

Praise for SQL Queries for Mere Mortals®

The good books show you how to do something. The great books enable

you to think clearly about how you can do it. This book is the latter. To

really maximize the potential of your database, thinking about data as

a set is required and the authors’ accessible writing really brings out

the practical applications of SQL and the set-based thinking behind it.

— Ben Clothier, Lead Developer at IT Impact, Inc., co-author of

 Professional Access 2013 Programming, and Microsoft Access MVP

Unless you are working at a very advanced level, this is the only SQL

book you will ever need. The author has taken the mystery out of com-

plex queries and explained principles and techniques with such clarity

that a “Mere Mortal” will indeed be empowered to perform the super-

human. Do not walk past this book!

— Graham Mandeno, Database Consultant

It’s beyond brilliant! I have been working with SQL for a really long

time, and the techniques presented in this book exposed some of the

bad habits I picked up over the years in my learning process. I wish

I had learned these techniques a long time ago and saved myself all

the headaches of learning SQL the hard way. Who said you can’t teach

old dogs new tricks?

— Leo (theDBguy), Utter Access Moderator and Microsoft Access MVP

I learned SQL primarily from the first and second editions of this

book … Starting from how to design your tables so that SQL can be

effective (a common problem for database beginners), and then con-

tinuing through the various aspects of SQL construction and capabil-

ities, the reader can become a moderate expert upon completing the

book and its samples. Learning how to convert a question in English

into a meaningful SQL statement will greatly facilitate your mastery

of the language. Numerous examples from real life will help you visu-

alize how to use SQL to answer the questions about the data in your

Viescas_9780134858333.indb iViescas_9780134858333.indb i 17/01/18 8:25 pm17/01/18 8:25 pm

 database. Just one of the “watch out for this trap” items will save you

more than the cost of the book when you avoid that problem when

writing your queries. I highly recommend this book if you want to tap

the full potential of your database.

— Kenneth D. Snell, Ph.D., Database Designer/Programmer

I don’t think they do this in public schools anymore, and it is a shame,

but do you remember in the seventh and eighth grades when you

learned to diagram a sentence? Those of you who do may no longer

remember how you did it, but all of you do write better sentences

because of it. John Viescas must have remembered because he takes

everyday English queries and literally translates them into SQL. This

is an important book for all database designers. It takes the com-

plexity of mathematical set theory and of first order predicate logic,

as outlined in E. F. Codd’s original treatise on relational database

design, and makes it easy for anyone to understand. If you want an

 elementary-through intermediate-level course on SQL, this is the one

book that is a requirement, no matter how many others you buy.

— Arvin Meyer, MCP, MVP

SQL Queries for Mere Mortals, provides a step-by-step, easy-to-read

introduction to writing SQL queries. It includes hundreds of examples

with detailed explanations. This book provides the tools you need to

understand, modify, and create SQL queries.

— Keith W. Hare, Convenor, ISO/IEC JTC1 SC32 WG3, the International

SQL Standards Committee

Even in this day of wizards and code generators, successful database

developers still require a sound knowledge of Structured Query

Language (SQL, the standard language for communicating with most

database systems). In this book, John does a marvelous job of mak-

ing what’s usually a dry and difficult subject come alive, presenting

Viescas_9780134858333.indb iiViescas_9780134858333.indb ii 17/01/18 8:25 pm17/01/18 8:25 pm

the material with humor in a logical manner, with plenty of relevant

examples. I would say that this book should feature prominently in

the collection on the bookshelf of all serious developers, except that I’m

sure it’ll get so much use that it won’t spend much time on the shelf!

— Doug Steele, Microsoft Access Developer and author

I highly recommend SQL Queries for Mere Mortals to anyone working

with data. John makes it easy to learn one of the most critical aspects

of working with data: creating queries. Queries are the primary tool

for selecting, sorting, and reporting data. They can compensate for

table structure, new reporting requirements, and incorporate new data

sources. SQL Queries for Mere Mortals uses clear, easy to understand

discussions and examples to take readers through the basics and into

complex problems. From novice to expert, you will find this book to be

an invaluable reference as you can apply the concepts to a myriad of

scenarios, regardless of the program.

— Teresa Hennig, Microsoft MVP-Access, and lead author of several

Access books, including Professional Access 2013 Programming (Wrox)

Viescas_9780134858333.indb iiiViescas_9780134858333.indb iii 17/01/18 8:25 pm17/01/18 8:25 pm

Viescas_9780134858333.indb ivViescas_9780134858333.indb iv 17/01/18 8:25 pm17/01/18 8:25 pm

SQL Queries for
Mere Mortals®
Fourth Edition

A Hands-On Guide to Data
Manipulation in SQL

John L. Viescas

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam

Cape Town • Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto

Delhi • Mexico City • São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Viescas_9780134858333.indb vViescas_9780134858333.indb v 17/01/18 8:25 pm17/01/18 8:25 pm

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear in
this book, and the publisher was aware of a trademark claim, the designations
have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book,
but make no expressed or implied warranty of any kind and assume no
 responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the
 information or programs contained herein.

For information about buying this title in bulk quantities, or for special
sales opportunities (which may include electronic versions; custom cover
designs; and content particular to your business, training goals, marketing
focus, or branding interests), please contact our corporate sales department
at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2017964124

Copyright © 2018 John L. Viescas

Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication
is protected by copyright, and permission must be obtained from the publisher
prior to any prohibited reproduction, storage in a retrieval system, or trans-
mission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions, request forms,
and the appropriate contacts within the Pearson Education Global Rights &
Permissions Department, please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-134-85833-3
ISBN-10: 0-134-85833-6

1 18

Editor-in-Chief: Mark Taub

Acquisitions Editor: Trina Macdonald

Development Editor: Rick Kughen

Managing Editor: Sandra Schroeder

Senior Project Editor: Lori Lyons

Production Manager: Dhayanidhi Karunanidhi

Copy Editor: Rick Kughen

Indexer: Lisa Stumpf

Proofreader: Abigail Manheim

Technical Reviewer: Douglas J. Steele

Cover Designer: Chuti Prasertsith

Compositor: codemantra

Viescas_9780134858333.indb viViescas_9780134858333.indb vi 17/01/18 8:25 pm17/01/18 8:25 pm

 vii

Contents at a Glance

Foreword xxi
Preface xxii
Acknowledgments xxiv
About the Author xxv
Introduction 1

PART I: RELATIONAL DATABASES AND SQL 13
Chapter 1: What Is Relational? 15
Chapter 2: Ensuring Your Database Structure Is Sound 33
Chapter 3: A Concise History of SQL 71

PART II: SQL BASICS 87
Chapter 4: Creating a Simple Query 89
Chapter 5: Getting More Than Simple Columns 125
Chapter 6: Filtering Your Data 175

PART III: WORKING WITH MULTIPLE TABLES 239
Chapter 7: Thinking in Sets 241
Chapter 8: INNER JOINs 273
Chapter 9: OUTER JOINs 321
Chapter 10: UNIONs 369
Chapter 11: Subqueries 399

PART IV: SUMMARIZING AND GROUPING DATA 441
Chapter 12: Simple Totals 443
Chapter 13: Grouping Data 471
Chapter 14: Filtering Grouped Data 505

PART V: MODIFYING SETS OF DATA 533
Chapter 15: Updating Sets of Data 535
Chapter 16: Inserting Sets of Data 573
Chapter 17: Deleting Sets of Data 603

Viescas_9780134858333.indb viiViescas_9780134858333.indb vii 17/01/18 8:25 pm17/01/18 8:25 pm

viii Contents at a Glance

PART VI: INTRODUCTION TO SOLVING TOUGH PROBLEMS 625
Chapter 18: “NOT” and “AND” Problems 627
Chapter 19: Condition Testing 677
Chapter 20: Using Unlinked Data and “Driver” Tables 709
Chapter 21: Performing Complex Calculations on Groups 749
Chapter 22: Partitioning Data into Windows 793
 In Closing 857

PART VII: APPENDICES 859
Appendix A: SQL Standard Diagrams 861
Appendix B: Schema for the Sample Databases 877
Appendix C: Date and Time Types, Operations, and Functions 889
Appendix D: Suggested Reading 907

Index 909

Viescas_9780134858333.indb viiiViescas_9780134858333.indb viii 17/01/18 8:25 pm17/01/18 8:25 pm

 ix

Contents

Foreword xxi

Preface xxii

Acknowledgments xxiv

About the Author xxv

Introduction 1

Are You a Mere Mortal? 1

About This Book 2

What This Book Is Not 4

How to Use This Book 4

Reading the Diagrams Used in This Book 5

Sample Databases Used in This Book 9

“Follow the Yellow Brick Road” 12

PART I: RELATIONAL DATABASES AND SQL 13
Chapter 1: What Is Relational? 15

Topics Covered in This Chapter 15

Types of Databases 15

A Brief History of the Relational Model 16

In the Beginning . . . 16

Relational Database Systems 17

Anatomy of a Relational Database 19

Tables 20

Columns 21

Rows 21

Keys 22

Views 23

Relationships 25

What’s in It for You? 29

Where Do You Go from Here? 30

Summary 31

Viescas_9780134858333.indb ixViescas_9780134858333.indb ix 17/01/18 8:25 pm17/01/18 8:25 pm

x Contents

Chapter 2: Ensuring Your Database Structure Is Sound 33

Topics Covered in This Chapter 33

Why Is this Chapter Here? 34

Why Worry about Sound Structures? 34

Fine-Tuning Columns 35

What’s in a Name? (Part One) 35

Smoothing Out the Rough Edges 38

Resolving Multipart Columns 40

Resolving Multivalued Columns 43

Fine-Tuning Tables 46

What’s in a Name? (Part Two) 46

Ensuring a Sound Structure 48

Resolving Unnecessary Duplicate Columns 50

Identification Is the Key 56

Establishing Solid Relationships 60

Establishing a Deletion Rule 63

Setting the Type of Participation 64

Setting the Degree of Participation 66

Is That All? 69

Summary 69

Chapter 3: A Concise History of SQL 71

Topics Covered in This Chapter 71

The Origins of SQL 72

Early Vendor Implementations 73

“. . . And Then There Was a Standard” 75

Evolution of the ANSI/ISO Standard 76

Other SQL Standards 79

Commercial Implementations 83

What the Future Holds 83

Why Should You Learn SQL? 84

Which Version of SQL Does this Book Cover? 84

Summary 85

Viescas_9780134858333.indb xViescas_9780134858333.indb x 17/01/18 8:25 pm17/01/18 8:25 pm

 Contents xi

PART II: SQL BASICS 87
Chapter 4: Creating a Simple Query 89

Topics Covered in This Chapter 89

Introducing SELECT 90

The SELECT Statement 91

A Quick Aside: Data versus Information 93

Translating Your Request into SQL 95

Expanding the Field of Vision 100

Using a Shortcut to Request All Columns 101

Eliminating Duplicate Rows 103

Sorting Information 105

First Things First: Collating Sequences 107

Let’s Now Come to Order 108

Saving Your Work 111

Sample Statements 113

Summary 122

Problems for You to Solve 123

Chapter 5: Getting More Than Simple Columns 125

Topics Covered in This Chapter 125

What Is an Expression? 126

What Type of Data Are You Trying to Express? 127

Changing Data Types: The CAST Function 130

Specifying Explicit Values 132

Character String Literals 133

Numeric Literals 135

Datetime Literals 135

Types of Expressions 138

Concatenation 138

Mathematical Expressions 142

Date and Time Arithmetic 146

Using Expressions in a SELECT Clause 150

Working with a Concatenation Expression 151

Naming the Expression 152

Working with a Mathematical Expression 154

Viescas_9780134858333.indb xiViescas_9780134858333.indb xi 17/01/18 8:25 pm17/01/18 8:25 pm

xii Contents

Working with a Date Expression 156

A Brief Digression: Value Expressions 157

That “Nothing” Value: Null 159

Introducing Null 160

The Problem with Nulls 162

Sample Statements 163

Summary 172

Problems for You to Solve 173

Chapter 6: Filtering Your Data 175

Topics Covered in This Chapter 175

Refining What You See Using WHERE 176

The WHERE Clause 176

Using a WHERE Clause 179

Defining Search Conditions 181

Comparison 181

Range 189

Set Membership 192

Pattern Match 194

Null 199

Excluding Rows with NOT 201

Using Multiple Conditions 204

Introducing AND and OR 205

Excluding Rows: Take Two 211

Order of Precedence 214

Checking for Overlapping Ranges 219

Nulls Revisited: A Cautionary Note 221

Expressing Conditions in Different Ways 225

Sample Statements 226

Summary 234

Problems for You to Solve 235

PART III: WORKING WITH MULTIPLE TABLES 239
Chapter 7: Thinking in Sets 241

Topics Covered in This Chapter 241

What Is a Set, Anyway? 242

Operations on Sets 243

Viescas_9780134858333.indb xiiViescas_9780134858333.indb xii 17/01/18 8:25 pm17/01/18 8:25 pm

 Contents xiii

Intersection 244

Intersection in Set Theory 244

Intersection between Result Sets 246

Problems You Can Solve with an Intersection 249

Difference 250

Difference in Set Theory 250

Difference between Result Sets 252

Problems You Can Solve with Difference 256

Union 257

Union in Set Theory 257

Combining Result Sets Using a Union 259

Problems You Can Solve with Union 261

SQL Set Operations 262

Classic Set Operations versus SQL 262

Finding Common Values: INTERSECT 262

Finding Missing Values: EXCEPT (DIFFERENCE) 265

Combining Sets: UNION 268

Summary 271

Chapter 8: INNER JOINs 273

Topics Covered in This Chapter 273

What Is a JOIN? 273

The INNER JOIN 274

What’s “Legal” to JOIN? 275

Column References 275

Syntax 276

Check Those Relationships! 291

Uses for INNER JOINs 293

Find Related Rows 293

Find Matching Values 293

Sample Statements 294

Two Tables 295

More Than Two Tables 300

Looking for Matching Values 306

Summary 316

Problems for You to Solve 316

Viescas_9780134858333.indb xiiiViescas_9780134858333.indb xiii 17/01/18 8:25 pm17/01/18 8:25 pm

xiv Contents

Chapter 9: OUTER JOINs 321

Topics Covered in This Chapter 321

What Is an OUTER JOIN? 321

The LEFT/RIGHT OUTER JOIN 323

Syntax 324

The FULL OUTER JOIN 344

Syntax 344

FULL OUTER JOIN on Non-Key Values 347

UNION JOIN 348

Uses for OUTER JOINs 349

Find Missing Values 349

Find Partially Matched Information 349

Sample Statements 350

Summary 365

Problems for You to Solve 366

Chapter 10: UNIONs 369

Topics Covered in This Chapter 369

What Is a UNION? 369

Writing Requests with UNION 372

Using Simple SELECT Statements 372

Combining Complex SELECT Statements 375

Using UNION More Than Once 379

Sorting a UNION 381

Uses for UNION 383

Sample Statements 385

Summary 395

Problems for You to Solve 396

Chapter 11: Subqueries 399

Topics Covered in This Chapter 399

What Is a Subquery? 400

Row Subqueries 400

Table Subqueries 402

Scalar Subqueries 402

Viescas_9780134858333.indb xivViescas_9780134858333.indb xiv 17/01/18 8:25 pm17/01/18 8:25 pm

