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Introduction

We need men who can dream of things that never were, and ask 
why not.

—John F. Kennedy, Speech to the Irish Parliament, June 1963

There are two views of artifi cial intelligence that people face today, and they are 
nonexclusive. One is the view pushed and pursued by the vast majority of media; 

the other is the view pushed and pursued by the IT community. In both camps, there are 
some true experts and some true pundits.

The view pushed by media focuses on the impact that artifi cial intelligence as a whole, 
in known and yet-to-know forms, may possibly have on our lives in some unfathomable 
future. The view pushed by the IT community (where software and data science experts 
belong) presents machine learning as the foundation of a new generation of software 
services that are just more intelligent than current services.

In the middle ground between the mass of people that the media reach and the 
much smaller IT community sits the patrol of cloud giants. They’re the ones who conduct 
research and move the state of the art one step further every day, releasing new services 
for everyone to potentially add intelligence to new and existing applications.

At the base of the artifi cial intelligence pyramid sit managers and executives. On one 
hand, they’re eager to apply to business those stunning services they hear from the tech 
news to edge out their competitors. On the other hand, they face the staggering bills of 
the projects they embarked on with the best of hopes.

 ■ Artifi cial intelligence is not a magic wand.

 ■ Artifi cial intelligence is not a service to pay per use. Worse yet, it’s neither a 
capital nor operating expenditure.

 ■ Artifi cial intelligence is just software.

Any business decision about artifi cial intelligence is better if made through the lens 
of software development: set requirements, get a reliable partner, put a budget on the 
table, work, start again in full respect of agility.

Is it that easy, then?
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xxiv Introduction

While artifi cial intelligence is about software development, it’s not exactly the same as 
building an e-commerce website or a booking platform.

 ■ Don’t embark on artifi cial intelligence projects if you don’t have a clear idea of 
the problem to solve, the context of it, and the point(s) to make.

 ■ Don’t embark on ambitious and adventurous projects by following the sole 
example of your closest competitor.

 ■ Don’t embark on such projects if you’re not ready to lose some good money.

Just address one pain point at a time, build a cross-functional team, and provide full 
access to data.

Who Should Read This Book?

In the preparation of this book, we received a lot of feedback about the structure and 
elaborated on it quite a few times. We radically changed the table of contents at least 
three times. The hard part is that we devised this book to be unique and innovative, 
pursuing an idea of machine learning and software development a bit far away from the 
reality we see. Hopefully, our vision is the vision of machine learning that comes from the 
near future!

We see machine learning bounded within the fences of data science, as an artifact to 
be delivered to developers to embed it into some web service or desktop application. 
This is waterfall—no more no less. Where is all the agile that companies and  enterprises 
constantly talk about? Agile ML means that data scientists and developers work together, 
and business analysts and domain experts join the team. And data  stakeholders—
whether it’s IT or DevOps or whatever else—also join to facilitate data access and 
manipulation. This is agile teamwork—no more, no less.

We see the (business) need of a convergence of skills—from data science to software 
development and from software development to data science. This entry-level book is 
good for both sides of the pipeline. It talks to developers and shows ML.NET in action 
(over Python and along with Python) before getting into the analysis of the mechanics 
of machine learning algorithms. It also talks to data scientists who need to learn more 
about software needs.

This book is ideal if you’re a software developer willing to add data science and 
machine learning skills to your arsenal. It’s also ideal if you’re a data scientist willing 
to learn more about software. Both categories, though, need to learn more and more 
about the other.
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This is the bet of this book. We’ve classifi ed it as “introductory” because it expands in 
width instead of going deep. It provides .NET examples because we think that, while the 
Python ecosystem is rich and thriving, there’s no reason not to look around for platforms 
that allow you to do some machine learning closer to the bare metal of software appli-
cations, software services, and microservices—where ultimately any learning pipeline 
(including TensorFlow, PyTorch, handcrafted Python code) ends up being used.

Who Should Not Read This Book?

This is an introductory-level book specifi cally devised to give a broad but clear and 
accurate overview of machine learning using the ML.NET platform for experimenting. 
If you’re looking for tons of Python examples, this book is not ideal. If you’re looking for 
how-to examples to copy and paste in your solutions, whether Python or ML.NET, we’re 
not sure this book is ideal. If you’re looking for the nitty-gritty details of the mathematics 
behind algorithms or for an annotated overview of some implementations of algorithms, 
again, this book may not be ideal. (We do include some mathematics, but we still only 
scratch the surface.)

Organization of This Book

This book is divided into fi ve sections. Part I, “Laying the Groundwork of Machine 
Learning,”  provides a quick overview of the foundation of artifi cial intelligence, intel-
ligent software, and the basic steps of any machine learning project within end-to-end 
solutions. Part II, “Machine Learning in .NET,” focuses on the ML.NET library and outlines 
its core parts, such as tasks for data processing, training, and evaluation in the context
of  common problems such as regression and classifi cation. Part III, “Fundamentals
of Shallow  Learning,” touches on the mathematical details of families of algorithms
commonly trained to solve real-life problems: regressors, decision trees, ensemble
methods,  Bayesian classifi ers, support vector machines, K-means, online gradients. 
Part IV, “Fundamentals of Deep Learning,” is dedicated to neural networks that may 
come into play when none of the previous algorithms are found suitable. Finally, Part V, 
“Final Thoughts,” is about the business vision of artifi cial intelligence in general and 
machine learning in particular, and it provides a cursory review of the runtime services 
for data processing and computation made available by cloud platforms, specifi cally the 
Azure platform.
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Code Samples

All the code illustrated in the book, including possible errata and extensions, can be 
found at MicrosoftPressStore.com/IntroMachineLearning/downloads.
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C H A P T E R  3

Mapping Problems and Algorithms

When I consider what people generally want in calculating, I found that it always is a 
number.

