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Introduction

What’s in this book? This book is designed to be a practical introduction to data structures 
and algorithms for students who have just begun to write computer programs. This intro-
duction will tell you more about the book, how it is organized, what experience we expect 
readers will have before starting the book, and what knowledge you will get by reading it 
and doing the exercises.

Who This Book Is For
Data structures and algorithms are the core of computer science. If you’ve ever wanted 
to understand what computers can do, how they do it, and what they can’t do, then you 
need a deep understanding of both (it’s probably better to say "what computers have 
difficulty doing" instead of what they can’t do). This book may be used as a text in a data 
structures and/or algorithms course, frequently taught in the second year of a univer-
sity computer science curriculum. The text, however, is also designed for professional 
programmers, for high school students, and for anyone else who needs to take the next 
step up from merely knowing a programming language. Because it’s easy to understand, 
it is also appropriate as a supplemental text to a more formal course. It is loaded with 
examples, exercises, and supplemental materials, so it can be used for self-study outside of 
a classroom setting.

Our approach in writing this book is to make it easy for readers to understand how data 
structures operate and how to apply them in practice. That’s different from some other 
texts that emphasize the mathematical theory, or how those structures are implemented 
in a particular language or software library. We’ve selected examples with real-world appli-
cations and avoid using math-only or obscure examples. We use figures and visualization 
programs to help communicate key ideas. We still cover the complexity of the algorithms 
and the math needed to show how complexity impacts performance.

What You Need to Know Before You Read This Book
The prerequisites for using this book are: knowledge of some programming language and 
some mathematics. Although the sample code is written in Python, you don’t need to 
know Python to follow what’s happening. Python is not hard to understand, if you’ve 
done some procedural and/or object-oriented programming. We’ve kept the syntax in the 
examples as general as possible,

More specifically, we use Python version 3 syntax. This version differs somewhat from 
Python 2, but not greatly. Python is a rich language with many built-in data types and librar-
ies that extend its capabilities. Our examples, however, use the more basic constructs for two 
reasons: it makes them easier to understand for programmers familiar with other languages, 
and it illustrates the details of the data structures more explicitly. In later chapters, we do 
make use of some Python features not found in other languages such as generators and list 
comprehensions. We explain what these are and how they benefit the programmer.

Data Structures & Algorithms in Python
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Of course, it will help if you’re already familiar with Python (version 2 or 3). Perhaps 
you’ve used some of Python’s many data structures and are curious about how they are 
implemented. We review Python syntax in Chapter 1, "Overview," for those who need 
an introduction or refresher. If you’ve programmed in languages like Java, C++, C#, 
JavaScript, or Perl, many of the constructs should be familiar. If you’ve only programmed 
using functional or domain-specific languages, you may need to spend more time becom-
ing familiar with basic elements of Python. Beyond this text, there are many resources 
available for novice Python programmers, including many tutorials on the Internet.

Besides a programming language, what should every programmer know? A good knowl-
edge of math from arithmetic through algebra is essential. Computer programming is 
symbol manipulation. Just like algebra, there are ways of transforming expressions to 
rearrange terms, put them in different forms, and make certain parts more prominent, 
all while preserving the same meaning. It’s also critical to understand exponentials in 
math. Much of computer science is based on knowing what raising one number to a 
power of another means. Beyond math, a good sense of organization is also beneficial 
for all programming. Knowing how to organize items in different ways (by time, by 
function, by size, by complexity, and so on) is crucial to making programs efficient and 
maintainable. When we talk about efficiency and maintainability, they have particular 
meanings in computer science. Efficiency is mostly about how much time it takes to 
compute things but can also be about the amount of space it takes. Maintainability refers 
to the ease of understanding and modifying your programs by other programmers as 
well as yourself.

You’ll also need knowledge of how to find things on the Internet, download and install 
software, and run them on a computer. The instructions for downloading and running the 
visualization programs can be found in Appendix A of this book. The Internet has made 
it very easy to access a cornucopia of tools, including tools for learning programming and 
computer science. We expect readers to already know how to find useful resources and 
avoid sources that might provide malicious software.

What You Can Learn from This Book
As you might expect from its title, this book can teach you about how data structures make 
programs (and programmers) more efficient in their work. You can learn how data organi-
zation and its coupling with appropriate algorithms greatly affect what can be computed 
with a given amount of computing resources. This book can give you a thorough under-
standing of how to implement the data structures, and that should enable you to imple-
ment them in any programming language. You can learn the process of deciding what data 
structure(s) and algorithms are the most appropriate to meet a particular programming 
request. Perhaps most importantly, you can learn when an algorithm and/or data structure 
will fail in a given use case. Understanding data structures and algorithms is the core of 
computer science, which is different from being a Python (or other language) programmer.

The book teaches the fundamental data structures that every programmer should know. 
Readers should understand that there are many more. These basic data structures work in 
a wide variety of situations. With the skills you develop in this book, you should be able 
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to read a description of another data structure or algorithm and begin to analyze whether 
or not it will outperform or perform worse than the ones you’ve already learned in partic-
ular use cases.

This book explains some Python syntax and structure, but it will not teach you all its 
capabilities. The book uses a subset of Python’s full capabilities to illustrate how more 
complex data structures are built from the simpler constructs. It is not designed to teach 
the basics of programming to someone who has never programmed. Python is a very 
high-level language with many built-in data structures. Using some of the more primi-
tive types such as arrays of integers or record structures, as you might find in C or C++, 
is somewhat more difficult in Python. Because the book’s focus is the implementation 
and analysis of data structures, our examples use approximations to these primitive types. 
Some Python programmers may find these examples unnecessarily complex, knowing 
about the more elegant constructs provided with the language in standard libraries. If you 
want to understand computer science, and in particular, the complexity of algorithms, 
you must understand the underlying operations on the primitives. When you use a data 
structure provided in a programming language or from one of its add-on modules, you 
will often have to know its complexity to know whether it will work well for your use 
case. Understanding the core data structures, their complexities, and trade-offs will help 
you understand the ones built on top of them.

All the data structures are developed using object-oriented programming (OOP). If 
that’s a new concept for you, the review in Chapter 1 of how classes are defined and used 
in Python provides a basic introduction to OOP. You should not expect to learn the full 
power and benefits of OOP from this text. Instead, you will learn to implement each data 
structure as a class. These classes are the types of objects in OOP and make it easier to 
develop software that can be reused by many different applications in a reliable way.

The book uses many examples, but this is not a book about a particular application area of 
computer science such as databases, user interfaces, or artificial intelligence. The examples 
are chosen to illustrate typical applications of programs, but all programs are written in a 
particular context, and that changes over time. A database program written in 1970 may 
have appeared very advanced at that time, but it might seem very trivial today. The exam-
ples presented in this text are designed to teach how data structures are implemented, 
how they perform, and how to compare them when designing a new program. The exam-
ples should not be taken as the most comprehensive or best implementation possible of 
each data structure, nor as a thorough review of all the potential data structures that could 
be appropriate for a particular application area.

Structure
Each chapter presents a particular group of data structures and associated algorithms. 
At the end of the chapters, we provide review questions covering the key points in the 
chapter and sometimes relationships to previous chapters. The answers for these can be 
found in Appendix C, "Answers to Questions." These questions are intended as a self-test 
for readers, to ensure you understood all the material.

Data Structures & Algorithms in Python
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Many chapters suggest experiments for readers to try. These can be individual thought 
experiments, team assignments, or exercises with the software tools provided with the 
book. These are designed to apply the knowledge just learned to some other area and help 
deepen your understanding.

Programming projects are longer, more challenging programming exercises. We provide a 
range of projects of different levels of difficulty. These projects might be used in classroom 
settings as homework assignments. Sample solutions to the programming projects are avail-
able to qualified instructors from the publisher and the website, https://datastructures.live.

History
Mitchell Waite and Robert Lafore developed the first version of this book and titled it Data 
Structures and Algorithms in Java. The first edition was published in 1998, and the second 
edition, by Robert, came out in 2002. John Canning and Alan Broder developed this 
version using Python due to its popularity in education and commercial and noncommer-
cial software development. Java is widely used and an important language for computer 
scientists to know. With many schools adopting Python as a first programming language, 
the need for textbooks that introduce new concepts in an already familiar language drove 
the development of this book. We expanded the coverage of data structures and updated 
many of the examples.

We’ve tried to make the learning process as painless as possible. We hope this text makes 
the core, and frankly, the beauty of computer science accessible to all. Beyond just under-
standing, we hope you find learning these ideas fun. Enjoy yourself!
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CHAPTER 8

Binary Trees

In this chapter we switch from algorithms, the focus of 
Chapter 7, "Advanced Sorting," to data structures. Binary 
trees are one of the fundamental data storage structures 
used in programming. They provide advantages that the 
data structures you’ve seen so far cannot. In this chapter 
you learn why you would want to use trees, how they work, 
and how to go about creating them.

Why Use Binary Trees?
Why might you want to use a tree? Usually, because it com-
bines the advantages of two other structures: an ordered 
array and a linked list. You can search a tree quickly, as you 
can an ordered array, and you can also insert and delete 
items quickly, as you can with a linked list. Let’s explore 
these topics a bit before delving into the details of trees.

Slow Insertion in an Ordered Array
Imagine an array in which all the elements are arranged 
in order—that is, an ordered array—such as you saw in 
Chapter 2, "Arrays." As you learned, you can quickly search 
such an array for a particular value, using a binary search. 
You check in the center of the array; if the object you’re 
looking for is greater than what you find there, you narrow 
your search to the top half of the array; if it’s less, you nar-
row your search to the bottom half. Applying this process 
repeatedly finds the object in O(log N) time. You can also 
quickly traverse an ordered array, visiting each object in 
sorted order.

On the other hand, if you want to insert a new object into 
an ordered array, you first need to find where the object 
will go and then move all the objects with greater keys up 
one space in the array to make room for it. These multiple 
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moves are time-consuming, requiring, on average, moving half the items (N/2 moves). 
Deletion involves the same multiple moves and is thus equally slow.

If you’re going to be doing a lot of insertions and deletions, an ordered array is a bad 
choice.

Slow Searching in a Linked List
As you saw in Chapter 5, "Linked Lists," you can quickly perform insertions and deletions 
on a linked list. You can accomplish these operations simply by changing a few references. 
These two operations require O(1) time (the fastest Big O time).

Unfortunately, finding a specified element in a linked list is not as fast. You must start 
at the beginning of the list and visit each element until you find the one you’re looking 
for. Thus, you need to visit an average of N/2 objects, comparing each one’s key with the 
desired value. This process is slow, requiring O(N) time. (Notice that times considered 
fast for a sort are slow for the basic data structure operations of insertion, deletion, and 
search.)

You might think you could speed things up by using an ordered linked list, in which the 
elements are arranged in order, but this doesn’t help. You still must start at the beginning 
and visit the elements in order because there’s no way to access a given element without 
following the chain of references to it. You could abandon the search for an element after 
finding a gap in the ordered sequence where it should have been, so it would save a little 
time in identifying missing items. Using an ordered list only helps make traversing the 
nodes in order quicker and doesn’t help in finding an arbitrary object.

Trees to the Rescue
It would be nice if there were a data structure with the quick insertion and deletion of a 
linked list, along with the quick searching of an ordered array. Trees provide both of these 
characteristics and are also one of the most interesting data structures.

What Is a Tree?
A tree consists of nodes connected by edges. Figure 8-1 shows a tree. In such a picture of 
a tree the nodes are represented as circles, and the edges as lines connecting the circles.

Node

Edge

FIGURE 8-1 A general (nonbinary) tree
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Trees have been studied extensively as abstract mathematical entities, so there’s a large 
amount of theoretical knowledge about them. A tree is actually an instance of a more gen-
eral category called a graph. The types and arrangement of edges connecting the nodes 
distinguish trees and graphs, but you don’t need to worry about the extra issues graphs 
present. We discuss graphs in Chapter 14, "Graphs," and Chapter 15, "Weighted Graphs."

In computer programs, nodes often represent entities such as file folders, files, depart-
ments, people, and so on—in other words, the typical records and items stored in any 
kind of data structure. In an object-oriented programming language, the nodes are objects 
that represent entities, sometimes in the real world.

The lines (edges) between the nodes represent the way the nodes are related. Roughly 
speaking, the lines represent convenience: it’s easy (and fast) for a program to get from 
one node to another if a line connects them. In fact, the only way to get from node to 
node is to follow a path along the lines. These are essentially the same as the references 
you saw in linked lists; each node can have some references to other nodes. Algorithms 
are restricted to going in one direction along edges: from the node with the reference to 
some other node. Doubly linked nodes are sometimes used to go both directions.

Typically, one node is designated as the root of the tree. Just like the head of a linked list, 
all the other nodes are reached by following edges from the root. The root node is typi-
cally drawn at the top of a diagram, like the one in Figure 8-1. The other nodes are shown 
below it, and the further down in the diagram, the more edges need to be followed to get 
to another node. Thus, tree diagrams are small on the top and large on the bottom. This 
configuration may seem upside-down compared with real trees, at least compared to the 
parts of real trees above ground; the diagrams are more like tree root systems in a visual 
sense. This arrangement makes them more like charts used to show family trees with 
ancestors at the top and descendants below. Generally, programs start an operation at the 
small part of the tree, the root, and follow the edges out to the broader fringe. It’s (argu-
ably) more natural to think about going from top to bottom, as in reading text, so having 
the other nodes below the root helps indicate the relative order of the nodes.

There are different kinds of trees, distinguished by the number and type of edges. The tree 
shown in Figure 8-1 has more than two children per node. (We explain what "children" 
means in a moment.) In this chapter we discuss a specialized form of tree called a binary 
tree. Each node in a binary tree has a maximum of two children. More general trees, in 
which nodes can have more than two children, are called multiway trees. We show 
examples of multiway trees in Chapter 9, "2-3-4 Trees and External Storage."

Tree Terminology
Many terms are used to describe particular aspects of trees. You need to know them so 
that this discussion is comprehensible. Fortunately, most of these terms are related to real-
world trees or to family relationships, so they’re not hard to remember. Figure 8-2 shows 
many of these terms applied to a binary tree.
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Level 0

Level 1

Level 2

Level 3

A

B C

GFED

H I J

Root node is A

Dashed line shows
path ACFJ

Triangle surrounds the
subtree with root F 

B is the parent
of D and E 

D is the left child or
branch of B

H is the right child or
branch of D

E, G, H, I, and J
are leaf nodes 

F and G are
sibling nodes

FIGURE 8-2 Tree terms

Root
The node at the top of the tree is called the root. There is only one root in a tree, labeled 
A in the figure.

Path
Think of someone walking from node to node along the edges that connect them. The 
resulting sequence of nodes is called a path. For a collection of nodes and edges to be 
defined as a tree, there must be one (and only one!) path from the root to any other node. 
Figure 8-3 shows a nontree. You can see that it violates this rule because there are multiple 
paths from A to nodes E and F. This is an example of a graph that is not a tree.

A

E F

B

D

C

FIGURE 8-3 A nontree

Parent
Any node (except the root) has exactly one edge connecting it to a node above it. The 
node above it is called the parent of the node. The root node must not have a parent.

Child
Any node may have one or more edges connecting it to nodes below. These nodes below a 
given node are called its children, or sometimes, branches.
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Sibling
Any node other than the root node may have sibling nodes. These nodes have a common 
parent node.

Leaf
A node that has no children is called a leaf node or simply a leaf. There can be only one 
root in a tree, but there can be many leaves. In contrast, a node that has children is an 
internal node.

Subtree
Any node (other than the root) may be considered to be the root of a subtree, which also 
includes its children, and its children’s children, and so on. If you think in terms of fami-
lies, a node’s subtree contains all its descendants.

Visiting
A node is visited when program control arrives at the node, usually for the purpose of 
carrying out some operation on the node, such as checking the value of one of its data 
fields or displaying it. Merely passing over a node on the path from one node to another 
is not considered to be visiting the node.

Traversing
To traverse a tree means to visit all the nodes in some specified order. For example, you 
might visit all the nodes in order of ascending key value. There are other ways to traverse 
a tree, as we’ll describe later.

Levels
The level of a particular node refers to how many generations the node is from the root. 
If you assume the root is Level 0, then its children are at Level 1, its grandchildren are at 
Level 2, and so on. This is also sometimes called the depth of a node.

Keys
You’ve seen that one data field in an object is usually designated as a key value, or sim-
ply a key. This value is used to search for the item or perform other operations on it. In 
tree diagrams, when a circle represents a node holding a data item, the key value of the 
item is typically shown in the circle.

Binary Trees
If every node in a tree has at most two children, the tree is called a binary tree. In this 
chapter we focus on binary trees because they are the simplest and the most common.

The two children of each node in a binary tree are called the left child and the right 
child, corresponding to their positions when you draw a picture of a tree, as shown  
in Figure 8-2. A node in a binary tree doesn’t necessarily have the maximum of two 
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children; it may have only a left child or only a right child, or it can have no children at 
all (in which case it’s a leaf).

Binary Search Trees
The kind of binary tree we discuss at the beginning of this chapter is technically called a 
binary search tree. The keys of the nodes have a particular ordering in search trees.  
Figure 8-4 shows a binary search tree.

44

27 65

83573316

17 48 60

FIGURE 8-4 A binary search tree

NOTE

The defining characteristic of a binary search tree is this: a node’s left child must have a 
key less than its parent’s key, and a node’s right child must have a key greater than or 
equal to that of its parent.

An Analogy
One commonly encountered tree is the hierarchical file system on desktop computers. 
This system was modeled on the prevailing document storage technology used by busi-
nesses in the twentieth century: filing cabinets containing folders that in turn contained 
subfolders, down to individual documents. Computer operating systems mimic that by 
having files stored in a hierarchy. At the top of the hierarchy is the root directory. That 
directory contains "folders," which are subdirectories, and files, which are like the paper 
documents. Each subdirectory can have subdirectories of its own and more files. These 
all have analogies in the tree: the root directory is the root node, subdirectories are nodes 
with children, and files are leaf nodes.

To specify a particular file in a file system, you use the full path from the root directory 
down to the file. This is the same as the path to a node of a tree. Uniform resource loca-
tors (URLs) use a similar construction to show a path to a resource on the Internet. Both 
file system pathnames and URLs allow for many levels of subdirectories. The last name in 
a file system path is either a subdirectory or a file. Files represent leaves; they have no  
children of their own.
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Clearly, a hierarchical file system is not a binary tree because a directory may have many 
children. A hierarchical file system differs in another significant way from the trees that we 
discuss here. In the file system, subdirectories contain no data other than attributes like their 
name; they contain only references to other subdirectories or to files. Only files contain data. 
In a tree, every node contains data. The exact type of data depends on what’s being repre-
sented: records about personnel, records about components used to construct a vehicle, and 
so forth. In addition to the data, all nodes except leaves contain references to other nodes.

Hierarchical file systems differ from binary search trees in other aspects, too. The purpose 
of the file system is to organize files; the purpose of a binary search tree is more general 
and abstract. It’s a data structure that provides the common operations of insertion, dele-
tion, search, and traversal on a collection of items, organizing them by their keys to speed 
up the operations. The analogy between the two is meant to show another familiar system 
that shares some important characteristics, but not all.

How Do Binary Search Trees Work?
Let’s see how to carry out the common binary tree operations of finding a node with a 
given key, inserting a new node, traversing the tree, and deleting a node. For each of these 
operations, we first show how to use the Binary Search Tree Visualization tool to carry it 
out; then we look at the corresponding Python code.

The Binary Search Tree Visualization Tool
For this example, start the Binary Search Tree Visualization tool (the program is called 
BinaryTree.py). You should see a screen something like that shown in Figure 8-5.

FIGURE 8-5 The Binary Search Tree Visualization tool
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Using the Visualization Tool
The key values shown in the nodes range from 0 to 99. Of course, in a real tree, there 
would probably be a larger range of key values. For example, if telephone numbers were 
used for key values, they could range up to 999,999,999,999,999 (15 digits including 
country codes in the International Telecommunication Union standard). We focus on a 
simpler set of possible keys.

Another difference between the Visualization tool and a real tree is that the tool limits its 
tree to a depth of five; that is, there can be no more than five levels from the root to the 
bottom (level 0 through level 4). This restriction ensures that all the nodes in the tree will 
be visible on the screen. In a real tree the number of levels is unlimited (until the com-
puter runs out of memory).

Using the Visualization tool, you can create a new tree whenever you want. To do this, 
enter a number of items and click the Erase & Random Fill button. You can ask to fill with 
0 to 99 items. If you choose 0, you will create an empty tree. Using larger numbers will fill 
in more nodes, but some of the requested nodes may not appear. That’s due to the limit 
on the depth of the tree and the random order the items are inserted. You can experiment 
by creating trees with different numbers of nodes to see the variety of trees that come out 
of the random sequencing.

The nodes are created with different colors. The color represents the data stored with the 
key. We show a little later how that data is updated in some operations.

Constructing Trees
As shown in the Visualization tool, the tree’s shape depends both on the items it contains 
as well as the order the items are inserted into the tree. That might seem strange at first. If 
items are inserted into a sorted array, they always end up in the same order, regardless of 
their sequencing. Why are binary search trees different?

One of the key features of the binary search tree is that it does not have to fully order 
the items as they are inserted. When it adds a new item to an existing tree, it decides 
where to place the new leaf node by comparing its key with that of the nodes already 
stored in the tree. It follows a path from the root down to a missing child where the 
new node "belongs." By choosing the left child when the new node’s key is less than 
the key of an internal node and the right child for other values, there will always be a 
unique path for the new node. That unique path means you can easily find that node by 
its key later, but it also means that the previously inserted items affect the path to any 
new item.

For example, if you start with an empty binary search tree and insert nodes in increasing 
key order, the unique path for each one will always be the rightmost path. Each insertion 
adds one more node at the bottom right. If you reverse the order of the nodes and insert 
them into an empty tree, each insertion will add the node at the bottom left because the 
key is lower than any other in the tree so far. Figure 8-6 shows what happens if you insert 
nodes with keys 44, 65, 83, and 87 in forward or reverse order.
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44

83

87

65

87

65

44

83

FIGURE 8-6 Trees made by inserting nodes in sorted order

Unbalanced Trees
The trees shown in Figure 8-6, don’t look like trees. In fact, they look more like linked lists. 
One of the goals for a binary search tree is to speed up the search for a particular node, so hav-
ing to step through a linked list to find the node would not be an improvement. To get the 
benefit of the tree, the nodes should be roughly balanced on both sides of the root. Ideally, 
each step along the path to find a node should cut the number of nodes to search in half, just 
like in binary searches of arrays and the guess-a-number game described in Chapter 2.

