

Programming Skills
for Data Science

T he Pearson Addison-Wesley Data and Analytics Series provides readers with

practical knowledge for solving problems and answering questions with data.

Titles in this series primarily focus on three areas:

1. Infrastructure: how to store, move, and manage data

2. Algorithms: how to mine intelligence or make predictions based on data

3. Visualizations: how to represent data and insights in a meaningful and

compelling way

The series aims to tie all three of these areas together to help the reader build

end-to-end systems for fighting spam; making recommendations; building

personalization; detecting trends, patterns, or problems; and gaining insight

from the data exhaust of systems and user interactions.

Visit informit.com/awdataseries for a complete list of available publications.

Make sure to connect with us!

informit.com/socialconnect

The Pearson Addison-Wesley
Data and Analytics Series

http://informit.com/awdataseries
http://informit.com/socialconnect

Programming Skills
for Data Science

Start Writing Code to
Wrangle, Analyze, and
Visualize Data with R

Michael Freeman
Joel Ross

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for
incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include
electronic versions; custom cover designs; and content particular to your business, training goals, marketing
focus, or branding interests), please contact our corporate sales department
at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2018953978

Copyright © 2019 Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by
any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, request forms and the appropriate contacts within the Pearson Education Global Rights &
Permissions Department, please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-513310-1
ISBN-10: 0-13-513310-6

1 18

mailto:Forgovernmentsalesinquiries,pleasecontactgovernmentsales@pearsoned.com
mailto:,pleasecontactintlcs@pearson.com
http://VisitusontheWeb:informit.com/aw
http://www.pearsoned.com/permissions/
mailto:corpsales@pearsoned.com

v

To our students who challenged us to develop better resources, and
our families who supported us in the process.

v

This page intentionally left blank

Contents
xiForeword

xiiiPreface

xviiAcknowledgments

xixAbout the Authors

I: Getting Started 1

1 Setting Up Your Computer 3

1.1 Setting up Command Line Tools 4

1.2 Installing git 5

1.3 Creating a GitHub Account 6

1.4 Selecting a Text Editor 6

1.5 Downloading the R Language 7

1.6 Downloading RStudio 8

2 Using the Command Line 9

2.1 Accessing the Command Line 9

2.2 Navigating the File System 11

2.3 Managing Files 15

2.4 Dealing with Errors 18

2.5 Directing Output 20

2.6 Networking Commands 20

II: Managing Projects 25

3 Version Control with git and GitHub 27

3.1 What Is git? 27

3.2 Con�guration and Project Setup 30

3.3 Tracking Project Changes 32

3.4 Storing Projects on GitHub 36

3.5 Accessing Project History 40

3.6 Ignoring Files from a Project 42

4 Using Markdown for Documentation 45

4.1 Writing Markdown 45

4.2 Rendering Markdown 48

viii Contents

III: Foundational R Skills 51

5 Introduction to R 53

5.1 Programming with R 53

5.2 Running R Code 54

5.3 Including Comments 58

5.4 De�ning Variables 58

5.5 Getting Help 63

6 Functions 69

6.1 What Is a Function? 69

6.2 Built-in R Functions 71

6.3 Loading Functions 73

6.4 Writing Functions 75

6.5 Using Conditional Statements 79

7 Vectors 81

7.1 What Is a Vector? 81

7.2 Vectorized Operations 83

7.3 Vector Indices 88

7.4 Vector Filtering 90

7.5 Modifying Vectors 92

8 Lists 95

8.1 What Is a List? 95

8.2 Creating Lists 96

8.3 Accessing List Elements 97

8.4 Modifying Lists 100

8.5 Applying Functions to Lists with lapply() 102

IV: Data Wrangling 105

9 Understanding Data 107

9.1 The Data Generation Process 107

9.2 Finding Data 108

9.3 Types of Data 110

9.4 Interpreting Data 112

9.5 Using Data to Answer Questions 116

Contents ix

10 Data Frames 119

10.1 What Is a Data Frame? 119

10.2 Working with Data Frames 120

10.3 Working with CSV Data 124

11 Manipulating Data with dplyr 131

11.1 A Grammar of Data Manipulation 131

11.2 Core dplyr Functions 132

11.3 Performing Sequential Operations 139

11.4 Analyzing Data Frames by Group 142

11.5 Joining Data Frames Together 144

11.6 dplyr in Action: Analyzing Flight Data 148

12 Reshaping Data with tidyr 155

12.1 What Is “Tidy” Data? 155

12.2 From Columns to Rows: gather() 157

12.3 From Rows to Columns: spread() 158

12.4 tidyr in Action: Exploring Educational Statistics 160

13 Accessing Databases 167

13.1 An Overview of Relational Databases 167

13.2 A Taste of SQL 171

13.3 Accessing a Database from R 175

14 Accessing Web APIs 181

14.1 What Is a Web API? 181

14.2 RESTful Requests 182

14.3 Accessing Web APIs from R 189

14.4 Processing JSON Data 191

14.5 APIs in Action: Finding Cuban Food in Seattle 197

V: Data Visualization 205

15 Designing Data Visualizations 207

15.1 The Purpose of Visualization 207

15.2 Selecting Visual Layouts 209

15.3 Choosing Effective Graphical Encodings 220

15.4 Expressive Data Displays 227

15.5 Enhancing Aesthetics 229

x Contents

16 Creating Visualizations with ggplot2 231

16.1 A Grammar of Graphics 231

16.2 Basic Plotting with ggplot2 232

16.3 Complex Layouts and Customization 238

16.4 Building Maps 248

16.5 ggplot2 in Action: Mapping Evictions in San Francisco 252

17 Interactive Visualization in R 257

17.1 The plotly Package 258

17.2 The rbokeh Package 261

17.3 The leaflet Package 263

17.4 Interactive Visualization in Action: Exploring Changes to the City of Seattle 266

VI: Building and Sharing Applications 273

18 Dynamic Reports with R Markdown 275

18.1 Setting Up a Report 275

18.2 Integrating Markdown and R Code 279

18.3 Rendering Data and Visualizations in Reports 281

18.4 Sharing Reports as Websites 284

18.5 R Markdown in Action: Reporting on Life Expectancy 287

19 Building Interactive Web Applications with Shiny 293

19.1 The Shiny Framework 293

19.2 Designing User Interfaces 299

19.3 Developing Application Servers 306

19.4 Publishing Shiny Apps 309

19.5 Shiny in Action: Visualizing Fatal Police Shootings 311

20 Working Collaboratively 319

20.1 Tracking Different Versions of Code with Branches 319

20.2 Developing Projects Using Feature Branches 329

20.3 Collaboration Using the Centralized Work�ow 331

20.4 Collaboration Using the Forking Work�ow 335

21 Moving Forward 341

21.1 Statistical Learning 341

21.2 Other Programming Languages 342

21.3 Ethical Responsibilities 343

Index 345

Foreword
The data science skill set is ever-expanding to include more and more of the analytics pipeline. In
addition to fitting statistical and machine learning models, data scientists are expected to ingest
data from di�erent file formats, interact with APIs, work at the command line, manipulate data,
create plots, build dashboards, and track all their work in git. By combining all of these
components, data scientists can produce amazing results. In this text, Michael Freeman and Joel
Ross have created the definitive resource for new and aspiring data scientists to learn foundational
programming skills.

Michael and Joel are best known for leveraging visualization and front-end interfaces to compose
explanations of complex data science topics. In addition to their written work, they have created
interactive explanations of statistical methods, including a particularly clarifying and captivating
introduction to hierarchical modeling. It is this sensibility and deep commitment to demystifying
complicated topics that they bring to their new book, which teaches a plethora of data science
skills.

This tour of data science begins by setting up the local computing environment such as text editors,
RStudio, the command line, and git. This lays a solid foundation—that is far too often glossed
over—making it easier to learn core data skills. After this, those core skills are given attention,
including data manipulation, visualization, reporting, and an excellent explanation of APIs. They
even show how to use git collaboratively, something data scientists all too often neglect to integrate
into their projects.

Programming Skills for Data Science lives up to its name in teaching the foundational skills needed to
get started in data science. This book provides valuable insights for both beginners and those with
more experience who may be missing some key knowledge. Michael and Joel made full use of their
years of teaching experience to craft an engrossing tutorial.

—Jared Lander, series editor

This page intentionally left blank

Preface
Transforming data into actionable information requires the ability to clearly and reproducibly
wrangle, analyze, and visualize that data. These skills are the foundations of data science, a field that
has amplified our collective understanding of issues ranging from disease transmission to racial
inequities. Moreover, the ability to programmatically interact with data enables researchers and
professionals to quickly discover and communicate patterns in data that are often di�cult to
detect. Understanding how to write code to work with data allows people to engage with
information in new ways and on larger scales.

The existence of free and open source software has made these tools accessible to anyone with
access to a computer. The purpose of this book is to teach people how to leverage programming to
ask questions of their data sets.

Focus of the Book

This book revolves around the practical steps needed to program for data science using the R
programming language. It takes a holistic approach to teaching the topic, recognizing that an
entire ecosystem of tools and technologies is needed to do this. While writing code is a core part of
being a data scientist (and this book), many more foundational skills must be acquired as part of
this journey. Data science requires installing and configuring software to write, execute, and
manage code; tracking the version of (and changes to) your projects; leveraging core concepts from
computer science to understand how to accomplish a given task; accessing and processing data
from a variety of sources; leveraging visual communication to expose patterns in your data; and
building applications to share insights with others. The purpose of this text is to help people
develop a strong foundation across these areas so that they can enter the data science field (or bring
data science to their field).

Who Should Read This Book

This book is written for people with no programming or data science experience, though it would
still be helpful for people active in the field. This book was originally developed to support a course
in the Informatics undergraduate degree program at the University of Washington, so it is (not
surprisingly) well suited for college students interested in entering the data science field. We also
believe that anyone whose job involves working with data can benefit from learning how to
reproducibly create analyses, visualizations, and reports.

If you are interested in pursuing a career in data science, or if you use data on a regular basis and
want to use programming techniques to gain information from that data, then this text is for you.

xiv Preface

Book Structure

The book is divided into six sections, each of which is summarized here.

Part I: Getting Started

This section walks through the steps of downloading and installing necessary software for the rest
of the book. More specifically, Chapter 1 details how to install a text editor, Bash terminal, the R
interpreter, and the RStudio program. Then, Chapter 2 describes how to use the command line for
basic file system navigation.

Part II: Managing Projects

This section walks through the technical basis of project management, including keeping track of
the version of your code and producing documentation. Chapter 3 introduces the git software to
track line-by-line code changes, as well as the corresponding popular code hosting and
collaboration service GitHub. Chapter 4 then describes how to use Markdown to produce the
well-structured and -styled documentation needed for sharing and presenting data.

Part III: Foundational R Skills

This section introduces the R programming language, the primary language used throughout the
book. In doing so, it introduces the basic syntax of the language (Chapter 5), describes
fundamental programming concepts such as functions (Chapter 6), and introduces the basic data
structures of the language: vectors (Chapter 7), and lists (Chapter 8).

Part IV: DataWrangling

Because the most time-consuming part of data science is often loading, formatting, exploring, and
reshaping data, this section of the book provides a deep dive into the best ways to wrangle data in R.
After introducing techniques and concepts for understanding the structure of real-world data
(Chapter 9), the book presents the data structure most commonly used for managing data in R: the
data frame (Chapter 10). To better support working with this data, the book then describes
two packages for programmatically interacting with the data: dplyr (Chapter 11), and
tidyr (Chapter 12). The last two chapters of the section describe how to load data from
databases (Chapter 13) and web-based data services with application programming interfaces
(APIs) (Chapter 14).

Part V: Data Visualization

This section of the book focuses on the conceptual and technical skills necessary to design and
build visualizations as part of the data science process. It begins with an overview of data
visualization principles (Chapter 15) to guide your choices in designing visualizations. Chapter 16
then describes in granular detail how to use the ggplot2 visualization package in R. Finally,
Chapter 17 explores the use of three additional R packages for producing engaging interactive
visualizations.