—Muḥammad ibn Mūsā al-Khwārizmī
Persian mathematician of eighth century whose name originated the word algorithm

More often than not, the user experience produced by machine learning looks like magic to users. 
At the end of the day, though, machine learning is only a new fl avor of software—a new specialty 

much like web or database development—and a fl avor of software that today is a real breakthrough.

A breakthrough technology is any technology that enables people to do things that weren’t pos-
sible before. Behind the apparent magic of fi nal effects, however, there is a series of cumbersome tasks 
and, more than everything else, there’s a series of sequential and interconnected decisions along the 
way that are hard to make and time consuming. In a nutshell, they are critical decisions for the success 
of the solution.

This chapter has two purposes. First, it identifi es the classes of problems that machine learning can 
realistically address and the algorithms known to be appropriate for each class. Second, it introduces a 
relatively new approach—automated machine learning or AutoML for short—that can automate the 
selection of the best machine learning pipeline for a given problem and a given dataset.

In this chapter, we’ll describe classes of problems and classes of algorithms. We’ll focus on the build-
ing blocks of a learning pipeline in the next chapter.

Fundamental Problems

As you saw in Chapter 2, “Intelligent Software,” the whole area of machine-based learning can be split 
into supervised and unsupervised learning. It’s an abstract partition of the space of algorithms, and the 
main discriminant for being supervised or unsupervised is whether or not the initial dataset includes 
valid answers. Put another way, we can reduce automated learning into the union of two learning 
approaches—learning by example (supervised) and learning by discovery (unsupervised).
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34 PART I Laying the Groundwork of Machine Learning

Under these two forms of learning, we can identify a number of general problems and for each a 
number of general algorithms. This layout is refl ected in the organization of any machine learning soft-
ware development library you can fi nd out there and use—whether it’s based on Python, Java, or .NET.

 

Note Not coincidentally, most of the topics covered in the following chapters match, to 
a large extent, the tasks of the newest Microsoft’s ML.NET framework (covered in Part II, 
“Machine Learning in .NET”) and algorithm cheat-sheet of scikit-learn—an extremely popu-
lar machine learning Python library. (See https://scikit-learn.org.)

 

Classifying Objects
The classifi cation problem is about identifying the category an object belongs to. In this context, an 
object is a data item and is fully represented by an array of values (known as features). Each value refers 
to a measurable property that makes sense to consider in the scenario under analysis. It is key to note 
that classifi cation can predict values only in a discrete, categorical set.

Variations of the Problem
The actual rules that govern the object-to-category mapping process lead to slightly different varia-
tions of the classifi cation problem and subsequently different implementation tasks.

Binary Classifi cation. The algorithm has to assign the processed object to one of only two 
possible categories. An example is deciding whether, based on a battery of tests for a particular 
disease, a patient should be placed in the “disease” or “no-disease” group.

Multiclass Classifi cation. The algorithm has to assign the processed object to one of many 
possible categories. Each object can be assigned to one and only one category. For example, 
classifying the competency of a candidate, it can be any of poor/suffi cient/good/great but not 
any two at the same time.

Multilabel Classifi cation. The algorithm is expected to provide an array of categories (or 
labels) that the object belongs to. An example is how to classify a blog post. It can be about 
sports, technology, and perhaps politics at the same time.

Anomaly Detection. The algorithm aims to spot objects in the dataset whose property values 
are signifi cantly different from the values of the majority of other objects. Those anomalies are 
also often referred to as outliers.

Commonly Used Algorithms
At the highest level of abstraction, classifi cation is the process of predicting the group to which 
a given data item belongs. In stricter math terms, a classifi cation algorithm is a function that maps 
input  variables to discrete output variables. (See Figure 3-1.)
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Classification
Features Labels

FIGURE 3-1 A graphical representation of a classifi cation function

The classes of algorithms most commonly used for classifi cation problems are as follows:

Decision Tree. A decision tree is a tailor-made binary tree that implements a sequence of 
rules to be progressively applied to each input object. Each leaf of the tree represents one of 
the possible output categories. Along the way, the input object is routed downward through 
the levels of the tree based on rules set at each node. Each rule is based on a possible value of 
one of the features. In other words, at each step, the key feature value of the input object (say, 
Age) is checked against the set value (say, 40), and the visit proceeds in the subtree that applies 
(say, less than or greater than or equal to 40). The number of nodes and the feature/value rules 
implemented are determined during the training of the algorithm.

Random Forest. This is a more specialized version of the decision tree algorithm. Instead of a 
single tree, the algorithm uses a forest of simpler trees trained differently and then provides a 
response that is some average of all the responses obtained.

