service Worker not available');
 // we're not going to use an alert dialog here
 // because if it doesn't work, it doesn't work;
 // this doesn't change the behavior of the app
 // for the user
}

function requestUpgrade(){
 console.log('Requesting an upgrade');
 regObject.update();
}

66 Chapter 3 Service Workers

You could even trigger execution of this code through a push notification if you wanted to force
the update only when you publish updates by sending a special notification message whenever
you publish a new version of the service worker.

Service Worker ready Promise
There’s one final service worker lifecycle topic I haven’t covered yet. The serviceWorker object
has a read-only ready property that returns a promise that never rejects and sits there waiting
patiently until the service worker registration is active. This gives your service worker registration
code a place to do things when a page loads with an active service worker.

We already have the install and activate events, both of which get involved during service
worker registration and replacement. If your app wants to execute code only when a service
worker is active, use the following:

if ('serviceWorker' in navigator) {
 navigator.serviceWorker.ready.then((reg) => {
 // we have an active service worker working for us
 console.log(`Service Worker ready (Scope: ${reg.scope})`);
 // do something interesting...

 });

} else {
 // happens when the app isn't served over a TLS connection (HTTPS)
 console.warn('Service Worker not available');
}

You’ll see an example of this in action in Chapter 6.

Wrap-Up
In this chapter, we covered a lot about service workers and have one running in our app. You
learned all about the service worker lifecycle and the special events and methods the service
worker provides developers.

Unfortunately, the service worker we have doesn’t do much. In the next chapter, we’ll expand the
capabilities of the service worker and explore many ways to manage caching the resources used by
the app.

