
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780135224335
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780135224335
https://plusone.google.com/share?url=http://www.informit.com/title/9780135224335
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780135224335
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780135224335/Free-Sample-Chapter

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty
of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include elec-
tronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or
branding interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com

Library of Congress Control Number: 2019933267

Copyright © 2019 Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be obtained from the publisher
prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, request forms, and
the appropriate contacts within the Pearson Education Global Rights & Permissions Department, please visit
www.pearsoned.com/permissions/.

Deitel and the double-thumbs-up bug are registered trademarks of Deitel and Associates, Inc.

Python logo courtesy of the Python Software Foundation.

Cover design by Paul Deitel, Harvey Deitel, and Chuti Prasertsith
Cover art by Agsandrew/Shutterstock

ISBN-13: 978-0-13-522433-5
ISBN-10: 0-13-522433-0

1 19

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com
http://www.pearsoned.com/permissions/

In Memory of Marvin Minsky,
a founding father of
artificial intelligence

It was a privilege to be your student in two
artificial-intelligence graduate courses at M.I.T.
You inspired your students to think beyond limits.

Harvey Deitel

This page intentionally left blank

Preface xvii

Before You Begin xxxiii

1 Introduction to Computers and Python 1
1.1 Introduction 2
1.2 A Quick Review of Object Technology Basics 3
1.3 Python 5
1.4 It’s the Libraries! 7

1.4.1 Python Standard Library 7
1.4.2 Data-Science Libraries 8

1.5 Test-Drives: Using IPython and Jupyter Notebooks 9
1.5.1 Using IPython Interactive Mode as a Calculator 9
1.5.2 Executing a Python Program Using the IPython Interpreter 10
1.5.3 Writing and Executing Code in a Jupyter Notebook 12

1.6 The Cloud and the Internet of Things 16
1.6.1 The Cloud 16
1.6.2 Internet of Things 17

1.7 How Big Is Big Data? 17
1.7.1 Big Data Analytics 22
1.7.2 Data Science and Big Data Are Making a Difference: Use Cases 23

1.8 Case Study—A Big-Data Mobile Application 24
1.9 Intro to Data Science: Artificial Intelligence—at the Intersection of CS

and Data Science 26
1.10 Wrap-Up 29

2 Introduction to Python Programming 31
2.1 Introduction 32
2.2 Variables and Assignment Statements 32
2.3 Arithmetic 33
2.4 Function print and an Intro to Single- and Double-Quoted Strings 36
2.5 Triple-Quoted Strings 38
2.6 Getting Input from the User 39
2.7 Decision Making: The if Statement and Comparison Operators 41
2.8 Objects and Dynamic Typing 45
2.9 Intro to Data Science: Basic Descriptive Statistics 46
2.10 Wrap-Up 48

Contents

viii Contents

3 Control Statements 49
3.1 Introduction 50
3.2 Control Statements 50
3.3 if Statement 51
3.4 if…else and if…elif…else Statements 52
3.5 while Statement 55
3.6 for Statement 55

3.6.1 Iterables, Lists and Iterators 56
3.6.2 Built-In range Function 57

3.7 Augmented Assignments 57
3.8 Sequence-Controlled Iteration; Formatted Strings 58
3.9 Sentinel-Controlled Iteration 59
3.10 Built-In Function range: A Deeper Look 60
3.11 Using Type Decimal for Monetary Amounts 61
3.12 break and continue Statements 64
3.13 Boolean Operators and, or and not 65
3.14 Intro to Data Science: Measures of Central Tendency—

Mean, Median and Mode 67
3.15 Wrap-Up 69

4 Functions 71
4.1 Introduction 72
4.2 Defining Functions 72
4.3 Functions with Multiple Parameters 75
4.4 Random-Number Generation 76
4.5 Case Study: A Game of Chance 78
4.6 Python Standard Library 81
4.7 math Module Functions 82
4.8 Using IPython Tab Completion for Discovery 83
4.9 Default Parameter Values 85
4.10 Keyword Arguments 85
4.11 Arbitrary Argument Lists 86
4.12 Methods: Functions That Belong to Objects 87
4.13 Scope Rules 87
4.14 import: A Deeper Look 89
4.15 Passing Arguments to Functions: A Deeper Look 90
4.16 Recursion 93
4.17 Functional-Style Programming 95
4.18 Intro to Data Science: Measures of Dispersion 97
4.19 Wrap-Up 98

5 Sequences: Lists and Tuples 101
5.1 Introduction 102
5.2 Lists 102

Contents ix

5.3 Tuples 106
5.4 Unpacking Sequences 108
5.5 Sequence Slicing 110
5.6 del Statement 112
5.7 Passing Lists to Functions 113
5.8 Sorting Lists 115
5.9 Searching Sequences 116
5.10 Other List Methods 117
5.11 Simulating Stacks with Lists 119
5.12 List Comprehensions 120
5.13 Generator Expressions 121
5.14 Filter, Map and Reduce 122
5.15 Other Sequence Processing Functions 124
5.16 Two-Dimensional Lists 126
5.17 Intro to Data Science: Simulation and Static Visualizations 128

5.17.1 Sample Graphs for 600, 60,000 and 6,000,000 Die Rolls 128
5.17.2 Visualizing Die-Roll Frequencies and Percentages 129

5.18 Wrap-Up 135

6 Dictionaries and Sets 137
6.1 Introduction 138
6.2 Dictionaries 138

6.2.1 Creating a Dictionary 138
6.2.2 Iterating through a Dictionary 139
6.2.3 Basic Dictionary Operations 140
6.2.4 Dictionary Methods keys and values 141
6.2.5 Dictionary Comparisons 143
6.2.6 Example: Dictionary of Student Grades 143
6.2.7 Example: Word Counts 144
6.2.8 Dictionary Method update 146
6.2.9 Dictionary Comprehensions 146

6.3 Sets 147
6.3.1 Comparing Sets 148
6.3.2 Mathematical Set Operations 150
6.3.3 Mutable Set Operators and Methods 151
6.3.4 Set Comprehensions 152

6.4 Intro to Data Science: Dynamic Visualizations 152
6.4.1 How Dynamic Visualization Works 153
6.4.2 Implementing a Dynamic Visualization 155

6.5 Wrap-Up 158

7 Array-Oriented Programming with NumPy 159
7.1 Introduction 160
7.2 Creating arrays from Existing Data 160
7.3 array Attributes 161

x Contents

7.4 Filling arrays with Specific Values 163
7.5 Creating arrays from Ranges 164
7.6 List vs. array Performance: Introducing %timeit 165
7.7 array Operators 167
7.8 NumPy Calculation Methods 169
7.9 Universal Functions 170
7.10 Indexing and Slicing 171
7.11 Views: Shallow Copies 173
7.12 Deep Copies 174
7.13 Reshaping and Transposing 175
7.14 Intro to Data Science: pandas Series and DataFrames 177

7.14.1 pandas Series 178
7.14.2 DataFrames 182

7.15 Wrap-Up 189

8 Strings: A Deeper Look 191
8.1 Introduction 192
8.2 Formatting Strings 193

8.2.1 Presentation Types 193
8.2.2 Field Widths and Alignment 194
8.2.3 Numeric Formatting 195
8.2.4 String’s format Method 195

8.3 Concatenating and Repeating Strings 196
8.4 Stripping Whitespace from Strings 197
8.5 Changing Character Case 197
8.6 Comparison Operators for Strings 198
8.7 Searching for Substrings 198
8.8 Replacing Substrings 199
8.9 Splitting and Joining Strings 200
8.10 Characters and Character-Testing Methods 202
8.11 Raw Strings 203
8.12 Introduction to Regular Expressions 203

8.12.1 re Module and Function fullmatch 204
8.12.2 Replacing Substrings and Splitting Strings 207
8.12.3 Other Search Functions; Accessing Matches 208

8.13 Intro to Data Science: Pandas, Regular Expressions and Data Munging 210
8.14 Wrap-Up 214

9 Files and Exceptions 217
9.1 Introduction 218
9.2 Files 219
9.3 Text-File Processing 219

9.3.1 Writing to a Text File: Introducing the with Statement 220
9.3.2 Reading Data from a Text File 221

Contents xi

9.4 Updating Text Files 222
9.5 Serialization with JSON 223
9.6 Focus on Security: pickle Serialization and Deserialization 226
9.7 Additional Notes Regarding Files 226
9.8 Handling Exceptions 227

9.8.1 Division by Zero and Invalid Input 227
9.8.2 try Statements 228
9.8.3 Catching Multiple Exceptions in One except Clause 230
9.8.4 What Exceptions Does a Function or Method Raise? 230
9.8.5 What Code Should Be Placed in a try Suite? 230

9.9 finally Clause 231
9.10 Explicitly Raising an Exception 233
9.11 (Optional) Stack Unwinding and Tracebacks 233
9.12 Intro to Data Science: Working with CSV Files 235

9.12.1 Python Standard Library Module csv 235
9.12.2 Reading CSV Files into Pandas DataFrames 237
9.12.3 Reading the Titanic Disaster Dataset 238
9.12.4 Simple Data Analysis with the Titanic Disaster Dataset 239
9.12.5 Passenger Age Histogram 240

9.13 Wrap-Up 241

10 Object-Oriented Programming 243
10.1 Introduction 244
10.2 Custom Class Account 246

10.2.1 Test-Driving Class Account 246
10.2.2 Account Class Definition 248
10.2.3 Composition: Object References as Members of Classes 249

10.3 Controlling Access to Attributes 249
10.4 Properties for Data Access 250

10.4.1 Test-Driving Class Time 250
10.4.2 Class Time Definition 252
10.4.3 Class Time Definition Design Notes 255

10.5 Simulating “Private” Attributes 256
10.6 Case Study: Card Shuffling and Dealing Simulation 258

10.6.1 Test-Driving Classes Card and DeckOfCards 258
10.6.2 Class Card—Introducing Class Attributes 259
10.6.3 Class DeckOfCards 261
10.6.4 Displaying Card Images with Matplotlib 263

10.7 Inheritance: Base Classes and Subclasses 266
10.8 Building an Inheritance Hierarchy; Introducing Polymorphism 267

10.8.1 Base Class CommissionEmployee 268
10.8.2 Subclass SalariedCommissionEmployee 270
10.8.3 Processing CommissionEmployees and

SalariedCommissionEmployees Polymorphically 274

xii Contents

10.8.4 A Note About Object-Based and Object-Oriented Programming 274
10.9 Duck Typing and Polymorphism 275
10.10 Operator Overloading 276

10.10.1 Test-Driving Class Complex 277
10.10.2 Class Complex Definition 278

10.11 Exception Class Hierarchy and Custom Exceptions 279
10.12 Named Tuples 280
10.13 A Brief Intro to Python 3.7’s New Data Classes 281

10.13.1 Creating a Card Data Class 282
10.13.2 Using the Card Data Class 284
10.13.3 Data Class Advantages over Named Tuples 286
10.13.4 Data Class Advantages over Traditional Classes 286

10.14 Unit Testing with Docstrings and doctest 287
10.15 Namespaces and Scopes 290
10.16 Intro to Data Science: Time Series and Simple Linear Regression 293
10.17 Wrap-Up 301

11 Natural Language Processing (NLP) 303
11.1 Introduction 304
11.2 TextBlob 305

11.2.1 Create a TextBlob 307
11.2.2 Tokenizing Text into Sentences and Words 307
11.2.3 Parts-of-Speech Tagging 307
11.2.4 Extracting Noun Phrases 308
11.2.5 Sentiment Analysis with TextBlob’s Default Sentiment Analyzer 309
11.2.6 Sentiment Analysis with the NaiveBayesAnalyzer 310
11.2.7 Language Detection and Translation 311
11.2.8 Inflection: Pluralization and Singularization 312
11.2.9 Spell Checking and Correction 313
11.2.10 Normalization: Stemming and Lemmatization 314
11.2.11 Word Frequencies 314
11.2.12 Getting Definitions, Synonyms and Antonyms from WordNet 315
11.2.13 Deleting Stop Words 317
11.2.14 n-grams 318

11.3 Visualizing Word Frequencies with Bar Charts and Word Clouds 319
11.3.1 Visualizing Word Frequencies with Pandas 319
11.3.2 Visualizing Word Frequencies with Word Clouds 321

11.4 Readability Assessment with Textatistic 324
11.5 Named Entity Recognition with spaCy 326
11.6 Similarity Detection with spaCy 327
11.7 Other NLP Libraries and Tools 328
11.8 Machine Learning and Deep Learning Natural Language Applications 328
11.9 Natural Language Datasets 329
11.10 Wrap-Up 330

Contents xiii

12 Data Mining Twitter 331
12.1 Introduction 332
12.2 Overview of the Twitter APIs 334
12.3 Creating a Twitter Account 335
12.4 Getting Twitter Credentials—Creating an App 335
12.5 What’s in a Tweet? 337
12.6 Tweepy 340
12.7 Authenticating with Twitter Via Tweepy 341
12.8 Getting Information About a Twitter Account 342
12.9 Introduction to Tweepy Cursors: Getting an Account’s

Followers and Friends 344
12.9.1 Determining an Account’s Followers 344
12.9.2 Determining Whom an Account Follows 346
12.9.3 Getting a User’s Recent Tweets 346

12.10 Searching Recent Tweets 347
12.11 Spotting Trends: Twitter Trends API 349

12.11.1 Places with Trending Topics 350
12.11.2 Getting a List of Trending Topics 351
12.11.3 Create a Word Cloud from Trending Topics 352

12.12 Cleaning/Preprocessing Tweets for Analysis 353
12.13 Twitter Streaming API 354

12.13.1 Creating a Subclass of StreamListener 355
12.13.2 Initiating Stream Processing 357

12.14 Tweet Sentiment Analysis 359
12.15 Geocoding and Mapping 362

12.15.1 Getting and Mapping the Tweets 364
12.15.2 Utility Functions in tweetutilities.py 367
12.15.3 Class LocationListener 369

12.16 Ways to Store Tweets 370
12.17 Twitter and Time Series 370
12.18 Wrap-Up 371

13 IBM Watson and Cognitive Computing 373
13.1 Introduction: IBM Watson and Cognitive Computing 374
13.2 IBM Cloud Account and Cloud Console 375
13.3 Watson Services 376
13.4 Additional Services and Tools 379
13.5 Watson Developer Cloud Python SDK 381
13.6 Case Study: Traveler’s Companion Translation App 381

13.6.1 Before You Run the App 382
13.6.2 Test-Driving the App 383
13.6.3 SimpleLanguageTranslator.py Script Walkthrough 384

13.7 Watson Resources 394
13.8 Wrap-Up 395

xiv Contents

14 Machine Learning: Classification, Regression
and Clustering 397

14.1 Introduction to Machine Learning 398
14.1.1 Scikit-Learn 399
14.1.2 Types of Machine Learning 400
14.1.3 Datasets Bundled with Scikit-Learn 402
14.1.4 Steps in a Typical Data Science Study 403

14.2 Case Study: Classification with k-Nearest Neighbors and the
Digits Dataset, Part 1 403
14.2.1 k-Nearest Neighbors Algorithm 404
14.2.2 Loading the Dataset 406
14.2.3 Visualizing the Data 409
14.2.4 Splitting the Data for Training and Testing 411
14.2.5 Creating the Model 412
14.2.6 Training the Model 412
14.2.7 Predicting Digit Classes 413

14.3 Case Study: Classification with k-Nearest Neighbors and the
Digits Dataset, Part 2 413
14.3.1 Metrics for Model Accuracy 414
14.3.2 K-Fold Cross-Validation 417
14.3.3 Running Multiple Models to Find the Best One 418
14.3.4 Hyperparameter Tuning 420

14.4 Case Study: Time Series and Simple Linear Regression 420
14.5 Case Study: Multiple Linear Regression with the

California Housing Dataset 425
14.5.1 Loading the Dataset 426
14.5.2 Exploring the Data with Pandas 428
14.5.3 Visualizing the Features 430
14.5.4 Splitting the Data for Training and Testing 434
14.5.5 Training the Model 434
14.5.6 Testing the Model 435
14.5.7 Visualizing the Expected vs. Predicted Prices 436
14.5.8 Regression Model Metrics 437
14.5.9 Choosing the Best Model 438

14.6 Case Study: Unsupervised Machine Learning, Part 1—
Dimensionality Reduction 438

14.7 Case Study: Unsupervised Machine Learning, Part 2—k-Means Clustering 442
14.7.1 Loading the Iris Dataset 444
14.7.2 Exploring the Iris Dataset: Descriptive Statistics with Pandas 446
14.7.3 Visualizing the Dataset with a Seaborn pairplot 447
14.7.4 Using a KMeans Estimator 450
14.7.5 Dimensionality Reduction with Principal Component Analysis 452
14.7.6 Choosing the Best Clustering Estimator 453

14.8 Wrap-Up 455

Contents xv

15 Deep Learning 457
15.1 Introduction 458

15.1.1 Deep Learning Applications 460
15.1.2 Deep Learning Demos 461
15.1.3 Keras Resources 461

15.2 Keras Built-In Datasets 461
15.3 Custom Anaconda Environments 462
15.4 Neural Networks 463
15.5 Tensors 465
15.6 Convolutional Neural Networks for Vision; Multi-Classification

with the MNIST Dataset 467
15.6.1 Loading the MNIST Dataset 468
15.6.2 Data Exploration 469
15.6.3 Data Preparation 471
15.6.4 Creating the Neural Network 473
15.6.5 Training and Evaluating the Model 480
15.6.6 Saving and Loading a Model 485

15.7 Visualizing Neural Network Training with TensorBoard 486
15.8 ConvnetJS: Browser-Based Deep-Learning Training and Visualization 489
15.9 Recurrent Neural Networks for Sequences; Sentiment Analysis

with the IMDb Dataset 489
15.9.1 Loading the IMDb Movie Reviews Dataset 490
15.9.2 Data Exploration 491
15.9.3 Data Preparation 493
15.9.4 Creating the Neural Network 494
15.9.5 Training and Evaluating the Model 496

15.10 Tuning Deep Learning Models 497
15.11 Convnet Models Pretrained on ImageNet 498
15.12 Wrap-Up 499

16 Big Data: Hadoop, Spark, NoSQL and IoT 501
16.1 Introduction 502
16.2 Relational Databases and Structured Query Language (SQL) 506

16.2.1 A books Database 507
16.2.2 SELECT Queries 511
16.2.3 WHERE Clause 511
16.2.4 ORDER BY Clause 512
16.2.5 Merging Data from Multiple Tables: INNER JOIN 514
16.2.6 INSERT INTO Statement 514
16.2.7 UPDATE Statement 515
16.2.8 DELETE FROM Statement 516

16.3 NoSQL and NewSQL Big-Data Databases: A Brief Tour 517
16.3.1 NoSQL Key–Value Databases 517
16.3.2 NoSQL Document Databases 518

xvi Contents

16.3.3 NoSQL Columnar Databases 518
16.3.4 NoSQL Graph Databases 519
16.3.5 NewSQL Databases 519

16.4 Case Study: A MongoDB JSON Document Database 520
16.4.1 Creating the MongoDB Atlas Cluster 521
16.4.2 Streaming Tweets into MongoDB 522

16.5 Hadoop 530
16.5.1 Hadoop Overview 531
16.5.2 Summarizing Word Lengths in Romeo and Juliet via MapReduce 533
16.5.3 Creating an Apache Hadoop Cluster in Microsoft

Azure HDInsight 533
16.5.4 Hadoop Streaming 535
16.5.5 Implementing the Mapper 536
16.5.6 Implementing the Reducer 537
16.5.7 Preparing to Run the MapReduce Example 537
16.5.8 Running the MapReduce Job 538

16.6 Spark 541
16.6.1 Spark Overview 541
16.6.2 Docker and the Jupyter Docker Stacks 542
16.6.3 Word Count with Spark 545
16.6.4 Spark Word Count on Microsoft Azure 548

16.7 Spark Streaming: Counting Twitter Hashtags Using the
pyspark-notebook Docker Stack 551
16.7.1 Streaming Tweets to a Socket 551
16.7.2 Summarizing Tweet Hashtags; Introducing Spark SQL 555

16.8 Internet of Things and Dashboards 560
16.8.1 Publish and Subscribe 561
16.8.2 Visualizing a PubNub Sample Live Stream with a

Freeboard Dashboard 562
16.8.3 Simulating an Internet-Connected Thermostat in Python 564
16.8.4 Creating the Dashboard with Freeboard.io 566
16.8.5 Creating a Python PubNub Subscriber 567

16.9 Wrap-Up 571

Index 573

“There’s gold in them thar hills!”1

Welcome to Python for Programmers! In this book, you’ll learn hands-on with today’s most
compelling, leading-edge computing technologies, and you’ll program in Python—one of
the world’s most popular languages and the fastest growing among them.

Developers often quickly discover that they like Python. They appreciate its expressive
power, readability, conciseness and interactivity. They like the world of open-source soft-
ware development that’s generating a rapidly growing base of reusable software for an
enormous range of application areas.

For many decades, some powerful trends have been in place. Computer hardware has
rapidly been getting faster, cheaper and smaller. Internet bandwidth has rapidly been get-
ting larger and cheaper. And quality computer software has become ever more abundant
and essentially free or nearly free through the “open source” movement. Soon, the “Inter-
net of Things” will connect tens of billions of devices of every imaginable type. These will
generate enormous volumes of data at rapidly increasing speeds and quantities.

In computing today, the latest innovations are “all about the data”—data science,
data analytics, big data, relational databases (SQL), and NoSQL and NewSQL databases,
each of which we address along with an innovative treatment of Python programming.

Jobs Requiring Data Science Skills
In 2011, McKinsey Global Institute produced their report, “Big data: The next frontier
for innovation, competition and productivity.” In it, they said, “The United States alone
faces a shortage of 140,000 to 190,000 people with deep analytical skills as well as 1.5 mil-
lion managers and analysts to analyze big data and make decisions based on their find-
ings.”2 This continues to be the case. The August 2018 “LinkedIn Workforce Report” says
the United States has a shortage of over 150,000 people with data science skills.3 A 2017
report from IBM, Burning Glass Technologies and the Business-Higher Education
Forum, says that by 2020 in the United States there will be hundreds of thousands of new
jobs requiring data science skills.4

1. Source unknown, frequently misattributed to Mark Twain.
2. https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digi-

tal/Our%20Insights/Big%20data%20The%20next%20frontier%20for%20innovation/

MGI_big_data_full_report.ashx (page 3).
3. https://economicgraph.linkedin.com/resources/linkedin-workforce-report-august-2018.
4. https://www.burning-glass.com/wp-content/uploads/The_Quant_Crunch.pdf (page 3).

Preface

https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digi-tal/Our%20Insights/Big%20data%20The%20next%20frontier%20for%20innovation/MGI_big_data_full_report.ashx
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digi-tal/Our%20Insights/Big%20data%20The%20next%20frontier%20for%20innovation/MGI_big_data_full_report.ashx
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digi-tal/Our%20Insights/Big%20data%20The%20next%20frontier%20for%20innovation/MGI_big_data_full_report.ashx
https://economicgraph.linkedin.com/resources/linkedin-workforce-report-august-2018
https://www.burning-glass.com/wp-content/uploads/The_Quant_Crunch.pdf

xviii Preface

Modular Architecture
The book’s modular architecture (please see the Table of Contents graphic on the book’s
inside front cover) helps us meet the diverse needs of various professional audiences.

Chapters 1–10 cover Python programming. These chapters each include a brief Intro
to Data Science section introducing artificial intelligence, basic descriptive statistics, mea-
sures of central tendency and dispersion, simulation, static and dynamic visualization,
working with CSV files, pandas for data exploration and data wrangling, time series and
simple linear regression. These help you prepare for the data science, AI, big data and
cloud case studies in Chapters 11–16, which present opportunities for you to use real-
world datasets in complete case studies.

After covering Python Chapters 1–5 and a few key parts of Chapters 6–7, you’ll be
able to handle significant portions of the case studies in Chapters 11–16. The “Chapter
Dependencies” section of this Preface will help trainers plan their professional courses in
the context of the book’s unique architecture.

Chapters 11–16 are loaded with cool, powerful, contemporary examples. They pres-
ent hands-on implementation case studies on topics such as natural language processing,
data mining Twitter, cognitive computing with IBM’s Watson, supervised machine
learning with classification and regression, unsupervised machine learning with cluster-
ing, deep learning with convolutional neural networks, deep learning with recurrent
neural networks, big data with Hadoop, Spark and NoSQL databases, the Internet of
Things and more. Along the way, you’ll acquire a broad literacy of data science terms and
concepts, ranging from brief definitions to using concepts in small, medium and large pro-
grams. Browsing the book’s detailed Table of Contents and Index will give you a sense of
the breadth of coverage.

Key Features

KIS (Keep It Simple), KIS (Keep it Small), KIT (Keep it Topical)
• Keep it simple—In every aspect of the book, we strive for simplicity and clarity.

For example, when we present natural language processing, we use the simple and
intuitive TextBlob library rather than the more complex NLTK. In our deep
learning presentation, we prefer Keras to TensorFlow. In general, when multiple
libraries could be used to perform similar tasks, we use the simplest one.

• Keep it small—Most of the book’s 538 examples are small—often just a few lines
of code, with immediate interactive IPython feedback. We also include 40 larger
scripts and in-depth case studies.

• Keep it topical—We read scores of recent Python-programming and data science
books, and browsed, read or watched about 15,000 current articles, research
papers, white papers, videos, blog posts, forum posts and documentation pieces.
This enabled us to “take the pulse” of the Python, computer science, data science,
AI, big data and cloud communities.

Immediate-Feedback: Exploring, Discovering and Experimenting with IPython
• The ideal way to learn from this book is to read it and run the code examples in

parallel. Throughout the book, we use the IPython interpreter, which provides

 Key Features xix

a friendly, immediate-feedback interactive mode for quickly exploring, discover-
ing and experimenting with Python and its extensive libraries.

• Most of the code is presented in small, interactive IPython sessions. For each
code snippet you write, IPython immediately reads it, evaluates it and prints the
results. This instant feedback keeps your attention, boosts learning, facilitates
rapid prototyping and speeds the software-development process.

• Our books always emphasize the live-code approach, focusing on complete,
working programs with live inputs and outputs. IPython’s “magic” is that it turns
even snippets into code that “comes alive” as you enter each line. This promotes
learning and encourages experimentation.

Python Programming Fundamentals
• First and foremost, this book provides rich Python coverage.

• We discuss Python’s programming models—procedural programming, func-
tional-style programming and object-oriented programming.

• We use best practices, emphasizing current idiom.

• Functional-style programming is used throughout the book as appropriate. A
chart in Chapter 4 lists most of Python’s key functional-style programming capa-
bilities and the chapters in which we initially cover most of them.

538 Code Examples
• You’ll get an engaging, challenging and entertaining introduction to Python with

538 real-world examples ranging from individual snippets to substantial computer
science, data science, artificial intelligence and big data case studies.

• You’ll attack significant tasks with AI, big data and cloud technologies like nat-
ural language processing, data mining Twitter, machine learning, deep learn-
ing, Hadoop, MapReduce, Spark, IBM Watson, key data science libraries
(NumPy, pandas, SciPy, NLTK, TextBlob, spaCy, Textatistic, Tweepy, Scikit-
learn, Keras), key visualization libraries (Matplotlib, Seaborn, Folium) and
more.

Avoid Heavy Math in Favor of English Explanations
• We capture the conceptual essence of the mathematics and put it to work in our

examples. We do this by using libraries such as statistics, NumPy, SciPy, pandas
and many others, which hide the mathematical complexity. So, it’s straightfor-
ward for you to get many of the benefits of mathematical techniques like linear
regression without having to know the mathematics behind them. In the
machine-learning and deep-learning examples, we focus on creating objects that
do the math for you “behind the scenes.”

Visualizations
• 67 static, dynamic, animated and interactive visualizations (charts, graphs, pic-

tures, animations etc.) help you understand concepts.

xx Preface

• Rather than including a treatment of low-level graphics programming, we focus
on high-level visualizations produced by Matplotlib, Seaborn, pandas and
Folium (for interactive maps).

• We use visualizations as a pedagogic tool. For example, we make the law of large
numbers “come alive” in a dynamic die-rolling simulation and bar chart. As the
number of rolls increases, you’ll see each face’s percentage of the total rolls grad-
ually approach 16.667% (1/6th) and the sizes of the bars representing the per-
centages equalize.

• Visualizations are crucial in big data for data exploration and communicating
reproducible research results, where the data items can number in the millions, bil-
lions or more. A common saying is that a picture is worth a thousand words5—in
big data, a visualization could be worth billions, trillions or even more items in a
database. Visualizations enable you to “fly 40,000 feet above the data” to see it “in
the large” and to get to know your data. Descriptive statistics help but can be mis-
leading. For example, Anscombe’s quartet6 demonstrates through visualizations
that significantly different datasets can have nearly identical descriptive statistics.