Support Vector Machine. Conceptually, this algorithm represents the input values as points 
in an n-dimensional space and looks for a suffi ciently wide gap between points. In two dimen-
sions, you can imagine the algorithm looking for a curve that cuts the plane in two, leaving as 
much space as possible along the margin. In three dimensions, you can think of a plane that 
cuts the space in two.

Naïve Bayes. This algorithm works by computing the probability that a given object, given its 
values, may fall in one of the predefi ned categories. The algorithm is based on Bayes’ theorem, 
which describes the likelihood of an event given some related conditions.

Logistic Regression. This algorithm calculates the probability of an object falling in a given 
category given its properties. The algorithm uses a sigmoid (logistic) function that, for its 
mathematical nature, lends itself well to be optimized to calculate a probability very close to 1 
(or very close to 0). For this reason, the algorithm works well in either/or scenarios, and so it is 
mostly used in binary classifi cation.
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36 PART I Laying the Groundwork of Machine Learning

The preceding list is not exhaustive but includes the most-used classes of algorithms battle-tested 
for classifi cation problems.

  

Important In the everyday jargon of machine learning, the term algorithm commonly refers 
to an entire family of algorithms that share the same general approach to the solution but 
may differ on a number of minor and not-so-minor implementation details. If you want to 
refer to a specifi c implementation of an algorithm, the term trainer (or even the term esti-
mator) is more common. The term pipeline, instead, refers to the overall combination of data 
transformations, trainers, and evaluators that form the ultimately deployed machine learn-
ing model.

Common Problems Addressed by Classifi cation
A number of real-life problems can be modeled as classifi cation problems, whether binary, multiclass, 
or multilabel. Again, the following list can’t and won’t be exhaustive, but it is enough to give a clue 
about where to look when a concrete business issue surfaces:

 ■ Spam and customer churn detection

 ■ Data ranking and sentiment analysis

 ■ Early diagnosis of a disease from medical images

 ■ A recommender system built for customers

 ■ News tagging

 ■ Fraud or fault detection

Spam detection can be seen as a binary classifi cation problem: an email is spam or is not. The same 
can be said for early diagnosis solutions although in this case the nature of the input data—images 
instead of records of data—requires a more sophisticated pipeline and probably would be solved using 
a neural network rather than any of the algorithms described earlier. Customer churn detection and 
sentiment analysis are multiclass problems, whereas news tagging and recommenders are multilabel 
problems. Finally, fraud or fault detection can be catalogued as an anomaly detection problem.

Predicting Results
Many would associate artifi cial intelligence with the ability to make smart predictions about future 
events. In spite of appearances, prediction is not magic but the result of a few statistical techniques, the 
most relevant of which is regression analysis. Regression measures the strength of a relationship set 
between one output variable and a series of input variables.

Regression is a supervised technique and is used to predict a continuous value (as opposed to dis-
crete categorical values of classifi cation).
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Variations of the Problem
Regression is about fi nding a mathematical function that captures the relationship between input and 
output values. What kind of function? Different formulations of the regression function lead to differ-
ent variations of the regression problem. Here are some macro areas:

Linear Regression. The algorithm seeks a linear, straight-line function so that all values, pres-
ent and future, plot around it. The linear regression algorithm is fairly simple and, to a large 
extent, even unrealistic because, in practice, it means that a single value guides the prediction. 
Any realistic predictive scenarios, instead, bring in several different input data fl ows.

Multilinear Regression. In this case, the regression function responsible for the actual predic-
tion is based on a larger number of input parameters. This fi ts in a much smoother way into the 
real world because to predict the price of a house, for example, you would use not only square 
footage but also historical trends, neighborhood, rooms, age, and maybe more factors.

Polynomial Regression. The relationship between the input values and the predicted value 
is modeled as an nth degree polynomial in one of the input values. In this regard, polynomial 
regression is a special case of multilinear regression and is useful when data scientists have 
reasons to hypothesize a curvilinear relationship.

Nonlinear Regression. Any techniques that need a nonlinear curve to describe the trend of 
the output value given a set of input data fall under the umbrella of nonlinear regression.

Commonly Used Algorithms
The solution to a regression problem is fi nding the curve that best follows the trend of input data. 
Needless to say, the training phase of the algorithm works on training data, but the deployed model, 
instead, needs to perform well on similar live data. The curve that predicts the output value based on 
the input is the curve that minimizes a given error function. The various algorithms defi ne the error 
function in different ways and measure the error in different ways.

The classes of algorithms most commonly used for regression problems are as follows:

Gradient Descent. The gradient descent algorithm is expected to return the coeffi cients that 
minimize an error function. It works iteratively by fi rst assigning default values to the coeffi cient 
and then measuring the error. If the error is large, it then looks at the gradient of the function 
and moves ahead in that direction, determining new values for the coeffi cients. It repeats the 
step until some stop condition is met.

Stochastic Dual Coordinate Ascent. This algorithm takes a different approach and essentially 
solves a dual problem—maximizing the value calculated by the function rather than minimizing 
the error. It doesn’t use the gradient but proceeds along each axis until it fi nds a maximum and 
then moves to the next axis.

Regression Decision Tree. This algorithm builds a decision tree, as discussed previously, for 
classifi cation problems. The main differences are the type of the error function used to decide 
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38 PART I Laying the Groundwork of Machine Learning

if the tree is deep enough and the way in which the feature value in each node is chosen (in this 
case, it is the mean of all values).