Part VI: Building and Sharing Applications

As in any domain, data science insights are valuable only if they can be shared with and understood
by others. The final section of the book focuses on using two di�erent approaches to creating
interactive platforms to share your insights (directly from your R program!). Chapter 18 uses the R

Preface xv

Markdown framework to transform analyses into sharable documents and websites. Chapter 19
takes this a step further with the Shiny framework, which allows you to create interactive web
applications using R. Chapter 20 then describes approaches for working on collaborative teams of
data scientists, and Chapter 21 details how you can further your education beyond this book.

Book Conventions

Throughout the book, you will see computer code appear inline with the text, as well as in distinct
blocks. When code appears inline, it will appear in monospace font. A distinct code block looks
like this:

This is a comment - it describes the code that follows
The next line of code prints the text "Hello world!"
print("Hello world!")

The text in the code blocks is colored to reflect the syntax of the programming language used
(typically the R language). Example code blocks often include values that you need to replace.
These replacement values appear in UPPER_CASE_FONT, with words separated by underscores. For
example, if you need to work with a folder of your choosing, you would put the name of your folder
where it says FOLDER_NAME in the code. Code sections will all include comments: in programming,
comments are bits of text that are not interpreted as computer instructions—they aren’t code,
they’re just notes about the code! While a computer is able to understand the code, comments are
there to help people understand it. Tips for writing your own descriptive comments are discussed in
Chapter 5.

To guide your reading, we also include five types of special callout notes:

Tip: These boxes provide best practices and shortcuts that can make your life easier.

Fun Fact: These boxes provide interesting background information on a topic.

Remember: These boxes reinforce key points that are important to keep in mind.

Caution: These boxes describe common mistakes and explain how to avoid them.

GoingFurther: These boxes suggest resources for expanding your knowledge beyond this text.

Throughout the text there are instructions for using specific keyboard keys. These are included in
the text in lowercase monospace font. When multiple keys need to be pressed at the same time,
they are separated by a plus sign (+). For example, if you needed to press the Command and “c” keys
at the same time, it would appear as Cmd+c.

Whenever the cmd key is used, Windows users should instead use the Control (ctrl) key.

xvi Preface

How to Read This Book

The individual chapters in this book will walk you through the process of programming for data
science. Chapters often build upon earlier examples and concepts (particularly through Part III and
Part IV).

This book includes a large number of code examples and demonstrations, with reported output and
results. That said, the best way to learn to program is to do it, so we highly recommend that as you
read, you type out the code examples and try them yourself! Experiment with di�erent options and
variations—if you’re wondering how something works or if an option is supported, the best thing
to do is try it yourself. This will help you not only practice the actual writing of code, but also better
develop your own mental model of how data science programs work.

Many chapters conclude by applying the described techniques to a real data set in an In Action
section. These sections take a data-driven approach to understanding issues such as gentrification,
investment in education, and variation in life expectancy around the world. These sections use a
hands-on approach to using new skills, and all code is available online.1

As you move through each chapter, you may want to complete the accompanying set of online
exercises.2 This will help you practice new techniques and ensure your understanding of the
material. Solutions to the exercises are also available online.

Finally, you should know that this text does not aim to be comprehensive. It is both impractical
and detrimental to learning to attempt to explain every nuance and option in the R language and
ecosystem (particularly to people who are just starting out). While we discuss a large number of
popular tools and packages, the book cannot explain all possible options that exist now or will be
created in the future. Instead, this text aims to provide a primer on each topic—giving you enough
details to understand the basics and to get up and running with a particular data science
programming task. Beyond those basics, we provide copious links and references to further
resources where you can explore more and dive deeper into topics that are relevant or of interest to
you. This book will provide the foundations of using R for data science—it is up to each reader to
apply and build upon those skills.

Accompanying Code

To guide your learning, a set of online exercises (and their solutions) is available for each chapter.
The complete analysis code for all seven In Action sections is also provided. See the book website3 for
details.

Register your copy of Programming Skills for Data Science on the InformIT site for convenient
access to updates and/or corrections as they become available. To start the registration pro-
cess, go to informit.com/register and log in or create an account. Enter the product ISBN
(9780135133101) and click Submit. Look on the Registered Products tab for an Access Bonus
Content link next to this product, and follow that link to access any available bonus materials.
If you would like to be notified of exclusive o�ers on new editions and updates, please check the
box to receive email from us.

1In-Action Code: https://github.com/programming-for-data-science/in-action
2Book Exercises: https://github.com/programming-for-data-science
3https://programming-for-data-science.github.io

https://github.com/programming-for-data-science/in-action
https://github.com/programming-for-data-science
https://programming-for-data-science.github.io
http://informit.com/register

Acknowledgments
We would like to thank the University of Washington Information School for providing us with an
environment in which to collaborate and develop these materials. We had the support of many
faculty members—in particular, David Stearns (who contributed to the materials on version
control) as well as Jessica Hullman and Ott Toomet (who provided initial feedback on the text). We
also thank Kevin Hodges, Jason Baik, and Jared Lander for their comments and insights, as well as
Debra Williams Cauley, Julie Nahil, Rachel Paul, Jill Hobbs, and the sta� at Pearson for their work
bringing this book to press.

Finally, this book would not have been possible without the extraordinary open source community
around the R programming language.

This page intentionally left blank

About the Authors
Michael Freeman is a Senior Lecturer at the University of Washington Information School,
where he teaches courses in data science, interactive data visualization, and web development.
Prior to his teaching career, he worked as a data visualization specialist and research fellow at the
Institute for Health Metrics and Evaluation. There, he performed quantitative global health
research and built a variety of interactive visualization systems to help researchers and the public
explore global health trends.

Michael is interested in applications of data science to social justice, and holds a Master’s
in Public Health from the University of Washington. (His faculty page is at
https://faculty.washington.edu/mikefree/.)

Joel Ross is a Senior Lecturer at the University of Washington Information School, where he
teaches courses in web development, mobile application development, software architecture, and
introductory programming. While his primary focus is on teaching, his research interests include
games and gamification, pervasive systems, computer science education, and social computing. He
has also done research on crowdsourcing systems, human computation, and encouraging
environmental sustainability.

Joel earned his M.S. and Ph.D. in Information and Computer Sciences from the University of
California, Irvine. (His faculty page is at https://faculty.washington.edu/joelross/.)

https://faculty.washington.edu/mikefree/
https://faculty.washington.edu/joelross/

This page intentionally left blank

14
Accessing Web APIs

Previous chapters have described how to access data from local .csv files, as well as from local
databases. While working with local data is common for many analyses, more complex shared data
systems leverage web services for data access. Rather than store data on each analyst’s computer,
data is stored on a remote server (i.e., a central computer somewhere on the internet) and accessed
similarly to how you access information on the web (via a URL). This allows scripts to always work
with the latest data available when performing analysis of data that may be changing rapidly, such
as social media data.

In this chapter, you will learn how to use R to programmatically interact with data stored by web
services. From an R script, you can read, write, and delete data stored by these services (though this
book focuses on the skill of reading data). Web services may make their data accessible to computer
programs like R scripts by o�ering an application programming interface (API). A web service’s API
specifies where and how particular data may be accessed, and many web services follow a particular
style known as REpresentational State Transfer (REST).1 This chapter covers how to access and work
with data from these RESTful APIs.

14.1 What Is a Web API?
An interface is the point at which two di�erent systems meet and communicate, exchanging
information and instructions. An application programming interface (API) thus represents a
way of communicating with a computer application by writing a computer program (a set of formal
instructions understandable by a machine). APIs commonly take the form of functions that can be
called to give instructions to programs. For example, the set of functions provided by a package like
dplyr make up the API for that package.

While some APIs provide an interface for leveraging some functionality, other APIs provide an
interface for accessing data. One of the most common sources of these data APIs are web
services—that is, websites that o�er an interface for accessing their data.

With web services, the interface (the set of “functions” you can call to access the data) takes the
form of HTTP requests—that is, requests for data sent following the HyperText Transfer Protocol.

1Fielding, R. T. (2000). Architectural styles and the design of network-based software architectures. University of
California, Irvine, doctoral dissertation. https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm.
Note that this is the original specification and is very technical.

https://www.ics.uci.edu/~�elding/pubs/dissertation/rest_arch_style.htm

182 Chapter 14 Accessing Web APIs

This is the same protocol (way of communicating) used by your browser to view a webpage! An
HTTP request represents a message that your computer sends to a web server: another computer on
the internet that “serves,” or provides, information. That server, upon receiving the request, will
determine what data to include in the response it sends back to the requesting computer. With a
web browser, the response data takes the form of HTML files that the browser can render as
webpages. With data APIs, the response data will be structured data that you can convert into R
data types such as lists or data frames.

In short, loading data from a web API involves sending an HTTP request to a server for a particular
piece of data, and then receiving and parsing the response to that request.

Learning how to use web APIs will greatly expand the available data sets you may want to use for
analysis. Companies and services with large amounts of data, such as Twitter,2 iTunes,3 or Reddit,4

make (some of) their data publicly accessible through an API. This chapter will use the GitHub API5

to demonstrate how to work with data stored in a web service.

14.2 RESTful Requests
There are two parts to a request sent to a web API: the name of the resource (data) that you wish to
access, and a verb indicating what you want to do with that resource. In a way, the verb is the
function you want to call on the API, and the resource is an argument to that function.

14.2.1 URIs
Which resource you want to access is specified with a Uniform Resource Identifier (URI).6 A URI is
a generalization of a URL (Uniform Resource Locator)—what you commonly think of as a “web
address.” A URI acts a lot like the address on a postal letter sent within a large organization such as a
university: you indicate the business address as well as the department and the person to receive
the letter, and will get a di�erent response (and di�erent data) from Alice in Accounting than from
Sally in Sales.

Like postal letter addresses, URIs have a very specific format used to direct the request to the right
resource, illustrated in Figure 14.1.

https://domain.com:9999/example/page/type=husky&name=dubs#nose

scheme domain port path query fragment
Figure 14.1 The format (schema) of a URI.

2Twitter API: https://developer.twitter.com/en/docs
3iTunes search API: https://a�liate.itunes.apple.com/resources/documentation/itunes-store-web-service-

search-api/
4Reddit API: https://www.reddit.com/dev/api/
5GitHub API: https://developer.github.com/v3/
6Uniform Resource Identifier (URI) Generic Syntax (o�cial technical specification): https://tools.ietf.org/html/

rfc3986

https://developer.twitter.com/en/docs
https://a�liate.itunes.apple.com/resources/documentation/itunes-store-web-service-search-api/
https://a�liate.itunes.apple.com/resources/documentation/itunes-store-web-service-search-api/
https://www.reddit.com/dev/api/
https://developer.github.com/v3/
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986

14.2 RESTful Requests 183

Not all parts of the URI are required. For example, you don’t necessarily need a port, query, or
fragment. Important parts of the URI include:

n scheme (protocol): The “language” that the computer will use to communicate the request
to the API. With web services this is normally https (secure HTTP).

n domain: The address of the web server to request information from.

n path: The identifier of the resource on that web server you wish to access. This may be the
name of a file with an extension if you’re trying to access a particular file, but with web
services it often just looks like a folder path!

n query: Extra parameters (arguments) with further details about the resource to access.

The domain and path usually specify the location of the resource of interest. For example,
www.domain.com/users might be an identifier for a resource that serves information about all the
users. Web services can also have “subresources” that you can access by adding extra pieces to the
path. For example, www.domain.com/users/layla might access to the specific resource (“layla”)
that you are interested in.

With web APIs, the URI is often viewed as being broken up into three parts, as shown in Figure 14.2:

n The base URI is the domain that is included on all resources. It acts as the “root” for any
particular endpoint. For example, the GitHub API has a base URI of
https://api.github.com. All requests to the GitHub API will have that base.

n An endpoint is the location that holds the specific information you want to access. Each API
will have many di�erent endpoints at which you can access specific data resources. The
GitHub API, for example, has di�erent endpoints for /users and /orgs so that you can
access data about users or organizations, respectively.

