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Praise for Deep Learning Illustrated

“Over the next few decades, artificial intelligence is poised to dramati-
cally change almost every aspect of our lives, in large part due to today’s
breakthroughs in deep learning. The authors’ clear visual style provides
a comprehensive look at what’s currently possible with artificial neural
networks as well as a glimpse of the magic that’s to come.”
—Tim Urban, writer and illustrator of Wait But Why

“This book is an approachable, practical, and broad introduction to deep
learning, and the most beautifully illustrated machine learning book on the
market.”
—Dr. Michael Osborne, Dyson Associate Professor in Machine Learning,
University of Oxford

“This book should be the first stop for deep learning beginners, as it con-
tains lots of concrete, easy-to-follow examples with corresponding tutorial
videos and code notebooks. Strongly recommended.”
—Dr. Chong Li, cofounder, Nakamoto & Turing Labs; adjunct professor,
Columbia University

“It’s hard to imagine developing new products today without thinking
about enriching them with capabilities using machine learning. Deep
learning in particular has many practical applications, and this book’s in-
telligible clear and visual approach is helpful to anyone who would like to
understand what deep learning is and how it could impact your business
and life for years to come.”
—Helen Altshuler, engineering leader, Google



“This book leverages beautiful illustrations and amusing analogies to make
the theory behind deep learning uniquely accessible. Its straightforward
example code and best-practice tips empower readers to immediately apply
the transformative technique to their particular niche of interest.”
—Dr. Rasmus Rothe, founder, Merantix

“This is an invaluable resource for anyone looking to understand what
deep learning is and why it powers almost every automated application
today, from chatbots and voice recognition tools to self-driving cars. The
illustrations and biological explanations help bring to life a complex topic
and make it easier to grasp fundamental concepts.”
—Joshua March, CEO and cofounder, Conversocial; author of Message Me

“Deep learning is regularly redefining the state of the art across machine
vision, natural language, and sequential decision-making tasks. If you too
would like to pass data through deep neural networks in order to build
high-performance models, then this book—with its innovative, highly
visual approach—is the ideal place to begin.”
—Dr. Alex Flint, roboticist and entrepreneur
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11.31 Additional CNN dependencies . . . . . . . . . . . . . . . . . . . . . . 236
11.32 Convolutional sentiment classifier hyperparameters . . . . . . . . . . . . 236
11.33 Convolutional sentiment classifier architecture . . . . . . . . . . . . . . . 237
11.34 RNN sentiment classifier hyperparameters . . . . . . . . . . . . . . . . . 242
11.35 RNN sentiment classifier architecture . . . . . . . . . . . . . . . . . . . 243
11.36 LSTM sentiment classifier hyperparameters . . . . . . . . . . . . . . . . 246
11.37 LSTM sentiment classifier architecture . . . . . . . . . . . . . . . . . . . 247
11.38 Bidirectional LSTM sentiment classifier architecture . . . . . . . . . . . . 248
11.39 Stacked recurrent model architecture . . . . . . . . . . . . . . . . . . . . 249
11.40 Multi-ConvNet sentiment classifier hyperparameters . . . . . . . . . . . 253
11.41 Multi-ConvNet sentiment classifier architecture . . . . . . . . . . . . . . 253
12.1 Generative adversarial network dependencies . . . . . . . . . . . . . . . 264
12.2 Loading the Quick, Draw! data . . . . . . . . . . . . . . . . . . . . . . 265
12.3 Discriminator model architecture . . . . . . . . . . . . . . . . . . . . . 266
12.4 Compiling the discriminator network . . . . . . . . . . . . . . . . . . . 269
12.5 Generator model architecture . . . . . . . . . . . . . . . . . . . . . . . 270
12.6 Adversarial model architecture . . . . . . . . . . . . . . . . . . . . . . . 273
12.7 Compiling the adversarial network . . . . . . . . . . . . . . . . . . . . . 274
12.8 GAN training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275



Examples xxxi

12.9 Plotting our GAN training loss . . . . . . . . . . . . . . . . . . . . . . . 280
12.10 Plotting our GAN training accuracy . . . . . . . . . . . . . . . . . . . . 281
13.1 Cart-Pole DQN hyperparameters . . . . . . . . . . . . . . . . . . . . . 293
13.2 A deep Q-learning agent . . . . . . . . . . . . . . . . . . . . . . . . . . 294
13.3 DQN agent interacting with an OpenAI Gym environment . . . . . . . 300
14.1 Dependencies for building a Keras layer-based deep net in TensorFlow

without loading the Keras library . . . . . . . . . . . . . . . . . . . . . 323



This page intentionally left blank 



Foreword

Machine learning is considered by many to be the future of statistics and computer en-
gineering as it reshapes customer service, design, banking, medicine, manufacturing, and
hosts of other disciplines and industries. It is hard to overstate its impact on the world so
far and the changes it will bring about in the coming years and decades. Of the multi-
tude of machine learning methods applied by professionals, such as penalized regression,
random forests, and boosted trees, perhaps the most excitement-inducing is deep learning.

Deep learning has revolutionized computer vision and natural language processing,
and researchers are still finding new areas to transform with the power of neural networks.
Its most profound impact is often seen in efforts to replicate the human experience,
such as the aforementioned vision and language processing, and also audio synthesis
and translations. The math and concepts underlying deep learning can seem daunting,
unnecessarily deterring people from getting started.

The authors of Deep Learning Illustrated challenge the traditionally perceived barriers
and impart their knowledge with ease and levity, resulting in a book that is enjoyable to
read. Much like the other books in this series—R for Everyone, Pandas for Everyone, Pro-
gramming Skills for Data Science, and Machine Learning with Python for Everyone—this book
is welcoming and accessible to a broad audience from myriad backgrounds. Mathematical
notation is kept to a minimum and, when needed, the equations are presented alongside
understandable prose. The majority of insights are augmented with visuals, illustrations,
and Keras code, which is also available as easy-to-follow Jupyter notebooks.

Jon Krohn has spent many years teaching deep learning, including a particularly mem-
orable presentation at the New York Open Statistical Programming Meetup—the same
community from which he launched his Deep Learning Study Group. His mastery of the
subject shines through in his writing, giving readers ample education while at the same
time inviting them to be excited about the material. He is joined by Grant Beyleveld and
Aglaé Bassens who add their expertise in applying deep learning algorithms and skillful
drawings.
Deep Learning Illustrated combines theory, math where needed, code, and visualizations

for a comprehensive treatment of deep learning. It covers the full breadth of the subject,
including densely connected networks, convolutional neural nets, recurrent neural nets,
generative adversarial networks, and reinforcement learning, and their applications. This
makes the book the ideal choice for someone who wants to learn about neural networks
with practical guidance for implementing them. Anyone can, and should, benefit from, as
well as enjoy, their time spent reading along with Jon, Grant, and Aglaé.

—Jared Lander
Series Editor
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Preface

Commonly called brain cells, billions of interconnected neurons make up your nervous
system, and they enable you to sense, to think, and to take action. By meticulously
staining and examining thin slices of brain tissue, the Spanish physician Santiago Cajal
(Figure P.1), was the first1 to identify neurons (Figure P.2), and in the early half of the
twentieth century, researchers began to shed light on how these biological cells work. By
the 1950s, scientists inspired by our developing understanding of the brain were exper-
imenting with computer-based artificial neurons, linking these together to form artificial
neural networks that loosely mimic the operation of their natural namesake.

Armed with this brief history of neurons, we can define the term deep learning decep-
tively straightforwardly: Deep learning involves a network in which artificial neurons—
typically thousands, millions, or many more of them—are stacked at least several layers
deep. The artificial neurons in the first layer pass information to the second, the second
to the third, and so on, until the final layer outputs some values. That said, as we literally
illustrate throughout this book, this simple definition does not satisfactorily capture deep
learning’s remarkable breadth of functionality nor its extraordinary nuance.

As we detail in Chapter 1, with the advent of sufficiently inexpensive computing
power, sufficiently large datasets, and a handful of landmark theoretical advances, the first
wave of the deep learning tsunami to hit the proverbial shore was a standout performance
in a leading machine vision competition in 2012. Academics and technologists took note,
and in the action-packed years since, deep learning has facilitated countless now-everyday

Figure P.1 Santiago Cajal (1852–1934)

1. Cajal, S.-R. (1894). Les Nouvelles Idées sur la Structure du Système Nerveux chez l’Homme et chez les Vertébrés. Paris:
C. Reinwald & Companie.
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Figure P.2 A hand-drawn diagram from Cajal’s (1894) publication showing the growth
of a neuron (a–e) and contrasting neurons from frog (A), lizard (B), rat (C), and human

(D) samples

applications. From Tesla’s Autopilot to the voice recognition of Amazon’s Alexa, from
real-time translation between languages to its integration in hundreds of Google products,
deep learning has improved the accuracy of a great number of computational tasks from
95 percent to 99 percent or better—the tricky few percent that can make an automated
service feel as though it works by magic. Although the concrete, interactive code exam-
ples throughout this book will dispel this apparent wizardry, deep learning has indeed
imbued machines with superhuman capability on complex tasks as diverse as face recogni-
tion, text summarization, and elaborate board games.2 Given these prominent advances, it
is unsurprising that “deep learning” has become synonymous with “artificial intelligence”
in the popular press, the workplace, and the home.

These are exciting times, because, as you’ll discover over the course of this book, per-
haps only once in a lifetime does a single concept disrupt so widely in such a short period
of time. We are delighted that you too have developed an interest in deep learning and
we can’t wait to share our enthusiasm for this unprecedentedly transformative technique
with you.

How to Read This Book
This book is split into four parts. Part I, “Introducing Deep Learning,” is well suited to
any interested reader. This part serves as a high-level overview that establishes what deep
learning is, how it evolved to be ubiquitous, and how it is related to concepts like AI,
machine learning, and reinforcement learning. Replete with vivid bespoke illustrations,
straightforward analogies, and character-focused narratives, Part I should be illuminating
for anyone, including individuals with no software programming experience.

2. See bit.ly/aiindex18 for a review of machine performance relative to humans.

http://bit.ly/aiindex18
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In contrast, Parts II through IV are intended for software developers, data scientists,
researchers, analysts, and others who would like to learn how to apply deep learning
techniques in their field. In these parts of the book, essential underlying theory is covered
in a manner that minimizes mathematical formulas, relying instead on intuitive visuals and
hands-on examples in Python. Alongside this theory, working code run-throughs avail-
able in accompanying Jupyter notebooks3 facilitate a pragmatic understanding of the prin-
cipal families of deep learning approaches and applications: machine vision (Chapter 10),
natural language processing (Chapter 11), image generation (Chapter 12), and game
playing (Chapter 13). For clarity, wherever we refer to code, we will provide it in fixed-

width font, like this. For further readability, in code chunks we also include the
default Jupyter styling (e.g., numbers in green, strings in red, etc.).

If you find yourself yearning for more detailed explanations of the mathematical
and statistical foundations of deep learning than we offer in this book, our two favorite
options for further study are:

1. Michael Nielsen’s e-book Neural Networks and Deep Learning,4 which is short, makes
use of fun interactive applets to demonstrate concepts, and uses mathematical nota-
tion similar to ours

2. Ian Goodfellow (introduced in Chapter 3), Yoshua Bengio (Figure 1.10), and Aaron
Courville’s book Deep Learning,5 which comprehensively covers the math that
underlies neural network techniques

Scattered throughout this book, you will find amiable trilobites that would like to
provide you with tidbits of unessential reading that they think you may find interesting or
helpful. The reading trilobite (as in Figure P.3) is a bookworm who enjoys expanding your
knowledge. The trilobite calling for your attention, meanwhile (as in Figure P.4), has noticed
a passage of text that may be problematic, and so would like to clarify the situation. In
addition to trilobites habituated within sidebars, we made liberal use of footnotes. These

Figure P.3 The reading trilobite enjoys expanding your knowledge.

3. github.com/the-deep-learners/deep-learning-illustrated
4. Nielsen, M. (2015). Neural Networks and Deep Learning. Determination Press. Available for free at:
neuralnetworksanddeeplearning.com

5. Goodfellow, I., et al. (2016). Deep Learning. MIT Press. Available for free at: deeplearningbook.org

http://github.com/the-deep-learners/deep-learning-illustrated
http://neuralnetworksanddeeplearning.com
http://deeplearningbook.org
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Figure P.4 This trilobite calls attention to tricky passages of text. Look out for it!

are likewise not essential reading but provide quick explanations of new terms and abbre-
viations, as well as citations of seminal papers and other references for you to follow up
with if you’re so inclined.

For much of this book’s content, corresponding video tutorials are also available. Al-
though the book provided us with an opportunity to flesh out theoretical concepts more
thoroughly, the videos enable you to become familiar with our Jupyter notebooks from
a different perspective, in which the importance of each line of code is described verbally
as it is typed out.6 The video tutorial series is spread across three titles, each of which
parallels particular chapters of the book:

1. Deep Learning with TensorFlow LiveLessons:7 Chapter 1 and Chapters 5 through 10
2. Deep Learning for Natural Language Processing LiveLessons:8 Chapters 2 and 11
3. Deep Reinforcement Learning and GANs LiveLessons:9 Chapters 3, 4, 12, and 13

Register your copy of Deep Learning Illustrated on the InformIT site for convenient
access to updates and corrections as they become available. To start the registration
process, go to informit.com/register and log in or create an account. Enter the
product ISBN (9780135116692) and click Submit. Look on the Registered Products
tab for an Access Bonus Content link next to this product, and follow that link to
access any available bonus materials. If you would like to be notified of exclusive
offers on new editions and updates, please check the box to receive email from us.