 Contents xv

Subqueries as Column Expressions 402

Syntax 402

An Introduction to Aggregate Functions: COUNT and MAX 406

Subqueries as Filters 408

Syntax 408

Special Predicate Keywords for Subqueries 411

Uses for Subqueries 422

Build Subqueries as Column Expressions 422

Use Subqueries as Filters 423

Sample Statements 424

Subqueries in Expressions 425

Subqueries in Filters 430

Summary 437

Problems for You to Solve 438

PART IV: SUMMARIZING AND GROUPING DATA 441
Chapter 12: Simple Totals 443

Topics Covered in This Chapter 443

Aggregate Functions 444

Counting Rows and Values with COUNT 446

Computing a Total with SUM 450

Calculating a Mean Value with AVG 451

Finding the Largest Value with MAX 452

Finding the Smallest Value with MIN 454

Using More Than One Function 455

Using Aggregate Functions in Filters 457

Sample Statements 459

Summary 466

Problems for You to Solve 467

Chapter 13: Grouping Data 471

Topics Covered in This Chapter 471

Why Group Data? 472

The GROUP BY Clause 475

Syntax 475

Mixing Columns and Expressions 481

Viescas_9780134858333.indb xvViescas_9780134858333.indb xv 17/01/18 8:25 pm17/01/18 8:25 pm

xvi Contents

Using GROUP BY in a Subquery in a WHERE Clause 483

Simulating a SELECT DISTINCT Statement 484

“Some Restrictions Apply” 485

Column Restrictions 486

Grouping on Expressions 488

Uses for GROUP BY 490

Sample Statements 491

Summary 501

Problems for You to Solve 501

Chapter 14: Filtering Grouped Data 505

Topics Covered in This Chapter 505

A New Meaning for “Focus Groups” 506

Where You Filter Makes a Difference 510

Should You Filter in WHERE or in HAVING? 510

Avoiding the HAVING COUNT Trap 513

Uses for HAVING 518

Sample Statements 519

Summary 527

Problems for You to Solve 528

PART V: MODIFYING SETS OF DATA 533
Chapter 15: Updating Sets of Data 535

Topics Covered in This Chapter 535

What Is an UPDATE? 536

The UPDATE Statement 536

Using a Simple UPDATE Expression 537

A Brief Aside: Transactions 540

Updating Multiple Columns 541

Using a Subquery to Filter Rows 543

Some Database Systems Allow a JOIN in the UPDATE Clause 546

Using a Subquery UPDATE Expression 548

Uses for UPDATE 551

Sample Statements 552

Summary 569

Problems for You to Solve 569

Viescas_9780134858333.indb xviViescas_9780134858333.indb xvi 17/01/18 8:25 pm17/01/18 8:25 pm

 Contents xvii

Chapter 16: Inserting Sets of Data 573

Topics Covered in This Chapter 573

What Is an INSERT? 573

The INSERT Statement 575

Inserting Values 575

Generating the Next Primary Key Value 578

Inserting Data by Using SELECT 581

Uses for INSERT 587

Sample Statements 588

Summary 598

Problems for You to Solve 598

Chapter 17: Deleting Sets of Data 603

Topics Covered in This Chapter 603

What Is a DELETE? 603

The DELETE Statement 604

Deleting All Rows 605

Deleting Some Rows 607

Uses for DELETE 611

Sample Statements 612

Summary 620

Problems for You to Solve 621

PART VI: INTRODUCTION TO SOLVING TOUGH PROBLEMS 625
Chapter 18: “NOT” and “AND” Problems 627

Topics Covered in This Chapter 627

A Short Review of Sets 628

Sets with Multiple AND Criteria 628

Sets with Multiple NOT Criteria 629

Sets Including Some Criteria but Excluding Others 630

Finding Out the “Not” Case 632

Using OUTER JOIN 632

Using NOT IN 635

Using NOT EXISTS 637

Using GROUP BY/HAVING 638

Viescas_9780134858333.indb xviiViescas_9780134858333.indb xvii 17/01/18 8:25 pm17/01/18 8:25 pm

xviii Contents

Finding Multiple Matches in the Same Table 641

Using INNER JOIN 642

Using IN 644

Using EXISTS 646

Using GROUP BY/HAVING 648

Sample Statements 652

Summary 671

Problems for You to Solve 672

Chapter 19: Condition Testing 677

Topics Covered in This Chapter 677

Conditional Expressions (CASE) 678

Why Use CASE? 678

Syntax 678

Solving Problems with CASE 683

Solving Problems with Simple CASE 683

Solving Problems with Searched CASE 688

Using CASE in a WHERE Clause 691

Sample Statements 692

Summary 705

Problems for You to Solve 706

Chapter 20: Using Unlinked Data and “Driver” Tables 709

Topics Covered in This Chapter 709

What Is Unlinked Data? 710

Deciding When to Use a CROSS JOIN 713

Solving Problems with Unlinked Data 714

Solving Problems Using “Driver” Tables 717

Setting Up a Driver Table 717

Using a Driver Table 720

Sample Statements 725

Examples Using Unlinked Tables 726

Examples Using Driver Tables 736

Summary 743

Problems for You to Solve 744

Viescas_9780134858333.indb xviiiViescas_9780134858333.indb xviii 17/01/18 8:25 pm17/01/18 8:25 pm

 Contents xix

Chapter 21: Performing Complex Calculations on Groups 749

Topics in this Chapter 749

Grouping in Sub-Groups 750

Extending the GROUP BY Clause 753

Syntax 753

Getting Totals in a Hierarchy Using Rollup 754

Calculating Totals on Combinations Using CUBE 765

Creating a Union of Totals with GROUPING SETS 771

Variations on Grouping Techniques 775

Sample Statements 780

Examples using ROLLUP 781

Examples using CUBE 783

Examples using GROUPING SETS 786

Summary 788

Problems for You to Solve 789

Chapter 22: Partitioning Data into Windows 793

Topics in this Chapter 793

What You Can Do With a “Window” into Your Data 794

Syntax 798

Calculating a Row Number 814

Ranking Data 818

Splitting Data into Quintiles 824

Using Windows with Aggregate Functions 827

Sample Statements 834

Examples Using ROW_NUMBER 835

Examples Using RANK, DENSE_RANK, and PERCENT_RANK 838

Examples Using NTILE 842

Examples Using Aggregate Functions 844

Summary 852

Problems for You to Solve 853

In Closing 857

Viescas_9780134858333.indb xixViescas_9780134858333.indb xix 17/01/18 8:25 pm17/01/18 8:25 pm

xx Contents

PART VII: APPENDICES 859
Appendix A: SQL Standard Diagrams 861
Appendix B: Schema for the Sample Databases 877

Sales Orders Example Database 878

Sales Orders Modify Database 879

Entertainment Agency Example Database 880

Entertainment Agency Modify Database 881

School Scheduling Example Database 882

School Scheduling Modify Database 883

Bowling League Example Database 884

Bowling League Modify Database 885

Recipes Database 886

“Driver” Tables 887
Appendix C: Date and Time Types, Operations, and Functions 889

IBM DB2 889

Microsoft Access 893

Microsoft SQL Server 895

MySQL 897

Oracle 901

PostgreSQL 904
Appendix D: Suggested Reading 907

Database Books 907

Books on SQL 908

Index 909

Viescas_9780134858333.indb xxViescas_9780134858333.indb xx 17/01/18 8:25 pm17/01/18 8:25 pm

 xxi

Foreword

In the 30 years since the database language SQL was adopted as an

 international standard, and the 30 years since SQL database products appeared

on the market, SQL has become the predominant language for storing, modi-

fying, retrieving, and deleting data. Today, a significant portion of the world’s

data—and the world’s economy—is tracked using SQL databases.

SQL is everywhere because it is a very powerful tool for manipulating data. It is

in high-performance transaction processing systems. It is behind Web interfaces.

I’ve even found SQL in network monitoring tools and spam firewalls.

Today, SQL can be executed directly, embedded in programming languages, and

accessed through call interfaces. It is hidden inside GUI development tools, code

generators, and report writers. However visible or hidden, the underlying queries

are SQL. Therefore, to understand existing applications and to create new ones,

you need to understand SQL.

SQL Queries for Mere Mortals, Fourth Edition, provides a step-by-step, easy-

to-read introduction to writing SQL queries. It includes hundreds of examples

with detailed explanations. This book provides the tools you need to understand,

modify, and create SQL queries.

As a database consultant and a participant in both the U.S. and international

SQL standards committees, I spend a lot of time working with SQL. So, it is with

a certain amount of authority that I state, “The authors of this book not only

understand SQL, they also understand how to explain it.” Both qualities make

this book a valuable resource.

—Keith W. Hare, Senior Consultant,
JCC Consulting, Inc. Vice Chair, INCITS DM32.2

—the USA SQL Standards Committee; Convenor, ISO/IEC JTC1 SC32 WG3
—the International SQL Standards Committee

Viescas_9780134858333.indb xxiViescas_9780134858333.indb xxi 17/01/18 8:25 pm17/01/18 8:25 pm

xxii

Preface

“Language is by its very nature a communal thing;
that is, it expresses never the exact thing

but a compromise—that which is common
to you, me, and everybody.”

—THOMAS ERNEST HULME, SPECULATIONS

Learning how to retrieve information from or manipulate information in a data-

base is commonly a perplexing exercise. However, it can be a relatively easy task

as long as you understand the question you’re asking or the change you’re trying

to make to the database. After you understand the problem, you can translate it

into the language used by any database system, which in most cases is Struc-

tured Query Language (SQL). You have to translate your request into an SQL

statement so that your database system knows what information you want to

retrieve or change. SQL provides the means for you and your database system

to communicate.

Throughout my many years as a database consultant, I’ve found that the

 number of people who merely need to retrieve information from a database or

perform simple data modifications in a database far outnumber those who are

charged with the task of creating programs and applications for a database.

Unfortunately, no books focus solely on this subject, particularly from a “mere

mortals” viewpoint. There are numerous good books on SQL, to be sure, but

most are targeted to database programming and development.

With this in mind, I decided it was time to write a book that would help people

learn how to query a database properly and effectively. I, along with my good

friend, Michael J. Hernandez, produced the first edition of this book in 2000.

We created a second edition in 2008 that introduced basic ways to change data

in your database using SQL. With the third edition in 2014, we stepped lightly

into the realm of tougher problems—the sorts of problems that make the heads

of even experienced users spin around three times. In this fourth edition, I

expand your knowledge of tougher problems by covering Window functions and

xxii

Viescas_9780134858333.indb xxiiViescas_9780134858333.indb xxii 17/01/18 8:25 pm17/01/18 8:25 pm

 Preface xxiii

Grouping Sets. The result of my effort is in your hands. This book is unique

among SQL books in that it focuses on SQL with little regard to any one specific

database system implementation. This fourth edition includes dozens of new

examples, and I included versions of the sample databases using Microsoft

Office Access, Microsoft SQL Server, and the popular open-source MySQL and

 PostgreSQL database systems. When you finish reading this book, you’ll have

the skills you need to retrieve or modify any information you require.

Viescas_9780134858333.indb xxiiiViescas_9780134858333.indb xxiii 17/01/18 8:25 pm17/01/18 8:25 pm

xxiv

Acknowledgments

Writing a book such as this is always a cooperative effort. There are always

 editors, colleagues, friends, and relatives willing to lend their support and

 provide valuable advice when I need it the most. These people continually

 provide me with encouragement, help me to remain focused, and motivate me

to see this project through to the end.

First and foremost, I want to thank my acquisitions editor, Trina MacDonald,

for helping me get signed up to produce this fourth edition. Thanks also to

 Developmental Editor, Rick Kughen, for shepherding me along the way. And I

can’t forget the production staff—they’re a great team! Next, I’d like to acknowl-

edge my technical editor, Doug Steele. I also had help from one of my database

friends, Ben Clothier. Thanks once again to all of you for your time and input

and for helping me to make this a solid treatise on SQL queries.

Finally, another very special thanks to Keith Hare for providing the Foreword.

As the Convenor of the International SQL Standards Committee, Keith is an SQL

expert par excellence. I have a lot of respect for Keith’s knowledge and expertise

on the subject, and I’m pleased to have his thoughts and comments at the

 beginning of my book.

Viescas_9780134858333.indb xxivViescas_9780134858333.indb xxiv 17/01/18 8:25 pm17/01/18 8:25 pm

 xxv

About the Author

John L. Viescas is an independent database consultant with more than

50 years of experience. He began his career as a systems analyst, designing

large database applications for IBM mainframe systems. He spent 6 years at

Applied Data Research in Dallas, Texas, where he directed a staff of more than

30 people and was responsible for research, product development, and customer

support of database products for IBM mainframe computers. While working

at Applied Data Research, John completed a degree in business finance at the

 University of Texas at Dallas, graduating cum laude.

John joined Tandem Computers, Inc., in 1988, where he was responsible for the

development and implementation of database marketing programs in Tandem’s

U.S. Western Sales region. He developed and delivered technical seminars on

Tandem’s relational database management system, NonStop SQL. John wrote

his first book, A Quick Reference Guide to SQL (Microsoft Press, 1989), as a

research project to document the similarities in the syntax among the ANSI-86

SQL standard, IBM’s DB2, Microsoft’s SQL Server, Oracle Corporation’s Oracle,

and Tandem’s NonStop SQL. He wrote the first edition of Running Microsoft

Access (Microsoft Press, 1992) while on sabbatical from Tandem. He has since

written four editions of Running, three editions of Microsoft Office Access Inside

Out (Microsoft Press, 2003, 2007, and 2010—the successor to the Running

series), Building Microsoft Access Applications (Microsoft Press, 2005), and

 Effective SQL (Addison-Wesley, 2017).

John formed his own company in 1993. He provides information systems

 management consulting for a variety of small to large businesses around the world,

with a specialty in the Microsoft Access and SQL Server database management

products. He maintains offices in Nashua, New Hampshire, and Paris, France.

He was recognized as a “Most Valuable Professional” (MVP) from 1993 to 2015 by

Microsoft Product Support Services for his assistance with technical questions on

public support forums. He set a landmark 20 consecutive years as an MVP in 2013.

You can visit John’s Web site at www.viescas.com or contact him by e-mail at

john@viescas.com.

Viescas_9780134858333.indb xxvViescas_9780134858333.indb xxv 17/01/18 8:25 pm17/01/18 8:25 pm

xxvi

Reader Services

Register your copy of SQL Queries for Mere Mortals on the InformIT site for

 convenient access to updates and corrections as they become available. To

start the registration process, go to informit.com/register and log in or create

an account. Enter the product ISBN 9780134858333 and click Submit. Look

on the Registered Products tab for an Access Bonus Content link next to this

 product, and follow that link to access any available bonus materials. If you

would like to be notified of exclusive offers on new editions and updates, please

check the box to receive email from us.

Viescas_9780134858333.indb xxviViescas_9780134858333.indb xxvi 17/01/18 8:25 pm17/01/18 8:25 pm

 241

7
Thinking in Sets

“Small cheer and a great welcome makes a merry feast.”
—WILLIAM SHAKESPEARE COMEDY OF ERRORS, ACT 3, SCENE 1

Topics Covered in This Chapter

What Is a Set, Anyway?

Operations on Sets

Intersection

Difference

Union

SQL Set Operations

Summary

By now, you know how to create a set of information by asking for spe-
cific columns or expressions on columns (SELECT), how to sort the rows
(ORDER BY), and how to restrict the rows returned (WHERE). Up to this
point, I’ve been focusing on basic exercises involving a single table. But
what if you want to know something about information contained in
multiple tables? What if you want to compare or contrast sets of infor-
mation from the same or different tables?

Creating a meal by peeling, slicing, and dicing a single pile of potatoes or
a single bunch of carrots is easy. From here on out, most of the problems
I’m going to show you how to solve will involve getting data from multiple
tables. I’m not only going to show you how to put together a good stew—
I’m going to teach you how to be a chef!

Viescas_9780134858333.indb 241Viescas_9780134858333.indb 241 17/01/18 8:26 pm17/01/18 8:26 pm

242 Chapter 7 Thinking in Sets

Before digging into this chapter, you need to know that it’s all about
the concepts you must understand in order to successfully link two or
more sets of information. I’m also going to give you a brief overview of
some specific syntax defined in the SQL Standard that directly supports
the pure definition of these concepts. Be forewarned, however, that many
current commercial implementations of SQL do not yet support this
“pure” syntax. In later chapters, I’ll show you how to implement the con-
cepts you’ll learn here using SQL syntax that is commonly supported by
most major database systems. What I’m after here is not the letter of the
law but rather the spirit of the law.

What Is a Set, Anyway?

If you were a teenager any time from the mid-1960s onward, you might
have studied set theory in a mathematics course. (Remember New Math?
Maybe you’re not old enough!) If you were introduced to set algebra, you
probably wondered why any of it would ever be useful.

Now you’re trying to learn about relational databases and this quirky lan-
guage called SQL to build applications, solve problems, or just get answers
to your questions. Were you paying attention in algebra class? If so, solving
problems—particularly complex ones—in SQL will be much easier.