Gradient Boosting Machine. This algorithm combines multiple weaker algorithms (e.g., most 
commonly, a basic decision tree) and builds a unifi ed, stronger learner. Typically, the prediction 
results from the weighed combination of the output of all the chained weak learners. Extremely 
popular algorithms in this class are XGBoost and LightGBM.

 

Important Both regression and classifi cation cover very large areas of real-life problems. 
And often the actual problems faced can’t be solved with any of these algorithms. Instead, 
they require a deeper learning approach via some neural network.

 

Common Problems Addressed by Regression
Regression is the task of predicting a continuous value, whether a quantity, a price, or a temperature.

 ■ Price prediction (houses, stocks, taxi fares, energy)

 ■ Production prediction (food, goods, energy, availability of water)

 ■ Income prediction

 ■ Time series forecasting

Time series regression is interesting because it can help understand and, better yet, predict the 
behavior of sophisticated dynamic systems that periodically report their status. This is fairly common in 
industrial plants where, even thanks to Internet of Things (IoT) devices, there’s plenty of observational 
data. Time series regression is also commonly used in the forecasts of fi nancial, industrial, and medical 
systems.

Grouping Objects
In machine learning, clustering refers to the grouping of objects represented as a set of input values. 
A clustering algorithm will place each object point into a specifi c group based on the assumption that 
objects in the same group have similar properties and objects in different groups have quite dissimilar 
properties.

At fi rst, clustering may look like classifi cation, and in fact, both problems are about deciding the 
category that a given data item belongs to. There’s one key difference between the two, however. A 
clustering algorithm receives no guidance from the training dataset about the possible target groups. 
In other words, clustering is a form of unsupervised learning, and the algorithm is left alone to fi gure 
out how many groups the available dataset can be split on.

A clustering algorithm processes a dataset and returns an array of subsets. Those subsets receive no 
labels and no clues about the content from the algorithm itself. Any further analysis is left to the data 
science team. (See Figure 3-2.)
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FIGURE 3-2 The fi nal outcome of a clustering algorithm run on a dataset

Commonly Used Algorithms
The essence of clustering is analyzing data and identifying as many relevant clusters of data as it can 
fi nd. While the idea of a cluster is fairly intuitive—a group of correlated data items—it still needs some 
formal defi nition of the concept of correlation to be concretely applied. In the end, a clustering algo-
rithm looks for disjoint areas (not necessarily partitions) of the data space that contain data items with 
some sort of similarity.

This fact leads straight to another noticeable difference between clustering and regression or classi-
fi cation. You’ll never deploy a clustering model in production and never run it on live data to get a label 
or a prediction. Instead, you may use the clustering step to make sense of the available data and plan 
some further supervised learning pipeline.

Clustering algorithms adopt one of the following approaches: partition-based, density-based, or 
hierarchy-based. Here are the most popular algorithms:

K-Means. This partition-based algorithm sets a fi xed number of clusters (according to some 
preliminary data analysis) and randomly defi nes their data center. Next, it goes through the 
entire dataset and calculates the distance between each point and each of the data centers. The 
point fi nds its place in the cluster whose center is the nearest. The algorithm proceeds itera-
tively and recalculates the data center at each step.

Mean-Shift. This partition-based algorithm defi nes a circular sliding window (with arbitrary 
radius) and initially centers it at a random point. At each step, the algorithm shifts the center 
point of the window to the mean of the points within the radius. The method converges when 
no better center point is found. The process is repeated until all points fall in a window and 
overlapping windows are resolved, keeping only the window with the most points.

DBSCAN. This density-based algorithm starts from the fi rst unvisited point in the dataset and 
includes all points located within a given range in a new cluster. If too few points are found, the 
point is marked as an outlier for the current iteration. Otherwise, all points within a given range 
of each point currently in the cluster are recursively added to the cluster. Iterations continue 
until there’s at least one point not included in any cluster or their number is so small that it’s OK 
to ignore them.
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Agglomerative Hierarchical Clustering. This hierarchy-based algorithm initially treats each 
point as a cluster and proceeds iteratively, combining clusters that are close enough to a given 
distance metric. Technically, the algorithm would end when all the points fi t in a single cluster, 
which would be the same as the original dataset. Needless to say, you can set a maximum num-
ber of iterations or use any other logic to decide when to stop merging clusters.

K-Means is by far the simplest and fastest algorithm, but, in some way, it violates the core principle 
of clustering because it sets a fi xed number of groups. So, in the end, it’s halfway between classifi cation 
and clustering. In general, clustering algorithms have a linear complexity, with the notable exception of 
hierarchy-based methods. Not all algorithms, however, produce the same quality of clustering regard-
less of the distribution of the dataset. DBSCAN, for example, doesn’t perform as well as others when the 
clusters are of varying density, but it’s more effi cient than, say, partition-based methods in the detec-
tion of outliers.

Common Problems Addressed by Clustering
Clustering is the method of many crucial business tasks in a number of different fi elds, including mar-
keting, biology, insurance, and in general wherever screening of population, habits, numbers, media 
content, or text is relevant.