6. Many of the Jupyter notebooks covered in this book are derived directly from the videos, which were all recorded
prior to writing. In some places, we decided to update the code for the book, so while the video version and the
book version of a given code notebook align quite closely, they may not always be strictly identical.
7. Krohn, J. (2017). Deep Learning with TensorFlow LiveLessons: Applications of Deep Neural Networks to Machine
Learning Tasks (video course). Boston: Addison-Wesley.
8. Krohn, J. (2017). Deep Learning for Natural Language Processing LiveLessons: Applications of Deep Neural Networks
to Machine Learning Tasks (video course). Boston: Addison-Wesley.
9. Krohn, J. (2018). Deep Reinforcement Learning and GANs LiveLessons: Advanced Topics in Deep Learning (video
course). Boston: Addison-Wesley.

http://informit.com/register
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8
Training Deep Networks

In the preceding chapters, we described artificial neurons comprehensively and we
walked through the process of forward propagating information through a network of
neurons to output a prediction, such as whether a given fast food item is a hot dog, a
juicy burger, or a greasy slice of pizza. In those culinary examples from Chapters 6 and
7, we fabricated numbers for the neuron parameters—the neuron weights and biases. In
real-world applications, however, these parameters are not typically concocted arbitrarily:
They are learned by training the network on data.

In this chapter, you will become acquainted with two techniques—called gradient
descent and backpropagation—that work in tandem to learn artificial neural network param-
eters. As usual in this book, our presentation of these methods is not only theoretical: We
provide pragmatic best practices for implementing the techniques. The chapter culminates
in the application of these practices to the construction of a neural network with more
than one hidden layer.

Cost Functions
In Chapter 7, you discovered that, upon forward propagating some input values all the
way through an artificial neural network, the network provides its estimated output,
which is denoted ŷ. If a network were perfectly calibrated, it would output ŷ values that
are exactly equal to the true label y. In our binary classifier for detecting hot dogs, for
example (Figure 7.3), y = 1 indicated that the object presented to the network is a hot
dog, while y = 0 indicated that it’s something else. In an instance where we have in fact
presented a hot dog to the network, therefore, ideally it would output ŷ = 1.

In practice, the gold standard of ŷ=y is not always attained and so may be an exces-
sively stringent definition of the “correct” ŷ. Instead, if y = 1 we might be quite pleased
to see a ŷ of, say, 0.9997, because that would indicate that the network has an extremely
high confidence that the object is a hot dog. A ŷ of 0.9 might be considered acceptable,
ŷ = 0.6 to be disappointing, and ŷ = 0.1192 (as computed in Equation 7.7) to be awful.

To quantify the spectrum of output-evaluation sentiments from “quite pleased” all the
way down to “awful,” machine learning algorithms often involve cost functions (also known
as loss functions). The two such functions that we cover in this book are called quadratic
cost and cross-entropy cost. Let’s cover them in turn.
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Quadratic Cost
Quadratic cost is one of the simplest cost functions to calculate. It is alternatively called
mean squared error, which handily describes all that there is to its calculation:

C =
1

n

n∑
i=1

(yi − ŷi)
2 (8.1)

For any given instance i, we calculate the difference (the error) between the true label yi

and the network’s estimated ŷi. We then square this difference, for two reasons:

1. Squaring ensures that whether y is greater than ŷ or vice versa, the difference
between the two is stated as a positive value.

2. Squaring penalizes large differences between y and ŷ much more severely than
small differences.

Having obtained a squared error for each instance i by using (yi− ŷi)
2, we can then calcu-

late the mean cost C across all n of our instances by:

1. Summing up cost across all instances using
n∑

i=1

2. Dividing by however many instances we have using 1
n

By taking a peek inside the Quadratic Cost Jupyter notebook from the book’s GitHub
repo, you can play around with Equation 8.1 yourself. At the top of the notebook, we
define a function to calculate the squared error for an instance i:

def squared_error(y, yhat):

return (y - yhat)**2

By plugging a true y of 1 and the ideal yhat of 1 in to the function by using
squared_error(1, 1), we observe that—as desired—this perfect estimate is associated
with a cost of 0. Likewise, minor deviations from the ideal, such as a yhat of 0.9997,
correspond to an extremely small cost: 9.0e-08.1 As the difference between y and yhat

increases, we witness the expected exponential increase in cost: Holding y steady at 1 but
lowering yhat from 0.9 to 0.6, and then to 0.1192, the cost climbs increasingly rapidly
from 0.01 to 0.16 and then to 0.78. As a final bit of amusement in the notebook, we
note that had y truly been 0, our yhat of 0.1192 would be associated with a small cost:
0.0142.

Saturated Neurons
While quadratic cost serves as a straightforward introduction to loss functions, it has a
vital flaw. Consider Figure 8.1, in which we recapitulate the tanh activation function
from Figure 6.10. The issue presented in the figure, called neuron saturation, is com-
mon across all activation functions, but we’ll use tanh as our lone exemplar. A neuron is

1. 9.0e-08 is equivalent to 9.0× 10−8.
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Figure 8.1 Plot reproducing the tanh activation function shown in Figure 6.10, drawing
attention to the high and low values of z at which a neuron is saturated

considered saturated when the combination of its inputs and parameters (interacting as per
“the most important equation,” z = w ·x+b, which is captured in Figure 6.10) produces
extreme values of z—the areas encircled with red in the plot in Figure 8.1. In these areas,
changes in z (via adjustments to the neuron’s underlying parameters w and b) cause only
teensy-weensy changes in the neuron’s activation a.2

Using methods that we cover later in this chapter—namely, gradient descent and
backpropagation—a neural network is able to learn to approximate y through the tuning
of the parameters w and b associated with all of its constituent neurons. In a saturated
neuron, where changes to w and b lead to only minuscule changes in a, this learning
slows to a crawl: If adjustments to w and b make no discernible impact on a given neu-
ron’s activation a, then these adjustments cannot have any discernible impact downstream
(via forward propagation) on the network’s ŷ, its estimate of y.

Cross-Entropy Cost
One of the ways3 to minimize the impact of saturated neurons on learning speed is to
use cross-entropy cost in lieu of quadratic cost. This alternative loss function is configured
to enable efficient learning anywhere within the activation function curve of Figure 8.1.
Because of this, it is a far more popular choice of cost function and it is the selection that
predominates the remainder of this book.4

You need not preoccupy yourself with the equation for cross-entropy cost, but for the
sake of completeness, here it is:

C = − 1

n

n∑
i=1

[yi ln ŷi + (1− yi) ln(1− ŷi)] (8.2)

2. Recall from Chapter 6 that a = σ(z), where σ is some activation function—in this example, the tanh function.
3. More methods for attenuating saturated neurons and their negative effects on a network are covered in Chapter 9.
4. Cross-entropy cost is well suited to neural networks solving classification problems, and such problems dominate
this book. For regression problems (covered in Chapter 9), quadratic cost is a better option than cross-entropy cost.
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The most pertinent aspects of the equation are:
■ Like quadratic cost, divergence of ŷ from y corresponds to increased cost.
■ Analogous to the use of the square in quadratic cost, the use of the natural log-

arithm ln in cross-entropy cost causes larger differences between ŷ and y to be
associated with exponentially larger cost.

■ Cross-entropy cost is structured so that the larger the difference between ŷ and y,
the faster the neuron is able to learn.5

To make it easier to remember that the greater the cost, the more quickly a neural
network incorporating cross-entropy cost learns, here’s an analogy that would absolutely
never involve any of your esteemed authors: Let’s say you’re at a cocktail party leading the
conversation of a group of people that you’ve met that evening. The strong martini you’re
holding has already gone to your head, and you go out on a limb by throwing a risqué
line into your otherwise charming repartee. Your audience reacts with immediate, visible
disgust. With this response clearly indicating that your quip was well off the mark, you
learn pretty darn quickly. It’s exceedingly unlikely you’ll be repeating the joke anytime
soon.

Anyway, that’s plenty enough on disasters of social etiquette. The final item to note on
cross-entropy cost is that, by including ŷ, the formula provided in Equation 8.2 applies
to only the output layer. Recall from Chapter 7 (specifically the discussion of Figure 7.3)
that ŷ is a special case of a: It’s actually just another plain old a value—except that it’s
being calculated by neurons in the output layer of a neural network. With this in mind,
Equation 8.2 could be expressed with ai substituted in for ŷi so that the equation gener-
alizes neatly beyond the output layer to neurons in any layer of a network:

C = − 1

n

n∑
i=1

[yi lnai + (1− yi) ln(1− ai)] (8.3)

To cement all of this theoretical chatter about cross-entropy cost, let’s interactively
explore our aptly named Cross Entropy Cost Jupyter notebook. There is only one depen-
dency in the notebook: the log function from the NumPy package, which enables us to
compute the natural logarithm ln shown twice in Equation 8.3. We load this dependency
using from numpy import log.

Next, we define a function for calculating cross-entropy cost for an instance i:

def cross_entropy(y, a):

return -1*(y*log(a) + (1-y)*log(1-a))

5. To understand how the cross-entropy cost function in Equation 8.2 enables a neuron with larger cost to learn
more rapidly, we require a touch of partial-derivative calculus. (Because we endeavor to minimize the use of
advanced mathematics in this book, we’ve relegated this calculus-focused explanation to this footnote.) Central to
the two computational methods that enable neural networks to learn—gradient descent and backpropagation—is
the comparison of the rate of change of costC relative to neuron parameters like weightw. Using partial-derivative
notation, we can represent these relative rates of change as ∂C

∂w
. The cross-entropy cost function is deliberately

structured so that, when we calculate its derivative, ∂C
∂w

is related to (ŷ − y). Thus, the larger the difference
between the ideal output y and the neuron’s estimated output ŷ, the greater the rate of change of cost C with
respect to weight w.
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Table 8.1 Cross-entropy costs associated with selected example inputs

y a C

1 0.9997 0.0003

1 0.9 0.1

1 0.6 0.5

1 0.1192 2.1

0 0.1192 0.1269

1 1−0.1192 0.1269

Plugging the same values in to our cross_entropy() function as we did the squared_

error() function earlier in this chapter, we observe comparable behavior. As shown in
Table 8.1, by holding y steady at 1 and gradually decreasing a from the nearly ideal esti-
mate of 0.9997 downward, we get exponential increases in cross-entropy cost. The table
further illustrates that—again, consistent with the behavior of its quadratic cousin—cross-
entropy cost would be low, with an a of 0.1192, if y happened to in fact be 0. These
results reiterate for us that the chief distinction between the quadratic and cross-entropy
functions is not the particular cost value that they calculate per se, but rather it is the rate
at which they learn within a neural net—especially if saturated neurons are involved.

Optimization: Learning to Minimize Cost
Cost functions provide us with a quantification of how incorrect our model’s estimate of
the ideal y is. This is most helpful because it arms us with a metric we can leverage to
reduce our network’s incorrectness.

As alluded to a couple of times in this chapter, the primary approach for minimiz-
ing cost in deep learning paradigms is to pair an approach called gradient descent with
another one called backpropagation. These approaches are optimizers and they enable
the network to learn. This learning is accomplished by adjusting the model’s parameters
so that its estimated ŷ gradually converges toward the target of y, and thus the cost de-
creases. We cover gradient descent first and move on to backpropagation immediately
afterward.

Gradient Descent
Gradient descent is a handy, efficient tool for adjusting a model’s parameters with the aim
of minimizing cost, particularly if you have a lot of training data available. It is widely
used across the field of machine learning, not only in deep learning.

In Figure 8.2, we use a nimble trilobite in a cartoon to illustrate how gradient descent
works. Along the horizontal axis in each frame is some parameter that we’ve denoted as p.
In an artificial neural network, this parameter would be either a neuron’s weight w or bias
b. In the top frame, the trilobite finds itself on a hill. Its goal is to descend the gradient,
thereby finding the location with the minimum cost, C. But there’s a twist: The trilobite
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Figure 8.2 A trilobite using gradient descent to find the value of a parameter p
associated with minimal cost, C

is blind! It cannot see whether deeper valleys lie far away somewhere, and so it can only
use its cane to investigate the slope of the terrain in its immediate vicinity.

The dashed orange line in Figure 8.2 indicates the blind trilobite’s calculation of the
slope at the point where it finds itself. According to that slope line, if the trilobite takes a
step to the left (i.e., to a slightly lower value of p), it would be moving to a location with
smaller cost. On the hand, if the trilobite takes a step to the right (a slightly higher value
of p), it would be moving to a location with higher cost. Given the trilobite’s desire to
descend the gradient, it chooses to take a step to the left.

By the middle frame, the trilobite has taken several steps to the left. Here again, we
see it evaluating the slope with the orange line and discovering that, yet again, a step to
the left will bring it to a location with lower cost, and so it takes another step left. In the
lower frame, the trilobite has succeeded in making its way to the location—the value of
the parameter p—corresponding to the minimum cost. From this position, if it were to
take a step to the left or to the right, cost would go up, so it gleefully remains in place.