Index

Symbols
' (single quotation mark), 30

. (period), 209, 215

` (back tick), 30

A
<a> tag, target attribute, 25

abort method, 108

actions property, 145

actionsContainer div, 176

activate event listener, 58, 61, 80–81

activating service workers, 59, 62–63

Add Features pane (PWABuilder), 193

add method, 68

Add to Home Screen option, 11–15

addAll method, 68, 71

addEventListener method, 64, 71, 168,

169–171

admin.js files (push notification app), 154

Air Horner app, 10

all method, 120, 121

Amazon sync SDKs, 103

Android devices. See also remote

notifications

installing web apps on

Add to Home Screen option, 11–15

with manifest files. See web app
manifest files

notifications on, 129–130

226 Index

Angular, 7

Apache Cordova, 3, 7

APIs (application programming interfaces),

Push API, 49–51, 134

api.ts file, 162–164

app stores, 7

AppCache, 45–46

appinstalled event listener, 39

Apple Dashcode, 3

Apple iOS devices

installing web apps on

Add to Home Screen option, 11–15

with manifest files. See web app
manifest files

iPhone, 3

push notifications, lack of support
for, 129

Application Cache, 45–46

application resource caching. See caching

applicationServerKey, 148–149

apps, converting into PWAs

deployable apps, creating, 195–196

overview of, 190–191

PWABuilder CLI, 197

PWABuilder UI, 191–195

Add Features pane, 193

home page, 191–192

Manifest Editor page, 193–194

scan results, 192

Service Worker page, 194–195

Visual Studio PWABuilder extension,
198–202

command palette, 198–199

generated manifest files, 200–201

installing, 198

Manifest Generator page,
199–200

Archibald, Jake, 45

arrays, urlList, 70–71

assessing quality

Chrome Lighthouse tools, 187–189

coding preparation, 182

Lighthouse node module, 189–190

Lighthouse plug-in, 182–187

overview of, 181–182

automation, service worker

overview of, 207–208

precaching service workers

adding precaching to existing
service workers, 215–218

cache strategies, controlling, 218–224

generating, 208–214

Azure

Bing News Search API, 49–51

free plan, 50

B
back tick (`), 30

background sync

capabilities of, 99–103

data objects

adding to stores, 107–108

deleting from stores, 108–109

iterating through, 109–110

databases

choosing, 105

creating, 105–106

offline data sync, 103–105

poke-and-pull method, 104–105

PWA News Feedback page

db.js file, 114–117, 122–124

install event listener, 119

last chances, 125–128

onupgradeneeded callback, 116

openIDB function, 113, 115–116

postFeedback function, 112–113

preparing service workers for,
111–112

queueFeedback function, 116–117

227Index

refresh on success, 117

service worker preparation, 111–112

service worker queue processing,
119–125

software prerequisites, 110–111

submitFeedback function, 112,
113–114

testing, 118–119

software prerequisites, 110–111

store creation, 107

tags and, 102–103

background tasks, 3

background_color property, 25

backslash (\), 69

badge property, 145

beforeinstallprompt event, 36, 131

Berriman, Frances, 2

Bing News Search API, 49–51

BING_ACCESS_KEY property, 50–51

body property, 145–147

browser display mode, 22–23

browsers. See also remote notifications

applying service workers to, 63–64

service worker support, 44–45

web app manifest support, 16

C
Cache interface, 67–68

Cache Storage (Chrome), 74–77

CACHE_ROOT constant, 80

cacheableResponse plugin, 223

CacheFirst strategy, 219

CacheOnly strategy, 92–93, 219

CacheStorage API, 46

caching

AppCache, 45–46

Cache interface, 67–68

cache management, 76–77

activate event listener, 80–81

CACHE_ROOT constant, 80

custom cache generation, 79

deletion of cache, 78, 79–80

service worker version number, 78

sw-42.js file, 81–83

CacheStorage API, 46

enabling, 70–77

fetch event listener, 72

install event listener, 71–72

sw-41.js file, 72–74

urlList array, 70–71

offline awareness, 77

offline pages, creating, 86–91