 ■ Tagging digital content (videos, music, images, blog posts)

 ■ Regrouping books and news based on author, topics, and other valuable information

 ■ Discovering customer segments for marketing purposes

 ■ Identifying suspicious fraudulent fi nance or insurance operations

 ■ Performing geographical analysis for city planning or energy power plant planning

It is remarkable to consider that clustering solutions are often used in combination with a clas-
sifi cation system. Clustering may be fi rst used to fi nd a reasonable number of categories for the data 
expected in production, and then a classifi cation method could be employed on the identifi ed clusters. 
In this case, categories will be manually labeled, looking at the content of identifi ed clusters. In addi-
tion, the clustering method might be periodically rerun on a larger and updated dataset to see whether 
a better categorization of the content is possible.

More Complex Problems

Classifi cation, regression, and clustering algorithms are sometimes referred to as shallow learning, 
in contrast to deep learning. Admittedly, the distinction between shallow learning and deep learning 
is a bit sketchy and cursory; yet, it marks the point of separating problems that can be solved with a 
relatively straight algorithm from those that require the introduction of some fl avor of neural networks 
(more or less deep in terms of constituent layers) or the pipelining of multiple straight algorithms. Typi-
cally, these problems revolve around the area of cognition such as computer vision, creative work, and 
speech synthesis.
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Image Classifi cation
Image processing began in the late 1960s when a group of NASA scientists had the problem of convert-
ing analogic signals to digital images. The core of image processing is the simple application of math-
ematical functions to a matrix of pixels. A much more enhanced form of image processing is computer 
vision.

Computer vision isn’t limited to processing data points but attempts to recognize patterns of pixels 
and how they match to forms (objects, animals, persons) in the real world. Computer vision is the 
branch of machine learning devoted to the emulation of the human eye, capable of capturing images 
and recognizing and classifying them based on properties such as size, color, and luminosity.

In the realm of computer vision, image classifi cation is one of the most interesting sectors, especially 
for its applications to sensitive fi elds such as health care and security. Image classifi cation is the process 
of taking a picture (or a video frame), analyzing it, and producing a response in the form of a categori-
cal value (it’s a dog) or a set of probabilistic values (70 percent, it’s a dog; 20 percent, it’s a wolf; 
10 percent, it’s a fox). In much the same way, an image classifi er can guess mood, attitude, or even pain.

Even though many existing cloud services can recognize and classify images (even video frames), 
the problem of image classifi cation can hardly be tackled outside a specifi c business context. In other 
words, you can hardly take a generic public cloud cognitive service and use it to process medical 
images (of a certain type) or monitor the live stream of a public camera. You need specifi c training for 
the algorithm tailor-made for the scenario you’re facing.

An image classifi er is typically a convolutional multilayer neural network. In such a software envi-
ronment, each processing node receives input from the previous layers and passes processed data to 
the next. Depending on the number (and type) of layers, the resulting algorithm proves able (or not so 
able) to do certain things.

Object Detection
A side aspect of computer vision, tightly related to image classifi cation, is object detection. With image 
classifi cation, you can rely on a class of algorithms capable of looking at live streams of pictures and 
recognize elements in it. In other words, image classifi cation can tell you what is in the processed 
picture. Object detection goes one step further and operates a sort of multiclass classifi cation of the 
picture, telling about all the forms recognized and also about their relative position.

Object detection is very hot in technologies like self-driving cars and robotics. Advanced forms 
of object detection can also identify bounding boxes for the form to fi nd and even draw precise 
boundaries around it. Object detection algorithms typically belong to either of two classes—
classifi cation-based or regression-based.

In this context, classifi cation and regression don’t refer to the straight shallow learning algorithms 
covered earlier in the chapter but relate to the learning approach taken by the neural network to come 
to a conclusion.
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Text Analytics
Text analytics consists of parsing and tokenizing text, looking for patterns and trends. It is about learn-
ing relationships between named entities, performing lexical analysis, calculating and evaluating the 
frequency of words, and identifying sentence boundaries and lemmas. In a way, it’s a statistical exercise 
of data mining and predictive analysis applied to text with the ultimate goal of taking software to inter-
act with humans using the same natural language.

A typical application of text analytics is summarizing, indexing, and tagging the content of large 
digital free text databases and documents such as the comments (and complaints) left by custom-
ers of a public service. Text analytics often goes under the more expressive name of natural language 
processing (NLP) and is currently explored in more ambitious scenarios such as processing a live 
stream, performing speech recognition, and using recognized text for further parsing and information 
retrieval. Natural language processing applications are commonly built on top of neural networks in 
which the input text passes through multiple layers to be progressively parsed and tokenized until the 
networks produce a set of probabilistic intents.

There are quite a few applications of NLP available in the industry, buried in the folds of enterprise 
frameworks used in answering machine applications and call centers. However, if you just want to explore the 
power of the raw NLP, research a few of the existing test platforms, such as https://knowledge-studio-demo.
ng.bluemix.net. The tool parses text, an excerpt of a police car accident report, and automatically extracts 
relevant facts, such as age of the involved people, characteristics of involved vehicles, location, and time.

Automated Machine Learning

Machine learning is a large fi eld and is growing larger every day. As you’ll see in much more detail in the 
next chapter, building an intelligent solution for a real-life business problem requires a workfl ow that essen-
tially consists of a combination of different steps: data transformations, training algorithms, evaluation met-
rics, and, last but not least, domain knowledge, knowledge base, trial-and-error attitude, and imagination.