In practice, a deep learning model would not have only one parameter. It is not
uncommon for deep learning networks to have millions of parameters, and some indus-
trial applications have billions of them. Even our Shallow Net in Keras—one of the smallest
models we build in this book—has 50,890 parameters (see Figure 7.5).
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Figure 8.3 A trilobite exploring along two model parameters—p1 and p2—in order to
minimize cost via gradient descent. In a mountain-adventure analogy, p1 and p2 could be

thought of as latitude and longitude, and altitude represents cost.

Although it’s impossible for the human mind to imagine a billion-dimensional space,
the two-parameter cartoon shown in Figure 8.3 provides a sense of how gradient descent
scales up to minimize cost across multiple parameters simultaneously. Across however
many trainable parameters there are in a model, gradient descent iteratively evaluates
slopes6 to identify the adjustments to those parameters that correspond to the steepest
reduction in cost. With two parameters, as in the trilobite cartoon in Figure 8.3, for
example, this procedure can be likened to a blind hike through the mountains, where:

■ Latitude represents one parameter, say p1.
■ Longitude represents the other parameter, p2.
■ Altitude represents cost—the lower the altitude, the better!

The trilobite randomly finds itself at a location in the mountains. From that point, it feels
around with its cane to identify the direction of the step it can take that will reduce its
altitude the most. It then takes that single step. Repeating this process many times, the
trilobite may eventually find itself at the latitude and longitude coordinates that corre-
spond to the lowest-possible altitude (the minimum cost), at which point the trilobite’s
surreal alpine adventure is complete.

Learning Rate
For conceptual simplicity, in Figure 8.4, let’s return to a blind trilobite navigating a
single-parameter world instead of a two-parameter world. Now let’s imagine that we
have a ray-gun that can shrink or enlarge trilobites. In the middle panel, we’ve used our
ray-gun to make our trilobite very small. The trilobite’s steps will then be correspond-
ingly small, and so it will take our intrepid little hiker a long time to find its way to the

6. Using partial-derivative calculus.
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Figure 8.4 The learning rate (η) of gradient descent expressed as the size of a trilobite.
The middle panel has a small learning rate, and the bottom panel, a large one.

legendary valley of minimum cost. On the other hand, consider the bottom panel, in
which we’ve used our ray-gun to make the trilobite very large. The situation here is even
worse! The trilobite’s steps will now be so large that it will step right over the valley of
minimum cost, and so it never has any hope of finding it.

In gradient descent terminology, step size is referred to as learning rate and denoted
with the Greek letter η (eta, pronounced “ee-ta”). Learning rate is the first of sev-
eral model hyperparameters that we cover in this book. In machine learning, including
deep learning, hyperparameters are aspects of the model that we configure before we
begin training the model. So hyperparameters such as η are preset while, in contrast,
parameters—namely, w and b—are learned during training.

Getting your hyperparameters right for a given deep learning model often re-
quires some trial and error. For the learning rate η, it’s something like the fairy tale of
“Goldilocks and the Three Bears”: Too small and too large are both inadequate, but
there’s a sweet spot in the middle. More specifically, as we portray in Figure 8.4, if η is
too small, then it will take many, many iterations of gradient descent (read: an unnec-
essarily long time) to reach the minimal cost. On the other hand, selecting a value for η
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that is too large means we might never reach minimal cost at all: The gradient descent
algorithm will act erratically as it jumps right over the parameters associated with minimal
cost.

Coming up in Chapter 9, we have a clever trick waiting for you that will circumnav-
igate the need for you to manually select a given neural network’s η hyperparameter. In
the interim, however, here are our rules of thumb on the topic:

■ Begin with a learning rate of about 0.01 or 0.001.
■ If your model is able to learn (i.e., if cost decreases consistently epoch over epoch)

but training happens very slowly (i.e., each epoch, the cost decreases only a small
amount), then increase your learning rate by an order of magnitude (e.g., from 0.01
to 0.1). If the cost begins to jump up and down erratically epoch over epoch, then
you’ve gone too far, so rein in your learning rate.

■ At the other extreme, if your model is unable to learn, then your learning rate may
be too high. Try decreasing it by orders of magnitude (e.g., from 0.001 to 0.0001)
until cost decreases consistently epoch over epoch. For a visual, interactive way to
get a handle on the erratic behavior of a model when its learning rate is too high,
you can return to the TensorFlow Playground example from Figure 1.18 and dial
up the value within the “Learning rate” dropdown box.

Batch Size and Stochastic Gradient Descent
When we introduced gradient descent, we suggested that it is efficient for machine
learning problems that involve a large dataset. In the strictest sense, we outright lied to
you. The truth is that if we have a very large quantity of training data, ordinary gradient
descent would not work at all because it wouldn’t be possible to fit all of the data into the
memory (RAM) of our machine.

Memory isn’t the only potential snag; compute power could cause us headaches, too.
A relatively large dataset might squeeze into the memory of our machine, but if we tried
to train a neural network containing millions of parameters with all those data, vanilla
gradient descent would be highly inefficient because of the computational complexity of
the associated high-volume, high-dimensional calculations.

Thankfully, there’s a solution to these memory and compute limitations: the stochastic
variant of gradient descent. With this variation, we split our training data into mini-
batches—small subsets of our full training dataset—to render gradient descent both man-
ageable and productive.

Although we didn’t focus on it at the time, when we trained the model in our Shal-
low Net in Keras notebook back in Chapter 5 we were already using stochastic gradient
descent by setting our optimizer to SGD in the model.compile() step. Further, in the
subsequent line of code when we called the model.fit() method, we set batch_size to
128 to specify the size of our mini-batches—the number of training data points that we
use for a given iteration of SGD. Like the learning rate η presented earlier in this chapter,
batch size is also a model hyperparameter.

Let’s work through some numbers to make the concepts of batches and stochastic
gradient descent more tangible. In the MNIST dataset, there are 60,000 training images.
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With a batch size of 128 images, we then have ⌈468.75⌉ = 469 batches7,8 of gradient
descent per epoch:

number of batches =
⌈
size of training dataset

batch size

⌉
=

⌈
60, 000 images
128 images

⌉
= ⌈468.75⌉
= 469

(8.4)

Before carrying out any training, we initialize our network with random values for each
neuron’s parameters w and b.9 To begin the first epoch of training:

1. We shuffle and divide the training images into mini-batches of 128 images each.
These 128 MNIST images provide 784 pixels each, which all together constitute
the inputs x that are passed into our neural network. It’s this shuffling step that puts
the stochastic (which means random) in “stochastic gradient descent.”

2. By forward propagation, information about the 128 images is processed by the
network, layer through layer, until the output layer ultimately produces ŷ values.

3. A cost function (e.g., cross-entropy cost) evaluates the network’s ŷ values against the
true y values, providing a cost C for this particular mini-batch of 128 images.

4. To minimize cost and thereby improve the network’s estimates of y given x, the
gradient descent part of stochastic gradient descent is performed: Every single w
and b parameter in the network is adjusted proportional to how much each con-
tributed to the error (i.e., the cost) in this batch (note that the adjustments are scaled
by the learning rate hyperparameter η).10

These four steps constitute a round of training, as summarized by Figure 8.5.
Figure 8.6 captures how rounds of training are repeated until we run out of training

images to sample. The sampling in step 1 is done without replacement, meaning that at the
end of an epoch each image has been seen by the algorithm only once, and yet between
different epochs the mini-batches are sampled randomly. After a total of 468 rounds, the
final batch contains only 96 samples.

This marks the end of the first epoch of training. Assuming we’ve set our model up
to train for further epochs, we begin the next epoch by replenishing our pool with all
60,000 training images. As we did through the previous epoch, we then proceed through
a further 469 rounds of stochastic gradient descent.11 Training continues in this way until
the total desired number of epochs is reached.

7. Because 60,000 is not perfectly divisible by 128, that 469th batch would contain only 0.75×128 = 96 images.
8. The square brackets we use here and in Equation 8.4 that appear to be missing the horizontal element from the
bottom are used to denote the calculation of an integer-value ceiling. The whole-integer ceiling of 468.75, for
example, is 469.
9. We delve into the particulars of parameter initialization with random values in Chapter 9.
10. This error-proportional adjustment is calculated during backpropagation. We haven’t covered backpropagation
explicitly yet, but it’s coming up in the next section, so hang on tight!
11. Because we’re sampling randomly, the order in which we select training images for our 469 mini-batches is
completely different for every epoch.
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Figure 8.5 An individual round of training with stochastic gradient descent. Although
mini-batch size is a hyperparameter that can vary, in this particular case, the mini-batch
consists of 128 MNIST digits, as exemplified by our hike-loving trilobite carrying a small

bag of data.

Figure 8.6 An outline of the overall process for training a neural network with
stochastic gradient descent. The entire dataset is shuffled and split into batches. Each
batch is forward propagated through the network; the output ŷ is compared to the

ground truth y and the cost C is calculated; backpropagation calculates the gradients;
and the model parameters w and b are updated. The next batch (indicated by a dashed
line) is forward propagated, and so on until all of the batches have moved through the
network. Once all the batches have been used, a single epoch is complete and the

process starts again with a reshuffling of the full training dataset.
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The total number of epochs that we set our network to train for is yet another hyperpa-
rameter, by the way. This hyperparameter, though, is one of the easiest to get right:

■ If the cost on your validation data is going down epoch over epoch, and if your
final epoch attained the lowest cost yet, then you can try training for additional
epochs.

■ Once the cost on your validation data begins to creep upward, that’s an indicator
that your model has begun to overfit to your training data because you’ve trained for
too many epochs. (We elaborate much more on overfitting in Chapter 9.)

■ There are methods12 you can use to automatically monitor training and validation
cost and stop training early if things start to go awry. In this way, you could set
the number of epochs to be arbitrarily large and know that training will continue
until the validation cost stops improving—and certainly before the model begins
overfitting!

Escaping the Local Minimum
In all of the examples of gradient descent thus far in the chapter, our hiking trilobite has
encountered no hurdles on its journey toward minimum cost. There are no guarantees
that this would be the case, however. Indeed, such smooth sailing is unusual.

Figure 8.7 shows the mountaineering trilobite exploring the cost of some new model
that is being used to solve some new problem. With this new problem, the relationship
between the parameter p and cost C is more complex. To have our neural network esti-
mate y as accurately as possible, gradient descent needs to identify the parameter values
associated with the lowest-attainable cost. However, as our trilobite makes its way from
its random starting point in the top panel, gradient descent leads it to getting trapped in
a local minimum. As shown in the middle panel, while our intrepid explorer is in the local
minimum, a step to the left or a step to the right both lead to an increase in cost, and so
the blind trilobite stays put, completely oblivious of the existence of a deeper valley—the
global minimum—lying yonder.

All is not lost, friends, for stochastic gradient descent comes to the rescue here again.
The sampling of mini-batches can have the effect of smoothing out the cost curve, as
exemplified by the dashed curve shown in the bottom panel of Figure 8.7. This smooth-
ing happens because the estimate is noisier when estimating the gradient from a smaller
mini-batch (versus from the entire dataset). Although the actual gradient in the local
minimum truly is zero, estimates of the gradient from small subsets of the data don’t pro-
vide the complete picture and might give an inaccurate reading, causing our trilobite to
take a step left thinking there is a gradient when there really isn’t one. This noisiness and
inaccuracy is paradoxically a good thing! The incorrect gradient may result in a step that
is large enough for the trilobite to escape the local valley and continue making its way
down the mountain. Thus, by estimating the gradient many times on these mini-batches,
the noise is smoothed out and we are able to avoid local minima. In summary, although
each mini-batch on its own lacks complete information about the cost curve, in the long
run—over a large number of mini-batches—this tends to work to our advantage.

12. See keras.io/callbacks/#earlystopping.

http://keras.io/callbacks/
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Figure 8.7 A trilobite applying vanilla gradient descent from a random starting point
(top panel) is ensnared by a local minimum of cost (middle panel). By turning to

stochastic gradient descent in the bottom panel, the daring trilobite is able to bypass the
local minimum and make its way toward the global minimum.

Like the learning rate hyperparameter η, there is also a Goldilocks-style sweet spot for
batch size. If the batch size is too large, the estimate of the gradient of the cost function is
far more accurate. In this way, the trilobite has a more exacting impression of the gradient
in its immediate vicinity and is able to take a step (proportional to η) in the direction of
the steepest possible descent. However, the model is at risk of becoming trapped in local
minima as described in the preceding paragraph.13 Besides that, the model might not fit
in memory on your machine, and the compute time per iteration of gradient descent
could be very long.

On the other hand, if the batch size is too small, each gradient estimate may be exces-
sively noisy (because a very small subset of the data is being used to estimate the gradient
of the entire dataset) and the corresponding path down the mountain will be unneces-
sarily circuitous; training will take longer because of these erratic gradient descent steps.
Furthermore, you’re not taking advantage of the memory and compute resources on your

13. It’s worth noting that the learning rate η plays a role here. If the size of the local minimum was smaller than
the step size, the trilobite would likely breeze right past the local minimum, akin to how we step over cracks in
the sidewalk.
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machine.14 With that in mind, here are our rules of thumb for finding the batch-size
sweet spot:

■ Start with a batch size of 32.
■ If the mini-batch is too large to fit into memory on your machine, try decreasing

your batch size by powers of 2 (e.g., from 32 to 16).
■ If your model trains well (i.e., cost is going down consistently) but each epoch

is taking very long and you are aware that you have RAM to spare,15 you could
experiment with increasing your batch size. To avoid getting trapped in local min-
ima, we don’t recommend going beyond 128.