Actually, you’ve been working with sets from the beginning of this book.
In Chapter 1, “What Is Relational?,” you learned about the basic struc-
ture of a relational database—tables containing rows that are made up
of one or more columns. Each table in your database is a set of informa-
tion about one subject. In Chapter 2, “Ensuring Your Database Structure
Is Sound,” you learned how to verify that the structure of your data-
base is sound. Each table should contain the set of information related
to one and only one subject or action.

In Chapter 4, “Creating a Simple Query,” you learned how to build a
basic SELECT statement in SQL to retrieve a result set of information
that contains specific columns from a single table and how to sort
those result sets. In Chapter 5, “Getting More Than Simple Columns,”
you learned how to glean a new set of information from a table by writ-
ing expressions that operate on one or more columns. In Chapter 6,
“Filtering Your Data,” you learned how to restrict further the set of
information you retrieve from your tables by adding a filter (WHERE
clause) to your query.

Viescas_9780134858333.indb 242Viescas_9780134858333.indb 242 17/01/18 8:26 pm17/01/18 8:26 pm

 Operations on Sets 243

As you can see, a set can be as little as the data from one column from one
row in one table. Actually, you can construct a request in SQL that returns
no rows—an empty set. Sometimes it’s useful to discover that something
does not exist. A set can also be multiple columns (including columns you
create with expressions) from multiple rows fetched from multiple tables.
Each row in a result set is a member of the set. The values in the col-
umns are specific attributes of each member—data items that describe the
member of the set. In the next several chapters, I’ll show how to ask for
information from multiple sets of data and link these sets together to get
answers to more complex questions. First, however, you need to under-
stand more about sets and the logical ways to combine them.

Operations on Sets

In Chapter 1, I discussed how Dr. E. F. Codd invented the relational model
on which most modern databases and SQL are based. Two branches of
mathematics—set theory and first-order predicate logic—formed the foun-
dation of his new model.

To graduate beyond getting answers from only a single table, you need to
learn how to use result sets of information to solve more complex prob-
lems. These complex problems usually require using one of the common
set operations to link data from two or more tables. Sometimes, you’ll
need to get two different result sets from the same table and then com-
bine them to get your answer.

The three most common set operations are as follows:

• Intersection—You use this to find the common elements in two
or more different sets: “List all students and the classes for which
they are currently enrolled.” “Show me the recipes that contain
both lamb and rice.” “Show me the customers who ordered both
 bicycles and helmets.”

• Difference—You use this to find items that are in one set but not
another: “Show me the recipes that contain lamb but do not contain
rice.” “Show me the customers who ordered a bicycle but not a helmet.”

• Union—You use this to combine two or more similar sets: “Show
me all the recipes that contain either lamb or rice.” “Show me the
customers who ordered either a bicycle or a helmet.” “List the names
and addresses for both staff and students.”

Viescas_9780134858333.indb 243Viescas_9780134858333.indb 243 17/01/18 8:26 pm17/01/18 8:26 pm

244 Chapter 7 Thinking in Sets

In the following three sections, I’ll explain these basic set operations—
the ones you should have learned in high school algebra. The “SQL Set
Operations” section later in this chapter gives an overview of how these
operations are implemented in “pure” SQL.

Intersection

No, it’s not your local street corner. An intersection of two sets contains
the common elements of two sets. Let’s first take a look at an intersec-
tion from the pure perspective of set theory and then see how you can
use an intersection to solve business problems.

Intersection in Set Theory

An intersection is a very powerful mathematical tool often used by sci-
entists and engineers. As a scientist, you might be interested in find-
ing common points between two sets of chemical or physical sample
data. For example, a pharmaceutical research chemist might have two
compounds that seem to provide a certain beneficial effect. Finding the
commonality (the intersection) between the two compounds might help
discover what it is that makes the two compounds effective. Or, an engi-
neer might be interested in finding the intersection between one alloy
that is hard but brittle and another alloy that is soft but resilient.

Let’s take a look at intersection in action by examining two sets of num-
bers. In this example, each single number is a member of the set. The
first set of numbers is as follows:

1, 5, 8, 9, 32, 55, 78

The second set of numbers is as follows:

3, 7, 8, 22, 55, 71, 99

The intersection of these two sets of numbers is the numbers common to
both sets:

8, 55

The individual entries—the members—of each set don’t have to be just
single values. In fact, when solving problems with SQL, you’ll probably
deal with sets of rows.

Viescas_9780134858333.indb 244Viescas_9780134858333.indb 244 17/01/18 8:26 pm17/01/18 8:26 pm

 Intersection 245

According to set theory, when a member of a set is something more than
a single number or value, each member (or object) of the set has multiple
attributes or bits of data that describe the properties of each member.
For example, your favorite stew recipe is a complex member of the set of
all recipes that contains many different ingredients. Each ingredient is
an attribute of your complex stew member.

To find the intersection between two sets of complex set members, you
have to find the members that match on all the attributes. Also, all the
members in each set you’re trying to compare must have the same num-
ber and type of attributes. For example, suppose you have a complex
set like the one below, in which each row represents a member of the
set (a stew recipe), and each column denotes a particular attribute (an
ingredient).

Potatoes Water Lamb Peas

Rice Chicken Stock Chicken Carrots

Pasta Water Tofu Snap Peas

Potatoes Beef Stock Beef Cabbage

Pasta Water Pork Onions

A second set might look like the following:

Potatoes Water Lamb Onions

Rice Chicken Stock Turkey Carrots

Pasta Vegetable Stock Tofu Snap Peas

Potatoes Beef Stock Beef Cabbage

Beans Water Pork Onions

The intersection of these two sets is the one member whose attributes all
match in both sets:

Potatoes Beef Stock Beef Cabbage

Viescas_9780134858333.indb 245Viescas_9780134858333.indb 245 17/01/18 8:26 pm17/01/18 8:26 pm

246 Chapter 7 Thinking in Sets

Intersection between Result Sets

If the previous examples look like rows in a table or a result set to you,
you’re on the right track! When you’re dealing with rows in a set of data
that you fetch with SQL, the attributes are the individual columns. For
example, suppose you have a set of rows returned by a query like the fol-
lowing one. (These are recipes from my cookbook.)

Recipe Starch Stock Meat Vegetable

Lamb Stew Potatoes Water Lamb Peas

Chicken Stew Rice Chicken Stock Chicken Carrots

Veggie Stew Pasta Water Tofu Snap Peas

Irish Stew Potatoes Beef Stock Beef Cabbage

Pork Stew Pasta Water Pork Onions

A second query result set might look like the following. (These are
 recipes from my friend Mike’s cookbook.)

Recipe Starch Stock Meat Vegetable

Lamb Stew Potatoes Water Lamb Peas

Turkey Stew Rice Chicken Stock Turkey Carrots

Veggie Stew Pasta Vegetable Stock Tofu Snap Peas

Irish Stew Potatoes Beef Stock Beef Cabbage

Pork Stew Beans Water Pork Onions

The intersection of these two sets is the two members whose attributes
all match in both sets—that is, the two recipes that Mike and John have
in common.

Recipe Starch Stock Meat Vegetable

Lamb Stew Potatoes Water Lamb Peas

Irish Stew Potatoes Beef Stock Beef Cabbage

Sometimes it’s easier to see how intersection works using a set diagram.
A set diagram is an elegant yet simple way to diagram sets of information
and graphically represent how the sets intersect or overlap. You might

Viescas_9780134858333.indb 246Viescas_9780134858333.indb 246 17/01/18 8:26 pm17/01/18 8:26 pm

 Intersection 247

also have heard this sort of diagram called a Euler or Venn diagram.
(By the way, Leonard Euler was an eighteenth-century Swiss mathema-
tician, and John Venn used this particular type of logic diagram in 1880
in a paper he wrote while a Fellow at Cambridge University. So you can
see that “thinking in sets” is not a particularly modern concept!)

Let’s assume you have a nice database containing all your favorite reci-
pes. You really like the way onions enhance the flavor of beef, so you’re
interested in finding all recipes that contain both beef and onions.
 Figure 7-1 shows the set diagram that helps you visualize how to solve
this problem.

Recipes with Both
Beef and Onions

Recipes with
Beef

Recipes with
Onions

Figure 7-1 Finding out which recipes have both beef and onions

The upper circle represents the set of recipes that contain beef. The
lower circle represents the set of recipes that contain onions. Where
the two circles overlap is where you’ll find the recipes that contain
both—the intersection of the two sets. As you can imagine, you first ask
SQL to fetch all the recipes that have beef. In the second query, you ask
SQL to fetch all the recipes that have onions. As you’ll see later, you can
use a special SQL keyword—INTERSECT—to link the two queries to get
the final answer.

Yes, I know what you’re thinking. If your recipe table looks like the sam-
ples above, you could simply say the following:

“Show me the recipes that have beef as the meat ingredient and
onions as the vegetable ingredient.”

Viescas_9780134858333.indb 247Viescas_9780134858333.indb 247 17/01/18 8:26 pm17/01/18 8:26 pm

248 Chapter 7 Thinking in Sets

Translation Select the recipe name from the recipes table where meat ingredi-
ent is beef and vegetable ingredient is onions

Clean Up Select the recipe name from the recipes table where meat ingredi-
ent is = 'beef' and vegetable ingredient is = 'onions'

SQL SELECT RecipeName

FROM Recipes

WHERE MeatIngredient = 'Beef'

 AND VegetableIngredient = 'Onions'

Hold on now! If you remember the lessons you learned in Chapter 2, you
know that a single Recipes table probably won’t cut it. (Pun intended!)
What about recipes that have ingredients other than meat and vegeta-
bles? What about the fact that some recipes have many ingredients and
others have only a few? A correctly designed recipes database will have
a separate Recipe_Ingredients table with one row per recipe per ingredi-
ent. Each ingredient row will have only one ingredient, so no single row
can be both beef and onions at the same time. You’ll need first to find all
the beef rows, then find all the onions rows, and then intersect them on
RecipeID. (If you’re confused about why I’m criticizing the previous table
design, be sure to go back and read Chapter 2!)

How about a more complex problem? Let’s say you want to add car-
rots to the mix. A set diagram to visualize the solution might look like
Figure 7-2.

Recipes with
Beef

Recipes with
OnionsRecipes with

Carrots

Recipes with Beef,
Onions, and Carrots

Figure 7-2 Determining which recipes have beef, onions, and carrots

Viescas_9780134858333.indb 248Viescas_9780134858333.indb 248 17/01/18 8:26 pm17/01/18 8:26 pm

 Intersection 249

Got the hang of it? The bottom line is that when you’re faced with
solving a problem involving complex criteria, a set diagram can be an
invaluable way to see the solution expressed as the intersection of SQL
result sets.

Problems You Can Solve with an Intersection

As you might guess, you can use an intersection to find the matches
between two or more sets of information. Here’s just a small sample of
the problems you can solve using an intersection technique with data
from the sample databases:

“Show me customers and employees who have the same name.”

“Find all the customers who ordered a bicycle and also ordered a
helmet.”

“List the entertainers who played engagements for customers Bonnick-
sen and Rosales.”

“Show me the students who have an average score of 85 or better in
Art and who also have an average score of 85 or better in Computer
Science.”

“Find the bowlers who had a raw score of 155 or better at both Thun-
derbird Lanes and Bolero Lanes.”

“Show me the recipes that have beef and garlic.”

One of the limitations of using a pure intersection is that the values
must match in all the columns in each result set. This works well if
you’re intersecting two or more sets from the same table—for example,
customers who ordered bicycles and customers who ordered helmets. It
also works well when you’re intersecting sets from tables that have sim-
ilar columns—for example, customer names and employee names. In
many cases, however, you’ll want to find solutions that require a match
on only a few column values from each set. For this type of problem,
SQL provides an operation called a JOIN—an intersection on key values.
Here’s a sample of problems you can solve with a JOIN:

“Show me customers and employees who live in the same city.” (JOIN
on the city name.)

“List customers and the entertainers they booked.” (JOIN on the
engagement number.)

Viescas_9780134858333.indb 249Viescas_9780134858333.indb 249 17/01/18 8:26 pm17/01/18 8:26 pm

250 Chapter 7 Thinking in Sets

“Find the agents and entertainers who live in the same ZIP Code.”
(JOIN on the ZIP Code.)

“Show me the students and their teachers who have the same first
name.” (JOIN on the first name.)

“Find the bowlers who are on the same team.” (JOIN on the team ID.)

“Display all the ingredients for recipes that contain carrots.” (JOIN on
the ingredient ID.)

Never fear. In the next chapter I’ll show you all about solving these prob-
lems (and more) by using JOINs. And because so few commercial imple-
mentations of SQL support INTERSECT, I’ll show how to use a JOIN to
solve many problems that might otherwise require an INTERSECT.

Difference

What’s the difference between 21 and 10? If you answered 11, you’re on
the right track! A difference operation (sometimes also called subtract,
minus, or except) takes one set of values and removes the set of values
from a second set. What remains is the set of values in the first set that
are not in the second set. (As you’ll see later, EXCEPT is the keyword
used in the SQL Standard.)

Difference in Set Theory

Difference is another very powerful mathematical tool. As a scien-
tist, you might be interested in finding what’s different about two sets
of chemical or physical sample data. For example, a pharmaceutical
research chemist might have two compounds that seem to be very sim-
ilar, but one provides a certain beneficial effect and the other does not.
Finding what’s different about the two compounds might help uncover
why one works and the other does not. As an engineer, you might have
two similar designs, but one works better than the other. Finding the
difference between the two designs could be crucial to eliminating struc-
tural flaws in future buildings.

Let’s take a look at difference in action by examining two sets of num-
bers. The first set of numbers is as follows:

1, 5, 8, 9, 32, 55, 78

Viescas_9780134858333.indb 250Viescas_9780134858333.indb 250 17/01/18 8:26 pm17/01/18 8:26 pm

 Difference 251

The second set of numbers is as follows:

3, 7, 8, 22, 55, 71, 99

The difference of the first set of numbers minus the second set of num-
bers is the numbers that exist in the first set but not the second:

1, 5, 9, 32, 78

Note that you can turn the previous difference operation around. Thus,
the difference of the second set minus the first set is

3, 7, 22, 71, 99

The members of each set don’t have to be single values. In fact, you’ll
most likely be dealing with sets of rows when trying to solve problems
with SQL.

Earlier in this chapter I said that when a member of a set is something
more than a single number or value, each member of the set has mul-
tiple attributes (bits of information that describe the properties of each
member). For example, your favorite stew recipe is a complex member of
the set of all recipes that contains many different ingredients. You can
think of each ingredient as an attribute of your complex stew member.

To find the difference between two sets of complex set members, you
have to find the members that match on all the attributes in the second
set with members in the first set. Don’t forget that all of the members in
each set you’re trying to compare must have the same number and type
of attributes. Remove from the first set all the matching members you
find in the second set, and the result is the difference. For example, sup-
pose you have a complex set like the one below. Each row represents a
member of the set (a stew recipe), and each column denotes a particular
attribute (an ingredient).

Potatoes Water Lamb Peas

Rice Chicken Stock Chicken Carrots

Pasta Water Tofu Snap Peas

Potatoes Beef Stock Beef Cabbage

Pasta Water Pork Onions

Viescas_9780134858333.indb 251Viescas_9780134858333.indb 251 17/01/18 8:26 pm17/01/18 8:26 pm

252 Chapter 7 Thinking in Sets

A second set might look like this:

Potatoes Water Lamb Onions

Rice Chicken Stock Turkey Carrots

Pasta Vegetable Stock Tofu Snap Peas

Potatoes Beef Stock Beef Cabbage

Beans Water Pork Onions

The difference of the first set minus the second set is the objects in the
first set that don’t exist in the second set:

Potatoes Water Lamb Peas

Rice Chicken Stock Chicken Carrots

Pasta Water Tofu Snap Peas

Pasta Water Pork Onions

Difference between Result Sets

When you’re dealing with rows in a set of data fetched with SQL, the
attributes are the individual columns. For example, suppose you have a
set of rows returned by a query like the following one. (These are recipes
from John’s cookbook.)