overview of, 67

precaching service workers

adding precaching to existing
service workers, 215–218

cache strategies, controlling,
218–224

generating, 208–214

overview of, 207–208

returning data object on error, 83–86

strategies for, 91–92

cache-only, 92–93

network-first, cache-next, 93–94

network-first, update-cache, 94–98

callbacks

callback hell, 68

onclose, 106

onerror, 106

onsuccess, 106

onupgradeneeded, 107, 116

Can I Use website, 16, 44–45

capabilities of PWAs (Progressive Web

Apps), 4–6

catch method, 53

characteristics of PWAs (Progressive Web

Apps), 2–4

Chrome

Cache Storage, 74–77

228 Index

Developer Tools Application Tab, 55

Lighthouse tools in, 187–189

PWAs, installing/removing, 36

Service Worker Internals Page, 56

service workers

listing registered, 55–56

support for, 44–45

shortcuts, 11

CLI (command-line interface),

PWABuilder, 197

clients, Git, 28–29, 47–48

client-side scripting, 4–5

color options, configuring, 25

commands

copy-config, 51, 69, 110

git clone, 28, 48

git --version, 28, 47

http-server, 28, 33, 182, 212

node generate-keys.js, 135, 166

node -v, 28, 47

npm install, 48, 69, 110, 134, 166

npm install -g lighthouse, 189

npm install -g pwabuilder, 197

npm install -g typescript, 47

npm install -g workbox-cli, 208

npm install http-server -g, 28

npm install workbox-cli -global, 215

npm start, 51, 110, 136, 166

pwabuilder, 197

tsc, 49, 51, 69, 110, 166

workbox injectManifest, 217

workbox wizard, 208

workbox wizard -injectManifest, 215

community-driven logo (PWA), 1

compilers. See TypeScript

configuration files

push notification app, 135

PWA News web app, 50, 51, 69, 110

workbox-config.js file, 210, 213

configuration of web apps

app icons, 18–19

app name, 18

color options, 25

display mode, 19–23

browser, 22–23

fullscreen, 19–20

minimal-ui, 21–22

standalone, 20–21

installation process, 26–27

orientation, 25–26

server APIs, 49–51

start URL, 23–25, 39

theme color, 25

controllerchange event, 64

controlling cache strategies, 218–224

cacheableResponse plugin, 223

default cache, 223–224

route registration and matching, 219

supported strategies, 219

copy-config command, 51, 69, 110

Cordova (Apache), 3

CORS (cross-origin resource sharing), 98

Couchbase, 103

cross-origin resource sharing (CORS), 98

cursors, iterating through data with,

109–110

custom cache, generating, 79

D
data communication

coding preparation, 166–167

overview of, 165–166

sending data from service worker to web
app window, 169–171

229Index

sending data from web app to service
worker, 167–168

event handling, 168

postMessage method,
167–168

web app output, 168

two-way communication with
MessageChannel, 171–179

click event listener, 171–172

message channels, creating,
171–172

data objects

adding to stores, 107–108

deleting from stores, 108–109

iterating through, 109–110

returning on error, 83–86

data property, 145

databases, sync

choosing, 105

creating, 105–106

stores

adding data to, 107–108

creating, 107

deleting data from, 108–109

iterating through, 109–110

data.items.map method, 120, 121

db.js file, 114–117, 119, 122–124

default cache, 223–224

default permission value, 138

deferredPrompt object, 36

delete method, 68

deleteFeedback function, 120, 121,

123–124

deleting

caching, 78, 79–80

data objects from stores,
108–109

denied permission value, 138

deployment

to app stores, 7

deployable apps, creating, 195–196

PWAs (Progressive Web Apps), 202–205

DevTools, Chrome. See Chrome

dir property, 145

display mode, configuring with web app

manifest files, 19–23

browser, 22–23

fullscreen, 19–20

minimal-ui, 21–22

standalone, 20–21

display property, 19–23

document object model (DOM), service

worker access to, 46

doInstall function, 37

doLongAction function, 176–177

DOM (document object model), service

worker access to, 46

domains, obtaining, 35