We can call some trees unbalanced; that is, they have most of their nodes on one side of 
the root or the other, as shown in Figure 8-7. Any subtree may also be unbalanced like the 
outlined one on the lower left of the figure. Of course, only a fully balanced tree will have 
equal numbers of nodes on the left and right subtrees (and being fully balanced, every node’s 
subtree will be fully balanced too). Inserting nodes one at a time on randomly chosen items 
means most trees will be unbalanced by one or more nodes as they are constructed, so you 
typically cannot expect to find fully balanced trees. In the following chapters, we look more 
carefully at ways to balance them as nodes are inserted and deleted.

44

27 65

573316

19

17 21

FIGURE 8-7 An unbalanced tree (with an unbalanced subtree)
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Trees become unbalanced because of the order in which the data items are inserted. If 
these key values are inserted randomly, the tree will be more or less balanced. When an 
ascending sequence (like 11, 18, 33, 42, 65) or a descending sequence is encountered, all 
the values will be right children (if ascending) or left children (if descending), and the tree 
will be unbalanced. The key values in the Visualization tool are generated randomly, but 
of course some short ascending or descending sequences will be created anyway, which 
will lead to local imbalances.

If a tree is created by data items whose key values arrive in random order, the problem of 
unbalanced trees may not be too much of a problem for larger trees because the chances 
of a long run of numbers in a sequence is small. Sometimes, however, key values will 
arrive in strict sequence; for example, when someone doing data entry arranges a stack of 
forms into alphabetical order by name before entering the data. When this happens, tree 
efficiency can be seriously degraded. We discuss unbalanced trees and what to do about 
them in Chapters 9 and 10.

Representing the Tree in Python Code
Let’s start implementing a binary search tree in Python. As with other data structures, 
there are several approaches to representing a tree in the computer’s memory. The most 
common is to store the nodes at (unrelated) locations in memory and connect them using 
references in each node that point to its children.

You can also represent a tree in memory as an array, with nodes in specific positions 
stored in corresponding positions in the array. We return to this possibility at the end of 
this chapter. For our sample Python code we’ll use the approach of connecting the nodes 
using references, similar to the way linked lists were implemented in Chapter 5.

The BinarySearchTree Class
We need a class for the overall tree object: the object that holds, or at least leads to, all the 
nodes. We’ll call this class BinarySearchTree. It has only one field, __root, that holds the 
reference to the root node, as shown in Listing 8-1. This is very similar to the LinkedList 
class that was used in Chapter 5 to represent linked lists. The BinarySearchTree class 
doesn’t need fields for the other nodes because they are all accessed from the root node by 
following other references.

LISTING 8-1 The Constructor for the BinarySearchTree Class

class BinarySearchTree(object): # A binary search tree class

   def __init__(self):          # The tree organizes nodes by their
      self.__root = None        # keys. Initially, it is empty.

The constructor initializes the reference to the root node as None to start with an empty 
tree. When the first node is inserted, __root will point to it as shown in the Visualization 
tool example of Figure 8-5. There are, of course, many methods that operate on  
BinarySearchTree objects, but first, you need to define the nodes inside them.
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The __Node Class
The nodes of the tree contain the data representing the objects being stored (contact 
information in an address book, for example), a key to identify those objects (and to order 
them), and the references to each of the node’s two children. To remind us that callers 
that create BinarySearchTree objects should not be allowed to directly alter the nodes, we 
make a private __Node class inside that class. Listing 8-2 shows how an internal class can 
be defined inside the BinarySearchTree class.

LISTING 8-2 The Constructors for the __Node and BinarySearchTree Classes

class BinarySearchTree(object):     # A binary search tree class
…

   class __Node(object):         # A node in a binary search tree
      def __init__(              # Constructor takes a key that is
            self,                 # used to determine the position
            key,                  # inside the search tree,
            data,                 # the data associated with the key
            left=None,           # and a left and right child node
            right=None):         # if known
         self.key  = key          # Copy parameters to instance
         self.data = data         # attributes of the object
         self.leftChild = left
         self.rightChild = right

      def __str__(self):             # Represent a node as a string
         return "{" + str(self.key) + ", " + str(self.data) + "}"

   def __init__(self):           # The tree organizes nodes by their
      self.__root = None         # keys. Initially, it is empty.

   def isEmpty(self):            # Check for empty tree
      return self.__root is None

   def root(self):               # Get the data and key of the root node
      if self.isEmpty():         # If the tree is empty, raise exception
         raise Exception("No root node in empty tree")
      return (                      # Otherwise return root data and its key
         self.__root.data, self.__root.key)

The __Node objects are created and manipulated by the BinarySearchTree’s methods. The 
fields inside __Node can be initialized as public attributes because the BinarySearchTree‘s 
methods take care never to return a __Node object. This declaration allows for direct read-
ing and writing without making accessor methods like getKey() or setData(). The __Node 
constructor simply populates the fields from the arguments provided. If the child nodes 
are not provided, the fields for their references are filled with None.
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We add a __str__() method for __Node objects to aid in displaying the contents while 
debugging. Notably, it does not show the child nodes. We discuss how to display full trees 
a little later. That’s all the methods needed for __Node objects; all the rest of the methods 
you define are for BinarySearchTree objects.

Listing 8-2 shows an isEmpty() method for BinarySearchTree objects that checks whether 
the tree has any nodes in it. The root() method extracts the root node’s data and key. It’s 
like peek() for a queue and raises an exception if the tree is empty.

Some programmers also include a reference to a node’s parent in the __Node class. Doing 
so simplifies some operations but complicates others, so we don’t include it here. Adding 
a parent reference achieves something similar to the DoublyLinkedList class described in 
Chapter 5, "Linked Lists"; it’s useful in certain contexts but adds complexity.

We’ve made another design choice by storing the key for each node in its own field. For 
the data structures based on arrays, we chose to use a key function that extracts the key 
from each array item. That approach was more convenient for arrays because storing 
the keys separately from the data would require the equivalent of a key array along with 
the data array. In the case of node class with named fields, adding a key field makes the 
code perhaps more readable and somewhat more efficient by avoiding some function 
calls. It also makes the key more independent of the data, which adds flexibility and 
can be used to enforce constraints like immutable keys even when data changes. 

The BinarySearchTree class has several methods. They are used for finding, inserting, 
deleting, and traversing nodes; and for displaying the tree. We investigate them each 
separately.

Finding a Node
Finding a node with a specific key is the simplest of the major tree operations. It’s also the 
most important because it is essential to the binary search tree’s purpose.

The Visualization tool shows only the key for each node and a color for its data. Keep in 
mind that the purpose of the data structure is to store a collection of records, not just the 
key or a simple color. The keys can be more than simple integers; any data type that can 
be ordered could be used. The Visualization and examples shown here use integers for 
brevity. After a node is discovered by its key, it’s the data that’s returned to the caller, not 
the node itself.

Using the Visualization Tool to Find a Node
Look at the Visualization tool and pick a node, preferably one near the bottom of the tree 
(as far from the root as possible). The number shown in this node is its key value. We’re 
going to demonstrate how the Visualization tool finds the node, given the key value.
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For purposes of this discussion, we choose to find the node holding the item with key 
value 50, as shown in Figure 8-8. Of course, when you run the Visualization tool, you may 
get a different tree and may need to pick a different key value.

FIGURE 8-8 Finding the node with key 50

Enter the key value in the text entry box, hold down the Shift key, and select the Search 
button, and then the Step button, . By repeatedly pressing the Step button, you can see 
all the individual steps taken to find key 50. On the second press, the current pointer 
shows up at the root of the tree, as seen in Figure 8-8. On the next click, a parent pointer 
shows up that will follow the current pointer. Ignore that pointer and the code display 
for a moment; we describe them in detail shortly.

As the Visualization tool looks for the specified node, it makes a decision at the current 
node. It compares the desired key with the one found at the current node. If it’s the same, 
it’s found the desired node and can quit. If not, it must decide where to look next.

In Figure 8-8 the current arrow starts at the root. The program compares the goal key 
value 50 with the value at the root, which is 77. The goal key is less, so the program 
knows the desired node must be on the left side of the tree—either the root’s left child or 
one of that child’s descendants. The left child of the root has the value 59, so the com-
parison of 50 and 59 will show that the desired node is in the left subtree of 59. The cur-
rent arrow goes to 46, the root of that subtree. This time, 50 is greater than the 46 node, 
so it goes to the right, to node 56, as shown in Figure 8-9. A few steps later, comparing 50 
with 56 leads the program to the left child. The comparison at that leaf node shows that 
50 equals the node’s key value, so it has found the node we sought.
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FIGURE 8-9 The second to last step in finding key 50

The Visualization tool changes a little after it finds the desired node. The current arrow 
changes into the node arrow (and parent changes into p). That’s because of the way vari-
ables are named in the code, which we show in the next section. The tool doesn’t do 
anything with the node after finding it, except to encircle it and display a message saying 
it has been found. A serious program would perform some operation on the found node, 
such as displaying its contents or changing one of its fields.

Python Code for Finding a Node
Listing 8-3 shows the code for the __find() and search() methods. The __find() method 
is private because it can return a node object. Callers of the BinarySearchTree class use 
the search() method to get the data stored in a node.

LISTING 8-3 The Methods to Find a Binary Search Tree Node Based on Its Key

class BinarySearchTree(object):             # A binary search tree class
…
   def __find(self, goal):                   # Find an internal node whose key
      current = self.__root               # matches goal and its parent. Start at
      parent = self                       # root and track parent of current node
      while (current and                    # While there is a tree left to explore
             goal != current.key):        # and current key isn't the goal
         parent = current                 # Prepare to move one level down
         current = (                      # Advance current to left subtree when
            current.leftChild if goal < current.key else # goal is
            current.rightChild)           # less than current key, else right

      # If the loop ended on a node, it must have the goal key
      return (current, parent)              # Return the node or None and parent
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   def search(self, goal):                   # Public method to get data associated
      node, p = self.__find(goal)         # with a goal key. First, find node
      return node.data if node else None   # w/ goal & return any data

The only argument to __find() is goal, the key value to be found. This routine creates the 
variable current to hold the node currently being examined. The routine starts at the root 
– the only node it can access directly. That is, it sets current to the root. It also sets a par-
ent variable to self, which is the tree object. In the Visualization tool, parent starts off 
pointing at the tree object. Because parent links are not stored in the nodes, the __find() 
method tracks the parent node of current so that it can return it to the caller along with 
the goal node. This capability will be very useful in other methods. The parent variable is 
always either the BinarySearchTree being searched or one of its __Node objects.

In the while loop, __find() first confirms that current is not None and references some 
existing node. If it doesn’t, the search has gone beyond a leaf node (or started with an 
empty tree), and the goal node isn’t in the tree. The second part of the while test com-
pares the value to be found, goal, with the value of the current node’s key field. If the 
key matches, then the loop is done. If it doesn’t, then current needs to advance to the 
appropriate subtree. First, it updates parent to be the current node and then updates  
current. If goal is less than current’s key, current advances to its left child. If goal is 
greater than current’s key, current advances to its right child.

Can't Find the Node
If current becomes equal to None, you’ve reached the end of the line without finding 
the node you were looking for, so it can’t be in the tree. That could happen if the root 
node was None or if following the child links led to a node without a child (on the side 
where the goal key would go). Both the current node (None) and its parent are returned to 
the caller to indicate the result. In the Visualization tool, try entering a key that doesn’t 
appear in the tree and select Search. You then see the current pointer descend through 
the existing nodes and land on a spot where the key should be found but no node exists. 
Pointing to "empty space" indicates that the variable’s value is None.

Found the Node
If the condition of the while loop is not satisfied while current references some node in 
the tree, then the loop exits, and the current key must be the goal. That is, it has found 
the node being sought and current references it. It returns the node reference along with 
the parent reference so that the routine that called __find() can access any of the node’s 
(or its parent’s) data. Note that it returns the value of current for both success and failure 
of finding the key; it is None when the goal isn’t found.

The search() method calls the __find() method to set its node and parent (p) variables. 
That’s what you see in the Visualization tool after the __find() method returns. If a 
non-None reference was found, search() returns the data for that node. In this case, the 
method assumes that data items stored in the nodes can never be None; otherwise, the 
caller would not be able to distinguish them.
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Tree Efficiency
As you can see, the time required to find a node depends on its depth in the tree, the 
number of levels below the root. If the tree is balanced, this is O(log N) time, or more spe-
cifically O(log

2 
N) time, the logarithm to base 2, where N is the number of nodes.  

It’s just like the binary search done in arrays where half the nodes were eliminated after 
each comparison. A fully balanced tree is the best case. In the worst case, the tree is com-
pletely unbalanced, like the examples shown in Figure 8-6, and the time required is O(N). 
We discuss the efficiency of __find() and other operations toward the end of this chapter.

Inserting a Node
To insert a node, you must first find the place to insert it. This is the same process as try-
ing to find a node that turns out not to exist, as described in the earlier "Can’t Find the 
Node" section. You follow the path from the root toward the appropriate node. This is 
either a node with the same key as the node to be inserted or None, if this is a new key. If 
it’s the same key, you could try to insert it in the right subtree, but doing so adds some 
complexity. Another option is to replace the data for that node with the new data. For 
now, we allow only unique keys to be inserted; we discuss duplicate keys later.

If the key to insert is not in the tree, then __find() returns None for the reference to the 
node along with a parent reference. The new node is connected as the parent’s left or 
right child, depending on whether the new node’s key is less or greater than that of the 
parent. If the parent reference returned by __find() is self, the BinarySearchTree itself, 
then the node becomes the root node.

Figure 8-10 illustrates the process of inserting a node, with key 31, into a tree. The  
__find(31) method starts walking the path from the root node. Because 31 is less than 
the root node key, 44, it follows the left child link. That child’s key is 27, so it follows that 
child’s right child link. There it encounters key 33, so it again follows the left child link. 
That is None, so __find(31) stops with the parent pointing at the leaf node with key 33. The 
new leaf node with key 31 is created, and the parent’s left child link is set to reference it.

44

27 65

3316

44

27 65

3316

31

31Insert into

44

27 65

3316

__find( )
walks path

parent:
node:  None

31

FIGURE 8-10 Inserting a node in binary search tree
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Using the Visualization Tool to Insert a Node
To insert a new node with the Visualization tool, enter a key value that’s not in the tree 
and select the Insert button. The first step for the program is to find where it should be 
inserted. For example, inserting 81 into the tree from an earlier example calls the __find() 
method of Listing 8-3, which causes the search to follow the path shown in Figure 8-11.

FIGURE 8-11 Steps for inserting a node with key 81 using the Visualization tool

The current pointer starts at the root node with key 77. Finding 81 to be larger, it goes to 
the right child, node 94. Now the key to insert is less than the current key, so it descends 
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to node 85. The parent pointer follows the current pointer at each of these steps. When 
current reaches node 85, it goes to its left child and finds it missing. The call to __find() 
returns None and the parent pointer.

After locating the parent node with the empty child where the new key should go, the 
Visualization tool creates a new node with the key 81, some data represented by a color, 
and sets the left child pointer of node 85, the parent, to point at it. The node pointer 
returned by __find() is moved away because it still is None.

Python Code for Inserting a Node
The insert() method takes parameters for the key and data to insert, as shown in  
Listing 8-4. It calls the __find() method with the new node’s key to determine whether 
that key already exists and where its parent node should be. This implementation allows 
only unique keys in the tree, so if it finds a node with the same key, insert() updates the 
data for that key and returns False to indicate that no new node was created.

LISTING 8-4 The insert() Method of BinarySearchTree

class BinarySearchTree(object):                  # A binary search tree class
…
   def insert(self,                              # Insert a new node in a binary
              key,                            # search tree finding where its key
              data):                          # places it and storing its data
      node, parent = self.__find(             # Try finding the key in the tree
         key)                                 # and getting its parent node
      if node:                                # If we find a node with this key,
         node.data = data                     # then update the node's data
         return False                          # and return flag for no insertion

      if parent is self:                         # For empty trees, insert new node at
         self.__root = self.__Node(key, data) # root of tree
      elif key < parent.key:               # If new key is less than parent's key,
         parent.leftChild = self.__Node(      # insert new node as left
            key, data, right=node)            # child of parent
      else:                                      # Otherwise insert new node as right
         parent.rightChild = self.__Node(     # child of parent
            key, data, right=node)
      return True                              # Return flag for valid insertion

If a matching node was not found, then insertion depends on what kind of parent refer-
ence was returned from __find(). If it’s self, the BinarySearchTree must be empty, so the 
new node becomes the root node of the tree. Otherwise, the parent is a node, so insert() 
decides which child will get the new node by comparing the new node’s key with that of 
the parent. If the new key is lower, then the new node becomes the left child; otherwise, it 
becomes the right child. Finally, insert() returns True to indicate the insertion succeeded.
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When insert() creates the new node, it sets the new node’s right child to the node 
returned from __find(). You might wonder why that’s there, especially because node can 
only be None at that point (if it were not None, insert() would have returned False before 
reaching that point). The reason goes back to what to do with duplicate keys. If you allow 
nodes with duplicate keys, then you must put them somewhere. The binary search tree def-
inition says that a node’s key is less than or equal to that of its right child. So, if you allow 
duplicate keys, the duplicate node cannot go in the left child. By specifying something 
other than None as the right child of the new node, other nodes with the same key can be 
retained. We leave as an exercise how to insert (and delete) nodes with duplicate keys.

Traversing the Tree
Traversing a tree means visiting each node in a specified order. Traversing a tree is useful 
in some circumstances such as going through all the records to look for ones that need 
some action (for example, parts of a vehicle that are sourced from a particular country). 
This process may not be as commonly used as finding, inserting, and deleting nodes but it 
is important nevertheless.

You can traverse a tree in three simple ways. They’re called pre-order, in-order, and 
post-order. The most commonly used order for binary search trees is in-order, so let’s 
look at that first and then return briefly to the other two.

In-order Traversal
An in-order traversal of a binary search tree causes all the nodes to be visited in ascending 
order of their key values. If you want to create a list of the data in a binary tree sorted by 
their keys, this is one way to do it.

The simplest way to carry out a traversal is the use of recursion (discussed in Chapter 6).  
A recursive method to traverse the entire tree is called with a node as an argument.  
Initially, this node is the root. The method needs to do only three things:

 1. Call itself to traverse the node’s left subtree.

 2. Visit the node.

 3. Call itself to traverse the node’s right subtree.

Remember that visiting a node means doing something to it: displaying it, updating a 
field, adding it to a queue, writing it to a file, or whatever.

The three traversal orders work with any binary tree, not just with binary search trees. 
The traversal mechanism doesn’t pay any attention to the key values of the nodes; it only 
concerns itself with the node’s children and data. In other words, in-order traversal means 
"in order of increasing key values" only when the binary search tree criteria are used to 
place the nodes in the tree. The in of in-order refers to a node being visited in between 
the left and right subtrees. The pre of pre-order means visiting the node before visiting its 
children, and post-order visits the node after visiting the children. This distinction is like 
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the differences between infix and postfix notation for arithmetic expressions described in 
Chapter 4, "Stacks and Queues."

To see how this recursive traversal works, Figure 8-12 shows the calls that happen during 
an in-order traversal of a small binary tree. The tree variable references a four-node binary 
search tree. The figure shows the invocation of an inOrderTraverse() method on the tree 
that will call the print function on each of its nodes.

Begin tree.inOrderTraverse(function=print)

End

45

6227

tree

16

print(16)

i_o_trav(   )16

print(27)

i_o_trav(   )27

i_o_trav(   )45

print(45)

i_o_trav() i_o_trav()

i_o_trav()

print(62)

i_o_trav(   )62

i_o_trav() i_o_trav()

FIGURE 8-12 In-order traversal of a small tree

The blue rounded rectangles show the recursive calls on each subtree. The name of the 
recursive method has been abbreviated as i_o_trav() to fit all the calls in the figure. The 
first (outermost) call is on the root node (key 45). Each recursive call performs the three 
steps outlined previously. First, it makes a recursive call on the left subtree, rooted at key 
27. That shows up as another blue rounded rectangle on the left of the figure.

Processing the subtree rooted at key 27 starts by making a recursive call on its left subtree, 
rooted at key 16. Another rectangle shows that call in the lower left. As before, its first task 
is to make a recursive call on its left subtree. That subtree is empty because it is a leaf node 
and is shown in the figure as a call to i_o_trav() with no arguments. Because the subtree 
is empty, nothing happens and the recursive call returns.

Back in the call to i_o_trav(16), it now reaches step 2 and "visits" the node by executing 
the function, print, on the node itself. This is shown in the figure as print(16) in black. 
In general, visiting a node would do more than just print the node’s key; it would take 
some action on the data stored at the node. The figure doesn’t show that action, but it 
would occur when the print(16) is executed.
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After visiting the node with key 16, it’s time for step 3: call itself on the right subtree. 
The node with key 16 has no right child, which shows up as the smallest-sized rectangle 
because it is a call on an empty subtree. That completes the execution for the subtree 
rooted at key 16. Control passes back to the caller, the call on the subtree rooted at key 27.

The rest of the processing progresses similarly. The visit to the node with key 27 executes 
print(27) and then makes a call on its empty right subtree. That finishes the call on 
node 27 and control passes back to the call on the root of the tree, node 45. After execut-
ing print(45), it makes a call to traverse its right (nonempty) subtree. This is the fourth 
and final node in the tree, node 62. It makes a call on its empty left subtree, executes 
print(62), and finishes with a call on its empty right subtree. Control passes back up 
through the call on the root node, 45, and that ends the full tree traversal.

Pre-order and Post-order Traversals
The other two traversal orders are similar: only the sequence of visiting the node changes. 
For pre-order traversal, the node is visited first, and for post-order, it’s visited last. The two 
subtrees are always visited in the same order: left and then right. Figure 8-13 shows the 
execution of a pre-order traversal on the same four-node tree as in Figure 8-12. The execu-
tion of the print() function happens before visiting the two subtrees. That means that 
the pre-order traversal would print 45, 27, 16, 62 compared to the in-order traversal’s 16, 
27, 45, 62. As the figures show, the differences between the orders are small, but the over-
all effect is large.