Backpropagation
Although stochastic gradient descent operates well on its own to adjust parameters and
minimize cost in many types of machine learning models, for deep learning models in
particular there is an extra hurdle: We need to be able to efficiently adjust parameters
through multiple layers of artificial neurons. To do this, stochastic gradient descent is part-
nered up with a technique called backpropagation.

Backpropagation—or backprop for short—is an elegant application of the “chain rule”
from calculus.16 As shown along the bottom of Figure 8.6 and as suggested by its very
name, backpropagation courses through a neural network in the opposite direction of
forward propagation. Whereas forward propagation carries information about the input
x through successive layers of neurons to approximate y with ŷ, backpropagation carries
information about the cost C backwards through the layers in reverse order and, with the
overarching aim of reducing cost, adjusts neuron parameters throughout the network.

Although the nitty-gritty of backpropagation has been relegated to Appendix B, it’s
worth understanding (in broad strokes) what the backpropagation algorithm does: Any
given neural network model is randomly initialized with parameter (w and b) values
(such initialization is detailed in Chapter 9). Thus, prior to any training, when the first
x value is fed in, the network outputs a random guess at ŷ. This is unlikely to be a good
guess, and the cost associated with this random guess will probably be high. At this point,
we need to update the weights in order to minimize the cost—the very essence of ma-
chine learning. To do this within a neural network, we use backpropagation to calculate
the gradient of the cost function with respect to each weight in the network.

14. Stochastic gradient descent with a batch size of 1 is known as online learning. It’s worth noting that this is
not the fastest method in terms of compute. The matrix multiplication associated with each round of mini-batch
training is highly optimized, and so training can be several orders of magnitude quicker when using moderately
sized mini-batches relative to online learning.
15. On a Unix-based operating system, including macOS, RAM usage may be assessed by running the top or
htop command within a Terminal window.
16. To elucidate the mathematics underlying backpropagation, a fair bit of partial-derivative calculus is necessary.
While we encourage the development of an in-depth understanding of the beauty of backprop, we also appreciate
that calculus might not be the most appetizing topic for everyone. Thus, we’ve placed our content on backprop
mathematics in Appendix B.
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Recall from our mountaineering analogies earlier that the cost function represents a
hiking trail, and our trilobite is trying to reach basecamp. At each step along the way,
the trilobite finds the gradient (or the slope) of the cost function and moves down that
gradient. That movement corresponds to a weight update: By adjusting the weight in
proportion to the cost function’s gradient with respect to that weight, backprop adjusts that
weight in a direction that reduces the cost.

Reflecting back on the “most important equation” from Figure 6.7 (w · x+ b), and
remembering that neural networks are stacked with information forward propagating
through their layers, we can grasp that any given weight in the network contributes to
the final ŷ output, and thus the cost C. Using backpropagation, we move layer-by-layer
backwards through the network, starting at the cost in the output layer, and we find the
gradients of every single parameter. A given parameter’s gradient can then be used to
adjust the parameter up or down (by an increment corresponding to the learning rate
η)—whichever of the two directions is associated with a reduction in cost.

We appreciate that this is not the lightest section of this book. If there’s only one thing
you take away, let it be this: Backpropagation uses cost to calculate the relative contri-
bution by every single parameter to the total cost, and then it updates each parameter
accordingly. In this way, the network iteratively reduces cost and, well . . . learns!

Tuning Hidden-Layer Count and Neuron Count
As with learning rate and batch size, the number of hidden layers you add to your neural
network is also a hyperparameter. And as with the previous two hyperparameters, there
is yet again a Goldilocks sweet spot for your network’s count of layers. Throughout this
book, we’ve reiterated that with each additional hidden layer within a deep learning net-
work, the more abstract the representations that the network can represent. That is the
primary advantage of adding layers.

The disadvantage of adding layers is that backpropagation becomes less effective: As
demonstrated by the plot of learning speed across the layers of a five-hidden-layer net-
work in Figure 8.8, backprop is able to have its greatest impact on the parameters of the
hidden layer of neurons closest to the output ŷ.17 The farther a layer is from ŷ, the more
diluted the effect of that layer’s parameters on the overall cost. Thus, the fifth layer, which
is closest to the output ŷ, learns most rapidly because those weights are associated with
larger gradients. In contrast, the third hidden layer, which is several layers away from the
output layer’s cost calculation, learns about an order of magnitude more slowly than the
fifth hidden layer.

Given the above, our rules of thumb for selecting the number of hidden layers in a
network are:

■ The more abstract the ground-truth value y you’d like to estimate with your net-
work, the more helpful additional hidden layers may be. With that in mind, we
recommend starting off with about two to four hidden layers.

17. If you’re curious as to how we made Figure 8.8, check out our Measuring Speed of Learning Jupyter notebook.
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Figure 8.8 The speed of learning over epochs of training for a deep learning network
with five hidden layers. The fifth hidden layer, which is closest to the output ŷ, learns

about an order of magnitude more quickly than the third hidden layer.

■ If reducing the number of layers does not increase the cost you can achieve on
your validation dataset, then do it. Following the problem-solving principle called
Occam’s razor, the simplest network architecture that can provide the desired result is
the best; it will train more quickly and require fewer compute resources.

■ On the other hand, if increasing the number of layers decreases the validation cost,
then you should pile up those layers!

Not only is network depth a model hyperparameter, but the number of neurons in a
given layer is, too. If you have many layers in your network, then there are many layers
you could be fine-tuning your neuron count in. This may seem intimidating at first, but
it’s nothing to be too concerned about: A few too many neurons, and your network will
have a touch more computational complexity than is necessary; a touch too few neurons,
and your network’s accuracy may be held back imperceptibly.

As you build and train more and more deep learning models for more and more prob-
lems, you’ll begin to develop a sense for how many neurons might be appropriate in a
given layer. Depending on the particular data you’re modeling, there may be lots of low-
level features to represent, in which case you might want to have more neurons in the
network’s early layers. If there are lots of higher-level features to represent, then you may
benefit from having additional neurons in its later layers. To determine this empirically,
we generally experiment with the neuron count in a given layer by varying it by powers
of 2. If doubling the number of neurons from 64 to 128 provides an appreciable improve-
ment in model accuracy, then go for it. Rehashing Occam’s razor, however, consider this:
If halving the number of neurons from 64 to 32 doesn’t detract from model accuracy,
then that’s probably the way to go because you’re reducing your model’s computational
complexity with no apparent negative effects.
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An Intermediate Net in Keras
To wrap up this chapter, let’s incorporate the new theory we’ve covered into a neural net-
work to see if we can outperform our previous Shallow Net in Keras model at classifying
handwritten digits.

The first few stages of our Intermediate Net in Keras Jupyter notebook are identical
to those of its Shallow Net predecessor. We load the same Keras dependencies, load the
MNIST dataset in the same way, and preprocess the data in the same way. As shown in
Example 8.1, the situation begins to get interesting when we design our neural network
architecture.

Example 8.1 Keras code to architect an intermediate-depth neural network

model = Sequential()

model.add(Dense(64, activation='relu', input_shape=(784,)))

model.add(Dense(64, activation='relu'))

model.add(Dense(10, activation='softmax'))

The first line of this code chunk, model = Sequential(), is the same as before (refer
to Example 5.6); this is our instantiation of a neural network model object. It’s in the
second line that we begin to diverge. In it, we specify that we’ll substitute the sigmoid
activation function in the first hidden layer with our most-highly-recommended neuron
from Chapter 6, the relu. Other than this activation function swap, the first hidden layer
remains the same: It still consists of 64 neurons, and the dimensionality of the 784-neuron
input layer is unchanged.

The other significant change in Example 8.1 relative to the shallow architecture of
Example 5.6 is that we specify a second hidden layer of artificial neurons. By calling the
model.add() method, we nearly effortlessly add a second Dense layer of 64 relu neu-
rons, providing us with the notebook’s namesake: an intermediate-depth neural network.
With a call to model.summary(), you can see from Figure 8.9 that this additional layer
corresponds to an additional 4,160 trainable parameters relative to our shallow architec-
ture (refer to Figure 7.5). We can break these parameters down into:

■ 4,096 weights, corresponding to each of the 64 neurons in the second hidden
layer densely receiving input from each of the 64 neurons in the first hidden layer
(64× 64 = 4,096)

■ Plus 64 biases, one for each of the neurons in the second hidden layer
■ Giving us a total of 4,160 parameters: nparameters =nw+nb = 4,096+64=4,160

In addition to changes to the model architecture, we’ve also made changes to the
parameters we specify when compiling our model, as shown in Example 8.2.

Example 8.2 Keras code to compile our intermediate-depth neural network

model.compile(loss='categorical_crossentropy',

optimizer=SGD(lr=0.1),

metrics=['accuracy'])
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Figure 8.9 A summary of the model object from our Intermediate Net in Keras Jupyter
notebook

With these lines from Example 8.2, we:
■ Set our loss function to cross-entropy cost by using loss='categorical_crossentropy'

(in Shallow Net in Keras, we used quadratic cost by using
loss='mean_squared_error')

■ Set our cost-minimizing method to stochastic gradient descent by using
optimizer=SGD

■ Specify our SGD learning rate hyperparameter η by setting lr=0.118

■ Indicate that, in addition to the Keras default of providing feedback on loss, by
setting metrics=['accuracy'], we’d also like to receive feedback on model accu-
racy19

Finally, we train our intermediate net by running the code in Example 8.3.

Example 8.3 Keras code to train our intermediate-depth neural network

model.fit(X_train, y_train,

batch_size=128, epochs=20,

verbose=1,

validation_data=(X_valid, y_valid))

Relative to the way we trained our shallow net (see Example 5.7), the only change we’ve
made is reducing our epochs hyperparameter from 200 down by an order of magnitude

18. On your own time, you can play around with increasing this learning rate by several orders of magnitude as
well as decreasing it by several orders of magnitude, and observing how it impacts training.
19. Although loss provides the most important metric for tracking a model’s performance epoch over epoch, its
particular values are specific to the characteristics of a given model and are not generally interpretable or comparable
between models. Because of this, other than knowing that we would like our loss to be as close to zero as possible,
it can be an esoteric exercise to interpret how close to zero loss should be for any particular model. Accuracy,
on the other hand, is highly interpretable and highly generalizable: We know exactly what it means (e.g., “The
shallow neural network correctly classified 86 percent of the handwritten digits in the validation dataset”), and
we can compare this classification accuracy to any other model (“The accuracy of 86 percent is worse than the
accuracy of our deep neural network”).
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Figure 8.10 The performance of our intermediate-depth neural network over its first
four epochs of training

to 20. As you’ll see, our much-more-efficient intermediate architecture required far fewer
epochs to train.

Figure 8.10 provides the results of the first three epochs of training the network.
Recalling that our shallow architecture plateaued as it approached 86 percent accuracy on
the validation dataset after 200 epochs, our intermediate-depth network is clearly supe-
rior: The val_acc field shows that we attained 92.34 percent accuracy after a single epoch
of training. This accuracy climbs to more than 95 percent by the third epoch and appears
to plateau around 97.6 percent by the twentieth. My, how far we’ve come already!

Let’s break down the verbose model.fit() output shown in Figure 8.10 in further
detail:

■ The progress bar shown next fills in over the course of the 469 “rounds of training”
(Figure 8.5):
60000/60000 [==============================]

■ 1s 15us/step indicates that all 469 rounds in the first epoch required 1 second to
train, at an average rate of 15 microseconds per round.

■ loss shows the average cost on our training data for the epoch. For the first epoch
this is 0.4744, and, epoch over epoch, this cost is reliably minimized via stochastic
gradient descent (SGD) and backpropagation, eventually diminishing to 0.0332 by
the twentieth epoch.

■ acc is the classification accuracy on training data for the epoch. The model cor-
rectly classified 86.37 percent for the first epoch, increasing to more than 99
percent by the twentieth. Because a model can overfit to the training data, one
shouldn’t be overly impressed by high accuracy on the training data.

■ Thankfully, our cost on the validation dataset (val_loss) does generally decrease
as well, eventually plateauing as it approaches 0.08 over the final five epochs of
training.

■ Corresponding to the decreasing cost of the validation data is an increase in accu-
racy (val_acc). As mentioned, validation accuracy plateaued at about 97.6 percent,
which is a vast improvement over the 86 percent of our shallow net.

Summary
We covered a lot of ground in this chapter. Starting from an appreciation of how a
neural network with fixed parameters processes information, we developed an un-
derstanding of the cooperating methods—cost functions, stochastic gradient descent,
and backpropagation—that enable network parameters to be learned so that we can
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approximate any y that has a continuous relationship to some input x. Along the way,
we introduced several network hyperparameters, including learning rate, mini-batch
size, and number of epochs of training—as well as our rules of thumb for configuring
each of these. The chapter concluded by applying your newfound knowledge to develop
an intermediate-depth neural network that greatly outperformed our previous, shallow
network on the same handwritten-digit-classification task. Up next, we have techniques
for improving the stability of artificial neural networks as they deepen, enabling you to
architect and train a bona fide deep learning model for the first time.

Key Concepts
Here are the essential foundational concepts thus far. New terms from the current
chapter are highlighted in purple.