• We show the visualization and animation code so you can implement your own.
We also provide the animations in source-code files and as Jupyter Notebooks,
so you can conveniently customize the code and animation parameters, re-exe-
cute the animations and see the effects of the changes.

Data Experiences
• Our Intro to Data Science sections and case studies in Chapters 11–16 provide

rich data experiences.

• You’ll work with many real-world datasets and data sources. There’s an enor-
mous variety of free open datasets available online for you to experiment with.
Some of the sites we reference list hundreds or thousands of datasets.

• Many libraries you’ll use come bundled with popular datasets for experimentation.

• You’ll learn the steps required to obtain data and prepare it for analysis, analyze
that data using many techniques, tune your models and communicate your
results effectively, especially through visualization.

GitHub
• GitHub is an excellent venue for finding open-source code to incorporate into

your projects (and to contribute your code to the open-source community). It’s
also a crucial element of the software developer’s arsenal with version control
tools that help teams of developers manage open-source (and private) projects.

• You’ll use an extraordinary range of free and open-source Python and data science
libraries, and free, free-trial and freemium offerings of software and cloud ser-
vices. Many of the libraries are hosted on GitHub.

5. https://en.wikipedia.org/wiki/A_picture_is_worth_a_thousand_words.
6. https://en.wikipedia.org/wiki/Anscombe%27s_quartet.

https://en.wikipedia.org/wiki/A_picture_is_worth_a_thousand_words
https://en.wikipedia.org/wiki/Anscombe%27s_quartet

 Key Features xxi

Hands-On Cloud Computing
• Much of big data analytics occurs in the cloud, where it’s easy to scale dynamically

the amount of hardware and software your applications need. You’ll work with
various cloud-based services (some directly and some indirectly), including Twit-
ter, Google Translate, IBM Watson, Microsoft Azure, OpenMapQuest, geopy,
Dweet.io and PubNub.

• We encourage you to use free, free trial or freemium cloud services. We prefer those
that don’t require a credit card because you don’t want to risk accidentally running
up big bills. If you decide to use a service that requires a credit card, ensure that
the tier you’re using for free will not automatically jump to a paid tier.

Database, Big Data and Big Data Infrastructure
• According to IBM (Nov. 2016), 90% of the world’s data was created in the last two

years.7 Evidence indicates that the speed of data creation is rapidly accelerating.

• According to a March 2016 AnalyticsWeek article, within five years there will be
over 50 billion devices connected to the Internet and by 2020 we’ll be producing
1.7 megabytes of new data every second for every person on the planet!8

• We include a treatment of relational databases and SQL with SQLite.

• Databases are critical big data infrastructure for storing and manipulating the
massive amounts of data you’ll process. Relational databases process structured
data—they’re not geared to the unstructured and semi-structured data in big data
applications. So, as big data evolved, NoSQL and NewSQL databases were cre-
ated to handle such data efficiently. We include a NoSQL and NewSQL over-
view and a hands-on case study with a MongoDB JSON document database.
MongoDB is the most popular NoSQL database.

• We discuss big data hardware and software infrastructure in Chapter 16, “Big
Data: Hadoop, Spark, NoSQL and IoT (Internet of Things).”

Artificial Intelligence Case Studies
• In case study Chapters 11–15, we present artificial intelligence topics, including

natural language processing, data mining Twitter to perform sentiment analy-
sis, cognitive computing with IBM Watson, supervised machine learning,
unsupervised machine learning and deep learning. Chapter 16 presents the big
data hardware and software infrastructure that enables computer scientists and
data scientists to implement leading-edge AI-based solutions.

Built-In Collections: Lists, Tuples, Sets, Dictionaries
• There’s little reason today for most application developers to build custom data

structures. The book features a rich two-chapter treatment of Python’s built-in
data structures—lists, tuples, dictionaries and sets—with which most data-
structuring tasks can be accomplished.

7. https://public.dhe.ibm.com/common/ssi/ecm/wr/en/wrl12345usen/watson-customer-

engagement-watson-marketing-wr-other-papers-and-reports-wrl12345usen-20170719.pdf.
8. https://analyticsweek.com/content/big-data-facts/.

http://Dweet.io
https://public.dhe.ibm.com/common/ssi/ecm/wr/en/wrl12345usen/watson-customer-engagement-watson-marketing-wr-other-papers-and-reports-wrl12345usen-20170719.pdf
https://public.dhe.ibm.com/common/ssi/ecm/wr/en/wrl12345usen/watson-customer-engagement-watson-marketing-wr-other-papers-and-reports-wrl12345usen-20170719.pdf
https://analyticsweek.com/content/big-data-facts/

xxii Preface

Array-Oriented Programming with NumPy Arrays and Pandas Series/DataFrames
• We also focus on three key data structures from open-source libraries—NumPy

arrays, pandas Series and pandas DataFrames. These are used extensively in data
science, computer science, artificial intelligence and big data. NumPy offers as
much as two orders of magnitude higher performance than built-in Python lists.

• We include in Chapter 7 a rich treatment of NumPy arrays. Many libraries, such
as pandas, are built on NumPy. The Intro to Data Science sections in Chapters
7–9 introduce pandas Series and DataFrames, which along with NumPy arrays
are then used throughout the remaining chapters.

File Processing and Serialization
• Chapter 9 presents text-file processing, then demonstrates how to serialize

objects using the popular JSON (JavaScript Object Notation) format. JSON is
used frequently in the data science chapters.

• Many data science libraries provide built-in file-processing capabilities for load-
ing datasets into your Python programs. In addition to plain text files, we process
files in the popular CSV (comma-separated values) format using the Python
Standard Library’s csv module and capabilities of the pandas data science library.

Object-Based Programming
• We emphasize using the huge number of valuable classes that the Python open-

source community has packaged into industry standard class libraries. You’ll
focus on knowing what libraries are out there, choosing the ones you’ll need for
your apps, creating objects from existing classes (usually in one or two lines of
code) and making them “jump, dance and sing.” This object-based program-
ming enables you to build impressive applications quickly and concisely, which
is a significant part of Python’s appeal.

• With this approach, you’ll be able to use machine learning, deep learning and
other AI technologies to quickly solve a wide range of intriguing problems, includ-
ing cognitive computing challenges like speech recognition and computer vision.

Object-Oriented Programming
• Developing custom classes is a crucial object-oriented programming skill, along

with inheritance, polymorphism and duck typing. We discuss these in Chapter 10.

• Chapter 10 includes a discussion of unit testing with doctest and a fun card-
shuffling-and-dealing simulation.

• Chapters 11–16 require only a few straightforward custom class definitions. In
Python, you’ll probably use more of an object-based programming approach
than full-out object-oriented programming.

Reproducibility
• In the sciences in general, and data science in particular, there’s a need to repro-

duce the results of experiments and studies, and to communicate those results
effectively. Jupyter Notebooks are a preferred means for doing this.

 Chapter Dependencies xxiii

• We discuss reproducibility throughout the book in the context of programming
techniques and software such as Jupyter Notebooks and Docker.

Performance
• We use the %timeit profiling tool in several examples to compare the perfor-

mance of different approaches to performing the same tasks. Other performance-
related discussions include generator expressions, NumPy arrays vs. Python lists,
performance of machine-learning and deep-learning models, and Hadoop and
Spark distributed-computing performance.

Big Data and Parallelism
• In this book, rather than writing your own parallelization code, you’ll let libraries

like Keras running over TensorFlow, and big data tools like Hadoop and Spark
parallelize operations for you. In this big data/AI era, the sheer processing require-
ments of massive data applications demand taking advantage of true parallelism
provided by multicore processors, graphics processing units (GPUs), tensor
processing units (TPUs) and huge clusters of computers in the cloud. Some big
data tasks could have thousands of processors working in parallel to analyze mas-
sive amounts of data expeditiously.

Chapter Dependencies
If you’re a trainer planning your syllabus for a professional training course or a developer
deciding which chapters to read, this section will help you make the best decisions. Please
read the one-page color Table of Contents on the book’s inside front cover—this will
quickly familiarize you with the book’s unique architecture. Teaching or reading the chap-
ters in order is easiest. However, much of the content in the Intro to Data Science sections
at the ends of Chapters 1–10 and the case studies in Chapters 11–16 requires only Chap-
ters 1–5 and small portions of Chapters 6–10 as discussed below.

Part 1: Python Fundamentals Quickstart
We recommend that you read all the chapters in order:

• Chapter 1, Introduction to Computers and Python, introduces concepts that lay
the groundwork for the Python programming in Chapters 2–10 and the big data,
artificial-intelligence and cloud-based case studies in Chapters 11–16. The chapter
also includes test-drives of the IPython interpreter and Jupyter Notebooks.

• Chapter 2, Introduction to Python Programming, presents Python program-
ming fundamentals with code examples illustrating key language features.

• Chapter 3, Control Statements, presents Python’s control statements and intro-
duces basic list processing.

• Chapter 4, Functions, introduces custom functions, presents simulation tech-
niques with random-number generation and introduces tuple fundamentals.

• Chapter 5, Sequences: Lists and Tuples, presents Python’s built-in list and tuple
collections in more detail and begins introducing functional-style programming.

xxiv Preface

Part 2: Python Data Structures, Strings and Files
The following summarizes inter-chapter dependencies for Python Chapters 6–9 and
assumes that you’ve read Chapters 1–5.

• Chapter 6, Dictionaries and Sets—The Intro to Data Science section in this
chapter is not dependent on the chapter’s contents.

• Chapter 7, Array-Oriented Programming with NumPy—The Intro to Data
Science section requires dictionaries (Chapter 6) and arrays (Chapter 7).

• Chapter 8, Strings: A Deeper Look—The Intro to Data Science section requires
raw strings and regular expressions (Sections 8.11–8.12), and pandas Series and
DataFrame features from Section 7.14’s Intro to Data Science.

• Chapter 9, Files and Exceptions—For JSON serialization, it’s useful to under-
stand dictionary fundamentals (Section 6.2). Also, the Intro to Data Science sec-
tion requires the built-in open function and the with statement (Section 9.3),
and pandas DataFrame features from Section 7.14’s Intro to Data Science.

Part 3: Python High-End Topics
The following summarizes inter-chapter dependencies for Python Chapter 10 and
assumes that you’ve read Chapters 1–5.

• Chapter 10, Object-Oriented Programming—The Intro to Data Science sec-
tion requires pandas DataFrame features from Intro to Data Science Section 7.14.
Trainers wanting to cover only classes and objects can present Sections 10.1–
10.6. Trainers wanting to cover more advanced topics like inheritance, polymor-
phism and duck typing, can present Sections 10.7–10.9. Sections 10.10–10.15
provide additional advanced perspectives.

Part 4: AI, Cloud and Big Data Case Studies
The following summary of inter-chapter dependencies for Chapters 11–16 assumes that
you’ve read Chapters 1–5. Most of Chapters 11–16 also require dictionary fundamentals
from Section 6.2.

• Chapter 11, Natural Language Processing (NLP), uses pandas DataFrame fea-
tures from Section 7.14’s Intro to Data Science.

• Chapter 12, Data Mining Twitter, uses pandas DataFrame features from
Section 7.14’s Intro to Data Science, string method join (Section 8.9), JSON fun-
damentals (Section 9.5), TextBlob (Section 11.2) and Word clouds (Section 11.3).
Several examples require defining a class via inheritance (Chapter 10).

• Chapter 13, IBM Watson and Cognitive Computing, uses built-in function
open and the with statement (Section 9.3).

• Chapter 14, Machine Learning: Classification, Regression and Clustering, uses
NumPy array fundamentals and method unique (Chapter 7), pandas DataFrame
features from Section 7.14’s Intro to Data Science and Matplotlib function sub-
plots (Section 10.6).

• Chapter 15, Deep Learning, requires NumPy array fundamentals (Chapter 7),
string method join (Section 8.9), general machine-learning concepts from

 Jupyter Notebooks xxv

Chapter 14 and features from Chapter 14’s Case Study: Classification with k-
Nearest Neighbors and the Digits Dataset.

• Chapter 16, Big Data: Hadoop, Spark, NoSQL and IoT, uses string method
split (Section 6.2.7), Matplotlib FuncAnimation from Section 6.4’s Intro to Data
Science, pandas Series and DataFrame features from Section 7.14’s Intro to Data
Science, string method join (Section 8.9), the json module (Section 9.5), NLTK
stop words (Section 11.2.13) and from Chapter 12, Twitter authentication,
Tweepy’s StreamListener class for streaming tweets, and the geopy and folium
libraries. A few examples require defining a class via inheritance (Chapter 10), but
you can simply mimic the class definitions we provide without reading Chapter 10.

Jupyter Notebooks
For your convenience, we provide the book’s code examples in Python source code (.py)
files for use with the command-line IPython interpreter and as Jupyter Notebooks
(.ipynb) files that you can load into your web browser and execute.

Jupyter Notebooks is a free, open-source project that enables you to combine text,
graphics, audio, video, and interactive coding functionality for entering, editing, execut-
ing, debugging, and modifying code quickly and conveniently in a web browser. Accord-
ing to the article, “What Is Jupyter?”:

Jupyter has become a standard for scientific research and data analysis. It pack-
ages computation and argument together, letting you build “computational nar-
ratives”; … and it simplifies the problem of distributing working software to
teammates and associates.9

In our experience, it’s a wonderful learning environment and rapid prototyping tool. For
this reason, we use Jupyter Notebooks rather than a traditional IDE, such as Eclipse,
Visual Studio, PyCharm or Spyder. Academics and professionals already use Jupyter
extensively for sharing research results. Jupyter Notebooks support is provided through
the traditional open-source community mechanisms10 (see “Getting Jupyter Help” later
in this Preface). See the Before You Begin section that follows this Preface for software
installation details and see the test-drives in Section 1.5 for information on running the
book’s examples.

Collaboration and Sharing Results
Working in teams and communicating research results are both important for developers
in or moving into data-analytics positions in industry, government or academia:

• The notebooks you create are easy to share among team members simply by
copying the files or via GitHub.

• Research results, including code and insights, can be shared as static web pages
via tools like nbviewer (https://nbviewer.jupyter.org) and GitHub—both
automatically render notebooks as web pages.

9. https://www.oreilly.com/ideas/what-is-jupyter.
10. https://jupyter.org/community.

https://nbviewer.jupyter.org
https://www.oreilly.com/ideas/what-is-jupyter
https://jupyter.org/community

xxvi Preface

Reproducibility: A Strong Case for Jupyter Notebooks
In data science, and in the sciences in general, experiments and studies should be repro-
ducible. This has been written about in the literature for many years, including

• Donald Knuth’s 1992 computer science publication—Literate Programming.11

• The article “Language-Agnostic Reproducible Data Analysis Using Literate Pro-
gramming,”12 which says, “Lir (literate, reproducible computing) is based on the
idea of literate programming as proposed by Donald Knuth.”

Essentially, reproducibility captures the complete environment used to produce
results—hardware, software, communications, algorithms (especially code), data and the
data’s provenance (origin and lineage).

Docker
In Chapter 16, we’ll use Docker—a tool for packaging software into containers that bun-
dle everything required to execute that software conveniently, reproducibly and portably
across platforms. Some software packages we use in Chapter 16 require complicated setup
and configuration. For many of these, you can download free preexisting Docker contain-
ers. These enable you to avoid complex installation issues and execute software locally on
your desktop or notebook computers, making Docker a great way to help you get started
with new technologies quickly and conveniently.

Docker also helps with reproducibility. You can create custom Docker containers that
are configured with the versions of every piece of software and every library you used in
your study. This would enable other developers to recreate the environment you used,
then reproduce your work, and will help you reproduce your own results. In Chapter 16,
you’ll use Docker to download and execute a container that’s preconfigured for you to
code and run big data Spark applications using Jupyter Notebooks.

Special Feature: IBM Watson Analytics and Cognitive Computing
Early in our research for this book, we recognized the rapidly growing interest in IBM’s
Watson. We investigated competitive services and found Watson’s “no credit card
required” policy for its “free tiers” to be among the most friendly for our readers.

IBM Watson is a cognitive-computing platform being employed across a wide range
of real-world scenarios. Cognitive-computing systems simulate the pattern-recognition
and decision-making capabilities of the human brain to “learn” as they consume more
data.13,14,15 We include a significant hands-on Watson treatment. We use the free Watson
Developer Cloud: Python SDK, which provides APIs that enable you to interact with
Watson’s services programmatically. Watson is fun to use and a great platform for letting
your creative juices flow. You’ll demo or use the following Watson APIs: Conversation,
Discovery, Language Translator, Natural Language Classifier, Natural Language

11. Knuth, D., “Literate Programming” (PDF), The Computer Journal, British Computer Society, 1992.
12. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0164023.
13. http://whatis.techtarget.com/definition/cognitive-computing.
14. https://en.wikipedia.org/wiki/Cognitive_computing.
15. https://www.forbes.com/sites/bernardmarr/2016/03/23/what-everyone-should-know-

about-cognitive-computing.

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0164023
http://whatis.techtarget.com/definition/cognitive-computing
https://en.wikipedia.org/wiki/Cognitive_computing
https://www.forbes.com/sites/bernardmarr/2016/03/23/what-everyone-should-know-about-cognitive-computing
https://www.forbes.com/sites/bernardmarr/2016/03/23/what-everyone-should-know-about-cognitive-computing

 Teaching Approach xxvii

Understanding, Personality Insights, Speech to Text, Text to Speech, Tone Analyzer
and Visual Recognition.

Watson’s Lite Tier Services and a Cool Watson Case Study
IBM encourages learning and experimentation by providing free lite tiers for many of its
APIs.16 In Chapter 13, you’ll try demos of many Watson services.17 Then, you’ll use the
lite tiers of Watson’s Text to Speech, Speech to Text and Translate services to implement
a “traveler’s assistant” translation app. You’ll speak a question in English, then the app
will transcribe your speech to English text, translate the text to Spanish and speak the
Spanish text. Next, you’ll speak a Spanish response (in case you don’t speak Spanish, we
provide an audio file you can use). Then, the app will quickly transcribe the speech to
Spanish text, translate the text to English and speak the English response. Cool stuff!

Teaching Approach
Python for Programmers contains a rich collection of examples drawn from many fields.
You’ll work through interesting, real-world examples using real-world datasets. The book
concentrates on the principles of good software engineering and stresses program clarity.

Using Fonts for Emphasis
We place the key terms and the index’s page reference for each defining occurrence in bold
text for easier reference. We refer to on-screen components in the bold Helvetica font (for
example, the File menu) and use the Lucida font for Python code (for example, x = 5).

Syntax Coloring
For readability, we syntax color all the code. Our syntax-coloring conventions are as fol-
lows:

comments appear in green
keywords appear in dark blue
constants and literal values appear in light blue
errors appear in red
all other code appears in black

538 Code Examples
The book’s 538 examples contain approximately 4000 lines of code. This is a relatively
small amount for a book this size and is due to the fact that Python is such an expressive
language. Also, our coding style is to use powerful class libraries to do most of the work
wherever possible.

160 Tables/Illustrations/Visualizations
We include abundant tables, line drawings, and static, dynamic and interactive visualiza-
tions.

16. Always check the latest terms on IBM’s website, as the terms and services may change.
17. https://console.bluemix.net/catalog/.

https://console.bluemix.net/catalog/

xxviii Preface

Programming Wisdom
We integrate into the discussions programming wisdom from the authors’ combined nine
decades of programming and teaching experience, including:

• Good programming practices and preferred Python idioms that help you pro-
duce clearer, more understandable and more maintainable programs.

• Common programming errors to reduce the likelihood that you’ll make them.

• Error-prevention tips with suggestions for exposing bugs and removing them
from your programs. Many of these tips describe techniques for preventing bugs
from getting into your programs in the first place.

• Performance tips that highlight opportunities to make your programs run faster
or minimize the amount of memory they occupy.

• Software engineering observations that highlight architectural and design issues
for proper software construction, especially for larger systems.

Software Used in the Book
The software we use is available for Windows, macOS and Linux and is free for download
from the Internet. We wrote the book’s examples using the free Anaconda Python distri-
bution. It includes most of the Python, visualization and data science libraries you’ll need,
as well as the IPython interpreter, Jupyter Notebooks and Spyder, considered one of the
best Python data science IDEs. We use only IPython and Jupyter Notebooks for program
development in the book. The Before You Begin section following this Preface discusses
installing Anaconda and a few other items you’ll need for working with our examples.

Python Documentation
You’ll find the following documentation especially helpful as you work through the book:

• The Python Language Reference:
 https://docs.python.org/3/reference/index.html

• The Python Standard Library:
 https://docs.python.org/3/library/index.html

• Python documentation list:
 https://docs.python.org/3/

Getting Your Questions Answered
Popular Python and general programming online forums include:

• python-forum.io

• https://www.dreamincode.net/forums/forum/29-python/

• StackOverflow.com

Also, many vendors provide forums for their tools and libraries. Many of the libraries
you’ll use in this book are managed and maintained at github.com. Some library main-

https://docs.python.org/3/reference/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/
http://python-forum.io
https://www.dreamincode.net/forums/forum/29-python/
http://StackOverflow.com
http://github.com

 Getting Jupyter Help xxix

tainers provide support through the Issues tab on a given library’s GitHub page. If you
cannot find an answer to your questions online, please see our web page for the book at

http://www.deitel.com18

Getting Jupyter Help
Jupyter Notebooks support is provided through:

• Project Jupyter Google Group:
 https://groups.google.com/forum/#!forum/jupyter

• Jupyter real-time chat room:
 https://gitter.im/jupyter/jupyter

• GitHub
 https://github.com/jupyter/help

• StackOverflow:
 https://stackoverflow.com/questions/tagged/jupyter

• Jupyter for Education Google Group (for instructors teaching with Jupyter):
 https://groups.google.com/forum/#!forum/jupyter-education

Supplements
To get the most out of the presentation, you should execute each code example in parallel
with reading the corresponding discussion in the book. On the book’s web page at

http://www.deitel.com

we provide:

• Downloadable Python source code (.py files) and Jupyter Notebooks (.ipynb
files) for the book’s code examples.

• Getting Started videos showing how to use the code examples with IPython and
Jupyter Notebooks. We also introduce these tools in Section 1.5.

• Blog posts and book updates.

For download instructions, see the Before You Begin section that follows this Preface.

Keeping in Touch with the Authors
For answers to questions or to report an error, send an e-mail to us at

deitel@deitel.com

or interact with us via social media:

• Facebook® (http://www.deitel.com/deitelfan)

• Twitter® (@deitel)

• LinkedIn® (http://linkedin.com/company/deitel-&-associates)

• YouTube® (http://youtube.com/DeitelTV)

18. Our website is undergoing a major upgrade. If you do not find something you need, please write to
us directly at deitel@deitel.com.

http://www.deitel.com
https://groups.google.com/forum/#!forum/jupyter
https://gitter.im/jupyter/jupyter
https://github.com/jupyter/help
https://stackoverflow.com/questions/tagged/jupyter
https://groups.google.com/forum/#!forum/jupyter-education
http://www.deitel.com
mailto:deitel@deitel.com
http://www.deitel.com/deitelfan
http://linkedin.com/company/deitel-&-associates
http://youtube.com/DeitelTV
mailto:deitel@deitel.com

xxx Preface

Acknowledgments
We’d like to thank Barbara Deitel for long hours devoted to Internet research on this proj-
ect. We’re fortunate to have worked with the dedicated team of publishing professionals
at Pearson. We appreciate the efforts and 25-year mentorship of our friend and colleague
Mark L. Taub, Vice President of the Pearson IT Professional Group. Mark and his team
publish our professional books, LiveLessons video products and Learning Paths in the Safari
service (https://learning.oreilly.com/). They also sponsor our Safari live online train-
ing seminars. Julie Nahil managed the book’s production. We selected the cover art and
Chuti Prasertsith designed the cover.

We wish to acknowledge the efforts of our reviewers. Patricia Byron-Kimball and
Meghan Jacoby recruited the reviewers and managed the review process. Adhering to a
tight schedule, the reviewers scrutinized our work, providing countless suggestions for
improving the accuracy, completeness and timeliness of the presentation.

As you read the book, we’d appreciate your comments, criticisms, corrections and
suggestions for improvement. Please send all correspondence to:

deitel@deitel.com

We’ll respond promptly.

Reviewers

Book Reviewers
Daniel Chen, Data Scientist, Lander Analytics
Garrett Dancik, Associate Professor of Com-

puter Science/Bioinformatics, Eastern Con-
necticut State University

Pranshu Gupta, Assistant Professor, Computer
Science, DeSales University

David Koop, Assistant Professor, Data Science
Program Co-Director, U-Mass Dartmouth

Ramon Mata-Toledo, Professor, Computer Sci-
ence, James Madison University

Shyamal Mitra, Senior Lecturer, Computer Sci-
ence, University of Texas at Austin

Alison Sanchez, Assistant Professor in Econom-
ics, University of San Diego

José Antonio González Seco, IT Consultant
Jamie Whitacre, Independent Data Science

Consultant
Elizabeth Wickes, Lecturer, School of Informa-

tion Sciences, University of Illinois

Proposal Reviewers
Dr. Irene Bruno, Associate Professor in the

Department of Information Sciences and
Technology, George Mason University

Lance Bryant, Associate Professor, Department
of Mathematics, Shippensburg University

Daniel Chen, Data Scientist, Lander Analytics
Garrett Dancik, Associate Professor of Com-

puter Science/Bioinformatics, Eastern Con-
necticut State University

Dr. Marsha Davis, Department Chair of Mathe-
matical Sciences, Eastern Connecticut State
University

Roland DePratti, Adjunct Professor of Com-
puter Science, Eastern Connecticut State
University

Shyamal Mitra, Senior Lecturer, Computer Sci-
ence, University of Texas at Austin

Dr. Mark Pauley, Senior Research Fellow, Bioin-
formatics, School of Interdisciplinary Infor-
matics, University of Nebraska at Omaha

Sean Raleigh, Associate Professor of Mathemat-
ics, Chair of Data Science, Westminster
College

Alison Sanchez, Assistant Professor in Econom-
ics, University of San Diego

Dr. Harvey Siy, Associate Professor of Com-
puter Science, Information Science and Tech-
nology, University of Nebraska at Omaha

Jamie Whitacre, Independent Data Science
Consultant

https://learning.oreilly.com/
mailto:deitel@deitel.com

 About the Authors xxxi

Welcome again to the exciting open-source world of Python programming. We hope
you enjoy this look at leading-edge computer-applications development with Python, IPy-
thon, Jupyter Notebooks, data science, AI, big data and the cloud. We wish you great suc-
cess!

Paul and Harvey Deitel

About the Authors
Paul J. Deitel, CEO and Chief Technical Officer of Deitel & Associates, Inc., is an MIT
graduate with 38 years of experience in computing. Paul is one of the world’s most expe-
rienced programming-languages trainers, having taught professional courses to software
developers since 1992. He has delivered hundreds of programming courses to industry cli-
ents internationally, including Cisco, IBM, Siemens, Sun Microsystems (now Oracle),
Dell, Fidelity, NASA at the Kennedy Space Center, the National Severe Storm Labora-
tory, White Sands Missile Range, Rogue Wave Software, Boeing, Nortel Networks, Puma,
iRobot and many more. He and his co-author, Dr. Harvey M. Deitel, are the world’s best-
selling programming-language textbook/professional book/video authors.

Dr. Harvey M. Deitel, Chairman and Chief Strategy Officer of Deitel & Associates,
Inc., has 58 years of experience in computing. Dr. Deitel earned B.S. and M.S. degrees in
Electrical Engineering from MIT and a Ph.D. in Mathematics from Boston University—
he studied computing in each of these programs before they spun off Computer Science
programs. He has extensive college teaching experience, including earning tenure and serv-
ing as the Chairman of the Computer Science Department at Boston College before
founding Deitel & Associates, Inc., in 1991 with his son, Paul. The Deitels’ publications
have earned international recognition, with more than 100 translations published in Jap-
anese, German, Russian, Spanish, French, Polish, Italian, Simplified Chinese, Traditional
Chinese, Korean, Portuguese, Greek, Urdu and Turkish. Dr. Deitel has delivered hun-
dreds of programming courses to academic, corporate, government and military clients.

About Deitel® & Associates, Inc.
Deitel & Associates, Inc., founded by Paul Deitel and Harvey Deitel, is an internationally
recognized authoring and corporate training organization, specializing in computer pro-
gramming languages, object technology, mobile app development and Internet and web
software technology. The company’s training clients include some of the world’s largest
companies, government agencies, branches of the military and academic institutions. The
company offers instructor-led training courses delivered at client sites worldwide on major
programming languages.