Begin tree.preOrderTraverse(function=print)

End

45

6227

tree

16

print(16)

p_o_trav(   )16

print(27)

p_o_trav(   )27

p_o_trav(   )45

print(45)

p_o_trav() p_o_trav()

p_o_trav()

print(62)

p_o_trav(   )62

p_o_trav() p_o_trav()

FIGURE 8-13 Pre-order traversal of a small tree
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Python Code for Traversing
Let’s look at a simple way of implementing the in-order traversal now. As you saw in 
stacks, queues, linked lists, and other data structures, it’s straightforward to define the tra-
versal using a function passed as an argument that gets applied to each item stored in the 
structure. The interesting difference with trees is that recursion makes it very compact.

Because these trees are represented using two classes, BinarySearchTree and __Node, you need 
methods that can operate on both types of objects. In Listing 8-5, the inOrderTraverse() 
method handles the traversal on BinarySearchTree objects. It serves as the public interface to 
the traversal and calls a private method __inOrderTraverse() to do the actual work on  
subtrees. It passes the root node to the private method and returns.

LISTING 8-5 Recursive Implementation of inOrderTraverse()

class BinarySearchTree(object):          # A binary search tree class
…
   def inOrderTraverse(                  # Visit all nodes of the tree in-order
         self, function=print):           # and apply a function to each node
      self.__inOrderTraverse(             # Call recursive version starting at
         self.__root, function=function)  # root node

   def __inOrderTraverse(                # Visit a subtree in-order, recursively
         self, node, function):           # The subtree's root is node
      if node:                            # Check that this is real subtree
         self.__inOrderTraverse(          # Traverse the left subtree
            node.leftChild, function)
         function(node)                   # Visit this node
         self.__inOrderTraverse(          # Traverse the right subtree
            node.rightChild, function)

The private method expects a __Node object (or None) for its node parameter and performs 
the three steps on the subtree rooted at the node. First, it checks node and returns imme-
diately if it is None because that signifies an empty subtree. For legitimate nodes, it first 
makes a recursive call to itself to process the left child of the node. Second, it visits the 
node by invoking the function on it. Third, it makes a recursive call to process the node’s 
right child. That’s all there is to it.

Using a Generator for Traversal
The inOrderTraverse() method is straightforward, but it has at least three shortcomings. 
First, to implement the other orderings, you would either need to write more methods or 
add a parameter that specifies the ordering to perform.

Second, the function passed as an argument to "visit" each node needs to take a __Node 
object as argument. That’s a private class inside the BinarySearchTree that protects the 
nodes from being manipulated by the caller. One alternative that avoids passing a refer-
ence to a __Node object would be to pass in only the data field (and maybe the key field) 
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of each node as arguments to the visit function. That approach would minimize what the 
caller could do to the node and prevent it from altering the other node references.

Third, using a function to describe the action to perform on each node has its limitations. 
Typically, functions perform the same operation each time they are invoked and don’t 
know about the history of previous calls. During the traversal of a data structure like a 
tree, being able to make use of the results of previous node visits dramatically expands the 
possible operations. Here are some examples that you might want to do:

▶▶ Add up all the values in a particular field at every node.

▶▶ Get a list of all the unique strings in a field from every node.

▶▶ Add the node’s key to some list if none of the previously visited nodes have a bigger 
value in some field.

In all these traversals, it’s very convenient to be able to accumulate results somewhere dur-
ing the traversal. That’s possible to do with functions, but generators make it easier. We 
introduced generators in Chapter 5, and because trees share many similarities with those 
structures, they are very useful for traversing trees.

We address these shortcomings in a recursive generator version of the traverse method, 
traverse_rec(), shown in Listing 8-6. This version adds some complexity to the code but 
makes using traversal much easier. First, we add a parameter, traverseType, to the  
traverse_rec() method so that we don’t need three separate traverse routines. The first 
if statement verifies that this parameter is one of the three supported orderings: pre, 
in, and post. If not, it raises an exception. Otherwise, it launches the recursive private 
method, __traverse(), starting with the root node, just like inOrderTraverse() does.

There is an important but subtle point to note in calling the __traverse() method. The 
public traverse_rec() method returns the result of calling the private __traverse() 
method and does not just simply call it as a subroutine. The reason is that the traverse() 
method itself is not the generator; it has no yield statements. It must return the iterator 
produced by the call to __traverse(), which will be used by the traverse_rec() caller to 
iterate over the nodes.

Inside the __traverse() method, there are a series of if statements. The first one tests the 
base case. If node is None, then this is an empty tree (or subtree). It returns to indicate the 
iterator has hit the end (which Python converts to a StopIteration exception). The next 
if statement checks whether the traversal type is pre-order, and if it is, it yields the node’s 
key and data. Remember that the iterator will be paused at this point while control passes 
back to its caller. That is where the node will be “visited.” After the processing is done, 
the caller’s loop invokes this iterator to get the next node. The iterator resumes processing 
right after the yield statement, remembering all the context.

When the iterator resumes (or if the order was something other than pre-order), the next 
step is a for loop. This is a recursive generator to perform the traversal of the left subtree. 
It calls the __traverse() method on the node’s leftChild using the same traverseType. 
That creates its own iterator to process the nodes in that subtree. As nodes are yielded 
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back as key, data pairs, this higher-level iterator yields them back to its caller. This loop 
construction produces a nested stack of iterators, similar to the nested invocations of i_o_
trav() shown in Figure 8-12. When each iterator returns at the end of its work, it raises a 
StopIteration. The enclosing iterator catches each exception, so the various levels don’t 
interfere with one another.

LISTING 8-6 The Recursive Generator for Traversal

class BinarySearchTree(object):            # A binary search tree class
…
   def traverse_rec(self,                  # Traverse the tree recursively in
                traverseType="in"):         # pre, in, or post order
      if traverseType in [                 # Verify type is an accepted value and
            'pre', 'in', 'post']:           # use generator to walk the tree
         return self.__traverse(              # yielding (key, data) pairs
            self.__root, traverseType)      # starting at root

      raise ValueError("Unknown traversal type: " + str(traverseType))

   def __traverse(self,                    # Recursive generator to traverse
                  node,                     # subtree rooted at node in pre, in, or
                  traverseType):            # post order
      if node is None:                        # If subtree is empty,
         return                               # traversal is done
      if traverseType == "pre":            # For pre-order, yield the current
         yield (node.key, node.data)       # node before all the others
      for childKey, childData in self.__traverse( # Recursively
            node.leftChild, traverseType):  # traverse the left subtree
         yield (childKey, childData)          # yielding its nodes
      if traverseType == "in":             # If in-order, now yield the current
         yield (node.key, node.data)       # node
      for childKey, childData in self.__traverse( # Recursively
            node.rightChild, traverseType): # traverse right subtree
         yield (childKey, childData)       # yielding its nodes
      if traverseType == "post":           # If post-order, yield the current
         yield (node.key, node.data)       # node after all the others

The rest of the __traverse() method is straightforward. After finishing the loop over 
all the nodes in the left subtree, the next if statement checks for the in-order traversal 
type and yields the node’s key and data, if that’s the ordering. The node gets processed 
between the left and right subtrees for an in-order traversal. After that, the right subtree 
is processed in its own loop, yielding each of the visited nodes back to its caller. After the 
right subtree is done, a check for post-order traversal determines whether the node should 
be yielded at this stage or not. After that, the __traverse() generator is done, ending its 
caller’s loop.
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Making the Generator Efficient

The recursive generator has the advantage of structural simplicity. The base cases and 
recursive calls follow the node and child structure of the tree. Developing the prototype 
and proving its correct behavior flow naturally from this structure.

The generator does, however, suffer some inefficiency in execution. Each invocation of the 
__traverse() method invokes two loops: one for the left and one for the right child. Each 
of those loops creates a new iterator to yield the items from their subtrees back through 
the iterator created by this invocation of the __traverse() method itself. That layering of 
iterators extends from the root down to each leaf node.

Traversing the N items in the tree should take O(N) time, but creating a stack of iterators 
from the root down to each leaf adds complexity that’s proportional to the depth of the 
leaves. The leaves are at O(log N) depth, in the best case. That means the overall traversal 
of N items will take O(N×log N) time.

To achieve O(N) time, you need to apply the method discussed at the end of Chapter 6 
and use a stack to hold the items being processed. The items include both Node structures 
and the (key, data) pairs stored at the nodes to be traversed in a particular order.  
Listing 8-7 shows the code.

The nonrecursive method combines the two parts of the recursive approach into a single 
traverse() method. The same check for the validity of the traversal type happens at the 
beginning. The next step creates a stack, using the Stack class built on a linked list from 
Chapter 5 (defined in the LinkStack module).

Initially, the method pushes the root node of the tree on the stack. That means the 
remaining work to do is the entire tree starting at the root. The while loop that follows 
works its way through the remaining work until the stack is empty.

At each pass through the while loop, the top item of the stack is popped off. Three kinds of 
items could be on the stack: a Node item, a (key, data) tuple, or None. The latter happens if 
the tree is empty and when it processes the leaf nodes (and finds their children are None).

If the top of the stack is a Node item, the traverse() method determines how to process 
the node’s data and its children based on the requested traversal order. It pushes items 
onto the stack to be processed on subsequent passes through the while loop. Because the 
items will be popped off the stack in the reverse order from the way they were pushed 
onto it, it starts by handling the case for post-order traversal.

In post-order, the first item pushed is the node’s (key, data) tuple. Because it is pushed 
first, it will be processed last overall. The next item pushed is the node’s right child. In 
post-order, this is traversed just before processing the node’s data. For the other orders, the 
right child is always the last node processed.

After pushing on the right child, the next if statement checks whether the in-order tra-
versal was requested. If so, it pushes the node’s (key, data) tuple on the stack to be pro-
cessed in-between the two child nodes. That’s followed by pushing the left child on the 
stack for processing.
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LISTING 8-7 The Nonrecursive traverse() Generator

from LinkStack import *

class BinarySearchTree(object):         # A binary search tree class
…
   def traverse(self,                    # Non-recursive generator to traverse
                traverseType='in'):      # tree in pre, in, or post order
      if traverseType not in [             # Verify traversal type is an
            'pre', 'in', 'post']:        # accepted value
         raise ValueError(
            "Unknown traversal type: " + str(traverseType))

      stack = Stack()                    # Create a stack
      stack.push(self.__root)            # Put root node in stack

      while not stack.isEmpty():           # While there is work in the stack
         item = stack.pop()              # Get next item
         if isinstance(item, self.__Node): # If it's a tree node
            if traverseType == 'post':   # For post-order, put it last
               stack.push((item.key, item.data))
            stack.push(item.rightChild)  # Traverse right child
            if traverseType == 'in':     # For pre-order, put item 2nd
               stack.push((item.key, item.data))
            stack.push(item.leftChild)   # Traverse left child
            if traverseType == 'pre':    # For pre-order, put item 1st
               stack.push((item.key, item.data))
         elif item:                     # Every other non-None item is a
            yield item                  # (key, value) pair to be yielded

Finally, the last if statement checks whether the pre-order traversal was requested and 
then pushes the node’s data on the stack for processing before the left and right children. 
It will be popped off during the next pass through the while loop. That completes all the 
work for a Node item.

The final elif statement checks for a non-None item on the stack, which must be a (key, 
data) tuple. When the loop finds such a tuple, it yields it back to the caller. The yield 
statement ensures that the traverse() method becomes a generator, not a function.

The loop doesn’t have any explicit handling of the None values that get pushed on the 
stack for empty root and child links. The reason is that there’s nothing to do for them: 
just pop them off the stack and continue on to the remaining work.

Using the stack, you have now made an O(N) generator. Each node of the tree is visited 
exactly once, pushed on the stack, and later popped off. Its key-data pairs and child links 
are also pushed on and popped off exactly once. The ordering of the node visits and child 
links follows the requested traversal ordering. Using the stack and carefully reversing the 
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items pushed onto it make the code slightly more complex to understand but improve the 
performance.

Using the Generator for Traversing

The generator approach (both recursive and stack-based) makes the caller’s loops easy. For 
example, if you want to collect all the items in a tree whose data is below the average data 
value, you could use two loops:

total, count = 0, 0
for key, data in random_tree.traverse('pre'):
   total += data
   count += 1
average = total / count
below_average = []
for key, data in random_tree.traverse('in'):
   if data <= average:
      below_average.append((key, data))

The first loop counts the number of items in random_tree and sums up their data values. The 
second loop finds all the items whose data is below the average and appends the key and 
data pair to the below_average list. Because the second loop is done in in-order, the keys in 
below_average are in ascending order. Being able to reference the variables that accumulate 
results—total, count, and below_average—without defining some global (or nonlocal) vari-
ables outside a function body, makes using the generator very convenient for traversal.

Traversing with the Visualization Tool
The Binary Search Tree Visualization tool allows you to explore the details of traversal 
using generators. You can launch any of the three kinds of traversals by selecting the Pre-
order Traverse, In-order Traverse, or Post-order Traverse buttons. In each case, the tool 
executes a simple loop of the form

for key, data in tree.traverse("pre"):
   print(key)

To see the details, use the Step button (you can launch an operation in step mode by 
holding down the Shift key when selecting the button). In the code window, you first see 
the short traversal loop. The example calls the traverse() method to visit all the keys and 
data in a loop using one of the orders such as pre.

Figure 8-14 shows a snapshot near the beginning of a pre-order traversal. The code for the 
traverse() method appears at the lower right. To the right of the tree above the code, 
the stack is shown. The nodes containing keys 59 and 94 are on the stack. The top of the 
stack was already popped off and moved to the top right under the item label. It shows 
the key, 77, with a comma separating it from its colored rectangle to represent the (key, 
data) tuple that was pushed on the stack. The yield statement is highlighted, showing 
that the traverse() iterator is about to yield the key and data back to caller. The loop that 
called traverse() has scrolled off the code display but will be shown on the next step.
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FIGURE 8-14 Traversing a tree in pre-order using the traverse() iterator

When control returns to the calling loop, the traverse() iterator disappears from the 
code window and so does the stack, as shown in Figure 8-15. The key and data variables 
are now bound to 77 and the root node’s data. The print statement is highlighted because 
the program is about to print the key in the output box along the bottom of the tree. The 
next step shows key 77 being copied to the output box.

FIGURE 8-15 The loop calling the traverse() iterator
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After printing, control returns to the for key, data in tree.traverse('pre') loop. That 
pushes the traverse() iterator back on the code display, along with its stack similar to 
Figure 8-14. The while loop in the iterator finds that the stack is not empty, so it pops off 
the top item. That item is node 59, the left child of node 77. The process repeats by push-
ing on node 59’s children and the node’s key, data pair on the stack. On the next loop 
iteration, that tuple is popped off the stack, and it is yielded back to the print loop.

The processing of iterators is complex to describe, and the Visualization tool makes it eas-
ier to follow the different levels and steps than reading a written description. Try stepping 
through the processing of several nodes, including when the iterator reaches a leaf node 
and pushes None on the stack. The stack guides the iterator to return to nodes that remain 
to be processed.

Traversal Order
What’s the point of having three traversal orders? One advantage is that in-order traversal 
guarantees an ascending order of the keys in binary search trees. There’s a separate moti-
vation for pre- and post-order traversals. They are very useful if you’re writing programs 
that parse or analyze algebraic expressions. Let’s see why that is the case.

A binary tree (not a binary search tree) can be used to represent an algebraic expression 
that involves binary arithmetic operators such as +, –, /, and *. The root node and every 
nonleaf node hold an operator. The leaf nodes hold either a variable name (like A, B, or C) 
or a number. Each subtree is a valid algebraic expression.

For example, the binary tree shown in Figure 8-16 represents the algebraic expression

(A+B) * C − D / E

This is called infix notation; it’s the notation normally used in algebra. (For more on 
infix and postfix, see the section "Parsing Arithmetic Expressions" in Chapter 4.) Travers-
ing the tree in order generates the correct in-order sequence A+B*C–D/E, but you need to 
insert the parentheses yourself to get the expected order of operations. Note that subtrees 
form their own subexpressions like the (A+B) * C outlined in the figure.

–

/

DC+

BA

E

FIGURE 8-16 Binary tree representing an algebraic expression
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What does all this have to do with pre-order and post-order traversals? Let’s see what’s 
involved in performing a pre-order traversal. The steps are

 1. Visit the node.

 2. Call itself to traverse the node’s left subtree.

 3. Call itself to traverse the node’s right subtree.

Traversing the tree shown in Figure 8-16 using pre-order and printing the node’s value 
would generate the expression

−*+ABC/DE

This is called prefix notation. It may look strange the first time you encounter it, but 
one of its nice features is that parentheses are never required; the expression is unambigu-
ous without them. Starting on the left, each operator is applied to the next two things to 
its right in the expression, called the operands. For the first operator, –, these two things 
are a product expression, *+ABC, and a division expression, /DE. For the second opera-
tor, *, the two things are a sum expression, +AB, and a single variable, C. For the third 
operator, +, the two things it operates on are the variables, A and B, so this last expression 
would be A+B in in-order notation. Finally, the fourth operator, /, operates on the two 
variables D and E.

The third kind of traversal, post-order, contains the three steps arranged in yet another 
way:

 1. Call itself to traverse the node’s left subtree.

 2. Call itself to traverse the node’s right subtree.

 3. Visit the node.

For the tree in Figure 8-16, visiting the nodes with a post-order traversal generates the 
expression

AB+C*DE/–

This is called postfix notation. It means "apply the last operator in the expression,  
–, to the two things immediately to the left of it." The first thing is AB+C*, and the  
second thing is DE/. Analyzing the first thing, AB+C*, shows its meaning to be "apply the 
* operator to the two things immediately to the left of it, AB+ and C." Analyzing the first 
thing of that expression, AB+, shows its meaning to be "apply the + operator to the two 
things immediately to the left of it, A and B." It’s hard to see initially, but the "things" are 
always one of three kinds: a single variable, a single number, or an expression ending in a 
binary operator.

To process the meaning of a postfix expression, you start from the last character on the 
right and interpret it as follows. If it’s a binary operator, then you repeat the process to 
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interpret two subexpressions on its left, which become the operands of the operator. If it’s 
a letter, then it’s a simple variable, and if it’s a number, then it’s a constant. For both vari-
ables and numbers, you "pop" them off the right side of the expression and return them to 
the process of the enclosing expression.

We don’t show the details here, but you can easily construct a tree like that in Figure 8-16 
by using a postfix expression as input. The approach is analogous to that of evaluating a 
postfix expression, which you saw in the PostfixTranslate.py program in Chapter 4 and 
its corresponding InfixCalculator Visualization tool. Instead of storing operands on the 
stack, however, you store entire subtrees. You read along the postfix string from left to 
right as you did in the PostfixEvaluate() method. Here are the steps when you encoun-
ter an operand (a variable or a number):

 1. Make a tree with one node that holds the operand.

 2. Push this tree onto the stack.

Here are the steps when you encounter an operator, O:

 1. Pop two operand trees R and L off the stack (the top of the stack has the rightmost 
operand, R).

 2. Create a new tree T with the operator, O, in its root.

 3. Attach R as the right child of T.

 4. Attach L as the left child of T.

 5. Push the resulting tree, T, back on the stack.

When you’re done evaluating the postfix string, you pop the one remaining item off the 
stack. Somewhat amazingly, this item is a complete tree depicting the algebraic expres-
sion. You can then see the prefix and infix representations of the original postfix notation 
(and recover the postfix expression) by traversing the tree in one of the three orderings we 
described. We leave an implementation of this process as an exercise.

Finding Minimum and Maximum Key Values
Incidentally, you should note how easy it is to find the minimum and maximum key 
values in a binary search tree. In fact, this process is so easy that we don’t include it as an 
option in the Visualization tool. Still, understanding how it works is important.

For the minimum, go to the left child of the root; then go to the left child of that child, 
and so on, until you come to a node that has no left child. This node is the minimum. 
Similarly, for the maximum, start at the root and follow the right child links until they 
end. That will be the maximum key in the tree, as shown in Figure 8-17.
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FIGURE 8-17 Minimum and maximum key values of a binary search tree

Here’s some code that returns the minimum node’s data and key values:

   def minNode(self):               # Find and return node with minimum key
      if self.isEmpty():            # If the tree is empty, raise exception
         raise Exception("No minimum node in empty tree")
      node = self.__root            # Start at root
      while node.leftChild:        # While node has a left child,
         node = node.leftChild      # follow left child reference
      return (node.key, node.data) # return final node key and data

Finding the maximum is similar; just swap the right for the left child. You learn about an 
important use of finding the minimum value in the next section about deleting nodes.

Deleting a Node
Deleting a node is the most complicated common operation required for binary search 
trees. The fundamental operation of deletion can’t be ignored, however, and studying the 
details builds character. If you’re not in the mood for character building, feel free to skip 
to the Efficiency of Binary Search Trees section.

You start by verifying the tree isn’t empty and then finding the node you want to delete, 
using the same approach you saw in __find() and insert(). If the node isn’t found, 
then you’re done. When you’ve found the node and its parent, there are three cases to 
consider:

 1. The node to be deleted is a leaf (has no children).

 2. The node to be deleted has one child.

 3. The node to be deleted has two children.
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Let’s look at these three cases in turn. The first is easy; the second, almost as easy; and the 
third, quite complicated.

Case 1: The Node to Be Deleted Has No Children
To delete a leaf node, you simply change the appropriate child field in the node’s parent 
to None instead of to the node. The node object still exists, but it is no longer part of the 
tree, as shown when deleting node 17 in Figure 8-18.

27

3316

17

delete(17)

node

parent

27

3316

17

After
__find(17)

After
return True

FIGURE 8-18 Deleting a node with no children

If you’re using a language like Python or Java that has garbage collection, the deleted 
node’s memory will eventually be reclaimed for other uses (if you eliminate all references 
to it in the program). In languages that require explicit allocation and deallocation of 
memory, the deleted node should be released for reuse.

Using the Visualization Tool to Delete a Node with No Children
Try deleting a leaf node using the Binary Search Tree Visualization tool. You can either 
type the key of a node in the text entry box or select a leaf with your pointer device and 
then select Delete. You see the program use __find() to locate the node by its key, copy it 
to a temporary variable, set the parent link to None, and then "return" the deleted key and 
data (in the form of its colored background).