doPlayback function, 173

doSubscribe function, 142,

151–152, 167

doUnsubscribe function, 154–155, 167

E
Edge, 44–45

EMPTY_NEWS_OBJECT constant, 83

enabling resource caching, 70–77

fetch event listener, 72

install event listener, 71–72

sw-41.js file, 72–74

urlList array, 70–71

encryption keys, generating,

134–137

encryption of remote notifications, 133

enhancement, progressive, 4

230 Index

errors

returning data objects on, 83–86

returning text/HTML content on, 87–91

Workbox, 214

events and event listeners, 39, 84

activate, 58, 61, 80–81

beforeinstallprompt, 36, 131

controllerchange, 64

fetch, 55

cache-only strategy in, 92–93

caching, enabling, 72

data object, returning on error,
84–86

network-first, cache-next strategy in,
93–94

network-first, update-cache strategy
in, 94–96

text/HTML content, returning on
error, 87–91

install

caching, enabling, 71–72

install event listener, 119

service worker lifestyle, 61

service worker registration, 58

message, 168, 172, 173–175, 177–179

notificationclick, 157

pushsubscriptionchange, 162

sync. See also background sync

registering, 102–103

triggering, 102

expired subscriptions, 162

exponential fallback algorithm, 125–128

Express, 47

F
Feedback Page (PWA News web app), 99

db.js file, 114–117, 119, 122–124

Feedback Page, 99

install event listener, 119

last chances, 125–128

onupgradeneeded callback, 116

openIDB function, 113, 115–116

postFeedback function, 112–113

preparing service workers for, 111–112

queueFeedback function, 116–117

refresh on success, 117

service worker preparation, 111–112

service worker queue processing,
119–125

software prerequisites, 110–111

submitFeedback function, 112, 113–114

testing, 118–119

fetch event listener, 55, 84

cache-only strategy in, 92–93

caching, enabling, 72

data object, returning on error, 84–86

network-first, cache-next strategy in,
93–94

network-first, update-cache strategy in,
94–96

text/HTML content, returning on error,
87–91

fetch function, 120, 121

fetchWrapper.mjs file, 221

Firebase, 103

Firefox, 44–45

folders, selecting for precaching,

209, 215

forcing

service worker activation, 62–63

service worker updates, 64–66

forward slash (/), 69

fullscreen display mode, 19–20

G
Gaunt, Matt, 16

GCM (Google Cloud Messaging), 136

GCMAPI_KEY, 136

231Index

generateVAPIDKeys method, 135, 166

getFeedbackItems function, 120, 121,

122–123

Git client, installing, 28–29, 47–48

git clone command, 28, 48

git - -version command, 28, 47

GitHub

Air Horner app, 10

Electron, 7

HTTP Server app, 28

Learning PWA Code repository, 10, 28,
69, 110, 134, 166

Web App Manifest Generator, 42

globIgnores property, 213

Good, Scott, 10, 134, 160

Google

Air Horner app, 10

Chrome

Cache Storage, 74–77

Developer Tools Application Tab, 55

Lighthouse tools in, 187–189

PWA support, 2

Service Worker Internals Page, 56

service workers, listing registered,
55–56

service workers, support for, 44–45

Domains, 35

GCM (Google Cloud Messaging), 136

Google Play Store, 7

Lighthouse. See Lighthouse

Play Store, 7

TWA (Trusted Web Activity), 7

Workbox. See Workbox

granted permission value, 138

H
headers, max-age, 97

history of PWAs (Progressive Web Apps),

2–6

HTML content, returning on error, 87–91

HTML5 Boilerplate template, 136

HTTP Server app, 28

HTTPS (Hypertext Transfer Protocol

Secure), 4

http-server command, 28, 33, 182, 212

Hypertext Transfer Protocol Secure

(HTTPS), 4

I
icon property, 145–147

icons

defining, 18–19

notification, 145–147

icons property, 18–19

id property, 169

image property, 145–147

images, notifications and, 145–147

IndexedDB

advantages of, 105

database creation, 105–106

open method, 106

stores

adding data to, 107–108

creating, 107

deleting data from, 108–109

iterating through, 109–110

index.html file

PWA News web app, 52

Tip Calculator app, 31–33, 35–36

Install button (Tip Calculator app)