Note that many endpoints support accessing multiple subresources. For example, you can
access information about a specific user at the endpoint /users/:username. The colon :
indicates that the subresource name is a variable—you can replace that part of the endpoint
with whatever string you want. Thus if you were interested in the GitHub user nbremer,7 you
would access the /users/nbremer endpoint.

Subresources may have further subresources (which may or may not have variable names).
The endpoint /orgs/:org/repos refers to the list of repositories belonging to an
organization. Variable names in endpoints might alternatively be written inside of curly
braces {}—for example, /orgs/{org}/repos. Neither the colon nor the braces are

base URI endpoint query

https://api.github.com/search/repositories/q=dplyr&sort=forks

Figure 14.2 The anatomy of a web API request URI.

7Nadieh Bremer, freelance data visualization designer: https://www.visualcinnamon.com

http://www.domain.com/users
http://www.domain.com/users/layla
https://api.github.com
https://www.visualcinnamon.com

184 Chapter 14 Accessing Web APIs

programming language syntax; instead, they are common conventions used to
communicate how to specify endpoints.

n Query parameters allow you to specify additional information about which exact
information you want from the endpoint, or how you want it to be organized (see
Section 14.2.1.1 for more details).

Remember: One of the biggest challenges in accessing a web API is understanding what
resources (data) the web service makes available and which endpoints (URIs) can request
those resources. Read the web service’s documentation carefully—popular services often
include examples of URIs and the data returned from them.

A query is constructed by appending the endpoint and any query parameters to the base URI. For
example, so you could access a GitHub user by combining the base URI (https://api.github.
com) and endpoint (/users/nbremer) into a single string: https://api.github.com/users/
nbremer. Sending a request to that URI will return data about the user—you can send this request
from an R program or by visiting that URI in a web browser, as shown in Figure 14.3. In short, you
can access a particular data resource by sending a request to a particular endpoint.

Indeed, one of the easiest ways to make a request to a web API is by navigating to the URI using your
web browser. Viewing the information in your browser is a great way to explore the resulting data,
and make sure you are requesting information from the proper URI (i.e., that you haven’t made a
typo in the URI).

Tip: The JSON format (see Section 14.4) of data returned from web APIs can be quite messy
when viewed in a web browser. Installing a browser extension such as JSONViewa will for-
mat the data in a somewhat more readable way. Figure 14.3 shows data formatted with this
extension.

ahttps://chrome.google.com/webstore/detail/jsonview/chklaanhfefbnpoihckbnefhakgolnmc

14.2.1.1 Query Parameters

Web URIs can optionally include query parameters, which are used to request a more specific
subset of data. You can think of them as additional optional arguments that are given to the request
function—for example, a keyword to search for or criteria to order results by.

The query parameters are listed at the end of a URI, following a question mark (?) and are formed as
key–value pairs similar to how you named items in lists. The key (parameter name) is listed first,
followed by an equals sign (=), followed by the value (parameter value), with no spaces between
anything. You can include multiple query parameters by putting an ampersand (&) between each
key–value pair. You can see an example of this syntax by looking at the URL bar in a web browser
when you use a search engine such as Google or Yahoo, as shown in Figure 14.4. Search engines
produce URLs with a lot of query parameters, not all of which are obvious or understandable.

https://api.github.com
https://api.github.com
https://api.github.com/users/nbremer
https://api.github.com/users/nbremer
https://chrome.google.com/webstore/detail/jsonview/chklaanhfefbnpoihckbnefhakgolnmc

14.2 RESTful Requests 185

Figure 14.3 GitHub API response returned by the URI https://api.github.com/
users/nbremer, as displayed in a web browser.

Notice that the exact query parameter name used di�ers depending on the web service. Google uses
a q parameter (likely for “query”) to store the search term, while Yahoo uses a p parameter.

Similar to arguments for functions, API endpoints may either require query parameters (e.g., you
must provide a search term) or optionally allow them (e.g., you may provide a sorting order). For
example, the GitHub API has a /search/repositories endpoint that allows users to search for a
specific repository: you are required to provide a q parameter for the query, and can optionally
provide a sort parameter for how to sort the results:

A GitHub API URI with query parameters: search term `q` and sort
order `sort`
https://api.github.com/search/repositories?q=dplyr&sort=forks

https://api.github.com/users/nbremer
https://api.github.com/users/nbremer
https://api.github.com/search/repositories?q=dplyr&sort=forks

186 Chapter 14 Accessing Web APIs

Figure 14.4 Search engine URLs for Google (top) and Yahoo (bottom) with query parameters (under-
lined in blue). The “search term” parameter for each web service is underlined in red.

Results from this request are shown in Figure 14.5.

Caution: Many special characters (e.g., punctuation) cannot be included in a URL. This
group includes characters such as spaces! Browsers and many HTTP request packages will
automatically encode these special characters into a usable format (for example, converting
a space into a %20), but sometimes you may need to do this conversion yourself.

14.2.1.2 Access Tokens and API Keys

Many web services require you to register with them to send them requests. This allows the web
service to limit access to the data, as well as to keep track of who is asking for which data (usually so
that if someone starts “spamming” the service, that user can be blocked).

To facilitate this tracking, many services provide users with access tokens (also called API keys).
These unique strings of letters and numbers identify a particular developer (like a secret password
that works just for you). Furthermore, your API key can provide you with additional access to
information based on which user you are. For example, when you get an access key for the GitHub
API, that key will provide you with additional access and control over your repositories. This
enables you to request information about private repos, and even programmatically interact with
GitHub through the API (i.e., you can delete a repo8—so tread carefully!).

Web services will require you to include your access token in the request, usually as a query
parameter; the exact name of the parameter varies, but it often looks like access_token or
api_key. When exploring a web service, keep an eye out for whether it requires such tokens.

8GitHub API, delete a repository https://developer.github.com/v3/repos/#delete-a- repository

https://developer.github.com/v3/repos/#delete-a-repository

14.2 RESTful Requests 187

Figure 14.5 A subset of the GitHub API response returned by the URI https://api.github.com/
search/repositories?q=dplyr&sort=forks, as displayed in a web browser.

Caution: Watch out for APIs that mention using an authentication service called OAuth
when explaining required API keys. OAuth is a system for performing authentication—that
is, having someone prove that they are who they say they are. OAuth is generally used to let
someone log into a website from your application (like what a “Log in with Google” button
does). OAuth systems require more than one access key, and these keys must be kept secret.
Moreover, they usually require you to run a web server to use them correctly (which requires
significant extra setup; see the full httr documentationa for details). You can do this in R,
but may want to avoid this challenge while learning how to use APIs.

ahttps://cran.r-project.org/web/packages/httr/httr.pdf

https://api.github.com/search/repositories?q=dplyr&sort=forks
https://api.github.com/search/repositories?q=dplyr&sort=forks
https://cran.r-project.org/web/packages/httr/httr.pdf

188 Chapter 14 Accessing Web APIs

Access tokens are a lot like passwords; you will want to keep them secret and not share them with
others. This means that you should not include them in any files you commit to git and push to
GitHub. The best way to ensure the secrecy of access tokens in R is to create a separate script file in
your repo (e.g., api_keys.R) that includes exactly one line, assigning the key to a variable:

Store your API key from a web service in a variable
It should be in a separate file (e.g., `api_keys.R`)
api_key <- "123456789abcdefg"

To access this variable in your “main” script, you can use the source() function to load and run
your api_keys.R script (similar to clicking the Source button to run a script). This function will
execute all lines of code in the specified script file, as if you had “copy-and-pasted” its contents and
run them all with ctrl+enter. When you use source() to execute the api_keys.R script, it will
execute the code statement that defines the api_key variable, making it available in your
environment for your use:

In your "main" script, load your API key from another file

(Make sure working directory is set before running the following code!)

source("api_keys.R") # load the script using a *relative path*
print(api_key) # the key is now available!

Anyone else who runs the script will need to provide an api_key variable to access the API using
that user’s own key. This practice keeps everyone’s account separate.

You can keep your api_keys.R file from being committed by including the filename in the
.gitignore file in your repo; that will keep it from even possibly being committed with your code!
See Chapter 3 for details about working with the .gitignore file.

14.2.2 HTTP Verbs
When you send a request to a particular resource, you need to indicate what you want to do with
that resource. This is achieved by specifying an HTTP verb in the request. The HTTP protocol
supports the following verbs:

n GET: Return a representation of the current state of the resource.

n POST: Add a new subresource (e.g., insert a record).

n PUT: Update the resource to have a new state.

n PATCH: Update a portion of the resource’s state.

n DELETE: Remove the resource.

n OPTIONS: Return the set of methods that can be performed on the resource.

14.3 Accessing Web APIs from R 189

By far the most commonly used verb is GET, which is used to “get” (download) data from a web
service—this is the type of request that is sent when you enter a URL into a web browser. Thus you
would send a GET request for the /users/nbremer endpoint to access that data resource.

Taken together, this structure of treating each datum on the web as a resource that you can interact
with via HTTP requests is referred to as the REST architecture (REpresentational State Transfer).
Thus, a web service that enables data access through named resources and responds to HTTP
requests is known as a RESTful service, that has a RESTful API.

14.3 Accessing Web APIs from R
To access a web API, you just need to send an HTTP request to a particular URI. As mentioned
earlier, you can easily do this with the browser: navigate to a particular address (base URI +
endpoint), and that will cause the browser to send a GET request and display the resulting data. For
example, you can send a request to the GitHub API to search for repositories that match the string
“dplyr” (see the response in Figure 14.5):

The URI for the `search/repositories` endpoint of the GitHub API: query
for `dplyr`, sorting by `forks`
https://api.github.com/search/repositories?q=dplyr&sort=forks

This query accesses the /search/repositories endpoint, and also specifies two query
parameters:

n q: The term(s) you are searching for

n sort: The attribute of each repository that you would like to use to sort the results (in this
case, the number of forks of the repo)

(Note that the data you will get back is structured in JSON format. See Section 14.4 for details.)

While you can access this information using your browser, you will want to load it into R for
analysis. In R, you can send GET requests using the httr9 package. As with dplyr, you will need to
install and load this package to use it:

install.packages("httr") # once per machine
library("httr") # in each relevant script

This package provides a number of functions that reflect HTTP verbs. For example, the GET()
function will send an HTTP GET request to the URI:

Make a GET request to the GitHub API's "/search/repositories" endpoint
Request repositories that match the search "dplyr", and sort the results
by forks
url <- "https://api.github.com/search/repositories?q=dplyr&sort=forks"
response <- GET(url)

This code will make the same request as your web browser, and store the response in a variable
called response. While it is possible to include query parameters in the URI string (as above), httr

9Getting started with httr: o�cial quickstart guide for httr: https://cran.r-project.org/web/packages/httr/
vignettes/quickstart.html

https://cran.r-project.org/web/packages/httr/vignettes/quickstart.html
https://cran.r-project.org/web/packages/httr/vignettes/quickstart.html

190 Chapter 14 Accessing Web APIs

also allows you to include them as a list passed as a query argument. Furthermore, if you plan on
accessing multiple di�erent endpoints (which is common), you can structure your code a bit more
modularly, as described in the following example; this structure makes it easy to set and change
variables (instead of needing to do a complex paste() operation to produce the correct string):

Restructure the previous request to make it easier to read and update. DO THIS.

Make a GET request to the GitHub API's "search/repositories" endpoint
Request repositories that match the search "dplyr", sorted by forks

Construct your `resource_uri` from a reusable `base_uri` and an `endpoint`
base_uri <- "https://api.github.com"
endpoint <- "/search/repositories"
resource_uri <- paste0(base_uri, endpoint)

Store any query parameters you want to use in a list
query_params <- list(q = "dplyr", sort = "forks")

Make your request, specifying the query parameters via the `query` argument
response <- GET(resource_uri, query = query_params)

If you try printing out the response variable that is returned by the GET() function, you will first
see information about the response:

Response [https://api.github.com/search/repositories?q=dplyr&sort=forks]
Date: 2018-03-14 06:43
Status: 200
Content-Type: application/json; charset=utf-8
Size: 171 kB

This is called the response header. Each response has two parts: the header and the body. You can
think of the response as an envelope: the header contains meta-data like the address and postage
date, while the body contains the actual contents of the letter (the data).