Case 2: The Node to Be Deleted Has One Child
This second case isn’t very difficult either. The node has only two edges: one to its parent 
and one to its only child. You want to "cut" the node out of this sequence by connecting 
its parent directly to its child. This process involves changing the appropriate reference 
in the parent (leftChild or rightChild or __root) to point to the deleted node’s child. 
 Figure 8-19 shows the deletion of node 16, which has only one child.
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FIGURE 8-19 Deleting a node with one child

After finding the node and its parent, the delete method has to change only one reference. 
The deleted node, key 16 in the figure, becomes disconnected from the tree (although it 
may still have a child pointer to the node that was promoted up (key 20). Garbage  
collectors are sophisticated enough to know that they can reclaim the deleted node  
without  following its links to other nodes that might still be needed.

Now let’s go back to the case of deleting a node with no children. In that case, the 
delete method also made a single change to replace one of the parent’s child pointers. 
That pointer was set to None because there was no replacement child node. That’s a simi-
lar operation to Case 2, so you can treat Case 1 and Case 2 together by saying, "If the 
node to be deleted, D, has 0 or 1 children, replace the appropriate link in its parent with 
either the left child of D, if it isn’t empty, or the right child of D." If both child links 
from D are None, then you’ve covered Case 1. If only one of D’s child links is non-None, 
then the appropriate child will be selected as the parent’s new child, covering Case 2. 
You promote either the single child or None into the parent’s child (or possibly __root) 
reference.

Using the Visualization Tool to Delete a Node with One Child
Let’s assume you’re using the Visualization tool on the tree in Figure 8-5 and deleting 
node 61, which has a right child but no left child. Click node 61 and the key should 
appear in the text entry area, enabling the Delete button. Selecting the button starts 
another call to __find() that stops with current pointing to the node and parent point-
ing to node 59.

After making a copy of node 61, the animation shows the right child link from node 59 
being set to node 61’s right child, node 62. The original copy of node 61 goes away, and 
the tree is adjusted to put the subtree rooted at node 62 into its new position. Finally, the 
copy of node 61 is moved to the output box at the bottom.
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Use the Visualization tool to generate new trees with single child nodes and see what 
 happens when you delete them. Look for the subtree whose root is the deleted node’s 
child. No matter how complicated this subtree is, it’s simply moved up and plugged in as 
the new child of the deleted node’s parent.

Python Code to Delete a Node
Let’s now look at the code for at least Cases 1 and 2. Listing 8-8 shows the code for the 
delete() method, which takes one argument, the key of the node to delete. It returns 
either the data of the node that was deleted or None, to indicate the node was not found. 
That makes it behave somewhat like the methods for popping an item off a stack or delet-
ing an item from a queue. The difference is that the node must be found inside the tree 
instead of being at a known position in the data structure.

LISTING 8-8 The delete() Method of BinarySearchTree

class BinarySearchTree(object):             # A binary search tree class
…
   def delete(self, goal):                  # Delete a node whose key matches goal
      node, parent = self.__find(goal) # Find goal and its parent
      if node is not None:                    # If node was found,
         return self.__delete(              # then perform deletion at node
            parent, node)                    # under the parent

   def __delete(self,                       # Delete the specified node in the tree
                parent, node):              # modifying the parent node/tree
      deleted = node.data                   # Save the data that's to be deleted
      if node.leftChild:                    # Determine number of subtrees
         if node.rightChild:                # If both subtrees exist,
            self.__promote_successor(        # Then promote successor to
               node)                         # replace deleted node
         else:                   # If no right child, move left child up
            if parent is self:              # If parent is the whole tree,
               self.__root = node.leftChild  # update root
            elif parent.leftChild is node:  # If node is parent's left,
               parent.leftChild = node.leftChild # child, update left
            else:                           # else update right child
               parent.rightChild = node.leftChild
      else:                                 # No left child; so promote right child
         if parent is self:                 # If parent is the whole tree,
            self.__root = node.rightChild    # update root
         elif parent.leftChild is node:     # If node is parent's left
            parent.leftChild = node.rightChild # child, then update
         else:                              # left child link else update
            parent.rightChild = node.rightChild # right child
      return deleted                        # Return the deleted node's data
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Just like for insertion, the first step is to find the node to delete and its parent. If that 
search does not find the goal node, then there’s nothing to delete from the tree, and 
delete() returns None. If the node to delete is found, the node and its parent are passed to 
the private __delete() method to modify the nodes in the tree.

Inside the __delete() method, the first step is to store a reference to the node data 
being deleted. This step enables retrieval of the node’s data after the references to it 
are removed from the tree. The next step checks how many subtrees the node has. That 
determines what case is being processed. If both a left and a right child are present, that’s 
Case 3, and it hands off the deletion to another private method, __promote_successor(), 
which we describe a little later.

If there is only a left subtree of the node to delete, then the next thing to look at is its 
parent node. If the parent is the BinarySearchTree object (self), then the node to delete 
must be the root node, so the left child is promoted into the root node slot. If the par-
ent’s left child is the node to delete, then the parent’s left child link is replaced with the 
node’s left child to remove the node. Otherwise, the parent’s right child link is updated to 
remove the node.

Notice that working with references makes it easy to move an entire subtree. When the 
parent’s reference to the node is updated, the child that gets promoted could be a single 
node or an immense subtree. Only one reference needs to change. Although there may 
be lots of nodes in the subtree, you don’t need to worry about moving them individu-
ally. In fact, they "move" only in the sense of being conceptually in different positions 
relative to the other nodes. As far as the program is concerned, only the parent’s refer-
ence to the root of the subtree has changed, and the rest of the contents in memory 
remain the same.

The final else clause of the __delete() method deals with the case when the node has 
no left child. Whether or not the node has a right child, __delete() only needs to update 
the parent’s reference to point at the node’s right child. That handles both Case 1 and 
Case 2. It still must determine which field of the parent object gets the reference to the 
node’s right child, just as in the earlier lines when only the left child was present. It puts 
the node.rightChild in either the __root, leftChild, or rightChild field of the parent, 
accordingly. Finally, it returns the data of the node that was deleted.

Case 3: The Node to Be Deleted Has Two Children
Now the fun begins. If the deleted node has two children, you can’t just replace it with 
one of these children, at least if the child has its own (grand) children. Why not? Exam-
ine Figure 8-20 and imagine deleting node 27 and replacing it with its right subtree, 
whose root is 33. You are promoting the right subtree, but it has its own children. Which 
left child would node 33 have in its new position, the deleted node’s left child, 16, or 
node 33’s left child, 28? And what do you do with the other left child? You can’t just 
throw it away.
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FIGURE 8-20 Options for deleting a node with two subtrees

The middle option in Figure 8-20 shows potentially allowing three children. That would 
bring a whole host of other problems because the tree is no longer binary (see Chapter 9  
for more on that idea). The right-hand option in the figure shows pushing the deleted 
node’s left child, 16, down and splicing in the new node’s left child, 28, above it. That 
approach looks plausible. The tree is still a binary search tree, at least. The problem, how-
ever, is what to do if the promoted node’s left child has a complicated subtree of its own 
(for example, if node 28 in the figure had a whole subtree below it). That could mean fol-
lowing a long path to figure out where to splice the left subtrees together.

We need another approach. The good news is that there’s a trick. The bad news is that, 
even with the trick, there are special cases to consider. Remember that, in a binary search 
tree, the nodes are arranged in order of ascending keys. For each node, the node with the 
next-highest key is called its in-order successor, or simply its successor. In the original 
tree of Figure 8-20, node 28 is the in-order successor of node 27.

Here’s the trick: To delete a node with two children, replace the node with its in-order successor. 
Figure 8-21 shows a deleted node being replaced by its successor. Notice that the nodes are 
still in order. All it took was a simple replacement. It’s going to be a little more complicated 
if the successor itself has children; we look at that possibility in a moment.
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44

28 65

3316

35

In-order
successor

FIGURE 8-21 Node replaced by its successor
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Finding the Successor
How do you find the successor of a node? Human beings can do this quickly (for small 
trees, anyway). Just take a quick glance at the tree and find the next-largest number fol-
lowing the key of the node to be deleted. In Figure 8-21 it doesn’t take long to see that the 
successor of 27 is 28, or that the successor of 35 is 44. The computer, however, can’t do 
things "at a glance"; it needs an algorithm.

Remember finding the node with the minimum or maximum key? In this case you’re 
looking for the minimum key larger than the key to be deleted. The node to be deleted has 
both a left and right subtree because you’re working on Case 3. So, you can just look for 
the minimum key in the right subtree, as illustrated in Figure 8-22. All you need to do is 
follow the left child links until you find a node with no left child.

33

55

49

44

27 65

8357

71 86

Node to
delete

In-order
successor

Find minimum
key in right subtree

FIGURE 8-22 Finding the successor

What about potential nodes in the trees rooted above the node to be deleted? Couldn’t 
the successor be somewhere in there? Let’s think it through. Imagine you seek the suc-
cessor of node 27 in Figure 8-22. The successor would have to be greater than 27 and less 
than 33, the key of its right child. Any node with a key between those two values would 
be inserted somewhere in the left subtree of node 33. Remember that you always search 
down the binary search tree choosing the path based on the key’s relative order to the 
keys already in the tree. Furthermore, node 33 was placed as the right child of node 27 
because it was less than the root node, 44. Any node’s right child key must be less than 
its parent’s key if it is the left child of that parent. So going up to parent, grandparent, or 
beyond (following left child links) only leads to larger keys, and those keys can’t be the 
successor.

There are a couple of other things to note about the successor. If the right child of the 
original node to delete has no left children, this right child is itself the successor, as 
shown in the example of Figure 8-23. Because the successor always has an empty left child 
link, it has at most one child.
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FIGURE 8-23 The right child is the successor

Replacing with the Successor
Having found the successor, you can easily copy its key and data values into the node to 
be deleted, but what do you do with the subtree rooted at the successor node? You can’t 
leave a copy of the successor node in the tree there because the data would be stored in 
two places, create duplicate keys, and make deleting the successor a problem in the future. 
So, what’s the easiest way to get it out of the tree?

Hopefully, reading Chapter 6 makes the answer jump right out. You can now delete the 
successor from the tree using a recursive call. You want to do the same operation on the 
successor that you’ve been doing on the original node to delete—the one with the goal 
key. What’s different is that you only need to do the deletion in a smaller tree, the right 
subtree where you found the successor. If you tried to do it starting from the root of the 
tree after replacing the goal node, the __find() method would follow the same path and 
end at the node you just replaced. You could get around that problem by delaying the 
replacement of the key until after deleting the successor, but it’s much easier—and more 
importantly, faster—if you start a new delete operation in the right subtree. There will be 
much less tree to search, and you can’t accidentally end up at the previous goal node.

In fact, when you searched for the successor, you followed child links to determine the 
path, and that gave you both the successor and the successor’s parent node. With those 
two references available, you now have everything needed to call the private __delete() 
method shown in Listing 8-8. You can now define the __promote_successor() method, 
as shown in Listing 8-9. Remember, this is the method used to handle Case 3—when the 
node to delete has two children.

The __promote_successor() method takes as its lone parameter the node to delete. 
Because it is going to replace that node’s data and key and then delete the successor, it’s 
easier to refer to it as the node to be replaced in this context. To start, it points a succes-
sor variable at the right child of the node to be replaced. Just like the __find() method, it 
tracks the parent of the successor node, which is initialized to be the node to be replaced. 
Then it acts like the minNode() method, using a while loop to update successor with its 
left child if there is a left child. When the loop exits, successor points at the successor 
node and parent to its parent node.
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LISTING 8-9 The __promote_successor() Method of BinarySearchTree

class BinarySearchTree(object):          # A binary search tree class
…
   def __promote_successor(               # When deleting a node with both subtrees,
         self,                         # find successor on the right subtree, put
                                       # its data in this node, and delete the
         node):                        # successor from the right subtree
      successor = node.rightChild      # Start search for successor in
      parent = node                    # right subtree and track its parent
      while successor.leftChild:         # Descend left child links until
         parent = successor            # no more left links, tracking parent
         successor = successor.leftChild
      node.key = successor.key         # Replace node to delete with
      node.data = successor.data       # successor's key and data
      self.__delete(parent, successor) # Remove successor node

All that’s left to do is update the key and data of the node to be replaced and delete the 
successor node using a recursive call to __delete(). Unlike previous recursive methods 
you’ve seen, this isn’t a call to the same routine where the call occurs. In this case, the __
promote_successor() method calls __delete(), which in turn, could call __promote_suc-
cessor(). This is called mutual recursion—where two or more routines call each other.

Your senses should be tingling now. How do you know this mutual recursion will end? 
Where’s the base case that you saw with the "simple" recursion routines? Could you get 
into an infinite loop of mutually recursive calls? That’s a good thing to worry about, but 
it’s not going to happen here. Remember that deleting a node broke down into three 
cases. Cases 1 and 2 were for deleting leaf nodes and nodes with one child. Those two 
cases did not lead to __promote_successor() calls, so they are the base cases. When you 
do call __promote_successor() for Case 3, it operates on the subtree rooted at the node 
to delete, so the only chance that the tree being processed recursively isn’t smaller than 
the original is if the node to delete is the root node. The clincher, however, is that __pro-
mote_successor() calls __delete() only on successor nodes—nodes that are guaranteed to 
have at most one child and at least one level lower in the tree than the node they started 
on. Those always lead to a base case and never to infinite recursion.

Using the Visualization Tool to Delete a Node with Two Children
Generate a tree with the Visualization tool and pick a node with two children. Now men-
tally figure out which node is its successor, by going to its right child and then following 
down the line of this right child’s left children (if it has any). For your first try, you may 
want to make sure the successor has no children of its own. On later attempts, try look-
ing at the more complicated situation where entire subtrees of the successor are moved 
around, rather than a single node.

After you’ve chosen a node to delete, click the Delete button. You may want to use the 
Step or Pause/Play buttons to track the individual steps. Each of the methods we’ve 
described will appear in the code window, so you can see how it decides the node to 
delete has two children, locates the successor, copies the successor key and data, and then 
deletes the successor node.
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Is Deletion Necessary?
If you’ve come this far, you can see that deletion is fairly involved. In fact, it’s so compli-
cated that some programmers try to sidestep it altogether. They add a new Boolean field to 
the __Node class, called something like isDeleted. To delete a node, they simply set this field 
to True. This is a sort of a "soft" delete, like moving a file to a trash folder without truly delet-
ing it. Then other operations, like __find(), check this field to be sure the node isn’t marked 
as deleted before working with it. This way, deleting a node doesn’t change the structure of 
the tree. Of course, it also means that memory can fill up with previously "deleted" nodes.

This approach is a bit of a cop-out, but it may be appropriate where there won’t be many 
deletions in a tree. Be very careful. Assumptions like that tend to come back to haunt you. For 
example, assuming that deletions might not be frequent for a company’s personnel records 
might encourage a programmer to use the isDeleted field. If the company ends up lasting for 
hundreds of years, there are likely to be more deletions than active employees at some point 
in the future. The same is true if the company experiences high turnover rates, even over a 
short time frame. That will significantly affect the performance of the tree operations.

The Efficiency of Binary Search Trees
As you’ve seen, most operations with trees involve descending the tree from level to level 
to find a particular node. How long does this operation take? We mentioned earlier that the 
efficiency of finding a node could range from O(log N) to O(N), but let’s look at the details.

In a full, balanced tree, about half the nodes are on the bottom level. More accurately, in 
a full, balanced tree, there’s exactly one more node on the bottom row than in the rest of 
the tree. Thus, about half of all searches or insertions or deletions require finding a node 
on the lowest level. (About a quarter of all search operations require finding the node on 
the next-to-lowest level, and so on.)

During a search, you need to visit one node on each level. You can get a good idea how 
long it takes to carry out these operations by knowing how many levels there are. Assum-
ing a full, balanced tree, Table 8-1 shows how many levels are necessary to hold a given 
number of nodes.

The numbers are very much like those for searching the ordered array discussed in Chap-
ter 2. In that case, the number of comparisons for a binary search was approximately 
equal to the base 2 logarithm of the number of cells in the array. Here, if you call the 
number of nodes in the first column N, and the number of levels in the second column L, 
you can say that N is 1 less than 2 raised to the power L, or

N = 2L – 1

Adding 1 to both sides of the equation, you have

N + 1 = 2L

Using what you learned in Chapter 2 about logarithms being the inverse of raising a 
 number to a power, you can take the logarithm of both sides and rearrange the terms to get

log
2
(N + 1) = log

2
(2L) = L

L = log
2
(N + 1)
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Thus, the time needed to carry out the common tree operations is proportional to the base 
2 log of N. In Big O notation, you say such operations take O(log N) time.

Table 8-1 Number of Levels for Specified Number of Nodes

Number of Nodes Number of Levels

1 1

3 2

7 3

15 4

31 5

… …

1,023 10

… …

32,767 15

… …

1,048,575 20

… …

33,554,431 25

… …

1,073,741,823 30

If the tree isn’t full or balanced, the analysis is difficult. You can say that for a tree with a 
given number of levels, average search times will be shorter for the nonfull tree than the 
full tree because fewer searches will proceed to lower levels.

Compare the tree to the other data storage structures we’ve discussed so far. In an unor-
dered array or a linked list containing 1,000,000 items, finding the item you want takes, 
on average, 500,000 comparisons, basically O(N). In a balanced tree of 1,000,000 items, 
only 20 (or fewer) comparisons are required because it’s O(log N).

In an ordered array, you can find an item equally quickly, but inserting an item requires, 
on average, moving 500,000 items. Inserting an item in a tree with 1,000,000 items 
requires 20 or fewer comparisons, plus a small amount of time to connect the item. The 
extra time is constant and doesn’t depend on the number of items.

Similarly, deleting an item from a 1,000,000-item array requires moving an average of 
500,000 items, while deleting an item from a 1,000,000-node tree requires 20 or fewer 
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comparisons to find the item, plus a few more comparisons to find its successor, plus 
a short time to disconnect the item and connect its successor. Because the successor is 
somewhere lower in the tree than the node to delete, the total number of comparisons to 
find both the node and its successor will be 20 or fewer.

Thus, a tree provides high efficiency for all the common data storage operations: searches, 
insertions, and deletions. Traversing is not as fast as the other operations, but it must be 
O(N) to cover all N items, by definition. In all the data structures you’ve seen, it has been 
O(N), but we show some other data structures later where it could be greater. There is a lit-
tle more memory needed for traversing a tree compared to arrays or lists because you need 
to store the recursive calls or use a stack. That memory will be O(log N). That contrasts 
with the arrays and lists that need only O(1) memory during traversal.

Trees Represented as Arrays
Up to now, we’ve represented the binary tree nodes using objects with references for the 
left and right children. There’s a completely different way to represent a tree: with an array.

In the array approach, the nodes are stored in an array and are not linked by references. 
The position of the node in the array corresponds to its position in the tree. We put the 
root node at index 0. The root’s left child is placed at index 1, and its right child at index 
2, and so on, progressing from left to right along each level of the tree. This approach is 
shown in Figure 8-24, which is a binary search tree with letters for the keys.
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Left child of i at 2i + 1 Right child of i at 2i + 2 

FIGURE 8-24 A binary tree represented by an array
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Every position in the tree, whether it represents an existing node or not, corresponds to a 
cell in the array. Adding a node at a given position in the tree means inserting the node 
into the equivalent cell in the array. Cells representing tree positions with no nodes are 
filled with 0, None, or some other special value that cannot be confused with a node.  
In the figure, the ° symbol is used in the array for empty nodes.

With this scheme, a node’s children and parent can be found by applying some simple 
arithmetic to the node’s index number in the array. If a node’s index number is index, 
this node’s left child is

2 * index + 1

its right child is

2 * index + 2

and its parent is

(index – 1) // 2

(where the // indicates integer division with no remainder). You can verify these formulas 
work by looking at the indices in Figure 8-24. Any algorithm that follows links between 
nodes can easily determine where to check for the next node. The scheme works for any 
binary tree, not just binary search trees. It has the nice feature that edges/links between nodes 
are just as easy to travel up as they are going down (without the double linking needed for 
lists). Even better, it can be generalized to any tree with a fixed number of children.

In most situations, however, representing a tree with an array isn’t very efficient. Unfilled 
nodes leave holes in the array, wasting memory. Even worse, when deletion of a node 
involves moving subtrees, every node in the subtree must be moved to its new location in 
the array, which is time-consuming in large trees. For insertions that insert nodes beyond 
the current maximum depth of the tree, the array may need to be resized.

If deletions aren’t allowed or are very rare and the maximum depth of the tree can be 
predicted, the array representation may be useful, especially if obtaining memory for each 
node dynamically is, for some reason, too time-consuming. That might be the case when 
programming in assembly language or a very limited operating system, or a system with 
no garbage collection.

Tree Levels and Size
When trees are represented as arrays, the maximum level and number of nodes is con-
strained by the size of the array. For linked trees, there’s no specific maximum. For both 
representations, the current maximum level and number of nodes can be determined only 
by traversing the tree. If there will be frequent calls to request these metrics, the Binary-
SearchTree object can maintain values for them, but the insert() and delete() methods 
must be modified to update the values as nodes are added and removed.
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To count nodes in a linked tree, you can use the traverse() method to iterate over all 
the nodes and increment a count, as shown earlier in the example to find the average key 
value and again in the nodes() method of Listing 8-10. To find the maximum level, you 
cannot use the same technique because the level of each node during the traversal is not 
provided (although it could be added by modifying the generator). Instead, the recursive 
definition shown in Listing 8-10 gets the job done in a few lines of code.

LISTING 8-10 The levels() and nodes() Methods of BinarySearchTree

class BinarySearchTree(object):         # A binary search tree class
…
   def levels(self):                     # Count the levels in the tree
      return self.__levels(self.__root) # Count starting at root

   def __levels(self, node):             # Recursively count levels in subtree
      if node:                           # If a node is provided, then level is 1
         return 1 + max(self.__levels(node.leftChild),  # more than
                        self.__levels(node.rightChild)) # max child
      else: return 0                       # Empty subtree has no levels

   def nodes(self):                      # Count the tree nodes, using iterator
      count = 0                           # Assume an empty tree
      for key, data in self.traverse(): # Iterate over all keys in any
         count += 1                       # order and increment count
      return count

Counting the levels of a subtree is somewhat different than what you’ve seen before in 
that each node takes the maximum level of each of its subtrees and adds one to it for the 
node itself. It might seem as if there should be a shortcut by looking at the depth of the 
minimum or maximum key so that you don’t need to visit every node. If you think about 
it, however, even finding the minimum and maximum keys shows the depth only on the 
left and right "flanks" of the tree. There could be longer paths somewhere in the middle, 
and the only way to find them is to visit all the nodes.