appinstalled event listener, 39

beforeinstallprompt event listener, 36

deferredPrompt object, 36

doInstall function, 37

installbutton variable, 36

preventDefault function, 36

http://index.html

232 Index

install event listener

background sync, 119

caching, enabling, 71–72

service worker lifestyle, 61

service worker registration, 58

installation

Git client, 28–29, 47–48

Node.js, 28, 47, 69, 110, 134

speed of, 3

TypeScript, 47

Visual Studio Code, 29, 48

Visual Studio PWABuilder extension, 198

web apps

with Add to Home Screen option,
11–15

with manifest files. See web app
manifest files

Workbox, 208

interfaces, Cache, 67–68

Ionic Capacitor, 7

Ionic Framework, 7

iOS devices

installing web apps on

Add to Home Screen option, 11–15

with manifest files. See web app
manifest files

iPhone, 3

push notifications, lack of support
for, 129

iterating through data, 109–110

J
JavaScript, 4–5

callback hell, 68

.js files, compiling .ts files into, 49, 69,
110, 136

JSON (JavaScript Object Notation), 17

promises, 68

Jobs, Steve, 3

JSON (JavaScript Object Notation), 17

K
Keith, Jeremy, 2

keys, encryption, 134–137

keys method, 68

Kinlan, Paul, 16

L
lang property, 145

last chances, background sync,

125–128

lastChance property, 125–128

Learning PWA Code GitHub repository, 10,

28, 69, 110, 134, 166

libraries, pwcompat, 42

lifecycle, service worker, 60–62

Lighthouse

Chrome tools, 187–189

coding preparation, 182

Lighthouse plug-in, 182–187

node module, 189–190

overview of, 181–182

<link> tag, 17

linking web app manifest files, 17, 31–33

Live Data in the Service Worker, 105

local notifications, 142–143

logo (PWA), 1

M
macOS computer, notifications on,

129–130. See also remote notifications

main.js file (Tip Calculator app), 36, 37,

39–41

management, cache, 78–83

activate event listener, 80–81

CACHE_ROOT constant, 80

custom cache generation, 79

deleting cache, 78, 79–80

service worker version number, 78

sw-42.js file, 81–83

233Index

Manifest Editor page (PWABuilder), 193–194

manifest files. See web app manifest files

Manifest Generator page (Visual Studio

PWABuilder extension), 199–200

ManifoldJS, 191, 197

market impact, 6–7

match method, 68, 72

matchAll method, 68, 170

max-age header, 97

message channels

actionsContainer div, 176

browser long action results, 179

creating, 171–172

doLongAction function, 176–177

doPlayback function, 173

message event listener, 172, 173–175,
177–179

message event, 168, 172, 173–175,

177–179

MessageChannel interface, 171–179

actionsContainer div, 176

browser long action results, 179

doLongAction function, 176–177

doPlayback function, 173

message channels, creating, 171–172

message event listener, 172, 173–175,
177–179

methods. See functions and methods

Microsoft

Azure

Bing News Search API, 49–51

free plan, 50

Edge, 44–45

ManifoldJS, 191, 197

Microsoft Store, 7, 202–205

PWABuilder. See PWABuilder

minimal-ui display mode, 21–22

modules, node, 70, 189–190

Mozilla Firefox, 44–45

N
name value, 18

names, defining, 18

network-first, cache-next strategy, 93–94

network-first, update-cache strategy, 94–98

NetworkFirst strategy, 219

NetworkOnly strategy, 219

node generate-keys.js command, 135, 166

node modules, 70, 189–190

Node Package Manager (npm), 48, 69,

110, 134

node server, restarting automatically, 70

node -v command, 28, 47

Node.js, installing, 28, 47, 69, 110, 134

nodemon, 70

Notification object

checking for, 138

event handling, 142–143

permission property, 138

requestPermission method, 139–140

showNotification method, 144

notificationclick event, 157

notifications

local, 142–143

overview of, 129–131

remote (push), 3

browser support for, 129

in-browser testing, 156–157

coding preparation, 134

definition of, 129

encryption keys, generating,
134–137

encryption of, 133

local notifications versus, 142–143

options for, 144–147

overview of, 129–131

permissions, 131, 138–142

Postman, 158–159

234 Index

receiving, 156–158

remote notification architecture,
132–134

sending, 159–161, 162–164

subscribing to, 148–154

subscription expiration, 162

unsubscribing from, 154–156

validating support for, 138

web-push module, 162–164

O
objects

data

adding to stores, 107–108

deleting from stores, 108–109

iterating through, 109–110

returning on error, 83–86

deferredPrompt, 36

Notification

checking for, 138

event handling, 142–143

permission property, 138

requestPermission method, 139–140

showNotification method, 144

options, 145

Response, 88

subOptions, 148

subscription, 149, 168

theDB, 106

transaction, 108

offline awareness, caching and, 77.