In this context, while the human ability to sort things out probably remains unparalleled, the commu-
nity is seriously investigating the possibility of using automated, wizard-style tools to prepare a sketchy 
plan that could possibly represent the foundation of a true solution in a matter of minutes instead of days.

This is just the essence of the automated machine learning (AutoML) approach and consists of a 
framework that looks at your data and declared intent and intelligently suggests the steps to take that 
it determines most appropriate.

Aspects of an AutoML Platform
The typical end-to-end pipeline of any machine learning solution applied to a real-world problem 
most likely includes a number of steps, as outlined here:

 ■ Preliminary analysis and cleaning of available data

 ■ Identifi cation of the properties (features) of the data that look most promising and relevant to 
solve the actual problem
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 ■ Selection of the algorithm

 ■ Confi guration of the parameters of the algorithm

 ■ Defi nition of an appropriate validation model to measure the performance of the algorithm and 
indirectly the quality of the data it is set to use

Machine learning may not be for the faint-hearted, and even when one has a strong domain knowl-
edge, the risk of feeling like a nonexpert newbie is fairly high.

Hence, AutoML is emerging as a solution to get people started quickly on machine learning projects 
and sometimes even effectively. AutoML offers the clear advantage of being fast and producing work-
ing solutions. The debatable point is not how objectively good the solution is that you can get out of an 
AutoML wizard, but the trade-off between what you get from AutoML and what you might be able to 
design by hand, especially if your team is not made up of domain and machine learning super-experts.

 

Note To some extent, the debate about the alleged superfi ciality of AutoML solutions 
recalls past debates about the use of high-level programming languages over Assembly and 
the use of system-managed memory over memory cells directly allocated by the program-
mer. Our frank opinion is that AutoML frameworks are excellent at doing their job on simple 
problems. They can’t do much for complex problems, however. But unfortunately, as of 
today, most real-world problems are quite complex.

 

Common Features
An AutoML framework is made of two distinct parts: a public list of supported learning scenarios and 
an invisible runtime service that returns a deliverable model based on some input parameters. A learn-
ing scenario is essentially an expert subsystem designed to solve specifi c classes of problems using 
data in one of a few predefi ned formats. The runtime is a learning pipeline in which a set of predefi ned 
data transformations are performed on selected input given the learning objective; target features are 
selected; and the trainer is selected, confi gured, trained, and tested.

An AutoML framework will perform any of the following tasks in an automated way after the user 
has indicated the physical source of data (tabular fi les, relational databases, cloud-based data ware-
houses) and the learning objective:

 ■ Preprocessing and loading of data from different formats including detection of missing and 
skewed values

 ■ Understanding of the type of each dataset column to fi gure out whether the column is, say, a 
Boolean, a discrete number, a categorical value, or free text

 ■ Application of built-in forms of feature engineering and selection, namely the addition or trans-
formation of data columns in a way that makes particular sense for the learning objective

 ■ Detection of the type of work required by the learning objective (binary classifi cation, regres-
sion, anomaly detection) and selection of a range of most appropriate training algorithms
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 ■ Confi guration of the hyperparameters of the selected training algorithms

 ■ Training of the model, application of appropriate evaluation metrics, and testing of the model

In addition, an AutoML framework is also often capable of visualizing data and results in a fancy way 
that is also helpful to better understand the underpinnings of the problem at hand.

There are a couple of popular AutoML frameworks: one is from Google and one, the newest, from 
Microsoft. Let’s fi rst briefl y examine the Google Cloud AutoML platform, and then we’ll go for a deeper 
live demonstration of the Microsoft AutoML framework as integrated in Visual Studio 2019.

Google Cloud AutoML
The Google Cloud AutoML platform is located at https://cloud.google.com/automl. It comes as a 
suite of machine learning systems specifi cally designed to simplify as much as possible the building of 
models tailor-made for specifi c needs. The platform works much like a UI wizard and guides the user 
through the steps of selecting the scenario, data, and parameters and then does the apparent magic of 
returning a deployable artifact out of nowhere. Internally, the Google Cloud AutoML platform relies on 
Google’s transfer learning technology, which allows the building of neural networks as the composition 
of predefi ned existing networks.

Google Cloud AutoML supports a few learning scenarios such as computer vision, object detection 
in videos and still images, and natural language processing and translation. As you can see, it’s a group 
of pretty advanced and sophisticated scenarios. It also supports a simpler one, called AutoML Tables, 
that works on tabular datasets and tests multiple model types at the same time (regression, feedfor-
ward neural network, decision tree, ensemble methods).

Microsoft AutoML Model Builder
An AutoML framework is also integrated in Visual Studio 2019 and comes packaged with ML.NET—the 
newest Microsoft .NET-based library for machine learning. The AutoML Model Builder framework has 
both a visual, wizard-style interface in Visual Studio (more on this in a moment) and a command-line 
interface (CLI) for use from within command-based environments such as PowerShell. A quick but 
effective summary of AutoML CLI can be found at https://bit.ly/2FaK7SP.

In Microsoft’s AutoML framework, developers choose a task, provide the data source, and indicate 
a maximum training duration. Needless to say, the selected maximum duration is a discriminant for the 
quality of the fi nal model. The shorter time you choose, the less reliable the fi nal model can be.