Recipe Starch Stock Meat Vegetable

Lamb Stew Potatoes Water Lamb Peas

Chicken Stew Rice Chicken Stock Chicken Carrots

Veggie Stew Pasta Water Tofu Snap Peas

Irish Stew Potatoes Beef Stock Beef Cabbage

Pork Stew Pasta Water Pork Onions

A second query result set might look like the following. (These are reci-
pes from Mike’s cookbook.)

Viescas_9780134858333.indb 252Viescas_9780134858333.indb 252 17/01/18 8:26 pm17/01/18 8:26 pm

 Difference 253

Recipe Starch Stock Meat Vegetable

Lamb Stew Potatoes Water Lamb Peas

Turkey Stew Rice Chicken Stock Turkey Carrots

Veggie Stew Pasta Vegetable Stock Tofu Snap Peas

Irish Stew Potatoes Beef Stock Beef Cabbage

Pork Stew Beans Water Pork Onions

The difference between John’s recipes and Mike’s recipes (John’s minus
Mike’s) is all the recipes in John’s cookbook that do not appear in Mike’s
cookbook.

Recipe Starch Stock Meat Vegetable

Chicken Stew Rice Chicken Stock Chicken Carrots

Veggie Stew Pasta Water Tofu Snap Peas

Pork Stew Pasta Water Pork Onions

You can also turn this problem around. Suppose you want to find the
recipes in Mike’s cookbook that are not in John’s cookbook. Here’s the
answer:

Recipe Starch Stock Meat Vegetable

Turkey Stew Rice Chicken Stock Turkey Carrots

Veggie Stew Pasta Vegetable Stock Tofu Snap Peas

Pork Stew Beans Water Pork Onions

Again, I can use a set diagram to help visualize how a difference oper-
ation works. Let’s assume you have a nice database containing all your
favorite recipes. You really do not like the way onions taste with beef, so
you’re interested in finding all recipes that contain beef but not onions.
Figure 7-3 shows you the set diagram that helps you visualize how to
solve this problem.

Viescas_9780134858333.indb 253Viescas_9780134858333.indb 253 17/01/18 8:26 pm17/01/18 8:26 pm

254 Chapter 7 Thinking in Sets

Recipes with Beef
but Not Onions

Recipes with
Beef

Recipes with
Onions

Figure 7-3 Finding out which recipes have beef but not onions

The upper full circle represents the set of recipes that contain beef. The
lower full circle represents the set of recipes that contain onions. As
you remember from the discussion about INTERSECT, where the two
circles overlap is where you’ll find the recipes that contain both. The
dark-shaded part of the upper circle that’s not part of the overlapping
area represents the set of recipes that contain beef but do not contain
onions. Likewise, the part of the lower circle that’s not part of the over-
lapping area represents the set of recipes that contain onions but do
not contain beef.

You probably know that you first ask SQL to fetch all the recipes that
have beef. Next, you ask SQL to fetch all the recipes that have onions.
(As you’ll see later in this chapter, the special SQL keyword EXCEPT
links the two queries to get the final answer.)

Are you falling into the trap again? (You did read Chapter 2, didn’t you?)
If your recipe table looks like the samples earlier, you might think that
you could simply say the following:

“Show me the recipes that have beef as the meat ingredient and that
do not have onions as the vegetable ingredient.”

Viescas_9780134858333.indb 254Viescas_9780134858333.indb 254 17/01/18 8:26 pm17/01/18 8:26 pm

 Difference 255

Translation Select the recipe name from the recipes table where meat ingre-
dient is beef and vegetable ingredient is not onions

Clean Up Select the recipe name from the recipes table where meat ingre-
dient is = 'beef' and vegetable ingredient is not <> 'onions'

SQL SELECT RecipeName

FROM Recipes

WHERE MeatIngredient = 'Beef'

 AND VegetableIngredient <> 'Onions'

Again, as you learned in Chapter 2, a single Recipes table isn’t such a
hot idea. (Pun intended!) What about recipes that have ingredients other
than meat and vegetables? What about the fact that some recipes have
many ingredients and others have only a few? A correctly designed Reci-
pes database will have a separate Recipe_Ingredients table with one row
per recipe per ingredient. Each ingredient row will have only one ingredi-
ent, so no one row can be both beef and onions at the same time. You’ll
need first to find all the beef rows, then find all the onions rows, then
difference them on RecipeID.

How about a more complex problem? Let’s say you hate carrots, too. A
set diagram to visualize the solution might look like Figure 7-4.

Recipes with
Beef

Recipes with
OnionsRecipes with

Carrots

Recipes with Beef but
No Onions or Carrots

Figure 7-4 Finding out which recipes have beef but no onions or carrots

First you need to find the set of recipes that have beef, and then get
the difference with either the set of recipes containing onions or the set

Viescas_9780134858333.indb 255Viescas_9780134858333.indb 255 17/01/18 8:26 pm17/01/18 8:26 pm

256 Chapter 7 Thinking in Sets

containing carrots. Take that result and get the difference again with
the remaining set (onions or carrots) to leave only the recipes that have
beef but no carrots or onions (the light-shaded area in the upper circle).

Problems You Can Solve with Difference

Unlike intersection (which looks for common members of two sets), dif-
ference looks for members that are in one set but not in another set.
Here’s just a small sample of the problems you can solve using a differ-
ence technique with data from the sample databases:

“Show me customers whose names are not the same as any employee.”

“Find all the customers who ordered a bicycle but did not order a helmet.”

“List the entertainers who played engagements for customer Bonnick-
sen but did not play any engagement for customer Rosales.”

“Show me the students who have an average score of 85 or better in Art
but do not have an average score of 85 or better in Computer Science.”

“Find the bowlers who had a raw score of 155 or better at Thunderbird
Lanes but not at Bolero Lanes.”

“Show me the recipes that have beef but not garlic.”

One of the limitations of using a pure difference is that the values must
match in all the columns in each result set. This works well if you’re
finding the difference between two or more sets from the same table—
for example, customers who ordered bicycles and customers who ordered
helmets. It also works well when you’re finding the difference between
sets from tables that have similar columns—for example, customer
names and employee names.

In many cases, however, you’ll want to find solutions that require a
match on only a few column values from each set. For this type of
problem, SQL provides an OUTER JOIN operation, which is an inter-
section on key values that includes the unmatched values from one or
both of the two sets. Here’s a sample of problems you can solve with
an OUTER JOIN:

“Show me customers who do not live in the same city as any employ-
ees.” (OUTER JOIN on the city name.)

“List customers and the entertainers they did not book.” (OUTER JOIN
on the engagement number.)

Viescas_9780134858333.indb 256Viescas_9780134858333.indb 256 17/01/18 8:26 pm17/01/18 8:26 pm

 Union 257

“Find the agents who are not in the same ZIP Code as any enter-
tainer.” (OUTER JOIN on the ZIP Code.)

“Show me the students who do not have the same first name as any
teachers.” (OUTER JOIN on the first name.)

“Find the bowlers who have an average of 150 or higher who have
never bowled a game below 125.” (OUTER JOIN on the bowler ID from
two different tables.)

“Display all the ingredients for recipes that do not have carrots.”
(OUTER JOIN on the recipe ID.)

Don’t worry! I’ll show you all about solving these problems (and more)
using OUTER JOINs in Chapter 9, “OUTER JOINs.” Also, because only a
few commercial implementations of SQL support EXCEPT (the keyword for
difference), I’ll show how to use an OUTER JOIN to solve many problems
that might otherwise require an EXCEPT. In Chapter 18, “‘NOT’ and ‘AND’
Problems,” I’ll show you additional ways to solve EXCEPT problems.

Union

So far I’ve discussed finding the items that are common in two sets
(intersection) and the items that are different (difference). The third type
of set operation involves adding two sets (union).

Union in Set Theory

Union lets you combine two sets of similar information into one set. As
a scientist, you might be interested in combining two sets of chemical
or physical sample data. For example, a pharmaceutical research chem-
ist might have two different sets of compounds that seem to provide a
certain beneficial effect. The chemist can union the two sets to obtain a
single list of all effective compounds.

Let’s take a look at union in action by examining two sets of numbers.
The first set of numbers is as follows:

1, 5, 8, 9, 32, 55, 78

The second set of numbers is as follows:

3, 7, 8, 22, 55, 71, 99

Viescas_9780134858333.indb 257Viescas_9780134858333.indb 257 17/01/18 8:26 pm17/01/18 8:26 pm

258 Chapter 7 Thinking in Sets

The union of these two sets of numbers is the numbers in both sets
combined into one new set:

1, 5, 8, 9, 32, 55, 78, 3, 7, 22, 71, 99

Note that the values common to both sets, 8 and 55, appear only once
in the answer. Also, the sequence of the numbers in the result set is not
necessarily in any specific order. When you ask a database system to
perform a UNION, the values returned won’t necessarily be in sequence
unless you explicitly include an ORDER BY clause. In SQL, you can also
ask for a UNION ALL if you want to see the duplicate members.

The members of each set don’t have to be just single values. In fact, you’ll
probably deal with sets of rows when working with SQL.

To find the union of two or more sets of complex members, all the mem-
bers in each set you’re trying to union must have the same number and
type of attributes. For example, suppose you have a complex set like the
one below. Each row represents a member of the set (a stew recipe), and
each column denotes a particular attribute (an ingredient).

Potatoes Water Lamb Peas

Rice Chicken Stock Chicken Carrots

Pasta Water Tofu Snap Peas

Potatoes Beef Stock Beef Cabbage

Pasta Water Pork Onions

A second set might look like the following:

Potatoes Water Lamb Onions

Rice Chicken Stock Turkey Carrots

Pasta Vegetable Stock Tofu Snap Peas

Potatoes Beef Stock Beef Cabbage

Beans Water Pork Onions

The union of these two sets is the set of objects from both sets.
 Duplicates are eliminated.

Viescas_9780134858333.indb 258Viescas_9780134858333.indb 258 17/01/18 8:26 pm17/01/18 8:26 pm

 Union 259

Potatoes Water Lamb Peas

Rice Chicken Stock Chicken Carrots

Pasta Water Tofu Snap Peas

Potatoes Beef Stock Beef Cabbage

Pasta Water Pork Onions

Potatoes Water Lamb Onions

Rice Chicken Stock Turkey Carrots

Pasta Vegetable Stock Tofu Snap Peas

Beans Water Pork Onions

Combining Result Sets Using a Union

It’s a small leap from sets of complex objects to rows in SQL result sets.
When you’re dealing with rows in a set of data that you fetch with SQL,
the attributes are the individual columns. For example, suppose you
have a set of rows returned by a query like the following one. (These are
recipes from John’s cookbook.)

Recipe Starch Stock Meat Vegetable

Lamb Stew Potatoes Water Lamb Peas

Chicken Stew Rice Chicken Stock Chicken Carrots

Veggie Stew Pasta Water Tofu Snap Peas

Irish Stew Potatoes Beef Stock Beef Cabbage

Pork Stew Pasta Water Pork Onions

A second query result set might look like this one. (These are recipes
from Mike’s cookbook).

Recipe Starch Stock Meat Vegetable

Lamb Stew Potatoes Water Lamb Peas

Turkey Stew Rice Chicken Stock Turkey Carrots

Veggie Stew Pasta Vegetable Stock Tofu Snap Peas

Irish Stew Potatoes Beef Stock Beef Cabbage

Pork Stew Beans Water Pork Onions

Viescas_9780134858333.indb 259Viescas_9780134858333.indb 259 17/01/18 8:26 pm17/01/18 8:26 pm

260 Chapter 7 Thinking in Sets

The union of these two sets is all the rows in both sets. Maybe John and
Mike decided to write a cookbook together, too!

Recipe Starch Stock Meat Vegetable

Lamb Stew Potatoes Water Lamb Peas

Chicken Stew Rice Chicken Stock Chicken Carrots

Veggie Stew Pasta Water Tofu Snap Peas

Irish Stew Potatoes Beef Stock Beef Cabbage

Pork Stew Pasta Water Pork Onions

Turkey Stew Rice Chicken Stock Turkey Carrots

Veggie Stew Pasta Vegetable Stock Tofu Snap Peas

Pork Stew Beans Water Pork Onions

Let’s assume you have a nice database containing all your favorite reci-
pes. You really like recipes with either beef or onions, so you want a list
of recipes that contain either ingredient. Figure 7-5 shows you the set
diagram that helps you visualize how to solve this problem.

Recipes with Beef
or OnionsRecipes with

Beef

Recipes with
Onions

Figure 7-5 Finding out which recipes have either beef or onions

The upper circle represents the set of recipes that contain beef. The
lower circle represents the set of recipes that contain onions. The union
of the two circles gives you all the recipes that contain either ingredient,
with duplicates eliminated where the two sets overlap. As you probably
know, you first ask SQL to fetch all the recipes that have beef. In the
second query, you ask SQL to fetch all the recipes that have onions. As

Viescas_9780134858333.indb 260Viescas_9780134858333.indb 260 17/01/18 8:26 pm17/01/18 8:26 pm

 Union 261

you’ll see later, the SQL keyword UNION links the two queries to get the
final answer.

By now you know that it’s not a good idea to design a recipes database
with a single table. Instead, a correctly designed recipes database will
have a separate Recipe_Ingredients table with one row per recipe per
ingredient. Each ingredient row will have only one ingredient, so no one
row can be both beef or onions at the same time. You’ll need to first find
all the recipes that have a beef row, then find all the recipes that have
an onions row, and then union them.

Problems You Can Solve with Union

A union lets you “mush together” rows from two similar sets—with
the added advantage of no duplicate rows. Here’s a sample of the prob-
lems you can solve using a union technique with data from the sample
databases:

“Show me all the customer and employee names and addresses.”

“List all the customers who ordered a bicycle combined with all the
customers who ordered a helmet.”

“List the entertainers who played engagements for customer Bonnick-
sen combined with all the entertainers who played engagements for
customer Rosales.”

“Show me the students who have an average score of 85 or better in
Art together with the students who have an average score of 85 or bet-
ter in Computer Science.”

“Find the bowlers who had a raw score of 155 or better at Thunderbird
Lanes combined with bowlers who had a raw score of 140 or better at
Bolero Lanes.”

“Show me the recipes that have beef together with the recipes that
have garlic.”

As with other “pure” set operations, one of the limitations is that the val-
ues must match in all the columns in each result set. This works well
if you’re unioning two or more sets from the same table—for example,
customers who ordered bicycles and customers who ordered helmets. It
also works well when you’re performing a union on sets from tables that
have like columns—for example, customer names and addresses and
employee names and addresses. I’ll explore the uses of the SQL UNION
operator in detail in Chapter 10, “UNIONs.”

Viescas_9780134858333.indb 261Viescas_9780134858333.indb 261 17/01/18 8:26 pm17/01/18 8:26 pm

262 Chapter 7 Thinking in Sets

In many cases where you would otherwise union rows from the same
table, you’ll find that using DISTINCT (to eliminate the duplicate rows) with
complex criteria on joined tables will serve as well. I’ll show you all about
solving problems this way using JOINs in Chapter 8, “INNER JOINs.”

SQL Set Operations

Now that you have a basic understanding of set operations, let’s look
briefly at how they’re implemented in SQL.

Classic Set Operations versus SQL

As noted earlier, not many commercial database systems yet support set
intersection (INTERSECT) or set difference (EXCEPT) directly. The cur-
rent SQL Standard, however, clearly defines how these operations should
be implemented. I think that these set operations are important enough
to at least warrant an overview of the syntax.

As promised, I’ll show you alternative ways to solve an intersection or
difference problem in later chapters using JOINs. Because most data-
base systems do support UNION, Chapter 10 is devoted to its use. The
remainder of this chapter gives you an overview of all three operations.

Finding Common Values: INTERSECT

Let’s say you’re trying to solve the following seemingly simple problem:

“Show me the orders that contain both a bike and a helmet.”

Translation Select the distinct order numbers from the order details table
where the product number is in the list of bike and helmet
 product numbers

Clean Up Select the distinct order numbers from the order details table
where the product number is in the list of bike and helmet
 product numbers

SQL SELECT DISTINCT OrderNumber

FROM Order_Details

WHERE ProductNumber IN

 (1, 2, 6, 10, 11, 25, 26)

Viescas_9780134858333.indb 262Viescas_9780134858333.indb 262 17/01/18 8:26 pm17/01/18 8:26 pm

 SQL Set Operations 263

 ❖ Note Readers familiar with SQL might ask why I didn’t JOIN
Order_Details to Products and look for bike or helmet product names.
The simple answer is that I haven’t introduced the concept of a JOIN
yet, so I built this example on a single table using IN and a list of
known bike and helmet product numbers.