Printing Trees
You’ve seen how to traverse trees in different orders. You could always use the traversal 
method to print all the nodes in the tree, as shown in the Visualization tool. Using the 
in-order traversal would show the items in increasing order of their keys. On a two-
dimensional output, you could use the in-order sequence to position the nodes along the 
horizontal axis and the level of each node to determine its vertical position. That could 
produce tree diagrams like the ones shown in the previous figures.

On a simple command-line output, it’s easier to print one node per line. The problem 
then becomes positioning the node on the line to indicate the shape of the tree. If you 
want the root node at the top, then you must compute the width of the full tree and place 
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that node in the middle of the full width. More accurately, you would have to compute 
the width of the left and right subtrees and use that to position the root in order to show 
balanced and unbalanced trees accurately.

On the other hand, if you place the root at the left side of an output line and show 
the level of nodes as indentation from the leftmost column, it’s easy to print the tree 
on a terminal. Doing so essentially rotates the tree 90° to the left. Each node of the 
tree appears on its own line of the output. That allows you to forget about determin-
ing the width of subtrees and write a simple recursive method, as shown in  
Listing 8-11.

LISTING 8-11 Methods to Print Trees with One Node per Line

class BinarySearchTree(object):         # A binary search tree class
…
   def print(self,                      # Print the tree sideways with 1 node
             indentBy=4):               # on each line and indenting each level
      self.__pTree(self.__root,         # by some blanks. Start at root node
                   "ROOT:   ", "", indentBy) # with no indent

   def __pTree(self,                    # Recursively print a subtree, sideways
               node,                    # with the root node left justified
               nodeType,                # nodeType shows the relation to its
               indent,                  # parent and the indent shows its level
               indentBy=4):             # Increase indent level for subtrees
      if node:                          # Only print if there is a node
         self.__pTree(node.rightChild, "RIGHT:  ", # Print the right
                      indent + " " * indentBy, indentBy) # subtree
         print(indent + nodeType, node) # Print this node
         self.__pTree(node.leftChild,  "LEFT:   ", # Print the left
                      indent + " " * indentBy, indentBy) # subtree

The public print() method calls the private __pTree() method to recursively print the 
nodes starting at the root node. It takes a parameter, indentBy, to control how many 
spaces are used to indent each level of the tree. It labels the nodes to show their relation-
ship with their parent (if it wasn’t already clear from their indentation and relative posi-
tions). The recursive method implementation starts by checking the base case, an empty 
node, in which case nothing needs to be printed. For every other node, it first recursively 
prints the right subtree because that is the top of the printed version. It adds spaces to 
the indent so that subtree is printed further to the right. Then it prints the current node 
prefixed with its indentation and nodeType label. Lastly, it prints the left subtree recur-
sively with the extended indentation. This produces an output such as that shown in  
Figure 8-25. The nodes are printed as {key, data} pairs and the figure example has no 
data stored with it.
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RIGHT: {86, }
RIGHT: {83, }

LEFT: {71, }
RIGHT: {65,}

LEFT: {57, }
RIGHT: {55, }

LEFT: {49, }
ROOT: {44, }

RIGHT: {33, }
LEFT: {27, }

FIGURE 8-25 Tree printed with indentation for node depth

In printing the tree like this, you use a different traversal order from the three standard 
ones. The print order uses a reverse in-order traversal of the tree.

Duplicate Keys
As in other data structures, the problem of duplicate keys must be addressed. In the code 
shown for insert() and in the Visualization tool, a node with a duplicate key will not be 
inserted. The tool shows the data for the node being updated by moving a new colored 
circle to fill the node.

To allow for duplicate keys, you must make several choices. The duplicates go in the right 
subtree based on the fundamental binary search tree rule. They form a chain of nodes 
with only right child links, as shown in Figure 8-26. One of the design choices is where to 
put any left child link. It should go only at the first or last duplicate in the chain so that 
the algorithms know where to find it. The figure illustrates the two choices. New duplicate 
keys should be inserted at the opposite end of the chain.
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27 65

6557

65

Duplicate keys form
chain in right subtree
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65
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Any left subtree must be
placed at first or last
copy, never in middle

FIGURE 8-26 Duplicate keys in binary search trees
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Another choice is what to return from the __find() and search() methods for a key that 
has duplicates. Should it return the first or the last? The choice should also be consistent 
with what node is deleted and returned by the delete() method. If they are inserted at 
the first and removed from the first, then delete() will act like a mini stack for the dupli-
cate nodes.

The delete operation is complicated by the fact that different data values could be stored 
at each of the duplicate nodes. The caller may need to delete a node with specific data, 
rather than just any node with the duplicate key. Whichever scheme is selected, the 
deletion routine will need to ensure that the left subtree, if any, remains attached to the 
appropriate place.

With any kind of duplicate keys, balancing the tree becomes difficult or impossible. The 
chains of duplicates add extra levels that cannot be rearranged to help with balance. That 
means the efficiency of finding an item moves away from best case of O(log N) toward O(N).

As you can see, allowing duplicate keys is not a simple enhancement to the data structure. 
In other data structures, duplicate keys present challenges, but not all of them are as tricky 
as the binary search tree.

The BinarySearchTreeTester.py Program
It’s always a good idea to test the functioning of a code module by writing tests that exer-
cise each operation. Writing a comprehensive set of tests is an art in itself. Another useful 
strategy is to write an interactive test program that allows you to try a series of operations in 
different orders and with different arguments. To test all the BinarySearchTree class meth-
ods shown, you can use a program like BinarySearchTreeTester.py shown in Listing 8-12.

LISTING 8-12 The BinarySearchTreeTester.py Program

# Test the BinarySearchTree class interactively
from BinarySearchTree import *

theTree = BinarySearchTree()             # Start with an empty tree

theTree.insert("Don",  "1974 1")        # Insert some data
theTree.insert("Herb", "1975 2")
theTree.insert("Ken",  "1979 1")
theTree.insert("Ivan", "1988 1")
theTree.insert("Raj",  "1994 1")
theTree.insert("Amir", "1996 1")
theTree.insert("Adi",  "2002 3")
theTree.insert("Ron",  "2002 3")
theTree.insert("Fran", "2006 1")
theTree.insert("Vint", "2006 2")
theTree.insert("Tim",  "2016 1")

def print_commands(names):             # Print a list of possible commands
   print('The possible commands are', names)
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def clearTree():                      # Remove all the nodes in the tree
   while not theTree.isEmpty():
      data, key = theTree.root()
      theTree.delete(key)

def traverseTree(traverseType="in"):  # Traverse & print all nodes
   for key, data in theTree.traverse(traverseType):
      print('{', str(key), ', ', str(data), '}', end=' ')
   print()

commands = [  # Command names, functions, and their parameters
   ['print', theTree.print, []],
   ['insert', theTree.insert, ('key', 'data')],
   ['delete', theTree.delete, ('key', )],
   ['search', theTree.search, ('key', )],
   ['traverse', traverseTree, ('type', )],
   ['clear', clearTree, []],
   ['help', print_commands, []],
   ['?', print_commands, []],
   ['quit', None, []],
]
                                       # Collect all the command names in a list
command_names = ", ".join(c[0] for c in commands)
for i in range(len(commands)):        # Put command names in argument list
   if commands[i][1] == print_commands: # of print_commands
      commands[i][2] = [command_names]
# Create a dictionary mapping first character of command name to
# command specification (name, function, parameters/args)
command_dict = dict((c[0][0], c) for c in commands)

                                      # Print information for interactive loop
theTree.print()
print_commands(command_names)
ans = ' '

# Loop to get a command from the user and execute it
while ans[0] != 'q':
   print('The tree has', theTree.nodes(), 'nodes across',
         theTree.levels(), 'levels')
   ans = input("Enter first letter of command: ").lower()
   if len(ans) == 0:
      ans = ' '
   if ans[0] in command_dict:
      name, function, parameters = command_dict[ans[0]]
      if function is not None:
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         print(name)
         if isinstance(parameters, list):
            arguments = parameters
         else:
            arguments = []
            for param in parameters:
               arg = input("Enter " + param + " for " + name + " " +
                           "command: ")
               arguments.append(arg)
         try:
            result = function(*arguments)
            print('Result:', result)
         except Exception as e:
            print('Exception occurred')
            print(e)
   else:
      print("Invalid command: '", ans, "'")

This program allows users to enter commands by typing them in a terminal interface. It 
first imports the BinarySearchTree module and creates an empty tree with it. Then it puts 
some data to it, using insert() to associate names with some strings. The names are the 
keys used to place the nodes within the tree.

The tester defines several utility functions to print all the possible commands, clear all 
the nodes from the tree, and traverse the tree to print each node. These functions handle 
commands in the command loop below.

The next part of the tester program defines a list of commands. For each one, it has a 
name, a function to execute the command, and a list or tuple of arguments or parameters. 
This is more advanced Python code than we’ve shown so far, so it might look a little 
strange. The names are what the user will type (or at least their first letter), and the func-
tions are either methods of the tree or the utility functions defined in the tester. The argu-
ments and parameters will be processed after the user chooses a command.

To provide a little command-line help, the tester concatenates the list of command names 
into a string, separating them with commas. This operation is accomplished with the 
join() method of strings. The text to place between each command name is the string  
(a comma and a space), and the argument to join() is the list of names. The program uses 
a list comprehension to iterate through the command specifications in commands and pull 
out the first element, which is the command name: ", ".join(c[0] for c in  
commands). The result is stored in the command_names variable.

Then the concatenated string of command names needs to get inserted in the argument 
list for the print_commands function. That’s done in the for loop. Two entries have the 
print_commands function: the help and ? commands.

The last bit of preparation for the command loop creates a dictionary, command_dict, that 
maps the first character of each command to the command specification. You haven’t 
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used this Python data structure yet. In Chapter 11, "Hash Tables," you see how they work, 
so if you’re not familiar with them, think of them as an associative array—an array 
indexed by a string instead of integer. You can assign values in the array and then look 
them up quickly. In the tester program, evaluating command_dict['p'] would return the 
specification for the print command, namely ['print', theTree.print, []]. Those 
specifications get stored in the dictionary using the compact (but cryptic) comprehension: 
dict((c[0][0], c) for c in commands).

The rest of the tester implements the command loop. It first prints the tree on the ter-
minal, followed by the list of commands. The ans variable holds the input typed by the 
user. It gets initialized to a space so that the command loop starts and prompts for a new 
command.

The command loop continues until the user invokes the quit command, which starts with 
q. Inside the loop body, the number of nodes and levels in the tree is printed, and then 
the user is asked for a command. The string that is returned by input() is converted to 
lowercase to simplify the command lookup. If the user just pressed Return, there would be 
no first character in the string, so you would fill in a ? to make the default response be to 
print all the command names again.

In the next statement—if ans[0] in command_dict:—the tester checks whether the first 
character in the user’s response is one of the known commands. If the character is rec-
ognized, it extracts the name, function, and parameters from the specification stored in 
the command_dict. If there’s a function to execute, then it will be processed. If not, then 
the user asked to quit, and the while loop will exit. When the first character of the user’s 
response does not match a command, an error message is printed, and the loop prompts 
for a new command.

After the command specification is found, it either needs to prompt the user for the argu-
ments to use when calling the function or get them from the specification. This choice 
is based on whether the parameters were specified as Python tuple or list. If it’s a tuple, 
the elements of the tuple are the names of the parameters. If it’s a list, then the list con-
tains the arguments of the function. For tuples, the user is prompted to enter each argu-
ment by name, and the answers are stored in the arguments list. After the arguments are 
determined, the command loop tries calling the function with the arguments list using 
result = function(*arguments). The asterisk (*) before the arguments is not a multipli-
cation operator. It means that the arguments list should be used as the list of positional 
arguments for the function. If the function raises any exceptions, they are caught and 
displayed. Otherwise, the result of the function is printed before looping to get another 
command.

Try using the tester to run the four main operations: search, insert, traverse, and delete. 
For the deletion, try deleting nodes with 0, 1, and 2 child nodes to see the effect. When 
you delete a node with 2 children, predict which successor node will replace the deleted 
node and see whether you’re right.
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The Huffman Code
You shouldn’t get the idea that binary trees are always search trees. Many binary trees are 
used in other ways. Figure 8-16 shows an example where a binary tree represents an alge-
braic expression. We now discuss an algorithm that uses a binary tree in a surprising way 
to compress data. It’s called the Huffman code, after David Huffman, who discovered it in 
1952. Data compression is important in many situations. An example is sending data over 
the Internet or via digital broadcasts, where it’s important to send the information in its 
shortest form. Compressing the data means more data can be sent in the same time under 
the bandwidth limits.

Character Codes
Each character in an uncompressed text file is represented in the computer by one to four 
bytes, depending on the way characters are encoded. For the venerable ASCII code, only 
one byte is used, but that limits the range of characters that can be expressed to fewer than 
128. To account for all the world’s languages plus other symbols like emojis , the vari-
ous Unicode standards use up to four bytes per character. For this discussion, we assume 
that only the ASCII characters are needed, and each character takes one byte (or eight bits). 
Table 8-2 shows how some characters are represented in binary using the ASCII code.

Table 8-2 Some ASCII Codes

Character Decimal Binary

@ 64 01000000

A 65 01000001

B 66 01000010

… … …

Y 89 01011001

Z 90 01011010

… … …

a 97 01100001

b 98 01100010

There are several approaches to compressing data. For text, the most common approach 
is to reduce the number of bits that represent the most-used characters. As a consequence, 
each character takes a variable number of bits in the "stream" of bits that represents the 
full text.
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In English, E and T are very common letters, when examining prose and other  
person-to-person communication and ignoring things like spaces and punctuation. If 
you choose a scheme that uses only a few bits to write E, T, and other common letters, it 
should be more compact than if you use the same number of bits for every letter. On the 
other end of the spectrum, Q and Z seldom appear, so using a large number of bits occa-
sionally for those letters is not so bad.

Suppose you use just two bits for E—say 01. You can’t encode every letter of the English 
alphabet in two bits because there are only four 2-bit combinations: 00, 01, 10, and 11. 
Can you use these four combinations for the four most-used characters? Well, if you did, 
and you still wanted to have some encoding for the lesser-used characters, you would have 
trouble. The algorithm that interprets the bits would have to somehow guess whether a 
pair of bits is a single character or part of some longer character code.

One of the key ideas in encoding is that we must set aside some of the code values as 
indicators that a longer bit string follows to encode a lesser-used character. The algorithm 
needs a way to look at a bit string of a particular length and determine if that is the full 
code for one of the characters or just a prefix for a longer code value. You must be careful 
that no character is represented by the same bit combination that appears at the begin-
ning of a longer code used for some other character. For example, if E is 01, and Z is 
01011000, then an algorithm decoding 01011000 wouldn’t know whether the initial  
01 represented an E or the beginning of a Z. This leads to a rule: No code can be the prefix  
of any other code.

Consider also that in some messages, E might not be the most-used character. If the text is a 
program source file, for example, punctuation characters such as the colon (:), semicolon (;), 
and underscore (_) might appear more often than E does. Here’s a solution to that problem: 
for each message, you make up a new code tailored to that particular message. Suppose you 
want to send the message SPAM SPAM SPAM EGG + SPAM. The letter S appears a lot, and so 
does the space character. You might want to make up a table showing how many times each 
letter appears. This is called a frequency table, as shown in Table 8-3.

Table 8-3 Frequency Table for the SPAM Message

Character Count Character Count

A 4 P 4

E 1 S 4

G 2 Space 5

M 4 + 1

The characters with the highest counts should be coded with a small number of bits.  
Table 8-4 shows one way how you might encode the characters in the SPAM message.

You can use 01 for the space because it is the most frequent. The next most frequent char-
acters are S, P, A, and M, each one appearing four times. You use the code 00 for the last 
one, M. The remaining codes can’t start with 00 or 01 because that would break the rule 
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that no code can be a prefix of another code. That leaves 10 and 11 to use as prefixes for 
the other characters.

Table 8-4 Huffman Code for the SPAM Message

Character Count Code Character Count Code

A 4 111 P 4 110

E 1 10000 S 4 101

G 2 1001 Space 5 01

M 4 00 + 1 10001

What about 3-bit code combinations? There are eight possibilities: 000, 001, 010, 011, 
100, 101, 110, and 111, but you already know you can’t use anything starting with 00 
or 01. That eliminates four possibilities. You can assign some of those 3-bit codes to the 
next most frequent characters, S as 101, P as 110, and A as 111. That leaves the prefix 
100 to use for the remaining characters. You use a 4-bit code, 1001, for the next most 
frequent character, G, which appears twice. There are two characters that appear only 
once, E and +. They are encoded with 5-bit codes, 10000 and 10001.

Thus, the entire message is coded as

101 110 111 00 01 101 110 111 00 01 101 110 111 00 01 10000 1001 1001 01 10001 01 
101 110 111 00

For legibility, we show this message broken into the codes for individual characters. Of 
course, all the bits would run together because there is no space character in a binary mes-
sage, only 0s and 1s. That makes it more challenging to find which bits correspond to a 
character. The main point, however, is that the 25 characters in the input message, which 
would typically be stored in 200 bits in memory (8 × 25), require only 72 bits in the Huff-
man coding.

Decoding with the Huffman Tree
We show later how to create Huffman codes. First, let’s examine the somewhat easier pro-
cess of decoding. Suppose you received the string of bits shown in the preceding section. 
How would you transform it back into characters? You could use a kind of binary tree 
called a Huffman tree. Figure 8-27 shows the Huffman tree for the SPAM message just 
discussed.

The characters in the message appear in the tree as leaf nodes. The higher their frequency 
in the message, the higher up they appear in the tree. The number outside each leaf node 
is its frequency. That puts the space character (sp) at the second level, and the S, P, A, and 
M characters at the second or third level. The least frequent, E and +, are on the lowest 
level, 5.
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Message: SPAM SPAM SPAM EGG + SPAM
Character Count Code Character Count Code

A 4 111 P 4 110
E 1 10000 S 4 101

G 2 1001 Space 5 01

M 4 00 + 1 10001

FIGURE 8-27 Huffman tree for the SPAM message

How do you use this tree to decode the message? You start by looking at the first bit of 
the message and set a pointer to the root node of the tree. If you see a 0 bit, you move the 
pointer to the left child of the node, and if you see a 1 bit, you move it right. If the identi-
fied node does not have an associated character, then you advance to the next bit in the 
message. Try it with the code for S, which is 101. You go right, left, then right again, and 
voila, you find yourself on the S node. This is shown by the blue arrows in Figure 8-27.

You can do the same with the other characters. After you’ve arrived at a leaf node, you 
can add its character to the decoded string and move the pointer back to the root node.  
If you have the patience, you can decode the entire bit string this way.

Creating the Huffman Tree
You’ve seen how to use a Huffman tree for decoding, but how do you create this tree? 
There are many ways to handle this problem. You need a Huffman tree object, and that is 
somewhat like the BinarySearchTree described previously in that it has nodes that have 
up to two child nodes. It’s quite different, however, because routines that are specific to 
keys in search trees, like find(), insert(), and delete(), are not relevant. The constraint 
that a node’s key be larger than any key of its left child and equal to or less than any key 
of its right child doesn’t apply to a Huffman tree. Let’s call the new class HuffmanTree, and 
like the search tree, store a key and a value at each node. The key will hold the decoded 
message character such as S or G.  It could be the space character, as you’ve seen, and it 
needs a special value for "no character".
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Here is the algorithm for constructing a Huffman tree from a message string:

Preparation

 1. Count how many times each character appears in the message string.

 2. Make a HuffmanTree object for each character used in the message. For the SPAM 
message example, that would be eight trees. Each tree has a single node whose key is 
a character and whose value is that character’s frequency in the message. Those val-
ues can be found in Table 8-3 or Table 8-4 for the SPAM message.

 3. Insert these trees in a priority queue (as described in Chapter 4). They are ordered 
by the frequency (stored as the value of each root node) and the number of levels 
in the tree. The tree with the smallest frequency has the highest priority. Among 
trees with equal frequency, the one with more levels is the highest priority. In other 
words, when you remove a tree from the priority queue, it’s always the one with the 
deepest tree of the least-used character. (Breaking ties using the tree depth, improves 
the balance of the final Huffman tree.)

That completes the preparation, as shown in Step 0 of Figure 8-28. Each single node Huff-
man trees has a character shown in the center of the node and a frequency value shown 
below and to the left of the node.
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FIGURE 8-28 Growing the Huffman tree, first six steps
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Then do the following:

Tree consolidation

 1. Remove two trees from the priority queue and make them into children of a new 
node. The new node has a frequency value that is the sum of the children’s frequen-
cies; its character key can be left blank (the special value for no character, not the 
space character).

 2. Insert this new, deeper tree back into the priority queue.

 3. Keep repeating steps 1 and 2. The trees will get larger and larger, and there will be 
fewer and fewer of them. When there is only one tree left in the priority queue, it is 
the Huffman tree and you’re done.

Figure 8-28 and Figure 8-29 show how the Huffman tree is constructed for the SPAM 
message.

Step 7–Final Tree 
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FIGURE 8-29 Growing the Huffman tree, final step

Coding the Message
Now that you have the Huffman tree, how do you encode a message? You start by creat-
ing a code table, which lists the Huffman code alongside each character. To simplify the 
discussion, we continue to assume that only ASCII characters are possible, so we need a 
table with 128 cells. The index of each cell would be the numerical value of the ASCII 
character: 65 for A, 66 for B, and so on. The contents of the cell would be the Huffman 
code for the corresponding character. Initially, you could fill in some special value for 
indicating "no code" like None or an empty string in Python to check for errors where you 
failed to make a code for some character.

Such a code table makes it easy to generate the coded message: for each character in the 
original message, you use its code as an index into the code table. You then repeatedly 
append the Huffman codes to the end of the coded message until it’s complete.
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To fill in the codes in the table, you traverse the Huffman tree, keeping track of the path 
to each node as it is visited. When you visit a leaf node, you use the key for that node as 
the index to the table and insert the path as a binary string into the cell’s value. Not every 
cell contains a code—only those appearing in the message. Figure 8-30 shows how this 
looks for the SPAM message. The table is abbreviated to show only the significant rows. 
The path to the leaf node for character G is shown as the tree is being traversed.

The full code table can be built by calling a method that starts at the root and then calls 
itself recursively for each child. Eventually, the paths to all the leaf nodes will be explored, 
and the code table will be complete.