 

Note Compared to Google Cloud AutoML, the Microsoft AutoML solution currently focuses 
on simpler tasks and is available also on premise and then for shorter training cycles. The 
Google platform, instead, is cloud-based and suitable for longer and more realistic training 
cycles available through a paid subscription.
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The AutoML Model Builder in Action
In Visual Studio 2019, after you install the latest version of the ML.NET Model Builder extension, you 
gain the ability to add a machine learning item to an existing project. When you do that, you’re sent to 
a wizard like the one shown in Figure 3-3.

FIGURE 3-3 The main page of the Model Builder Visual Studio extension

As you can see, the wizard is articulated in fi ve steps that broadly match the main steps of any 
machine learning pipeline. The fi rst step of the builder is choosing the learning scenario—namely, the 
broad category of the problem for which you’d like to build a machine learning solution. In the version 
of the builder used for the test, the choice is not very large: Sentiment Analysis, Issue Classifi cation, 
Price Prediction, and Custom Scenario. As an example, let’s go for Price Prediction.

Exploring the Price Prediction Scenario
After you pick the scenario, the wizard asks you to load some data into the system. For the price 
prediction scenario, you can choose from a plain fi le or a SQL Server table. In the example shown in 
 Figure 3-4, the loaded fi le is a CSV fi le. One key input to provide is the name of the column you want 
the fi nal model to predict. In this case, the CSV fi le contains about one million rows, representing a taxi 
ride that really took place. The column to predict is the fare amount.

Training the Model
The third step is about the selection of the ideal trainer—the algorithm that is the most appropriate for 
the learning scenario and the data. This is where the power (and from a certain angle also the weak-
ness) of the automated machine learning framework emerges. Some hard-coded logic, specifi c to the 
chosen scenario, tries a few training algorithms based on the allotted training time. Figure 3-5 shows an 
estimation of the training time necessary for a certain amount of data.
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FIGURE 3-4 Loading data into the model

FIGURE 3-5 Estimating the training time
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During the training phase, the system tries several different algorithms and uses an apt metric to 
evaluate its performance. (See Figure 3-6.)

FIGURE 3-6 AutoML tries different algorithms and uses some metrics to evaluate the quality.

Evaluating the Results
At the end of the training, the AutoML system has data about a few algorithms it has tried with dif-
ferent hyperparameters. The metrics for evaluating the performance depend on the tasks and the 
algorithm. Price prediction is essentially a regression task for which the R-squared measure is the most 
commonly used. (We’ll cover the math behind regression and R-squared in Chapter 11, “How to Make 
Simple Predictions: Linear Regression.”) The theoretic ideal value of the R-squared metrics is 1; there-
fore, any value close enough to 1 is more than acceptable. Consider that in training, a resulting metric 
with a value of 1 (or very close to 1) is often the sign of overfi tting—the model fi ts too much to the 
training data and potentially might not work effectively on live data once in production.

The AutoML process then suggests the use of the LightGbmRegression algorithm. If you want, you 
can just take the ZIP fi le with the fi nal model ready for deployment. But what about looking into the 
actual set of data transformation and the actual code to possibly modify for further improvements?

The AutoML also offers the option to add the C# fi les to the current project for you to further edit 
them and retrain the model on a different dataset, for example. (See Figure 3-7.)
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FIGURE 3-7 Autogenerated projects added by the Model Builder

As you can see, the fi gure contains two projects. One is a console application that contains a 
ModelBuilder.cs fi le packed with the code used to build the model. The other project is a class library 
and contains a sample client application seen as the foundation for using the model. This project also 
contains the actual model as a ZIP fi le.

Summary

Machine learning is ultimately intelligent software, but it is not the magic wand that movies and literature 
(and recently also sales/marketing departments) love to depict. More importantly, machine learning is 
not a physical black box you can pick from the shelves of a drugstore, bring home, mount, and use.

In the real world, you can’t just “load data into the machine” and have the machine, in some way, just use 
it. In the real world, there are a few classes of approaches (mostly derived from statistics) such as regression, 
classifi cation, and clustering and a bunch of concrete training algorithms. However, when to use which?

Determining which to use is a matter of experience and know-how, but it is also a matter of knowing 
data and how things actually work in the actual business domain. Does that mean that only experts can 
do machine learning? Yes, for the most part, that is just the point. However, nobody is born an expert, 
and everyone needs to get started in some way. This is the reason why automated tools for machine 
learning are emerging. In this chapter, we briefl y looked at the Google Cloud AutoML and Visual Studio 
ML.NET Model Builder.

With the next chapter, we complete the preliminary path of machine learning, discussing the 
 concept of a pipeline—namely, the sequence of steps that ultimately lead to the production of 
a deliverable model.
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trainers for sentiment analysis, 315–318
training algorithms, 45–47, 59–61, 96–97

semi-hot data, 51
sentiment, artifi cial intelligence (AI) and, 20–21
sentiment analysis, 309–310

client application, 321
data collection, 321–322
output formatting, 323
prediction from, 322–323

data preparation, 310–313
data collection, 311
intermediate format for data transformations, 
311–313
problem formalization, 310

in ML.NET, 111–112
training model, 313–320

dictionary of words construction, 314–315
dropout, 319–320
ecosystem selection, 314

embedding layer, 319
epochs of training, 320
trainer selection, 315–318

shallow learning, 40
deep learning versus, 289
in ML.NET, 85–86

shuffl ing data in data views, 109
sigmoid activation function, 261–262, 274–275
silhouette method, 247
simple relationships, 153
simplicity of Python, 79
softmax activation function, 275
software developers, data scientists versus, 73–74, 
344–346
software intelligence. See also artifi cial intelligence 
(AI)

adaptability to change, 15–16
evolution of, 24–25
examples of, 7–8

SP (same padding), 301
sparse data, grouping, 55
splitting test and training datasets, 57, 98
SSMLS (SQL Server Machine Learning Services), 333
standard deviation, variance and, 142–144
standardization, 163
stateful neural networks. See RNN (recurrent neural 
networks)
statistics