See also background sync

offline data sync, 103–105

offline pages, creating, 86–91

Offline Storage for Progressive Web Apps,

105

onclose callback, 106

onerror callbacks, 106

onsuccess callbacks, 106

onupgradeneeded callback, 107, 116

open method, 106

openIDB function, 113, 115–116

Opera, 44–45

options object, 145

orientation, configuring, 25–26

orientation property, 25

OrientationLockType, 26

P
passing data. See data communication

path delimiters, 69

performance, 3

period (.), 209, 215

permission property, 138

permissions, notification, 138–142

checking, 138

obtaining, 139–142

permission prompts, 131

PhoneGap project, 3

plug-ins, Lighthouse, 182–187

poke-and-pull background sync, 104–105

postFeedback function, 112–113

Postman, 158–159

postMessage method, 167–168

postRegistration function, 150–151

precacheAndRoute function, 212

precacheManifest, 212

precaching service workers

adding precaching to existing service
workers, 215–218

configuration files, 216–217

folder selection, 215

sw.js file, 217–218

cache strategies, controlling, 218–224

cacheableResponse plugin, 223

default cache, 223–224

235Index

route registration and matching, 219

supported strategies, 219

generating, 208–214

configuration files, 210

error handling, 214

folder selection, 209

globIgnores property, 213

precacheAndRoute function, 212

precacheManifest, 212

sw.js file, 211

Workbox CLI, installing, 208

workbox-config.js file, 213

overview of, 207–208

preventDefault function, 36

programmable network proxies. See service

workers

progressive enhancement, 4

Promise.all method, 120, 121

promises (JavaScript), 68

properties

actions, 145

background_color, 25

badge, 145

BING_ACCESS_KEY, 50–51

body, 145–147

data, 145

dir, 145

display, 19–23

icon, 145–147

icons, 18–19

image, 145–147

lang, 145

lastChance, 125–128

orientation, 25

permission, 138

ready, 66

renotify, 145

requireInteraction, 145

start_url, 23–25, 39

tag, 145

theme_color, 25

VAPID_PUBLIC, 148–149

vibrate, 145

Push API, 134

push notification app

admin.js files, 154

api.ts file, 162–164

architecture for, 132–134

in-browser testing, 156–157

coding preparation, 134, 166–167

data communication

sending data from service worker to
web app window, 169–171

sending data from web app to
service worker, 167–168

two-way communication with
MessageChannel, 171–179

index.js files, 142

index-61.js, 143

index-62.js, 154

index-63.js, 156

index-71.js, 171

index-72.js, 179

notifications

browser support for, 129

definition of, 129

encryption keys, generating,
134–137

encryption of, 133

options, 144–147

permissions, 131

receiving, 156–158

sending, 159–161, 162–164

subscribing to, 148–154

subscription expiration, 162

unsubscribing from, 154–156

validating support for, 138

236 Index

overview of, 129–131

permissions, 138–142

checking, 138

obtaining, 139–142

Postman, 158–159

remote notification architecture,
132–134

service workers

service worker-71.js, 171

sw-63.js, 162

sw-72.js, 179

web-push module, 162–164

push services, sending notifications to,

162–164

pushsubscriptionchange event, 162

put method, 68

PWA Builder, 42

PWA Fire Developer, 42

PWA News web app

app source, 48–49

automation with PWABuilder

deployable apps, creating, 195–196

overview of, 190–191

PWABuilder CLI, 197

PWABuilder UI, 191–195

Visual Studio PWABuilder extension,
198–202

caching

cache management, 78–83

cache-only strategy, 92–93

enabling, 70–77

network-first, cache-next strategy,
93–94

network-first, update-cache strategy,
94–98

offline awareness, 77

offline pages, creating, 86–91

returning data object on error,
83–86

config.ts file, 50–51, 69, 110, 135

db.js file, 114–117, 119, 122–124

Feedback page background sync, 99

db.js file, 114–117, 119, 122–124

Feedback Page, 99

install event listener, 119

last chances, 125–128

onupgradeneeded callback, 116

openIDB function, 113, 115–116

postFeedback function, 112–113

preparing service workers for,
111–112

queueFeedback function, 116–117

refresh on success, 117

service worker preparation, 111–112

service worker queue processing,
119–125

software prerequisites, 110–111

submitFeedback function, 112,
113–114

testing, 118–119

folder structure for, 48–49

GitHub repository for, 69

index.html file, 52

online resources, 43

overview of, 43

server

server API configuration, 49–51

starting, 51–52

service workers

activation of, 59, 62–63

applying to additional browser tabs,
63–64

controllerchange event, 64

forcing updates of, 64–66

index.html file, 52

lifecycle of, 60–62

ready property, 66

registration of, 52–59, 65–66

http://index.html
http://index.html

237Index

scope of, 60

verifying in Chrome, 55–56

version numbers, 78

software prerequisites, 47–48

Git client, 47–48

Node.js, 47

TypeScript, 47

Visual Studio Code, 48

utils.js file, 77

PWA Stats, 2

PWA Toolkit, 7

PWABuilder

CLI (command-line interface), 197

deployable apps, creating, 195–196

overview of, 190–191

UI (user interface), 191–195

Add Features pane, 193

home page, 191–192

Manifest Editor page, 193–194

scan results, 192

Service Worker page, 194–195

Visual Studio PWABuilder extension,
198–202

command palette, 198–199

generated manifest files, 200–201

installing, 198

Manifest Generator page, 199–200

pwabuilder command, 197

PWAs (Progressive Web Apps)

capabilities of, 4–6

characteristics of, 2–4

community-driven logo for, 1

definition of, 1

history of, 2–6

market impact of, 6–7

shell structure of, 4–5

pwcompat library, 42

Q
quality assessment

Chrome Lighthouse tools, 187–189

coding preparation, 182

Lighthouse node module, 189–190

Lighthouse plug-in, 182–187

overview of, 181–182

queue processing, 119–125

queueFeedback function, 116–117

quotation marks, single ('), 30

R
React apps

converting to PWAs, 6–7

definition of, 6

ready property, 66

receiving remote notifications, 154–156

refresh on success, 117

register method, 53, 102

registering service workers

PWA News web app, 52–59

forced updates, 65–66

index.html file, 52

sw-34.js, 54

sw-35.js, 56–57

sw-36.js, 57

sw-reg.js, 53–54

verifying in Chrome, 55–56

Tip Calculator app, 30–33

registering sync events, 102–103

registerRoute, 219

remote notifications, 3

architecture for, 132–134

browser support for, 129

in-browser testing, 156–157

coding preparation, 134

definition of, 129

encryption keys, generating, 134–137

http://index.html

238 Index

encryption of, 133

local notifications versus, 142–143

options for, 144–147

overview of, 129–131

permissions, 138–142

checking, 138

obtaining, 139–142

permission prompts, 131

Postman, 158–159

receiving, 156–158

remote notification architecture,
132–134

sending, 159–161, 162–164

subscribing to, 148–154

doSubscribe function, 151–152

postRegistration function, 151–152

subscribe method, 148

subscription object, 149

updateUI function, 152–153

urlBase64ToUint8Array function,
149

subscription expiration, 162

unsubscribing from, 154–156

validating support for, 138

web-push module, 162–164

removing PWAs (Progressive Web Apps), 36

renotify property, 145

requestPermission method, 139–140

requireInteraction property, 145

resource caching. See caching

Response object, 88

restarting node server process, 70

returning data object on error, 83–86

route registration, 219

Russell, Alex, 2

S
Safari, 3, 16, 44–45

scope, service worker, 60

Secure VAPID key generator, 135–137

sending notifications. See notifications

sendNotification method, 164

server (PWA News app)