■ parameters:
■ weight w
■ bias b

■ activation a

■ artificial neurons:
■ sigmoid
■ tanh
■ ReLU

■ input layer
■ hidden layer
■ output layer
■ layer types:

■ dense (fully connected)
■ softmax

■ cost (loss) functions:
■ quadratic (mean squared

error)
■ cross-entropy

■ forward propagation
■ backpropagation
■ optimizers:

■ stochastic gradient descent
■ optimizer hyperparameters:

■ learning rate η

■ batch size



Index

A
act() method, defining DQN agent,
299–300, 301

Action potential, of biological neurons,
85–86

Action(s)

deep Q-learning network theory,
290–292

DeepMind DQN and, 59
DQN agent, 298–300
Markov decision processes and, 286
reinforcement learning problems and,
55–56

Activation functions

calculus behind backpropagation,
335–336

choosing neuron type, 96
convolutional example, 164–166
Glorot distributions, 136–137
nonlinear nature of in deep learning
architectures, 95

ReLU neuron, 94–95
saturated neurons, 112–113
sigmoid neuron example, 92–94
softmax layer of fast food-classifying
network, 106–108

tanh neuron, 94
Activation maps

convolutional networks and, 238
in discriminator network, 267–268
Faster R-CNN, 184–185
in generator network, 269, 272
LeNet-5 ConvNet architecture,
173–175

as output from convolutional kernels,
163–167



346 Index

Activation maps (continued )

with padding, 168–169
pooling layers spatially reducing,
169–170

U-Net, 187–188
Actor-critic algorithm, RL agent, 307–308

AdaDelta optimizer, 146–147

AdaGrad optimizer, 146

Adaptive moment estimation (Adam)
optimizer, 147, 148–149

Adversarial network, GANs, 272–274

Agent(s)

beyond DQN, 306–308
deep Q-learning network theory,
290–292

deep reinforcement learning and, 57
DeepMind DQN, 58
DQN. See DQN agents
optimal policy in deep reinforcement
learning, 289–290

reinforcement learning problems of
machine learning, 54–56

reinforcement learning theory, 283
SLM Lab, 304

AGI (artificial general intelligence), 72,
326–328

AI. See Artificial intelligence (AI)

AlexNet

CNN model inspired by, 176–177
history of deep learning for NLP, 25
overview of, 14–17
ReLU neurons in, 95

Algorithms, development of AGI and, 327

AlphaZero, 53–54, 65–66

AlphaGo, 59–62, 63–64

AlphaGo Master, 64

AlphaGo Zero, 62–65

Amazon review polarity, NLP
training/validation samples, 316

ANI (artificial narrow intelligence), 72,
326–327

Architecture

adversarial model, 273–274
AlexNet hierarchical, 16

bidirectional LSTM sentiment classifier,
248

convolutional sentiment classifier,
237–238

deep learning model, 52
deep net in Keras model, 148–149
dense sentiment classifier, 229–231
discriminator model, 266–269
generalist neural network as single
network, 52

generator model, 270–272
intermediate-depth neural network,
127–128

Keras functional API, 251–256
LeNet-5 hierarchical, 9–11, 172–176
LSTM, 247
multi-ConvNet sentiment classifier,
253–254

regression model network, 150–151
residual network, 182
RNN sentiment classifier, 243–244
shallow neural network, 78–79, 83
stacked recurrent model, 249
TensorFlow Playground, 17
U-Net, 47, 187
weight initialization, 133–135
word2vec, 207–213

Arithmetic

on fake human faces, 41–44
word-vector, 29–30

Art. See Machine art

Artificial general intelligence (AGI), 72,
326–328

Artificial intelligence (AI)

categories of, 71–72
deep learning for NLP relevant to, 53
driven by deep learning, 52
general-purpose learning algorithms for,
58

history of chess and, 65
machine learning as subset of, 50
OpenAI Gym environments as, 68–70
overview of, 49–50

Artificial narrow intelligence (ANI), 72,
326–327



Index 347

Artificial neural networks (ANNs). See also
Artificial neurons, constituting ANNs

AlphaGo Zero development, 63
AlphaZero development, 65–66
architecture for shallow networks, 83–84
birth of GANs via, 40–41
building model for DQN agent,
297–298

deep reinforcement learning using,
56–57

dense layers, 99–100
dominating representation learning, 51
hot dog-detecting dense network,
101–106

input layer, 99
key concepts, 110
manipulation of objects via, 67–68
schematic diagram of Jupyter network,
77–79

shallow networks and, 108–110
softmax layer of fast food-classifying
network, 106–108

summary, 110
Artificial neurons

deep learning and, 22
deep learning model architectures,
51–52

Artificial neurons, constituting ANNs

biological neuroanatomy, 85–86
choosing neuron type, 96
hot dog/not hot dog detector, 86–90
key concepts, 97
modern neurons/activation functions,
91–95

most important equation in this book,
90–91

overview of, 85
perceptrons as early, 86
ReLU neuron, 94–95
sigmoid neuron, 92–94
summary, 96
tanh neuron, 94

Artificial super intelligence (ASI), 72, 327

astype() method, LeNet-5 in Keras, 172

Atari Games, DeepMind, 58–59

Attention, seq2seq and, 250

Automatic differentiation, PyTorch,
342–343

B

Backpropagation

of bidirectional LSTMs, 247
cross-entropy costs and, 114
enabling neural networks to learn, 113
LeNet-5 model, 10–12
minimizing cost, 115
overview of, 124–125
partial-derivative calculus behind,
335–337

training recurrent neural networks, 241
tuning hidden-layer and neuron counts,
125–126

BAIR (Berkeley Artificial Intelligence
Research) Lab, 44–45

Batch normalization

deep neural networks in Keras, 148
improving deep networks, 138–139
network architecture regression model,
150–151

Batch size

of 1, also known as online learning, 124
building own project and, 320
escaping local minimum of cost,
122–124

as hyperparameter, 119
and stochastic gradient descent, 119–122

Bazinska, Julia, 30–31

Behavioral cloning, 307

Benchmarking performance, SLM lab, 304

Bengio, Yoshua

LeNet-5 model, 9–12
Turing Award for deep learning, 15
weight initialization and Glorot normal
distribution, 135–137

Berkeley Artificial Intelligence Research
(BAIR) Lab, 44–45



348 Index

BERT (bi-directional encoder
representations from transformers), NLP,
251

beta (β) hyperparameter

batch normalization adding, 139
optimizing SGD, 145–147

Bi-directional encoder representations from
transformers (BERT), NLP, 251

bias (b)

adding to convolutional layers, 162
in convolutional example, 164
minimizing cost via gradient descent,
115–116

notation for neural networks, 333
in perceptron equation, 90–91

Bidirectional LSTMs (Bi-LSTMs),
247–249

Bigram collocation, 202–206

Binary-only restriction, of perceptrons,
91–92

Biological neurons

anatomy of, 85–86
creating perceptron algorithm with, 86
ReLU neuron activation function,
94–95

Biological vision, 8, 20

Board games

AlphaZero and, 65–66
AlphaGo and, 59–62
AlphaGo Zero and, 62–65
overview of, 59

boston_housing dataset, 149–150

Bostrom, Nick, 72

Bounding boxes, developing YOLO,
185–186

build_discriminator function, 266–268

_build_model() method, DQN agent,
296–298

Burges, Chris, MNIST dataset, 77–78

C

Caffe, deep learning library, 324

Calculus, in backpropagation, 335–337

callbacks argument

dense sentiment classifier, 232
TensorBoard, 152, 154

Cambrian explosion, 3

Capsule networks, machine vision and, 192

Cart-Pole game

defining DQN agent for. See DQN
agents

DQN agent interaction with OpenAI
Gym, 300–303

estimating optimal Q-value, 292
hyperparameter optimization using SLM
Lab, 304

Markov decision processes in, 288–289
as reinforcement learning problem,
284–286

CartPole, OpenAI Gym environment, 70

CBOW (continuous bag of words),
word2vec, 207, 208

Cell body, biological neurons, 85–86

Cell state, LSTM, 244–245

Cerebral cortex, processing visual
information, 3–4

cGAN (conditional GAN), 45

Chain rule of calculus, backpropagation
and, 124

Chatbots, natural language processing in,
23–24

Checkpoints, dense sentiment classifier,
231

Chen, Chen, deep learning image
processing, 47–48

Chess

AlphaZero and, 65–66
vs. Go board complexity, 59, 61

Classification

adding layers to transfer learning model,
190

convolutional sentiment classifier,
235–239

of film reviews by sentiment, 229–235
natural language. See Natural language
classification

as supervised learning problem, 53–54
CNNs. See Convolutional neural networks
(CNNs)



Index 349

CNTK, deep learning library, 324

Coding shallow network in Keras

designing neural network architecture,
83

installation, 76
loading MNIST data, 80–81
MNIST handwritten digits, 76–77
overview of, 75, 76
prerequisites, 75–76
reformatting data, 81–83
schematic diagram of network, 77–79
software dependencies for shallow
net, 80

summary, 84
training deep learning model, 83–84

Color, visual cortex detects, 7–8

Compiling

adversarial network, 274
dense sentiment classifier, 231
discriminator network, 269
network model for DQN agent, 298

Complex neurons

forming primary visual cortex, 6–7
neocognition and, 9

Computational complexity

minimizing number of kernels to avoid,
163

from piping images into dense networks,
160

Computational homogeneity, with Software
2.0, 325

Computing power, AGI and development of,
327

Conditional GAN (cGAN), 45–46

Conditional imitation learning algorithms,
307

Confusion matrix, 218–219

Content generation, building socially
beneficial projects, 318

Context words, running word2vec, 207–209

Continuous bag of words (CBOW),
word2vec, 207, 208

Continuous variable, supervised learning
problem, 54

Contracting path, U-Net, 187–188

Conv2D dependency, LeNet-5 in Keras,
171–174

Convolutional filter hyperparameters,
CNNs, 168–169

Convolutional layers

convolutional neural networks (CNNs)
and, 160–162

general approach to CCN design, 176
working with pooling layers, 169–170

Convolutional layers, GANs

birth of GANs, 41
convolutional neural networks (CNNs)
and, 52–53

multiple filters in, 162–163
results of latent space arithmetic,
42–44

Convolutional neural networks (CNNs)

computational complexity, 160
contemporary machine vision and,
52–53

convolutional filter hyperparameters,
168–169

convolutional layers, 160–162
DeepMind DQN using, 58
detecting spatial patterns among words,
235–239

developing Faster R-CNN, 184–185
developing YOLO, 185–186
example of, 163–167
general approach to CCN design, 176
image segmentation with Mask
R-CNN, 187

LeNet-5 in Keras, 171–176
manipulation of objects via, 67–68
model inspired by AlexNet, 176–178
model inspired by VGGNet, 178–179
multiple filters, 162–163
object detection with Fast R-CNN, 184
object detection with R-CNN, 183–184
overview of, 159
transfer learning model of, 188–192
two-dimensional structure of visual
imagery, 159–160



350 Index

Convolutional sentiment classifier,
235–239, 252–256

convTranspose layers, in generator
networks, 270

Corpus

one-hot encoding of words within,
25–26

preprocessing full, 203–206
word vectors within, 27–29
word2vec architectures for, 208

Cortes, Corinna, curating MNIST dataset,
77–78

Cost (loss) functions

building own project, 319
cross-entropy cost, 113–115
quadratic cost, 112–113
in stochastic gradient descent, 120
training deep networks and, 111
using backpropagation to calculate
gradient of, 124–125, 335–337

Cost, minimizing via optimization

batch size and stochastic gradient
descent, 119–122

escaping local minimum, 122–124
gradient descent, 115–117
learning rate, 117–119
training deep networks and, 115

Count based, word2vec as, 208

Cross-entropy cost

essential GAN theory, 262
minimizes impact of neuron saturation,
113–115, 131

pairing with weight initialization,
131–135

CycleGANs, style transfer of well-known
painters, 44–45

D

Dahl, George, 24–25

Data

augmentation, training deep networks,
145

development of AGI and, 327

Data generators, training, 190–191

DataFrame, IMDb validation data, 234

Datasets, deep reinforcement learning
using larger, 57

De-convolutional layers, generator
networks, 269–270, 272

deCNN, generator network as, 270

Deep Blue, history of chess, 65

Deep learning

code. See Coding shallow network in
Keras

computational representations of
language. See Language, computational
representations of

definition of, 22
elements of natural human language in,
33–35

Google Duplex as NLP based on,
35–37

model architectures, 51–52
natural language processing and, 23–25,
37

networks learn representations
automatically, 22–23

reinforcement learning combined with.
See Reinforcement learning, deep

training deep networks. See Training
deep networks

Deep learning, introduction

biological vision, 3–8
machine vision. See Machine vision
Quick, Draw! game, 19
summary, 20
TensorFlow Playground, 17–19
traditional machine learning vs., 11–12

Deep learning projects, building own

artificial general intelligence approach,
326–328

converting existing machine learning
project, 316–317

deep learning libraries, 321–324
deep reinforcement learning, 316
machine vision and GANs, 313–315
modeling process, including
hyperparameter tuning, 318–321



Index 351

natural language processing, 315–316
overview of, 313
resources for further projects, 317–318
Software 2.0, 324–326
summary, 328–329

Deep networks, improving

deep neural network in Keras, 147–149
fancy optimizers, 145–147
key concepts, 154–155
model generalization (avoiding
overfitting), 140–145

overview of, 131
regression, 149–152
summary, 154
TensorBoard, 152–154
unstable gradients, 137–139
weight initialization, 131–135
Xavier Glorot distributions, 135–137