Through its 44-year publishing partnership with Pearson/Prentice Hall, Deitel &
Associates, Inc., publishes leading-edge programming textbooks and professional books in
print and e-book formats, LiveLessons video courses (available for purchase at https://
www.informit.com), Learning Paths and live online training seminars in the Safari service
(https://learning.oreilly.com) and Revel™ interactive multimedia courses.

To contact Deitel & Associates, Inc. and the authors, or to request a proposal on-site,
instructor-led training, write to:

deitel@deitel.com

https://www.informit.com
https://www.informit.com
https://learning.oreilly.com
mailto:deitel@deitel.com

xxxii Preface

To learn more about Deitel on-site corporate training, visit

http://www.deitel.com/training

Individuals wishing to purchase Deitel books can do so at

https://www.amazon.com

Bulk orders by corporations, the government, the military and academic institutions
should be placed directly with Pearson. For more information, visit

https://www.informit.com/store/sales.aspx

http://www.deitel.com/training
https://www.amazon.com
https://www.informit.com/store/sales.aspx

This section contains information you should review before using this book. We’ll post
updates at: http://www.deitel.com.

Font and Naming Conventions
We show Python code and commands and file and folder names in a sans-serif font,
and on-screen components, such as menu names, in a bold sans-serif font. We use italics
for emphasis and bold occasionally for strong emphasis.

Getting the Code Examples
You can download the examples.zip file containing the book’s examples from our Python
for Programmers web page at:

http://www.deitel.com

Click the Download Examples link to save the file to your local computer. Most web
browsers place the file in your user account’s Downloads folder. When the download com-
pletes, locate it on your system, and extract its examples folder into your user account’s
Documents folder:

• Windows: C:\Users\YourAccount\Documents\examples

• macOS or Linux: ~/Documents/examples

Most operating systems have a built-in extraction tool. You also may use an archive tool
such as 7-Zip (www.7-zip.org) or WinZip (www.winzip.com).

Structure of the examples Folder
You’ll execute three kinds of examples in this book:

• Individual code snippets in the IPython interactive environment.

• Complete applications, which are known as scripts.

• Jupyter Notebooks—a convenient interactive, web-browser-based environment
in which you can write and execute code and intermix the code with text, images
and video.

We demonstrate each in Section 1.5’s test drives.
The examples folder contains one subfolder per chapter. These are named ch##,

where ## is the two-digit chapter number 01 to 16—for example, ch01. Except for Chap-
ters 13, 15 and 16, each chapter’s folder contains the following items:

• snippets_ipynb—A folder containing the chapter’s Jupyter Notebook files.

Before You Begin

http://www.deitel.com
http://www.deitel.com
http://www.7-zip.org
http://www.winzip.com

xxxiv Before You Begin

• snippets_py—A folder containing Python source code files in which each code
snippet we present is separated from the next by a blank line. You can copy and
paste these snippets into IPython or into new Jupyter Notebooks that you create.

• Script files and their supporting files.

Chapter 13 contains one application. Chapters 15 and 16 explain where to find the files
you need in the ch15 and ch16 folders, respectively.

Installing Anaconda
We use the easy-to-install Anaconda Python distribution with this book. It comes with
almost everything you’ll need to work with our examples, including:

• the IPython interpreter,

• most of the Python and data science libraries we use,

• a local Jupyter Notebooks server so you can load and execute our notebooks, and

• various other software packages, such as the Spyder Integrated Development
Environment (IDE)—we use only IPython and Jupyter Notebooks in this book.

Download the Python 3.x Anaconda installer for Windows, macOS or Linux from:

https://www.anaconda.com/download/

When the download completes, run the installer and follow the on-screen instructions. To
ensure that Anaconda runs correctly, do not move its files after you install it.

Updating Anaconda
Next, ensure that Anaconda is up to date. Open a command-line window on your system
as follows:

• On macOS, open a Terminal from the Applications folder’s Utilities subfolder.

• On Windows, open the Anaconda Prompt from the start menu. When doing this
to update Anaconda (as you’ll do here) or to install new packages (discussed
momentarily), execute the Anaconda Prompt as an administrator by right-click-
ing, then selecting More > Run as administrator. (If you cannot find the Anaconda
Prompt in the start menu, simply search for it in the Type here to search field at
the bottom of your screen.)

• On Linux, open your system’s Terminal or shell (this varies by Linux distribution).

In your system’s command-line window, execute the following commands to update
Anaconda’s installed packages to their latest versions:

1. conda update conda

2. conda update --all

Package Managers
The conda command used above invokes the conda package manager—one of the two key
Python package managers you’ll use in this book. The other is pip. Packages contain the files
required to install a given Python library or tool. Throughout the book, you’ll use conda to

https://www.anaconda.com/download/

 Installing the Prospector Static Code Analysis Tool xxxv

install additional packages, unless those packages are not available through conda, in which
case you’ll use pip. Some people prefer to use pip exclusively as it currently supports more
packages. If you ever have trouble installing a package with conda, try pip instead.

Installing the Prospector Static Code Analysis Tool
You may want to analyze you Python code using the Prospector analysis tool, which
checks your code for common errors and helps you improve it. To install Prospector and
the Python libraries it uses, run the following command in the command-line window:

pip install prospector

Installing jupyter-matplotlib
We implement several animations using a visualization library called Matplotlib. To use
them in Jupyter Notebooks, you must install a tool called ipympl. In the Terminal, Ana-
conda Command Prompt or shell you opened previously, execute the following com-
mands1 one at a time:

conda install -c conda-forge ipympl
conda install nodejs
jupyter labextension install @jupyter-widgets/jupyterlab-manager
jupyter labextension install jupyter-matplotlib

Installing the Other Packages
Anaconda comes with approximately 300 popular Python and data science packages for
you, such as NumPy, Matplotlib, pandas, Regex, BeautifulSoup, requests, Bokeh, SciPy,
SciKit-Learn, Seaborn, Spacy, sqlite, statsmodels and many more. The number of addi-
tional packages you’ll need to install throughout the book will be small and we’ll provide
installation instructions as necessary. As you discover new packages, their documentation
will explain how to install them.

Get a Twitter Developer Account
If you intend to use our “Data Mining Twitter” chapter and any Twitter-based examples
in subsequent chapters, apply for a Twitter developer account. Twitter now requires reg-
istration for access to their APIs. To apply, fill out and submit the application at

https://developer.twitter.com/en/apply-for-access

Twitter reviews every application. At the time of this writing, personal developer accounts
were being approved immediately and company-account applications were taking from
several days to several weeks. Approval is not guaranteed.

Internet Connection Required in Some Chapters
While using this book, you’ll need an Internet connection to install various additional
Python libraries. In some chapters, you’ll register for accounts with cloud-based services,
mostly to use their free tiers. Some services require credit cards to verify your identity. In

1. https://github.com/matplotlib/jupyter-matplotlib.

https://developer.twitter.com/en/apply-for-access
https://github.com/matplotlib/jupyter-matplotlib

xxxvi Before You Begin

a few cases, you’ll use services that are not free. In these cases, you’ll take advantage of
monetary credits provided by the vendors so you can try their services without incurring
charges. Caution: Some cloud-based services incur costs once you set them up. When
you complete our case studies using such services, be sure to promptly delete the
resources you allocated.

Slight Differences in Program Outputs
When you execute our examples, you might notice some differences between the results
we show and your own results:

• Due to differences in how calculations are performed with floating-point num-
bers (like –123.45, 7.5 or 0.0236937) across operating systems, you might see
minor variations in outputs—especially in digits far to the right of the decimal
point.

• When we show outputs that appear in separate windows, we crop the windows
to remove their borders.

Getting Your Questions Answered
Online forums enable you to interact with other Python programmers and get your
Python questions answered. Popular Python and general programming forums include:

• python-forum.io

• StackOverflow.com

• https://www.dreamincode.net/forums/forum/29-python/

Also, many vendors provide forums for their tools and libraries. Most of the libraries you’ll
use in this book are managed and maintained at github.com. Some library maintainers
provide support through the Issues tab on a given library’s GitHub page. If you cannot
find an answer to your questions online, please see our web page for the book at

http://www.deitel.com2

You’re now ready to begin reading Python for Programmers. We hope you enjoy the
book!

2. Our website is undergoing a major upgrade. If you do not find something you need, please write to
us directly at deitel@deitel.com.

https://www.dreamincode.net/forums/forum/29-python/
http://github.com
http://www.deitel.com

5
Sequences: Lists and Tuples

O b j e c t i v e s
In this chapter, you’ll:
■ Create and initialize lists and tuples.
■ Refer to elements of lists, tuples and strings.
■ Sort and search lists, and search tuples.
■ Pass lists and tuples to functions and methods.
■ Use list methods to perform common manipulations, such as

searching for items, sorting a list, inserting items and
removing items.

■ Use additional Python functional-style programming
capabilities, including lambdas and the functional-style
programming operations filter, map and reduce.

■ Use functional-style list comprehensions to create lists quickly
and easily, and use generator expressions to generate values
on demand.

■ Use two-dimensional lists.
■ Enhance your analysis and presentation skills with the

Seaborn and Matplotlib visualization libraries.

102 Chapter 5 Sequences: Lists and Tuples
O

u
tl

in
e

5.1 Introduction
In the last two chapters, we briefly introduced the list and tuple sequence types for repre-
senting ordered collections of items. Collections are prepackaged data structures consist-
ing of related data items. Examples of collections include your favorite songs on your
smartphone, your contacts list, a library’s books, your cards in a card game, your favorite
sports team’s players, the stocks in an investment portfolio, patients in a cancer study and
a shopping list. Python’s built-in collections enable you to store and access data conve-
niently and efficiently. In this chapter, we discuss lists and tuples in more detail.

We’ll demonstrate common list and tuple manipulations. You’ll see that lists (which
are modifiable) and tuples (which are not) have many common capabilities. Each can hold
items of the same or different types. Lists can dynamically resize as necessary, growing and
shrinking at execution time. We discuss one-dimensional and two-dimensional lists.

In the preceding chapter, we demonstrated random-number generation and simu-
lated rolling a six-sided die. We conclude this chapter with our next Intro to Data Science
section, which uses the visualization libraries Seaborn and Matplotlib to interactively
develop static bar charts containing the die frequencies. In the next chapter’s Intro to Data
Science section, we’ll present an animated visualization in which the bar chart changes
dynamically as the number of die rolls increases—you’ll see the law of large numbers “in
action.”

5.2 Lists
Here, we discuss lists in more detail and explain how to refer to particular list elements.
Many of the capabilities shown in this section apply to all sequence types.

Creating a List
Lists typically store homogeneous data, that is, values of the same data type. Consider the
list c, which contains five integer elements:

5.1 Introduction
5.2 Lists
5.3 Tuples
5.4 Unpacking Sequences
5.5 Sequence Slicing
5.6 del Statement
5.7 Passing Lists to Functions
5.8 Sorting Lists
5.9 Searching Sequences

5.10 Other List Methods
5.11 Simulating Stacks with Lists

5.12 List Comprehensions
5.13 Generator Expressions
5.14 Filter, Map and Reduce
5.15 Other Sequence Processing

Functions
5.16 Two-Dimensional Lists
5.17 Intro to Data Science: Simulation and

Static Visualizations
5.17.1 Sample Graphs for 600, 60,000 and

6,000,000 Die Rolls
5.17.2 Visualizing Die-Roll Frequencies and

Percentages
5.18 Wrap-Up

In [1]: c = [-45, 6, 0, 72, 1543]

In [2]: c
Out[2]: [-45, 6, 0, 72, 1543]

5.2 Lists 103

They also may store heterogeneous data, that is, data of many different types. For exam-
ple, the following list contains a student’s first name (a string), last name (a string), grade
point average (a float) and graduation year (an int):

['Mary', 'Smith', 3.57, 2022]

Accessing Elements of a List
You reference a list element by writing the list’s name followed by the element’s index (that
is, its position number) enclosed in square brackets ([], known as the subscription oper-
ator). The following diagram shows the list c labeled with its element names:

The first element in a list has the index 0. So, in the five-element list c, the first element is
named c[0] and the last is c[4]:

Determining a List’s Length
To get a list’s length, use the built-in len function:

Accessing Elements from the End of the List with Negative Indices
Lists also can be accessed from the end by using negative indices:

So, list c’s last element (c[4]), can be accessed with c[-1] and its first element with c[-5]:

Indices Must Be Integers or Integer Expressions
An index must be an integer or integer expression (or a slice, as we’ll soon see):

In [3]: c[0]
Out[3]: -45

In [4]: c[4]
Out[4]: 1543

In [5]: len(c)
Out[5]: 5

In [6]: c[-1]
Out[6]: 1543

In [7]: c[-5]
Out[7]: -45

In [8]: a = 1

In [9]: b = 2

Position number (2) of this
element within the sequence

Values of the
list’s elements

Names of the
list’s elements

-45 6 0 154372

c[0] c[1] c[2] c[4]c[3]

Element names
with negative indicies

Element names
with positive indices

-45 6 0 154372

c[-4]c[-5] c[-3] c[-1]c[-2]

c[0] c[1] c[2] c[4]c[3]

104 Chapter 5 Sequences: Lists and Tuples

Using a non-integer index value causes a TypeError.

Lists Are Mutable
Lists are mutable—their elements can be modified:

You’ll soon see that you also can insert and delete elements, changing the list’s length.

Some Sequences Are Immutable
Python’s string and tuple sequences are immutable—they cannot be modified. You can
get the individual characters in a string, but attempting to assign a new value to one of the
characters causes a TypeError:

Attempting to Access a Nonexistent Element
Using an out-of-range list, tuple or string index causes an IndexError:

Using List Elements in Expressions
List elements may be used as variables in expressions:

Appending to a List with +=
Let’s start with an empty list [], then use a for statement and += to append the values 1
through 5 to the list—the list grows dynamically to accommodate each item:

In [10]: c[a + b]
Out[10]: 72

In [11]: c[4] = 17

In [12]: c
Out[12]: [-45, 6, 0, 72, 17]

In [13]: s = 'hello'

In [14]: s[0]
Out[14]: 'h'

In [15]: s[0] = 'H'

TypeError Traceback (most recent call last)
<ipython-input-15-812ef2514689> in <module>()
----> 1 s[0] = 'H'

TypeError: 'str' object does not support item assignment

In [16]: c[100]

IndexError Traceback (most recent call last)
<ipython-input-16-9a31ea1e1a13> in <module>()
----> 1 c[100]

IndexError: list index out of range

In [17]: c[0] + c[1] + c[2]
Out[17]: -39

In [18]: a_list = []

5.2 Lists 105

When the left operand of += is a list, the right operand must be an iterable; otherwise, a
TypeError occurs. In snippet [19]’s suite, the square brackets around number create a one-
element list, which we append to a_list. If the right operand contains multiple elements,
+= appends them all. The following appends the characters of 'Python' to the list let-
ters:

If the right operand of += is a tuple, its elements also are appended to the list. Later in the
chapter, we’ll use the list method append to add items to a list.

Concatenating Lists with +
You can concatenate two lists, two tuples or two strings using the + operator. The result
is a new sequence of the same type containing the left operand’s elements followed by the
right operand’s elements. The original sequences are unchanged:

A TypeError occurs if the + operator’s operands are difference sequence types—for exam-
ple, concatenating a list and a tuple is an error.

Using for and range to Access List Indices and Values
List elements also can be accessed via their indices and the subscription operator ([]):

The function call range(len(concatenated_list)) produces a sequence of integers rep-
resenting concatenated_list’s indices (in this case, 0 through 4). When looping in this
manner, you must ensure that indices remain in range. Soon, we’ll show a safer way to
access element indices and values using built-in function enumerate.

In [19]: for number in range(1, 6):
 ...: a_list += [number]
 ...:

In [20]: a_list
Out[20]: [1, 2, 3, 4, 5]

In [21]: letters = []

In [22]: letters += 'Python'

In [23]: letters
Out[23]: ['P', 'y', 't', 'h', 'o', 'n']

In [24]: list1 = [10, 20, 30]

In [25]: list2 = [40, 50]

In [26]: concatenated_list = list1 + list2

In [27]: concatenated_list
Out[27]: [10, 20, 30, 40, 50]

In [28]: for i in range(len(concatenated_list)):
 ...: print(f'{i}: {concatenated_list[i]}')
 ...:
0: 10
1: 20
2: 30
3: 40
4: 50

106 Chapter 5 Sequences: Lists and Tuples

Comparison Operators
You can compare entire lists element-by-element using comparison operators:

5.3 Tuples
As discussed in the preceding chapter, tuples are immutable and typically store heteroge-
neous data, but the data can be homogeneous. A tuple’s length is its number of elements
and cannot change during program execution.

Creating Tuples
To create an empty tuple, use empty parentheses:

Recall that you can pack a tuple by separating its values with commas:

When you output a tuple, Python always displays its contents in parentheses. You may
surround a tuple’s comma-separated list of values with optional parentheses:

In [29]: a = [1, 2, 3]

In [30]: b = [1, 2, 3]

In [31]: c = [1, 2, 3, 4]

In [32]: a == b # True: corresponding elements in both are equal
Out[32]: True

In [33]: a == c # False: a and c have different elements and lengths
Out[33]: False

In [34]: a < c # True: a has fewer elements than c
Out[34]: True

In [35]: c >= b # True: elements 0-2 are equal but c has more elements
Out[35]: True

In [1]: student_tuple = ()

In [2]: student_tuple
Out[2]: ()

In [3]: len(student_tuple)
Out[3]: 0

In [4]: student_tuple = 'John', 'Green', 3.3

In [5]: student_tuple
Out[5]: ('John', 'Green', 3.3)

In [6]: len(student_tuple)
Out[6]: 3

In [7]: another_student_tuple = ('Mary', 'Red', 3.3)

In [8]: another_student_tuple
Out[8]: ('Mary', 'Red', 3.3)

5.3 Tuples 107

The following code creates a one-element tuple:

The comma (,) that follows the string 'red' identifies a_singleton_tuple as a tuple—
the parentheses are optional. If the comma were omitted, the parentheses would be redun-
dant, and a_singleton_tuple would simply refer to the string 'red' rather than a tuple.

Accessing Tuple Elements
A tuple’s elements, though related, are often of multiple types. Usually, you do not iterate
over them. Rather, you access each individually. Like list indices, tuple indices start at 0.
The following code creates time_tuple representing an hour, minute and second, displays
the tuple, then uses its elements to calculate the number of seconds since midnight—note
that we perform a different operation with each value in the tuple:

Assigning a value to a tuple element causes a TypeError.

Adding Items to a String or Tuple
As with lists, the += augmented assignment statement can be used with strings and tuples,
even though they’re immutable. In the following code, after the two assignments, tuple1
and tuple2 refer to the same tuple object:

Concatenating the tuple (40, 50) to tuple1 creates a new tuple, then assigns a reference
to it to the variable tuple1—tuple2 still refers to the original tuple:

For a string or tuple, the item to the right of += must be a string or tuple, respectively—
mixing types causes a TypeError.

In [9]: a_singleton_tuple = ('red',) # note the comma

In [10]: a_singleton_tuple
Out[10]: ('red',)

In [11]: time_tuple = (9, 16, 1)

In [12]: time_tuple
Out[12]: (9, 16, 1)

In [13]: time_tuple[0] * 3600 + time_tuple[1] * 60 + time_tuple[2]
Out[13]: 33361

In [14]: tuple1 = (10, 20, 30)

In [15]: tuple2 = tuple1

In [16]: tuple2
Out[16]: (10, 20, 30)

In [17]: tuple1 += (40, 50)

In [18]: tuple1
Out[18]: (10, 20, 30, 40, 50)

In [19]: tuple2
Out[19]: (10, 20, 30)

108 Chapter 5 Sequences: Lists and Tuples

Appending Tuples to Lists
You can use += to append a tuple to a list:

Tuples May Contain Mutable Objects
Let’s create a student_tuple with a first name, last name and list of grades:

Even though the tuple is immutable, its list element is mutable:

In the double-subscripted name student_tuple[2][1], Python views student_tuple[2] as
the element of the tuple containing the list [98, 75, 87], then uses [1] to access the list
element containing 75. The assignment in snippet [24] replaces that grade with 85.

5.4 Unpacking Sequences
The previous chapter introduced tuple unpacking. You can unpack any sequence’s ele-
ments by assigning the sequence to a comma-separated list of variables. A ValueError
occurs if the number of variables to the left of the assignment symbol is not identical to
the number of elements in the sequence on the right:

The following code unpacks a string, a list and a sequence produced by range:

In [20]: numbers = [1, 2, 3, 4, 5]

In [21]: numbers += (6, 7)

In [22]: numbers
Out[22]: [1, 2, 3, 4, 5, 6, 7]

In [23]: student_tuple = ('Amanda', 'Blue', [98, 75, 87])

In [24]: student_tuple[2][1] = 85

In [25]: student_tuple
Out[25]: ('Amanda', 'Blue', [98, 85, 87])

In [1]: student_tuple = ('Amanda', [98, 85, 87])

In [2]: first_name, grades = student_tuple

In [3]: first_name
Out[3]: 'Amanda'

In [4]: grades
Out[4]: [98, 85, 87]

In [5]: first, second = 'hi'

In [6]: print(f'{first} {second}')
h i

In [7]: number1, number2, number3 = [2, 3, 5]

In [8]: print(f'{number1} {number2} {number3}')
2 3 5

In [9]: number1, number2, number3 = range(10, 40, 10)

In [10]: print(f'{number1} {number2} {number3}')
10 20 30

5.4 Unpacking Sequences 109

Swapping Values Via Packing and Unpacking
You can swap two variables’ values using sequence packing and unpacking:

Accessing Indices and Values Safely with Built-in Function enumerate
Earlier, we called range to produce a sequence of index values, then accessed list elements
in a for loop using the index values and the subscription operator ([]). This is error-prone
because you could pass the wrong arguments to range. If any value produced by range is
an out-of-bounds index, using it as an index causes an IndexError.

The preferred mechanism for accessing an element’s index and value is the built-in
function enumerate. This function receives an iterable and creates an iterator that, for each
element, returns a tuple containing the element’s index and value. The following code uses
the built-in function list to create a list containing enumerate’s results:

Similarly the built-in function tuple creates a tuple from a sequence:

The following for loop unpacks each tuple returned by enumerate into the variables
index and value and displays them:

Creating a Primitive Bar Chart
The following script creates a primitive bar chart where each bar’s length is made of aster-
isks (*) and is proportional to the list’s corresponding element value. We use the function
enumerate to access the list’s indices and values safely. To run this example, change to this
chapter’s ch05 examples folder, then enter:

ipython fig05_01.py

or, if you’re in IPython already, use the command:

run fig05_01.py

In [11]: number1 = 99

In [12]: number2 = 22

In [13]: number1, number2 = (number2, number1)

In [14]: print(f'number1 = {number1}; number2 = {number2}')
number1 = 22; number2 = 99

In [15]: colors = ['red', 'orange', 'yellow']

In [16]: list(enumerate(colors))
Out[16]: [(0, 'red'), (1, 'orange'), (2, 'yellow')]

In [17]: tuple(enumerate(colors))
Out[17]: ((0, 'red'), (1, 'orange'), (2, 'yellow'))

In [18]: for index, value in enumerate(colors):
 ...: print(f'{index}: {value}')
 ...:
0: red
1: orange
2: yellow

110 Chapter 5 Sequences: Lists and Tuples

The for statement uses enumerate to get each element’s index and value, then dis-
plays a formatted line containing the index, the element value and the corresponding bar
of asterisks. The expression

"*" * value

creates a string consisting of value asterisks. When used with a sequence, the multiplica-
tion operator (*) repeats the sequence—in this case, the string "*"—value times. Later in
this chapter, we’ll use the open-source Seaborn and Matplotlib libraries to display a
publication-quality bar chart visualization.

5.5 Sequence Slicing
You can slice sequences to create new sequences of the same type containing subsets of the
original elements. Slice operations can modify mutable sequences—those that do not
modify a sequence work identically for lists, tuples and strings.

Specifying a Slice with Starting and Ending Indices
Let’s create a slice consisting of the elements at indices 2 through 5 of a list:

The slice copies elements from the starting index to the left of the colon (2) up to, but not
including, the ending index to the right of the colon (6). The original list is not modified.

Specifying a Slice with Only an Ending Index
If you omit the starting index, 0 is assumed. So, the slice numbers[:6] is equivalent to the
slice numbers[0:6]:

1 # fig05_01.py
2 """Displaying a bar chart"""
3 numbers = [19, 3, 15, 7, 11]
4
5 print('\nCreating a bar chart from numbers:')
6 print(f'Index{"Value":>8} Bar')
7
8 for index, value in enumerate(numbers):
9 print(f'{index:>5}{value:>8} {"*" * value}')

Creating a bar chart from numbers:
Index Value Bar
 0 19 *******************
 1 3 ***
 2 15 ***************
 3 7 *******
 4 11 ***********

In [1]: numbers = [2, 3, 5, 7, 11, 13, 17, 19]

In [2]: numbers[2:6]
Out[2]: [5, 7, 11, 13]

In [3]: numbers[:6]
Out[3]: [2, 3, 5, 7, 11, 13]

5.5 Sequence Slicing 111

Specifying a Slice with Only a Starting Index
If you omit the ending index, Python assumes the sequence’s length (8 here), so snippet
[5]’s slice contains the elements of numbers at indices 6 and 7:

Specifying a Slice with No Indices
Omitting both the start and end indices copies the entire sequence:

Though slices create new objects, slices make shallow copies of the elements—that is, they
copy the elements’ references but not the objects they point to. So, in the snippet above,
the new list’s elements refer to the same objects as the original list’s elements, rather than
to separate copies. In the “Array-Oriented Programming with NumPy” chapter, we’ll
explain deep copying, which actually copies the referenced objects themselves, and we’ll
point out when deep copying is preferred.

Slicing with Steps
The following code uses a step of 2 to create a slice with every other element of numbers:

We omitted the start and end indices, so 0 and len(numbers) are assumed, respectively.

Slicing with Negative Indices and Steps
You can use a negative step to select slices in reverse order. The following code concisely
creates a new list in reverse order:

This is equivalent to:

Modifying Lists Via Slices
You can modify a list by assigning to a slice of it—the rest of the list is unchanged. The
following code replaces numbers’ first three elements, leaving the rest unchanged:

In [4]: numbers[0:6]
Out[4]: [2, 3, 5, 7, 11, 13]

In [5]: numbers[6:]
Out[5]: [17, 19]

In [6]: numbers[6:len(numbers)]
Out[6]: [17, 19]

In [7]: numbers[:]
Out[7]: [2, 3, 5, 7, 11, 13, 17, 19]

In [8]: numbers[::2]
Out[8]: [2, 5, 11, 17]

In [9]: numbers[::-1]
Out[9]: [19, 17, 13, 11, 7, 5, 3, 2]

In [10]: numbers[-1:-9:-1]
Out[10]: [19, 17, 13, 11, 7, 5, 3, 2]

In [11]: numbers[0:3] = ['two', 'three', 'five']

In [12]: numbers
Out[12]: ['two', 'three', 'five', 7, 11, 13, 17, 19]

112 Chapter 5 Sequences: Lists and Tuples

The following deletes only the first three elements of numbers by assigning an empty
list to the three-element slice:

The following assigns a list’s elements to a slice of every other element of numbers:

Let’s delete all the elements in numbers, leaving the existing list empty:

Deleting numbers’ contents (snippet [19]) is different from assigning numbers a new
empty list [] (snippet [22]). To prove this, we display numbers’ identity after each oper-
ation. The identities are different, so they represent separate objects in memory:

When you assign a new object to a variable (as in snippet [21]), the original object will be
garbage collected if no other variables refer to it.

5.6 del Statement
The del statement also can be used to remove elements from a list and to delete variables
from the interactive session. You can remove the element at any valid index or the ele-
ment(s) from any valid slice.

Deleting the Element at a Specific List Index
Let’s create a list, then use del to remove its last element:

In [13]: numbers[0:3] = []

In [14]: numbers
Out[14]: [7, 11, 13, 17, 19]

In [15]: numbers = [2, 3, 5, 7, 11, 13, 17, 19]

In [16]: numbers[::2] = [100, 100, 100, 100]

In [17]: numbers
Out[17]: [100, 3, 100, 7, 100, 13, 100, 19]

In [18]: id(numbers)
Out[18]: 4434456648

In [19]: numbers[:] = []

In [20]: numbers
Out[20]: []

In [21]: id(numbers)
Out[21]: 4434456648

In [22]: numbers = []

In [23]: numbers
Out[23]: []

In [24]: id(numbers)
Out[24]: 4406030920

In [1]: numbers = list(range(0, 10))

In [2]: numbers
Out[2]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

5.7 Passing Lists to Functions 113

Deleting a Slice from a List
The following deletes the list’s first two elements:

The following uses a step in the slice to delete every other element from the entire list:

Deleting a Slice Representing the Entire List
The following code deletes all of the list’s elements:

Deleting a Variable from the Current Session
The del statement can delete any variable. Let’s delete numbers from the interactive ses-
sion, then attempt to display the variable’s value, causing a NameError:

5.7 Passing Lists to Functions
In the last chapter, we mentioned that all objects are passed by reference and demonstrated
passing an immutable object as a function argument. Here, we discuss references further
by examining what happens when a program passes a mutable list object to a function.