server APIs, configuring, 49–51

starting, 51–52

Service Worker page (PWABuilder),

194–195

service workers. See also push notification

app; PWA News web app

activation of, 59, 62–63

applying to additional browser tabs,
63–64

browser support for, 44–45

Cache interface, 67–68

capabilities of, 44–45

controllerchange event, 64

data communication with web apps

coding preparation, 166–167

overview of, 165–166

sending data from service worker to
web app window, 169–171

sending data from web app to
service worker, 167–168

two-way communication with
MessageChannel, 171–179

definition of, 44

install conditions, 44

lifecycle of, 60–62

limitations of, 46

listing registered, 55–56

precaching service workers

adding precaching to existing
service workers, 215–218

cache strategies, controlling,
218–224

generating, 208–214

overview of, 207–208

preparing for background sync, 111–112

queue processing, 119–125

ready property, 66

239Index

registering

PWA News web app, 52–59, 65–66

Tip Calculator app, 30–33

scope of, 60

software prerequisites, 47–48

Git client, 47–48

Node.js, 47

TypeScript, 47

Visual Studio Code, 48

updates, forcing, 64–66

version numbers, 78

setDefaultHandler method, 223

short_name value, 18

shortcuts, creating in Chrome, 11

showNotification method, 144, 156

single page apps (SPAs), 9. See also Tip

Calculator app

single quotation mark ('), 30

skipWaiting function, 119

sockets, WebSockets, 132

software prerequisites, 47–48

background sync, 110–111

Git client, 28–29, 47–48

Node.js, 28, 47, 69, 110, 134

TypeScript, 4–5, 47

advantages of, 49

installing, 47

type checking, 41

Visual Studio Code, 29, 48

source.id property, 169

SPAs (single page apps), 9. See also Tip

Calculator app

StaleWhileRevalidate strategy,

219, 220–221

standalone display mode, 20–21

start URL, configuring, 23–25, 39

start_url property, 23–25, 39

Stencil, 7

stores

adding data to, 107–108

creating, 107

deleting data from, 108–109

iterating through, 109–110

strategies, caching, 91–92

cache-only, 92–93

network-first, cache-next, 93–94

network-first, update-cache, 94–98

submitFeedback function, 112, 113–114

subOptions object, 148

subscribe method, 148

subscription object, 149, 168

subscription property, 170

subscriptions, notification

expiration of, 162

subscribing to notifications, 148–154

doSubscribe function, 151–152

postRegistration function, 151–152

subscribe method, 148

subscription object, 149

updateUI function, 152–153

urlBase64ToUint8Array function, 149

unsubscribing from notifications, 154–156

sw.js files. See service workers

sync, background. See background sync

sync databases

choosing, 105

creating, 105–106

stores

adding data to, 107–108

creating, 107

deleting data from, 108–109

iterating through, 109–110

sync events. See also background sync

registering, 102–103

triggering, 102

sync SDKs, 103

240 Index

T
tag property, 145

tags, background sync and, 102–103

target attribute (<a> tag), 25

tasks, background, 3

testing

background sync, 118–119

remote notifications, 156–157

test environments, 35

Tip Calculator app, 29, 35

text, returning on error, 87–91

theDB object, 106

theme color, configuring, 25

theme_color property, 25

Tip Calculator app

assessment with Lighthouse

Chrome Lighthouse tools, 187–189

coding preparation, 182

Lighthouse node module, 189–190

Lighthouse plug-in, 182–187

automation with PWABuilder

deployable apps, creating, 195–196

overview of, 190–191

PWABuilder CLI, 197

PWABuilder UI, 191–195

Visual Studio PWABuilder extension,
198–202

display modes, 19

browser, 22–23

fullscreen, 19–20

minimal-ui, 21–22

standalone, 20–21

index.html file, 31–33, 35–36

Install button, creating

appinstalled event listener, 39

beforeinstallprompt event listener, 36

deferredPrompt object, 36

doInstall function, 37

installbutton variable, 36–41

online resources, 10

preventDefault function, 36

start URL, 39

main.js file, 36, 37, 39–41

manifest file, 17

precaching service workers

adding precaching to existing