Deep Q-learning networks (DQNs)

DeepMind video game and, 58–60
defining DQN agent. See DQN agents
essential theory of, 290–292
SLM Lab using, 304–306

Deep reinforcement learning. See
Reinforcement learning, deep

Deep RL agents, 306–308

DeepMind

AlphaGo board game, 61–62
AlphaGo Zero board game, 62–65
Google acquiring, 59
video games, 58–60

DeepMind Lab

building own deep learning project with,
316

deep reinforcement learning, 69, 71
Dendrites, and biological neurons, 85–86

Denormalization, in batch normalization,
139

Dense layers

architecting intermediate net in Keras,
127–128

artificial neural networks with, 99–100
CNN model inspired by AlexNet,
177–178

computational complexity and, 160
convolutional layers vs., 168
deep learning and, 51
Fast R-CNN and, 184
in GANs, 271–272
general approach to CCN design, 176
LeNet-5 in Keras and, 172–173,
175–176

multi-ConvNet model architecture,
253–255

in natural language processing, 224–225,
230–231, 236–238

networks designed for sequential data,
243

in shallow networks, 109
using weight initialization for deep
networks, 132–133, 137

in wide and need model architecture,
317

Dense network

architecture, 229–235
building socially beneficial projects, 318
defined, 100
hot dog-detecting, 101–106
revisiting shallow network, 108–110
softmax layer of fast food-classifying
network, 106–108

Dense sentiment classifier, 229–235

Dense Sentiment Classifier Jupyter
notebook. See Natural language
classification

Dependencies

Cart-Pole DQN agent, 293
convolutional sentiment classifier, 236
LeNet-5 in Keras, 171
loading GAN for Quick, Draw! game,
264–265

loading IMDb film reviews,
222–223

preprocessing natural language, 197
regression model, 150
TensorFlow with Keras layers, 323

Dimensionality reduction, plotting word
vectors, 213–217

Discount factor (decay), Markov decision
processes, 288–289



352 Index

Discounted future reward

expected, 290
maximizing, 290

Discriminator network, GANs

code for training, 277
defined, 40–41
overview of, 266–269
training, 259–262

Distributed representations, localist
representations vs., 32

Dot product notation, perceptron equation,
90–91

DQN agents

agents beyond, 306–308
building neural network model for,
297–298

drawbacks of, 306
hyperparameter optimization using SLM
Lab, 304

initialization parameters, 295–297
interacting with OpenAI Gym
environment, 300–303

overview of, 293–295
remembering gameplay, 298
selecting action to take, 299–300
training via memory replay, 298–299

DQNs. See Deep Q-learning networks
(DQNs)

Dropout

for AlexNet in Keras, 177
for deep neural network in Keras, 148
for LeNet-5 in Keras, 171–174
network architecture regression model
and, 150–151

preventing overfitting with,
142–145

E

Eager mode, TensorFlow, 322–323

Ease of use, Software 2.0, 326

Efros, Alexei, 44

ELMo (embeddings from language models),
transfer learning, 251

Elo scores

AlphaGo game, 62–63
AlphaGo Zero game, 64–65
AlphaZero game, 66

Encoder-decoder structure, NMT, 250

Environment(s)

DeepMind DQN, 58
OpenAI Gym, 300–303
popular deep reinforcement learning, 68
reinforcement learning problems of
machine learning, 54–56

reinforcement learning theory, 283
training agents simultaneously via SLM
Lab in multiple, 304

Epochs of training, checkpointing model
parameters after, 231–232

Essential theory. See Theory, essential

exp function, softmax layer of fast
food-classifying network, 106–108

Expanding path, U-Net, 187–188

Experiment graph, SLM Lab, 304

Expertise, subject-matter

AutoNet reducing requirement for, 17
deep learning easing requirement for,
22–23

Exploding gradients, ANNs, 138

Extrinsic evaluations, evaluating word
vectors, 209

F

Face detection

arithmetic on fake human faces, 41–44
birth of generative adversarial networks,
39–41

engineered features for robust real-time,
12–13

in visual cortex, 8
Facebook, fastText library, 33

False negative, IMDb reviews, 236

False positive, IMDb reviews, 235

Fan Hui, AlphaGo match, 62

Fancy optimizers, deep network
improvement, 145–147



Index 353

Fashion-MNIST dataset, deep learning
project, 313–315

Fast food-classifying network, softmax layer
of, 106–108

Fast R-CNN, object detection, 184

Faster R-CNN, object detection, 184–185

FastText, 33, 209

Feature engineering

AlexNet automatic vs. expertise-driven,
17

defined, 11
traditional machine learning and, 12–13
traditional machine learning vs. deep
learning, 11–12

Feature maps

convolutional example of, 163–167
image segmentation with U-Net, 188
transfer learning model and, 188–192

Feedforward neural networks, training, 241

FetchPickAndPlace, OpenAI Gym, 70

Figure Eight

image-classification model, 315
natural language processing model, 316

Filters. See Kernels (filters)

Finn, Chelsea, 67

fit_generator() method, transfer
learning, 191–192

Fitting, dense sentiment classifier, 232

Flatten layer, LeNet-5 in Keras, 171–174

FloatTensor, PyTorch, 339

for loop, GAN training, 275–281

Formal notation, neural networks, 333–334

Forward propagation

backpropagation vs., 124
defined, 103
in hot dog-detecting dense network,
101–106

notation for neural networks, 334
in softmax layer of fast food-classifying
network, 106–108

in stochastic gradient descent, 120, 121
Frozen Lake game, 316

Fukushima, Kunihiko, LeNet-5, 9–12

Fully connected layer (as dense layer), 99

Functional API, non-sequential
architectures and Keras, 251–256

Fusiform face area, detecting in visual
cortex, 8

G

Game-playing machines

artificial intelligence, 49–50
artificial neural networks (ANNs), 51
board games, 59–66
categories of AI, 71–72
categories of machine learning problems,
53–56

deep learning, 51–52
deep reinforcement learning, 56–57
machine learning, 50
machine vision, 52–53
manipulation of objects, 67–68
natural language processing, 53
overview of, 49–50
popular deep reinforcement learning
environments, 68–71

representation learning, 51
Software 2.0 and, 326
summary, 72
video games, 57–59

Gameplay, 298–300

gamma (γ), batch normalization adding,
139

GANs. See Generative adversarial networks
(GANs)

Gated recurrent units (GRUs), 249–250

gberg_sents, tokenizing natural language,
199

Generative adversarial networks (GANs)

actor-critic algorithm reminiscent of,
308

adversarial network component,
272–274

arithmetic on fake human faces, 41–44
birth of, 39–41
building and tuning own, 315
creating photorealistic images from text,
45–46



354 Index

Generative adversarial networks (GANs)
(continued )

discriminator network component,
266–269

essential theory, 259–262
generator network component,
269–272

high-level concepts behind, 39
image processing using deep learning,
47–48

key concepts, 281–282
making photos photorealistic, 45
Quick, Draw! game dataset,
263–266

reducing computational complexity
with, 170

Software 2.0 and, 326
style transfer, 44–45
summary, 281
training, 275–281

Generator network, GANs

code for training, 277–278
defined, 40–41
overview of, 269–272
training, 259–262

Geoff Hinton, 94–95

Girshick, Ross, 183–184

GitHub repository, Quick, Draw! game
dataset, 263

Global minimum of cost, training deep
networks for, 122–124

Glorot normal distribution, improving deep
networks, 135–137

GloVe

converting natural words to word
vectors, 28

as major alternative to word2vec, 208
Go board game, 59–66

Goodfellow, Ian

arithmetic on fake human faces and,
41–44

birth of GANs, 39–41
MNIST dataset used by, 76–77

Google Duplex technology,
deep-learning-based NLP, 35–37

GPUs (graphics processing units), deep
reinforcement learning, 57

Gradient descent

batch size and stochastic, 119–122
cross-entropy costs and, 114
enabling neural networks to learn, 113
escaping local minimum using,
122–124

learning rate in, 117–119
minimizing cost with, 115–117
training deep networks with batch
size/stochastic, 119–122

Graesser, Laura, 304

Graphics processing units (GPUs), deep
reinforcement learning, 57

GRUs (gated recurrent units), 249–250

Gutenberg, Johannes, 197

H

HandManipulateBlock, OpenAI Gym, 70

Handwritten digits, MNIST, 76–78

Hassabis, Demis, 58–59

Hidden layers

artificial neural network with, 99
building network model for DQN agent,
297

calculus behind backpropagation, 337
deep learning model architectures,
51–52

dense layers within. See Dense layers
forward propagation in dense network
through, 102–106

hot dog-detecting dense network,
101–106

neural network notation,
333–334

schematic diagram of shallow network,
79

TensorFlow Playground demo, 100
tuning neuron count and number of,
125–126

Hidden state, LSTM, 245

Hierarchical softmax, training word2vec,
208



Index 355

Hinton, Geoffrey

developing capsule networks, 192
developing t-distributed stochastic
neighbor embedding, 213–214

as godfather of deep learning, 14–15
Histogram of validation data

convolutional sentiment classifier, 239
dense sentiment classifier, 233–234

Hochreiter, Sepp, 244

Hot dog-detecting dense network, 101–106

Hot dog/not hot dog detector, perceptrons,
86–90

Hubel, David

LeNet-5 model built on work of, 10–12
machine vision approach using work of,
8–9

research on visual cortex, 4–7
Human and machine language. See also
Language, computational representations
of

deep learning for natural language
processing, 21–25

elements of natural human language in,
33–35

Google Duplex technology, 35–37
summary, 37

Humanoid, OpenAI Gym environment, 70

Hyperparameters. See also Parameters

in artificial neural networks, 130
automating search for, 321
batch size, 119
Cart-Pole DQN agent, 293–295
convolutional filter, 163, 167
convolutional sentiment classifier,
236–237

learning rate, 118
for loading IMDb film reviews, 223–225
LSTM, 246–247
multi-ConvNet sentiment classifier, 253
network depth, 125–126
number of epochs of training, 122
optimizing with SLM Lab, 303–306
reducing model overfitting with dropout,
144–145

RMSProp and AdaDelta, 147
RNN sentiment classifier, 242–243
tuning own project, 318–321
understanding in this book, 118–119

I

IMDb (Internet Movie Database) film
reviews. See Natural language
classification

ILSVRC (ImageNet Large Scale Visual
Recognition Challenge)

AlexNet and, 14–17
ResNet, 182
traditional ML vs. deep learning entrants,
13–14

Image classification

building socially beneficial projects using,
318

ILSVRC competition for, 182
machine vision datasets for deep
learning, 313–315

object detection vs., 183
Image segmentation applications, machine
vision, 186–188

ImageDataGenerator class, transfer
learning, 190–191

ImageNet, and ILSVRC, 13–14

Images

creating photorealistic. See Machine art
processing using deep learning, 46–48

Imitation learning, agents beyond DQN
optimizing, 307

Infrastructure, rapid advances in, 327

Initialization parameters, DQN agent,
295–297

Input layer

artificial neural networks with, 99
of deep learning model architectures,
51–52

hot dog-detecting dense network,
101–106

LSTM, 245
notation for neural networks, 333
of perceptrons, 86–88



356 Index

Input layer (continued )

schematic diagram of shallow
network, 79

TensorFlow Playground demo, 100
Installation

of code notebooks, 76
PyTorch, 341

Integer labels, converting to one-hot, 82–83

Intermediate Net in Keras Jupyter
notebook, 127–129

Internal covariate shift, batch
normalization, 138–139

Internet Movie Database (IMDb) film
reviews. See Natural language
classification

Intrinsic evaluations, word vectors, 209

iter argument, running word2vec, 210

J

Jones, Michael, real-time face detection,
12–13

K

Kaggle

image-classification model, 315
natural language processing model, 316

Karpathy, Andrej, 324–326

Kasparov, Garry, 65

Keng, Wah Loon, 304

Keras

AlexNet and VGGNet in, 176–179
coding in. See Coding shallow network
in Keras

deep learning library in, 321–323
deep neural network in, 147–149
functional API, non-sequential
architectures and, 251–256

implementing LSTM, 246–247
implementing RNN, 242
intermediate-depth neural network in,
127–129

LeNet-5 model in, 171–176

loading IMDb film reviews in,
225–226

parameter-adjustment in, 144
TensorBoard dashboard in, 152–154
transfer learning in, 188–192
weight initialization in, 132–135

Kernels (filters)

convolutional example of, 164–167
of convolutional layers, 160–162
number in convolutional layer, 162–163
pooling layers using, 169–170
size, convolutional filter hyperparameter,
167

Key concepts

artificial neural networks (ANNs), 110
artificial neurons that constitute ANNs,
97

deep reinforcement learning, 308–309
generative adversarial networks (GANs),
281–282

improving deep networks, 154–155
machine vision, 193
natural language processing (NLP),
256–257

training deep networks, 130
Krizhevsky, Alex, 14, 16

L

L1 vs. L2 regularization, reducing model
overfitting, 141–142

Language. See Human and machine
language

Language, computational representations
of

localist vs. distributed representations,
32–33

one-hot representations of words, 25–26
overview of, 25
word vector-arithmetic, 29–30
word vectors, 26–29
word2viz tool for exploring, 30–32