Passing an Entire List to a Function
Consider the function modify_elements, which receives a reference to a list and multiplies
each of the list’s element values by 2:

In [3]: del numbers[-1]

In [4]: numbers
Out[4]: [0, 1, 2, 3, 4, 5, 6, 7, 8]

In [5]: del numbers[0:2]

In [6]: numbers
Out[6]: [2, 3, 4, 5, 6, 7, 8]

In [7]: del numbers[::2]

In [8]: numbers
Out[8]: [3, 5, 7]

In [9]: del numbers[:]

In [10]: numbers
Out[10]: []

In [11]: del numbers

In [12]: numbers

NameError Traceback (most recent call last)
<ipython-input-12-426f8401232b> in <module>()
----> 1 numbers

NameError: name 'numbers' is not defined

114 Chapter 5 Sequences: Lists and Tuples

Function modify_elements’ items parameter receives a reference to the original list, so the
statement in the loop’s suite modifies each element in the original list object.

Passing a Tuple to a Function
When you pass a tuple to a function, attempting to modify the tuple’s immutable elements
results in a TypeError:

Recall that tuples may contain mutable objects, such as lists. Those objects still can be
modified when a tuple is passed to a function.

A Note Regarding Tracebacks
The previous traceback shows the two snippets that led to the TypeError. The first is snip-
pet [7]’s function call. The second is snippet [1]’s function definition. Line numbers pre-
cede each snippet’s code. We’ve demonstrated mostly single-line snippets. When an
exception occurs in such a snippet, it’s always preceded by ----> 1, indicating that line 1
(the snippet’s only line) caused the exception. Multiline snippets like the definition of
modify_elements show consecutive line numbers starting at 1. The notation ----> 4
above indicates that the exception occurred in line 4 of modify_elements. No matter how
long the traceback is, the last line of code with ----> caused the exception.

In [1]: def modify_elements(items):
 ...: """"Multiplies all element values in items by 2."""
 ...: for i in range(len(items)):
 ...: items[i] *= 2
 ...:

In [2]: numbers = [10, 3, 7, 1, 9]

In [3]: modify_elements(numbers)

In [4]: numbers
Out[4]: [20, 6, 14, 2, 18]

In [5]: numbers_tuple = (10, 20, 30)

In [6]: numbers_tuple
Out[6]: (10, 20, 30)

In [7]: modify_elements(numbers_tuple)

TypeError Traceback (most recent call last)
<ipython-input-7-9339741cd595> in <module>()
----> 1 modify_elements(numbers_tuple)

<ipython-input-1-27acb8f8f44c> in modify_elements(items)
 2 """"Multiplies all element values in items by 2."""
 3 for i in range(len(items)):
----> 4 items[i] *= 2
 5
 6

TypeError: 'tuple' object does not support item assignment

5.8 Sorting Lists 115

5.8 Sorting Lists
Sorting enables you to arrange data either in ascending or descending order.

Sorting a List in Ascending Order
List method sort modifies a list to arrange its elements in ascending order:

Sorting a List in Descending Order
To sort a list in descending order, call list method sort with the optional keyword argu-
ment reverse set to True (False is the default):

Built-In Function sorted
Built-in function sorted returns a new list containing the sorted elements of its argument
sequence—the original sequence is unmodified. The following code demonstrates function
sorted for a list, a string and a tuple:

In [1]: numbers = [10, 3, 7, 1, 9, 4, 2, 8, 5, 6]

In [2]: numbers.sort()

In [3]: numbers
Out[3]: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

In [4]: numbers.sort(reverse=True)

In [5]: numbers
Out[5]: [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

In [6]: numbers = [10, 3, 7, 1, 9, 4, 2, 8, 5, 6]

In [7]: ascending_numbers = sorted(numbers)

In [8]: ascending_numbers
Out[8]: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

In [9]: numbers
Out[9]: [10, 3, 7, 1, 9, 4, 2, 8, 5, 6]

In [10]: letters = 'fadgchjebi'

In [11]: ascending_letters = sorted(letters)

In [12]: ascending_letters
Out[12]: ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']

In [13]: letters
Out[13]: 'fadgchjebi'

In [14]: colors = ('red', 'orange', 'yellow', 'green', 'blue')

In [15]: ascending_colors = sorted(colors)

In [16]: ascending_colors
Out[16]: ['blue', 'green', 'orange', 'red', 'yellow']

In [17]: colors
Out[17]: ('red', 'orange', 'yellow', 'green', 'blue')

116 Chapter 5 Sequences: Lists and Tuples

Use the optional keyword argument reverse with the value True to sort the elements in
descending order.

5.9 Searching Sequences
Often, you’ll want to determine whether a sequence (such as a list, tuple or string) contains
a value that matches a particular key value. Searching is the process of locating a key.

List Method index
List method index takes as an argument a search key—the value to locate in the list—then
searches through the list from index 0 and returns the index of the first element that
matches the search key:

A ValueError occurs if the value you’re searching for is not in the list.

Specifying the Starting Index of a Search
Using method index’s optional arguments, you can search a subset of a list’s elements. You
can use *= to multiply a sequence—that is, append a sequence to itself multiple times. After
the following snippet, numbers contains two copies of the original list’s contents:

The following code searches the updated list for the value 5 starting from index 7 and
continuing through the end of the list:

Specifying the Starting and Ending Indices of a Search
Specifying the starting and ending indices causes index to search from the starting index
up to but not including the ending index location. The call to index in snippet [5]:

numbers.index(5, 7)

assumes the length of numbers as its optional third argument and is equivalent to:

numbers.index(5, 7, len(numbers))

The following looks for the value 7 in the range of elements with indices 0 through 3:

Operators in and not in
Operator in tests whether its right operand’s iterable contains the left operand’s value:

In [1]: numbers = [3, 7, 1, 4, 2, 8, 5, 6]

In [2]: numbers.index(5)
Out[2]: 6

In [3]: numbers *= 2

In [4]: numbers
Out[4]: [3, 7, 1, 4, 2, 8, 5, 6, 3, 7, 1, 4, 2, 8, 5, 6]

In [5]: numbers.index(5, 7)
Out[5]: 14

In [6]: numbers.index(7, 0, 4)
Out[6]: 1

In [7]: 1000 in numbers
Out[7]: False

5.10 Other List Methods 117

Similarly, operator not in tests whether its right operand’s iterable does not contain the
left operand’s value:

Using Operator in to Prevent a ValueError
You can use the operator in to ensure that calls to method index do not result in ValueEr-
rors for search keys that are not in the corresponding sequence:

Built-In Functions any and all
Sometimes you simply need to know whether any item in an iterable is True or whether
all the items are True. The built-in function any returns True if any item in its iterable
argument is True. The built-in function all returns True if all items in its iterable argu-
ment are True. Recall that nonzero values are True and 0 is False. Non-empty iterable
objects also evaluate to True, whereas any empty iterable evaluates to False. Functions any
and all are additional examples of internal iteration in functional-style programming.

5.10 Other List Methods
Lists also have methods that add and remove elements. Consider the list color_names:

Inserting an Element at a Specific List Index
Method insert adds a new item at a specified index. The following inserts 'red' at index
0:

Adding an Element to the End of a List
You can add a new item to the end of a list with method append:

In [8]: 5 in numbers
Out[8]: True

In [9]: 1000 not in numbers
Out[9]: True

In [10]: 5 not in numbers
Out[10]: False

In [11]: key = 1000

In [12]: if key in numbers:
 ...: print(f'found {key} at index {numbers.index(search_key)}')
 ...: else:
 ...: print(f'{key} not found')
 ...:
1000 not found

In [1]: color_names = ['orange', 'yellow', 'green']

In [2]: color_names.insert(0, 'red')

In [3]: color_names
Out[3]: ['red', 'orange', 'yellow', 'green']

In [4]: color_names.append('blue')

In [5]: color_names
Out[5]: ['red', 'orange', 'yellow', 'green', 'blue']

118 Chapter 5 Sequences: Lists and Tuples

Adding All the Elements of a Sequence to the End of a List
Use list method extend to add all the elements of another sequence to the end of a list:

This is the equivalent of using +=. The following code adds all the characters of a string
then all the elements of a tuple to a list:

Rather than creating a temporary variable, like t, to store a tuple before appending it
to a list, you might want to pass a tuple directly to extend. In this case, the tuple’s paren-
theses are required, because extend expects one iterable argument:

A TypeError occurs if you omit the required parentheses.

Removing the First Occurrence of an Element in a List
Method remove deletes the first element with a specified value—a ValueError occurs if
remove’s argument is not in the list:

Emptying a List
To delete all the elements in a list, call method clear:

This is the equivalent of the previously shown slice assignment

color_names[:] = []

In [6]: color_names.extend(['indigo', 'violet'])

In [7]: color_names
Out[7]: ['red', 'orange', 'yellow', 'green', 'blue', 'indigo', 'violet']

In [8]: sample_list = []

In [9]: s = 'abc'

In [10]: sample_list.extend(s)

In [11]: sample_list
Out[11]: ['a', 'b', 'c']

In [12]: t = (1, 2, 3)

In [13]: sample_list.extend(t)

In [14]: sample_list
Out[14]: ['a', 'b', 'c', 1, 2, 3]

In [15]: sample_list.extend((4, 5, 6)) # note the extra parentheses

In [16]: sample_list
Out[16]: ['a', 'b', 'c', 1, 2, 3, 4, 5, 6]

In [17]: color_names.remove('green')

In [18]: color_names
Out[18]: ['red', 'orange', 'yellow', 'blue', 'indigo', 'violet']

In [19]: color_names.clear()

In [20]: color_names
Out[20]: []

5.11 Simulating Stacks with Lists 119

Counting the Number of Occurrences of an Item
List method count searches for its argument and returns the number of times it is found:

Reversing a List’s Elements
List method reverse reverses the contents of a list in place, rather than creating a reversed
copy, as we did with a slice previously:

Copying a List
List method copy returns a new list containing a shallow copy of the original list:

This is equivalent to the previously demonstrated slice operation:

copied_list = color_names[:]

5.11 Simulating Stacks with Lists
The preceding chapter introduced the function-call stack. Python does not have a built-in
stack type, but you can think of a stack as a constrained list. You push using list method
append, which adds a new element to the end of the list. You pop using list method pop
with no arguments, which removes and returns the item at the end of the list.

Let’s create an empty list called stack, push (append) two strings onto it, then pop the
strings to confirm they’re retrieved in last-in, first-out (LIFO) order:

In [21]: responses = [1, 2, 5, 4, 3, 5, 2, 1, 3, 3,
 ...: 1, 4, 3, 3, 3, 2, 3, 3, 2, 2]
 ...:

In [22]: for i in range(1, 6):
 ...: print(f'{i} appears {responses.count(i)} times in responses')
 ...:
1 appears 3 times in responses
2 appears 5 times in responses
3 appears 8 times in responses
4 appears 2 times in responses
5 appears 2 times in responses

In [23]: color_names = ['red', 'orange', 'yellow', 'green', 'blue']

In [24]: color_names.reverse()

In [25]: color_names
Out[25]: ['blue', 'green', 'yellow', 'orange', 'red']

In [26]: copied_list = color_names.copy()

In [27]: copied_list
Out[27]: ['blue', 'green', 'yellow', 'orange', 'red']

In [1]: stack = []

In [2]: stack.append('red')

In [3]: stack
Out[3]: ['red']

In [4]: stack.append('green')

120 Chapter 5 Sequences: Lists and Tuples

For each pop snippet, the value that pop removes and returns is displayed. Popping from
an empty stack causes an IndexError, just like accessing a nonexistent list element with
[]. To prevent an IndexError, ensure that len(stack) is greater than 0 before calling pop.
You can run out of memory if you keep pushing items faster than you pop them.

You also can use a list to simulate another popular collection called a queue in which
you insert at the back and delete from the front. Items are retrieved from queues in first-
in, first-out (FIFO) order.

5.12 List Comprehensions
Here, we continue discussing functional-style features with list comprehensions—a concise
and convenient notation for creating new lists. List comprehensions can replace many for
statements that iterate over existing sequences and create new lists, such as:

Using a List Comprehension to Create a List of Integers
We can accomplish the same task in a single line of code with a list comprehension:

In [5]: stack
Out[5]: ['red', 'green']

In [6]: stack.pop()
Out[6]: 'green'

In [7]: stack
Out[7]: ['red']

In [8]: stack.pop()
Out[8]: 'red'

In [9]: stack
Out[9]: []

In [10]: stack.pop()

IndexError Traceback (most recent call last)
<ipython-input-10-50ea7ec13fbe> in <module>()
----> 1 stack.pop()

IndexError: pop from empty list

In [1]: list1 = []

In [2]: for item in range(1, 6):
 ...: list1.append(item)
 ...:

In [3]: list1
Out[3]: [1, 2, 3, 4, 5]

In [4]: list2 = [item for item in range(1, 6)]

In [5]: list2
Out[5]: [1, 2, 3, 4, 5]

5.13 Generator Expressions 121

Like snippet [2]’s for statement, the list comprehension’s for clause

for item in range(1, 6)

iterates over the sequence produced by range(1, 6). For each item, the list comprehen-
sion evaluates the expression to the left of the for clause and places the expression’s value
(in this case, the item itself) in the new list. Snippet [4]’s particular comprehension could
have been expressed more concisely using the function list:

list2 = list(range(1, 6))

Mapping: Performing Operations in a List Comprehension’s Expression
A list comprehension’s expression can perform tasks, such as calculations, that map ele-
ments to new values (possibly of different types). Mapping is a common functional-style
programming operation that produces a result with the same number of elements as the
original data being mapped. The following comprehension maps each value to its cube
with the expression item ** 3:

Filtering: List Comprehensions with if Clauses
Another common functional-style programming operation is filtering elements to select
only those that match a condition. This typically produces a list with fewer elements than
the data being filtered. To do this in a list comprehension, use the if clause. The following
includes in list4 only the even values produced by the for clause:

List Comprehension That Processes Another List’s Elements
The for clause can process any iterable. Let’s create a list of lowercase strings and use a list
comprehension to create a new list containing their uppercase versions:

5.13 Generator Expressions
A generator expression is similar to a list comprehension, but creates an iterable generator
object that produces values on demand. This is known as lazy evaluation. List comprehen-
sions use greedy evaluation—they create lists immediately when you execute them. For
large numbers of items, creating a list can take substantial memory and time. So generator

In [6]: list3 = [item ** 3 for item in range(1, 6)]

In [7]: list3
Out[7]: [1, 8, 27, 64, 125]

In [8]: list4 = [item for item in range(1, 11) if item % 2 == 0]

In [9]: list4
Out[9]: [2, 4, 6, 8, 10]

In [10]: colors = ['red', 'orange', 'yellow', 'green', 'blue']

In [11]: colors2 = [item.upper() for item in colors]

In [12]: colors2
Out[12]: ['RED', 'ORANGE', 'YELLOW', 'GREEN', 'BLUE']

In [13]: colors
Out[13]: ['red', 'orange', 'yellow', 'green', 'blue']

122 Chapter 5 Sequences: Lists and Tuples

expressions can reduce your program’s memory consumption and improve performance if
the whole list is not needed at once.

Generator expressions have the same capabilities as list comprehensions, but you
define them in parentheses instead of square brackets. The generator expression in snippet
[2] squares and returns only the odd values in numbers:

To show that a generator expression does not create a list, let’s assign the preceding
snippet’s generator expression to a variable and evaluate the variable:

The text "generator object <genexpr>" indicates that square_of_odds is a generator
object that was created from a generator expression (genexpr).

5.14 Filter, Map and Reduce
The preceding section introduced several functional-style features—list comprehensions,
filtering and mapping. Here we demonstrate the built-in filter and map functions for fil-
tering and mapping, respectively. We continue discussing reductions in which you process
a collection of elements into a single value, such as their count, total, product, average,
minimum or maximum.

Filtering a Sequence’s Values with the Built-In filter Function
Let’s use built-in function filter to obtain the odd values in numbers:

Like data, Python functions are objects that you can assign to variables, pass to other func-
tions and return from functions. Functions that receive other functions as arguments are
a functional-style capability called higher-order functions. For example, filter’s first
argument must be a function that receives one argument and returns True if the value
should be included in the result. The function is_odd returns True if its argument is odd.
The filter function calls is_odd once for each value in its second argument’s iterable
(numbers). Higher-order functions may also return a function as a result.

In [1]: numbers = [10, 3, 7, 1, 9, 4, 2, 8, 5, 6]

In [2]: for value in (x ** 2 for x in numbers if x % 2 != 0):
 ...: print(value, end=' ')
 ...:
9 49 1 81 25

In [3]: squares_of_odds = (x ** 2 for x in numbers if x % 2 != 0)

In [3]: squares_of_odds
Out[3]: <generator object <genexpr> at 0x1085e84c0>

In [1]: numbers = [10, 3, 7, 1, 9, 4, 2, 8, 5, 6]

In [2]: def is_odd(x):
 ...: """Returns True only if x is odd."""
 ...: return x % 2 != 0
 ...:

In [3]: list(filter(is_odd, numbers))
Out[3]: [3, 7, 1, 9, 5]

5.14 Filter, Map and Reduce 123

Function filter returns an iterator, so filter’s results are not produced until you
iterate through them. This is another example of lazy evaluation. In snippet [3], function
list iterates through the results and creates a list containing them. We can obtain the
same results as above by using a list comprehension with an if clause:

Using a lambda Rather than a Function
For simple functions like is_odd that return only a single expression’s value, you can use a
lambda expression (or simply a lambda) to define the function inline where it’s needed—
typically as it’s passed to another function:

We pass filter’s return value (an iterator) to function list here to convert the results to
a list and display them.

A lambda expression is an anonymous function—that is, a function without a name. In
the filter call

filter(lambda x: x % 2 != 0, numbers)

the first argument is the lambda

lambda x: x % 2 != 0

A lambda begins with the lambda keyword followed by a comma-separated parameter list,
a colon (:) and an expression. In this case, the parameter list has one parameter named x.
A lambda implicitly returns its expression’s value. So any simple function of the form

def function_name(parameter_list):
 return expression

may be expressed as a more concise lambda of the form

lambda parameter_list: expression

Mapping a Sequence’s Values to New Values
Let’s use built-in function map with a lambda to square each value in numbers:

Function map’s first argument is a function that receives one value and returns a new
value—in this case, a lambda that squares its argument. The second argument is an iterable
of values to map. Function map uses lazy evaluation. So, we pass to the list function the
iterator that map returns. This enables us to iterate through and create a list of the mapped
values. Here’s an equivalent list comprehension:

In [4]: [item for item in numbers if is_odd(item)]
Out[4]: [3, 7, 1, 9, 5]

In [5]: list(filter(lambda x: x % 2 != 0, numbers))
Out[5]: [3, 7, 1, 9, 5]

In [6]: numbers
Out[6]: [10, 3, 7, 1, 9, 4, 2, 8, 5, 6]

In [7]: list(map(lambda x: x ** 2, numbers))
Out[7]: [100, 9, 49, 1, 81, 16, 4, 64, 25, 36]

In [8]: [item ** 2 for item in numbers]
Out[8]: [100, 9, 49, 1, 81, 16, 4, 64, 25, 36]

124 Chapter 5 Sequences: Lists and Tuples

Combining filter and map
You can combine the preceding filter and map operations as follows:

There is a lot going on in snippet [9], so let’s take a closer look at it. First, filter returns
an iterable representing only the odd values of numbers. Then map returns an iterable rep-
resenting the squares of the filtered values. Finally, list uses map’s iterable to create the
list. You might prefer the following list comprehension to the preceding snippet:

For each value of x in numbers, the expression x ** 2 is performed only if the condition
x % 2 != 0 is True.

Reduction: Totaling the Elements of a Sequence with sum
As you know reductions process a sequence’s elements into a single value. You’ve per-
formed reductions with the built-in functions len, sum, min and max. You also can create
custom reductions using the functools module’s reduce function. See https://
docs.python.org/3/library/functools.html for a code example. When we investigate
big data and Hadoop in Chapter 16, we’ll demonstrate MapReduce programming, which
is based on the filter, map and reduce operations in functional-style programming.

5.15 Other Sequence Processing Functions
Python provides other built-in functions for manipulating sequences.

Finding the Minimum and Maximum Values Using a Key Function
We’ve previously shown the built-in reduction functions min and max using arguments,
such as ints or lists of ints. Sometimes you’ll need to find the minimum and maximum
of more complex objects, such as strings. Consider the following comparison:

The letter 'R' “comes after” 'o' in the alphabet, so you might expect 'Red' to be less than
'orange' and the condition above to be False. However, strings are compared by their
characters’ underlying numerical values, and lowercase letters have higher numerical values
than uppercase letters. You can confirm this with built-in function ord, which returns the
numerical value of a character:

Consider the list colors, which contains strings with uppercase and lowercase letters:

In [9]: list(map(lambda x: x ** 2,
 ...: filter(lambda x: x % 2 != 0, numbers)))
 ...:
Out[9]: [9, 49, 1, 81, 25]

In [10]: [x ** 2 for x in numbers if x % 2 != 0]
Out[10]: [9, 49, 1, 81, 25]

In [1]: 'Red' < 'orange'
Out[1]: True

In [2]: ord('R')
Out[2]: 82

In [3]: ord('o')
Out[3]: 111

In [4]: colors = ['Red', 'orange', 'Yellow', 'green', 'Blue']

https://docs.python.org/3/library/functools.html
https://docs.python.org/3/library/functools.html

5.15 Other Sequence Processing Functions 125

Let’s assume that we’d like to determine the minimum and maximum strings using alpha-
betical order, not numerical (lexicographical) order. If we arrange colors alphabetically

'Blue', 'green', 'orange', 'Red', 'Yellow'

you can see that 'Blue' is the minimum (that is, closest to the beginning of the alphabet),
and 'Yellow' is the maximum (that is, closest to the end of the alphabet).

Since Python compares strings using numerical values, you must first convert each
string to all lowercase or all uppercase letters. Then their numerical values will also repre-
sent alphabetical ordering. The following snippets enable min and max to determine the
minimum and maximum strings alphabetically:

The key keyword argument must be a one-parameter function that returns a value. In this
case, it’s a lambda that calls string method lower to get a string’s lowercase version. Func-
tions min and max call the key argument’s function for each element and use the results to
compare the elements.

Iterating Backward Through a Sequence
Built-in function reversed returns an iterator that enables you to iterate over a sequence’s
values backward. The following list comprehension creates a new list containing the
squares of numbers’ values in reverse order:

Combining Iterables into Tuples of Corresponding Elements
Built-in function zip enables you to iterate over multiple iterables of data at the same time.
The function receives as arguments any number of iterables and returns an iterator that
produces tuples containing the elements at the same index in each. For example, snippet
[11]’s call to zip produces the tuples ('Bob', 3.5), ('Sue', 4.0) and ('Amanda', 3.75)
consisting of the elements at index 0, 1 and 2 of each list, respectively:

We unpack each tuple into name and gpa and display them. Function zip’s shortest argu-
ment determines the number of tuples produced. Here both have the same length.

In [5]: min(colors, key=lambda s: s.lower())
Out[5]: 'Blue'

In [6]: max(colors, key=lambda s: s.lower())
Out[6]: 'Yellow'

In [7]: numbers = [10, 3, 7, 1, 9, 4, 2, 8, 5, 6]

In [7]: reversed_numbers = [item for item in reversed(numbers)]

In [8]: reversed_numbers
Out[8]: [36, 25, 64, 4, 16, 81, 1, 49, 9, 100]

In [9]: names = ['Bob', 'Sue', 'Amanda']

In [10]: grade_point_averages = [3.5, 4.0, 3.75]

In [11]: for name, gpa in zip(names, grade_point_averages):
 ...: print(f'Name={name}; GPA={gpa}')
 ...:
Name=Bob; GPA=3.5
Name=Sue; GPA=4.0
Name=Amanda; GPA=3.75

126 Chapter 5 Sequences: Lists and Tuples

5.16 Two-Dimensional Lists
Lists can contain other lists as elements. A typical use of such nested (or multidimensional)
lists is to represent tables of values consisting of information arranged in rows and col-
umns. To identify a particular table element, we specify two indices—by convention, the
first identifies the element’s row, the second the element’s column.

Lists that require two indices to identify an element are called two-dimensional lists
(or double-indexed lists or double-subscripted lists). Multidimensional lists can have
more than two indices. Here, we introduce two-dimensional lists.

Creating a Two-Dimensional List
Consider a two-dimensional list with three rows and four columns (i.e., a 3-by-4 list) that
might represent the grades of three students who each took four exams in a course:

Writing the list as follows makes its row and column tabular structure clearer:

a = [[77, 68, 86, 73], # first student's grades
 [96, 87, 89, 81], # second student's grades
 [70, 90, 86, 81]] # third student's grades

Illustrating a Two-Dimensional List
The diagram below shows the list a, with its rows and columns of exam grade values:

Identifying the Elements in a Two-Dimensional List
The following diagram shows the names of list a’s elements:

Every element is identified by a name of the form a[i][j]—a is the list’s name, and i and
j are the indices that uniquely identify each element’s row and column, respectively. The
element names in row 0 all have 0 as the first index. The element names in column 3 all
have 3 as the second index.

In [1]: a = [[77, 68, 86, 73], [96, 87, 89, 81], [70, 90, 86, 81]]

Row 0

Row 1

Row 2

77

96

70

68

87

90

86

89

86

73

Column 0 Column 1 Column 2 Column 3

81

81

Row 0

Row 1

Row 2

Column index
Row index
List name

a[0][0]

a[1][0]

a[2][0]

a[0][1]

a[1][1]

a[2][1]

a[0][2]

a[1][2]

a[2][2]

a[0][3]

Column 0 Column 1 Column 2 Column 3

a[1][3]

a[2][3]

5.16 Two-Dimensional Lists 127

In the two-dimensional list a:

• 77, 68, 86 and 73 initialize a[0][0], a[0][1], a[0][2] and a[0][3], respectively,

• 96, 87, 89 and 81 initialize a[1][0], a[1][1], a[1][2] and a[1][3], respectively,
and

• 70, 90, 86 and 81 initialize a[2][0], a[2][1], a[2][2] and a[2][3], respectively.

A list with m rows and n columns is called an m-by-n list and has m × n elements.
The following nested for statement outputs the rows of the preceding two-dimen-

sional list one row at a time:

How the Nested Loops Execute
Let’s modify the nested loop to display the list’s name and the row and column indices and
value of each element:

The outer for statement iterates over the two-dimensional list’s rows one row at a time.
During each iteration of the outer for statement, the inner for statement iterates over each
column in the current row. So in the first iteration of the outer loop, row 0 is

[77, 68, 86, 73]

and the nested loop iterates through this list’s four elements a[0][0]=77, a[0][1]=68,
a[0][2]=86 and a[0][3]=73.

In the second iteration of the outer loop, row 1 is

[96, 87, 89, 81]

and the nested loop iterates through this list’s four elements a[1][0]=96, a[1][1]=87,
a[1][2]=89 and a[1][3]=81.

In the third iteration of the outer loop, row 2 is

[70, 90, 86, 81]

and the nested loop iterates through this list’s four elements a[2][0]=70, a[2][1]=90,
a[2][2]=86 and a[2][3]=81.

In the “Array-Oriented Programming with NumPy” chapter, we’ll cover the NumPy
library’s ndarray collection and the Pandas library’s DataFrame collection. These enable

In [2]: for row in a:
 ...: for item in row:
 ...: print(item, end=' ')
 ...: print()
 ...:
77 68 86 73
96 87 89 81
70 90 86 81

In [3]: for i, row in enumerate(a):
 ...: for j, item in enumerate(row):
 ...: print(f'a[{i}][{j}]={item} ', end=' ')
 ...: print()
 ...:
a[0][0]=77 a[0][1]=68 a[0][2]=86 a[0][3]=73
a[1][0]=96 a[1][1]=87 a[1][2]=89 a[1][3]=81
a[2][0]=70 a[2][1]=90 a[2][2]=86 a[2][3]=81

128 Chapter 5 Sequences: Lists and Tuples

you to manipulate multidimensional collections more concisely and conveniently than the
two-dimensional list manipulations you’ve seen in this section.