Index Character Code

32 Space 01

43 + 10001

65 A 111

69 E 10000
70 F
71 G 1001

77 M 00
78 N
79 O
80 P 110
81 Q
82 R
83 S 101

A

M sp

G

S P

E +

1

1

0

0

FIGURE 8-30 Building the code table 

One more thing to consider: if you receive a binary message that’s been compressed with 
a Huffman code, how do you know what Huffman tree to use for decoding it? The answer 
is that the Huffman tree must be sent first, before the binary message, in some format that 
doesn’t require knowledge of the message content. Remember that Huffman codes are for 
compressing the data, not encrypting it. Sending a short description of the Huffman tree 
followed by a compressed version of a long message saves many bits.
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Summary
▶▶ Trees consist of nodes connected by edges.

▶▶ The root is the topmost node in a tree; it has no parent.

▶▶ All nodes but the root in a tree have exactly one parent.

▶▶ In a binary tree, a node has at most two children.

▶▶ Leaf nodes in a tree have no child nodes and exactly one path to the root.

▶▶ An unbalanced tree is one whose root has many more left descendants than right 
descendants, or vice versa.

▶▶ Each node of a tree stores some data. The data typically has a key value used to iden-
tify it.

▶▶ Edges are most commonly represented by references to a node’s children; less com-
mon are references from a node to its parent.

▶▶ Traversing a tree means visiting all its nodes in some predefined order.

▶▶ The simplest traversals are pre-order, in-order, and post-order.

▶▶ Pre-order and post-order traversals are useful for parsing algebraic expressions.

▶▶ Binary Search Trees

▶▶ In a binary search tree, all the nodes that are left descendants of node A have 
key values less than that of A; all the nodes that are A’s right descendants have 
key values greater than (or equal to) that of A.

▶▶ Binary search trees perform searches, insertions, and deletions in O(log N) 
time.

▶▶ Searching for a node in a binary search tree involves comparing the goal key to 
be found with the key value of a node and going to that node’s left child if the 
goal key is less or to the node’s right child if the goal key is greater.

▶▶ Insertion involves finding the place to insert the new node and then changing 
a child field in its new parent (or the root of the tree) to refer to it.

▶▶ An in-order traversal visits nodes in order of ascending keys.

▶▶ When a node has no children, you can delete it by clearing the child field in 
its parent (for example, setting it to None in Python).

▶▶ When a node has one child, you can delete it by setting the child field in its 
parent to point to its child.

▶▶ When a node has two children, you can delete it by replacing it with its suc-
cessor and deleting the successor from the subtree.

▶▶ You can find the successor to a node A by finding the minimum node in A’s 
right subtree.
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▶▶ Nodes with duplicate key values require extra coding because typically only 
one of them (the first) is found in a search, and managing their children com-
plicates insertions and deletions.

▶▶ Trees can be represented in the computer’s memory as an array, although the refer-
ence-based approach is more common and memory efficient.

▶▶ A Huffman tree is a binary tree (but not a search tree) used in a data-compression 
algorithm called Huffman coding.

▶▶ In the Huffman code, the characters that appear most frequently are coded with the 
fewest bits, and those that appear rarely are coded with the most bits.

▶▶ The paths in the Huffman tree provide the codes for each of the leaf nodes.

▶▶ The level of a leaf node indicates the number of bits used in the code for its key.

▶▶ The characters appearing the least frequently in a Huffman coded message are placed 
in leaf nodes at the deepest levels of the Huffman tree.

Questions
These questions are intended as a self-test for readers. Answers may be found in Appendix C.

 1. Insertion and deletion in a binary search tree require what Big O time?

 2. A binary tree is a search tree if

 a.  every nonleaf node has children whose key values are less than or equal to the 
parent.

 b.  the key values of every nonleaf node are the sum or concatenation of the keys of 
its children

 c.  every left child has a key less than its parent and every right child has a key 
greater than or equal to its parent.

 d.  in the path from the root to every leaf node, the key of each node is greater than 
or equal to the key of its parent.

 3. True or False: If you traverse a tree and print the path to each node as a series of 
the letters L and R for whether the path followed the left or right child at each step, 
there could be some duplicate paths.

 4. When compared to storing data in an ordered array, the main benefit of storing it in 
a binary search tree is

 a. having the same search time as traversal time in Big O notation.

 b. not having to copy data when inserting or deleting items.

 c. being able to search for an item in O(log N) time.

 d. having a key that is separate from the value identified by the key.
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 5. In a complete, balanced binary tree with 20 nodes, and the root considered to be at 
level 0, how many nodes are there at level 4?

 6. A subtree of a binary tree always has

 a. a root that is a child of the main tree’s root.

 b. a root unconnected to the main tree’s root.

 c. fewer nodes than the main tree.

 d. a sibling with an equal or larger number of nodes.

 7. When implementing trees as objects, the ______ and the _______ are generally sepa-
rate classes.

 8. Finding a node in a binary search tree involves going from node to node, asking

 a. how big the node’s key is in relation to the search key.

 b. how big the node’s key is compared to its right or left child’s key.

 c. what leaf node you want to reach.

 d. whether the level you are on is above or below the search key.

 9. An unbalanced tree is one

 a. in which most of the keys have values greater than the average.

 b. where there are more nodes above the central node than below.

 c.  where the leaf nodes appear much more frequently as the left child of their par-
ents than as the right child, or vice versa.

 d.  in which the root or some other node has many more left descendants than right 
descendants, or vice versa.

 10. True or False: A hierarchical file system is essentially a binary search tree, although it 
can be unbalanced.

 11. Inserting a node starts with the same steps as _______ a node.

 12. Traversing tree data structures

 a. requires multiple methods to handle the different traversal orders.

 b. can be implemented using recursive functions or generators.

 c. is much faster than traversing array data structures.

 d. is a way to make soft deletion of items practical.

 13. When a tree is extremely unbalanced, it begins to behave like the ______ data 
structure.
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396 CHAPTER 8  Binary Trees

 14. Suppose a node A has a successor node S in a binary search tree with no duplicate 
keys. Then S must have a key that is larger than _____ but smaller than or equal to 
_______.

 15. Deleting nodes in a binary search tree is complex because

 a. copying subtrees below the successor requires another traversal.

 b. finding the successor is difficult to do, especially when the tree is unbalanced.

 c. the tree can split into multiple trees, a forest, if it’s not done properly.

 d.  the operation is very different for the different number of child nodes of the node 
to be deleted, 0, 1, or 2.

 16. In a binary tree used to represent a mathematical expression,

 a. both children of an operator node must be operands.

 b. following a post-order traversal, parentheses must be added.

 c. following a pre-order traversal, parentheses must be added.

 d. in pre-order traversal, a node is visited before either of its children.

 17. When a tree is represented by an array, the right child of a node at index n has an 
index of _______.

 18. True or False: Deleting a node with one child from a binary search tree involves find-
ing that node’s successor.

 19. A Huffman tree is typically used to _______ text data.

 20. Which of the following is not true about a Huffman tree?

 a.  The most frequently used characters always appear near the top of the tree.

 b.  Normally, decoding a message involves repeatedly following a path from the root 
to a leaf.

 c.  In coding a character, you typically start at a leaf and work upward.

 d.  The tree can be generated by removal and insertion operations on a priority 
queue of small trees.

Experiments
Carrying out these experiments will help to provide insights into the topics covered in the 
chapter. No programming is involved.

 8-A Use the Binary Search Tree Visualization tool to create 20 random trees using 20 
as the requested number of items. What percentage would you say are seriously 
unbalanced?
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 8-B Use the BinarySearchTreeTester.py program shown in Listing 8-12 and pro-
vided with the code examples from the publisher’s website to do the following 
experiments:

 a. Delete a node that has no children.

 b. Delete a node that has 1 child node.

 c. Delete a node that has 2 child nodes.

 d. Pick a key for a new node to insert. Determine where you think it will be inserted 
in the tree, and then insert it with the program. Is it easy to determine where it 
will go?

 e. Repeat the previous step with another key but try to put it in the other child 
branch. For example, if your first node was inserted as the left child, try to put 
one as the right child or in the right subtree.

 8-C The BinarySearchTreeTester.py program shown in Listing 8-12 prints an initial tree 
of 11 nodes across 7 levels, based on the insertion order of the items. A fully balanced 
version of the tree would have the same nodes stored on 4 levels. Use the program to 
clear the tree, and then determine what order to insert the same keys to make a bal-
anced tree. Try your ordering and see whether the tree comes out balanced. If not, try 
another ordering. Can you describe in a few sentences the insertion ordering that will 
always create a balanced binary search tree from a particular set of keys?

 8-D Use the Binary Search Tree Visualization tool to delete a node in every possible 
situation.

Programming Projects
Writing programs to solve the Programming Projects helps to solidify your understanding 
of the material and demonstrates how the chapter’s concepts are applied. (As noted in the 
Introduction, qualified instructors may obtain completed solutions to the Programming 
Projects on the publisher’s website.)

 8.1 Alter the BinarySearchTree class described in this chapter to allow nodes with dupli-
cate keys. Three methods are affected: __find(), insert(), and delete(). Choose 
to insert new left children at the shallowest level among equal keys, as shown on 
the left side of Figure 8-26, and always find and delete the deepest among equal 
keys. More specifically, the __find() and search() methods should return the deep-
est among equal keys that it encounters but should allow an optional parameter to 
specify finding the shallowest. The insert() method must handle the case when 
the item to be inserted duplicates an existing node, by inserting a new node with an 
empty left child below the deepest duplicate key. The delete() method must delete 
the deepest node among duplicate keys, thus providing a LIFO or stack-like behav-
ior among duplicate keys. Think carefully about the deletion cases and whether the 
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choice of successor nodes changes. Demonstrate how your implementation works on 
a tree inserting several duplicate keys associated with different values. Then delete 
those keys and show their values to make it clear that the last duplicate inserted is 
the first duplicate deleted.

 8.2 Write a program that takes a string containing a postfix expression and builds a 
binary tree to represent the algebraic expression like that shown in Figure 8-16. 
You need a BinaryTree class, like that of BinarySearchTree, but without any keys 
or ordering of the nodes. Instead of find(), insert(), and delete() methods, you 
need the ability to make single node BinaryTrees containing a single operand and 
a method to combine two binary trees to make a third with an operator as the root 
node. The syntax of the operators and operands is the same as what was used in the 
PostfixTranslate.py module from Chapter 4. You can use the nextToken() func-
tion in that module to parse the input string into operator and operand tokens. You 
don’t need the parentheses as delimiters because postfix expressions don’t use them. 
Verify that the input expression produces a single algebraic expression and raise an 
exception if it does not. For valid algebraic binary trees, use pre-, in-, and post-order 
traversals of the tree to translate the input into the output forms. Include parenthe-
ses for the in-order traversal to make the operator precedence clear in the output 
translation. Run your program on at least the following expressions:

 a. 91 95 + 15 + 19 + 4 *

 b. B B * A C 4 * * –

 c. 42

 d. A 57   # this should produce an exception

 e. + /      # this should produce an exception

 8.3 Write a program to implement Huffman coding and decoding. It should do the 
following:

  ▶▶Accept a text message (string).

  ▶▶Create a Huffman tree for this message.

  ▶▶Create a code table.

  ▶▶Encode the text message into binary.

  ▶▶Decode the binary message back to text.

  ▶▶Show the number of bits in the binary message and the number of characters in 
the input message.

 If the message is short, the program should be able to display the Huffman tree after 
creating it. You can use Python string variables to store binary messages as arrange-
ments of the characters 1 and 0. Don’t worry about doing actual bit manipulation 
using bytearray unless you really want to. The easiest way to create the code table 
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in Python is to use the dictionary (dict) data type. If that is unfamiliar, it’s essen-
tially an array that can be indexed by a string or a single character. It’s used in the 
BinarySearchTreeTester.py module shown in Listing 8-12 to map command let-
ters to command records. If you choose to use an integer indexed array, you can use 
Python’s ord() function to convert a character to an integer but be aware that you 
will need a large array if you allow arbitrary Unicode characters such as emojis ()  
in the message.

 8.4 Measuring tree balance can be tricky. You can apply two simple measures: node bal-
ance and level (or height) balance. As mentioned previously, balanced trees have 
an approximately equal number of nodes in their left and right subtrees. Similarly, 
the left and right subtrees must have an approximately equal number of levels (or 
height). Extend the BinarySearchTree class by writing the following methods:

 a. nodeBalance()—Computes the number of nodes in the right subtree minus the 
number of nodes in the left subtree

 b. levelBalance()—Computes the number of levels in the right subtree minus the 
number of levels in the left subtree

 c. unbalancedNodes(by=1)— Returns a list of node keys where the absolute value of 
either of the balance metrics exceeds the by threshold, which defaults to 1

 These three methods all require (recursive) helper methods that traverse subtrees 
rooted at nodes inside the tree. In a balanced tree, the list of unbalanced nodes 
would be empty. Try your measures by inserting the following four lists of keys into 
an empty BinarySearchTree (in order, left to right), printing the resulting 15-node 
tree, printing the node and level balance of the resulting root node, and then print-
ing the list of unbalanced keys with by=1 and by=2.

 [7, 6, 5, 4, 3, 2, 1, 8, 12, 10, 9, 11, 14, 13, 15],
 [8, 4, 5, 6, 7, 3, 2, 1, 12, 10, 9, 11, 14, 13, 15],
 [8, 4, 2, 3, 1, 6, 5, 7, 12, 10, 9, 11, 14, 13, 15],
 [8, 4, 2, 3, 1, 6, 5, 7, 12, 10, 9, 11, 14, 13, 8.5]

 8.5 Every binary tree can be represented as an array, as described in the section titled 
"Trees Represented as Arrays." The reverse of representing an array as a tree, however, 
works only for some arrays. The missing nodes of the tree are represented in the 
array cells as some predefined value—such as None—that cannot be a value stored at 
a tree node. If the root node is missing in the array, then the corresponding tree can-
not be built. Write a function that takes an array as input and tries to make a binary 
tree from its contents. Every cell that is not None is a value to store at a tree node. 
When you come across a node without a parent node (other than the root node), 
the function should raise an exception indicating that the tree cannot be built. Note 
that the result won’t necessarily be a binary search tree, just a binary tree. Hint: It’s 
easier to work from the leaf nodes to the root, building nodes for each cell that is 
not None and storing the resulting node back in the same cell of the input array for 
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retrieval when it is used as a subtree of a node on another level. Print the result of 
running the function on the following arrays where n = None. The values in the array 
can be stored as either the key or the value of the node because the tree won’t be 
interpreted as a binary search tree.

 [],
 [n, n, n],
 [55, 12, 71],
 [55, 12, n, 4],
 [55, 12, n, 4, n, n, n, n, 8, n, n, n, n, n, n, n, n, 6, n],
 [55, 12, n, n, n, n, 4, n, 8, n, n, n, n, n, n, n, n, 6, n]
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A
abstract data types. See ADTs (abstract data 

types)

abstraction, described, 190–191

adjacency, defined, 707

adjacency lists

modeling, 712–713

storing edges in, 714–716

adjacency matrix

as hash table, 712

as two-dimensional array, 710–711

ADT lists, 191

ADTs (abstract data types)

defined, 184, 190–191

as design tool, 191–192

as interface, 191

priority queues and, 667–668
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quicksorts with, 309–310, 318
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algorithms

defined, 1
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purpose of, 40–47

recipe analogy, 1–3
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all-pairs shortest-path problem, 796–798
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817–818

types of data, 814–815
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described, 132–133

evaluating postfix expressions, 148–151

Infix Calculator tool, 142–148

postfix notation, 133–134
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accessing elements, 38–39
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creating arrays, 37–38
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example of, 39–42

improved example of, 43–47

initialization, 39
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insertion sorts, 90
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Array Visualization tool, 30–37
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Array class

accessing elements, 38–39

creating, 37–38

deletion, 42

encapsulation, 42–43

example of, 39–42

improved example of, 43–47

initialization, 39

insertion, 42

searches, 42

traversal, 42

Array Visualization tool, 30–37

deletion, 34–35, 37

duplicates, 35–37

insertion, 33

searches, 31–33

speed of algorithms, 37

traversal, 35

binary search trees as

described, 377–378

levels and size, 378–379

insertion, speed of, 66

linked lists vs.164

lists as, 37

Ordered Array Visualization tool, 47–51

binary searches, 49–51

duplicates, 51

Guess-a-Number game example, 48–49

OrderedArray class

advantages of, 57–58

example of, 53–57

find() method, 52–53

OrderedRecordArray class, 61–65

reusing in heapsort, 688–691

as sequences, 13–15

sorting. See sorting

two-dimensional

adjacency matrix as, 710–711

in Python, 713–714

use case comparison with stacks/queues, 
103–104

arrival ordering, defined, 116–117

ASCII codes, 386

assignment statements, multivalued  
assignment in Python, 17–18

attributes

defined, 7

Python name mangling, 44

AVL trees

AVLtree class

deleting nodes, 479–484

inserting nodes, 474–478

__Node class, 472–474

AVLTree Visualization tool, 470

inserting nodes, 470–472

crossover subtrees in rotations, 478–479

defined, 463, 469–471

speed of, 484–485

AVLtree class

deleting nodes, 479–484

inserting nodes, 474–478

__Node class, 472–474

AVLTree Visualization tool, 470

inserting nodes, 470–472

B
balanced trees. See also AVL trees; red-black 

trees

defined, 463

degenerates, 463–464

measuring balance, 464–469

red-black rules and, 495

when to use, 822–823
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red-black trees, 508

selection sorts, 86–87

Shellsorts, 294

sorting algorithms, 828

spatial data searches, 656–658

special-ordering data structures, 826

stacks, 116

Timsorts, 327

topological sorting, 751

Binary Search Tree Visualization tool, 341–344

deleting double child nodes, 374

deleting leaf nodes, 367

deleting single child nodes, 368–369

finding nodes, 346–348

inserting nodes, 351–352

traversal with, 361–363

binary search trees. See also AVL trees; nodes; 
red-black trees

as arrays

described, 377–378

levels and size, 378–379

Binary Search Tree Visualization tool,  
341–344

deleting double child nodes, 374

deleting leaf nodes, 367

deleting single child nodes, 368–369

finding nodes, 346–348

inserting nodes, 351–352

traversal with, 361–363

BinarySearchTree class, 344

deleting single child nodes, 369–370

finding nodes, 348–349

inserting nodes, 352–353

__Node class, 345–346

testing code, 382–385

traversal with, 356–361

defined, 340

duplicate keys in, 381–382

base case, defined, 233

best case, defined, 266

Big O notation, 65–68

2–3 trees, 438

2–3-4 trees, 431–432

AVL trees, 484–485

binary search trees, 350, 375–377

binary searches, 67

bubble sorts, 82

comparison of sorting methods, 96–97

constants in, 67–68

counting sorts, 324

degenerates, 463–464

exact point matches, 622–623

general-purpose data structures, 824

graphs, 798

hashing, 581

open addressing, 581–583

separate chaining, 583–587

heaps, 683–684

heapsort, 693

insertion in unordered arrays, 66

insertion sorts, 91

K highest, 696–700

linear searches, 66–67

linked lists, 183–184

mergesorts, 264–267, 456

ordered lists, 198

partitioning algorithm, 301–302

priority queues, 132

quadtrees

exact matches, 645

insertion, 644

nearest matches, 655

queues, 125

quicksorts, 318–320

radix sorts, 322

recursion, 236
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hierarchical file system analogy, 340–341

minimum/maximum key values, 365–366

printing, 379–381

separate chaining with, 585

speed of, 350, 375–377

when to use, 822

binary searches, 48–51

duplicates, 51

Guess-a-Number game example, 48–49

logarithms in, 58–60

Ordered Array Visualization tool, 49–51

OrderedArray class

advantages of, 57–58

example of, 53–57

find() method, 52–53

recursion in, 242–244

speed of, 67

binary trees. See also binary search trees

advantages/disadvantages, 5

balanced/unbalanced

defined, 463

degenerates, 463–464

measuring balance, 464–469

defined, 337, 339–340

heaps as, 666–667, 684–685

Huffman trees

creating, 389–391

decoding with, 388–389

defined, 388

encoding with, 391–392

representing arithmetic expressions, 363–365

BinarySearchTree class, 344

deleting single child nodes, 369–370

finding nodes, 348–349

inserting nodes, 352–353

__Node class, 345–346

testing code, 382–385

traversal with, 356–361

black height

in color swaps, 499–500

defined, 488

blocks per node in B-trees, 444–445

bottom-up insertion, 486–487

bounding boxes of query circles, 603

Bounds class, 605–606

bounds completely within other bounds, 
610–611

Cartesian coordinates, 603–604

CircleBounds subclass, 607–609

geographic coordinates, 604–605

intersection of bounding boxes, 609–610

intersection with grid cells, 628–629

within layers, 625–628

Bounds class, 605–606

branches, defined, 338

breadth-first traversal

example of, 727–731

Graph class, 731–733

Graph Visualization tool, 731

B-trees

blocks per node, 444–445

defined, 444

inserting nodes, 446–449

searching, 445–446

speed of, 449–450

when to use, 830

bubble sorts, 77–82

in Array class, 81–82

comparison of sorting methods, 96–97

described, 77–79

invariants, 82

Simple Sorting Visualization tool, 79–81

speed of, 82

buckets, defined, 569

buffers, defined, 442

bytecode, defined, 8
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C
Cartesian coordinates

bounding boxes of query circles, 603–604

defined, 597–598

distance between, 599

cells, defined, 38

character codes, 386–388

children of tree nodes

defined, 338

double child nodes, deleting, 370–375

null children in red-black trees, 495–496

single child nodes, deleting, 367–370

CircleBounds subclass, 607–609

circles. See query circles

circular lists, 209–210

circular queues, defined, 118

class attributes, defined, 25

classes, defined, 23

close matches. See nearest matches

clustering in hash tables

with HashTableOpenAddressing Visualization 
tool, 540–543

primary and secondary clustering, 558–559

collisions

defined, 533

hashing and, 533–536

combinations, recursion and, 278–280

comments in Python, described, 12

complex numbers, defined, 26

compressing data. See Huffman code

computational complexity, defined, 68

concatenating sequences, 15

conditional expressions, defined, 20

connected graphs, defined, 708

connectivity in directed graphs, 751

connectivity matrix, 753

transitive closure, 751–756

constants in Big O notation, 67–68

counting sort, 323–324

crossover subtrees

defined, 478

in rotations, 478–479

cutoff points, defined, 315

cycles

in directed graphs, 743–744

Hamiltonian, 800–802

Warshall’s algorithm and, 755–758

D
data compression. See Huffman code

data organizations

defined, 1

recipe analogy, 1–3

data structures. See also types of specific data 
structures

altering during iteration, 216–217

choosing what to use

foundational data structures, 818–824

problem analysis, 814–818

special-ordering data structures,  
824–826

specialty data structures, 828–829

databases vs.7

defined, 1

list of, 4–5

operations on, 4

purpose of, 3–4

data types

ADTs (abstract data types)