Tip: The URI shown when you print out theresponsevariable is a good way to check exactly
which URI you sent the request to: copy that into your browser to make sure it goes where
you expected!

Since you are almost always interested in working with the response body, you will need to extract
that data from the response (e.g., open up the envelope and pull out the letter). You can do this
with the content() function:

Extract content from `response`, as a text string
response_text <- content(response, type = "text")

Note the second argument type = "text"; this is needed to keep httr from doing its own
processing on the response data (you will use other methods to handle that processing).

14.4 Processing JSON Data 191

14.4 Processing JSON Data
Now that you’re able to load data into R from an API and extract the content as text, you will need
to transform the information into a usable format. Most APIs will return data in JavaScript Object
Notation (JSON) format. Like CSV, JSON is a format for writing down structured data—but, while
.csv files organize data into rows and columns (like a data frame), JSON allows you to organize
elements into key–value pairs similar to an R list! This allows the data to have much more complex
structure, which is useful for web services, but can be challenging for data programming.

In JSON, lists of key–value pairs (called objects) are put inside braces ({ }), with the key and the
value separated by a colon (:) and each pair separated by a comma (,). Key–value pairs are often
written on separate lines for readability, but this isn’t required. Note that keys need to be character
strings (so, “in quotes”), while values can either be character strings, numbers, booleans (written in
lowercase as true and false), or even other lists! For example:

{
"first_name": "Ada",
"job": "Programmer",
"salary": 78000,
"in_union": true,
"favorites": {
"music": "jazz",
"food": "pizza",

}
}

The above JSON object is equivalent to the following R list:

Represent the sample JSON data (info about a person) as a list in R
list(
first_name = "Ada",
job = "Programmer",
salary = 78000,
in_union = TRUE,
favorites = list(music = "jazz", food = "pizza") # nested list in the list!

)

Additionally, JSON supports arrays of data. Arrays are like untagged lists (or vectors with di�erent
types), and are written in square brackets ([]), with values separated by commas. For example:

["Aardvark", "Baboon", "Camel"]

which is equivalent to the R list:

list("Aardvark", "Baboon", "Camel")

192 Chapter 14 Accessing Web APIs

Just as R allows you to have nested lists of lists, JSON can have any form of nested objects and arrays.
This structure allows you to store arrays (think vectors) within objects (think lists), such as the
following (more complex) set of data about Ada:

{
"first_name": "Ada",
"job": "Programmer",
"pets": ["Magnet", "Mocha", "Anni", "Fifi"],
"favorites": {

"music": "jazz",
"food": "pizza",
"colors": ["green", "blue"]

}
}

The JSON equivalent of a data frame is to store data as an array of objects. This is like having a list of
lists. For example, the following is an array of objects of FIFA Men’s World Cup data10:

[
{"country": "Brazil", "titles": 5, "total_wins": 70, "total_losses": 17},
{"country": "Italy", "titles": 4, "total_wins": 66, "total_losses": 20},
{"country": "Germany", "titles": 4, "total_wins": 45, "total_losses": 17},
{"country": "Argentina", "titles": 2, "total_wins": 42, "total_losses": 21},
{"country": "Uruguay", "titles": 2, "total_wins": 20, "total_losses": 19}

]

You could think of this information as a list of lists in R:

Represent the sample JSON data (World Cup data) as a list of lists in R
list(

list(country = "Brazil", titles = 5, total_wins = 70, total_losses = 17),
list(country = "Italy", titles = 4, total_wins = 66, total_losses = 20),
list(country = "Germany", titles = 4, total_wins = 45, total_losses = 17),
list(country = "Argentina", titles = 2, total_wins = 42, total_losses = 21),
list(country = "Uruguay", titles = 2, total_wins = 20, total_losses = 19)

)

This structure is incredibly common in web API data: as long as each object in the array has the
same set of keys, then you can easily consider this structure to be a data frame where each object
(list) represents an observation (row), and each key represents a feature (column) of that
observation. A data frame representation of this data is shown in Figure 14.6.

Remember: In JSON, tables are represented as lists of rows, instead of a data frame’s list of
columns.

10FIFA World Cup data: https://www.fifa.com/fifa-tournaments/statistics-and-records/worldcup/teams/
index.html

https://www.�fa.com/�fa-tournaments/statistics-and-records/worldcup/teams/index.html
https://www.�fa.com/�fa-tournaments/statistics-and-records/worldcup/teams/index.html

14.4 Processing JSON Data 193

Figure 14.6 A data frame representation of World Cup statistics (left), which can also be represented
as JSON data (right).

14.4.1 Parsing JSON
When working with a web API, the usual goal is to take the JSON data contained in the response
and convert it into an R data structure you can use, such as a list or data frame. This will allow you to
interact with the data by using the data manipulation skills introduced in earlier chapters. While
the httr package is able to parse the JSON body of a response into a list, it doesn’t do a very clean
job of it (particularly for complex data structures).

A more e�ective solution for transforming JSON data is to use the jsonlite package.11 This
package provides helpful methods to convert JSON data into R data, and is particularly well suited
for converting content into data frames.

As always, you will need to install and load this package:

install.packages("jsonlite") # once per machine
library("jsonlite") # in each relevant script

The jsonlite package provides a function called fromJSON() that allows you to convert from a
JSON string into a list—or even a data frame if the intended columns have the same lengths!

11Package jsonlite: full documentation for jsonlite: https://cran.r-project.org/web/packages/jsonlite/
jsonlite.pdf

https://cran.r-project.org/web/packages/jsonlite/jsonlite.pdf
https://cran.r-project.org/web/packages/jsonlite/jsonlite.pdf

194 Chapter 14 Accessing Web APIs

Make a request to a given `uri` with a set of `query_params`
Then extract and parse the results

Make the request
response <- GET(uri, query = query_params)

Extract the content of the response
response_text <- content(response, "text")

Convert the JSON string to a list
response_data <- fromJSON(response_text)

Both the raw JSON data (response_text) and the parsed data structure (response_data) are
shown in Figure 14.7. As you can see, the raw string (response_text) is indecipherable. However,
once it is transformed using the fromJSON() function, it has a much more operable structure.

The response_data will contain a list built out of the JSON. Depending on the complexity of the
JSON, this may already be a data frame you can View()—but more likely you will need to explore
the list to locate the “main” data you are interested in. Good strategies for this include the
following techniques:

n Use functions such as is.data.frame() to determine whether the data is already
structured as a data frame.

n You can print() the data, but that is often hard to read (it requires a lot of scrolling).

n The str() function will return a list’s structure, though it can still be hard to read.

n The names() function will return the keys of the list, which is helpful for delving into the
data.

Figure 14.7 Parsing the text of an API response using fromJSON(). The untransformed text is shown
on the left (response_text), which is transformed into a list (on the right) using the fromJSON()
function.

14.4 Processing JSON Data 195

As an example continuing the previous code:

Use various methods to explore and extract information from API results

Check: is it a data frame already?
is.data.frame(response_data) # FALSE

Inspect the data!
str(response_data) # view as a formatted string
names(response_data) # "href" "items" "limit" "next" "offset" "previous" "total"

Looking at the JSON data itself (e.g., in the browser),
`items` is the key that contains the value you want

Extract the (useful) data
items <- response_data$items # extract from the list
is.data.frame(items) # TRUE; you can work with that!

The set of responses—GitHub repositories that match the search term “dplry”—returned from the
request and stored in the response_data$items key is shown in Figure 14.8.

14.4.2 Flattening Data
Because JSON supports—and in fact encourages—nested lists (lists within lists), parsing a JSON
string is likely to produce a data frame whose columns are themselves data frames. As an example of
what a nested data frame may look like, consider the following code:

A demonstration of the structure of "nested" data frames

Create a `people` data frame with a `names` column
people <- data.frame(names = c("Ed", "Jessica", "Keagan"))

Figure 14.8 Data returned by the GitHub API: repositories that match the term “dplyr” (stored in the
variable response_data$items in the code example).

196 Chapter 14 Accessing Web APIs

Create a data frame of favorites with two columns
favorites <- data.frame(
food = c("Pizza", "Pasta", "Salad"),
music = c("Bluegrass", "Indie", "Electronic")

)

Store the second data frame as a column of the first -- A BAD IDEA
people$favorites <- favorites # the `favorites` column is a data frame!

This prints nicely, but is misleading
print(people)

names favorites.food favorites.music
1 Ed Pizza Bluegrass
2 Jessica Pasta Indie
3 Keagan Salad Electronic

Despite what RStudio prints, there is not actually a column `favorites.food`
people$favorites.food # NULL

Access the `food` column of the data frame stored in `people$favorites`
people$favorites$food # [1] Pizza Pasta Salad

Nested data frames make it hard to work with the data using previously established techniques and
syntax. Luckily, the jsonlite package provides a helpful function for addressing this issue, called
flatten(). This function takes the columns of each nested data frame and converts them into
appropriately named columns in the “outer” data frame, as shown in Figure 14.9:

Use `flatten()` to format nested data frames
people <- flatten(people)
people$favorites.food # this just got created! Woo!

Note that flatten() works on only values that are already data frames. Thus you may need to find
the appropriate element inside of the list—that is, the element that is the data frame you want to
flatten.

In practice, you will almost always want to flatten the data returned from a web API. Thus, your
algorithm for requesting and parsing data from an API is this:

1. Use GET() to request the data from an API, specifying the URI (and any query parameters).

2. Use content() to extract the data from your response as a JSON string (as “text”).

3. Use fromJSON() to convert the data from a JSON string into a list.

4. Explore the returned information to find your data of interest.

5. Use flatten() to flatten your data into a properly structured data frame.

6. Programmatically analyze your data frame in R (e.g., with dplyr).

14.5 APIs in Action: Finding Cuban Food in Seattle 197

A nested data

frame (the

favorites
column is

storing a data

frame!)

A data frame in

the desired

format created

using the

flatten()
function

flatten()

Figure 14.9 The flatten() function transforming a nested data frame (top) into a usable format
(bottom).

14.5 APIs in Action: Finding Cuban Food in Seattle
This section uses the Yelp Fusion API12 to answer the question:

“Where is the best Cuban food in Seattle?”

Given the geographic nature of this question, this section builds a map of the best-rated Cuban
restaurants in Seattle, as shown in Figure 14.12. The complete code for this analysis is also available
online in the book’s code repository.13

To send requests to the Yelp Fusion API, you will need to acquire an API key. You can do this by
signing up for an account on the API’s website, and registering an application (it is common for
APIs to require you to register for access). As described earlier, you should store your API key in a
separate file so that it can be kept secret:

Store your API key in a variable: to be done in a separate file
(i.e., "api_key.R")
yelp_key <- "abcdef123456"

This API requires you to use an alternative syntax for specifying your API key in the HTTP
request—instead of passing your key as a query parameter, you’ll need to add a header to the
request that you make to the API. An HTTP header provides additional information to the server
about who is sending the request—it’s like extra information on the request’s envelope. Specifically,

12Yelp Fusion API documentation: https://www.yelp.com/developers/documentation/v3
13APIs in Action: https://github.com/programming-for-data-science/in-action/tree/master/apis

https://www.yelp.com/developers/documentation/v3
https://github.com/programming-for-data-science/in-action/tree/master/apis

198 Chapter 14 Accessing Web APIs

you will need to include an “Authorization” header containing your API key (in the format
expected by the API) for the request to be accepted:

Load your API key from a separate file so that you can access the API:
source("api_key.R") # the `yelp_key` variable is now available

Make a GET request, including your API key as a header
response <- GET(

uri,
query = query_params,
add_headers(Authorization = paste("bearer", yelp_key))

)

This code invokes the add_headers() method inside the GET() request. The header that it adds
sets the value of the Authorization header to “bearer yelp_key”. This syntax indicates that the API
should grant authorization to the bearer of the API key (you). This authentication process is used
instead of setting the API key as a query parameter (a method of authentication that is not
supported by the Yelp Fusion API).