That seems to do the trick at first, but the answer includes orders that
contain either a bike or a helmet, and you really want to find ones that
contain both a bike and a helmet! If you visualize orders with bicycles
and orders with helmets as two distinct sets, it’s easier to understand
the problem. Figure 7-6 shows one possible relationship between the two
sets of orders using a set diagram.

Orders for Both
Bicycles and Helmets

Orders for
a Bicycle

Orders for
a Helmet

Figure 7-6 One possible relationship between two sets of orders

Actually, there’s no way to predict in advance what the relationship
between two sets of data might be. In Figure 7-6, some orders have a
bicycle in the list of products ordered, but no helmet. Some have a hel-
met, but no bicycle. The overlapping area, or intersection, of the two
sets is where you’ll find orders that have both a bicycle and a helmet.
 Figure 7-7 shows another case where all orders that contain a helmet
also contain a bicycle, but some orders that contain a bicycle do not con-
tain a helmet.

❖ Note Readers familiar with SQL might ask why I didn’t JOIN
Order_Details to Products and look for bike or helmet product names.
The simple answer is that I haven’t introduced the concept of a JOIN
yet, so I built this example on a single table using IN and a list of
known bike and helmet product numbers.

Viescas_9780134858333.indb 263Viescas_9780134858333.indb 263 17/01/18 8:26 pm17/01/18 8:26 pm

264 Chapter 7 Thinking in Sets

Seeing “both” in your request suggests you’re probably going to have to
break the solution into separate sets of data and then link the two sets
in some way. (Your request also needs to be broken into two parts.)

Orders for
a Bicycle

Orders for
a Helmet

Figure 7-7 All orders for a helmet also contain an order for a bicycle

“Show me the orders that contain a bike.”

Translation Select the distinct order numbers from the order details table
where the product number is in the list of bike product numbers

Clean Up Select the distinct order numbers from the order details table
where the product number is in the list of bike product numbers

SQL SELECT DISTINCT OrderNumber

FROM Order_Details

WHERE ProductNumber IN (1, 2, 6, 11)

“Show me the orders that contain a helmet.”

Translation Select the distinct order numbers from the order details table
where the product number is in the list of helmet product
numbers

Clean Up Select the distinct order numbers from the order details table
where the product number is in the list of helmet product
numbers

SQL SELECT DISTINCT OrderNumber

FROM Order_Details

WHERE ProductNumber IN (10, 25, 26)

Now you’re ready to get the final solution by using—you guessed it—an
intersection of the two sets. Figure 7-8 shows the SQL syntax diagram

Viescas_9780134858333.indb 264Viescas_9780134858333.indb 264 17/01/18 8:26 pm17/01/18 8:26 pm

 SQL Set Operations 265

that handles this problem. (Note that you can use INTERSECT more
than once to combine multiple SELECT statements.)

SELECT Expression

SELECT Statement SELECT StatementINTERSECT

ALL

Figure 7-8 Linking two SELECT statements with INTERSECT

You can now take the two parts of your request and link them with an
INTERSECT operator to get the correct answer:

SQL SELECT DISTINCT OrderNumber

FROM Order_Details

WHERE ProductNumber IN (1, 2, 6, 11)

INTERSECT

SELECT DISTINCT OrderNumber

FROM Order_Details

WHERE ProductNumber IN (10, 25, 26)

The sad news is that not many commercial implementations of SQL yet
support the INTERSECT operator. But all is not lost! Remember that the
primary key of a table uniquely identifies each row. (You don’t have to
match on all the fields in a row—just the primary key—to find unique
rows that intersect.) I’ll show you an alternative method (JOIN) in
 Chapter 8 that can solve this type of problem in another way. The good
news is that virtually all commercial implementations of SQL do support
JOIN.

Finding Missing Values: EXCEPT (DIFFERENCE)

Okay, let’s go back to the bicycles and helmets problem again. Let’s say
you’re trying to solve this seemingly simple request as follows:

“Show me the orders that contain a bike but not a helmet.”

Viescas_9780134858333.indb 265Viescas_9780134858333.indb 265 17/01/18 8:26 pm17/01/18 8:26 pm

266 Chapter 7 Thinking in Sets

Translation Select the distinct order numbers from the order details table
where the product number is in the list of bike product numbers
and product number is not in the list of helmet product numbers

Clean Up Select the distinct order numbers from the order details table
where the product number is in the list of bike product num-
bers and product number is not in the list of helmet product
numbers

SQL SELECT DISTINCT OrderNumber

FROM Order_Details

WHERE ProductNumber IN (1, 2, 6, 11)

 AND ProductNumber NOT IN (10, 25, 26)

Unfortunately, the answer shows you orders that contain only a bike!
The problem is that the first IN clause finds detail rows containing a
bicycle, but the second IN clause simply eliminates helmet rows. If you
visualize orders with bicycles and orders with helmets as two distinct
sets, you’ll find this easier to understand. Figure 7-9 shows one possible
relationship between the two sets of orders.

Orders for a Bicycle
but Not for a HelmetOrders for

a Bicycle

Orders for
a Helmet

Figure 7-9 Orders for a bicycle that do not also contain a helmet

Seeing “except” or “but not” in your request suggests you’re probably
going to have to break the solution into separate sets of data and then
link the two sets in some way. (Your request also needs to be broken into
two parts.)

Viescas_9780134858333.indb 266Viescas_9780134858333.indb 266 17/01/18 8:26 pm17/01/18 8:26 pm

 SQL Set Operations 267

“Show me the orders that contain a bike.”

Translation Select the distinct order numbers from the order details table
where the product number is in the list of bike product
numbers

Clean Up Select the distinct order numbers from the order details table
where the product number is in the list of bike product
numbers

SQL SELECT DISTINCT OrderNumber

FROM Order_Details

WHERE ProductNumber IN (1, 2, 6, 11)

“Show me the orders that contain a helmet.”

Translation Select the distinct order numbers from the order details table
where the product number is in the list of helmet product
numbers

Clean Up Select the distinct order numbers from the order details table
where the product number is in the list of helmet product
numbers

SQL SELECT DISTINCT OrderNumber

FROM Order_Details

WHERE ProductNumber IN (10, 25, 26)

Now you’re ready to get the final solution by using—you guessed it—a
difference of the two sets. SQL uses the EXCEPT keyword to denote a dif-
ference operation. Figure 7-10 shows you the SQL syntax diagram that
handles this problem.

SELECT Expression

SELECT Statement SELECT StatementEXCEPT
ALL

Figure 7-10 Linking two SELECT statements with EXCEPT

Viescas_9780134858333.indb 267Viescas_9780134858333.indb 267 17/01/18 8:26 pm17/01/18 8:26 pm

268 Chapter 7 Thinking in Sets

You can now take the two parts of your request and link them with an
EXCEPT operator to get the correct answer:

SQL SELECT DISTINCT OrderNumber

FROM Order_Details

WHERE ProductNumber IN (1, 2, 6, 11)

EXCEPT

SELECT DISTINCT OrderNumber

FROM Order_Details

WHERE ProductNumber IN (10, 25, 26)

Remember from my earlier discussion about the difference operation
that the sequence of the sets matters. In this case, you’re asking for
bikes “except” helmets. If you want to find out the opposite case—orders
for helmets that do not include bikes—you can turn it around as follows:

SQL SELECT DISTINCT OrderNumber

FROM Order_Details

WHERE ProductNumber IN (10, 25, 26)

EXCEPT

SELECT DISTINCT OrderNumber

FROM Order_Details

WHERE ProductNumber IN (1, 2, 6, 11)

The sad news is that not many commercial implementations of SQL yet
support the EXCEPT operator. Hang on to your helmet! Remember that
the primary key of a table uniquely identifies each row. (You don’t have
to match on all the fields in a row—just the primary key—to find unique
rows that are different.) I’ll show you an alternative method (OUTER
JOIN) in Chapter 9 that can solve this type of problem in another way.
The good news is that nearly all commercial implementations of SQL do
support OUTER JOIN.

Combining Sets: UNION

One more problem about bicycles and helmets, then I’ll pedal on to the
next chapter. Let’s say you’re trying to solve this request, which looks
simple enough on the surface:

Viescas_9780134858333.indb 268Viescas_9780134858333.indb 268 17/01/18 8:26 pm17/01/18 8:26 pm

 SQL Set Operations 269

“Show me the orders that contain either a bike or a helmet.”

Translation Select the distinct order numbers from the order details table
where the product number is in the list of bike and helmet
 product numbers

Clean Up Select the distinct order numbers from the order details table
where the product number is in the list of bike and helmet
 product numbers

SQL SELECT DISTINCT OrderNumber

FROM Order_Details

WHERE ProductNumber IN (1, 2, 6, 10, 11, 25, 26)

Actually, that works just fine! So why use a UNION to solve this
 problem? The truth is, you probably would not. However, if I make the
problem more complicated, a UNION would be useful:

“List the customers who ordered a bicycle together with the vendors
who provide bicycles.”

Unfortunately, answering this request involves creating a couple of queries
using JOIN operations, then using UNION to get the final result. Because
I haven’t shown you how to do a JOIN yet, I’ll save solving this problem for
Chapter 10. Gives you something to look forward to, doesn’t it?

Let’s get back to the “bicycles or helmets” problem and solve it with a
UNION. If you visualize orders with bicycles and orders with helmets as
two distinct sets, then you’ll find it easier to understand the problem.
 Figure 7-11 shows you one possible relationship between the two sets of
orders.

Orders for a Bicycle
or a Helmet

Orders for
a Bicycle

Orders for
a Helmet

Figure 7-11 Orders for bicycles or helmets

Viescas_9780134858333.indb 269Viescas_9780134858333.indb 269 17/01/18 8:26 pm17/01/18 8:26 pm

270 Chapter 7 Thinking in Sets

Seeing “either,” “or,” or “together” in your request suggests that you’ll need
to break the solution into separate sets of data and then link the two sets
with a UNION. This particular request can be broken into two parts:

“Show me the orders that contain a bike.”

Translation Select the distinct order numbers from the order details table
where the product number is in the list of bike product
numbers

Clean Up Select the distinct order numbers from the order details table
where the product number is in the list of bike product numbers

SQL SELECT DISTINCT OrderNumber

FROM Order_Details

WHERE ProductNumber IN (1, 2, 6, 11)

“Show me the orders that contain a helmet.”

Translation Select the distinct order numbers from the order details table
where the product number is in the list of helmet product
numbers

Clean Up Select the distinct order numbers from the order details table
where the product number is in the list of helmet product
numbers

SQL SELECT DISTINCT OrderNumber

FROM Order_Details

WHERE ProductNumber IN (10, 25, 26)

Now you’re ready to get the final solution by using—you guessed it—a
union of the two sets. Figure 7-12 shows the SQL syntax diagram that
handles this problem.

SELECT Expression

SELECT Statement SELECT StatementUNION
ALL

Figure 7-12 Linking two SELECT statements with UNION

Viescas_9780134858333.indb 270Viescas_9780134858333.indb 270 17/01/18 8:26 pm17/01/18 8:26 pm

 Summary 271

You can now take the two parts of your request and link them with a
UNION operator to get the correct answer:

SQL SELECT DISTINCT OrderNumber

FROM Order_Details

WHERE ProductNumber IN (1, 2, 6, 11)

UNION

SELECT DISTINCT OrderNumber

FROM Order_Details

WHERE ProductNumber IN (10, 25, 26)

The good news is that nearly all commercial implementations of SQL
support the UNION operator. As is perhaps obvious from the exam-
ples, a UNION might be doing it the hard way when you want to get an
“either-or” result from a single table. UNION is most useful for compiling
a list from several similarly structured but different tables. I’ll explore
UNION in much more detail in Chapter 10.

Summary

I began this chapter by discussing the concept of a set. Next, I discussed
each of the major set operations implemented in SQL in detail—intersec-
tion, difference, and union. I showed how to use set diagrams to visu-
alize the problem you’re trying to solve. Finally, I introduced you to the
basic SQL syntax and keywords (INTERSECT, EXCEPT, and UNION) for
all three operations just to whet your appetite.

At this point you’re probably saying, “Wait a minute, why did you show
me three kinds of set operations—two of which I probably can’t use?”
Remember the title of the chapter: “Thinking in Sets.” If you’re going to
be at all successful solving complex problems, you’ll need to break your
problem into result sets of information that you then link back together.

So, if your problem involves “it must be this, and it must be that,” you
might need to solve the “this” and then the “that” and then link them
to get your final solution. The SQL Standard defines a handy INTER-
SECT operation—but an INNER JOIN might work just as well. Read on
in Chapter 8.

Viescas_9780134858333.indb 271Viescas_9780134858333.indb 271 17/01/18 8:26 pm17/01/18 8:26 pm

272 Chapter 7 Thinking in Sets

Likewise, if your problem involves “it must be this, but it must not be
that,” you might need to solve the “this” and then the “that” and then
subtract the “that” from the “this” to get your answer. I showed you the
SQL Standard EXCEPT operation, but an OUTER JOIN might also do
the trick. Get the details in Chapters 9 and 18.

Finally, I showed you how to add sets of information using a UNION. As
promised, I’ll really get into UNION in Chapter 10.

Viescas_9780134858333.indb 272Viescas_9780134858333.indb 272 17/01/18 8:26 pm17/01/18 8:26 pm

 909 909

Index

Symbols
* (asterisk), 195
|| (concatenation operator), 138
> (greater than), 186–188
>= (greater than or equal to), 186
< (less than), 186–188
<= (less than or equal to), 186
() (parentheses), 144, 210–211, 216

CASE (conditional expressions), 684
% (percent sign), 195
? (question mark), 195
_ (underscore), 195

Numbers
2016 SQL Standard, 4

A
ABS, 142
Access, CASE (conditional expressions),

684
Actian, 74
adding sorting specifications to UNION,

382
aggregate expressions, 445
aggregate functions, 444–446, 798–799

AVG, calculating mean values,
451–452

Bowling League Database, 844–846
COUNT, 406–408, 446
COUNT (value expression), 448–449
COUNT(*), 446

counting all the rows, 446–448

in filters, 457–459
grouping data, 477–478
MAX, 406–408

finding largest values, 452–454
MIN, finding smallest values,

454–455
Null values, 445
OVER(), 803–805
Sales Orders Database, 847–850
sample statements, 459–466

Bowling League Database, 463–465
Entertainment Agency Database,

461–462
Recipes Database, 465–466
Sales Orders Database,

460–461
School Scheduling Database,

462–463
School Scheduling Database, 851–852
subqueries, 457–458
SUM, computing totals, 450–451
syntax diagrams, 444
using more than one function, 455–457
windows functions, 827–834

alias names, assigning to tables, INNER
JOIN, 282–284

ALL, 371, 375, 417–420
all rows, deleting with DELETE statement,

605–607
alphabetical order, sorting by, 108
American National Standards Institute

(ANSI), 2, 75
evolution of SQL/86, 76–79

Viescas_9780134858333.indb 909Viescas_9780134858333.indb 909 17/01/18 8:27 pm17/01/18 8:27 pm

910 analytical databases

analytical databases, 16
AND, 205–206

finding multiple matches in the same
table

EXISTS, 646–648
GROUP BY, 648–652
HAVING, 648–652
IN, 644–646
INNER JOIN, 642–644

sample statements, 652–657
Bowling League Database,

663–668
Entertainment Agency Database,

657–659
Recipes Database, 668–671
Sales Orders Database, 653–657
School Scheduling Database,

659–663
sets with multiple AND criteria,

628–629
using with OR, 209–211

ANSI (American National Standards
Institute), 2, 75

evolution of SQL/86, 76–79
ANSI NCITS-H2, 80
ANSI/ISO standards, 76–79
ANY, 417–420
APPROXIMATE NUMERIC, 129
arithmetic operations

IBM DB2, 890–908
Microsoft Access, 893
Microsoft SQL Server, 895
MySQL, 898
Oracle, 902
PostgreSQL, 904

artificial primary keys, 60
assigning correlation names to tables,

INNER JOIN, 282–284
asterisks (*), 195

shortcuts, 102–103
ASYMMETRIC, 189–190
attributes. See columns
AVG, calculating mean values,