LASSO regression, reducing model
overfitting, 141–142



Index 357

Latent space

arithmetic on fake human faces in,
42–44

birth of generative adversarial networks,
40–41

Layers

building own project, 319–320
deep learning model architectures,
51–52

Leaky ReLU activation function, 96

Learn Python the Hard Way (Shaw), 75

Learning rate

batch normalization allowing for higher,
139

building own project, 320
shortcomings of improving SGD with
momentum, 146

as step size in gradient descent, 117–119
LeCun, Yan

on fabricating realistic images, 39
LeNet-5 model, 9–12
MNIST handwritten digits curated by,
76–78

PyTorch development, 323–324
Turing Award for deep learning, 15

Legg, Shane, 58

Lemmatization, as sophisticated alternative
to stemming, 196

LeNet-5 model

AlexNet vs., 15–17
in Keras, 171–176
machine vision, 9–12

Les 3 Brasseurs bar, 39

Levine, Sergey, 67

Li, Fei-Fei, 13–14

Libraries, deep learning, 321–324

Linear regression, object detection with
R-CNN, 183–184

List comprehension

adding word stemming to, 201
removing stop words and punctuation,
200–201

load() method, neural network model for
DQN agent, 300

Loading data

coding shallow network in Keras, 79–81
for shallow net, 80–81

load_weights() method, loading model
parameters, 232

Local minimum of cost, escaping, 122–124

Localist representations, distributed
representations vs., 32–33

Long short-term memory (LSTM) cells

bidirectional (Bi-LSTMs), 247–248
implementing with Keras, 246–247
as layer of NLP, 53
overview of, 244–246

Long-term memory, LSTM, 245–246

Lowercase

converting all characters in NLP to,
195–196, 199–200

processing full corpus, 204–206
LSTM. See Long short-term memory (LSTM)
cells

LunarLander, OpenAI Gym environment, 70

M

Maaten, Laurens van der, 213–214

Machine art

arithmetic on fake human faces, 41–44
boozy all-nighter, 39–41
creating photorealistic images from text,
45–46

image processing using deep learning,
46–48

make your own sketches photorealistic,
45

overview of, 39
style transfer, 44–45
summary, 48

Machine language. See Human and
machine language

Machine learning (ML). See also Traditional
machine learning (ML) approach

overview of, 50
reinforcement learning problems of,
54–56



358 Index

Machine learning (ML) (continued )

representation learning as branch of, 51
supervised learning problems of,
53–54

traditional machine vs. representation
learning techniques, 22

unsupervised learning problems of, 54
Machine translation, NLP in, 23–24

Machine vision

AlexNet, 14–17
AlexNet and VGGNet in Keras,
176–179

CNNs. See Convolutional neural
networks (CNNs)

converting existing project,
316–317

datasets for deep learning
image-classification models,
313–315

ImageNet and ILSVRC, 13–14
key concepts, 193
LeNet-5, 9–12
LeNet-5 in Keras, 171–176
neocognition, 8–9
object recognition tasks, 52–53
overview of, 8, 159
pooling layers, 169–170
Quick, Draw! game, 19
residual networks, 179–182
Software 2.0 and, 326
summary, 20, 193
TensorFlow Playground, 17–19
traditional machine learning approach,
12–13

Machine vision, applications of

capsule networks, 192
Fast R-CNN, 184
Faster R-CNN, 184–185
image segmentation, 186–187
Mask R-CNN, 187
object detection, 183
overview of, 182
R-CNN, 183–184
transfer learning, 188–192

U-Net, 187–188
YOLO, 185–186

Magnetic resonance imaging (MRI), and
visual cortex, 7–8

Manipulation of objects, 67–68

Markov decision process (MDP), 286–290

Mask R-CNN, image segmentation with,
186–187

Mass, Andrew, 203

matplotlib, weight initialization, 132

max operation, pooling layers, 170

Max-pooling layers

AlexNet and VGGNet in Keras,
176–179

LeNet-5 in Keras, 170–174
MaxPooling2D dependency, LeNet-5 in
Keras, 171–174

MCTS (Monte Carlo tree search) algorithm,
61, 66

MDP (Markov decision process), 286–290

Mean squared error, 112, 298

Memory

batch size/stochastic gradient descent
and, 119–122

DQN agent gameplay, 298
Software 2.0 and, 326
training DQN agent via replay of,
298–299

Metrics, SLM Lab performance, 305–306

Milestones, deep learning for NLP, 24–25

min_count argument, word2vec, 210–211

Minibatches, splitting training data into,
119–122

ML. See Machine learning (ML)

Mnih, Volodymyr, 58–60

MNIST handwritten digits

calculus for backpropagation, 337
coding shallow network in Keras, 76–78
computational complexity in dense
networks, 160

Fashion-MNIST dataset deep learning
project, 313–315

loading data for shallow net, 80–81
loss of two-dimensional imagery in
dense networks, 159–160



Index 359

reformatting data for shallow net, 81–83
schematic diagram of shallow network,
77–79

software dependencies for shallow net,
80

in stochastic gradient descent, 120
training deep networks with data
augmentation, 145

using in Keras, 171–176
Model generalization. See Overfitting,
avoiding

Model optimization, agents beyond DQN
using, 307

ModelCheckpoint() object, dense
sentiment classifier, 231–232

Modeling process, building own project,
318–321

Momentum, 145–146

Monet, Claude, 44–45

Monte Carlo tree search (MCTS) algorithm,
61, 66

Morphemes, natural human language, 34

Morphology, natural human language,
34–35

most_similar() method, word2vec,
212–213

Motion, detecting in visual cortex, 7–8

Mountain Car game, 316

MRI (magnetic resonance imaging), and
visual cortex, 7–8

Müller, Vincent, 72

Multi ConvNet Sentiment Classifier Jupyter
notebook, 320

MXNet, deep learning library, 324

N

n-dimensional spaces, 42–43, 339

n-grams, 196, 202–203

Nair, Vinod, 94–95

Natural human language, elements of,
33–35

Natural language classification

dense network classifier architecture,
229–235

examining IMDb data, 227–228
with familiar networks, 222
loading IMDb film reviews, 222–226
processing in document, 23–24
standardizing length of reviews, 228–229

Natural Language Preprocessing Jupyter
notebook, 197

Natural language processing (NLP)

area under ROC curve, 217–222
building own deep learning project,
315–316

building socially beneficial projects, 318
computational representations of. See
Language, computational
representations of

deep learning approaches to, 53
examples, 23–24
Google Duplex as deep-learning, 35–37
history of deep learning, 24–25
key concepts, 256–257
learning representations automatically,
22–23

natural human language elements of,
33–35

natural language classification in. See
Natural language classification

networks designed for sequential data,
240–251

non-sequential architectures, 251–256
overview of, 195
preprocessing. See Preprocessing natural
language data

Software 2.0 and, 326
summary, 256
transfer learning in, 251
word embedding with word2vec. See
word2vec

n_components, plotting word vectors, 214

Negative rewards, reinforcement learning
problems and, 56

Negative sampling, training word2vec, 208

Neocognition

LeNet-5 advantages over, 13–14
LeNet-5 model and, 9–12
machine vision and, 8–9



360 Index

Nesterov momentum optimizer, stochastic
gradient descent, 146

Network architecture, regression model,
150–151

Network depth, as hyperparameter,
125–126

Neural Information Processing Systems
(NIPS) conference, 41

Neural machine translation (NMT), seq2seq
models, 250

Neural networks

building deep in PyTorch, 343–344
coding shallow in Keras, 83
formal notation for, 333–334

Neuron saturation. See Saturated neurons

Neurons

AlexNet vs. LeNet-5, 17
behaviors of biological, 85–86
forming primary visual cortex, 4–7
neocognition and, 8–9
regions processing visual stimuli in visual
cortex, 7–8

TensorFlow Playground and, 17–19
tuning hidden-layer count and number
of, 126

next_state, DQN agent gameplay, 298

NIPS (Neural Information Processing
Systems) conference, 41

n_iter, plotting word vectors, 214

NLP. See Natural language processing
(NLP)

NMT (neural machine translation), seq2seq
models, 250

Noë, Alva, 39

Non-sequential model architecture,
251–256

Non-trainable params, model object,
109–110

Nonlinearity, of ReLU neuron, 95

Notation, formal neural network, 333–334

Number of epochs of training

as hyperparameter, 122
rule of thumb for learning rate, 119
stochastic gradient descent and, 119–122
training deep learning model, 83–84

NumPy

PyTorch tensors and, 324, 339
selecting action for DQN agent,
299–300

weight initialization, 132, 134

O

Object detection

with Fast R-CNN, 184
as machine vision application, 182–183
with R-CNN, 183–184
understanding, 183
with YOLO, 185–186

Objective function (π), maximizing reward
with, 290

Objects

manipulation of, 67–68
recognition tasks of machine vision,
52–53

Occam’s razor, neuron count and, 126

Oliveira, Luke de, 315, 316

On-device processing, machine learning for,
46–48

One-hot format

computational representations of
language via, 25–26

converting integer labels to, 82–83
localist vs. distributed representations,
32–33

Online resources

building deep learning projects,
317–318

pretrained word vectors, 230
OpenAI Gym

building deep learning projects, 316
Cart-Pole game, 284–286
deep reinforcement learning, 68–70
interacting with environment,
300–303

Optimal policy

building neural network model for,
288–290

estimating optimal action via
Q-learning, 290–292
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Optimal Q-value (Q*), estimating, 291–292

Optimization

agents beyond DQN using,
306–307

fancy optimizers for stochastic gradient
descent, 145–147

hyperparameter optimizers, 130,
303–306

minimizing cost via. See Cost,
minimizing via optimization

stochastic gradient descent. See
Stochastic gradient descent (SGD)

Output layer

artificial neural network with, 99
batch normalization and, 139
building network model for DQN agent,
298

calculus behind backpropagation, 335,
337

deep learning model architectures,
51–52

LSTM, 245
notation for neural networks, 334
perceptrons, 86–87, 89
schematic diagram of shallow network,
79

softmax layer for multiclass problems,
106–108

softmax layer of fast food-classifying
network, 106–107

TensorFlow Playground demo, 100
Overfitting, avoiding

building your own project, 320
data augmentation, 145
dropout, 142–145
L1 and L2 regularization,
141–142

model generalization and, 140–141

P

Pac-Man

discount factor (decay) and,
288–289

DQN agent initialization and, 296

Padding

convolutional example of, 163–167
as convolutional filter hyperparameter,
167–168

standardizing length of IMDb film
reviews, 228–229

Parameter initialization, building own
project, 319

Parameters. See also Hyperparameters

Cart-Pole DQN agent initialization,
295–297

creating dense network classifier
architecture, 230–232

escaping local minimum, 122–124
gradient descent minimizing cost across
multiple, 116–117

pooling layers reducing overall, 169–170
saving model, 300
weight initialization, 132–135

Parametric ReLU activation function, 96

Partial-derivative calculus, cross-entropy
cost, 114–115

Patches, in convolutional layers, 160

PCA (principal component analysis), 213

Perceptrons

choosing, 96
hot dog/not hot dog detector example,
86–90

modern neurons vs., 91
as most important equation in this book,
90–91

overview of, 86
Performance

hyperparameter optimization using SLM
Lab, 303–306

Software 2.0 and, 326
PG. See Policy gradient (PG) algorithm

Phonemes, natural human language and,
34

Phonology, natural human language and,
34–35

Photorealistic images, creating. See
Machine art

Phraser() method, NLP, 202–203,
204–205
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Phrases() method, NLP, 202–203,
204–205

Pichai, Sundar, 35–36

pix2pix web application, 45–46

Pixels

computational complexity and, 160
converting integers to floats, 82
convolutional example of, 163–167
convolutional layers and, 160–162
handwritten MNIST digits as, 77–78
kernel size hyperparameter of
convolutional filters, 167

reformatting data for shallow net,
81–83

schematic diagram of shallow network,
78–79

two-dimensional imagery and,
159–160

Plotting

GAN training accuracy, 281
GAN training loss, 280–281
word vectors, 213–217

Policy function (π), discounted future
reward, 288–290

Policy gradient (PG) algorithm

actor-critic using Q-learning with,
307–308

in deep reinforcement learning, 68
REINFORCE algorithm as, 307

Policy networks, AlphaGo, 61

Policy optimization

agents beyond DQN using, 307
building neural network model for,
288–290

estimating optimal action via
Q-learning, 290–292

RL agent using actor-critic with,
307–308

Pooling layers, 169–170, 176

Positive rewards, deep reinforcement
learning, 56, 57

Prediction

selecting action for DQN agent, 300
training dense sentiment classifier, 232

training DQN agent via memory replay,
299

word2vec using predictive models, 208
Preprocessing natural language data

converting all characters to lowercase,
199–200

full corpus, 203–206
handling n-grams, 202–203
overview of, 195–197
removing stop words and punctuation,
200–201

stemming, 201
tokenization, 197–199

Principal component analysis (PCA), 213

Probability distribution, Markov decision
processes, 288

Processing power, AlexNet vs. LeNet-5,
16–17

Project Gutenberg. See Preprocessing
natural language data

Punctuation

processing full corpus, 204–206
removing, 196, 200

Python, for example code in this book,
75–76

PyTorch

building deep neural network in,
343–344

deep learning library, 323–324
features, 339–340
installation, 341
in practice, 341–343
TensorFlow vs., 340–341