Bayesian statistics, 211–216. See also naïve Bayes 
classifi ers

Bayes’ theorem, 214–215
chain rule, 213
classifi cation and, 216–218
conditional probability, 213
independent events, 213–214
intersection of events, 213
partitions of events, 214
sample scenario, 215–216

bias, 144–145
data representation, 145–150

fi ve-number summary, 145–146
histograms, 146–147
scale of plots, 149–150
scatter plot matrices, 148–149
scatter plots, 148

data sampling, 69–70
in machine learning, 24
machine learning versus, 151

goals of, 152
models, 153–155

Z01_Esposito_Index_p351-374.indd   363Z01_Esposito_Index_p351-374.indd   363 13/12/19   2:13 PM13/12/19   2:13 PM



364

statistics

mean, 136–138
arithmetic mean, 136–137
geometric mean, 137–138
harmonic mean, 138

median, 139–141
cumulative distribution function (CDF), 
139–140
properties of, 140–141
quartiles, 141

mode, 138–139
variance, 142–144

expected value and, 144
standard deviation and, 142–144

stochastic dual coordinate ascent, 37
stochastic gradient, 177
stop-words, 222
store-and-train model, 53
strong AI, 21
Sun Tzu, 343
supervised learning, 20, 29–31

inferred function, 31
labeled data, 30–31
as learning by example, 33
prediction and classifi cation, 29–30

support vectors, 236–237
SVM (Support Vector Machine) algorithm, 35, 
235–245

coeffi cients for prediction, 243
hyperplanes, 235–236
Lagrange multipliers, 240
linearly separable datasets, 238–239
mechanics of prediction, 240–241, 244
multiclass classifi cation with, 244–245
nonlinearly separable datasets, 237–238
scalar product of vectors, 239–240
support vectors, 236–237
training, 242–243
vector operations, 239

synapses, 10–11

T
TanH activation function, 275–276
tasks (ML.NET) for training, 89
task-specifi c catalogs (ML.NET), 110
TensorFlow, 81–83, 282–283

transfer learning with, 126–131
data transformations on, 127–129

image classifi cation, steps in, 127
training model, 129–131

test datasets, splitting from training datasets, 57, 98
testing phase, price prediction example (ML.NET 
pipeline), 97–98
text analytics, 42
text-based features, 136
Theano, 81, 284
thinking machines, 5–7. See also artifi cial intelligence 
(AI)
threads, 78
time-based data

collecting, 69
in neural networks, 61–62

timeline series, 30
timeliness of data, 71
timestamp features, 136
trainers

in ML.NET, 89
selecting for sentiment analysis, 315–318

training
auto-encoders, 306
feed-forward neural networks, 263–270

backpropagation algorithm, 264–270
gradient descent, 263
minibatch gradient, 264

KNN algorithm, 234
models

in binary classifi cation, 114–115
in clustering, 123–124
in Keras, 286
in multiclass classifi cation, 118–119
in sentiment analysis, 313–320
in transfer learning, 129–131

SVM algorithm, 242–243
training algorithms

backpropagation, 264–270
price prediction example (ML.NET pipeline), 
96–97
selecting, 45–47, 59–61, 96–97

training datasets, 152
fi nalizing, 56–58
splitting from test datasets, 57, 98

transfer learning, 126–131
data transformations on, 127–129
image classifi cation, steps in, 127
training model, 129–131

transformations. See data transformations
trees. See decision trees
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trimodal datasets, 138
Turing, Alan, 5, 6, 23, 229
Turing machine, 5
Turing test, 6
type system of features, 136
types (ML.NET), 105–107

U
underfi tting, 158–159
underfl ow, 222
uniform representation of data, 54
uniqueness of data, 70–71
unsupervised learning, 20, 27–29

with clustering, 245
business scenario, 245–246
DBSCAN, 248–251
K-Means, 246–247
K-Modes, 247–248

discovering data clusters, 27–28
evaluating data clusters, 29
as learning by discovery, 33

updating expert systems, 26
user interfaces, designing, 102–103

V
valid padding, 301
validity of data, 68
value of algorithms, measuring, 97

variance, 142–144
bias versus, 157–158
expected value and, 144
standard deviation and, 142–144

variance threshold, 55
vector of errors in backpropagation algorithm, 
269–270
vectors

basic operations on, 239
scalar product of, 239–240

von Neumann, John, 6, 11, 21, 151

W
waterfall methodology, 346–347
weak AI, 21
weak learners, 197
weather forecasting, 212
web applications, API exposure in, 65
Wirth, Niklaus, 181
workfl ows, 42

X
XGBoost, 209

Z
Zen of Python, 79
zero probability problem, 221–222
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