5.17 Intro to Data Science: Simulation and Static
Visualizations
The last few chapters’ Intro to Data Science sections discussed basic descriptive statistics.
Here, we focus on visualizations, which help you “get to know” your data. Visualizations
give you a powerful way to understand data that goes beyond simply looking at raw data.

We use two open-source visualization libraries—Seaborn and Matplotlib—to display
static bar charts showing the final results of a six-sided-die-rolling simulation. The Seaborn
visualization library is built over the Matplotlib visualization library and simplifies many
Matplotlib operations. We’ll use aspects of both libraries, because some of the Seaborn
operations return objects from the Matplotlib library. In the next chapter’s Intro to Data
Science section, we’ll make things “come alive” with dynamic visualizations.

5.17.1 Sample Graphs for 600, 60,000 and 6,000,000 Die Rolls
The screen capture below shows a vertical bar chart that for 600 die rolls summarizes the
frequencies with which each of the six faces appear, and their percentages of the total. Sea-
born refers to this type of graph as a bar plot:

Here we expect about 100 occurrences of each die face. However, with such a small
number of rolls, none of the frequencies is exactly 100 (though several are close) and most
of the percentages are not close to 16.667% (about 1/6th). As we run the simulation for
60,000 die rolls, the bars will become much closer in size. At 6,000,000 die rolls, they’ll
appear to be exactly the same size. This is the “law of large numbers” at work. The next
chapter will show the lengths of the bars changing dynamically.

We’ll discuss how to control the plot’s appearance and contents, including:

• the graph title inside the window (Rolling a Six-Sided Die 600 Times),

• the descriptive labels Die Value for the x-axis and Frequency for the y-axis,

5.17 Intro to Data Science: Simulation and Static Visualizations 129

• the text displayed above each bar, representing the frequency and percentage of the
total rolls, and

• the bar colors.

We’ll use various Seaborn default options. For example, Seaborn determines the text labels
along the x-axis from the die face values 1–6 and the text labels along the y-axis from the
actual die frequencies. Behind the scenes, Matplotlib determines the positions and sizes of
the bars, based on the window size and the magnitudes of the values the bars represent. It
also positions the Frequency axis’s numeric labels based on the actual die frequencies that
the bars represent. There are many more features you can customize. You should tweak
these attributes to your personal preferences.

The first screen capture below shows the results for 60,000 die rolls—imagine trying
to do this by hand. In this case, we expect about 10,000 of each face. The second screen
capture below shows the results for 6,000,000 rolls—surely something you’d never do by
hand! In this case, we expect about 1,000,000 of each face, and the frequency bars appear
to be identical in length (they’re close but not exactly the same length). Note that with
more die rolls, the frequency percentages are much closer to the expected 16.667%.

5.17.2 Visualizing Die-Roll Frequencies and Percentages
In this section, you’ll interactively develop the bar plots shown in the preceding section.

Launching IPython for Interactive Matplotlib Development
IPython has built-in support for interactively developing Matplotlib graphs, which you
also need to develop Seaborn graphs. Simply launch IPython with the command:

ipython --matplotlib

Importing the Libraries
First, let’s import the libraries we’ll use:

In [1]: import matplotlib.pyplot as plt

In [2]: import numpy as np

130 Chapter 5 Sequences: Lists and Tuples

1. The matplotlib.pyplot module contains the Matplotlib library’s graphing ca-
pabilities that we use. This module typically is imported with the name plt.

2. The NumPy (Numerical Python) library includes the function unique that we’ll
use to summarize the die rolls. The numpy module typically is imported as np.

3. The random module contains Python’s random-number generation functions.

4. The seaborn module contains the Seaborn library’s graphing capabilities we use.
This module typically is imported with the name sns. Search for why this curious
abbreviation was chosen.

Rolling the Die and Calculating Die Frequencies
Next, let’s use a list comprehension to create a list of 600 random die values, then use
NumPy’s unique function to determine the unique roll values (most likely all six possible
face values) and their frequencies:

The NumPy library provides the high-performance ndarray collection, which is typically
much faster than lists.1 Though we do not use ndarray directly here, the NumPy unique
function expects an ndarray argument and returns an ndarray. If you pass a list (like
rolls), NumPy converts it to an ndarray for better performance. The ndarray that
unique returns we’ll simply assign to a variable for use by a Seaborn plotting function.

Specifying the keyword argument return_counts=True tells unique to count each
unique value’s number of occurrences. In this case, unique returns a tuple of two one-
dimensional ndarrays containing the sorted unique values and the corresponding fre-
quencies, respectively. We unpack the tuple’s ndarrays into the variables values and fre-
quencies. If return_counts is False, only the list of unique values is returned.

Creating the Initial Bar Plot
Let’s create the bar plot’s title, set its style, then graph the die faces and frequencies:

Snippet [7]’s f-string includes the number of die rolls in the bar plot’s title. The comma
(,) format specifier in

{len(rolls):,}

displays the number with thousands separators—so, 60000 would be displayed as 60,000.
By default, Seaborn plots graphs on a plain white background, but it provides several

styles to choose from ('darkgrid', 'whitegrid', 'dark', 'white' and 'ticks'). Snippet

In [3]: import random

In [4]: import seaborn as sns

In [5]: rolls = [random.randrange(1, 7) for i in range(600)]

In [6]: values, frequencies = np.unique(rolls, return_counts=True)

1. We’ll run a performance comparison in Chapter 7 where we discuss ndarray in depth.

In [7]: title = f'Rolling a Six-Sided Die {len(rolls):,} Times'

In [8]: sns.set_style('whitegrid')

In [9]: axes = sns.barplot(x=values, y=frequencies, palette='bright')

5.17 Intro to Data Science: Simulation and Static Visualizations 131

[8] specifies the 'whitegrid' style, which displays light-gray horizontal lines in the verti-
cal bar plot. These help you see more easily how each bar’s height corresponds to the
numeric frequency labels at the bar plot’s left side.

Snippet [9] graphs the die frequencies using Seaborn’s barplot function. When you
execute this snippet, the following window appears (because you launched IPython with
the --matplotlib option):

Seaborn interacts with Matplotlib to display the bars by creating a Matplotlib Axes object,
which manages the content that appears in the window. Behind the scenes, Seaborn uses
a Matplotlib Figure object to manage the window in which the Axes will appear. Func-
tion barplot’s first two arguments are ndarrays containing the x-axis and y-axis values,
respectively. We used the optional palette keyword argument to choose Seaborn’s pre-
defined color palette 'bright'. You can view the palette options at:

https://seaborn.pydata.org/tutorial/color_palettes.html

Function barplot returns the Axes object that it configured. We assign this to the variable
axes so we can use it to configure other aspects of our final plot. Any changes you make
to the bar plot after this point will appear immediately when you execute the corresponding
snippet.

Setting the Window Title and Labeling the x- and y-Axes
The next two snippets add some descriptive text to the bar plot:

Snippet [10] uses the axes object’s set_title method to display the title string cen-
tered above the plot. This method returns a Text object containing the title and its location
in the window, which IPython simply displays as output for confirmation. You can ignore
the Out[]s in the snippets above.

Snippet [11] add labels to each axis. The set method receives keyword arguments for
the Axes object’s properties to set. The method displays the xlabel text along the x-axis,

In [10]: axes.set_title(title)
Out[10]: Text(0.5,1,'Rolling a Six-Sided Die 600 Times')

In [11]: axes.set(xlabel='Die Value', ylabel='Frequency')
Out[11]: [Text(92.6667,0.5,'Frequency'), Text(0.5,58.7667,'Die Value')]

https://seaborn.pydata.org/tutorial/color_palettes.html

132 Chapter 5 Sequences: Lists and Tuples

and the ylabel text along the y-axis, and returns a list of Text objects containing the labels
and their locations. The bar plot now appears as follows:

Finalizing the Bar Plot
The next two snippets complete the graph by making room for the text above each bar,
then displaying it:

To make room for the text above the bars, snippet [12] scales the y-axis by 10%. We
chose this value via experimentation. The Axes object’s set_ylim method has many
optional keyword arguments. Here, we use only top to change the maximum value repre-
sented by the y-axis. We multiplied the largest frequency by 1.10 to ensure that the y-axis
is 10% taller than the tallest bar.

Finally, snippet [13] displays each bar’s frequency value and percentage of the total
rolls. The axes object’s patches collection contains two-dimensional colored shapes that
represent the plot’s bars. The for statement uses zip to iterate through the patches and
their corresponding frequency values. Each iteration unpacks into bar and frequency
one of the tuples zip returns. The for statement’s suite operates as follows:

• The first statement calculates the center x-coordinate where the text will appear.
We calculate this as the sum of the bar’s left-edge x-coordinate (bar.get_x())
and half of the bar’s width (bar.get_width() / 2.0).

• The second statement gets the y-coordinate where the text will appear—
bar.get_y() represents the bar’s top.

• The third statement creates a two-line string containing that bar’s frequency and
the corresponding percentage of the total die rolls.

In [12]: axes.set_ylim(top=max(frequencies) * 1.10)
Out[12]: (0.0, 122.10000000000001)

In [13]: for bar, frequency in zip(axes.patches, frequencies):
 ...: text_x = bar.get_x() + bar.get_width() / 2.0
 ...: text_y = bar.get_height()
 ...: text = f'{frequency:,}\n{frequency / len(rolls):.3%}'
 ...: axes.text(text_x, text_y, text,
 ...: fontsize=11, ha='center', va='bottom')
 ...:

5.17 Intro to Data Science: Simulation and Static Visualizations 133

• The last statement calls the Axes object’s text method to display the text above
the bar. This method’s first two arguments specify the text’s x–y position, and the
third argument is the text to display. The keyword argument ha specifies the hor-
izontal alignment—we centered text horizontally around the x-coordinate. The
keyword argument va specifies the vertical alignment—we aligned the bottom of
the text with at the y-coordinate. The final bar plot is shown below:

Rolling Again and Updating the Bar Plot—Introducing IPython Magics
Now that you’ve created a nice bar plot, you probably want to try a different number of
die rolls. First, clear the existing graph by calling Matplotlib’s cla (clear axes) function:

IPython provides special commands called magics for conveniently performing vari-
ous tasks. Let’s use the %recall magic to get snippet [5], which created the rolls list, and
place the code at the next In [] prompt:

You can now edit the snippet to change the number of rolls to 60000, then press Enter to
create a new list:

Next, recall snippets [6] through [13]. This displays all the snippets in the specified
range in the next In [] prompt. Press Enter to re-execute these snippets:

In [14]: plt.cla()

In [15]: %recall 5

In [16]: rolls = [random.randrange(1, 7) for i in range(600)]

In [16]: rolls = [random.randrange(1, 7) for i in range(60000)]

In [17]: %recall 6-13

In [18]: values, frequencies = np.unique(rolls, return_counts=True)
 ...: title = f'Rolling a Six-Sided Die {len(rolls):,} Times'
 ...: sns.set_style('whitegrid')
 ...: axes = sns.barplot(x=values, y=frequencies, palette='bright')
 ...: axes.set_title(title)
 ...: axes.set(xlabel='Die Value', ylabel='Frequency')
 ...: axes.set_ylim(top=max(frequencies) * 1.10)

134 Chapter 5 Sequences: Lists and Tuples

The updated bar plot is shown below:

Saving Snippets to a File with the %save Magic
Once you’ve interactively created a plot, you may want to save the code to a file so you can
turn it into a script and run it in the future. Let’s use the %save magic to save snippets 1
through 13 to a file named RollDie.py. IPython indicates the file to which the lines were
written, then displays the lines that it saved:

 ...: for bar, frequency in zip(axes.patches, frequencies):
 ...: text_x = bar.get_x() + bar.get_width() / 2.0
 ...: text_y = bar.get_height()
 ...: text = f'{frequency:,}\n{frequency / len(rolls):.3%}'
 ...: axes.text(text_x, text_y, text,
 ...: fontsize=11, ha='center', va='bottom')
 ...:

In [19]: %save RollDie.py 1-13
The following commands were written to file `RollDie.py`:
import matplotlib.pyplot as plt
import numpy as np
import random
import seaborn as sns
rolls = [random.randrange(1, 7) for i in range(600)]
values, frequencies = np.unique(rolls, return_counts=True)
title = f'Rolling a Six-Sided Die {len(rolls):,} Times'
sns.set_style("whitegrid")
axes = sns.barplot(values, frequencies, palette='bright')
axes.set_title(title)
axes.set(xlabel='Die Value', ylabel='Frequency')
axes.set_ylim(top=max(frequencies) * 1.10)
for bar, frequency in zip(axes.patches, frequencies):
 text_x = bar.get_x() + bar.get_width() / 2.0
 text_y = bar.get_height()
 text = f'{frequency:,}\n{frequency / len(rolls):.3%}'
 axes.text(text_x, text_y, text,
 fontsize=11, ha='center', va='bottom')

5.18 Wrap-Up 135

Command-Line Arguments; Displaying a Plot from a Script
Provided with this chapter’s examples is an edited version of the RollDie.py file you saved
above. We added comments and a two modifications so you can run the script with an
argument that specifies the number of die rolls, as in:

ipython RollDie.py 600

The Python Standard Library’s sys module enables a script to receive command-line
arguments that are passed into the program. These include the script’s name and any values
that appear to the right of it when you execute the script. The sys module’s argv list con-
tains the arguments. In the command above, argv[0] is the string 'RollDie.py' and
argv[1] is the string '600'. To control the number of die rolls with the command-line
argument’s value, we modified the statement that creates the rolls list as follows:

rolls = [random.randrange(1, 7) for i in range(int(sys.argv[1]))]

Note that we converted the argv[1] string to an int.
Matplotlib and Seaborn do not automatically display the plot for you when you create

it in a script. So at the end of the script we added the following call to Matplotlib’s show
function, which displays the window containing the graph:

plt.show()

5.18 Wrap-Up
This chapter presented more details of the list and tuple sequences. You created lists,
accessed their elements and determined their length. You saw that lists are mutable, so you
can modify their contents, including growing and shrinking the lists as your programs exe-
cute. You saw that accessing a nonexistent element causes an IndexError. You used for
statements to iterate through list elements.

We discussed tuples, which like lists are sequences, but are immutable. You unpacked
a tuple’s elements into separate variables. You used enumerate to create an iterable of
tuples, each with a list index and corresponding element value.

You learned that all sequences support slicing, which creates new sequences with subsets
of the original elements. You used the del statement to remove elements from lists and delete
variables from interactive sessions. We passed lists, list elements and slices of lists to func-
tions. You saw how to search and sort lists, and how to search tuples. We used list methods
to insert, append and remove elements, and to reverse a list’s elements and copy lists.

We showed how to simulate stacks with lists. We used the concise list-comprehension
notation to create new lists. We used additional built-in methods to sum list elements, iter-
ate backward through a list, find the minimum and maximum values, filter values and map
values to new values. We showed how nested lists can represent two-dimensional tables in
which data is arranged in rows and columns. You saw how nested for loops process two-
dimensional lists.

The chapter concluded with an Intro to Data Science section that presented a die-roll-
ing simulation and static visualizations. A detailed code example used the Seaborn and
Matplotlib visualization libraries to create a static bar plot visualization of the simulation’s
final results. In the next Intro to Data Science section, we use a die-rolling simulation with
a dynamic bar plot visualization to make the plot “come alive.”

136 Chapter 5 Sequences: Lists and Tuples

In the next chapter, “Dictionaries and Sets,” we’ll continue our discussion of Python’s
built-in collections. We’ll use dictionaries to store unordered collections of key–value pairs
that map immutable keys to values, just as a conventional dictionary maps words to defi-
nitions. We’ll use sets to store unordered collections of unique elements.

 In the “Array-Oriented Programming with NumPy” chapter, we’ll discuss NumPy’s
ndarray collection in more detail. You’ll see that while lists are fine for small amounts of
data, they are not efficient for the large amounts of data you’ll encounter in big data ana-
lytics applications. For such cases, the NumPy library’s highly optimized ndarray collec-
tion should be used. ndarray (n-dimensional array) can be much faster than lists. We’ll
run Python profiling tests to see just how much faster. As you’ll see, NumPy also includes
many capabilities for conveniently and efficiently manipulating arrays of many dimen-
sions. In big data analytics applications, the processing demands can be humongous, so
everything we can do to improve performance significantly matters. In our “Big Data:
Hadoop, Spark, NoSQL and IoT” chapter, you’ll use one of the most popular high-per-
formance big-data databases—MongoDB.2

2. The database’s name is rooted in the word “humongous.”

Symbols
^ regex metacharacter 206, 208
^ set difference operator 150
^= set symmetric difference

augmented assignment 151
_ (digit separator) 77
_ SQL wildcard character 512
, (comma) in singleton tuple 107
: (colon) 44
!= inequality operator 41, 45
? to access help in IPython 74
?? to access help in IPython (include

source code) 74
. regular expression metacharacter

210
\’ single-quote-character escape

sequence 37
’relu’ (Rectified Linear Unit)

activation function 475
\" double-quote-character escape

sequence 37
“is-a” relationships 267
(and) regex metacharacters 209
[] regex character class 205
[] subscription operator 103, 105
{} for creating a dictionary 138
{} placeholder in a format string

196
{n,} quantifier (regex) 206
{n,m} quantifier (regex) 207
@-mentions 337, 353
* multiplication operator 33, 45
* operator for unpacking an iterable

into function arguments 86
* quantifier (regex) 206
* SQL wildcard character 509
* string repetition operator 110, 196
** exponentiation operator 33, 45
*= for lists 116
/ true division operator 33, 45
// floor division operator 33, 45
\ continuation character 38, 44
\ escape character 37
\ regex metacharacter 205

\\ backslash character escape
sequence 37

\D regex character class 205
\d regex character class 205
\n newline escape sequence 37
\S regex character class 205
\s regex character class 205
\t horizontal tab 37
\t tab escape sequence 37
\W regex character class 205
\w regex character class 205
& bitwise AND operator 185
& set intersection operator 150
&= set intersection augmented

assignment 151
comment character 43
% remainder operator 33, 35, 45
% SQL wildcard character 512
+ addition operator 33, 45
– subtraction operator 33, 45
+ operator for sequence

concatenation 105
+ quantifier (regex) 206
- set difference operator 150
+ string concatenation operator 196
+= augmented assignment statement

57, 104
< less-than operator 41, 45
<= less-than-or-equal-to operator

41, 45
= assignment symbol 32, 44
-= set difference augmented

assignment 151
== equality operator 41, 44, 45
> greater-than operator 41, 45
>= greater-than-or-equal-to operator

41, 45
| (bitwise OR operator) 185
| set union operator 150
|= set union augmented assignment

151
$ regex metacharacter 209

Numerics
0D tensor 465

1D tensor 465
2D tensor 466
3D tensor 466
4D tensor 466
5D tensor 466

A
'a' file-open mode 226
'a+' file-open mode 226
abbreviating an assignment

expression 57
abs built-in function 83
absence of a value (None) 74
absolute value 83
accept method of a socket 554
access token (Twitter) 336, 341
access token secret (Twitter) 336,

341
Account class 246, 287
Accounts and Users API (Twitter)

334
accounts-receivable file 219
accuracy 496
accuracy of a model 480
ACID (Atomicity, Consistency,

Isolation, Durability) 519
acquire resources 220
activate a neuron 464
activation function 465, 468

relu (Rectified Linear Unit)
475

sigmoid 496
softmax 478

adam optimizer 480
add

method of set 152
universal function (NumPy)

170, 171
__add__ special method of class

object 276, 278
add_to method of class Marker 366
addition 33, 36

augmented assignment (+=) 57
adjective 308
algebraic expression 35

Index

574 Index

alignment 194
all built-in function 117
alphabetic characters 202
AlphaGo 27
alphanumeric character 202, 205
AlphaZero 27
Amazon DynamoDB 517
Amazon EMR 533
Ambari 532
Anaconda Python distribution 6, 9

base environment 462
conda activate command 463
conda create command 463
conda deactivate command

463
environment 462
install xxxiv
installer xxxiv
NumPy preinstalled 160
packages installed xxxv
update xxxiv

Anaconda Command Prompt,

Windows xxxiv
analyze text for tone 378
anchor (regex) 208, 209
and Boolean operator 65, 66

truth table 65
animated visualization 153
animation frame 153, 154
animation module (Matplotlib)

153, 157
FuncAnimation function 153,

156, 157, 158
anomaly detection 24
anonymous function 123
Anscombe’s quartet xx
answering natural language

questions 329
antonyms 305, 315, 316
any built-in function 117
Apache Hadoop xix, 16, 503, 530
Apache HBase 531
Apache Ignite (NewSQL) 520
Apache Kafka 562
Apache Mesos 541
Apache OpenNLP 328
Apache Spark 16, 503
API class (Tweepy) 341, 342

followers method 344
followers_ids method 345
friends method 346
get_user method 342
home_timeline method 347
lookup_users method 346
me method 344
search method 347

API class (Tweepy) (cont.)
trends_available method

350
trends_closest method 351
trends_place method 351
user_timeline method 346

API key (Twitter) 336, 341
API reference (IBM Watson) 394
API secret key (Twitter) 336, 341
app rate limit (Twitter API) 334
append method of list 117, 119
approximating a floating-point

number 61
arange function (NumPy) 164
arbitrary argument list 86
arccos universal function (NumPy)

171
arcsin universal function (NumPy)

171
arctan universal function (NumPy)

171
*args parameter for arbitrary

argument lists 86
argv list of command-line

arguments 135
argv[0] first command-line

argument 135
arithmetic expressions 9
arithmetic on ndarray 167
arithmetic operator 33

Decimal 62
“arity” of an operator 277
ARPANET 560
array, JSON 224
array attributes (NumPy) 161
array function (NumPy) 161, 162
artificial general intelligence 26
artificial intelligence (AI) xxi, 26, 27
artificial neural network 463
artificial neuron in an artificial

neural network 464
as clause of a with statement 220
as-a-service

big data (BDaas) 504
Hadoop (Haas) 504
Hardware (Haas) 504
Infrastructure (Iaas) 504
platform (Paas) 504
software (Saas) 504
Spark (Saas) 504
storage (Saas) 504

ascending order
ASC in SQL 512
sort 115, 146

assignment symbol (=) 32, 44
assisting people with disabilities 24

asterisk (*) multiplication operator
33, 45

asterisk (*) SQL wildcard character
509

astype method of class Series 522
asynchronous 379
asynchronous tweet stream 358
at attribute of a DataFrame 185
atomicity 519
attribute 4

internal use only 250
of a class 3, 247
of an array 161
of an object 4
publicly accessible 250

AudioSegment class
from pydub module 393
from_wav method 393

augmented assignment
addition (+=) 57, 104

Authentication API (Twitter) 334
author_ISBN table of books

database 508, 509
authors table of books database

508
auto insurance risk prediction 24
autoincremented value 508, 515
Auto-Keras automated deep

learning library 460, 498
automated

closed captioning 24, 490
image captions 24
investing 24
machine learning (AutoML)

498
AutoML 460
autonomous ships 24
average time 166
Averaged Perceptron Tagger 306
Axes class (Matplotlib) 131

imshow method 264
set method 131
set_ylim method 132
text method 131, 133

Axes3D class (Matplotlib) 442
axis=1 keyword argument of

DataFrame method sort_index
187

Azure HDInsight (Microsoft) 503

B
b prefix for a byte string 393
backpropagation 465
backslash (\) escape character 37
bad data values 211

Index 575

balanced classes in a dataset 411
bar chart 319, 321

static 102
bar method of a DataFrame’s plot

property 321
bar plot 128, 152, 153

barplot function (Seaborn)
131

BASE (Basic Availability, Soft-state,
Eventual consistency) 520

base-10 number system 83
base case 93
base class 245

direct 267
indirect 267

base e 83
base environment in Anaconda 462
BaseBlob class from the textblob

module 307
BaseException class 279
batch

interval in Spark streaming 558
of data in Hadoop 532
of streaming data in Spark 558

batch_size argument to a Keras
model’s fit method 480

BDaaS (Big data as a Service) 504
behavior of a class 3
big data 22, 160

analytics 23
analytics in the cloud xxi

bimodal set of values 68
binary classification 490, 496

machine learning 403
binary file 219
binary number system 193
binary_crossentropy loss

function 480, 496
bind a name to an object 45
bind method of a socket 554
Bing sentiment analysis 328
BitBucket 245
Bitcoin 21
bitwise

AND operator (&) 185
OR operator (|) 185

bitwise_and universal function
(NumPy) 171

bitwise_or universal function
(NumPy) 171

bitwise_xor universal function
(NumPy) 171

block
in a function 73, 74
vs. suite 73, 88

blockchain 21

books database 507
book-title capitalization 197
bool NumPy type 162
Boolean indexing (pandas) 185
Boolean operators 65

and 65
not 65, 66, 67
or 65, 66

Boolean values in JSON 224
brain mapping 24
break statement 64
broadcasting (NumPy) 168, 171
Brown Corpus (from Brown

University) 306
brute force computing 26
building-block approach 4
built-in functions

abs 83
all 117
any 117
enumerate 109, 110
eval 255
filter 122
float 41
frozenset 148
id 91
input 39
int 40, 41
len 68, 86, 103
list 109
map 123
max 48, 76, 86, 124
min 48, 76, 86, 124
open 220
ord 124
print 36
range 57, 60
repr 254
reversed 125
set 148
sorted 68, 115, 143
str 255
sum 68, 80, 86
super 272
tuple 109
zip 125

built-in namespace 291
built-in types

dict (dictionary) 138
float 45, 62
int 45, 62
set 138, 147
str 45, 62

Bunch class from sklearn.utils
426
data attribute 407, 428

Bunch class from sklearn.utils
(cont.)
DESCR attribute 406, 427
feature_names attribute 428
target attribute 407, 428

byte string 393

C
c presentation type 193
C programming language 162
cadence, voice 377
calendar module 82
California Housing dataset 426
call-by-reference 90
call-by-value 90
callback (Keras) 488
caller 73
caller identification 24
CamelCase naming convention 84
cancer diagnosis 24
capitalization

book title 197
sentence 197

capitalize method of a string 197
carbon emissions reduction 24
Card class 258, 259, 282
card images 258
caret (^) regex metacharacter 206
case insensitive 208
case-insensitive sort 345
case sensitive 33, 208
catching multiple exceptions in one

except clause 230
categorical data 472, 494
categorical features in machine

learning datasets 408
categorical_crossentropy loss

function 480
%cd magic 167
ceil (ceiling) function 83
ceil universal function (NumPy)

171
cell in a Jupyter Notebook 14
central nervous system 463
centroid 442, 450
chained method calls 164
channel in pub/sub systems 562
character class (regular expressions)

205
custom 205

chart xix
chatbots 376
checkpoint method of a

StreamingContext 558
checkpointing in Spark 558

576 Index

chess 26
Chinese (simplified) 312
choice function from the

numpy.random module 469
choropleth 527
chunking text 306
CIFAR10 dataset (Keras) 462
CIFAR100 dataset (Keras) 462
cla function of

matplotlib.pyplot module
133, 156

class 3, 81
attribute 247
class keyword 248
client code 250
data attribute 248
definition 248
header 248
instance variable 4
library 245
method 281
namespace 292
object 249, 269
property 251, 253
@property decorator 253
@propertyname.setter

decorator 253
public interface 255
variable 259, 282

class attribute 259
in a data class 283

class average for arbitrary number of
grades 59

class average problem 58, 59
class libraries xxii
classification (machine learning)

400, 401, 403
algorithm 404
binary classification 403
handwritten digits 467
metrics 415
multi-classification 403
probabilities (deep learning) 478

classification report (scikit-learn)
f1-score 416
precision 416
recall 416
support 416

classification_report function
from the sklearn.metrics
module 415

classifier 378
classify handwriting 24
ClassVar type annotation from the

typing module 282, 283
cleaning data 204, 239, 366

clear axes 156
clear method

of dictionary 139
of list 118
of set 152

client of a class 250, 257
client/server app

client 551
server 551

client/server networking 551
close method

of a file object 220
of a socket 554
of a sqlite3 Connection 516
of an object that uses a system

resource 220
of class Stream 393

closed captioning 329, 490
closures 95
cloud xix, 16, 334, 374

IBM Cloud account 374
cloud-based services 16, 223
Cloudera CDH 533
cluster 531

node 531
clusters of computers 25
CNN (convolutional neural

network) 467
CNTK (Microsoft Cognitive

Toolkit) 8, 458, 462
code 5
coeff_ attribute of a

LinearRegression estimator
423

coefficient of determination (R2
score) 437

cognitive computing xxvi, 374, 378
Cognos Analytics (IBM) 381
collaborative filtering 329
collection

non-sequence 138
sequence 138
unordered 139

Collection class of the pymongo
module 524
count_documents method 525
insert_one method 524

collections 102
collections module 7, 82, 145,

280
namedtuple function 280

color map 410
Matplotlib 410

column
in a database table 507, 508
in a multi-dimensional list 126

columnar database (NoSQL) 517,
518
column-oriented database 517,

518
comma (,) format specifier 130
comma-separated list of arguments

73
comma-separated-value (CSV) files

82
command-line arguments 135

argv 135
argv[0] 135

comma-separated-value (CSV) files
7

comment 43
comment character (#) 43
CommissionEmployee class 268
common programming errors xxviii
comparison operators 41
compile method of class