451–452
avoiding HAVING COUNT trap,

513–518

B
base tables, views (relational databases), 23
BETWEEN comparisons, 189–190
BETWEEN predicate, 178, 189–192

checking for overlapping ranges,
219–220

BETWEEN…AND, 189
BINARY, 128
blank spaces, 160
BOOLEAN, 129
Bowling League Database

aggregate functions, 463–465, 844–846
AND, 663–668
CASE (conditional expressions),

702–705
CUBE, 783–784
DELETE statement, 618–620
driver tables, 742–743
expressions, 169–171
GROUP BY, 496–499
GROUPING SETS, 786–787
HAVING clause, 525–526
INNER JOIN

looking for matching values, 311–314
more than two tables,

302–305
two tables, 298–299

INSERT statement, 596–597
NOT, 663–668
NTILE(), 842–843
OUTER JOIN, 359–361
search conditions, 231–232
SELECT statement, 119–120
subqueries

in expressions, 428–429
in filters, 434–435

UNION, 392–394
unlinked tables, 734–735
UPDATE statement, 565–568

C
calculated columns, 40
calculating

mean values with AVG, 451–452
row number with ROW_NUMBER,

814–818

Viescas_9780134858333.indb 910Viescas_9780134858333.indb 910 17/01/18 8:27 pm17/01/18 8:27 pm

 comparison predicate 911

totals on combinations using CUBE,
765–770

Call-Level Interface (CLI), 80
Cartesian product, 277–278, 325, 711–712
cascade deletion rule, 63
CASE (conditional expressions), 678

parentheses, 684
reasons for using, 678
sample statements, 692–693

Bowling League Database, 702–705
Entertainment Agency Database,

696–698
Sales Orders Database,

693–696
School Scheduling Database, 698–702

searched CASE, solving problems,
688–691

simple CASE, solving problems,
683–687

syntax, 678–682
WHERE clause, 691

CASE expression, syntax diagrams, 679
case sensitivity, 183

string comparison, 197
CAST function

changing data types, 130–132
concatenation expressions, 141

CEIL, 142
Chamberlin, Dr. Donald, 72
changing, data types, CAST function,

130–132
CHARACTER, 127
character string literals, 133–134
checking, relationships, INNER JOIN,

291–292
classic set operations versus SQL,

259–262
EXCEPT, 265–268
INTERSECT, 262–265
UNION, 268–271

clauses
FROM clause, 279–280, 343

embedding SELECT statements, 286
OUTER JOIN, 324–325, 327

CORRESPONDING clause, 373
HAVING. See HAVING clause

ORDER BY clause. See ORDER BY
clause

SELECT statement, 91, 92–93
USING clause, 280–281
VALUES clause, INSERT statement,

575–578
WHERE clause. See WHERE clause

CLI (Call-Level Interface), 80
cloud servers, 83
Codd, Dr. Edgar F.16–17, 72
collating sequences, 107
column expressions, subqueries,

402–405, 422–423
column references, 275–276

syntax diagrams, 276
column restrictions, GROUP BY,

486–488
columns

calculated columns, 40
counting values in, 448–449
fine-tuning, 35

naming conventions, 35–38
structure of columns, 38–40

mixing with expressions,
481–483

multipart columns, 39
resolving, 40–43

multiple columns, updating, 541–543
multivalued columns, 39

resolving, 43–45
relational databases, 21
requesting all columns with SELECT

statement, 101–103
resolving duplicate columns, 50–56
retrieving multiple columns with

SELECT statement, 100–101
combining

sets, UNION, 257–259, 268–271
UNION. See UNION

commercial implementations of SQL, 83
COMMIT, 540
common values, finding with INTERSECT,

262–265
comparing string values, 181–184
comparison predicate, 178, 181

aggregate functions as filters, 457–458
comparing string values, 181–184

Viescas_9780134858333.indb 911Viescas_9780134858333.indb 911 17/01/18 8:27 pm17/01/18 8:27 pm

912 comparison predicate

equality and inequality, 185–186
less than and greater than, 186–188

composite primary keys, 57
Computer Associates International,

Inc., 74
computing totals with SUM, 450–451
concatenation expressions, 138–141

CAST function, 141
syntax diagrams, 138

conditional expressions. See CASE
(conditional expressions)

conditions
expressing, 225–226
multiple conditions, 204–205

converting values into data types, CAST
function, 130–132

correlation names, assigning to tables
(INNER JOIN), 282–284

CORRESPONDING clause, 373
COUNT, 406–408, 445–446

counting all the rows, 446–448
counting values in columns or

expressions, 448–449
HAVING clause, 513–518

COUNT (value expression), 446, 448–449
COUNT(*), 827–828

counting all the rows, 446–448
counting

all the rows, COUNT(*), 446–448
values in columns or expressions,

448–449
CROSS JOIN, 713

deciding when to use, 713–714
sample statements, 725–726
unlinked tables, 711–712, 715–716

CUBE, 778–779
Bowling League Database, 783–784
calculating totals on combinations,

765–770
Sales Orders Database, 784–786

D
data

fetching from two tables
with JOIN, 370
with UNION, 371

grouping, 472–474

with aggregate functions, 477–478
with GROUP BY. See GROUP BY
mixing columns and expressions,

481–483
versus information, 93–95
inserting

with INSERT statements. See INSERT
statement

with SELECT expressions, 581–587
ranking, with RANK(), 818–824
splitting into quintiles, 824–827
unlinked data. See unlinked data

data types
APPROXIMATE NUMERIC, 129
BINARY, 128
BOOLEAN, 129
changing with CAST function, 130–132
CHARACTER, 127
DATETIME, 129
EXACT NUMERIC, 128
extended data types, 130
for IBM DB2, 857, 889
INTERVAL, 129, 147–148
JOIN eligible data types, 275
for Microsoft Access, 893
for Microsoft SQL Server, 895
MySQL, 897
NATIONAL CHARACTER, 128
Oracle, 901
PostgreSQL, 904

data warehouses, 19
database design, 30–31, 34–35
database structures, 34–35
database theory, 30–31
databases

analytical databases, 16
operational databases, 16
relational database model,

16–17
relational databases. See relational

databases
sample databases, 9–11
types of, 15–16

DATE, 136, 138
Date, C. J., 76
date and time arithmetic expressions,

138, 146

Viescas_9780134858333.indb 912Viescas_9780134858333.indb 912 17/01/18 8:27 pm17/01/18 8:27 pm

 Entertainment Agency Database 913

date expressions, 147–148
time expressions, 149–150

date expressions, 147–148, 156–157
SELECT statement, time expressions,

156
syntax diagrams, 147

DATETIME, 129
datetime literals, 135–138
DB2, 74
DEFAULT keyword, 576
default pad character, 184
degree of participation, relationships,

66–68
DELETE statement, 604–605

deleting
all rows, 605–607
some rows, 607–611

sample statements, 612–613
Bowling League Database, 618–620
Entertainment Agency Database,

614–617
Sales Orders Database, 613–614
School Scheduling Database,

617–618
syntax diagrams, 604
uses for, 611–612
VALUES clause, 603–604
WHERE clause, 603–604

deleting. See also resolving
all rows with DELETE statement,

605–607
duplicate rows with SELECT statement,

50–56
some rows with DELETE statement,

607–611
deletion rule, relationships,

63–64
delimited identifiers, 37, 48
DENSE_RANK(), 820, 823–824
derived tables, 284
descending order, sorting by, 109
design, database design, 30–31, 34–35
diagrams. See also Appendix A; syntax

diagrams
predicates, 681–682
Search Condition, 680
SELECT queries, 106

SELECT statement, 92
utilizing, 5–9

difference, 243, 250
problems you can solve with, 256–257
result sets, 252–256
set theory, 250–252

DISTINCT, 103–105, 415, 576
GROUP BY, 485
MAX, 454
MIN, 455
UNION, 389

driver tables, 717
Bowling League Database, 742–743
Entertainment Agency Database,

737–739
Sales Orders Database, 736–737
School Scheduling Database,

739–742
setting up, 717–720
using, 720–725

dynamic data, 16

E
eliminating. See deleting
embedding

INNER JOIN in SELECT statements,
284–286

JOINs within JOINs, 286–291
OUTER JOIN, 333–344

SELECT statements in OUTER JOINs,
330–333

Entertainment Agency Database
aggregate functions, 461–462
AND, 657–659
CASE (conditional expressions),

696–698
DELETE statement, 614–617
driver tables, 737–739
expressions, 165–167
GROUP BY, 493–494
GROUPING SETS, 787–788
HAVING clause, 521–522
INNER JOIN

looking for matching values,
309–311

more than two tables, 301–302
two tables, 296–297

Viescas_9780134858333.indb 913Viescas_9780134858333.indb 913 17/01/18 8:27 pm17/01/18 8:27 pm

914 Entertainment Agency Database

INSERT statement, 593–595
NOT, 657–659
NTILE(), 843–844
OUTER JOIN, 354–355
ROW_NUMBER(), 835–837
search conditions, 228–230
SELECT statement, 116–117
subqueries

in expressions, 426–427
in filters, 432–433

UNION, 389–390
unlinked tables, 728–731
UPDATE statement, 558–562

Entry SQL, 78
equality, comparison predicate, 185–186
ESCAPE option, LIKE predicate,

198–199
Euler, Leonard, 246–247
Euler diagram, 246–247
events, relational databases, 20
evolution of SQL/86, 76–79
EXACT NUMERIC, 128
EXCEPT, 265–268
excluding rows with NOT, 201–204,

211–214
executing queries, 112
EXISTS, 420–422

AND, 654–655, 657–658
finding multiple matches in the same

table, 646–648
EXP, 142
explicit values, specifying,

132–133
expressing conditions, 225–226
expressions, 126

aggregate expressions, 445
counting values in, 448–449
grouping with GROUP BY, 488–490
mixing with columns, 481–483
sample statements, 163

Bowling League Database, 169–171
Entertainment Agency Database,

165–167
Sales Orders Database,

164–165
School Scheduling Database,

167–169

SELECT clause, 150–151
concatenation expressions, 151–152
naming, 152–154

SELECT expression, 372
SELECT statement

date expressions, 156–157
mathematical expressions, 154–156

subqueries, sample statements,
425–430

types of
data, 127–130
concatenation expressions, 138–141
date and time arithmetic expressions,

138, 146–150
mathematical expressions, 138,

142–146
UPDATE expressions, subqueries,

548–551
value expressions, 157–159

syntax diagrams, 549
extended data types, 130
eXtensible Markup Language (XML), 19
extensions, SQL/92, 79

F
Federal Information Processing Standard

(FIPS), 80
fetching data

from two tables with JOIN, 370
from two tables with UNION,

371
fields. See columns
filter rows, subqueries, 543–546
filtering

deciding between WHERE and
HAVING, 510–513

grouped data, 506–510
filters

aggregate functions, 457–459
subqueries, 408–411
subqueries as, 423–424

sample statements, 430–437
finding

common values, INTERSECT,
262–265

largest values with MAX, 452–454

Viescas_9780134858333.indb 914Viescas_9780134858333.indb 914 17/01/18 8:27 pm17/01/18 8:27 pm

 grouping 915

matching values with INNER JOINs,
293–294

sample statements, 306–316
missing values

EXCEPT, 265–268
OUTER JOIN, 349

multiple matches in the same table
EXISTS, 646–648
GROUP BY, 648–652
HAVING, 648–652
IN, 644–646
INNER JOIN, 642–644

partially matched information, OUTER
JOIN, 349–350

related rows, INNER JOIN, 293
smallest values with MIN, 454–455

fine-tuning
columns, 35

naming conventions, 35–38
resolving multipart columns, 40–43
resolving multivalued columns, 43–45
structure of columns, 38–40

tables, 46
naming conventions, 46–48
relationships, 60–63
relationships, deletion rule, 63–64
relationships, participation, 64–68
resolving duplicate columns, 50–56
structure of tables, 48–50

FIPS (Federal Information Processing
Standard), 80

FLOOR, 142
foreign keys, relational databases, 22–23
FROM clause, 279–280, 343

embedding, SELECT statements, 286
INNER JOIN, 277
OUTER JOIN, 324–325, 327
SELECT statement, 92, 331

FULL OUTER JOIN, 344–347
non-key values, 347–348
syntax, 344–347
syntax diagrams, 344

Full SQL, 79
functions

aggregate functions. See aggregate
functions

CAST function, 130–132

IBM DB2, 890–892
Microsoft Access, 893–894
Microsoft SQL Server, 896–897
MySQL, 898–901
Oracle, 902–903

future of SQL (Structured Query
Language), 83–84

G
generating primary key values with

INSERT statements, 578–580
greater than (>), 186–188
greater than or equal to (>=), 186
GROUP BY, 475, 692, 725, 757, 761

column restrictions, 486–488
finding multiple matches in the same

table, 648–652
grouping expressions, 488–490
mixing columns and expressions,

481–483
versus OVER(), 800
sample statements, 491–501

Bowling League Database, 496–499
Entertainment Agency Database,

493–494
Recipes Database, 499–500
Sales Orders Database, 491–492
School Scheduling Database,

495–496
SELECT statement, 93
sets with multiple NOT criteria,

638–641
simulating SELECT DISTINCT

statements, 484–485
in subqueries in WHERE clauses,

483–484
syntax, 475–481, 753
syntax diagrams, 475
uses for, 490–491

grouped data, filtering, 506–510
grouping

calculating totals on combinations with
CUBE, 765–770

creating a union of totals with
GROUPING SETS, 771–775

CUBE, 778–779

Viescas_9780134858333.indb 915Viescas_9780134858333.indb 915 17/01/18 8:27 pm17/01/18 8:27 pm

916 grouping

data, 472–474
aggregate functions, 477–478
GROUP BY. See GROUP BY
mixing columns and expressions,

481–483
expressions, with GROUP BY,

488–490
GROUPING SETS, 775–776
ROLLUP, 777–778
sample statements, 780–781

CUBE, 783–786
GROUPING SETS, 786–788
ROLLUP, 781–783

in sub-groups, 750–753
totals in hierarchies, ROLLUP,

754–765
variations on techniques,

775–780
GROUPING function, 758
GROUPING SETS, 775–776

Bowling League Database, 786–787
creating union of totals, 771–775
Entertainment Agency Database,

787–788

H
HAVING

filtering, 510–513
grouped data, 508–510

finding multiple matches in the same
table, 648–652

sample statements, 519–527
Bowling League Database, 525–526
Entertainment Agency Database,

521–522
Recipes Database, 526–527
Sales Orders Database, 520–521
School Scheduling Database,

522–525
SELECT statement, 93
sets with multiple NOT criteria,

638–641
uses for, 518–519

HAVING COUNT trap, avoiding,
513–518

Hernandez, Mike, 17
hierarchies, totals, ROLLUP, 754–765

history of SQL (Structured Query
Language)

commercial implementations, 83
early vendor implementations, 73–74
origins of, 72–73
standards, 75–76

I
IBM, 18, 19, 74

early vendor implementations, 73–74
System R, 72, 73

IBM DB2
arithmetic operations, 890–908
data types, 857, 889
functions, 890–892
Identity data type, 579

identifiers
delimited identifiers, 37, 48
regular identifiers, 37, 48

Identity data type, 579
IN, finding multiple matches in the same

table, 644–646
IN predicate, 178

membership condition, 192–194
for subqueries, 411–417

INCITS DM32.2, 80
inequality, comparison predicate, 185–186
information

versus data, 93–95
sorting with SELECT statement,

105–107
Ingres, 74
INGRES (Interactive Graphics Retrieval

System), 18
Inmon, William H., 19
INNER JOIN, 274, 713

assigning correlation names to tables,
282–284

FROM clause, 277
embedding

JOINs within JOINs, 286–291
SELECT statements, 284–286

finding
matching values, 293–294
multiple matches in the same table,

642–644
related rows, 293

Viescas_9780134858333.indb 916Viescas_9780134858333.indb 916 17/01/18 8:27 pm17/01/18 8:27 pm

 less than (<) 917

relationships, checking,
291–292

sample statements, 295
looking for matching values, 306–316
more than two tables, 300–306
two tables, 295–300

syntax, 276
syntax diagrams, 277
tables, 277–282

INSERT INTO, 576
INSERT statement, 573–575

generating primary key values,
578–580

inserting values, 575–578
sample statements, 588–589

Bowling League Database, 596–597
Entertainment Agency Database,

593–595
Sales Orders Database, 589–592
School Scheduling Database,

595–596
SELECT expression, 581
syntax diagrams with VALUES clause,

575
uses for, 587–588

inserting
data

with INSERT statement. See INSERT
statement

with SELECT expressions, 581–587
values, with INNER JOINs, 575–578

Interactive Graphics Retrieval System
(INGRES), 18

Intermediate SQL, 78
International Organization for

Standardization. See ISO
(International Organization for
Standardization)

