
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134276717
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134276717
https://plusone.google.com/share?url=http://www.informit.com/title/9780134276717
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134276717
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134276717/Free-Sample-Chapter

The Joy of UX

The Joy of UX

User Experience and Interactive
Design for Developers

David Platt

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sidney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was aware
of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of
the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business,
training goals, marketing focus, or branding interests), please contact our corporate sales
department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Names: Platt, David S., author.
Title: The joy of UX : User Experience and interactive design for developers
 / David Platt.
Description: Boston : Addison-Wesley, [2016] | Includes index.
Identifiers: LCCN 2016009039| ISBN 9780134276717 (pbk. : alk. paper) | ISBN
 013427671X (pbk. : alk. paper)
Subjects: LCSH: User interfaces (Computer systems) | Human-computer
 interaction. | Computer software—Development.
Classification: LCC QA76.9.U83 P54 2016 | DDC 005.4/37—dc23
LC record available at https://lccn.loc.gov/2016009039

Copyright © 2016 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or likewise. For information regarding permissions, request
forms and the appropriate contacts within the Pearson Education Global Rights & Permissions
Department, please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-427671-7
ISBN-10: 0-13-427671-X
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, May 2016

Publisher
Mark L. Taub

Executive Editor
Laura Lewin

Development Editor
Michael Thurston

Managing Editor
Sandra Schroeder

Full-Service Production
Manager
Julie B. Nahil

Copy Editor
Barbara Wood

Indexer
Infodex Indexing Services

Proofreader
Linda Begley

Technical Reviewers
Lars Athle Larsen
Gregg Tompkins
Moshe Raab

Editorial Assistant
Olivia Basegio

Cover Designer
Chuti Prasertsith

Compositor
Shepherd, Inc.

https://lccn.loc.gov/2016009039
http://www.pearsoned.com/permissions/

To all my students, from whom I learn so much.