Q

Q-learning networks

actor-critic combining PG algorithms
with, 307–308

DQNs. See Deep Q-learning networks
(DQNs)

Q-value functions

agents beyond DQN optimizing, 306
drawbacks of DQN agents, 306
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estimating optimal, 291–292
training DQN agent via memory replay,
299

Quadratic cost, 112–113

Quake III Arena, DeepMind Lab built on, 69

Quick, Draw! game

GANs and, 263–266
for hundreds of machine-drawn
sketches, 48

introduction to deep learning, 19

R

R-CNN

Fast R-CNN, 184
Faster R-CNN, 184–185
Mask R-CNN, 186–187
object detection application, 183–184

Radford, Alec, 41–44

RAM (memory), batch size/stochastic
gradient descent and, 119–122

rand function, DQN agent action selection,
299–300

randrange function, DQN agent action
selection, 300

Rectified linear unit neurons. See ReLU
(rectified linear unit) neurons

Recurrent neural networks (RNNs)

bidirectional LSTM, 247–248
LSTM, 244–247
LSTM cell as layer of NLP in, 53
overview of, 240–244
stacked recurrent models, 248–250

Redmon, Joseph, 185–186

Reformatting data, coding shallow network,
81–83

Regions of interest (ROIs)

developing Faster R-CNN, 184–185
image segmentation with Mask
R-CNN, 187

object detection with Fast R-CNN, 184
object detection with R-CNN, 183–184

Regression, improving deep networks,
149–152

REINFORCE algorithm, agents beyond DQN
using, 307

Reinforcement learning

building socially beneficial projects, 318
essential theory of, 283–286
overview of, 49
problems of machine learning, 54–56
as sequential decision-making problems,
284

Reinforcement Learning: An Introduction
(Barto), 292

Reinforcement learning, deep

agents beyond DQN, 306–308
board games. See Board games
building own project. See Deep learning
projects, building own

Cart-Pole game, 284–286
DeepMind DQN using, 58–59
defining DQN agent, 293–300
essential theory of deep Q-learning
networks, 290–292

essential theory of reinforcement
learning, 283–286

game-playing applications. See
Game-playing machines

hyperparameter optimization with SLM
Lab, 303–306

interacting with OpenAI Gym
environment, 300–303

key concepts, 308–309
manipulation of objects, 67–68
Markov decision processes, 286–288
optimal policy, 288–290
overview of, 56–57, 283
popular learning environments for,
68–71

summary, 308
video games, 57–60

ReLU (rectified linear unit) neurons

with Glorot distributions, 136–137
neural network model for DQN agent,
297

overview of, 94–95
as preferred neuron type, 96
TensorFlow Playground demo, 100



364 Index

Representation learning, 22, 51

requires_grad argument, PyTorch, 342

Residual connections, 180–182

Residual modules, 180–182

Residual networks (ResNets), 180–182

Resources, building deep learning projects,
317–318

return_sequencesTrue, stacking
recurrent layers, 248

Reward(s)

deep Q-learning network theory,
290–292

DeepMind DQN and, 59
DeepMind Lab, 69, 71
DQN agent gameplay, 298
Markov decision processes (MDPs),
287–289

optimal policy, 288–290
reinforcement learning problems and, 56
theory of reinforcement learning, 283
training DQN agent via memory replay,
298–299

Ridge regression, reducing model
overfitting, 141–142

RMSProp, 147

RMSProp optimizer, 147

ROC AUC metric

as area under ROC curve, 217–218
calculating, 219–222, 234
confusion matrix, 218–219
for sentiment classifier model
architectures, 256

ROIs. See Regions of interest (ROIs)

Rosenblatt, Frank, 86–90

Round of training, stochastic gradient
descent, 120–121

Running time, Software 2.0 and, 325

S

Sabour, Sara, 192

Saturated neurons

as flaw in calculating quadratic cost,
112–113

minimizing impact using cross-entropy
cost, 113–115

reducing with cross-entropy cost and
weight initialization, 131–135

weight initialization, Glorot normal
distribution, 136

Saving model parameters, 300

Schematic diagram

activation values in feature map of
convolutional layer, 164

coding shallow network in Keras, 77–79
of discriminator network, 268
of generator network, 270
of LSTM, 245
of recurrent neural network, 241
wide and deep modeling, 317

Schmidhuber, Jürgen, 244

Search, automating hyperparameter, 321

Search engines, NLP in, 23–24

Sedol, Lee, 62

See-in-the-Dark dataset, image processing,
47–48

Semantics, natural human language and,
34–35

sentences argument, word2vec, 210

Sentiment classifier

bidirectional LSTM, 247–248
convolutional, 236–239
dense, 229–235
LSTM architecture, 247
LSTM hyperparameters, 246–247
non-sequential architecture example,
251–255

performance of model architectures, 256
seq2seq (sequence-to-sequence), and
attention, 250

Sequential decision-making problems, 284

Sequential model, building for DQN agent,
297–298

sg argument, word2vec, 210

SG (skip-gram) architecture, 207, 208

SGD. See Stochastic gradient descent
(SGD)

Shadow Dexterous Hand, OpenAI Gym, 70
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Shallow network

coding. See Coding shallow network in
Keras

for dense networks, 108–110
intermediate-depth neural network in,
127–129

vs. deep learning, 78–79
Shogi, AlphaZero and, 65–66

Short-term memory, LSTM, 245–246

Sigmoid Function Jupyter notebook, 105

Sigmoid neuron(s)

activation function of, 92–94
for binary classification problems,
100–101, 105–106

choosing, 96
for shallow net in Keras, 79, 83
softmax function with single neuron
equivalent to using, 108

weight initialization and, 133–137
Silver, David, 61–62, 65–66

Similarity score, running word2vec,
212–213

Simple neurons

forming primary visual cortex, 6–7
neocognition and, 8–9

SimpleRNN() layer, RNN sentiment
classifier, 243

size argument, word2vec, 210

Skip-gram (SG) architecture, 207, 208

SLM Lab, 303–306, 316

Socially beneficial projects, deep learning
projects, 318

Sodol, Lee, 62, 64

Softmax layer, fast food-classifying
network, 106–108

Softmax probability output, Fast R-CNN,
184

Software dependencies, shallow net in
Keras, 80

Sofware 2.0, deep learning models,
324–326

Speech recognition, NLP in, 24

Spell-checkers, 24

Squared error, as quadratic cost, 112

Stacked recurrent models, 248–250

StackGAN, photorealistic images from text,
45–46

State(s)

deep Q-learning network theory and,
290–292

DeepMind DQN and, 58
DQN agent, remembering gameplay,
298

Markov decision processes and, 286
optimal policy in deep reinforcement
learning and, 289–290

reinforcement learning problems and, 56
reinforcement learning via Cart-Pole
game and, 286

theory of reinforcement learning, 284
Static scatterplot, plotting word vectors,
214–216

Stemming, word

forgoing removal of, 203–206
overview of, 201
preprocessing natural language via, 196

Stochastic gradient descent (SGD)

escaping local minimum of cost via,
122–124

fancy optimizers for, 145–147
training deep networks using batch size
and, 119–124

Stop words

forgoing removal of, 203–206
how to remove, 200
removing in NLP, 195–196

Stride length

as convolutional filter hyperparameter,
167

pooling layers using, 169–170
reducing computational complexity, 170

Style transfer, 44–45

Suleyman, Mustafa, 58

Supervised learning problems, machine
learning, 53–54

Support vector machines, R-CNN,
183–184

Sutskever, Ilya, 14, 16

Sutton, Richard, 292

Syntax, natural human language and,
34–35
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T

Tacotron, TTS engine, 36–37

Tanh neurons

activation function of, 94
choosing, 96
with Glorot distributions, 136–137
LSTM, 244–245

Target word

converting natural words to word
vectors, 27–28

running word2vec, 207–209
Tensor processing units (TPUs), Google
training neural networks, 64

TensorBoard dashboard, 152–154

TensorFlow, 321–323

TensorFlow Playground, 17–19, 100

Tensors, PyTorch

automatic differentiation in, 342–343
building deep neural network, 343–344
compatibility with NumPy operations,
324

features, 339–340
Terminal state, theory of reinforcement
learning, 284

Text, creating photorealistic images from,
45–46

Text-to-speech (TTS) engine, Google
Duplex, 36–37

Theano, deep learning library, 324

Theory, essential

of deep Q-learning networks, 290–292
of GANs, 259–262
of reinforcement learning, 283–284
of RNNs, 240–244
of word2vec, 206–209

Threshold value, perceptron equation,
89–91

Tokenization

examining IMDb data, 226–228
natural human language and, 35–36
preprocessing natural language, 195,
197–199

Torch, PyTorch as extension of, 323–324

torch.nn.NLLLoss() function, PyTorch,
344

TPUs (tensor processing units), Google
training neural networks, 64

Traditional machine learning (ML) approach

deep learning approach vs., 11–12
entrants into ILSVRC using, 14–15
natural human language in, 33–35
one-hot encoding of words in, 25–26
understanding, 12–13

train() method

training DQN agent, 299
training GAN, 275–281

Training

AlexNet vs. LeNet-5, 16–17
AlphaGo vs. AlphaGo Zero, 63–65
TensorFlow Playground, 17–19

Training deep networks

adversarial network, 272–274
backpropagation, 124–125
batch size and stochastic gradient
descent, 119–122

coding shallow network in Keras, 83–84
convolutional sentiment classifier, 238
cost functions, 111–115
cross-entropy cost, 113–115
data augmentation for, 145
deep neural network in Keras, 147–149
dense sentiment classifier, 232
escaping local minimum, 122–124
generative adversarial networks (GANs),
259–262, 275–281

gradient descent, 115–117
intermediate-depth neural network,
128–129

intermediate net in Keras, 127–129
key concepts, 130
learning rate, 117–119
minimizing cost via optimization, 115
overview of, 111
preventing overfitting with dropout,
142–145

quadratic cost, 112–113
recurrent neural networks (RNNs), 241
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running word2vec, 208
saturated neurons, 112–113
summary, 129–130
transfer learning model of, 188–192
tuning hidden-layer and neuron counts,
125–126

via memory replay for DQN agent,
298–299

Transfer learning

machine vision and, 188–192
natural language and, 230
in NLP, 251
overview of, 188–192

Truncation, standardizing film review
length, 228–229

TSNE() method, plotting word vectors,
214–216

TTS (text-to-speech) engine, Google
Duplex, 36–37

Two-dimensional images, flattening to one
dimension, 82

Two-dimensional structure of visual
imagery

overview of, 159–160
retaining in convolutional layers, 167
retaining using LeNet-5 in Keras, 172

U

U-Net, image segmentation, 187–188

ULMFiT (universal language model
fine-tuning), transfer learning, 251

United States Postal Service, LeNet-5
reading ZIP codes, 11

Unity ML-Agents plug-in, 71, 304

Unstable gradients, improving deep
networks, 137–139

Unsupervised learning problems, machine
learning, 54

Upsampling layers, 187, 272

V

Validation data, 232–235, 239

Value functions, Q-learning, 291–292

Value networks, AlphaGo algorithm, 61

Value optimization

agents beyond DQN using, 306
RL agent using actor-critic algorithm
and, 307–308

Vanishing gradient problem

in artificial neural networks,
137–138

performance degradation in deep CNNs,
179–180

Vector space

embeddings. See Word vectors
latent space similarities to, 42–43
word meaning represented by three
dimensions, 27–29

word-vector arithmetic, 29–30
Venn diagram, 22, 50

VGGNet, 178–179, 188–192

Video games, 57–60

Viola, Paul, 12–13

Visual imagery, two-dimensional structure
of, 159–160

Visual perception

cerebral cortex research on, 4–7
development of species on planet due to,
3–4

W
WaveNet, Google Duplex TTS engine,
36–37

Weight initialization, 131–137

Weighted sum, perceptron algorithm,
86–89

Weight(s)

backpropagation and, 125,
335–337

convolutional example of,
163–167

of kernels in convolutional layers,
160–162

minimizing cost via gradient descent,
115–116

notation for neural networks, 334
Wide and deep modeling approach, Google,
317
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Wiesel, Torsten

LeNet-5 model built on work of, 10–12
machine vision using work of, 8–9
research on visual cortex, 4–7

window argument, word2vec, 210

Wittgenstein, Ludwig, 21

Word embeddings. See Word vectors

Word vectors. See also word2vec

arithmetic of, 29–30
capturing word meaning, 195
computational representations. See
Language, computational
representations of

convolutional filters detecting triplets of,
239

evaluating, 209
localist vs. distributed representations,
32–33

in NLP. See Natural language processing
(NLP)

online pretrained, 230
plotting, 213–217
training on natural language data,
229–230

word2viz tool for exploring, 30–32
word2vec

converting natural words to word
vectors, 28

essential theory behind, 206–209
evaluating word vectors, 209

FastText as leading alternative to, 209

plotting word vectors, 213–217

running, 209–213

word embeddings, 206

Words

creating embeddings with word2vec. See
word2vec

natural human language and, 33–35

preprocessing natural language. See
Preprocessing natural language data

word_tokenize() method, natural
language, 199

workers argument, word2vec, 211

X

Xavier Glorot distributions, improving deep
networks, 135–137

Y

Yelp review polarity, 316

YOLO (You Only Look Once), object
detection, 185–186

Z

Zhang, Xiang, 315
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