As with any other API, you can determine the URI to send the request to by reading through the
documentation. Given the prompt of searching for Cuban restaurants in Seattle, you should focus
on the Business Search documentation,14 a section of which is shown in Figure 14.10.

Figure 14.10 A subset of the Yelp Fusion API Business Search documentation.

14Yelp Fusion API Business Search endpoint documentation: https://www.yelp.com/developers/
documentation/v3/business_search

https://www.yelp.com/developers/documentation/v3/business_search
https://www.yelp.com/developers/documentation/v3/business_search

14.5 APIs in Action: Finding Cuban Food in Seattle 199

As you read through the documentation, it is important to identify the query parameters that you
need to specify in your request. In doing so, you are mapping from your question of interest to the
specific R code you will need to write. For this question (“Where is the best Cuban food in
Seattle?”), you need to figure out how to make the following specifications:

n Food: Rather than search all businesses, you need to search for only restaurants. The API
makes this available through the term parameter.

n Cuban: The restaurants you are interested in must be of a certain type. To support this, you
can specify the category of your search (making sure to specify a supported category, as
described elsewhere in the documentation15).

n Seattle: The restaurant you are looking for must be in Seattle. There are a few ways of
specifying a location, the most general of which is to use the location parameter. You can
further limit your results using the radius parameter.

n Best: To find the best food, you can control how the results are sorted with the sort_by
parameter. You’ll want to sort the results before you receive them (that is, by using an API
parameter and not dplyr) to save you some e�ort and to make sure the API sends only the
data you care about.

Often the most time-consuming part of using an API is figuring out how to hone in on your data of
interest using the parameters of the API. Once you understand how to control which resource
(data) is returned, you can then construct and send an HTTP request to the API:

Construct a search query for the Yelp Fusion API's Business Search endpoint
base_uri <- "https://api.yelp.com/v3"
endpoint <- "/businesses/search"
search_uri <- paste0(base_uri, endpoint)

Store a list of query parameters for Cuban restaurants around Seattle
query_params <- list(
term = "restaurant",
categories = "cuban",
location = "Seattle, WA",
sort_by = "rating",
radius = 8000 # measured in meters, as detailed in the documentation

)

Make a GET request, including the API key (as a header) and the list of
query parameters
response <- GET(
search_uri,
query = query_params,
add_headers(Authorization = paste("bearer", yelp_key))

)

15Yelp Fusion API Category List: https://www.yelp.com/developers/documentation/v3/all_category_list

https://www.yelp.com/developers/documentation/v3/all_category_list

200 Chapter 14 Accessing Web APIs

As with any other API response, you will need to use the content() method to extract the content
from the response, and then format the result using the fromJSON() method. You will then need to
find the data frame of interest in your response. A great way to start is to use the names() function
on your result to see what data is available (in this case, you should notice that the businesses key
stores the desired information). You can flatten() this item into a data frame for easy access.

Parse results and isolate data of interest
response_text <- content(response, type = "text")
response_data <- fromJSON(response_text)

Inspect the response data
names(response_data) # [1] "businesses" "total" "region"

Flatten the data frame stored in the `businesses` key of the response
restaurants <- flatten(response_data$businesses)

The data frame returned by the API is shown in Figure 14.11.

Because the data was requested in sorted format, you can mutate the data frame to include a column
with the rank number, as well as add a column with a string representation of the name and rank:

Modify the data frame for analysis and presentation
Generate a rank of each restaurant based on row number
restaurants <- restaurants %>%
mutate(rank = row_number()) %>%
mutate(name_and_rank = paste0(rank, ". ", name))

The final step is to create a map of the results. The following code uses two di�erent visualization
packages (namely, ggmap and ggplot2), both of which are explained in more detail in Chapter 16.

Figure 14.11 A subset of the data returned by a request to the Yelp Fusion API for Cuban food in
Seattle.

14.5 APIs in Action: Finding Cuban Food in Seattle 201

Figure 14.12 A map of the best Cuban restaurants in Seattle, according to the Yelp Fusion API.

Create a base layer for the map (Google Maps image of Seattle)
base_map <- ggmap(get_map(location = "Seattle, WA", zoom = 11))

Add labels to the map based on the coordinates in the data
base_map +

geom_label_repel(
data = response_data,
aes(x = coordinates.longitude, y = coordinates.latitude, label = name_and_rank)

)

Below is the full script that runs the analysis and creates the map—only 52 lines of clearly
commented code to figure out where to go to dinner!

202 Chapter 14 Accessing Web APIs

Yelp API: Where is the best Cuban food in Seattle?
library("httr")
library("jsonlite")
library("dplyr")
library("ggrepel")
library("ggmap")

Load API key (stored in another file)
source("api_key.R")

Construct your search query
base_uri <- "https://api.yelp.com/v3/"
endpoint <- "businesses/search"
uri <- paste0(base_uri, endpoint)

Store a list of query parameters
query_params <- list(

term = "restaurant",
categories = "cuban",
location = "Seattle, WA",
sort_by = "rating",
radius = 8000

)

Make a GET request, including your API key as a header
response <- GET(

uri,
query = query_params,
add_headers(Authorization = paste("bearer", yelp_key))

)

Parse results and isolate data of interest
response_text <- content(response, type = "text")
response_data <- fromJSON(response_text)

Save the data frame of interest
restaurants <- flatten(response_data$businesses)

Modify the data frame for analysis and presentation
restaurants <- restaurants %>%

mutate(rank = row_number()) %>%
mutate(name_and_rank = paste0(rank, ". ", name))

Create a base layer for the map (Google Maps image of Seattle)
base_map <- ggmap(get_map(location = "Seattle, WA", zoom = 11))

14.5 APIs in Action: Finding Cuban Food in Seattle 203

Add labels to the map based on the coordinates in the data
base_map +

geom_label_repel(
data = restaurants,
aes(x = coordinates.longitude, y = coordinates.latitude, label = name_and_rank)

)

Using this approach, you can use R to load and format data from web APIs, enabling you to analyze
and work with a wider variety of data. For practice working with APIs, see the set of accompanying
book exercises.16

16API exercises: https://github.com/programming-for-data-science/chapter-14-exercises

https://github.com/programming-for-data-science/chapter-14-exercises

This page intentionally left blank

Index

Symbols
, (comma)

data frame syntax, 122

function syntax, 69

key-value pair syntax, 191

" (double quotes), character data syntax, 61

’ (single quotes), character data syntax, 61

.. (double dot), moving up directory, 14

. (single dot), referencing current folder, 14

| (pipe)

directing output, 20

pipe table, 48

! (exclamation point), Markdown image syntax, 47

(pound/hashtag symbol)

comment syntax, 10, 58

$ (dollar notation)

accessing data frames, 122

accessing list elements, 97–98

%>% (pipe operator), dplyr package, 141–142

() (parentheses)

function syntax, 70

Markdown hyperlink syntax, 46

* (asterisk wildcard)

loading entire table from database, 173

using wildcards with files, 17–18

? (question mark), query parameter syntax, 184

[] (single-bracket notation)

accessing data frames, 122–123

comparing single- and double-bracket notation, 101

Markdown hyperlink syntax, 46

retrieving value from vector, 88

[[]] (double-bracket notation)

list syntax, 98–99, 101

selecting data of interest for application, 312

346 {} (braces)

{} (braces)

code chunk syntax, 279

key-value pair syntax, 191

render function syntax, 308

<- (assignment operator), 59, 92

>> directing output, 20

> directing output, 20

~ (tilde), home directory shorthand, 10, 15

A
Absolute path

for CSV data, 125

finding R and RScript, 57

for images, 48

specifying paths, 14–15

URLs and, 47

Access tokens (API keys)

example finding Cuban food in Seattle, 196–197

registering with web services, 186–188

add (git). See also Staging Area

add and commit changes, 38–39, 322, 327–328,
333, 337

adding files to repository, 32–33

unadd, 35

aes() function, for aesthetic mappings, 237

Aesthetics

adding titles and labels to charts, 246

aesthetic mappings, 234, 237–238

data visualization, 229–230

Aggregation

proportional representation of data and, 212–213

in Shiny example, 315–316

statistical transformation of data, 255

using summarize(), 138–139

Analysis. See Data analysis

Annotation

capabilities of version control systems, 28

ggplot2 package, 246–248

Anonymous variables, 71, 140

anscombe data set, in R, 208

Anscombe’s Quartet, 208

API keys (Access tokens)

example finding Cuban food in Seattle, 196–197

registering with web services, 186–188

APIs (application programming interfaces).
See also Web APIs

defined, 181

in plotly package, 258

Application servers, developing, 306–309

Applications

Shiny app example applying to fatal police shootings,
311–318

structure in Shiny framework, 295–299

app.R �le, 295–296

Apps, publishing Shiny, 309–311

Area encoding, visualizing hierarchical data, 218

Arguments

commands and, 13

creating data frames, 120

creating lists, 96

debugging functions, 78

function inputs, 69–70

function parts, 76

named arguments, 72–73

syntax of, 16

vectorized functions and, 87

arrange()

dplyr core functions, 131, 137–138

summarizing information using dplyr functions, 313

Arrays, JSON support, 191–192

AS keyword, renaming columns, 173

Assignment operator (<-)

assigning values to variables, 59

modifying vectors, 92

Atom

preview rendering support, 49–50

selecting text editor, 6–7

writing code, 3

Authentication, API authentication service, 187

B
Bar charts

facets and, 245

position adjustments, 240

proportional representation of data, 211–213

visualizing data with single variable, 210–211

Bash shell. See also Git Bash

commands, 13

executing code, 4

ls command, 13

Bins, breaking data into different variables, 142

BitBucket, comparing with GitHub, 29

Blockquotes, markdown options, 48

Blocks, markdown formatting syntax, 47

Body, function parts, 76–77

Color 347

Bokeh package, 261

Bold, text formatting, 45–46

Books, resources for learning R, 65

Boolean. See Logical (boolean)

Box plots, 210

Bracket notation

double. See [[]] (double-bracket notation)

retrieving value from vector using bracket notation, 88

single. See [] (single-bracket notation)

Branches

git branching model, 319–320

merging, 324–325

merging from GitHub, 328–329

resolving merge conflicts, 327–328

tracking code versions with, 319–320

using in feature branch workflows, 333–335

using in forking workflows, 335–339

working with, 320–324

working with feature branches, 329–331

C
c() function, creating vectors, 81–82

Case sensitivity, variable names, 58

Categorical data. See Nominal (categorical) data

Causality, assessing statistical relationships, 341

cd, change directory command, 12–13

Centralized work�ow

creating centralized repository, 331–333

feature branches in, 333–335

overview of, 331

working with feature branches, 333–335

Character data type

lists and, 95

overview of, 61

vectorized functions and, 87

Charts, 229. See also by individual types of graphs

Cheatsheets

for dplyr, 148

for ggplot2, 255

for GitHub, 43

for markdown, 48

for R functions, 71

for RStudio, 56, 280, 318

checkout (git)

switching between branches, 321–324

working with feature branches, 329–330

working with feature branches in centralized workflow, 335

Checkpoints. See Commit

Choropleth maps

drawing and examples, 248–251

overview of, 248

Chunks

breaking data into di�erent variables, 142

inline code and, 280

options, 279–280

.Rmd files and, 277–278

Circle packing, visualizing hierarchical data, 218–219

clone (git)

collaboration using forking workflow, 336

creating centralized repository, 332

forks, 337

merging branches and, 328

repos, 36–39, 43

understanding/using git commands, 43

Code

chunks, 142, 277–280

executing, 4–5

inline code, 280

managing, 3–4

running, 54–57

syntax-colored code blocks, 48

tracking versions with branches, 319–320

Visual Studio Code (VS Code), 7, 49

writing, 3

Collaboration

centralized workflow for, 331

creating centralized repository, 331–333

interactive web applications and. See Shiny framework

merging branches, 324–325, 328–329

overview of, 273–274, 319

reports. See R Markdown

resolving merge conflicts, 327–328

tracking code versions, 319–320

working with branches, 320–324

working with feature branches, 329–331, 333–335

working with forking workflows, 335–339

collect(), manipulating table data, 177–178

Colon operator (a:b)