defined, 184, 190–191

as design tool, 191–192

as interface, 191

described, 189–190
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dynamic typing, 12–13

reference types, 160–163

sequences in Python, 13–15

databases

data structures vs.7

defined, 6

datasets distributed in cloud, defined, 438

decoding with Huffman trees, 388–389

degenerate trees, defined, 463–464

deletion. See also removal

in arrays

Array class, 42

Array Visualization tool, 34–35, 37

defined, 4

in doubly linked lists

at ends, 201–204

in middle, 204–208

with duplicates, 36

in grids, 623

in hash tables

with HashTable class, 552–553

with HashTableChaining Visualization 
tool, 568

with HashTableOpenAddressing 
Visualization tool, 542

for separate chaining, 574

in linked lists, 166–167, 174–177

of nodes

in 2–3-4 trees, 423–430

in AVL trees, 479–484

double child nodes, 370–375

leaf nodes in binary trees, 367

process of, 366–367

in red-black trees, 491, 508

single child nodes, 367–370

in point lists, 614–615

in quadtrees, 646–647

delimiter matching example for stacks, 113–116

dependency relationships example (topological 
sorting), 739

depth-first traversal

example of, 720–722

game simulation, 727

Graph class, 724–727

Graph Visualization tool, 722–723

maze analogy, 722

deques

defined, 125–126

doubly linked lists for, 208

descendants, defined, 339

dictionary example (hashing), 527–530

Dijkstra’s algorithm

implementation, 791–792

rail travel example, 782–788

WeightedGraph Visualization tool, 788–791

directed graphs

connectivity in, 751

connectivity matrix, 753

transitive closure, 751–756

cycles in, 743–744

defined, 708–709

described, 739–740

in Graph Visualization tool, 741–742

topological sorting in, 742–743

distance between points

Cartesian coordinates, 599

geographic coordinates, 599–601

query circles, 601–603

divide-and-conquer algorithms

defined, 245

mergesort as, 257–260

double child nodes, deleting, 370–375

double hashing, 559–565

example of, 562–564

HashTableOpenAddressing Visualization tool, 
561–562
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864 double hashing

implementation, 559–561

speed of, 583

table size, 564–565

double-ended lists, 177–183

doubly linked lists, 198–201

for deques, 208

insertion/deletion at ends, 201–204

insertion/deletion in middle, 204–208

duplicate keys in binary search trees, 381–382

duplicates

in arrays

Array Visualization tool, 35–37

Ordered Array Visualization tool, 51

in hash tables

with HashTableChaining Visualization 
tool, 568

with HashTableOpenAddressing 
Visualization tool, 542

dynamic typing, described, 12–13

E
edges

adding to graphs, 713–716

defined, 336, 706

modeling, 710

storing

in adjacency lists, 714–716

in adjacency matrices, 710–712

for weighted graphs, 774–776

efficiency. See speed

elements (of lists)

accessing, 38–39

defined, 38

eliminating recursion, 267

in mergesorts, 270–275

in quicksorts, 318

with stacks, 267–270

encapsulation, defined, 42–43

encoding

defined, 532

with Huffman trees, 391–392

enumerating sequences, 15–17

error handling in stacks, 111–112

errors. See exceptions

Euclidean distance, defined, 599

Euler, Leonhard, 709

evaluating postfix expressions, 148–151

exact matches

in grids, 621–623

in point lists, 614

in quadtrees, 644–645

exceptions

described, 22–23

finishing iteration, 213–215

external storage

accessing, 439–442

B-trees

blocks per node, 444–445

defined, 444

inserting nodes, 446–449

searching, 445–446

speed of, 449–450

choosing what to use, 829–831

defined, 438

file indexes

complex search criteria, 452–453

defined, 450–451

hashing and, 588–590

inserting in, 451–452

in memory, 450, 452

multiple, 452

searching, 451

sequential ordering, 442–443

sorting with mergesort, 453–456

extreme values, finding
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865geographic coordinates

in binary search trees, 365–366

in heaps, 695–700

F
factorials, described, 237–238

fencepost loops, defined, 145

Fibonacci sequence, 218–222

fields, defined, 7

file indexes

complex search criteria, 452–453

defined, 450–451

hashing and, 588–590

inserting in, 451–452

in memory, 450, 452

multiple, 452

searching, 451

when to use, 829–830

files, defined, 438

filled sequences in hash tables, 540–542

find() method, binary searches with, 52–53

finding. See also searching

extreme values in heaps, 695–700

minimum/maximum key values, 365–366

nodes

with Binary Search Tree Visualization 
tool, 346–348

with BinarySearchTree class, 348–349

successors, 372–373

finishing iteration

exception handling, 213–215

markers/sentinel values, 213

termination tests, 213

Floyd, Robert, 798

Floyd-Warshall algorithm, 798

folding, defined, 580–581

folds, defined, 531

foundational data structures, when to use, 
818–824

functions in Python, described, 19–20

fusion

applying on descent, 429–430

defined, 427

extending, 428–429

G
game simulation with depth-first  

traversal, 727

gap sequences

defined, 288–289

selecting, 293

general-purpose data structures, when to use, 
818–824

generators

for 2–3-4 tree traversal, 421–423

for adjacent vertex traversal, 724–727

described, 218–222

doubleHashProbe(), 559–565

for graph traversal, 731–733

for grid offsets, 629–630

for grid traversal, 623–624

for hash table traversal, 553–554

for heap traversal, 682–683

linearProbe(), 552

for point traversal, 615

quadraticProbe(), 554–559

for quadtree traversal, 645–646

in Timsorts, 326

for tree traversal, 356–361

geographic coordinates

bounding boxes of query circles, 604–605

defined, 598

distance between, 599–601
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Graph class866

Graph class, 715–718

breadth-first traversal, 731–733

depth-first traversal, 724–727

minimum spanning trees in, 735–739

topological sorting in, 746–747

Graph Visualization tool

breadth-first traversal, 731

depth-first traversal, 722–723

directed graphs in, 741–742

minimum spanning trees in, 733

topological sorting algorithm, 742

graphs. See also topological sorting; weighted 
graphs

adding vertices/edges, 713–716

advantages/disadvantages, 5

defined, 337

directed graphs

connectivity in, 751–756

cycles in, 743–744

described, 739–740

in Graph Visualization tool, 741–742

topological sorting in, 742–743

Graph class, 715–718

history of, 709

intractable problems

defined, 798

Hamiltonian paths/cycles, 800–802

Knight’s Tour, 798

Traveling Salesperson, 799–800

minimum spanning trees

described, 733

in Graph class, 735–739

in Graph Visualization tool, 733

as subgraphs, 733–737

modeling

adjacency list, 712–713

adjacency matrix, 710–712

edges, 710

vertices, 709–710

purpose of, 706

speed of algorithms, 798

terminology, 707–709

traversal, 718–719

breadth-first, 727–733

depth-first, 719–727

when to use, 828–829

great circle, defined, 599–600

Grid class, 619–620

grids, 617

deleting points, 623

exact matches, 621–623

Grid class instances, 619–620

implementation in Python, 618–619

inserting points, 620–621

intersection with query circles, 628–629

nearest matches, 624–625, 630–633

neighboring cell sequence, 629–630

query circles within layers, 625–628

traversing points, 623–624

when to use, 828

growing hash tables

with HashTable class, 550–551

speed of, 585–587

Guess-a-Number game example, 48–49

H
Hamiltonian paths/cycles intractable problem, 

800–802

hash addresses, defined, 531

hash functions

computation speed, 575

defined, 526, 531

folding, 580–581
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867HashTableChaining Visualization tool

nonrandom keys, 576–578

random keys, 575–576

simpleHash() function, 545–546

for strings, 578–580

hash tables

adjacency matrix as, 712

advantages/disadvantages, 5, 525

defined, 525, 531

for external storage, 588–590

HashTable class, 544–545

deleting data, 552–553

growing hash tables, 550–551

inserting data, 548–549

rehashing data, 551

searching data, 546–548

simpleHash() function, 545–546

traversal, 553–554

HashTableChaining Visualization tool, 
566–569

buckets, 569

deleting data, 568

duplicates, 568

load factors, 568

table size, 569

HashTableOpenAddressing Visualization tool, 
536–543

clustering, 540–543

deleting data, 542

double hashing, 561–562

duplicates, 542

inserting data, 537–540

quadratic probing, 555–558

searching data, 540

traversal, 554

when to use, 823

hashingf

collisions and, 533–536

external storage and, 588–590

keys

dictionary example, 527–530

nonrandom keys, 576–578

numbers as, 526–527

random keys, 575–576

open addressing

double hashing, 559–565

HashTable class, 544–554

linear probing, 536–543

quadratic probing, 554–559

separate chaining vs.587–588

process of, 530–533

separate chaining

defined, 565

HashTable class, 569–574

HashTableChaining Visualization tool, 
566–569

KeyValueList class, 571–572

open addressing vs.587–588

types to use, 574–575

simpleHash() function, 545–546

speed of, 581

open addressing, 581–583

separate chaining, 583–587

strings, 578–580

when to use, 830

HashTable class

open addressing, 544–545

deleting data, 552–553

growing hash tables, 550–551

inserting data, 548–549

linearProbe() generator, 552

rehashing data, 551

searching data, 546–548

traversal, 553–554

separate chaining, 569–574

HashTableChaining Visualization tool, 566–569

buckets, 569
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868 HashTableChaining Visualization tool

deleting data, 568

duplicates, 568

load factors, 568

table size, 569

HashTableOpenAddressing Visualization tool, 
536–543

clustering, 540–543

deleting data, 542

double hashing, 561–562

duplicates, 542

inserting data, 537–540

quadratic probing, 555–558

searching data, 540

traversal, 554

haversine formula, defined, 600

Heap class, 677–683

Heap Visualization tool, 674–677

heapify() subroutine, 691–693

heaps

advantages/disadvantages, 5

as binary trees, 666–667, 684–685

changing priority, 674

defined, 104, 666

finding extreme values, 695–700

Heap class, 677–683

Heap Visualization tool, 674–677

erasing and randomly filling, 676

insertion in, 669–670

with Heap class, 679–680

with Heap Visualization tool, 675

for order statistics, 694–695

as partially ordered, 668

peeking, 674

with Heap Visualization tool, 677

priority queues and, 667–668

purpose of, 665

removal in, 670–674

with Heap class, 680–682

replacing maximum, 674

with Heap Visualization tool, 677

sifting up/down, 670–674

sorting. See heapsort

speed of, 683–684

traversal

with Heap class, 682–683

with Heap Visualization tool, 677

heapsort

heapify() subroutine, 691–693

heapsort() subroutine, 691–693

process of, 686

reusing array for, 688–691

sifting up/down, 686–688

speed of, 693

when to use, 827

heapsort() subroutine, 691–693

height of subtrees, defined, 467

hierarchical file system analogy, 340–341

holes, defined, 34–35

Huffman, David, 386

Huffman code

character codes, 386–388

defined, 386

Huffman trees

creating, 389–391

decoding with, 388–389

defined, 388

encoding with, 391–392

I
importing Python modules, 18–19

indentation in Python, described, 9–12

indexes. See also file indexes
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869integer index, defined

hash tables as, 588

when to use, 829–830

induction, defined, 237

infix notation

comparison with postfix notation, 133

defined, 133, 363

InfixCalculator tool, 142–148

translating to postfix, 134–142

InfixCalculator tool, 142–148

inheritance, defined, 23

initialization of arrays, 39

in-order successors

defined, 371

finding, 372–373

replacing nodes with, 373–374

in-order traversal, 353–355

insertion

in 2–3 trees, 437–438

in 2–3-4 trees, 404–405

with Tree234 Visualization tool, 409–410

in arrays

Array class, 42

Array Visualization tool, 33

speed of, 66

bottom-up in trees, 486–487

defined, 4

in doubly linked lists

at ends, 201–204

in middle, 204–208

with duplicates, 36

in file indexes, 451–452

in grids, 620–621

in hash tables

with HashTable class, 548–549

with HashTableOpenAddressing 
Visualization tool, 537–540

speed of, 584

in heaps, 669–670

with Heap class, 679–680

with Heap Visualization tool, 675

in linked lists, 170–174

of nodes

with AVLtree class, 474–478

with AVLTree Visualization tool,  
470–472

with Binary Search Tree Visualization 
tool, 351–352

with BinarySearchTree class,  
352–353

in B-trees, 446–449

multiple red nodes, 492

process of, 350

in red-black trees, 492, 498–499

in point lists, 613–614

in priority queues, 127–128

in quadtrees, 636–638, 641–644

in queues, 117, 119

in sequentially ordered files, 443

in stacks. See push (stacks)

top-down in trees, 486

insertion sorts, 87–91

in Array class, 90

comparison of sorting methods, 96–97

described, 87–89

disadvantages, 286

invariants, 91

list insertion sorts, 198

Simple Sorting Visualization tool, 89–90

within small partitions, 315

speed of, 91

when to use, 827

instance attributes, defined, 25

instances, defined, 23

integer index, defined, 38
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internal nodes870

internal nodes

defined, 339

deleting in 2–3-4 trees, 424–425

promoting splits to, 435–437

interpreter (Python), described, 8–12

intersection

of bounding boxes, 609–610

of grid cells, 628–629

interval sequences

defined, 288–289

selecting, 293

intractable problems

defined, 798

Hamiltonian paths/cycles, 800–802

Knight’s Tour, 798

Traveling Salesperson, 799–800

invariants

in bubble sorts, 82

defined, 82

in insertion sorts, 91

in selection sorts, 86

isomorphic, defined, 508

items, defined, 38

iteration

altering data structures during, 216–217

described, 15–17

finishing

exception handling, 213–215

markers/sentinel values, 213

termination tests, 213

iterators

described, 211–212

methods in, 212–217

in Python, 217–222

K
K highest

finding extreme values, 695–696

speed of, 696–700

k-d trees, defined, 659

key values

defined, 346

finding minimum/maximum in trees,  
365–366

keys

defined, 7, 61, 339

duplicates in binary search trees, 381–382

for hashing

dictionary example, 527–530

nonrandom keys, 576–578

numbers as, 526–527

random keys, 575–576

secondary sort keys, 96

KeyValueList class, 571–572

knapsack problem, 277–278

Knight’s Tour intractable problem, 798

Königsberg bridge problem, 709

L
latitude, defined, 598

layers, query circles within, 625–628

leaves

defined, 339

deleting

in 2–3-4 trees, 424

in binary search trees, 367
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871list of points

left child, defined, 339–340

left heavy, defined, 476

levels (of nodes)

defined, 339

in trees as arrays, 378–379

libraries, when to use, 820

linear probing, 536–543

defined, 536

HashTable class, 552

HashTableOpenAddressing Visualization tool, 
536–543

clustering, 540–543

deleting data, 542

duplicates, 542

inserting data, 537–540

searching data, 540

traversal, 554

speed of, 582–583

linear searches

defined, 48

speed of, 66–67

Link class, 159

deletion, 174–177

insertion, 170–174

methods in, 167–169

searches, 170–174

traversal, 169–170

linked lists

adjacency list, modeling, 712–713

advantages/disadvantages, 5, 336, 821

arrays vs.164

circular lists, 209–210

double-ended lists, 177–183

doubly linked lists, 198–201

for deques, 208

insertion/deletion at ends, 201–204

insertion/deletion in middle, 204–208

Link and LinkedList classes

deletion, 174–177

insertion, 170–174

methods in, 167–169

searches, 170–174

traversal, 169–170

LinkedList Visualization tool, 164–167

links in, 158–160

ordered lists

described, 192

list insertion sort with, 198

OrderedList class, 193–198

OrderedList Visualization class,  
192–193

speed of, 198

queue implementation by, 187–189

reference types and, 160–163

speed of, 183–184

stack implementation by, 184–187

linked trees, nodes in, 378–379

LinkedList class, 159

deletion, 174–177

insertion, 170–174

methods in, 167–169

searches, 170–174

traversal, 169–170

LinkedList Visualization tool, 164–167

links in linked lists, 158–160

list comprehensions, described, 20–22

list of points, 612

deleting points, 614–615

exact matches, 614

inserting points, 613–614

nearest matches, 615–616

PointList class, 612

traversing points, 615
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872 lists (data type in Python)

lists (data type in Python). See also ADT lists; 
linked lists

as arrays, 37

accessing elements, 38–39

creating, 37–38

deletion, 42

initialization, 39

insertion, 42

searches, 42

traversal, 42

as sequences, 13–15

slicing, 39

as stacks, 108–112

delimiter matching example, 113–116

error handling, 111–112

word reversal example, 112–113

load factors

defined, 548

in separate chaining, 568

local variables, defined, 25

logarithms in binary searches, 58–60

logical lines in Python, defined, 10

longitude, defined, 598

looping. See also iterators

described, 15–17

list comprehensions, 20–22

M
mapping, defined, 21

markers, finishing iteration, 213

matching delimiters example for stacks,  
113–116

mathematical induction, defined, 237

maximum, replacing in heaps, 674, 677

maze analogy (depth-first traversal), 722

measuring tree balance, 464–469

median-of-three partitioning, 313–315

mergesort

advantages/disadvantages, 255, 827

as divide-and-conquer algorithm, 257–260

eliminating recursion in, 270–275

for external files, 453–456

Mergesort Visualization tool, 263–264

with sorted arrays, 255–257

speed of, 264–267

with subranges, 260–262

testing code, 262–263

Mergesort Visualization tool, 263–264

methods, defined, 23

minimum spanning trees

described, 733

in Graph class, 735–739

in Graph Visualization tool, 733

as subgraphs, 733–737

with weighted graphs

building, 770–774

creating algorithm, 774–780

networking example, 768

WeightedGraph class, 776–779

WeightedGraph Visualization tool, 
768–770

modeling graphs

adjacency list, 712–713

adjacency matrix, 710–712

edges, 710

vertices, 709–710

modules, importing, 18–19

multiple file indexes, 452

multiple red nodes during insertion, 492

multiplying sequences, 15

multivalued assignment, described, 17–18

multiway trees, defined, 337. See also 2–3 
trees; 2–3-4 trees; B-trees

mutual recursion, defined, 374

9780134855684.indb   872 05/08/22   1:58 PM



873open addressing

N
name mangling in Python, defined, 44

namespaces in Python, defined, 19

nearest matches

in grids, 624–625, 630–633

in point lists, 615–616

in quadtrees, 647–655

neighbors, defined, 707

networking example (minimum spanning  
trees), 768

algorithm, 774–780

building minimum spanning tree, 770–774

__Node class

AVLtree class, 472–474

BinarySearchTree class, 345–346

Tree234 class, 412–415

Node class (quadtrees), 640–641

nodes

blocks per node in B-trees, 444–445

defined, 336

deleting

in 2–3-4 trees, 423–430

in AVL trees, 479–484

double child nodes, 370–375

leaf nodes, 367

process of, 366–367

in red-black trees, 491, 508

single child nodes, 367–370

finding

with Binary Search Tree Visualization 
tool, 346–348

with BinarySearchTree class, 348–349

flipping colors, 489–490, 493–494,  
499–500

inserting

with AVLtree class, 474–478

with AVLTree Visualization tool, 470–472

with Binary Search Tree Visualization 
tool, 351–352

with BinarySearchTree class, 352–353

in B-trees, 446–449

process of, 350

in red-black trees, 492–491, 498–499

in linked trees, 378–379

replacing with successors, 373–374

rotating in red-black trees, 490–491,  
492–493, 500–507

splitting

in 2–3 trees, 433–434, 437–438

in 2–3-4 trees, 405–406, 407–408

color swaps and, 512

promoting to internal nodes, 435–437

rotations and, 512–514

with Tree234 class, 418–421

nonrandom keys for hashing, 576–578

nonvolatile data storage, defined, 439

null children in red-black trees, 495–496

numbers

converting words to, 527–530

as hash keys, 526–527

raising to powers, 275–276

O
object-oriented programming, described, 23–26

objects

defined, 23

storing, 60–65

octrees, defined, 659

open addressing

defined, 535

double hashing, 559–565

example of, 562–564
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874 open addressing