Sequential 480
Complex class 277
complex condition 65
component 3, 245
composite primary key 509, 510
composition (“has a” relationship)

249, 274
compound interest 63
computer vision 24
computer-vision applications 26
concatenate sequences 105
concatenate strings separated by

whitespace 144
concurrent execution 546
concurrent programming 7
conda activate command 463
conda command xxxiv
conda create command 463
conda deactivate command 463
conda package manager xxxiv
condition 41

None evaluates to False 74
conditional

expression 53
operators 65

confidence interval 299
confusion matrix 414

as a heat map 416
confusion_matrix function of the

sklearn.metrics module 414
conjunction, subordinating 308
conll2000 (Conference on

Computational Natural
Language Learning 2000) 306

connect function from the sqlite3
module 508

Index 577

Connection class (sqlite3 module)
508, 514
close method 516
cursor method 514

connection string (MongoDB) 523
consistency 519
constant 260
constants 84
constructor 341, 342
constructor expression 247, 248
Consumer API keys (Twitter) 336
container (Docker) xxvi, 542
contains method for a pandas

Series 212
continental United States 366
continuation character (\) 38, 44
continuation prompt ...: in

IPython 39
continue statement 64
control statements

for 55, 57
if 50, 51
if…elif…else 50, 54
if…else 50, 52
while 55

Conv2D class from the
tensorflow.keras.layers
module 475

converge on a base case 93
convert

floating-point value to an
integer 41

speech to text 377
string to floating-point number

41
string to integer 40

convnet (convolutional neural
network) 467, 471, 472, 473,
475, 482
pretrained models 498

convolution layer 473
filter 474

convolutional neural network
(CNN or convnet) 460, 467
model 473

co-occurrence 318
Coordinated Universal Time

(UTC) 337
coordinates (map) 363
copy method of list 119
copy method of ndarray 174
copy module 175
core Python language 82
co-reference resolution 328
corpus 305

corpora (plural of corpus) 305

correct method of class Sentence
313

correct method of class TextBlob
313

correct method of class Word 313
cos (cosine) function 83
cos universal function (NumPy)

171
Couchbase 517
CouchDB 518
count method

of class WordList 315
of list 119

count statistic 46, 68
count string method 198
count_documents method of class

Collection 525
Counter type for summarizing

iterables 145, 146
counting word frequencies 305
CPU (central processing unit) 476
crafting valuable classes 244
CraigsList 17
craps game 78
create classes from existing classes

269
create, read, update and delete

(CRUD) 507
createOrReplaceTempView

method of a Spark DataFrame
557

credentials (API keys) 335
credit scoring 24
crime

predicting locations 24
predicting recidivism 24
predictive policing 24
prevention 24

CRISPR gene editing 24
crop yield improvement 24
cross_val_score function

sklearn.model_selection
417, 418, 419, 438

cross-validation, k-fold 417
crowdsourced data 25
CRUD operations (create, read,

update and delete) 507
cryptocurrency 21
cryptography 7, 78

modules 82
CSV (comma-separated value)

format 218, 281, 282
csv module 7, 82, 235
csv module reader function

236

CSV (comma-separated value)
format (cont.)
csv module writer function

235
file 200
.csv file extension 235

curly braces in an f-string
replacement field 58

curse of dimensionality 439
cursor 37
Cursor class (sqlite3)

execute method 515
Cursor class (Tweepy) 344

items method 345
cursor method of a sqlite3

Connection 514
custom character class 205
custom exception classes 280
custom function 72
custom indices in a Series 180
custom models 380
customer

churn 24
experience 24
retention 24
satisfaction 24
service 24
service agents 24

customized diets 24
customized indexing (pandas) 177
cybersecurity 24

D
d presentation type 193
Dale-Chall readability formula 324
DARPA (the Defense Advanced

Research Projects Agency) 541
dashboard 486
data

attribute of a class 248
encapsulating 250
hiding 255

data attribute of a Bunch 407, 428
data augmentation 459, 476
data class 281

autogenerated methods 281
autogenerated overloaded

operator methods 282
class attribute 283

data cleaning 192, 210, 239, 353
data compression 7
data exploration 409, 431
data mining xix, 332, 333

Twitter 24, 332
data munging 192, 210

578 Index

data preparation 178, 471, 493
data sampling 211
data science use cases 24
data science libraries

Gensim 9
Matplotlib 8
NLTK 9
NumPy 8
pandas 8
scikit-learn 8
SciPy 8
Seaborn 8
StatsModels 8
TensoFlow 8
TextBlob 9
Theano 8

data sources 329
data visualization 24
data warehouse 532
data wrangling 192, 210
database 502, 506, 511
Database Application Programming

Interface (DB-API) 507
Database class of the pymongo

module 523
database management system

(DBMS) 506
Databricks 542
@dataclass decorator from the

module dataclasses 282
dataclasses module 281, 282

@dataclass decorator 282
DataFrame (pandas) 178, 182, 192,

211, 213, 214, 366
at attribute 185
describe method 186
dropna method 366
groupby method 527, 529
head method 238
hist method 240
iat attribute 185
iloc attribute 183
index attribute 182
index keyword argument 182
itertuples method 366
loc attribute 183
plot method 294
plot property 321
sample method 430
sort_index method 187
sort_values method 188
sum method 527
T attribute 187
tail method 238
to_csv method 238
transpose rows and columns 187

DataFrame (Spark) 555, 557
createOrReplaceTempView

method 557
pyspark.sql module 555, 557

data-interchange format, JSON 223
dataset

California Housing 426
CIFAR10 462
CIFAR100 462
Digits 403
EMNIST 485
Fashion-MNIST 462
ImageNet 477, 478
IMDb Movie reviews 462
Iris 442
MNIST digits 461, 467
natural language 329
Titanic disaster 237, 238
UCI ML hand-written digits

406
date and time manipulations 7, 82
datetime module 7, 82, 256
DB-API (Database Application

Programming Interface) 507
Db2 (IBM) 506
DBMS (database management

system) 506
debug 48
debugging 4, 7
decimal integers 202
decimal module 7, 62, 82
Decimal type 61, 63

arithmetic operators 62
DeckOfCards class 258, 261
declarative programming 95, 96
decorator

@dataclass 282
@property 253
@propertyname.setter 253

decorators 95
decrement 60
deep copy 111, 174
deep learning xix, 8, 26, 328, 458,

459
Auto-Keras 460
CNTK 458, 462
epoch 464
EZDL 460
fully connected network 464
Keras 458
loss function 468
model 468
network 468
optimizer 468
TensorFlow 458
Theano 8, 458, 462

deep learning (IBM Watson) 379
deep learning EZDL 460
DeepBlue 26
deepcopy function from the module

copy 175
def keyword for defining a function

73
default parameter value 85
define a function 72
define method of class Word 315
definitions property of class Word

315
del statement 112, 140
DELETE FROM SQL statement 511,

516
delimiters 200
Dense class from the

tensorflow.keras.layers
module 477

dense-vector representation 494
dependent variable 293, 294, 421,

435
derived class 245
“derived-class-object-is-a-base-class-

object” relationship 274
descending sort 115

DESC 512
DESCR attribute of a Bunch 406, 427
describe method of a pandas

DataFrame 186
describe method of a pandas

Series 179
description property of a User

(Twitter) 343
descriptive statistics 46, 67, 97,

179, 186, 239
deserializing data 224
design process 5
detect_language method of a

TextBlob 311
detecting new viruses 24
determiner 308
diagnose medical conditions 26
diagnosing breast cancer 24
diagnosing heart disease 24
diagnostic medicine 24
dice game 78
dict method of class Textatistic

324
dictionary 95
dictionary built-in type 138

clear method 139
get method 141
immutable keys 138
items method 140
keys method 141

Index 579

dictionary built-in type (cont.)
length 139
lists as values 143
modifying the value associated

with a key 140
pop method 140
process keys in sorted order 143
update a key’s associated value

140
update method 146
values method 141
view 142

dictionary comprehension 95, 146,
492

die rolling 77
visualization 129

die-rolling simulation xx
difference augmented assignment

(sets) 151
difference method of set 150
difference_update method of set

151
digit separator (_) 77
Digits dataset 403
Dijkstra 287
dimensionality 475

reduction 439, 476
direct base class 267
disaster victim identification 24
discard method of set 152
discovery with IPython tab

completion 83
disjoint 151
dispersion 98
display a line of text 36
distribution 448
divide and conquer 93, 394
divide by zero 12
divide universal function (NumPy)

171
dividing by zero is not allowed 34
division 10, 34, 36

by zero 59
floor 33, 45
true 33, 45

Doc class (spaCy) 326
ents property 327
similarity method 328

Docker xxiii, xxvi, 462, 542
container xxvi, 542
image 542

docstring 38, 43, 73
for a class 248
for a function 80
for testing 287
viewing in IPython 84

doctest module 7, 82, 287
testmod function 287

%doctest_mode IPython magic 290
document database 517, 518
document-analysis techniques 144
domain expert 449
double-indexed list 126
double quotes ("") 37
double-subscripted list 126
download function of the nltk

module 317
download the examples xxxiii
Drill 532
drones 24
dropna method of class DataFrame

366
dropout 476, 495

Dropout class from the
tensorflow.keras.layers.

embeddings module 495
DStream class

flatMap method 559
foreachRDD method 559
map method 559
updateStateByKey method

559
DStream class from the

pyspark.streaming module
556

dtype attribute of a pandas Series
181

dtype attribute of ndarray 162
duck typing 275
dummy value 59
dump function from the json

module 224
dumps function from the json

module 225
duplicate elimination 147
durability 519
Dweepy library 564
dweepy module

dweet_for function 566
dweet (message in dweet.io) 564
dweet_for function of the dweepy

module 566
Dweet.io 503, 561
Dweet.io web service 16
dynamic

driving routes 24
pricing 24
resizing 102
typing 46
visualization 152

dynamic die-rolling simulation xx
DynamoDB (Amazon) 517

E
E (or e) presentation type 194
edge in a graph 519
%edit magic 167
editor 11
ElasticNet estimator from

sklearn.linear_model 438
electronic health records 24
element of a sequence 102
element of chance 76
elif keyword 51
else in an if statement 51
else clause

of a loop 64
of a try statement 229, 230

Embedding class from the
tensorflow.keras.layers
module 495

embedding layer 494
EMNIST dataset 485
emotion 377

detection 24
empirical science 211
empty

list 104
set 148
string 52
tuple 106

encapsulation 250
enclosing namespace 292
encode a string as bytes 553
end index of a slice 110, 111
endpoint

of a connection 551
of a web service 334

endswith string method 199
energy consumption reduction 24
English parts of speech 307
entity-relationship (ER) diagram

510
ents property of a spaCy Doc 327
enumerate built-in function 109,

110
environment in Anaconda 462
epoch argument to a Keras model’s

fit method 480
epoch in deep learning 464
__eq__ special method of a class 282
__ne__ special method of a class 282
__eq__ special method of a class 282
equal to operator(==) 41
equal universal function (NumPy)

171
equation in straight-line form 35
error-prevention tips xxviii

http://dweet.io

580 Index

escape character 37, 515
escape sequence 37, 203
estimator (model) in scikit-learn

405, 422
Ethereum 21
ETL (extract, transform, load) 532
eval built-in function 255
evaluate method of class

Sequential 482
evaluation order 10
evenly-spaced values 164
exabytes (EB) 19
exaflops 21
except clause 228, 229

catching multiple exceptions
230

exception 34, 218
handler 218, 229
uncaught 234

Exception class of exceptions 279
exception classes

custom 280
exceptions module 279
execute method of a sqlite3

Cursor 515
execution-time error 12
exp (exponential) function of

module math 83
exp universal function (NumPy)

171
expected values 154
exponential notation 194
exponentiation 33, 36, 45

operator (**) 33
extend method of list 118
extended_tweet property of a

Status (Twitter) 343
extensible language 246
external iteration 96, 160, 212
extracting data from text 204
EZDL automated deep learning

(Baidu) 460

F
f presentation type 194
f1-score in a scikit-learn

classification report 416
fabs (absolute value) function of

module math 83
fabs universal function (NumPy)

171
Facebook 333
Facial Recognition 24
factorial 93
factorial function 93, 94

False 41, 50, 51
fargs keyword argument of

FuncAnimation 158
Fashion-MNIST dataset (Keras)

462
fatal

logic error 55, 59
runtime error 12

fault tolerance 218
Spark streaming 558

feature in a dataset 211
feature map 475
feature_names attribute of a Bunch

428
feed-forward network 473
fetch_california_housing

function from
sklearn.datasets 426

field alignment 194
field width 63, 194
FIFO (first-in, first-out) order) 120
Figure class (Matplotlib) 131

tight_layout method 264
figure function of

matplotlib.pyplot module 157
file 218

contents deleted 226
file object 219, 220

close method 220
in a for statement 221
read method 227
readline method 227
readlines method 221
seek method 221
standard 219
write method 220
writelines method 227

file-open mode 220
'a' (append) 226
'a+' (read and append) 226
'r' (read) 221, 226
'r+' (read and write) 226
'w' (write) 220, 226
'w+' (read and write) 226

file-position pointer 221
file/directory access 7
FileNotFoundError 227, 232
fill with 0s 195
filter sequence 121, 122
filter built-in function 95, 122
filter in convolution 474
filter method of class Stream 358
filter method of the RDD class 547
filter/map/reduce operations 178
finally clause 231

finally suite raising an exception
235

find string method 199
findall function of the module re

209
finditer function of the module re

209
fire hose (Twitter) 354
first 120
first-in, first-out (FIFO) order 120
fit method

batch_size argument 480
epochargument 480
of a scikit-learn estimator 412,

434
of class Sequential 480
of the PCA estimator 452
of the TSNE estimator 440
validation_data argument

494
validation_split argument

481, 494
fit_transform method

of the PCA estimator 452
of the TSNE estimator 440

fitness tracking 24
flag value 59
flags keyword argument (regular

expressions) 208
flat attribute of ndarray 163
flatMap method of a DStream 559
flatMap method of the RDD class

546
Flatten class from the

tensorflow.keras.layers
module 477

flatten method of ndarray 176
Flesch Reading Ease readability

formula 324, 325
Flesch-Kincaid readability formula

324, 325
float function 41
float type 33, 45, 62
float64 NumPy type 162, 163
floating-point number 10, 33, 34,

45
floor division 33, 34, 45

operator (//) 34
floor function of module math 83
floor universal function (NumPy)

171
FLOPS (floating-point operations

per second) 20
flow of control 64
Flume 532

Index 581

fmod (remainder) function of
module math 83

Folding@home network 20
folds in k-fold cross-validation 417
Folium xx
Folium mapping library 25, 363

Map class 366
Marker class 366
Popup class 366

followers method of class API 344
followers_count property of a

User (Twitter) 343
followers_ids method of class API

345
for clause of a list comprehension

121
for statement 50, 51, 55, 57

else clause 64
target 55

foreachRDD method of a DStream
559

foreign key 509, 510
format method

of a string 195, 550
format specifier 60, 63, 64, 193,

261
comma (,) 130

format string 196, 261
__format_ special method of class

object 261, 263
formatted input/output 222
formatted string (f-string) 58
formatted text 222
formatting

type dependent 193
formulating algorithms 58, 59
four V’s of big data 22
frame-by-frame animation

Matplotlib 153
frames keyword argument of

FuncAnimation 157
fraud detection 24
free open datasets xx
Freeboard.io 503, 561
freemium xx
friends method of class API 346
friends_count property of a User

(Twitter) 343
FROM SQL clause 511
from_wav method of class

AudioSegment 393
from…import statement 62, 89
frozenset

built-in function 148
built-in type 148

f-string (formatted string) 58, 60,
63, 193, 261
curly braces in a replacement

field 58
full function (NumPy) 163
fullmatch function of module re

204
fully connected network 464
FuncAnimation (Matplotlib

animation module) 153, 156,
157, 158
fargs keyword argument 158
frames keyword argument 157
interval keyword argument

158
repeat keyword argument 157

function 73, 74, 81, 87
anonymous 123
are objects 97, 122
block 73, 74
def keyword 73
definition 72, 73
docstring 80
name 73
nested 292
range 57, 60
recursive 99
signature 74
sorted 68
that calls itself 99

functional-style programming xix,
7, 48, 57, 58, 68, 95, 96, 117,
120, 121, 163, 178, 179, 181,
212, 213
reduction 48, 68

functools module 95, 124
reduce function 124

G
game playing 24, 76
garbage collected 92
garbage collection 46
Gary Kasparov 26
GaussianNB estimator from

sklearn.naive_bayes 419
gcf function of the module

matplotlib.pyplot 321
GDPR (General Data Protection

Regulation) 502
generate method of class

WordCloud 323
generator

expression 95, 121
function 95
object 121

GeneratorExit exception 279
genomics 24
Gensim 9
Gensim NLP library 327, 328
geocode a location 365
geocode method of class

OpenMapQuest (geopy) 368
geocoding 363, 368

OpenMapQuest geocoding
service 363

geographic center of the continental
United States 366

Geographic Information Systems
(GIS) 24

GeoJSON (Geographic JSON) 527
geopy library 341, 363

OpenMapQuest class 368
get method of dictionary 141
get_sample_size method of the

class PyAudio 393
get_synsets method of class Word

316
get_user method of class API 342
get_word_index function of the

tensorflow.keras.datasets.i

mdb module 492
getter method

decorator 253
of a property 253

gettext module 82
getting questions answered xxviii
gigabytes (GB) 18
gigaflops 20
GitHub xxv, 245
global

namespace 290
scope 87
variable 87

global keyword 88
GloVe word embeddings 495
Go board game 27
good programming practices xxviii
Google Cloud DataProc 533
Google Cloud Datastore 517
Google Cloud Natural Language

API 328
Google Maps 17
Google Spanner (NewSQL) 520
Google Translate 16, 305, 311
GPS (Global Positioning System)

24
GPS sensor 25
GPU (Graphics Processing Unit)

476
gradient descent 465
graph xix

582 Index

graph database 517, 519
edge 519
node 519
vertices 519

Graphics Processing Unit (GPU)
459, 466

greater universal function
(NumPy) 171

greater_equal universal function
(NumPy) 171

greater-than operator (>) 41
greater-than-or-equal-to operator

(>=) 41
greedy evaluation 121
greedy quantifier 206
GROUP BY SQL clause 511
group method of a match object

(regular expressions) 208, 210
GroupBy class (pandas) 527
groupby function

of the itertools module 537
groupby method

of a DataFrame 527, 529
grouping (operators) 36, 67, 277
groups method of a match object

(regular expressions) 210
GUI 7
Guido van Rossum 5, 7
Gunning Fog readability formula

324, 325

H
h5 file extension for Hierarchical

Data Format files 485
Hadoop (Apache) xix, 124, 503,

530
as a Service (HaaS) 504
streaming 535
streaming mapper 535
streaming reducer 536
YARN (“yet another resource

negotiator”) 532, 538
yarn command 538

handle (or resolve) an exception
218, 228

hands-on 8
handwritten digits

classification 467
hard disk 218
Hardware as a Service (HaaS) 504
“has a” relationship (composition)

249
hash character (#) 43
hashtags 337, 349
HBase 517, 531, 532

HDFS (Hadoop Distributed File
System) 531, 558

HDInsight
(Microsoft Azure) 503

head method of a DataFrame 238
health outcome improvement 24
heat map 416
heatmap function (Seaborn

visualization library) 416
help in IPython 74
heterogeneous data 106
hexadecimal number system 193
hidden layer 468, 473, 475
Hierarchical Data Format 485
higher-order functions 95, 122
highest level of precedence 35
HIPAA (Health Insurance

Portability and Accountability
Act) 502

hist method of a DataFrame 240
histogram 109
%history magic 167
Hive 532
home timeline 347
home_timeline method of class API

347
homogeneous data 102, 103
homogeneous numeric data 177
horizontal stacking (ndarray) 177
horizontal tab (\t) 37
Hortonworks 533
hospital readmission reduction 24
hostname 554
hstack function (NumPy) 177
human genome sequencing 24
hyperparameter

in machine learning 405, 420
tuning 406, 420, 497
tuning (automated) 406

hypot universal function (NumPy)
171

I
__iadd__ special method of class

object 279
iat attribute of a DataFrame 185
IBM Cloud account 374, 375, 382
IBM Cloud console 375
IBM Cloud dashboard 376
IBM Cognos Analytics 381
IBM Db2 506
IBM DeepBlue 26
IBM Watson xxvi, 16, 27, 334, 374

Analytics Engine 533
API reference 394

IBM Watson (cont.)
dashboard 375
deep learning 379
GitHub repository 394
Knowledge Studio 380
Language Translator service

377, 382, 383, 384, 385,
390

Lite tier 374
lite tiers xxvii
machine learning 380
Machine Learning service 380
Natural Language Classifier

service 378
Natural Language

Understanding service 377
Personality Insights service 378
Python SDK xxvi, 375
service documentation 394
Speech to Text service 377,

382, 383, 384, 385, 386,
387, 391

Text to Speech service 377,
382, 383, 384, 385

Tone Analyzer service 378
use cases 374
Visual Recognition service 376
Watson Assistant service 376
Watson Developer Cloud

Python SDK 381, 385, 394
Watson Discovery service 378
Watson Knowledge Catalog

380
YouTube channel 395

id built-in function 91, 173
id property of a User (Twitter) 342
IDE (integrated development

environment) 11
identifiers 33
identity of an object 91
identity theft prevention 24
if clause of a list comprehension

121
if statement 41, 44, 50, 51
if…elif…else statement 50, 54
if…else statement 50, 52
IGNORECASE regular expression flag

208
iloc attribute of a DataFrame 183
image 376
image (Docker) 542
Image class of the IPython.display

module 479
imageio module

imread function 322
ImageNet dataset 477, 478

Index 583

ImageNet Large Scale Visual
Recognition Challenge 499

ImageNet Object Localization
Challenge 499

imaginary part of a complex number
277

IMDb (the Internet Movie
Database) dataset 329, 489
imdb module from

tensorflow.keras.

datasets 462, 490
immunotherapy 24
immutability 95, 96
immutable 80, 84, 92

elements in a set 138, 147
frozenset type 148
keys in a dictionary 138
sequence 104
string 192, 197

Impala 532
implementation detail 256
import statement 62, 82
import…as statement 90
importing

all identifiers from a module 89
libraries 129
one identifier from a module 89

improper subset 149
improper superset 149
imread function of module

matplotlib.image 264
imread function of the module

imageio 322
imshow method of class Axes 264
in keyword in a for statement 50,

51, 55, 57
in operator 81, 141, 147
in place sort (pandas) 188
indentation 44, 51
IndentationError 51
independent variable 293, 294,

421, 422
index 103
index attribute of a DataFrame 182
index keyword argument for a

DataFrame 182
index keyword argument of a

pandas Series 180
index method of list 116
index string method 199
IndexError 104
indexing ndarray 171
indirect base class 267
indirect recursion 95
industry standard class libraries xxii
infinite loop 55

infinite recursion 95
infinity symbol 510
inflection 305, 312
inflection, voice 377
Infrastructure as a Service (IaaS) 504
inherit data members and methods

of a base class 245
inheritance 4, 269

hierarchy 266
single 269, 270

__init__ special method of a class
248

in-memory
architecture 541
processing 530

inner for structure 127
INNER JOIN SQL clause 511, 514
innermost pair of parentheses 35
input function 39
input layer 468, 473
input–output bound 154
INSERT INTO SQL statement 511,

515
insert method of list 117
insert_one method of class

Collection 524
install a Python package xxxiv
install Tweepy 340, 354
instance 4
instance variable 4
insurance pricing 24
int function 40, 41
int type 33, 45, 62
int64 NumPy type 162, 163
integer 10, 33, 45

presentations types 193
Integrated Development

Environment (IDE)
PyCharm 12
Spyder 12
Visual Studio Code 12

integrated development
environment (IDE) 11

intelligent assistants 24
intensity of a grayscale pixel 407
interactive maps xx
interactive mode (IPython) xix, 9,

32
exit 10

interactive visualization xix
intercept 295, 298
intercept_ attribute of a

LinearRegression estimator
423

interest rate 63
inter-language translation 305, 490

internal iteration 95, 96, 117, 160,
212

internal use only attributes 250
International Organization for

Standardization (ISO) 312
internationalization 7, 82
Internet of Things (IoT) 17, 23, 25,

212, 503, 560
medical device monitoring 24
Weather Forecasting 24

Internet Protocol (IP)
address 560

interpreter 6
interprocess communication 7
interquartile range 180
intersection augmented assignment

151
intersection method of set 150
intersection_update method of

set 151
interval keyword argument of

FuncAnimation 158
Inventory Control 24
invert universal function (NumPy)

171
io module 227
IoT (Internet of Things) 23, 503,

560
IOTIFY.io 564
IP address 17, 554
IPv4 (Internet Protocol version 4)

560
IPv6 (Internet Protocol version 6)

560
IPython xviii

? to access help 74
?? to access help (include source

code) 74
%doctest_mode magic 290
continuation prompt ...: 39
help 43, 74
interactive mode 9, 32
interpreter xxxiv, 9
navigate through snippets 53
script mode 9

ipython

command 9
--matplotlib option 129

IPython interactive mode xix
IPython interpreter 7
IPython magics 133, 166

%cd 167
%doctest_mode 290
%edit 167
%history 167
%load 167

http://IOTIFY.io

584 Index

IPython magics (cont.)
%pprint 491
%precision 167
%recall 133
%run 167
%save 134, 167
%timeit 165

IPython magics documentation 166
IPython Notebook 13
IPython.display module

Image class 479
.ipynb extension for Jupyter

Notebooks 13
Iris dataset 442
Iris setosa 443
Iris versicolor 443
Iris virginica 443
“is-a” relationship 267
is operator 92
isalnum string method 202
isalpha string method 202
isdecimal string method 202
isdigit string method 202
isdisjoint method of set 151
isidentifier string method 202
isinf universal function (NumPy)

171
isinstance function 273
islower string method 202
isnan universal function (NumPy)

171
isnumeric string method 202
ISO (International Organization for

Standardization) 312
isolation 519
isspace string method 202
issubclass function 273
issubset method of set 149
issuperset method of set 149
istitle string method 202
isupper string method 202
itemgetter function from the

operator module 320
items method 146

of Counter 146
of Cursor 345
of dictionary 140

itemsize attribute of ndarray 162
iterable 56, 76, 105, 121
iterating over lines in a file 221
iteration statement 50
iterative (non-recursive) 93
iterator 56, 95, 123
itertools module 95, 537

groupby function 537

itertuples method of class
DataFrame 366

J
JavaScript Object Notation (JSON)

7, 337
Jeopardy! dataset 329
join string method 200
joining 510
joining database tables 510, 514
joinpath method of class Path 263,

264
JSON (JavaScript Object Notation)

25, 218, 223, 224, 337, 502,
518
array 224
Boolean values 224
data-interchange format 223
document 385
document database (NoSQL)

518
false 224
json module 224
JSON object 223
null 224
number 224
object 337, 520
string 224
true 224

json module 7, 82
dump function 224
dumps function 225
load function 224

JSON/XML/other Internet data
formats 7

Jupyter Docker stack container 504
Jupyter Notebooks xxii, xxiii, xxv,

2, 9, 12, 13
.ipynb extension 13
cell 14
reproducibility 12
server xxxiv
terminate execution 468

JupyterLab 2, 12
Terminal window 543

K
k-fold cross-validation 417, 498
Kafka 532
Keras 380

CIFAR10 dataset 462
CIFAR100 dataset 462
Fashion-MNIST dataset 462
IMDb movie reviews dataset 462
loss function 480

Keras (cont.)
metrics 480
MNIST digits dataset 461
optimizers 480
reproducibility 467
summary method of a model 478
TensorBoard callback 488

Keras deep learning library 458
kernel

in a convolutional layer 473
key 116
key–value

database 517
pair 138

KeyboardInterrupt exception 279
keys

API keys 335
credentials 335

keys method of dictionary 141
keyword 41, 44, 51

and 65, 66
argument 56, 85
break 64
class 248
continue 64
def 73
elif 51
else 51
False 50, 51
for 50, 51, 55, 55, 57
from 62
if 50, 51
if…elif…else 50, 54
if…else 50, 52
import 62, 62
in 50, 51, 55, 57
lambda 123
not 65, 66, 67
or 65, 66
True 50, 51
while 50, 51, 55