creating vectors, 82

specifying range of vector index, 90

Color

adding to Leaflet map, 270

color palettes, 223–225, 242

e�ective for data visualization, 222–226

ggplot2 color scales, 242–243

348 ColorBrewer tool

ColorBrewer tool

color palettes, 242

examples, 289

overview of, 223–225

colorFactor(), Lea�et maps, 270

Columns

changing to/from rows using tidyr, 157–159

dplyr arrange() operation, 137–138

dplyr filter() operation, 135

dplyr mutate() operation, 136

Columns (�elds), in relational databases, 168

Comma-separated value data. See CSV (comma-separated
value) data

Command line

accessing, 9–10

changing directories, 12–13

cloning repository, 37

commit history, 320

directing/redirecting output, 20

executing code, 4

handling errors, 18–19

interacting with databases, 31

learning new commands, 16–17

listing files, 13

managing files, 15–16

navigating files, 11–12

networking commands, 20–23

overview of, 9

running R code, 56–57

set up tools, 4–5

specifying paths, 14–15

wildcards, 17–18

working with, 4

Command prompt. See Command line

Command Prompt (Windows)

accessing, 9–10

executing code, 4

working with, 5

Command shell (terminal). See Command line

Commands. See also by individual types

issuing, 13

list of advanced, 18

list of basic, 15

Comments

R language, 58

syntax for code comments, 10

commit (git)

add and commit changes, 33, 38–39, 327–328, 337

creating centralized repository, 333

git core concepts, 28

history, 40

message etiquette, 34–35

reverting to earlier versions, 40–42

tracking code versions, 319–320

understanding/using git commands, 43

working with branches, 320–324

working with feature branches, 330–331, 334

Communities

resources for learning R, 66–67

sources of data, 109

Comparison operators, logical values and, 62

Compiled languages, 53

Complex data type, 63, 99

Comprehensive R Archive (CRAN), 6

Computer, set up, 3–4

Concurrency, capabilities of version control systems, 28

Conditional statements, 79–80

config, con�guring git for �rst-time use, 30

Console, RStudio, 55

Content

building Shiny application, 313

content elements in designing UIs, 299

extracting from HTTP request, 200

static content in Shiny framework, 300–301

content(), extracting content from HTTP request, 200

Continuous color scales, 225–226

Continuous data

choosing e�ective colors for data visualization, 223

selecting visual layouts, 209–210

visualization with multiple variables, 213–216

visualizing with single variable, 210

Control widgets

developing application servers, 307

in Shiny framework, 295

user interactions in Shiny apps, 301–303

coord_ functions

coord_flip() example, 244

types of coordinate systems for geometric objects, 243–244

Coordinate systems

coord_flip() example, 244

creating choropleth maps, 249–250

creating dot distribution maps, 252

Grammar of Graphics, 232

types for geometric objects, 243–244

cor(), correlation function in R, 161

count(), summarizing information, 313

Courses, resources for learning R, 65–66

CRAN (Comprehensive R Archive), 6

CSS language, 342

CSV (comma-separated value) data

factor variables, 126–129

Directories 349

loading data sets from .csv file, 167

read.csv(), 161

viewing working directory, 125–126

working with, 124–125

ctrl+c, stopping or canceling program or command, 19

D
d3.js JavaScript library, 343

Data

acquiring domain knowledge, 112–113

analyzing. See Data analysis

answering questions, 116–118

dplyr example analyzing flight data, 148–153

dplyr grammar for manipulating, 131–132

encoding, 220–222, 229, 237

finding, 108–109

flattening JSON data, 196–197

generating, 107–108

interactive presentation, 293

interpreting, 112

measuring, 110–111

overview of, 107

ratio data, 111

reusable functions in managing, 70

schemas, 113–116

structures, 111–112, 122

transforming into information, 341

understanding data schemas, 113–116

visualization of. See Data visualization

working with CSV data, 124–125

wrangling, 106

Data analysis

generating data, 108

reusable functions, 70

tidyr package. See tidyr package

Data frames

accessing, 122–123

analyzing by group, 142–144

creating, 120–121

describing structure of, 121–122

factor variables, 126–129

joining, 144–148

overview of, 119–120

viewing working directory, 125–126

working with CSV data, 124–125

data() function, viewing available data sets, 124–125

Data-ink ratio, aesthetics of graphics, 229

Data schemas, 113–116

Data structures

overview of, 111–112

two-dimensional, 122

Data types

factors, 120

lists and, 95

R language, 60–63

selecting visual layouts, 209–210

vectorized functions and, 87

vectorized operations and, 83

Data visualization

aesthetics, 229–230

choosing e�ective colors, 222–226

choosing e�ective graphical encodings, 220–222

expressive displays, 227–229

ggplot2. See ggplot2 package

of hierarchical data, 217–220

leveraging preattentive attributes, 226–227

with multiple variables, 213–217

overview of, 205–207

purpose of, 207–209

reusable functions, 70

selecting visual layouts, 209–210

with single variable, 210–213

tidyr package. See tidyr package

Data visualization, interactive

example exploring changes to Seattle, 266–272

leaflet package, 263–266

overview of, 257–258

plotly package, 258–261

rbokeh package, 261–263

Databases

accessing from R, 175–179

designing relational, 144

overview of relational, 167–169

setting up relational, 169–171

SQL statements, 171–175

DataCamp, resources for learning R, 66

dbConnect(), accessing SQLite, 176–177

dbListTables(), listing database tables, 177

dbplyr package, 176–179

dbplyr package, accessing databases, 174

Debugging functions, 78. See also Error handling

Directories

accessing command line and, 10

changing from command line, 12–13

printing working directory, 11

350 Directories

tree structure of, 12

turning into a repository, 31

viewing working directory, 125–126

Displays, expressive, 227–229

Distributions, of x and y values (statistics), 208–209

Documentation

of commands, 16

getting help via, 64

resources for learning R, 66

Shiny layouts, 304

Documents

creating, 275

knitting, 278

Domain, interpreting data by, 112–113

Dot distribution maps, 248, 251–252

Double-bracket notation. See [[]] (double-bracket notation)

dplyr package

analyzing data frames, 142–144

analyzing flight data, 148–153

arrange(), 137–138

converting dplyr functions into SQL statements, 178

core functions, 131–132

example mapping evictions in San Francisco, 252

example report on life expectancy, 289

filter(), 135–136

grammar for data manipulation, 131–132

group_by(), 244

joining data frames, 144–148

mutate(), 136–137

orienting data frames for plotting, 239

overview of, 131

performing sequential operations, 139–141

pipe operator (%>%), 141–142

select(), 133–134

summarize(), 138–139

Dynamic inputs, Shiny framework, 301–303

Dynamic outputs, Shiny framework, 303–304

Dynamically typed languages, 60

E
Encoding data

aesthetic graphics, 229

aesthetic mappings, 237

choosing e�ective graphical encodings, 220–222

Endpoints, web APIs, 183–185

Environment pane, RStudio, 55

Error handling

command line, 18–19

debugging functions, 78

reading error messages, 63

Ethical responsibilities, 343

Excel, working with CSV data, 124

exit

disconnecting from remote computer, 22

stopping or canceling program or running command, 19

Expressions, multiple operators in, 61

Extensions, �le, 6, 48–49

F
facet_ functions, 244–245

Facets

ggplot2 package, 244–245

Grammar of Graphics, 232

Factors

creating data frames, 120

variables, 126–129

Feature branches

in centralized workflow, 333–335

working with, 329–331

Fields (columns), in relational databases, 168

figure(), creating Bokeh plots, 262–263

Files

adding to repository, 32–33

changing directories, 12–13

creating .Rmd files, 276–278

extensions, 6, 48–49

ignoring, 42–44

listing, 13

managing, 15–16

navigating, 11–12

specifying paths, 14–15

fill(), aesthetic layouts, 238–240

filter()

dplyr core functions, 131, 135–136

example report on life expectancy, 289

manipulating table data, 177–178

Filtering

joins, 148

vectors, 90–91, 93

flatten()

example finding Cuban food in Seattle, 200, 202

JSON data, 196–197

for loops, 87

Foreign keys, in relational databases, 168–169

fork, repos on GitHub, 36–38

ggplot2 package 351

Forking work�ow

feature branches in, 331, 333–335

working with, 335–339

Formats

table, 157

text, 46

Formulas, 245

Frameworks

defined, 293

Shiny framework. See Shiny framework

fromJSON(), converting JSON string to list, 193–194, 200

full_join(), 148

function keyword, 76

Functions

for aesthetic mappings (aes()), 237–238

applying to lists, 102–103

built-in, 71–72

c() function, 81–82

conditional statements, 79–80

converting dplyr functions into SQL statements, 178

coord_ functions, 243–244

correlation function (cor()), 161

creating lists, 96

debugging, 78. See also Error handling

developing application servers, 307–309

geometry. See geom_ functions

inspecting data frames, 121–122

loading, 73–75

named arguments, 72–73

nested statements within, 140–141

overview of, 69–70

referencing database table, 177

in Shiny layouts, 305

syntax, 70–71

tidyr functions for changing columns to/from rows,
157–159

vectorized, 86–88

viewing available data sets (data()), 124–125

writing, 75–77

Functions, dplyr

arrange(), 137–138

core functions, 131–132

filter(), 135–136

group_by(), 142–144

left_join(), 145–147

mutate(), 136–137

overview of, 132

select(), 133–134

summarize(), 138–139

summarizing information using, 313

G
gather()

applying to educational statistics, 161–163

combining with spread(), 159

tidyr function for changing columns to rows, 157–158

geom_ functions

adding titles and labels to charts, 247–248

aesthetic mappings and, 237–238

creating choropleth maps, 249–250

creating dot distribution maps, 252

example mapping evictions in San Francisco, 253–256

rendering plots, 284

specifying geometric objects, 234

specifying geometries, 235–237

statistical transformation of data, 237

Geometries

ggplot2 layers, 232

position adjustments, 238–240

specifying geometric objects, 234–235

specifying with ggplot2 package, 235–237

GET

example finding Cuban food in Seattle, 197–198, 202

HTTP verbs, 188–189

sending GET requests, 189–190

getwd(), viewing working directory, 125

ggmap package

example finding Cuban food in Seattle, 200–203

example mapping evictions in San Francisco, 253

map tiles, 252

ggplot()

creating plots, 232, 234

example mapping evictions in San Francisco, 256

ggplot2 package

aesthetic mappings, 237–238

basic plotting, 232–235

choropleth maps, 248–251

coordinate systems, 243–244

dot distribution maps, 252

example finding Cuban food in Seattle, 200

example mapping evictions in San Francisco, 252–256

facets, 244–245

Grammar of Graphics, 231–232

labels and annotations, 246–248

map types, 248

position adjustments, 238–240

rendering plots, 284

specifying geometries, 235–237

352 ggplot2 package

static plot of iris data set, 257–258

statistical transformation of data, 255

styling with scales, 240–242

tidyr example, 160–161

ggplotly(), 259

ggrepel package, preventing labels from overlapping,
247–248

git

accessing project history, 40–42

adding files, 32–33

branching model. See Branches

checking repository status, 31–33

committing changes, 33–35

core concepts, 27–28

creating repository, 30–31

ignoring files, 42–44

installing, 5

leveraging using GitHub, 6

local git process, 35

managing code with, 3–4

overview of, 27–28

project setup and configuration, 30

tracking changes, 32

tutorials, 43–44

version control, 4

Git Bash. See also Bash shell

accessing command line, 9–10

commands used by, 13

executing code using Bash shell, 4–5

ls command, 13

tab-completion support, 15

Git Flow model, 335

GitHub

accessing project history, 40–42

creating centralized repository, 331–333

creating GitHub account, 6

forking/cloning repos on GitHub, 36–38

ignoring files, 42–44

managing code with, 3

overview of, 29

pushing/pulling repos on GitHub, 38–40

README file, 48–49

sharing reports as website, 285–286

storing projects on, 36

tutorials, 43–44

.gitignore, ignoring �les, 42–44

GitLab, comparing with GitHub, 29

Google Docs, version control systems compared with, 28

Google, getting help via, 63

Google Sheets, working with CSV data, 124

Government publications, sources of data, 108

Grammar of Data Manipulation (Wickham), 131

Grammar of Graphics, 231–232

Graphics. See also by individual types of graphs; Data
visualization

aesthetics, 229–230

choosing e�ective graphical encodings, 220–222

expressive displays, 227–229

with ggplot2. See ggplot2 package

Grammar of Graphics, 231–232

leveraging preattentive attributes, 226–227

selecting visual layouts, 209–210

visualizing hierarchical data, 217–220

group_by()

analyzing data frames by group, 142–144

facets and, 244

statistical transformation of data, 255

summarizing information using, 313

GROUP_BY clause, SQL SELECT, 174

H
Heatmaps. See also Choropleth maps

data visualization with multiple variables, 215, 217

example mapping evictions in San Francisco, 256

Help

R language, 63–64

RStudio, 55

Hidden �les, 42–44

Hierarchical data, visualization of, 217–220

Histograms

data visualization with multiple variables, 216

expressive displays, 229

visualizing data with single variable, 210

Hosts, Shiny apps, 309–310

HSL Calculator, 223

HSL (hue-saturation-lightness) color model, 222–223

HTML (Hypertext Markup Language)