HashTableOpenAddressing Visualization 
tool, 561–562

implementation, 559–561

table size, 564–565

HashTable class, 544–545

deleting data, 552–553

growing hash tables, 550–551

inserting data, 548–549

linearProbe() generator, 552

rehashing data, 551

searching data, 546–548

traversal, 553–554

linear probing, 536–543

defined, 536

HashTableOpenAddressing Visualization 
tool, 536–543, 554

quadratic probing, 554–559

separate chaining vs.587–588

speed of, 581–583

operands, defined, 133, 364

operators

defined, 133

precedence, 135

saving on stacks, 139–140

order of the function, defined, 68

order statistics, heaps for, 694–695

ordered arrays

advantages/disadvantages, 5, 57–58, 
335–336, 826

defined, 47

Guess-a-Number game example, 48–49

OrderedArray class

advantages of, 57–58

example of, 53–57

find() method, 52–53

OrderedArray Visualization tool, 47–51

binary searches, 49–51

duplicates, 51

OrderedRecordArray class, 61–65

ordered lists

described, 192

list insertion sort with, 198

OrderedList class, 193–198

OrderedList Visualization class, 192–193

speed of, 198

OrderedArray class

advantages of, 57–58

example of, 53–57

find() method, 52–53

OrderedArray Visualization tool, 47–51

binary searches, 49–51

duplicates, 51

Guess-a-Number game example, 48–49

OrderedList class, 193–198

OrderedList Visualization class, 192–193

OrderedRecordArray class, 61–65

orders of magnitude, defined, 815

P
parameters, defined, 20

parent nodes, defined, 338

parsing arithmetic expressions

described, 132–133

evaluating postfix expressions, 148–151

Infix Calculator tool, 142–148

postfix notation, 133–134

translating infix to postfix, 134–142

traversal order and, 363–365

partial sorting

defined, 87

finding extreme values, 695–700

heaps and, 668
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875postfix notation

partitioning

with AdvancedSorting Visualization tool, 
295–297

algorithm for, 297–301

defined, 294–295

in quicksort algorithm, 302–304

detailed explanation, 310–313

eliminating recursion in, 318

full implementation, 315–318

initial implementation, 306–309

median-of-three partitioning, 313–315

small partitions, 315

speed of, 318–320

speed of, 301–302

paths

defined, 338, 707–708

Hamiltonian, 800–802

peeking

in heaps, 674

with Heap Visualization tool, 677

in priority queues, 128

in queues, 120

in stacks

defined, 106

in Stack Visualization tool, 108

perfect hash functions, defined, 575–576

permutations, defined, 239

Peters, Tim, 325

pivot values

defined, 295–296

equal keys, 300–301

median-of-three, 313–315

selecting, 304–306

PointList class, 612

points

distance between

Cartesian coordinates, 599

geographic coordinates, 599–601

query circles, 601–603

grids, 617

deleting points, 623

exact matches, 621–623

Grid class instances, 619–620

implementation in Python, 618–619

inserting points, 620–621

intersection with query circles, 628–629

nearest matches, 624–625, 630–633

neighboring cell sequence, 629–630

query circles within layers, 625–628

traversing points, 623–624

lists, 612

deleting points, 614–615

exact matches, 614

inserting points, 613–614

nearest matches, 615–616

PointList class, 612

traversing points, 615

quadtrees

ambiguity in, 638–639

deleting points, 646–647

described, 633–635

exact matches, 644–645

inserting points, 636–638, 641–644

nearest matches, 647–655

Node class, 640–641

QuadTree class, 635–636

QuadTree Visualization tool, 639–640

traversing points, 645–646

pop (stacks)

defined, 104

in Stack Visualization tool, 108

postfix notation

comparison with infix notation, 133

defined, 133, 364
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876 postfix notation

described, 133–134

evaluating expressions, 148–151

Infix Calculator tool, 142–148

translating infix to, 134–142

post-order traversal, 355

powers, raising numbers to, 275–276

precedence (of operators), defined, 135

prefix notation, defined, 134, 364

pre-order traversal, 355

primary clustering, defined, 558

printing binary search trees, 379–381

priority, changing in heaps, 674

priority queues

defined, 106

described, 126–127

heaps and, 667–668

PriorityQueue class, 129–132

PriorityQueue Visualization tool, 127–129

search and traversal, 132

speed of, 132

use case comparison with arrays, 103–104

when to use, 826

PriorityQueue class, 129–132

PriorityQueue Visualization tool, 127–129

probing, defined, 541

problem analysis, 814–818

amount of data, 815–816

frequency of operations, 816–817

software maintenance responsibilities, 
817–818

types of data, 814–815

pseudocode, defined, 140

push (stacks)

defined, 104

in Stack Visualization tool, 107

Python

comments, 12

dynamic typing, 12–13

exceptions, 22–23

functions/subroutines, 19–20

as interpreted language, 8–12

iteration, 15–17

list comprehensions, 20–22

modules, importing, 18–19

multivalued assignment, 17–18

as object-oriented programming, 23–26

sequences, 13–15

whitespace, 8, 9–12

Q
quadratic probing, 554–559

speed of, 583

QuadTree class, 635–636

QuadTree Visualization tool, 639–640

quadtrees

advantages/disadvantages, 5, 828

ambiguity in, 638–639

deleting points, 646–647

described, 633–635

exact matches, 644–645

inserting points, 636–638, 641–644

nearest matches, 647–655

Node class, 640–641

QuadTree class, 635–636

QuadTree Visualization tool, 639–640

traversing points, 645–646

query circles

bounding boxes of, 603

Bounds class, 605–606

bounds completely within other bounds, 
610–611

Cartesian coordinates, 603–604

CircleBounds subclass, 607–609

geographic coordinates, 604–605
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877recursion

intersection of bounding boxes, 609–610

intersection with grid cells, 628–629

within layers, 625–628

distance between points, 601–603

Queue class, 120–125

Queue Visualization tool, 119–120

queues. See also priority queues

advantages/disadvantages, 5, 825

circular, 118

defined, 106

deques, 125–126

described, 116–117

linked list implementation of, 187–189

Queue class, 120–125

Queue Visualization tool, 119–120

search and traversal, 132

shifting, 117–118

speed of, 125

use case comparison with arrays, 103–104

quicksort

AdvancedSorting Visualization tool,  
309–310, 318

algorithm for, 302–304

defined, 302

detailed explanation, 310–313

eliminating recursion in, 318

full implementation, 315–318

initial implementation, 306–309

median-of-three partitioning, 313–315

pivot values, 304–306

small partitions, 315

speed of, 318–320

R
radix, defined, 321

radix sort, 320–323

defined, 321

designing, 321–322

generalizing, 322–323

speed of, 322

rail travel example (shortest-path problem), 
780–782

all-pairs shortest-path problem, 796–798

Dijkstra’s algorithm, 782–788

implementation of algorithm, 791–792

WeightedGraph class, 792–796

WeightedGraph Visualization tool, 788–791

raising numbers to powers, 275–276

random heaps, 676

random keys for hashing, 575–576

records

defined, 6, 60–61

OrderedRecordArray class, 61–65

recursion

anagrams, 239–242

applications for

combinations, 278–280

knapsack problem, 277–278

raising numbers to powers, 275–276

binary searches, 242–244

characteristics of, 235–236

defined, 6, 229

divide-and-conquer algorithms, 245

eliminating, 267

in mergesorts, 270–275

with stacks, 267–270

factorials, 237–238

finding nth terms with, 232–235

mathematical induction and, 237

mergesort

advantages/disadvantages, 255

as divide-and-conquer algorithm, 257–260

eliminating recursion in, 270–275

Mergesort Visualization tool, 263–264
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878 recursion

with sorted arrays, 255–257

speed of, 264–267

with subranges, 260–262

testing code, 262–263

in partitioning algorithm, 297–301

in quicksort algorithm, 302–304

detailed explanation, 310–313

eliminating recursion in, 318

full implementation, 315–318

initial implementation, 306–309

median-of-three partitioning, 313–315

small partitions, 315

speed of, 318–320

speed of, 236

Tower of Hanoi puzzle

described, 245–246

implementation of solution, 250–255

solution to, 247–249

TowerOfHanoi Visualization tool, 246–247

recursive depth, defined, 255

red-black correct, defined, 487

red-black rules

balanced trees and, 495

described, 487–488

fixing violations, 488

null children, 495–496

rotations and, 496–497

red-black trees, 485

2–3-4 trees and, 508–510

operational equivalence, 510–514

transformation between, 509–510

advantages/disadvantages, 5

bottom-up insertion, 486–487

characteristics of, 487

implementation, 513–515

red-black rules

balanced trees and, 495

described, 487–488

fixing violations, 488

null children, 495–496

rotations and, 496–497

RedBlackTree Visualization tool, 488–489

deleting nodes, 491, 508

erasing and randomly filling, 491

flipping node colors, 489–490, 493–494, 
499–500

inserting nodes, 492–491, 498–499

multiple red nodes insertion experiment, 
492

rotating nodes, 490–491, 492–493, 
500–507

searching, 491

unbalanced tree experiment, 494–496

speed of, 508

top-down insertion, 486

RedBlackTree Visualization tool, 488–489

deleting nodes, 491, 508

erasing and randomly filling, 491

flipping node colors, 489–490, 493–494, 
499–500

inserting nodes, 492–491, 498–499

multiple red nodes during insertion  
experiment, 492

rotating nodes, 490–491, 492–493, 500–507

searching, 491

unbalanced tree experiment, 494–496

reference types, 160–163

rehashing hash tables with HashTable class, 
551

removal. See also deletion

in heaps, 670–674

with Heap class, 680–682

in priority queues, 128

in queues, 117, 119–120

in stacks. See pop (stacks)

reversing words example for stacks, 112–113

right child, defined, 339–340

right heavy, defined, 476
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879sequences

ring buffers, defined, 118

root (of trees)

defined, 337, 338

splitting, 406–407

rotation of tree nodes

applying on descent, 429–430

crossover subtrees in, 478–479

defined, 426–427

node splits and, 512–514

red-black rules and, 496–497

in red-black trees, 490–491, 492–493, 
500–507

S
saving operators on stacks, 139–140

scrolling in Tree234 Visualization Tool, 410–411

search

binary searches. See binary searches

defined, 4

linear searches, 48, 66–67

search keys. See keys

searching. See also finding

2–3-4 trees, 404

with Tree234 class, 415–417

with Tree234 Visualization tool, 409

arrays

Array class, 42

Array Visualization tool, 31–33

B-trees, 445–446

with duplicates, 35–36

file indexes, 451, 452–453

hash tables

with HashTable class, 546–548

with HashTableOpenAddressing 
Visualization tool, 540

speed of, 584

linked lists, 166, 170–174

red-black trees, 491

sequences, 15

sequentially ordered files, 442–443

spatial data, 611–612

grids, 617–633

list of points, 612–616

performance optimization, 656–658

quadtrees, 633–655

stacks and queues, 132

secondary clustering, defined, 558

secondary sort keys, defined, 96

selection sorts, 83–87

in Array class, 85–86

comparison of sorting methods, 96–97

described, 83–85

invariants, 86

Simple Sorting Visualization tool, 85

speed of, 86–87

sentinel values

finishing iteration, 213

median-of-three partitioning, 314

separate chaining

with buckets, 569

defined, 535, 565

HashTable class, 569–574

HashTableChaining Visualization tool, 566–569

deleting data, 568

duplicates, 568

load factors, 568

table size, 569

KeyValueList class, 571–572

open addressing vs.587–588

speed of, 583–587

types to use, 574–575

sequences

described, 13–15

enumerating, 15–17

multivalued assignment, 17–18
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sequential ordering880

sequential ordering, 442–443

sequential storage, 829

Shell, Donald L.285

Shellsort

AdvancedSorting Visualization tool, 289–291

advantages/disadvantages, 285–286

described, 286–288

insertion sort disadvantages, 286

interval sequences, 288–289, 293

ShellSort class, 291–293

speed of, 294

when to use, 827

ShellSort class, 291–293

shifting queues, 117–118

shortest-path problem

all-pairs shortest-path problem, 796–798

Dijkstra’s algorithm, 782–788

implementation, 791–792

rail travel example, 780–782

WeightedGraph class, 792–796

WeightedGraph Visualization tool, 788–791

siblings, defined, 339

sifting up/down

in heaps, 670–674

in heapsort, 686–688

Simple Sorting Visualization tool

bubble sorts, 79–81

insertion sorts, 89–90

selection sorts, 85

simpleHash() function, 545–546

single child nodes, deleting, 367–370

slicing

lists in Python, 39

sequences, 14

software bloat, defined, 819

sort keys. See keys

SortArray class, 91–96

sorting

with counting sort, 323–324

defined, 6

with heapsort

heapify() subroutine, 691–693

heapsort() subroutine, 691–693

process of, 686

reusing array for, 688–691

sifting up/down, 686–688

speed of, 693

with mergesort

advantages/disadvantages, 255

as divide-and-conquer algorithm,  
257–260

eliminating recursion in, 270–275

for external files, 453–456

Mergesort Visualization tool, 263–264

with sorted arrays, 255–257

speed of, 264–267

with subranges, 260–262

testing code, 262–263

partitioning. See partitioning

with quicksort

AdvancedSorting Visualization tool, 
309–310, 318

algorithm for, 302–304

defined, 302

detailed explanation, 310–313

eliminating recursion in, 318

full implementation, 315–318

initial implementation, 306–309

median-of-three partitioning, 313–315

pivot values, 304–306

small partitions, 315

speed of, 318–320

with radix sort, 320–323

with Shellsort
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881speed

AdvancedSorting Visualization tool, 
289–291

advantages/disadvantages, 285–286

described, 286–288

insertion sort disadvantages, 286

interval sequences, 288–289, 293

ShellSort class, 291–293

speed of, 294

simple sorting algorithms

bubble sorts, 77–82

comparison of, 96–97

insertion sorts, 87–91

list insertion sorts, 198

selection sorts, 83–87

SortArray class, 91–96

stability of, 96

with Timsort, 324–327

topological sorting

algorithm for, 742

dependency relationships example, 739

in directed graphs, 742–743

in Graph class, 746–747

improving, 747–751

speed of, 751

when to use, 826–828

spatial data

Cartesian coordinates

bounding boxes of query circles, 603–
604

defined, 597–598

distance between points, 599

defined, 597

geographic coordinates

bounding boxes of query circles, 604–605

defined, 598

distance between points, 599–601

higher dimensions for, 658–659

operations on, 658

query circles

bounding boxes of, 603

Bounds class, 605–606

bounds completely within other bounds, 
610–611

CircleBounds subclass, 607–609

distance between points, 601–603

intersection of bounding boxes, 609–610

within layers, 625–628

searching, 611–612

grids, 617–633

list of points, 612–616

performance optimization, 656–658

quadtrees, 633–655

special-ordering data structures, when to use, 
824–826, 828–829

speed

2–3 trees, 438

2–3-4 trees, 431

algorithms

Big O notation, 65–68

general-purpose data structures,  
819–820, 824

sorting algorithms, 828

special-ordering data structures, 826

AVL trees, 484–485

binary search trees, 350, 375–377

B-trees, 449–450

bubble sorts, 82

counting sort, 324

graph algorithms, 798

hash function computation, 575

hashing, 581

open addressing, 581–583

separate chaining, 583–587

heaps, 683–684

heapsort, 693

insertion sorts, 91
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882 speed

K highest, 696–700

linked lists, 183–184

mergesort, 264–267, 456

ordered lists, 198

partitioning, 301–302

priority queues, 132

quadtrees

exact matches, 645

insertion, 644

nearest matches, 655

queues, 125

quicksorts, 318–320

radix sort, 322

recursion, 236

red-black trees, 508

selection sorts, 86–87

Shellsorts, 294

spatial data searches, 656–658

stacks, 116

Timsort, 327

topological sorting, 751

splitting

nodes

in 2–3 trees, 433–434, 437–438

in 2–3-4 trees, 405–406, 407–408

color swaps and, 512

promoting to internal nodes, 435–437

rotations and, 512–514

with Tree234 class, 418–421

root (of trees), 406–407

stability of sorting algorithms, 96

Stack class, 108–112

delimiter matching example, 113–116

error handling, 111–112

word reversal example, 112–113

Stack Visualization tool, 106–108

New button, 107–108

Peek button, 108

Pop button, 108

Push button, 107

size of stack, 108

stacks

advantages/disadvantages, 5, 825

defined, 104–105

eliminating recursion with, 267–270

linked list implementation of, 184–187

postal analogy, 105–106

saving operators on, 139–140

search and traversal, 132

speed of, 116

Stack class, 108–112

delimiter matching example, 113–116

error handling, 111–112

word reversal example, 112–113

Stack Visualization tool, 106–108

New button, 107–108

Peek button, 108

Pop button, 108

Push button, 107

size of stack, 108

use case comparison with arrays, 103–104

storage requirements. See also external storage

2–3 trees, 438

2–3-4 trees, 432

AVL trees, 484–485

binary search trees, 350, 375–377

B-trees, 449–450

bubble sorts, 82

counting sort, 324

graph algorithms, 798

hash tables, 581

open addressing, 581–583

separate chaining, 583–587

heaps, 683–684

heapsort, 693

insertion sorts, 91
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883Tower of Hanoi puzzle

K highest, 696–700

linked lists, 183–184

mergesort, 264–267, 456

ordered lists, 198

partitioning, 301–302

priority queues, 132

quadtrees

exact matches, 645

insertion, 644

nearest matches, 655

queues, 125

quicksorts, 318–320

radix sort, 322

recursion, 236

red-black trees, 508

selection sorts, 86–87

Shellsorts, 294

spatial data searches, 656–658

stacks, 116

Timsort, 327

topological sorting, 751

storing

edges

in adjacency lists, 714–716

in adjacency matrices, 710–712

for weighted graphs, 774–776

objects, OrderedRecordArray class, 61–65

strings

hashing, 578–580

whitespace in, 12

subgraphs, minimum spanning trees as, 733–737

subheaps, 686–688

subranges, merging, 260–262

subroutines, described, 19–20

subtrees

defined, 339

height, 467

rotation, 496–497

successors

defined, 371

finding, 372–373

replacing nodes with, 373–374

swapping node colors, 489–490, 493–494, 
499–500

node splits and, 512

symbol tables, defined, 527

T
termination tests, finishing iteration, 213

testing

arrays, 40–47

BinarySearchTree class, 382–385

double-ended lists, 180–183

doubly linked lists, 207–208

mergesort, 262–263

ordered arrays, 56–57, 61–65

ordered lists, 196–198

priority queues, 131–132

queues, 123–125, 188–189

Shellsorts, 292–293

simple sorting algorithms, 94–96

stacks, 110–112, 186–187

Timsort, 324–327, 827

tokens, defined, 145

top-down insertion, 486

topological sorting

algorithm for, 742

dependency relationships example, 739

of directed graphs, 742–743

in Graph class, 746–747

improving, 747–751

speed of, 751

Tower of Hanoi puzzle

described, 245–246

implementation of solution, 250–255
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884 Tower of Hanoi puzzle

solution to, 247–249

TowerOfHanoi Visualization tool, 246–247

TowerOfHanoi Visualization tool, 246–247

transitive closure, 751–756

translating infix to postfix notation, 134–142

Traveling Salesperson intractable problem, 
799–800

traversal

in arrays

Array class, 42

Array Visualization tool, 35

defined, 4

with duplicates, 36–37

of graphs, 718–719

breadth-first, 727–733

depth-first, 719–727

in grids, 623–624

in hash tables

with HashTable class, 553–554

with HashTableOpenAddressing 
Visualization tool, 554

order of, 573–574

in heaps

with Heap class, 682–683

with Heap Visualization tool, 677

iterators

described, 211–212

methods in, 212–217

in Python, 217–222

in linked lists, 169–170

in point lists, 615

in quadtrees, 645–646

in stacks and queues, 132

of trees

2–3-4 trees, 421–423

with Binary Search Tree Visualization 
tool, 361–363

with BinarySearchTree class, 356–361

defined, 339, 353

order of, 363–365

in-order traversal, 353–355

post-order traversal, 355

pre-order traversal, 355

Tree234 class, 415

deleting nodes, 423–430

__Node class, 412–415

node splits, 418–421

searching, 415–417

traversing, 421–423

Tree234 Visualization tool, 408–411

tree-based heaps, 684–685

trees. See also types of trees

advantages/disadvantages, 335–336

balanced/unbalanced

defined, 463

degenerates, 463–464

measuring balance, 464–469

cycles and, 743–744

defined, 336–337

terminology, 337–340

traversal of

2–3-4 trees, 421–423

with Binary Search Tree Visualization 
tool, 361–363

with BinarySearchTree class, 356–361

defined, 339, 353

order of, 363–365

in-order traversal, 353–355

post-order traversal, 355

pre-order traversal, 355

triangular numbers

defined, 230–231

eliminating recursion in, 268–270

finding nth term

with loops, 231–232

with recursion, 232–235
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885visualization tools

tuples, defined, 17, 715

two-dimensional arrays

adjacency matrix as, 710–711

in Python, 713–714

U
unbalanced trees

defined, 343–344

degenerates, 463–464

example of, 494–496

formation of, 463

measuring balance, 464–469

unweighted graphs. See graphs

use cases for data structures, 103–104

V
vertices

adding to graphs, 713–716

defined, 706

modeling, 709–710

virtual memory, 830–831

visiting, defined, 339, 353

visualization tools

2–3-4 trees, 408–411

advanced sorting

partitioning, 295–297

quicksorts, 309–310, 318

Shellsorts, 289–291

arrays, 30–37

deletion, 34–35, 37

duplicates, 35–37

insertion, 33

searches, 31–33

speed of algorithms, 37

traversal, 35

AVL trees, 470

inserting nodes, 470–472

binary search trees, 341–344

deleting double child nodes, 374

deleting leaf nodes, 367

deleting single child nodes, 368–369

finding nodes, 346–348

inserting nodes, 351–352

traversal with, 361–363

graphs

breadth-first traversal, 731

depth-first traversal, 722–723

directed graphs in, 741–742

minimum spanning trees in, 733

topological sorting algorithm, 742

hash tables

double hashing, 561–562

open addressing, 536–543, 554

quadratic probing, 555–558

separate chaining, 566–569

heaps, 674–677

linked lists, 164–167

mergesorts, 263–264

ordered arrays, 47–51

binary searches, 49–51

duplicates, 51

Guess-a-Number game example, 48–49

ordered lists, 192–193

priority queues, 127–129

quadtrees, 639–640

queues, 119–120

red-black trees, 488–489

deleting nodes, 491, 508

erasing and randomly filling, 491

flipping node colors, 489–490, 493–494, 
499–500
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886 visualization tools

inserting nodes, 492–491, 498–499

multiple red nodes insertion experiment, 
492

rotating nodes, 490–491, 492–493, 
500–507

searching, 491
unbalanced tree experiment,  

494–496

simple sorting

bubble sorts, 79–81

insertion sorts, 89–90

selection sorts, 85

stacks, 106–108

New button, 107–108

Peek button, 108

Pop button, 108

Push button, 107

size of stack, 108

Tower of Hanoi puzzle, 246–247

weighted graphs

minimum spanning trees, 768–770

shortest-path problem, 788–791

W
Warshall, Stephen, 752, 798

Warshall’s algorithm

implementation, 756

transitive closure and, 751–758

weighted graphs

all-pairs shortest-path problem, 796–798

defined, 708–709

minimum spanning trees with

building, 770–774

creating algorithm, 774–780

networking example, 768

WeightedGraph class, 776–779

WeightedGraph Visualization tool, 768–770

shortest-path problem

Dijkstra’s algorithm, 782–788

implementation, 791–792

rail travel example, 780–782

WeightedGraph class, 792–796

WeightedGraph Visualization tool, 788–791

WeightedGraph class

minimum spanning trees, 776–779

shortest-path problem, 792–796

WeightedGraph Visualization tool

minimum spanning trees, 768–770

shortest-path problem, 788–791

whitespace in Python, described, 8, 9–12

word clouds example (heaps), 694–695

word reversal example for stacks, 112–113

worst case, defined, 266

Z
zooming in 2–3-4 trees, 410–411
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