KFold class
sklearn.model_selection
417, 419, 438

Kitematic (Docker GUI app) 545
k-means clustering algorithm 442,

450
KMeans estimator from

sklearn.cluster 450
k-nearest neighbors (k-NN)

classification algorithm 404
KNeighborsClassifier estimator

from sklearn.neighbors 412
Knowledge Studio (IBM Watson)

380
KoNLPy 328

Index 585

L
L1 regularization 476
L2 regularization 476
label_ property of a spaCy Span

327
labeled data 400, 403
lambda expression 95, 123, 345
lambda keyword 123
language codes 312
language detection 305
language translation 24, 305
Language Translator service (IBM

Watson) 377, 382, 383, 384,
385, 390

LanguageTranslatorV3 class
from the

watson_developer_cloud
module 385, 390

translate method 390
largest integer not greater than 83
Lasso estimator from

sklearn.linear_model 438
last-in, first-out (LIFO) order 119
latitude 363
Law of Large Numbers 2
law of large numbers xx, 102, 153,

154
layers 468
layers in a neural network 458, 464,

468
lazy estimator (scikit-learn) 412
lazy evaluation 95, 121, 123
Leaflet.js JavaScript mapping library

363, 364
leave interactive mode 10
left align (<) in string formatting 64,

194
left-to-right evaluation 36, 45
left_shift universal function

(NumPy) 171
leftmost condition 66
legacy code 226
LEGB (local, enclosing, global,

built-in) rule 292
lemmas method of class Synset 316
lemmatization 305, 309, 314
lemmatize method of class

Sentence 314
lemmatize method of class Word

314
len built-in function 68, 86, 103
length of a dictionary 139
less universal function (NumPy)

171

less_equal universal function
(NumPy) 171

less-than operator (<) 41
less-than-or-equal-to operator (<=)

41
lexicographical comparison 198
lexicographical order 125
libraries xix, 7
LIFO (last-in, first-out) order 119
LIKE operator (SQL) 512
linear regression xix, 293

multiple 421, 434
simple 420, 421

linear relationship 293, 294
LinearRegression estimator from

sklearn.linear_model 421,
422, 434
coeff_ attribute 423
intercept_ attribute 423

linguistic analytics 378
LinkedIn 333
linregress function of SciPy’s

stats module 295, 298
linspace function (NumPy) 164
Linux Terminal or shell xxxiv
lip reader technology 329
list 102

*= 116
append method 117, 119
clear method 118
copy method 119
extend method 118
index method 116
insert method 117
pop method 119
remove method 118
reverse method 119

list built-in function 109
list comprehension 95, 120, 130,

493
filter and map 124
for clause 121
if clause 121

list indexing in pandas 184
list method

sort 115
list of base-class objects 274
list sequence 56, 58
List type annotation from the

typing module 282, 283
listen method of a socket 554
listener for tweets from a stream 355
Lite tier (IBM Watson) 374
literal character 204
literal digits 204

load function from the json
module 224

load function of the spacy module
326

%load magic 167
load_data function of the

tensorflow.keras.datasets.m

nist module 468, 491
load_digits function from

sklearn.datasets 406
load_iris function from

sklearn.datasets 444
load_model function of the

tensorflow.keras.models
module 485

loc attribute of a DataFrame 183
local

namespace 290
scope 87
variable 74, 75, 87

locale module 82
localization 82
location-based services 24
log (natural logarithm) function of

module math 83
log universal function (NumPy)

171
log10 (logarithm) function of

module math 83
logarithm 83
logic error 11, 55

fatal 59
logical_and universal function

(NumPy) 171
logical_not universal function

(NumPy) 171
logical_or universal function

(NumPy) 171
logical_xor universal function

(NumPy) 171
Long Short-Term Memory (LSTM)

490
longitude 363
lookup_users method of class API

346
loss 465
loss function 465, 480

binary_crossentropy 480,
496

categorical_crossentropy
480

deep learning 468
Keras 480
mean_squared_error 480

lower method of a string 87, 125,
197

586 Index

lowercase letter 33, 202
loyalty programs 24
LSTM (Long Short-Term Memory)

490
lstrip string method 197

M
m-by-n sequence 127
machine learning xix, 8, 26, 328,

398, 442, 459
 411, 434
binary classification 403
classification 403
hyperparameter 405, 420
IBM Watson 380
k-nearest neighbors (k-NN)

algorithm 404
measure a model’s accuracy 414
model 405
multi-classification 403
preparing data 408
samples 407, 428
scikit-learn 403, 405, 426
target values 428
training set 411, 434
unsupervised 438

macOS Terminal xxxiv
magics (IPython) 133

%matplotlib inline 469
%pprint 491
%precision 309
%recall 133
%save 134
documentation 166

’__main__’ value 290
_make method of a named tuple 281
make your point (game of craps) 79
Malware Detection 24
many-to-many relationship 511
map 123

coordinates 363
marker 363
panning 363
sequence 121, 122
zoom 363

map built-in function 95, 123
Map class (Folium) 366

save method 367
map data to another format 213
map method

of a DStream 559
of a pandas Series 213
of the RDD class 546

mapper in Hadoop MapReduce
532, 535

mapping 24
MapReduce xix, 530, 531
MapReduce programming 124
MariaDB ColumnStore 506, 518
Marker class (folium) 366

add_to method 366
marketing 24

analytics 24
mashup 17, 382
mask image 322
massively parallel processing 25,

530, 532
match function of the module re 208
match method for a pandas Series

212
match object (regular expressions)

208, 209
math module 7, 82

exp function 83
fabs function 83
floor function 83
fmod function 83
log function 83
log10 function 83
pow function 83
sin function 83
sqrt function 82, 83
tan function 83

mathematical operators for sets 150
Matplotlib 25
%matplotlib inline magic 469
Matplotlib visualization library xx,

8, 102, 128, 129, 130, 152, 153,
155, 158, 321, 430
animation module 153, 157
Axes class 131
Axes3D 442
cla function 133
color maps 322, 410
Figure class 131
IPython interactive mode 129
show function 135

matplotlib.image module 264
imread function 264

matplotlib.pylot module
plot function 424

matplotlib.pyplot module 130
cla function 156
figure function 157
gcf function 321
subplots function 264

matrix 466
max

built-in function 48, 76, 86,
124

method of ndarray 169

max pooling 476
maximum statistic 46
maximum universal function

(NumPy) 171
MaxPooling2D class from the

tensorflow.keras.layers
module 477

McKinsey Global Institute xvii
me method of class API 344
mean 97
mean function (statistics

module) 68
mean method of ndarray 169
mean squared error 437
mean statistic 67
mean_squared_error loss function

480
measure a model’s accuracy 414
measures of central tendency 67, 97
measures of dispersion 46, 180

standard deviation 46
variance 46

measures of dispersion (spread) 97
measures of variability 46
measures of variability (statistics) 97
media type 388, 392
median 97, 180
median function (statistics

module) 68
median statistic 67
megabytes (MB) 18
MemSQL (NewSQL) 520
merge records from tables 514
Mesos 541
metacharacter (regular expressions)

205
metacharacters

^ 208
. 210
(and) 209
$ 209

metadata 406, 517
tweet 337

method 3, 87
call 4

metrics, Keras 480
Microsoft

Azure Cosmos DB 518
Azure HDInsight 503, 533
Bing Translator 311
Linguistic Analysis API 328
SQL Server 506

Microsoft Azure HDInsight 16
Microsoft CNTK 458, 462
Microsoft Cognitive Toolkit

(CNTK) 8

Index 587

MIME (Multipurpose Internet Mail
Extensions) 388

min built-in function 48, 76, 86,
124

min method of ndarray 169
MiniBatchKMeans estimator 454
minimum statistic 46
minimum universal function

(NumPy) 171
missing values 211
mixed-type expression 36
MNIST handwritten digits dataset

Keras 461, 467
mnist module from

tensorflow.keras.datasets
468

mode statistic 67, 97
mode function (statistics

module) 68
model, deep learning 468
model in machine learning 405
modules 62, 81, 82

collections 145, 280
csv 235
dataclasses 281, 282
datetime 256
decimal 62, 82
doctest 287
dweepy 566
io 227
itertools 537
math 82
matplotlib.image 264
numpy 160
os 223
pandas 508
pathlib 263, 314
pickle 226
pubnub 568
pyaudio 385, 392
pydub 385, 393
pydub.playback 385, 393
pymongo 520
pyspark.sql 555, 557
pyspark.streaming 556, 558
secrets 78
sklearn.datasets 406, 426
sklearn.linear_model 421
sklearn.metrics 414
sklearn.model_selection

411
sklearn.preprocessing 408
socket 552
sqlite3 507, 508
statistics 68, 82

modules (cont.)
tensorflow.keras.datasets

461, 468, 490
tensorflow.keras.datasets.

imdb 490
tensorflow.keras.datasets.

mnist 468
tensorflow.keras.layers

473
tensorflow.keras.models

473
tensorflow.keras.preproces

sing.sequence 493
tensorflow.keras.utils 472
tweepy 341
typing 282
wave (for processing WAV files)

385, 393
modulo operator 33
monetary calculations 7, 82
monetary calculations with Decimal

type 61, 63
MongoClient class of the pymongo

module 523
MongoDB document database 370,

518
Atlas cluster 520
text index 525
text search 525
wildcard specifier ($**) 525

Moore’s Law 23
Movie Reviews dataset 306
__mul__ special method of class

object 276
multi-model database 517
multi-classification (machine

learning) 403
multicore processor 95
multidimentional sequences 126
MultiIndex collection in pandas

178
multimedia 7
multiple-exception catching 230
multiple inheritance 266, 269
multiple linear regression 421, 426,

427, 434
multiple speaker recognition in

Watson Speech to Text 377
multiplication 10
multiplication operator (*) 33, 36

for sequences 110
multiply a sequence 116
multiply universal function

(NumPy) 170, 171
multivariate time series 293
music generation 24

mutable (modifiable) 56
sequence 104

mutate a variable 96
MySQL database 506

N
Naive Bayes 310
NaiveBayesAnalyzer 310
name mangling 257
name property of a User (Twitter)

342
__name__ identifier 290
named entity recognition 326
named tuple 280

_make method 281
named tuples 280
namedtuple function of the module

collections 280
NameError 35, 74, 113
namespace 290

built-in 291
enclosing 292
for a class 292
for an object of a class 292
LEGB (local, enclosing, global,

built-in) rule 292
naming convention

for encouraging correct use of
attributes 250

single leading underscore 253
NaN (not a number) 185
National Oceanic and Atmospheric

Administration (NOAA) 296
natural language 25, 304
Natural Language Classifier service

(IBM Watson) 378
natural language datasets 329
natural language processing 25
natural language processing (NLP)

xix, 192, 353
datasets 329

natural language text 376
natural language translation 24
natural language understanding 305

service from IBM Watson 377
natural logarithm 83
navigate backward and forward

through IPython snippets 53
nbviewer xxv
ndarray 130, 160

arithmentic 167
copy method 174
dtype attribute 162
flat attribute 163
flatten method 176

588 Index

ndarray (cont.)
indexing 171
itemsize attribute 162
max method 169
mean method 169
min method 169
ndim attribute 162
ravel method 176
reshape method 164, 175
resize method 175
shape attribute 162
size attribute 162
slicing 171
std method 169
sum method 169
var method 169
view method 173

ndarray collection (NumPy)
T attribute 177

ndim attribute of ndarray 162
negative sentiment 309
Neo4j 519
nested

control statements 77
for structure 127
functions 292
list 126
loop 127
parentheses 35

network (neural) 468
networking 7
neural network 8, 27, 463

deep learning 468
layer 464, 468
loss function 468
model 468
neuron 464
optimizer 468
weight 465

neuron 464
activation 464
in a neural network 464
in biology 463

neutral sentiment 309
new pharmaceuticals 24
newline character (\n) 37
NewSQL database 503, 517, 520

Apache Ignite 520
Google Spanner 520
MemSQL 520
VoltDB 520

n-grams 305, 318
ngrams method of class TextBlob

318

NLTK (Natural Language Toolkit)
NLP library 9, 305
corpora 306
data 329

node in a graph 519
nodes in a cluster 531
None value 74

evaluates to False in conditions
74

nonexistent element in a sequence
104

nonfatal logic error 55
nonfatal runtime error 12
nonsequence collections 138
normalization 314
normalized data 471
NoSQL database 370, 503, 517

column based 517
columnar database 517, 518
Couchbase 517
CouchDB 518
document database 517, 518
DynamoDB 517
Google Cloud Datastore 517
graph database 517, 519
HBase 517
key–value 517
MariaDB ColumnStore 506,

518
Microsoft Azure Cosmos DB

518
MongoDB 518
Redis 517

not Boolean operator 65, 66, 67
truth table 67

not in operator 81, 147
not_equal universal function

(NumPy) 171
notebook, terminate execution 468
not-equal-to operator (!=) 41
noun phrase 309

extraction 305
noun_phrases property of a

TextBlob 309
null in JSON 224
number systems

appendix (online) 193
binary 193
hexadecimal 193
octal 193

numbers format with their signs (+
195

numbers in JSON 224

NumPy (Numerical Python) library
xix, 8, 130, 136, 160
add universal function 170
arange function 164
array function 161, 162
broadcasting 168, 171
convert array to floating-point

values 472
full function 163
hstack function 177
linspace function 164
multiply universal function

170
numpy module 160
ones function 163
preinstalled in Anaconda 160
sqrt universal function 170
statistics functions 130
transpose rows and columns 177
type bool 162
type float64 162, 163
type int64 162, 163
type object 162
universal functions 170
unique function 130
vstack function 177
zeros function 163

numpy module 130
numpy.random module 166

choice function 469
randint function 166

NVIDIA GPU 463
NVIDIA Volta Tensor Cores 466

O
OAuth 2.0 337
OAuth dance 337
OAuthHandler class (Tweepy) 341

set_access_token method 341
object 2, 3, 46

identity 91
namespace 292
type 33, 45
value 45

object-based programming xxii
object-based programming (OBP)

245, 274
object class 249, 269

__add__ special method 276,
278

__format__ special method
261, 263

__iadd__ special method 279
__mul__ special method 276

Index 589

object class (cont.)
__repr__ special method 251,

254, 261
__str__ special method 251,

255, 261
special methods for operator

overloading 276
object NumPy type 162
object-oriented analysis and design

(OOAD) 5
object-oriented language 5
object-oriented programming

(OOP) 2, 5, 274
object recognition 475
object-oriented programming xix
OBP (object-based programming)

245, 274
observations in a time series 293
octal number system 193
off-by-one error 57
ON clause 514
on_connect method of class

StreamListener 355, 356
on_delete method of class

StreamListener 359
on_error method of class

StreamListener 355
on_limit method of class

StreamListener 355
on_status method of class

StreamListener 355, 356
on_warning method of class

StreamListener 355
one-hot encoding 408, 472, 482,

494
one-to-many relationship 510
ones function (NumPy) 163
OOAD (object-oriented analysis

and design) 5
OOP (object-oriented

programming) 5, 274
open a file 219

for reading 221
for writing 220

open built-in function 220
open method 221

of the class PyAudio 393
open-source libraries 25, 245
OpenAI Gym 8
OpenMapQuest

API key 363
OpenMapQuest (geopy)

geocode method 368
OpenMapQuest class (geopy) 368
OpenMapQuest geocoding service

363

open-source libraries xx
open-source software 25
OpenStreetMap.org 364
operand 36
operator

grouping 36, 67, 277
precedence chart 45
precedence rules 35

operator module 95, 320
operator overloading 276

special method 276
optimizer

’adam’ 480
deep learning 468
Keras 480

or Boolean operator 65, 66
Oracle Corporation 506
ord built-in function 124
ORDER BY SQL clause 511, 512, 513
order of evaluation 35
ordered collections 102
OrderedDict class from the module

collections 281
ordering of records 511
ordinary least squares 295
os module 7, 82, 223

remove function 223
rename function 223

outer for statement 127
outliers 98, 204
output layer 468, 473
overfitting 425, 475, 495
overriding a method 355
overriding base-class methods in a

derived class 270

P
package 81
package manager

conda xxxiv
pip xxxiv

packing a tuple 80, 106
pad_sequences function of the

tensorflow.keras.preprocess

ing.sequence module 493
pairplot function (Seaborn

visualization library) 447
pandas xix, 8, 160, 178, 218, 235,

319
Boolean indexing 185
DataFrame 192, 211, 213, 214
DataFrame collection 178, 182
in place sort 188
list indexing 184
MultiIndex collection 178

pandas (cont.)
read_csv function 237
reductions 179
selecting portions of a

DataFrame 183
Series 178, 192, 211, 212
set_option function 186
slice indexing 184
visualization 240, 319

pandas module
GroupBy 527
read_sql function 508

panning a map 363
parallel processing 546
parallelism xxiii
parameter 73
parameter list 73
parentheses

() 35
nested 35
redundant 35

parentheses metacharacters, (and)
209

partition string method 201
parts-of-speech (POS) tagging 305,

307, 308
adjectives 307
adverbs 307
conjunctions 307
interjections 307
nouns 307
prepositions 307
pronouns 307
tags list 308
verbs 307

pass-by-object-reference 90
pass-by-reference 90
pass-by-value 90
patch in a convolutional layer 473
Path class 314

joinpath method 263, 264
read_text method 314
resolve method 264

Path class from module pathlib
263

pathlib module 314
Path class 263

pattern matching 7, 82, 512
pattern NLP library 9, 305, 308
PCA estimator

fit method 452
fit_transform method 452
sklearn.decomposition

module 452
transform method 452

http://OpenStreetMap.org

590 Index

percent (%) SQL wildcard character
512

performance xxiii, xxviii
performance tuning 4
PermissionsError 227
persistent 218
persistent connection 355
personal assistants 24
Personality Insights service (IBM

Watson) 378
personality theory 378
personality traits 378
personalized medicine 24
personalized shopping 24
petabytes (PB) 19
petaflops 20
phishing elimination 24
pickle module 226
picture xix
Pig 533
Pig Latin 533
pip package manager xxxiv
pitch, voice 377
pixel intensity (grayscale) 407
placeholder in a format string 196
Platform as a Service (PaaS) 504
play function of module

pydub.playback 393
plot function of the

matplotlib.pylot module 424
plot method of a class DataFrame

294
plot property of a DataFrame 321
plot_model function of the

tensorflow.keras.utils.vis_

utils module 479
pluralizing words 305, 309
PNG (Portable Network Graphics)

260
polarity of Sentiment named

tuple 309, 310
pollution reduction 24
polymorphism 245, 274
pooling layer 476
pop method of dictionary built-in

type 140
pop method of list 119
pop method of set 152
Popular Python Data-Science

Libraries 8
Popularity of Programming

Languages (PYPL) Index 2
population 97
population standard deviation 98
population variance 97, 98
Popup class (folium) 366

position number 103
positive sentiment 309
PostgreSQL 506
pow (power) function of module

math 83
power universal function (NumPy)

171
%pprint magic 491
precedence 35
precedence not changed by

overloading 277
precedence rules 41, 45
precise monetary calculations 61, 63

Decimal type 61, 63
precision in a scikit-learn

classification report 416
%precision magic 167, 309
precision medicine 24
predefined word embeddings 495
predicate 511
predict method of a scikit-learn

estimator 413, 435
predict method of class

Sequential 482
predicted value in simple linear

regression 295
predicting

best answers to questions 490
cancer survival 24
disease outbreaks 24
student enrollments 24
weather-sensitive product sales

24
prediction accuracy 414
predictive analytics 24
predictive text input 490, 493
prepare data for machine learning

408
preposition 308
presentation type (string formatting)

193
c 193
d 193
e (or E) 194
f 194
integers in binary, octal or

hexadecimal number systems
193

pretrained convnet models 498
pretrained deep neural network

models 498
pretrained machine learning models

309
preventative medicine 24

preventing
disease outbreaks 24
opioid abuse 24

primary key 507, 508, 509, 510
composite 510

principal 63
principal components analysis

(PCA) 439, 452
principal diagonal 414
print built-in function 36
privacy

laws 502
private 256

attribute 257
data 250

probabilistic classification 467
probability 76, 153
problem solving 58, 59
procedural programming xix
process dictionary keys in sorted

order 143
profile module 82
profiling 7
program 9, 42
program “in the general” 245
program “in the specific” 245
program development 58, 59
ProgrammableWeb 17
Project Gutenberg 306
prompt 39
proper singular noun 308
proper subset 149
proper superset 149
property

getter method 253
name 253
of a class 251, 253
read-only 253
read-write 253
setter method 253

@property decorator 253
@propertyname.setter decorator

253
Prospector xxxv
protecting the environment 24
pseudorandom numbers 78
pstats module 82
pstdev function (statistics

module) 98
pub/sub system 561

channel 562
topic 562

public attribute 257
public domain

card images 258
images 263

Index 591

public interface of a class 255
publicly accessible attributes 250
publish/subscribe model 503, 561
publisher of a message 561
PubNub 16
pubnub module 568
Punkt 306
pure function 95, 96
pushed tweets from the Twitter

Streaming API 355
pvariance function (statistics

module) 98
.py extension 10
PyAudio class

get_sample_size method 393
open method 393
terminate method 393

PyAudio class from module pyaudio
393

pyaudio module 385, 392
PyAudio class 393
Stream class 393

PyCharm 12
pydataset module 237
pydub module 385, 393
pydub.playback module 385, 393

play function 393
pylinguistics library 324
PyMongo 370
pymongo library 520
pymongo module

Collection 524
Database 523
MongoClient 523

PyNLPl 328
PySpark 541
pyspark module

SparkConf class 546
pyspark.sql module 555, 557

Row class 557
pyspark.streaming module

DStream class 556
StreamingContext class 558

Python 5
Python and data science libraries

xxxiv
Python SDK (IBM Watson) 375
Python Standard Library 7, 61, 62,

81, 82
calendar module 82
collections module 7, 82
copy module 175
cryptographic modules

module 82
csv module 7, 82
datetime module 7, 82

Python Standard Library (cont.)
decimal module 7, 82
doctest module 7, 82
gettext module 82
json module 7, 82
locale module 82
math module 7, 82
os module 7, 82
profile module 82
pstats module 82
queue module 7
random module 7, 82, 130
re module 7, 82
secrets module 78
socket module 552
sqlite3 module 7, 82, 507
statistics module 7, 68, 82
string module 7, 82
sys module 7, 82, 135
time module 7, 82
timeit module 7, 82
tkinter module 82
turtle module 82
webbrowser module 82

PyTorch NLP 328

Q
qualified name 514
quantifier

? 206
{n,} 206
{n,m} 207
* 206
+ 206
greedy 206
in regular expressions 205

quantum computers 21
quartiles 180
query 506, 507
query string 348
question mark (?) to access help in

IPython 74
questions

getting answered xxviii
queue data structure 120
queue module 7
quotes

double 37
single 37
triple-quoted string 38

R
'r' file-open mode 221, 226
R programming language 5, 6
'r+' file-open mode 226

R2 score (coefficient of
determination) 437

r2_score function
(sklearn.metrics module) 437

radians 83
raise an exception 227, 233
raise point 229, 234
raise statement 233
raise to a power 83
randint function from the

numpy.random module 166
random module 7, 76, 82, 130

randrange function 76
seed function 76, 78

random number 76
generation 7, 82

random sampling 211
randomness source 78
random-number generation 130
randrange function of module

random 76
range built-in function 57, 60, 164
range statistic 46
rate limit (Twitter API) 334, 342
ravel method of a NumPy array

410
ravel method of ndarray 176
raw data 222
raw string 203
Rdatasets repository

CSV files 237
RDD 555
RDD (resilient distributed dataset)

546, 556
RDD class 546

RDD class
filter method 547
flatMap method 546
map method 546
reduceByKey method 547

re module 7, 82, 192, 204
findall function 209
finditer function 209
fullmatch function 204
match function 208
search function 208
split function 207
sub function 207

read a file into a program 221
read method of a file object 227
read method of the class Stream

393
read_csv function (pandas) 237
read_sql function from the pandas

module 508

592 Index

read_text method of class Path
314

readability 324
readability assessment 324
readability assessment libraries

readability library 324
readability-score library 324

readability formulas 324
Dale-Chall 324, 325
Flesch Reading Ease 324, 325
Flesch-Kincaid 324, 325
Gunning Fog 324, 325
Simple Measure of

Gobbledygook (SMOG)
324, 325

reader function of the csv module
236

reading sign language 24
readline method of a file object

227
readlines method of a file object

221
read-only property 253
read-write property 253

definition 253
real part of a complex number 277
real time 16
reasonable value 212
recall in a scikit-learn classification

report 416
%recall magic 133
%save magic 134
recognize method of class

SpeechToTextV1 387
recommender systems 24, 329
record 219
record key 219
recurrent neural network (RNN)

293, 370, 460, 489, 490
time step 490

recursion
recursion step 93
recursive call 93
recursive factorial function

94
visualizing 94

recursive call 95
recursive function 99
Redis 517
reduce dimensionality 476, 494
reduce function 95

of the functools module 124
reduceByKey method of class RDD

547
reducer in Hadoop MapReduce

532, 536

reducing carbon emissions 24
reducing program development

time 76
reduction 95, 122, 124

in functional-style programming
48, 68, 124

pandas 179
redundant parentheses 35, 36, 65
refer to an object 46
regplot function of the Seaborn

visualization library 298
regression xix, 400
regression line 293, 296, 298

slope 299
regular expression 7, 82, 203, 208

^ metacharacter 208
? quantifier 206
(metacharacter 209
) metacharacter 209
[] character class 205
{n,} quantifier 206
{n,m} quantifier 207
* quantifier 206
\ metacharacter 205
\d character clas 205
\D character class 205
\d character class 205
\S character class 205
\s character class 205
\W character class 205
\w character class 205
+ quantifier 206
$ metacharacter 209
anchor 208, 209
caret (^) metacharacter 206
character class 205
escape sequence 205
flags keyword argument 208
group method of a match object

210
groups method of a match

object 208, 210
IGNORECASE regular expression

flag 208
match object 208
metacharacter 205
parentheses metacharacters, (

and) 209
search pattern 203
validating data 203

regularization 476
reinforcement learning 27
reinventing the wheel 81
relational database 502, 506

relational database management
system (RDBMS) 370, 506

release resources 220
’relu’ (Rectified Linear Unit)

activation function 475
remainder (in arithmetic) 35
remainder operator (%) 33, 35, 36,

45
remainder universal function

(NumPy) 171
remove function of the os module

223
remove method of list 118
remove method of set 152
removing whitespace 197
rename function of the os module

223
repeat a string with multiplication

110
repeat keyword argument of

FuncAnimation 157
replace method 199
replacement text 59, 60
repr built-in function 254
__repr__ special method of class

object 251, 254, 261
reproducibility xxii, xxvi, 76, 411,

417, 430, 462, 542, 544
in Keras 467
Jupyter Notebooks 12

requirements statement 5, 59
compound interest 63
craps dice game 78

reshape method of ndarray 164,
175, 422

resilient distributed dataset (RDD)
542, 546, 555, 556

resize method of ndarray 175
resolve method of class Path 264
resource

acquire 220
release 220

resource leak 231
return statement 73
return_counts keyword argument

of NumPy unique function 130
reusable componentry 245
reusable software components 3
reuse 4
reverse keyword argument of list

method sort 115
reverse method of list 119
reversed built-in function

(reversing sequences) 125
rfind string method 199
ride sharing 24
Ridge estimator from

sklearn.linear_model 438

Index 593

right align > (string formatting) 63,
194

right_shift universal function
(NumPy) 171

right-to-left evaluation 45
rindex string method 199
risk monitoring and minimization

24
robo advisers 24
robust application 218
rolling a six-sided die 77
rolling two dice 78, 80
Romeo and Juliet 321
round floating-point numbers for

output 60
rounding integers 83
Row class from the pyspark.sql

module 557
row in a database table 507, 510,

511, 512, 515
row of a two-dimensional list 126
rpartition string method 201
rsplit string method 200
rstrip string method 197
Rule of Entity Integrity 510
Rule of Referential Integrity 510
%run magic 167
running property of class Stream

358
runtime error 12

S
SalariedCommissionEmployee

class 270
sample method of a DataFrame 430
sample of a population 97
sample variance 97
samples (in machine learning) 407,

428
sampling data 211
sarcasm detection 329
%save magic 167
save method of class Map 367
save method of class Sequential

485
scalar 167
scalar value 465
scatter function (Matplotlib) 440
scatter plot 298, 430
scattergram 298
scatterplot function (Seaborn)

424, 431
scientific computing 5
scientific notation 194

scikit-learn (sklearn) machine-
learning library 8, 293, 380, 403,
405, 426, 459
estimator (model) 405, 422
fit method of an estimator