INTERSECT, 262–265
intersection, 243, 244

problems you can solve with,
249–250

result sets, 246–249
set theory, 244–245

INTERVAL, 129, 147–148
IS NULL, 634–635
IS NULL predicate, 178

ISO (International Organization for
Standardization), 2, 76

evolution of SQL/86, 76–79

J
JOIN, 273–274

determining what is legal to join,
275

embedding within JOINs, 286–291
OUTER JOIN, 333–344

fetching data from two tables, 370
INNER JOIN. See INNER JOIN
NATURAL JOIN, 329–330
OUTER JOIN. See OUTER JOIN
UNION JOIN, 348
UPDATE clause, 546–548

JOIN eligible data types, 275

K
keys

primary keys, tables, 56–60
relational databases, 22–23

keywords
DATE, 138
DEFAULT keyword, 576
DISTINCT, 103–105, 576
GROUP BY, 93
HAVING, 93
INSERT INTO, 576
special predicate keywords

ALL, 417–420
ANY, 417–420
EXISTS, 420–422
IN, 411–417
SOME, 417–420

TIME, 138
TOP, 111
VALUES, 576
WHERE, 93

L
largest values, finding with MAX,

452–454
LEFT OUTER JOIN, 323–324, 332
less than (<), 186–188

Viescas_9780134858333.indb 917Viescas_9780134858333.indb 917 17/01/18 8:27 pm17/01/18 8:27 pm

918 less than or equal to (<=)

less than or equal to (<=), 186
LIKE predicate, 178

ESCAPE option, 198–199
pattern match condition,

194–199
linking

multiple tables, embedding JOINs
within JOINs, 286–291

SELECT statements with INTERSECT,
265

linking tables, 44–45
literal values, 132–133

character string literals, 133–134
datetime literals, 135–138
numeric literals, 135

LN, 142

M
mandatory participation, 64
many-to-many relationships,

61–62
relational databases, 27–29

matches, finding multiple matches in the
same table

EXISTS, 646–648
GROUP BY, 648–652
HAVING, 648–652
IN, 644–646
INNER JOIN, 642–644

matching values, finding with INNER
JOINs, 293–294

sample statements, 306–316
mathematical expressions, 138,

142–146
Nulls, 163
parentheses, 144
SELECT statement, 154–156
syntax diagrams, 143

MAX, 406–408
finding largest values,

452–454
mean values, calculating with AVG,

451–452
membership condition, IN predicate,

192–194
mere mortals, 1–2
Microsoft Access, 19, 195

arithmetic operations, 893
data types, 893
functions, 893–894

Microsoft Office Access, CASE (conditional
expressions), 684

Microsoft SQL Server
arithmetic operations, 895
data types, 895
functions, 896–897
Identity data type, 579
ORDER BY clause, 653, 757

MIN, finding smallest values, 454–455
missing values, 161

finding with OUTER JOIN, 349
MOD, 142
multicolumn sorts, 109–110
multipart columns, 39

resolving, 40–43
multiple columns, updating, 541–543
multiple conditions, 204–205
multiple tables, linking (embedding JOINs

within JOINs),
286–291

multivalued columns, 39
resolving, 43–45

MySQL
arithmetic operations, 898
data types, 897
functions, 898–901
ROLLUP, 765

N
names, qualifying in ON clause, 279–280
naming conventions

for columns, 35–38
for tables, 46–48

naming expressions (SELECT clause),
152–154

NATIONAL CHARACTER, 128
National Committee for Information

Technology Standards (NCITS), 80
National Institute of Standards and

Technology (NIST), 80
NATURAL JOIN, 281, 329–330
NCITS (National Committee for

Information Technology Standards),
80

Viescas_9780134858333.indb 918Viescas_9780134858333.indb 918 17/01/18 8:27 pm17/01/18 8:27 pm

 OUTER JOIN 919

nested parenthetical operations, 144
NEXTVAL property, Oracle, 579
NIST (National Institute of Standards and

Technology), 80
non-key values, FULL OUTER JOIN,

347–348
NOT

excluding rows, 201–204, 211–214
sample statements, 652–657

Bowling League Database, 663–668
Entertainment Agency Database,

657–659
Recipes Database, 668–671
Sales Orders Database, 653–657
School Scheduling Database,

659–663
sets with multiple NOT criteria,

629–630
GROUP BY, 638–641
HAVING, 638–641
NOT EXISTS, 637–638
NOT IN, 635–637
OUTER JOIN, 632–635

syntax diagrams, 202
NOT EXISTS, sets with multiple NOT

criteria, 637–638
NOT IN, sets with multiple NOT criteria,

635–637
NTILE(), 824–827

Bowling League Database, 842–843
Entertainment Agency Database,

843–844
Null, 159–162, 199–201, 221–225

aggregate functions, 445
problems with, 162–163

Null condition, syntax diagrams,
199

numeric literals, 135

O
objects, relational databases, 20
ODBC (Open Database Connectivity), 80
ON clause

qualifying names, 279–280
search conditions, 278

one-to-many relationships, 61
relational databases, 26

one-to-one relationships, 60–61
relational databases, 25–26

Open Database Connectivity (ODBC), 80
operational databases, 16
operations, set operations, 243–244
operators

AND, 205–206
using with OR, 209–211

NOT operator, excluding rows, 211–214
OR, 206–209

determining result sets, 224
using with AND, 209–211

optional participation, 64
OR, 205, 206–209

determining result sets, 224
using with AND, 209–211

Oracle
arithmetic operations, 902
data types, 901
functions, 902–903
NEXTVAL property, 579

Oracle Corporation, 74
ORDER BY, 106–107, 474, 652–653, 692,

725, 757
predicates, 805–810
sorting SELECT queries, 108–111
UNION, 382

order of precedence, 143
search conditions, 214–215

less is more, 217–218
prioritizing, 215–217

origins of SQL (Structured Query
Language), 72–73

orphaned rows, 63
OUTER JOIN, 321–323, 349, 713

embedding
JOINs within JOINs, 333–344
SELECT statements, 330–333

finding
missing values, 349
partially matched information,

349–350
FULL OUTER JOIN. See FULL OUTER

JOIN
grouping data types, 478
LEFT OUTER JOIN, 323–324
RIGHT OUTER JOIN, 323–324

Viescas_9780134858333.indb 919Viescas_9780134858333.indb 919 17/01/18 8:27 pm17/01/18 8:27 pm

920 OUTER JOIN

sample statements, 350–365
Bowling League Database, 359–361
Entertainment Agency Database,

354–355
Recipes Database, 362–364
Sales Orders Database, 351–353
School Scheduling Database, 356–359

sets with multiple NOT criteria,
632–635

syntax, 324–330
tables, 324–330

OVER(), 799, 811
aggregate functions, 803–805
versus GROUP BY, 800
predicates

ORDER BY, 805–810
PARTITION BY, 800–801
ROWS (or RANGE), 811–814

overlapping ranges, checking for, 219–221

P
parentheses, 210–211, 216

CASE expression, 684
mathematical expressions, 144

partially matched information, finding
with OUTER JOIN, 349–350

participation, relationships, 64–68
PARTITION BY, 800–801
pattern match condition, 194–199

syntax diagrams, 195
pattern strings, samples, 195–196
percent sign (%), 195
PERCENT_RANK(), 820–821, 824
PostgreSQL, 904–905

arithmetic operations, 904
data types, 904
functions, 904–905

POWER, 142
predicates, 93, 177

BETWEEN . . . AND, 189
BETWEEN, 178

range condition, 189–192
combining with AND, 205–206
comparison, 178
comparison predicate, aggregate

functions as filters,
457–458

diagrams, 681–682
IN, 178

membership condition,
192–194

IS NULL, 178
unknown values, 199–201

LIKE, 178
ESCAPE option, 198–199
pattern match condition,

194–199
OR, 206–209
ORDER BY, 805–810
PARTITION BY, 800–801
ROWS (or RANGE), 811–814

primary key values, generating with
INSERT statements,
578–580

primary keys, 20
relational databases, 22–23
tables, 56–60

primary tables, one-to-one relationships,
25

prioritizing search conditions, order of
precedence,
215–217

problems, solving
with searched CASE, 688–691
with simple CASE, 683–687
with unlinked data, 714–716

Q
qualifying names, ON clause, 279–280
quantified predicates, (SOME, ANY, ALL),

417–420
QUEL (Query Language), 74
queries

executing, 112
RDBMS (relational database

management system), 24
SELECT queries. See SELECT query

query expression, 106–107
Query Language (QUEL), 74
query optimizers, 218
query specification, 106–107
question mark (?), 195
quintiles, splitting, data, 824–827
quotes, single quote, 133

Viescas_9780134858333.indb 920Viescas_9780134858333.indb 920 17/01/18 8:27 pm17/01/18 8:27 pm

 ROLLBACK 921

R
RANGE, 811–814, 827–828
range condition, 189–192
ranges, overlapping ranges (checking for),

219–221
RANK(), 818–824
ranking data, with RANK(), 818–824
RDBMS (relational database management

system), 17–19, 74
REAL, 146
reasons for learning SQL (Structured

Query Language), 84
Recipes Database

aggregate functions, 465–466
AND, 668–671
GROUP BY, 499–501
HAVING clause, 526–527
INNER JOIN

looking for matching values,
314–315

more than two tables, 305–306
two tables, 299–300

NOT, 668–671
OUTER JOIN, 362–364
ROW_NUMBER(), 837–838
search conditions, 232–233
SELECT statement, 120–121
subqueries

in expressions, 429–430
in filters, 435–437

UNION, 394–395
records. See rows
referential integrity, 62–63
refining searches, 176
regular identifiers, 37, 48
related rows, finding with INNER JOINs,

293
relational database management system

(RDBMS), 17–19, 74
relational database model, 16–17
relational databases

columns, 21
keys, 22–23
reasons for learning, 29–30
relations, 19
relationships, 25

many-to-many, 27–29

one-to-many, 26
one-to-one, 25–26

rows, 21–22
tables, 20–21
views, 23–24

Relational Software, Inc., 74
Relational Technology, Inc., 74
relations. See tables
relationships

checking with INNER JOIN,
291–292

deletion rule, 63–64
many-to-many relationships,

61–62
one-to-many relationships, 61
one-to-one relationships,

60–61
participation, 64–68
relational databases, 25

many-to-many, 27–29
one-to-many, 26
one-to-one, 25–26

tables, 60–63
requests

translating into SQL, SELECT
statement, 95–99

writing with UNION, 372
combining complex SELECT

statements, 375–379
using simple SELECT statements,

372–375
resolving. See also deleting

duplicate columns, 50–56
multipart columns, 40–43
multivalued columns, 43–45

restrict deletion rule, 63
restrictions, column restrictions

(GROUP BY), 486–488
result sets

determining with OR, 224
difference, 252–256
intersection, 246–249
union, combining, 259–261

retrieving multiple columns, with SELECT
statement, 100–101

RIGHT OUTER JOIN, 323–324
ROLLBACK, 540

Viescas_9780134858333.indb 921Viescas_9780134858333.indb 921 17/01/18 8:27 pm17/01/18 8:27 pm

922 ROLLUP

ROLLUP, 777–778
MySQL, 765
Sales Orders Database, 781–782
sample statements, 781–782
School Scheduling Database, 782–783
totals in hierarchies, 754–765

row numbers, calculating with ROW_
NUMBER, 814–818

row subqueries, 400–402
row value constructors, 401
ROW_NUMBER(), 814–818, 827–828,

829
Entertainment Agency Database,

835–837
Recipes Database, 837–838

rows
counting with COUNT(*), 446–448
deleting all rows with DELETE

statement, 605–607
deleting some rows with DELETE

statement, 607–611
eliminating duplicates with SELECT

statement, 103–105
excluding, with NOT, 201–204,

211–214
filter rows, subqueries, 543–546
related rows, finding with INNER JOIN,

293
relational databases, 21–22
selected rows, updating, 631–633

ROWS (or RANGE), 811–814, 827–828

S
SAA (Systems Application Architecture),

80
Sales Orders Database

aggregate functions, 460–461,
847–850

AND, 653–657
CASE (conditional expressions),

693–696
CUBE, 784–786
DELETE statement, 613–614
driver tables, 736–737
expressions, 164–165
GROUP BY, 491–492
HAVING clause, 520–521

INNER JOIN
looking for matching values, 306–309
more than two tables, 300–301
two tables, 295–296

INSERT statement, 589–592
NOT, 653–657
OUTER JOIN, 351–353
ROLLUP, 781–782
search conditions, 227–228
SELECT statement, 114–115
subqueries

in expressions, 425–426
in filters, 430–431

UNION, 385–389
unlinked tables, 726–728
UPDATE statement, 554–557
windows functions, 838–839

sample databases, 9–11
sample statements

aggregate functions, 459–466
Bowling League Database, 463–465
Entertainment Agency Database,

461–462
Recipes Database, 465–466
Sales Orders Database, 460–461
School Scheduling Database,

462–463
AND, 652–657

Bowling League Database, 663–668
Entertainment Agency Database,

657–659
Recipes Database, 668–671
Sales Orders Database, 653–657
School Scheduling Database, 659–663

CASE (conditional expressions),
692–693

Bowling League Database, 702–705
Entertainment Agency Database,

696–698
Sales Orders Database, 693–696
School Scheduling Database,

698–702
CROSS JOIN, 725–726
DELETE statement, 612–613

Bowling League Database, 618–620
Entertainment Agency Database,

614–617

Viescas_9780134858333.indb 922Viescas_9780134858333.indb 922 17/01/18 8:27 pm17/01/18 8:27 pm

 sample statements 923

Sales Orders Database, 613–614
School Scheduling Database, 617–618

expressions, 163–171
Bowling League Database, 169–171
Entertainment Agency Database,

165–167
Sales Orders Database, 164–165
School Scheduling Database, 167–169

GROUP BY, 491–501
Bowling League Database, 496–499
Entertainment Agency Database,

493–494
Recipes Database, 499–500
Sales Orders Database, 491–492
School Scheduling Database,

495–496
grouping, 780–781

CUBE, 783–786
GROUPING SETS, 786–788
ROLLUP, 781–783

HAVING clause, 519–527
Bowling League Database, 525–526
Entertainment Agency Database,

521–522
Recipes Database, 526–527
Sales Orders Database,

520–521
School Scheduling Database, 522–525

INNER JOIN, 295
looking for matching values, 306–316
more than two tables, 300–306
two tables, 295–300

INSERT statement, 588–589
Bowling League Database, 596–597
Entertainment Agency Database,

593–595
Sales Orders Database, 589–592
School Scheduling Database,

595–596
NOT, 652–657

Bowling League Database, 663–668
Entertainment Agency Database,

657–659
Recipes Database, 668–671
Sales Orders Database, 653–657
School Scheduling Database,

659–663

OUTER JOIN, 350–365
Bowling League Database, 359–361
Entertainment Agency Database,

354–355
Recipes Database, 362–364
Sales Orders Database, 351–353
School Scheduling Database, 356–359

search conditions, 226–227
Bowling League Database, 231–232
Entertainment Agency Database,

228–229
Recipes Database, 232–233
Sales Orders Database, 227–228
School Scheduling Database, 230–231

SELECT queries, 113–121
SELECT statement, 113–121

Bowling League Database, 119–120
Entertainment Agency Database,

116–117
Recipes Database, 120–121
Sales Orders Database, 114–115
School Scheduling Database, 117–118

subqueries, 424–425
Bowling League Database, 428–429,

434–435
Entertainment Agency Database,

426–427, 432–433
in expressions, 425–430
in filters, 430–437
Recipes Database, 429–430, 435–437
Sales Orders Database,