HTML Tags Glossary, 300–301

markup languages, 45

sharing reports as website, 284–286

web development language, 342

HTTP (HyperText Transfer Protocol)

header, 196–197

leaflet() 353

overview of, 181–182

verbs, 188–189

HTTP requests

example finding Cuban food in Seattle, 196–200

response header and body, 190

web services and, 181

HTTP verbs, Web APIs, 188–189

httr package

parsing JSON data, 192–193

sending GET requests, 189–190

Hue

choosing e�ective colors for data visualization, 222

multi-hue color scales, 225

Hue-saturation-lightness (HSL) color model, 222–223

Hyperlinks, markdown, 46–47

I
Icons, types of interfaces, 9

IDE (integrated development environment), 54

if_else, conditional statements, 79–80

Images, markdown, 47–48

Indices

for getting subsets of vectors, 88–89

multiple indices, 89–90

init (git), turning a directory into a git repository, 31

Inline code, in R Markdown, 280

INNER JOIN clause, SQL SELECT, 174

inner_join(), 147–148

Inputs

dynamic inputs with Shiny framework, 301–303

functions and, 69

Shiny framework, 293–294

Integer data type, 63

Integrated development environment (IDE), 54

Interactivity

interactive data visualization. See Data visualization,
interactive

interactive web applications. See Shiny framework

Interface

command line as, 9

defined, 181

user. See UIs (user interfaces)

web APIs. See Web APIs

Interpreted languages, 53

Interval data, measuring data, 111

iris data set, interactive plots in, 257–258

Italics, text formatting, 45–46

J
JavaScript, 342–343

join()

dplyr core functions, 131

joining data frames, 144–148

JOIN clause, SQL SELECT, 174–175

Journalism, sources of data, 109

JSON (JavaScript Object Notation)

flattening JSON data, 195–197

list of lists structure in, 97

parsing JSON data, 193–195

processing JSON data, 191–193

jsonlite package, 192–193

K
kable(), knitr package, 283–284, 291

Key-value pairs

JSON (JavaScript Object Notation), 191

query parameters and, 184

tidyr data tables, 157

knitr package

creating R Markdown documents, 275

kable(), 283–284, 291

Knitting documents, 278

L
Labels

adding to plots, 246–248

aesthetics of graphics, 230

labs(), adding titles and labels to charts, 246

lapply(), applying functions to lists, 102–103

Layers, ggplot2 package, 232

layout(), 260–261, 268

Layouts

coordinate systems, 243–244

designing UIs, 299

example exploring changes to Seattle, 268

facets, 244–245

labels and annotations, 246–248

plotly package, 260–261

position adjustments, 238–240

selecting visual, 209–210

Shiny framework, 304–306

styling with scales, 240–242

Lazy evaluation, in dplyr package, 178

leaflet()

creating Leaflet map, 264

example exploring changes to Seattle, 269

354 leaflet package

leaflet package

creating interactive plots, 264–266

example exploring changes to Seattle, 269–271

installing and loading, 263

Shiny app example applying to fatal police shootings,
312–313

Learn Git Branching, 339

LEFT JOIN clause, SQL SELECT, 174

left_join()

example of join operation, 145–146

join types, 146–147

Legends

adding to Leaflet map, 270–271

aesthetics of graphics, 230

length() function, determining number of elements in a
vector, 82

Libraries. See Packages

library(), referencing external packages, 311

Lightness, choosing effective colors for data visualization, 223

Linux

command-line tools on, 5

installing git, 5

list() function, creating lists, 96

Lists

accessing elements of, 97–99

applying functions to, 102–103

converting JSON string to list, 193–194

creating, 96–97

creating data frames, 120–121

double-bracket notation, 101

JSON structures compared with, 192–193

listing files from command line, 13

modifying, 100

overview of, 95

rendering Markdown lists, 282–283

log, viewing commit history, 40

Logical (boolean)

data type, 61–63

debugging functions, 78

operators, 62–63

vector filtering by values, 90–91

Loops, vectorized functions and, 87

ls

list folder contents, 13

using with remote computer, 22

M
-m option, adding messages to commit command, 34

Mac OSs. See also Terminal (Mac)

accessing command line, 9–10

command-line tools on, 4

installing git, 5

Machine learning, making predictions, 342

Mackinlay’s Expressiveness Criteria, 227–229

man, looking up commands in manual, 16–17

Map tiles

adding to Leaflet map, 264

ggmap package, 252

Maps

aesthetic mappings, 237–238

choropleth maps, 248–251

dot distribution maps, 251–252

example mapping evictions in San Francisco,
252–256

interactive, 263

types of, 248

Markdown

hyperlinks, 46–47

images, 47–48

overview of, 45

rendering, 48–50

rendering lists, 282–283

rendering strings, 281

rendering tables, 283–284

static content elements of UIs, 300–301

tables, 48

text formatting and blocks, 46

Markdown Reader, 49

Markers, adding to Lea�et map, 264

Markup languages, 45

Mathematical operators

applying to vectors, 83

assigning values to variables, 59

using on numeric data types, 60

vectorized functions and, 86–87

Matrix, two-dimensional data structures in R, 122

.md �le extension, for markdown �les, 48

Menus, types of interfaces, 9

merge (git)

combining branches, 324–325

forking/cloning repository on GitHub, 337–338

resolving merge conflicts, 327–328

working with feature branches, 330,
334–335

Merging, git core concepts, 29

message etiquette, commit, 34–35

Meta-data, 114–116, 277

Microsoft Excel, 124

Microsoft Windows. See Windows OSs

Pie charts 355

mkdir, documentation of commands, 16–17

Moral responsibility, 343

mutate()

dplyr core functions, 131, 136–137

example finding Cuban food in Seattle, 202

example report on life expectancy, 289–290

Mutating joins, 148

MySQL, 171

N
NA value

compared with NULL, 100

logical values and, 89

modifying vectors and, 92

Named arguments, R functions, 72–73

Named lists, creating data frames, 120

names() function, creating lists and, 96

Negative index, vector indices, 89

Nested objects, JSON support, 192

Nested statements, within other functions, 140–141

Nested structures, visualizing hierarchical data, 217–220

Networking commands, 20–23

News, sources of data, 109

Nominal (categorical) data

choosing e�ective colors for data visualization, 223

data visualization with multiple variables, 215

measuring data, 110

proportional representation of data and, 212

selecting visual layouts and, 209–210

visualizing single variable, 210

Non-standard evaluation (NSE), dplyr, 133

NULL value, modifying lists and, 100

Numbers, working with CSV data, 124

Numeric data type, 60–61, 95

O
OAuth, API authentication service, 187

Observations, data structures, 111–112

ON clause, SQL SELECT, 174

Online communities, sources of data, 109

Open source, R language as, 53

OpenStreetMap, 264

Operationalization, using data to answer questions, 116–118

Optional arguments, functions and, 72

Options (�ags), argument syntax, 16

OPTIONS, HTTP verbs, 188

ORDER_BY clause, SQL SELECT, 174

Ordinal data

measuring data, 110–111

selecting visual layouts and, 209–210

Orientation, tidyr data tables, 157

Out-of-bounds indices, vector indices, 89

OUTER JOIN clause, SQL SELECT, 174

Outliers, visualizing data with single variable, 210

Output

directing/redirecting, 20

dynamic, 303–304

functions and, 69

reactive, 295

Shiny framework, 293–294

P
Packages

Bokeh, 261

dbplyr, 176–179

dplyr. See dplyr package

ggmap. See ggmap package

ggplot2. See ggplot2 package

ggrepel, 247–248

httr, 189–190, 192–193

jsonlite, 192–193

knitr. See knitr package

leaflet. See leaflet package

plotly, 258–261

of R functions, 73–75

rbokeh, 261–263

RColorBrewer, 224–225

referencing external, 311

rmarkdown, 275

RStudio, 55

tidyr. See tidyr package

tidyverse, 132, 142

Panning, interactive data visualization, 257

Parameters

function inputs, 69–70

query parameters, 184–186, 202

Passing arguments

debugging functions, 78

to functions, 70

PATCH, HTTP verbs, 188

Paths

finding, 57

on remote computers, 22

specifying from command line, 14–15

viewing working directory, 125

Pie charts, 211–213, 221

356 pipe operator (%>%), dplyr package

pipe operator (%>%), dplyr package, 141–142

pipe table, 48

plot_ly()

creating plots, 260

example exploring changes to Seattle, 268

plotly package

creating interactive plots, 259–261

example exploring changes to Seattle, 268

loading, 258

Plots

ggplot2 package. See ggplot2 package

plotly package. See plotly package

plotting, 232–235

rendering in R Markdown, 284

RStudio, 55

Pointers, types of interfaces, 9

Popups, adding interactivity to Lea�et map, 266

Positional arguments

functions and, 72–73

ggplot2 geometries, 238–240

PostgreSQL, 170–171, 176

Powershell, Windows Management Framework, 5

Preattentive processing, in data visualization, 226–227

Predictions, 342

Preview Markdown rendering, 49

Primary keys, in relational databases, 168–169

print(), analyzing �ight data, 152

Probability, 342. See also Statistics

Problem domain, interpreting data by domain, 112–113

Programming/programming languages

compiled languages, 53

data wrangling, 106

dynamically vs. statically typed languages, 60

interpreted languages, 53

learning, 342–343

markup languages, 45

R language. See R language

S language, 53

SQL. See SQL (Structured Query Language)

statically typed, 60

statistical languages, 53

Proportional representation, visualizing data with single
variable, 211–212

publishing apps, Shiny framework, 309–311

pull (git)

creating centralized repository, 333

merging from GitHub, 328

repos on GitHub, 38–40

understanding/using git commands, 43

working with feature branches, 335

Pull request, GitHub, 335–339

push (git)