412, 434
predict method of an estimator

413, 435
score method of a classification

estimator 414
sklearn.linear_model

module 421
sklearn.metrics module 414
sklearn.model_selection

module 411
sklearn.preprocessing

module 408
SciPy xix, 8
scipy 295
SciPy (Scientific Python) library

295, 298
linregress function of the

stats module 295, 298
scipy.stats module 295
stats module 298

scipy.stats module 295
scope 87, 290

global 87
local 87

score method of a classification
estimator in scikit-learn 414

scraping 204
screen_name property of a User

(Twitter) 343
script 9, 42
script mode (IPython) 9
script with command-line

arguments 135
Seaborn visualization library xx, 8,

25, 128, 130, 152, 153, 155,
157, 158, 430
barplot function 131
heatmap function 416
module 130
pairplot function 447
predefined color palettes 131
regplot function 298
scatterplot function 424,

431
search a sequence 116
search function of the module re

208
search method of class API 347
search pattern (regular expressions)

203
seasonality 293

secondary storage device 218
secrets module 78
secure random numbers 78
security enhancements 24
seed function of module random 76,

78
seed the random-number generator

78
seek method of a file object 221
SELECT SQL keyword 509
selection criteria 511
selection statement 50
self in a method’s parameter list 249
self-driving cars 24, 26
semi-structured data 502, 517, 518
send a message to an object 4
send method of a socket 552
sentence capitalization 197
Sentence class (TextBlob) 307, 310

correct method 313
lemmatize method 314
stem method 314

sentence property of a TextBlob
307, 310

sentiment 309, 349, 377
sentiment analysis xxi, 24, 305,

309, 359, 490
sentiment in tweets 332
Sentiment named tuple

polarity 309, 310
subjectivity 309, 310
textblob module 309

sentiment property of a TextBlob
309, 310

sentinel-controlled iteration 59
sentinel value 59
separators, thousands 130
sequence 55, 102

+ operator for concatenation
105

concatenate 105
length 103
nonexistent element 104
of bytes 219
of characters 55, 219
of consecutive integers 57

sequence collections 138
sequence type string 192
Sequential class

compile method 480
evaluate method 482
fit method 480
predict method 482
save method 485
tensorflow.keras.models

module 473

594 Index

serializing data 224
Series collection (pandas) 178,

192, 211, 212
astype method 522
built-in attributes 181
contains method 212
custom indices 180
describe method 179
descriptive statistics 179
dictionary initializer 180
dtype attribute 181
index keyword argument 180
integer indices 178
map method 213
match method 212
square brackets 180
str attribute 181, 212
string indices 180
values attribute 181

server in a client/server app 551
service documentation (IBM

Watson) 394
service-oriented architecture (SOA)

504
set built-in type 138, 147

add 152
clear 152
difference 150
difference_update 151
discard 152
disjoint 151
empty set 148
improper subset 149
improper superset 149
intersection 150
intersection_update 151
isdisjoint 151
issubset method 149
issuperset method 149
mathematical operators 150
pop 152
proper subset 149
proper superset 149
remove 152
set built-in function 148
symmetric_difference 150
symmetric_difference_updat

e 151
union 150
update 151

set comprehensions 95
set method of Axes (Matplotlib)

131
SET SQL clause 515
set_access_token method of class

OAuthHandler 341

set_option function (pandas) 186
set_options function (tweet-

preprocessor library) 354
set_ylim method of Axes

(Matplotlib) 132
setAppName method of class

SparkConf 546
setMaster method of class

SparkConf 546
sets of synonyms (synset) 315
setter method

decorator 253
of a property 253

shadow
a built-in identifier 291
a built-in or imported function

88
shadow a function name 88
Shakespeare 306, 314, 327
shallow copy 111, 173
shape attribute of ndarray 162
Shape class hierarchy 267
sharing economy 24
short-circuit evaluation 66
show function of Matplotlib 135
ShuffleSplit class from

sklearn.model_selection 411
side effects 95, 96
sigmoid activation function 496
signal value 59
signature of a function 74
similarity detection 24, 327
similarity method of class Doc

328
simple condition 66
simple linear regression 293, 370,

420, 421
Simple Measure of Gobbledygook

(SMOG) readability formula
324, 325

simplified Chinese 312
simulate an Internet-connected

device 503, 561
simulation 76
sin (sine) function of module math

83
sin universal function (NumPy)

171
single inheritance 266, 269, 270
single leading underscore naming

convention 253
single quote (') 37
singleton tuple 107
singular noun 308
singularizing words 305, 309
size attribute of ndarray 162

sklearn (scikit-learn) 399, 426
sklearn.cluster module

KMeansClassifier estimator
450

sklearn.datasets module 406,
426
fetch_california_housing

function 426
load_digits function 406
load_iris function 444

sklearn.decomposition module
PCA estimator 452

sklearn.linear_model module
421
ElasticNet estimator 438
Lasso estimator 438
LinearRegression estimator

421, 422, 434
Ridge estimator 438

sklearn.manifold module
TSNE estimator 439

sklearn.metrics module 414
classification_report

function 415
confusion_matrix function

414
r2_score function 437

sklearn.model_selection module
411
cross_val_score function

417, 418, 419, 438
KFold class 417, 419, 438
ShuffleSplit class 411
train_test_split function

411, 434, 494
sklearn.naive_bayes module

GaussianNB estimator 419
sklearn.neighbors module 412,

450
KNeighborsClassifier

estimator 412
sklearn.preprocessing module

408
sklearn.svm module

SVC estimator 419
sklearn.utils module

Bunch class 426
slice 110

end index 111
indexing in pandas 184
ndarray 171
start index 110
step 111

slope 295, 298
smart cities 24

Index 595

smart homes 24
smart meters 24
smart thermostats 24
smart traffic control 24
snippet

navigate backward and forward
in IPython 53

snippet in IPython 9
SnowNLP 328
social analytics 24
social graph 519
social graph analysis 24
socket 551, 552

accept method 554
bind method 554
close method 554
listen method 554
send method 552

socket function 554
socket module 552
socketTextStream method of class

StreamingContext 559
softmax activation function 478
Software as a Service (SaaS) 504
software engineering observations

xxviii
solid-state drive 218
sort 115

ascending order 115, 146
descending order 115, 116

sort method of a list 115
sort_index method of a pandas

DataFrame 187
sort_values method of a pandas

DataFrame 188
sorted built-in function 115, 143,

345
sorted function 68
source code 10
SourceForge 245
spacy module

load function 326
spaCy NLP library 326

Doc class 326
ents property 327
label_ property of a Span 327
load function of the spacy

module 326
similarity method 328
Span class 327

spam detection 24
Span class (spaCy) 327

label_ property 327
text property 327

Spark (Apache) xix, 503, 530
as a Service (SaaS) 504
batches of streaming data 558
checkpointing 558
fault-tolerance in streaming 558
PySpark library 541
Spark SQL 503, 517, 555, 557

query 557
stateful transformations in

streaming 558
streaming 503, 542
streaming batch interval 558
table view of a DataFrame 557

SparkConf class from the pyspark
module 546
setAppName method 546
setMaster method 546

SparkContext class 546
textFile method 546

sparkline 563
SparkSession class from the

pyspark.sql module 555
spatial data analysis 24
special method 249, 276
special methods

__eq__ 282
__init__ 281
__ne__ 282
__repr__ 281

speech recognition 25, 329
speech synthesis 25, 329
Speech Synthesis Markup Language

(SSML) 377
speech to text 16
Speech to Text service (IBM

Watson) 377, 382, 383, 384,
385, 386, 387, 391

speech-to-text 329
SpeechToTextV1 class

recognize method 387
SpeechToTextV1 class from the

watson_developer_cloud
module 385, 387

spell checking 305
spellcheck method of class Word

313
spelling correction 305
split

function of module re 207
method 221
method of string 145
string method 200

splitlines string method 201
sports recruiting and coaching 24
spread 98

Spyder IDE 12
Spyder Integrated Development

Environment xxxiv
SQL (Structured Query Language)

506, 507, 511, 515
DELETE FROM statement 511,

516
FROM clause 511
GROUP BY clause 511
INNER JOIN clause 511, 514
INSERT INTO statement 511,

515
keyword 511
ON clause 514
ORDER BY clause 511, 512, 513
percent (%) wildcard character

512
query 508
SELECT query 509
SET clause 515
SQL on Hadoop 517
UPDATE statement 511
VALUES clause 515
WHERE clause 511

SQLite database management
system 506, 507

sqlite3 command (to create a
database) 507

sqlite3 module 7, 82, 507
connect function 508
Connection class 508, 514

Sqoop 533
sqrt (square root) function of

module math 82, 83
sqrt universal function (NumPy)

170, 171
square brackets 180
SRE_Match object 208
stack 119

overflow 95
unwinding 229, 234

standard deviation 46, 166, 180
standard deviation statistic 98
standard error file object 219
standard file objects 219
standard input file object 219
standard input stream 535
standard output file object 219
standard output stream 535
StandardError class of exceptions

280
standardized reusable component

245
Stanford CoreNLP 328
start index of a slice 110

596 Index

start method of a
StreamingContext 559

startswith string method 199
stateful transformations (Spark

streaming) 558
statement 32
statement spread over several lines

44
statements

break 64
continue 64
del 112
for 50, 51, 55, 57
from…import 89
if 50, 51
if…elif…else 50, 54
if…else 50, 52
import 62, 82
import…as 90
nested 77
return 73
while 50, 51, 55
with 220

static bar chart 102
static code analysis tools 286
static visualization 128
statistics

count 46, 68
maximum 46
mean 67
measures of central tendency 67
measures of dispersion 46
measures of dispersion (spread)

97
measures of variability 46, 97
median 67
minimum 46
mode 67
range 46
standard deviation 46, 98
sum 46, 68
variance 46, 97

statistics module 7, 68, 82
mean function 68
median function 68
mode function 68
pstdev function 98
pvariance function 98

stats 298
Statsmodels 8
Status class (Twitter API)

extended_tweet property 343
text property 343

status property of a User (Twitter)
343

status update (Twitter) 337

std method of ndarray 169
stem method of class Sentence 314
stem method of class Word 314
stemming 305, 309, 314
step in a slice 111
step in function range 60
stock market forecasting 24
stop word 323

elimination 305
stop words 317, 328
stop_stream method of the class

Stream 393
Storage as a Service (SaaS) 504
Storm 533
str (string) type 45, 62
str attribute of a pandas Series

181, 212
str built-in function 255
__str__ special method of class

object 251, 255, 261
straight-line form 35
Stream class

close method 393
read method 393
stop_stream method 393

Stream class (Tweepy) 357, 358
filter method 358
running property 358

Stream class from module pyaudio
393

StreamingContext class
checkpoint method 558
pyspark.streaming module

558
socketTextStream method

559
start method 559

StreamListener class (Tweepy)
355
on_connect method 355, 356
on_delete method 359
on_error method 355
on_limit method 355
on_status method 355, 356
on_warning method 355

stride 474, 476
string built-in type

* string repetition operator 196
+ concatenation operator 196
byte string 393
capitalize method 197
concatenation 40
count method 198
encode as bytes 553
endswith method 199
find method 199

string built-in type (cont.)
format method 195, 550
in JSON 224
index method 199
isdigit method 202
join method 200
lower method 87, 125, 197
lstrip 197
of characters 37
partition method 201
repeat with multiplication 110
replace method 199
rfind method 199
rindex method 199
rpartition method 201
rsplit method 200
rstrip 197
split method 145, 200
splitlines method 201
startswith method 199
strip 197
title method 197
triple quoted 38
upper method 87, 197

string formatting
fill with 0s 195
left align (<) 194
numbers with their signs (+) 195
presentation type 193
right align (>) 194

string module 7, 82
string sequence type 192
strip string method 197
stripping whitespace 197
structured data 502, 517
Structured Query Language (SQL)

502, 506, 507, 511
student performance assessment 24
Style Guide for Python Code

blank lines above and below
control statements 58

class names 84, 248
constants 84
docstring for a function 73
naming constants 260
no spaces around = in keyword

arguments 56
spaces around binary operators

32, 43
split long line of code 44
suite indentation 44
triple-quoted strings 38

sub function of module re 207
subclass 4, 245
subjectivity of Sentiment named

tuple 309, 310

Index 597

subordinating conjunction 308
subplots function of module

matplotlib.pyplot 264
subscribe to messages 561
subscription operator ([]) 103, 105
substring 198
subtract universal function

(NumPy) 171
subtraction 33, 36
suite 44

indentation 44
suite vs. block 73, 88
sum built-in function 68, 80, 86
sum method of a DataFrame 527
sum method of ndarray 169
sum statistic 46, 68
summarizing documents 329
summarizing text 24
summary method of a Keras model

478
super built-in function 272
superclass 4, 245
supercomputing 21
supervised 464
supervised deep learning 464
supervised machine learning 400,

403
support in a scikit-learn

classification report 416
SVC estimator from sklearn.svm

419
Sybase 506
symbols 337
symmetric difference augmented

assignment 151
symmetric_difference method of

set 150
symmetric_difference_update

method of set 151
synapse in biology 463
synapses 464
synchronous 379
synchronous tweet stream 358
synonyms 305, 315, 316
synset (set of synonyms) 315
Synset class, lemmas method 316
synsets property of class Word 315
syntax error 38
SyntaxError 38, 41
synthesize method of class

TextToSpeechV1 392
sys module 7, 82, 135

stderr file stream 219
stdin file stream 219
stdout file stream 219

SystemExit exception 279

T
T attribute of a NumPy ndarray

177
T attribute of a pandas DataFrame

187
tab completion 83
tab escape sequence \t 37
tab stop 37
table 126

in a database 506
table view of a Spark DataFrame 557
tables 506
tags property of a TextBlob 308
tail method of a DataFrame 238
tan (tangent) function of module

math 83
tan universal function (NumPy)

171
target attribute of a Bunch 407,

428
target in a for statement 55
target values (in machine learning)

428
t-distributed Stochastic Neighbor

Embedding (t-SNE) 439
telemedicine 24
tensor 160, 465

0D 465
1D 465
2D 466
3D 466
4D 466
5D 466

Tensor Processing Unit (TPU) 467
TensorBoard 481

dashboard 486
TensorBoard class from the

tensorflow.keras.callbacks
module 488

TensorBoard for neural network
visualization 486

TensorFlow 380
TensorFlow deep learning library 8,

458, 468
tensorflow.keras.callbacks

module
TensorBoard class 488

tensorflow.keras.datasets
module 461, 468, 490

tensorflow.keras.datasets.imd

b module 490
get_word_index function 492

tensorflow.keras.datasets.mni

st module 468
load_data function 468, 491

tensorflow.keras.layers module
473, 495
Conv2D class 475
Dense class 477
Embedding class 495
Flatten class 477
MaxPooling2D class 477

tensorflow.keras.layers.embed

dings module 495
Dropout class 495

tensorflow.keras.models module
473
load_model method 485
Sequential class 473

tensorflow.keras.preprocessin

g.sequence module 493
pad_sequences function 493

tensorflow.keras.utils module
472, 479

terabytes (TB) 18
teraflop 20
Terminal

macOS xxxiv
or shell Linux xxxiv

Terminal window in JupyterLab
543

terminate method of the class
PyAudio 393

terminate notebook execution 468
terrorist attack prevention 24
testing 4

unit test 287
unit testing 287

testing set 411, 434
testmod function of module

doctest 287
verbose output 288

text classification 329
text file 218, 219
text index 525
text method of Axes (Matplotlib)

131, 133
text property of a spaCy Span 327
text property of a Status (Twitter)

343
text search 525
text simplification 329
text to speech 16
Text to Speech service (IBM

Watson) 377, 382, 383, 384
Textacy NLP library 326
textatistic module 324

dict method of the
Textatistic class 324

readability assessment 324
Textatistic class 324

598 Index

TextBlob 9, 16
TextBlob NLP library 305

BaseBlob class 307
compare TextBlobs to strings

307
correct method of the

TextBlob class 313
detect_language method of

the TextBlob class 311
inflection 305
inter-language translation 305
language detection 305
lemmatization 305
n-gram 305
ngrams method of the TextBlob

class 318
noun phrase extraction 305
noun_phrases property of the

TextBlob class 309
parts-of-speech (POS) tagging

305
pluralizing words 305
Sentence class 307, 310
sentence property of the

TextBlob class 307, 310
sentiment analysis 305
Sentiment named tuple 309
sentiment property of the

TextBlob class 309, 310
singularizing words 305
spell checking 305
spelling correction 305
stemming 305
stop word elimination 305
string methods of the TextBlob

class 307
tags property of the TextBlob

class 308
TextBlob class 307
textblob module 307
tokenization 305
translate method of the

TextBlob class 312
Word class 307, 309
word frequencies 305
word_counts dictionary of the

TextBlob class 315
WordList class 307, 309
WordNet antonyms 305
WordNet integration 305, 315
WordNet synonyms 305
WordNet word definitions 305
words property of the TextBlob

class 307
textblob.sentiments module 310
text-classification algorithm 310

textFile method of the
SparkContext class 546

TextRazor 328
textstat library 324
text-to-speech 329
TextToSpeechV1 class

from module
watson_developer_cloud
385, 391, 392

synthesize method 392
the cloud 16
The Jupyter Notebook 13
The Zen of Python 7
Theano 458, 462
Theano deep learning library 8
theft prevention 24
theoretical science 211
third person singular present verb

308
thousands separator 130, 195
thread 234, 546
three-dimensional graph 442
tight_layout method of a

Matplotlib figure 321
tight_layout method of class

Figure 264
Time class 250, 252
time module 7, 82
time series 293, 370

analysis 293
financial applications 293
forecasting 293
Internet of Things (IoT) 293
observations 293

time step in a recurrent neural
network 490

%timeit magic 165
timeit module 7, 82
%timeit profiling tool xxiii
timeline (Twitter) 344, 346
Titanic disaster dataset 218, 237,

238
title method of a string 197
titles table of books database 508
tkinter module 82
to_categorical function 472

of the
tensorflow.keras.utils
module 472

to_csv method of a DataFrame 238
to_file method of class WordCloud

323
token 200
tokenization 200, 305
tokenize a string 144, 145, 207
tokens 305

Tone Analyzer service (IBM
Watson) 378
emotion 378
language style 378
social propensities 378

topic in pub/sub systems 562
topic modeling 329
topical xviii
TPU (Tensor Processing Unit) 459,

466, 476
traceback 34, 55, 233
trailing zero 60
train_test_split function from

sklearn.model_selection
411, 434, 494

training accuracy 497
training set 411, 434
tranlation services

Microsoft Bing Translator 311
transcriptions of audio 377
transfer learning 459, 479, 485,

498
transform method of the PCA

estimator 452
transform method of the TSNE

estimator 440
transforming data 204, 210
translate method of a TextBlob

312
translate method of class

LanguageTranslatorV3 390
translate speech 26
translating text between languages

377
translation 16
translation services

 311
transpose rows and columns in a

pandas DataFrame 187
transpose rows and columns of an

ndarray 177
travel recommendations 24
traveler’s companion app 381
Trend spotting 24
trending topics (Twitter) 333, 349
Trends API (Twitter) 334
trends_available method of class

API 350
trends_closest method of class

API 351
trends_place method of class API

351
trigonometric cosine 83
trigonometric sine 83
trigonometric tangent 83

Index 599

trigrams 318
triple-quoted string 38
True 50, 51
True Boolean value 41
true division operator (/) 33, 34,

36, 45
trunc universal function (NumPy)

171
truncate 34
truth table 65
try clause 228
try statement 228
TSNE estimator

fit method 440
fit_transform method 440
sklearn.manifold module 439
transform method 440

tuple 80, 102, 106
arbitrary argument list 86
one-element 107
tuple built-in function 109

Turtle graphics
turtle module 82

Tweepy library 334, 340
API class 341, 342
Cursor 344
install 340, 354
OAuthHandler class 341
Stream class 357, 358
StreamListener class 355
wait_on_rate_limit 342
wait_on_rate_limit_notify

342
tweepy module 341
tweepy.models.Status object 343
tweepy.models.User object 342,

344
tweet 337

coordinates 338
created_at 337
entities 337
extended_tweet 337
favorite_count 338
id 338
id_str 338
lang 338
place 338
retweet_count 338
text 338
user 338

tweet object JSON (Twitter) 343
tweet-preprocessor library 353

set_options function 354
Tweets API (Twitter) 334
24-hour clock format 250

Twitter 333
data mining 332
history 333
rate limits 334
Streaming API 354, 355
timeline 344, 346
trending topics 349
Trends API 332

Twitter API 334
access token 336, 341
access token secret 336, 341
Accounts and Users API 334
API key 336, 341
API secret key 336, 341
app (for managing credentials)

335
app rate limit 334
Authentication API 334
Consumer API keys 336
credentials 335
fire hose 354
rate limit 334, 342
Trends API 334
tweet object JSON 343
Tweets API 334
user object JSON 342
user rate limit 334

Twitter Python libraries
Birdy 340
Python Twitter Tools 340
python-twitter 340
TweetPony 340
TwitterAPI 340
twitter-gobject 340
TwitterSearch 340
twython 340

Twitter search
operators 348

Twitter Trends API 349
Twitter web services 16
Twittersphere 333
Twitterverse 333
two-dimensional list 126
.txt file extension 220
type dependent formatting 193
type function 33
type hint 283
type of an object 45
TypeError 104, 107
types

float 33, 45
int 33, 45
str 45

typing module 282
ClassVar type annotation 282
List type annotation 282, 283

U
UCI ML hand-written digits dataset

406
ufuncs (universal functions in

NumPy) 170
unary operator 66
uncaught exception 234
Underfitting 425
underscore

_ SQL wildcard character 512
underscore character (_) 33
understand information in image

and video scenes 376
union augmented assignment 151
union method of set 150
unique function (NumPy) 130

return_counts keyword
argument 130

unit testing xxii, 7, 82, 287, 287,
288

United States
geographic center 366

univariate time series 293
universal functions (NumPy) 170

add 171
arccos 171
arcsin 171
arctan 171
bitwise_and 171
bitwise_or 171
bitwise_xor 171
ceil 171
cos 171
divide 171
equal 171
exp 171
fabs 171
floor 171
greater 171
greater_equal 171
hypot 171
invert 171
isinf 171
isnan 171
left_shift 171
less 171
less_equal 171
log 171
logical_and 171
logical_not 171
logical_or 171
logical_xor 171
maximum 171
minimum 171
multiply 171

600 Index

universal functions (NumPy) (cont.)
not_equal 171
power 171
remainder 171
right_shift 171
sin 171
sqrt 171
subtract 171
tan 171
trunc 171
ufuncs 170

unlabeled data 400
unordered collection 139
unpack a tuple 80
unpacking a tuple 80, 108
unpacking an iterable into function

arguments 86
unstructured data 502, 517
unsupervised deep learning 464
unsupervised machine learning 400,

438
update 140
update Anaconda xxxiv
update method of a dictionary 146
update method of set 151
UPDATE SQL statement 511, 515,
updateStateByKey method of a

DStream 559
upper method of a string 87, 197
uppercase characters 202
uppercase letter 33
use cases 23

IBM Watson 374
User class (Twitter API)

description property 343
followers_count property 343
friends_count property 343
id property 342
name property 342
screen_name property 343
status property 343

user object JSON (Twitter) 342
user rate limit (Twitter API) 334
user_timeline method of class API

346
UTC (Coordinated Universal

Time) 337
utility method 256

V
V’s of big data 22
valid Python identifier 202
validate a first name 205
validate data 252

validating data (regular expressions)
203

validation accuracy 496
validation_data argument to a

Keras model’s fit method 494
validation_split argument to a

Keras model’s fit method 481,
494

value of an object 45
ValueError 108
ValueError exception 199
values attribute of a pandas Series

181
values method of dictionary 141
VALUES SQL clause 515
var method of ndarray 169
variable refers to an object 46
variable annotations 283
variance 46, 97, 180
variety (in big data) 23
vector 465
velocity (in big data) 22
veracity (in big data) 23
version control tools xx
vertical stacking (ndarray) 177
vertices in a graph 519
video 376
video closed captioning 329
view (shallow copy) 173
view into a dictionary 142
view method of ndarray 173
view object 173
virtual assistants 376
visual product search 24
Visual Recognition service (IBM

Watson) 376
Visual Studio Code 12
visualization xix, 25, 110

die rolling 129
dynamic 152
Folium 363
Matplotlib 128
pandas 240
Seaborn 128, 130

visualize the data 430
visualize word frequencies 319, 321
Visualizing 94
visualizing recursion 94
voice cadence 377
voice inflection 377
voice pitch 377
voice recognition 24
voice search 24
VoltDB (NewSQL database) 520
volume (in big data) 22
vstack function (NumPy) 177

W
'w' file-open mode 220, 226
'w+' file-open mode 226
wait_on_rate_limit (Tweepy)

342
wait_on_rate_limit_notify

(Tweepy) 342
Watson 374

dashboard 375
lite tiers xxvii

Watson (IBM) xix, xxvi
Watson Assistant service 376
Watson Developer Cloud

Python SDK xxvi
Watson Developer Cloud Python

SDK 375, 381, 385, 394
Watson Discovery service 378
Watson Knowledge Catalog 380
Watson Knowledge Studio 377
Watson Machine Learning service

380
Watson Studio 379

Business Analytics project 380
Data Engineering project 380
Data Science project 380
Deep Learning project 380
Modeler project 380
Standard project 379
Streams Flow project 380
Visual Recognition project 380

watson_developer_cloud module
381, 385
LanguageTranslatorV3 class

385, 390
SpeechToTextV1 class 385, 387
TextToSpeechV1 class 385,

391, 392
WAV (Waveform Audio File

Format) 385, 388, 392
.wav file 385
wave module 385, 393
Waze GPS navigation app 24
Weather Forecasting 24
web service 16, 223, 334, 374

endpoint 334
IBM Watson 374

web services 16
web-based dashboard 16
webbrowser module 82
weighted inputs 465
weights in a neural network 465
WHERE SQL clause 511, 513, 515,

516
while statement 50, 51, 55

else clause 64

Index 601

whitespace 43
removing 197

whitespace character 200, 202
whitespace character class 207
Wikimedia Commons (public

domain images, audio and video)
263

Wikipedia 329
wildcard import 89
wildcard specifier ($**) 525
Windows Anaconda Prompt xxxiv
Windows Azure Storage Blob

(WASB) 550
with statement 220

as clause 220
WOEID (Yahoo! Where on Earth

ID) 350, 351
word character 205
Word class

correct method 313
define method 315
definitions property 315
get_synsets method 316
lemmatize method 314
spellcheck method 313
stem method 314
synsets property 315
textblob module 307, 309

word cloud 319

word definitions 305, 315
word embeddings 495

GloVe 495
Word2Vec 495

word frequencies 305, 315
visualization 319

word_counts dictionary of a
TextBlob 315

Word2Vec word embeddings 495
WordCloud class 321

fit_words method 323
generate method 323
to_file method 323

wordcloud module 321
WordList class 307

count method 315
from the textblob module 307,

309
WordNet 315

antonyms 305
synonyms 305
synset 315
Textblob integration 305
word definitions 305

words property of class TextBlob
307

write method of a file object 220
writelines method of a file object

227

writer function of the csv module
235

writerow method of a CSV writer
235

writerows method of a CSV writer
235

X
XML 502, 518

Y
Yahoo! 532
Yahoo! Where on Earth ID

(WOEID) 350, 351
YARN (Yet Another Resource

Negotiator) 532, 538
yarn command (Hadoop) 538

Z
Zen 7
Zen of Python 7

import this 7
ZeroDivisionError 34, 227, 229
zeros function (NumPy) 163
zettabytes (ZB) 19
zip built-in function 125, 132
ZooKeeper 533
zoom a map 363

	Cover
	Half Title
	Series Page
	Title Page
	Copyright Page
	Contents
	Preface
	Before You Begin
	5 Sequences: Lists and Tuples
	5.1 Introduction
	5.2 Lists
	5.3 Tuples
	5.4 Unpacking Sequences
	5.5 Sequence Slicing
	5.6 del Statement
	5.7 Passing Lists to Functions
	5.8 Sorting Lists
	5.9 Searching Sequences
	5.10 Other List Methods
	5.11 Simulating Stacks with Lists
	5.12 List Comprehensions
	5.13 Generator Expressions
	5.14 Filter, Map and Reduce
	5.15 Other Sequence Processing Functions
	5.16 Two-Dimensional Lists
	5.17 Intro to Data Science: Simulation and Static Visualizations
	5.17.1 Sample Graphs for 600, 60,000 and 6,000,000 Die Rolls
	5.17.2 Visualizing Die-Roll Frequencies and Percentages

	5.18 Wrap-Up

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