425–426, 430–431
School Scheduling Database, 427–428,

433–434
UNION, 385–395

Bowling League Database, 392–394
Entertainment Agency Database,

389–390
Recipes Database, 394–395
Sales Orders Database,

385–389
School Scheduling Database,

390–392
unlinked data

driver tables, 736–743
unlinked tables, 726–736

UPDATE statement, 552–553

Viescas_9780134858333.indb 923Viescas_9780134858333.indb 923 17/01/18 8:27 pm17/01/18 8:27 pm

924 sample statements

Bowling League Database, 565–568
Entertainment Agency Database,

558–562
Sales Orders Database, 554–557
School Scheduling Database,

562–565
windows functions, 834–835

aggregate functions, 844–852
NTILE(), 842–844
RANK(), DENSE_RANK, and

PERCENT_RANK, 838–841
ROW_NUMBER(), 835–838

samples, defined pattern strings,
195–196

saved queries, RDBMS (relational
database management system), 24

saving SELECT statement, 111–112
scalar subqueries, 400, 402
schema for sample databases. See

Appendix B
School Scheduling Database

aggregate functions, 462–463,
851–852

AND, 659–663
CASE (conditional expressions),

698–702
DELETE statement, 617–618
driver tables, 739–742
expressions, 167–169
GROUP BY, 495–496
HAVING clause, 522–525
INNER JOIN

looking for matching values, 311
two tables, 297–298

INSERT statement, 595–596
NOT, 659–663
OUTER JOIN, 356–359
ROLLUP, 782–783
search conditions, 230–231
SELECT statement, 117–118
subqueries

in expressions, 427–428
in filters, 433–434

UNION, 390–392
unlinked tables, 731–734
UPDATE statement, 562–565
windows functions, 840–841

search conditions, 177
AND, 205–206
OR, 206–209
order of precedence, 214–215

less is more, 217–218
prioritizing, 215–217

sample statements, 226–233
Bowling League Database, 231–232
Entertainment Agency Database,

228–229
Recipes Database, 232–233
Sales Orders Database, 227–228
School Scheduling Database,

230–231
syntax diagrams, 205, 680

searched CASE, solving problems,
688–691

searching, for unknown values,
199–201

secondary tables, one-to-one
relationships, 25

SELECT clause, expressions, 150–151
concatenation expressions, 151–152
naming, 152–154

SELECT DISTINCT statements,
simulating, 484–485

SELECT expression, 372
inserting data, 581–587

SELECT queries, 106
diagrams, 106
sample statements, 113–121
sorting information, 108–111

SELECT statement, 90, 91–93
FROM clause, 331
clauses, 91, 92–93
complex SELECT statements,

combining, 375–379
data versus information, 93–95
date expressions, time expressions,

156
diagrams, 92
embedding

INNER JOIN, 284–286
OUTER JOINs, 330–333

expressions
date expressions, 156–157
mathematical expressions, 154–156

Viescas_9780134858333.indb 924Viescas_9780134858333.indb 924 17/01/18 8:27 pm17/01/18 8:27 pm

 some rows, deleting with DELETE statement 925

GROUP BY, syntax diagrams, 475
requesting all columns, 101–103
retrieving multiple columns,

100–101
rows, eliminating duplicates, 103–105
sample statements, 113–121

Bowling League Database, 119–120
Entertainment Agency Database,

116–117
Recipes Database, 120–121
Sales Orders Database, 114–115
School Scheduling Database,

117–118
saving, 111–112
simple SELECT statements

syntax diagrams, 403
writing requests with UNION,

372–375
sorting information, 105–107
translating requests into SQL, 95–99
WHERE clause, 176–178

using, 179–181
selected rows, updating, 631–633
SEQUEL (Structured English Query

Language), 72
SEQUEL-XRM, 72
set diagrams, 246–247
set membership, IN predicate, 411–417
set operations, 243–244

classic set operations versus SQL
EXCEPT, 265–268
INTERSECT, 262–265
UNION, 268–271

classic versus SQL, 259–262
difference, 243, 250

problems you can solve with,
256–257

result sets, 252–256
set theory, 250–252

intersection, 243, 244
problems you can solve with, 249–250
result sets, 246–249
set theory, 244–245

union, 243
combining result sets, 259–261
problems you can solve with, 261–262
set theory, 257–259

set theory
difference, 250–252
intersection, 244–245
union, 257–259

sets, 242–243, 628
AND, multiple AND criteria, 628–629
combining

with UNION, 268–271
with union, 257–259

finding multiple matches in the same
table

EXISTS, 646–648
GROUP BY, 648–652
HAVING, 648–652
IN, 644–646
INNER JOIN, 642–644

including some criteria but excluding
others, 630–631

NOT
GROUP BY, 638–641
HAVING, 638–641
multiple NOT criteria, 629–630
NOT EXISTS, 637–638
NOT IN, 635–637
OUTER JOIN, 632–635

shortcuts, requesting all columns with
SELECT statement, 101–103

simple CASE, solving problems,
683–687

simple primary keys, 57
simple SELECT statements, syntax

diagrams, 403
simple UPDATE expression, 537–538
simple WHERE clause, deleting some

rows, 607
simulating SELECT DISTINCT statements,

GROUP BY, 484–485
single quote, 133
smallest values, finding, with MIN,

454–455
solving problems

with searched CASE, 688–691
with simple CASE, 683–687
with unlinked data, 714–716

SOME, 417–420
some rows, deleting with DELETE

statement, 607–611

Viescas_9780134858333.indb 925Viescas_9780134858333.indb 925 17/01/18 8:27 pm17/01/18 8:27 pm

926 sort order

sort order, 108–109
sorting

by alphabetical order, 108
information

ORDER BY clause, SELECT queries,
108–111

SELECT statement, 105–107
UNION, 381–383

special predicate keywords, subqueries
ALL, 417–420
ANY, 417–420
EXISTS, 420–422
IN predicate, 411–417
SOME, 417–420

specifying, explicit values, 132–133
Specifying Queries As Relational

Expressions (SQUARE), 73
splitting data into quintiles, 824–827
SQL (Structured Query Language)

commercial implementations, 83
future of, 83–84
history of SQL (Structured Query

Language)
early vendor implementations,

73–74
evolution of SQL/86, 76–79
standards, 75–76

origins of, 72–73
reasons for learning, 84
set operations

classic versus SQL, 259–262
EXCEPT, 265–268
INTERSECT, 262–265
UNION, 268–271

standards. See standards
SQL Standard, structure of,

81–82
SQL/86, 76

evolution of, 76–79
SQL/89, 76–77
SQL/92, 78–79
SQL:2016, 83–84
SQL/Data System (SQL/DS), 74
SQL/DS (SQL/Data System), 74
SQRT, 142
SQUARE (Specifying Queries As

Relational Expressions), 73

standards
evolution of SQL/86, 76–79
FIPS (Federal Information Processing

Standard), 80
history of SQL (Structured Query

Language), 75–76
ODBC (Open Database Connectivity),

80
SAA (Systems Application Architecture),

80
SQL Standard, structure of, 81–82
SQL/89, 76–77
SQL/92, 78–79
X/OPEN, 79

START TRANSACTION, 540
static data, 16
Stonebraker, Michael, 74
string comparison, case sensitivity,

197
string values, comparing, 181–184
structure of

columns, fine-tuning, 38–40
databases, 34–35
SQL Standard, 81–82
tables, 48–50

Structured English Query Language
(SEQUEL), 72

sub-groups, grouping, 750–753
subqueries, 400, 422

aggregate functions, 457–458
COUNT, 406–408
MAX, 406–408

as column expressions, 402–405,
422–423

deleting some rows, DELETE statement,
609–611

in filter rows, 543–546
as filters, 408–411, 423–424
row subqueries, 400–402
sample statements, 424–425

Bowling League Database,
428–429, 434–435

Entertainment Agency Database,
426–427, 432–433

in expressions, 425–430
in filters, 430–437
Recipes Database, 429–430, 435–437

Viescas_9780134858333.indb 926Viescas_9780134858333.indb 926 17/01/18 8:27 pm17/01/18 8:27 pm

 tables 927

Sales Orders Database, 425–426,
430–431

School Scheduling Database, 427–428,
433–434

scalar subqueries, 400, 402
special predicate keywords

ALL, 417–420
ANY, 417–420
EXISTS, 420–422
IN predicate, 411–417
SOME, 417–420

table subqueries, 400, 402
UPDATE expressions, 548–551
in WHERE clauses, GROUP BY,

483–484
subtotal combinations, calculating with

CUBE, 765–770
SUM, computing totals, 450–451
SYMMETRIC, 189–190
syntax

CASE (conditional expressions),
678–682

FULL OUTER JOIN, 344–347
GROUP BY, 475–481, 753
INNER JOIN, 276
OUTER JOIN, 324–330
subqueries as column expressions,

402–405
subqueries as filters, 408–411
windows functions, 798–800

syntax diagrams
aggregate functions, 444
CASE expression, 679
column references, 276
comparison condition, 181
concatenation expressions, 138
date and time literals, 136
date expressions, 147
DELETE statement, 604
FULL OUTER JOIN, 344
INSERT statement with SELECT

expressions, 581
INSERT statement with VALUES

clause, 575
mathematical expressions, 143
naming expressions, 153
NOT operator, 202

Null condition, 199
numeric literals, 135
pattern match condition, 195
predicates, 681–682
query using INNER JOIN on two tables,

277
range condition, 189
search conditions, 205
SELECT statement that includes value

expression, 159
SELECT statement with GROUP BY

clause, 475
SELECT statement with WHERE

clause, 177
simple SELECT statements, 403
time expressions, 149
UNION JOIN, 348
UNION statement, 370
using UNION to combine two simple

SELECT statements, 372
utilizing, 5–9
Value Expression, 679
value expressions, 157, 549

System R, 18, 72, 73

T
table references, 345
table subqueries, 400, 402
tables

assigning correlation names to, INNER
JOIN, 282–284

derived tables, 284
driver tables, 717

Bowling League Database, 742–743
Entertainment Agency Database,

737–739
Sales Orders Database, 736–737
School Scheduling Database, 739–742
setting up, 717–720
using, 720–725

fine-tuning, 46
naming conventions, 46–48
relationships, 60–63
relationships, deletion rule, 63–64
relationships, participation, 64–68
resolving duplicate columns, 50–56
structure of tables, 48–50

Viescas_9780134858333.indb 927Viescas_9780134858333.indb 927 17/01/18 8:27 pm17/01/18 8:27 pm

928 tables

INNER JOIN, 277–282
linking, embedding JOINs within

JOINs, 286–291
linking tables, 44–45
naming conventions, 46–48
OUTER JOIN, 324–330
primary keys, 56–60
relational databases, 20–21
unlinked tables, 713

creating, 710–712
techniques for grouping, variations on,

775–780
TIME, 136
time expressions, 149–150

SELECT statement, 156
syntax diagrams, 149

TIMESTAMP, 137, 138
TOP, 111
totals

calculating totals on combinations,
using CUBE, 765–770

computing with SUM, 450–451
creating a union of totals, with

GROUPING SETS, 771–775
in hierarchies, ROLLUP, 754–765

transactions, 540–541
translating requests into SQL, SELECT

statement, 95–99
translation statements, 108
triggers, 549, 551
tuple. See rows
type of participation, relationships, 64–68
types of data, expressions, 127–130
types of expressions

concatenation expressions, 138–141
date and time arithmetic expressions,

138, 146
date expressions, 147–148
time expressions, 149–150

mathematical expressions, 138,
142–146

U
underscore (_), 195
UNION, 268–271, 369–372

combining three tables, 380
DISTINCT, 389

fetching data from two tables,
371

sample statements, 385–395
Bowling League Database, 392–394
Entertainment Agency Database,

389–390
Recipes Database, 394–395
Sales Orders Database, 385–389
School Scheduling Database,

390–392
sorting, 381–383
syntax diagrams, 370

combining two simple SELECT
statements, 372

uses for, 383–384
using more than once, 379–381
writing requests, 372

combining complex SELECT
statements, 375–379

using simple SELECT statements,
372–375

union, 243
problems you can solve with,

261–262
result sets, combining, 259–261
set theory, 257–259

UNION ALL, 371
UNION JOIN, 348
union of totals, creating with GROUPING

SETS, 771–775
unknown values. See Null, 161
unlinked data, 710–713

driver tables, 717
setting up, 717–720
using, 720–725

sample statements
driver tables, 736–743
unlinked tables, 726–736

solving problems, 714–716
unlinked tables, 713

Bowling League Database, 734–735
creating, 710–712
Entertainment Agency Database,

728–731
Sales Orders Database, 726–728
School Scheduling Database,

731–734

Viescas_9780134858333.indb 928Viescas_9780134858333.indb 928 17/01/18 8:27 pm17/01/18 8:27 pm

 windows functions 929

UPDATE clause, JOIN, 546–548
UPDATE expressions

simple UPDATE expression,
537–538

subqueries, 548–551
UPDATE statement, 536–537

sample statements, 552–553
Bowling League Database, 565–568
Entertainment Agency Database,

558–562
Sales Orders Database, 554–557
School Scheduling Database,

562–565
subqueries in filter rows,

543–546
updating

multiple columns, 541–543
selected rows, 631–633

uses for, 551–552
updating

multiple columns, 541–543
selected rows, 631–633

USING clause, 280–281
USING syntax, OUTER JOIN, 329

V
Value Expression, 679–680

syntax diagram, 679
value expressions, 157–159

syntax diagrams, 157, 549
values

converting into data types, CAST
function, 130–132

finding largest values, with MAX,
452–454

inserting with INSERT statements,
575–578

literal values, 132–133
matching values, finding with INNER

JOIN, 293–294
mean values, calculating with AVG,

451–452
missing values, 161

finding with OUTER JOIN, 349
non-key values, FULL OUTER JOIN,

347–348
Null, 159–162

smallest values, finding with MIN,
454–455

unknown values, 161
VALUES clause

DELETE statement, 603–604
INSERT statement, 575–578
syntax diagrams, INSERT statement,

575
VALUES keyword, 576
Venn, John, 246–247
Venn diagram, 246–247
verifying you’re updating the correct rows,

632–633
DELETE statement, 607–608

views, relational databases, 23–24
VM/CMS operating system, 74

W
WHERE clause, 176–178

CASE (conditional expressions), 691
comparison predicate, 181

comparing string values, 181–184
equality and inequality, 185–186
less than and greater than, 186–188

DELETE statement, 603–604
deleting, some rows, 607
filtering, 510–513
IS NULL, unknown values, 199–201
LIKE predicate, pattern match

condition, 194–199
IN predicate, membership condition,

192–194
range condition, 189–192
row subqueries, 401–402
SELECT statement, 93
subqueries

as filters, 423–424
GROUP BY, 483–484

using, 179–181
WIDTH_BUCKET, 142
windows functions, 794–798

aggregate functions, 827–834
calculating row number, 814–818
OVER()

ORDER BY clause, 805–810
PARTITION BY, 800–801
ROWS (or RANGE), 811–814

Viescas_9780134858333.indb 929Viescas_9780134858333.indb 929 17/01/18 8:27 pm17/01/18 8:27 pm

930 windows functions

ranking data with RANK(), 818–824
Sales Orders Database, 838–839
sample statements, 834–835

aggregate functions, 844–852
NTILE(), 842–844
RANK(), DENSE_RANK, and

PERCENT_RANK, 838–841
ROW_NUMBER(), 835–838

School Scheduling Database, 840–841
splitting data into quintiles with

NTILE(), 824–827
syntax, 798–800

WITH RECURSIVE, 717
Wong, Eugene, 74
writing requests with UNION, 372

combining complex SELECT
statements, 375–379

using simple SELECT statements,
372–375

X–Y
X3, 75
X3H2, 75–76

evolution of SQL/86, 76–79
XML (eXtensible Markup Language), 19
X/OPEN, 79

Z
zero, 160
zero-length string, 160

Viescas_9780134858333.indb 930Viescas_9780134858333.indb 930 17/01/18 8:27 pm17/01/18 8:27 pm

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