creating centralized repository, 333

merging from GitHub, 328–329

repos on GitHub, 38–40

understanding/using git commands, 43

working with feature branches, 333–335

pwd, print working directory, 11, 22

Python, 342

Q
qmplot(), creating background maps, 253–254

Query parameters

example finding Cuban food in Seattle, 202

in Web URIs, 184–186

quit (q), stopping or canceling program or running
command, 19

R
R for Everyone, 341

R language

accessing databases, 175–179

accessing Web APIs, 189–190

anscombe data set in, 208

arguments, 72–73

built-in functions, 71–72

code chunks and, 279–280

comments, 58

data types, 60–63

downloading, 6–8

as dynamically typed language, 60

function packages, 73–75

function syntax, 70–71

functions in Shiny layouts, 305

help resources, 63–64

interactive data visualization. See Data visualization,
interactive

learning, 64–67

overview of, 4

programming with, 53–54

running R code from command line, 56–57

running R code using RStudio, 54–56

two-dimensional data structures, 122

variable definition, 58–60

web application framework. See Shiny framework

R Markdown

code chunks and, 279–280

Rows (records), in relational databases 357

creating .Rmd files, 276–278

example report on life expectancy, 287–292

inline code and, 280

knitting documents, 278

rendering lists, 282–283

rendering plots, 284

rendering strings, 281–282

rendering tables, 283–284

setting up reports, 275

sharing reports, 284–286

static content elements of UIs, 300–301

Ratio data, measuring, 111

rbokeh package

creating interactive plots, 262–263

installing and loading, 261–262

RColorBrewer package, 224–225

RDMS (relational database management system), 169.
See also Relational databases

Reactive output

dynamic outputs with Shiny framework, 303–304

render functions and, 308

in Shiny framework, 295

Reactivity, in Shiny framework, 295

read.csv()

creating choropleth maps, 250

example mapping evictions in San Francisco, 253

in R, 161

README �le, GitHub, 48–49

Records

data structures, 111–112

keeping, 107–108

Recycling operation, vectors, 84–85

Redirects, output, 20

Relational databases

accessing, 175–179

designing, 144

overview of, 167–169

setting up, 169–171

SQL statements, 171–175

Relational operators

logical values and, 62

vector filtering with, 91

Relationships

assessing in statistical learning, 341–342

between x and y values (statistics), 208–209

Relative path

images, 48

specifying paths, 14

URLs, 47

viewing working directory, 125–126

Remote repository

git core concepts, 29

repositories as remotes, 36

Remote computers, accessing, 20–21

Render function

developing application servers, 307–309

in Shiny framework, 295–296

Rendering markdown, 48–50

Reports, 275. See also R Markdown

Repository (repo)

checking status, 31–33

creating, 30–31

creating centralized repository, 331–333

forking/cloning on GitHub, 36–38, 336–337

git core concepts, 28

linking online to local, 36

pushing/pulling on GitHub, 38–40

viewing current branch, 320–321

REpresentational State Transfer. See REST (REpresentational
State Transfer)

Required arguments, functions and, 72

Research, sources of data, 109

reset, destroying commit history, 42

Response body, HTTP requests, 190

Response header, HTTP requests, 190

REST (REpresentational State Transfer)

responding to HTTP requests, 189

web APIs, 182

web services and, 181

Return value

c() function, 81–82

function parts, 77

writing functions, 75–76

Reversibility

capabilities of version control systems, 28

reverting to earlier versions, 40–42

revert, reverting to earlier versions, 40–42

RIGHT JOIN clause, SQL SELECT, 174

right_join(), 145–147

rmarkdown package, creating R Markdown documents, 275

.Rmd �les, creating, 276–278

round() function, vectorized functions and, 86–87

Rows

arrange() operation, 137–138

changing from columns to/from, 157–159

filter() operation, 135

Rows (records), in relational databases, 168

358 RScript, running scripts from command line

RScript, running scripts from command line, 57

RStudio

changing working directory, 125

cheatsheet, 56, 280, 318

creating list elements, 97

creating .Rmd files, 276–278

debugging functions, 78

downloading, 8

getting help via RStudio community, 64

ggplot2 graphics in RStudio window, 233

knitting documents, 278

running R code, 54–56

running Shiny apps, 297–298

writing code with, 3

rworldmap, example report on life expectancy, 289, 291

S
sapply(), applying functions to lists, 103

Saturation, choosing effective colors for data visualization, 222

Scalable vector graphics (SVGs), 266

Scalar, example adding, 85–86

Scale, ggplot2

color scales, 242–243

styling with, 240–241

Scatterplot matrix, 213

Scatterplots

Anscombe’s Quartet, 209

data visualization with multiple variables, 213–217

ggplot2 example, 233

Scienti�c research, sources of data, 109

Scripts

programming with R language, 53–54

running from command line, 57

running using RStudio, 54

select()

dplyr core functions, 131, 133–134

example report on life expectancy, 289–290

manipulating table data, 177–178

SELECT statement

ON clause, 174

JOIN clause, 174–175

ORDER_BY and GROUP_BY clauses, 174

SQL statements, 171–174

WHERE clause, 173–174

Sensors, generating data, 107

seq() function, creating vectors and, 82–83

Sequences, performing sequential operations, 139–141

Servers

application structure in Shiny framework, 296

building Shiny application, 313–318

defined, 294

developing application servers, 306–309

division of responsibility in Shiny apps, 298–299

Shape�les, creating choropleth maps, 248–249

Shapes, adding to Lea�et map, 264

Sharing. See Collaboration

Shiny framework

application structure, 295–299

core concepts, 294–295

designing user interfaces, 299

developing application servers, 306–309

dynamic inputs, 301–303

dynamic outputs, 303–304

example applying to fatal police shootings, 311–318

layouts, 304–306

overview of, 293–294

publishing Shiny apps, 309–311

static content, 300–301

shinyApp(), 296–297, 299

shinyapp.io, hosting Shiny apps, 309–310

Sidebar, in Shiny example, 316

Single-bracket notation. See [] (single-bracket notation)

Slideshows, 275

snake_case

variable names, 58

writing functions, 76

Snapshots. See Commit

source(), loading and running API keys, 188

spread()

applying to educational statistics, 164–165

changing rows to columns, 158–159

Spreadsheets, working with CSV data, 124

SQL (Structured Query Language)

converting dplyr functions into SQL equivalents, 178

JOIN clause, 174–175

ORDER_BY and GROUP_BY clauses, 174

resources for learning, 171

SELECT statement, 171–173

WHERE clause, 173–174

SQLite

accessing from R, 176–177

SELECT statement in, 172

types of RDMSs, 169–170

WHERE clause, 173–174

ssh, accessing remote computers, 21–22

Stacked bar charts, 211–213, 239

http://shinyapp.io

Unit of analysis, grouping for rede�ning 359

StackOver�ow, getting help via, 64

Staging area, adding �les, 33. See also add (git)

Statements

conditional, 79–80

SQL, 171–175

Static content

building Shiny application, 313

Shiny framework, 300–301

Statically typed language, 60

Statistical learning

assessing relationships, 341–342

making predictions, 342

overview of, 341

Statistics

Anscombe’s Quartet, 208–209

applying tidyr to educational statistics, 160–165

statistical transformation of data, 237, 255

status (git)

checking project status, 323

checking repository status, 31–33

pushing branches to GitHub, 329

resolving merge conflicts, 327–328

understanding/using git commands, 43

Strings

character data types, 61

rendering in R Markdown, 281–282

Style, vs. syntax, 59

Sublime Text, selecting text editor, 7

Subplots, facets and, 244

Subset, of vector, 88–89

summarize(), dplyr core functions, 131, 138–139

Sunburst diagrams, 218, 220

Surveys, generating data, 107

SVGs (scalable vector graphics), 266

Syntax

debugging functions, 78

vs. style, 59

Syntax-colored code blocks, markdown options, 48

T
Tab-completion, command shells supporting, 15

Tables

building Shiny application, 314–318

creating data frames, 120

data structures, 111–112

JOIN clause, 174

markdown, 48

referencing database table, 177

in relational databases, 168

rendering, 283–284

tidyr, 157

Tagged elements, in lists, 95–96

tbl(), referencing database table, 177

Terminal (command shell). See Command line

Terminal (Linux), 5

Terminal (Mac)

accessing, 9–10

connecting to remote server, 21

executing code, 4

ls command, 13

manuals (man pages), 17

running R code, 56–57

setting up, 4

tab-completion support, 15

Text blocks, markdown, 46

Text editor, 6–7

Text formatting, 46

theme(), creating choropleth maps, 251

Tibble data frame, 142–143

tidyr package

applying to educational statistics, 160–165

changing from columns to/from rows, 157–159

example mapping evictions in San Francisco, 252

orienting data frames for plotting, 239

overview of, 155–157

reshaping data sets, 165

The tidyverse style guide

defining variables, 58

dplyr package, 132

tibble data frame, 142–143

writing functions, 76

Treemaps, 211–213, 218–220

Tutorials, for learning R, 65–66

U
UIs (user interfaces)

application structure in Shiny framework, 295–296

building Shiny application, 313–318

defined, 294

designing, 299

division of responsibility in Shiny apps, 298–299

Unit of analysis, grouping for rede�ning, 144

360 Unordered lists, rendering Markdown lists

Unordered lists, rendering Markdown lists, 282–283

URIs (Uniform Resource Identi�ers)

example finding Cuban food in Seattle, 202

HTTP requests and, 182–184

hyperlink syntax, 46–47

URLs (Uniform Resource Locators), 182, 286

User interfaces. See UIs (user interfaces)

Users, accessing command line, 10

V
Values

creating vectors, 81–82

modifying vectors, 92–93

tidyr cells representing, 155

vectors as one-dimensional collections of, 81

Variables

anonymous, 71, 140

breaking data into, 142

creating intermediary variables for use in analysis, 139

data visualization with multiple, 213–217

data visualization with single, 210–213

defining, 58–60

factor variables, 126–129

storing Shiny layouts in, 305

tidyr columns representing, 155

VCS (version control system), 28

Vectorized functions, 86–88

Vectors

creating, 81–83

creating data frames, 120

example adding, 85–86

filtering, 90–91

lists and, 95

modifying, 92–93

multiple indices, 89–90

overview of, 81

performing operations on, 83–84

recycling operation, 84–85

subsets of, 88–89

vectorized functions, 86–88

Verbs

dplyr package, 131

HTTP verbs, 188–189

Version control

accessing project history, 40–42

adding files, 32–33

checking repository status, 31–33

command line in, 9

committing changes, 33–35

creating repository, 30–31

forking/cloning repos and, 36–38

git for, 4, 27–29

GitHub for, 29

ignoring files, 42–44

local git process, 35

overview of, 27

project setup and configuration, 30

pushing/pulling repos and, 38–40

storing projects on GitHub, 36

tracking changes, 32, 319–320

Version control system (VCS), 28

Videos, resources for learning R, 65

Violin plots

data visualization with multiple variables, 215

data visualization with single variable, 210

Visual channels, aesthetic mappings and, 237

Visual storytelling with D3, 343

Visualization. See Data visualization

VS Code (Visual Studio Code)

preview rendering support, 49

selecting text editor, 7

W
Web APIs

access tokens (API keys), 186–188, 196–197

accessing from R, 189–190

example locating Cuban food in Seattle, 197–203

flattening JSON data, 195–197

HTTP verbs, 188–189

overview of, 181–182

parsing JSON data, 193–195

processing JSON data, 191–193

query parameters, 184–186

RESTful requests, 182

URIs and, 182–184

Web applications

defined, 293

interactive. See Shiny framework

Web browsers, Shiny framework as interface, 293–294

Web servers, 182. See also Servers

Web services. See also Web APIs

overview of, 181

registering with, 186–188

Webpage, URL for, 286

Websites

creating using R Markdown, 275

Zooming, interactive data visualization 361

publishing Shiny apps, 309–311

sharing R Markdown reports, 284–286

WHERE clause, SELECT statement, 173–174

Widgets. See Control widgets

Wildcards, command line, 17–18

Windows, icons, menus, and pointers
(WIMP), 9

Windows Management Framework, 5

Windows OSs

accessing command line, 9–10

command-line tools, 4–5

installing git, 5

Windows, types of interfaces, 9

Work�ows

centralized, 331

creating centralized repository, 331–333

tracking code versions with branches, 319–320

working with feature branch workflows, 333–335

working with forking workflows, 335–339

X
Xcode command line developer tools, 5

Z
Zooming, interactive data visualization, 257

	Cover
	Half Title
	Title Page
	Copyright Page
	Dedication
	Contents
	Foreword
	Preface
	Acknowledgments
	About the Authors
	14 Accessing Web APIs
	14.1 What Is a Web API?
	14.2 RESTful Requests
	14.3 Accessing Web APIs from R
	14.4 Processing JSON Data
	14.5 APIs in Action: Finding Cuban Food in Seattle

	Index