service workers, 215–218

cache strategies, controlling,
218–224

generating, 208–214

overview of, 207–208

removing, 37–38

running, 33–35

service worker registration, 30–33

testing, 29, 35

web app manifest file, adding, 33

workbox-config.js file, 210, 213, 216–217

TLS (Transport Layer Security), HTTP over, 4

transaction object, 108

Transport Layer Security (TLS), HTTP over, 4

triggering sync events, 102

troubleshooting web app manifest files,

41–42

Trusted Web Activity (TWA), 7, 196

.ts files, compiling into .js files, 49, 69,

110, 136

tsc. See TypeScript

tsc command, 49, 51, 69, 110, 166

@ts-check, 41

TWA (Trusted Web Activity), 7, 196

two-way communication with

MessageChannel, 171–179

actionsContainer div, 176

browser long action results, 179

doLongAction function, 176–177

doPlayback function, 173

message channels, creating, 171–172

http://index.html

241Index

message event listener, 172, 173–175,
177–179

type checking, 41

TypeScript, 4–5

advantages of, 49

installing, 47

type checking, 41

U
UIs (user interfaces), PWABuilder, 191–195

Add Features pane, 193

home page, 191–192

Manifest Editor page, 193–194

scan results, 192

Service Worker page, 194–195

unsubscribe method, 154

unsubscribing from notifications, 154–156

update method, 64

updateUI function, 152–153, 170

updating service workers, 64–66

urlBase64ToUint8Array function, 149

urlList array, 70–71

userVisibleOnly, 148–149

utils.js file, 77

V
validating notification support, 138

VAPID (Voluntary Application Server

Identification), 134–137, 166

VAPID_PUBLIC property, 148–149

version numbers, service worker, 78

vibrate property, 145

Visual Studio

PWABuilder extension, 198–202

command palette, 198–199

generated manifest files, 200–201

installing, 198

Manifest Generator page, 199–200

Visual Studio Code, 29, 48. See also
TypeScript

Voluntary Application Server Identification

(VAPID), 134–137, 166

W-X-Y-Z
W3C (World Wide Web Consortium), 16

waitUntil function, 71, 120, 121

web app manifest files

app icons, 18–19

app name, 18

browser support for, 16

display mode configuration, 19–23

browser, 22–23

fullscreen, 19–20

minimal-ui, 21–22

standalone, 20–21

example of, 17

linking to apps, 17, 31–33

overview of, 9–10

structure of, 17–18

Tip Calculator app example

display modes, 19–23

index.html file, 31–33, 35–36

Install button, creating, 36–41

main.js file, 39–41

manifest file, adding, 33

manifest file code listing, 17

online resources, 10

running, 33–35

service worker registration, 30–33

start URL, 39

testing, 29, 35

tools for, 42

troubleshooting, 41–42

Web App Manifest specification, 16

Web App Manifest Generator, 42

Web App Manifest specification, 16

http://index.html

242 Index

web app windows, sending data to,

169–171

web-push module, 162–164

WebSockets, 132

What Is a Progressive Web App? (Keith), 2

Windows computers, notifications on, 129.

See also remote notifications

wizards, Workbox Wizard, 208–210,

215–216

Workbox

components of, 207

installing, 208

NodeJS module, 214

overview of, 207–208

precaching service workers

adding precaching to existing
service workers, 215–218

cache strategies, controlling, 218–224

generating, 208–214

Webpack plugin, 214

Workbox Wizard, 208–210, 215–216

workbox injectManifest

command, 217

workbox wizard command, 208

workbox wizard -injectManifest

command, 215

workbox-config.js file, 210, 213,

216–217

World Wide Web Consortium (W3C), 16

	Cover
	Half Title
	Title Page
	Copyright Page
	Dedication
	Contents
	Foreword
	Preface
	Acknowledgments
	About the Author
	3 Service Workers
	PWA News
	Introducing Service Workers
	Preparing to Code
	Prerequisites
	Navigating the App Source
	Configuring the Server API
	Starting the Server

	Registering a Service Worker
	Service Worker Scope
	The Service Worker Lifecycle
	Forcing Activation
	Claiming Additional Browser Tabs
	Observing a Service Worker Change
	Forcing a Service Worker Update
	Service Worker ready Promise

	Wrap-Up

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