This page intentionally left blank

 Foreword xiii
 About the Author xv

 Introduction: UX Rules the Roost 1
Your Biggest Advantage 2

UX Is Not Fonts and Colors 2

Fundamental Example 4

The Three Fundamental Corollaries 7

Example: Save Me? 8

Bake UX In from the Beginning 10

Why Developers Don’t Consider UX 11

Our Projects Are Low-Level, So UX Doesn’t Matter 11

Marketing Decides Our UX 11

We Have a UX Group That Does That Stuff 12

UX Is for the Beret-Heads 12

Where to Get the Skills 12

You Can Do This 13

This Book’s Web Site 15

And Here We Go . . . 15

 1 Personas 17
Putting a Face on the User 18

Creating the Simplest Persona 18

Adding Detail 22

The Big Three Details 22

Business Interaction 23

Hardware and Software 23

Grokkability Items 24

Personality Cues 25

Personal Essay 25

Using Personas 27

Succeeding with Personas 28

Contents

viii CONTENTS

2 What Do Users Want? (and Where, and When,
and Why?) 31
We’re Not Programming Yet 32

But Users Don’t Know What They Want! 32

Finding Users to Examine 34

Interviewing Users 35

Observing Users 37

Explaining It to the Geeks 39

Storytelling 41

Writing Stories 42

Interview and Story Example 43

3 Sketching and Prototyping 47
Prototyping: The Wrong Way to Start 48

Starting with a Good Sketch 49

Mockup Tool Example: Balsamiq 51

Showing Interaction through a Storyboard 61

Demonstrating through Live Action 64

 4 Testing on Live Users 67
Testing Constantly, Testing Throughout 68

Why Isn’t Testing Done? 69

Start Testing Early 72

What We Learn from UX Testing 72

Finding Test Users 73

Compensating Test Users 75

Test Area Design and Setup 75

Using a Moderator 76

Task Design and Description 77

Watching and Debriefing 78

User Testing Example 79

The Last Word in Usability Testing 87

CONTENTS ix

5 Telemetry and Analytics 89
The Guessing Game Era 90

Telemetry as a Solution 91

Evolution of Telemetry 93

Permission and Privacy 96

Selecting a Telemetry Provider 98

What to Track 99

Telemetry Example 100

Suggestions for Telemetry Today 104

Getting Telemetry Wrong 105

6 Security and Privacy 107
Everything’s a Trade-off 108

Users Are Human 108

What Users Really Care About 109

The Hassle Budget 110

Respect Your Users’ Hassle Budget 112

A Widespread, Real-Life, Hassle Budget Workaround 113

Case Study: Amazon.com 116

Securing Our Applications 121

Understand Our Users’ Hassle Budget 121

Start with Good Defaults 122

Decide, Don’t Ask 124

Use Your Persona and Story Skills to Communicate 127

Strengthen Your Stories with Data 127

Cooperate with Other Security Layers 128

Read a Good Book 129

Bury the Hatchet 129

The Last Word on Security 129

7 Making It Just Work 131
The Key to Everything 132

Start with Good Defaults 132

x CONTENTS

Remember Everything That You Should 136

Speak Your Users’ Language 137

Don’t Make Users Do Your Work 139

Don’t Let Edge Cases Dictate the Mainstream 141

Don’t Make the User Think 142

Don’t Confirm 144

Do Undo 146

Non-Undoable Operations 148

Have the Correct Configurability 152

Lead the Witness 154

 8 Case Study: Commuter Rail Mobile App 157
Pity the Poor Commuter 158

Current State of the Art 158

Step 1: Who? 162

Step 2: What (and When, and Where, and Why)? 166

Story 1 169

Story 2 169

Story 3 170

Story 4 170

Step 3: How? 170

Step 4: Try It Out 173

Step 5: Telemetry Plan 179

Step 6: Security and Privacy Plan 180

Step 7: Make It Just Work 181

Start with Good Defaults 181

Remember Everything That You Should 181

Speak Your Users’ Language 181

Don’t Make Users Do Your Work 181

Don’t Let Edge Cases Dictate the Mainstream 182

Don’t Make the User Think 182

Don’t Confirm 182

Do Undo 182

CONTENTS xi

Have the Correct Configurability 182

Lead the Witness 182

9 Case Study: Medical Patient Portal 183
A Good First Try 184

Current State of the Art 184

Step 1: Who? 193

Step 2: What (and When, and Where, and Why)? 196

Story 1 196

Story 2 197

Story 3 198

Step 3: How? 198

Step 4: Try It Out 202

A Quick Speculation: Health Coach Mobile App 206

Step 5: Telemetry Plan 207

Step 6: Security and Privacy Plan 209

Step 7: Make It Just Work 211

Start with Good Defaults 211

Remember Everything That You Should 211

Speak Your Users’ Language 211

Don’t Make Users Do Your Work 211

Don’t Let Edge Cases Dictate the Mainstream 212

Don’t Make the User Think 212

Don’t Confirm 212

Do Undo 212

Have the Correct Configurability 212

Lead the Witness 212

Index 213

This page intentionally left blank

Occasionally you meet a teacher who’s so enthusiastic about what he teaches that the enthusi-
asm rubs off almost contagiously. David is that rare kind of teacher. I’ve seen it live in his classes
and with his students. I see that same love and enthusiasm in The Joy of UX, and I know you
will too.

I have to confess: I’m the wrong person to write this foreword. I may have the world’s worst
natural sense of user interface design. But over the years, and especially with the assistance of
David Platt, I’ve produced some pretty great software. The software produced by the teams I’ve
led has generated billions in revenue and has been used by millions of people.

Incredibly, I’ve also learned to enjoy creating breathtaking UX. I once thought building a great
user experience was a tedious process, primarily about colors and fonts and something to do
with the golden ratio. Far more critical are the tools and techniques David teaches: empathy
for your user, hypothesis testing, and iterating on those hypotheses by watching how users
interact with the software. Put another way: fall in love with your users and prioritize their
happiness.

When I finally embraced the techniques and processes David writes about in this book, I didn’t
just end up creating delightful user experiences. It also had a profound effect on how I develop
software. At the heart of a great user experience is empathy for the user. Developing this empa-
thy requires a true understanding of who your users are. This changed my entire orientation
from thinking about what (What code should I write? What language should I use? What is the
technology?) to thinking in terms of who and why. This requires hard work and hard thinking.
You must leave your keyboard behind and adventure out into the world. You must meet the
people who are using (or will use) your software and talk to them. They will surprise you. They
will defy expectations. After you build, you must go back to them and continuously develop
your relationship and understanding of how they think, what motivates them, and discover the
“why” behind what drives them.

I also learned to take a much more iterative approach to software development. “I should build
feature ‘X’” turns into a hypothesis that needs to be validated—by the customer. Applying a
user-centric process to all feature decisions made my process leaner than just using a Kanban
board or Scrum. To determine what to build next, we must determine what will have the high-
est impact on the user’s experience.

Foreword

xiv FOREWORD

These techniques are vital today, especially when building mobile applications. End users have
tremendous choices. They are fickle. If they don’t grok your application immediately, they’ll
never touch it again.

You can delight your users by incorporating David’s advice into your workflow. Get inside your
users’ heads, develop a deep understanding and empathy for their lives, test your assumptions,
and discover “why.”

—Keith Ballinger
Vice President of Product at Xamarin

David Platt teaches User Experience Engineering at Harvard University Extension School and
at companies all over the world. He’s the author of 12 programming books, including Why Soft-

ware Sucks (Addison-Wesley, 2006) and Introducing Microsoft .NET (Microsoft Press, 2003). When
he finishes working, he spends his free time working some more. When readers ask, “Did you
really tape down two of your daughter’s fingers so she’d learn how to count in octal?”, he just
smiles. Microsoft named him a Software Legend in 2002. Dave lives in Ipswich, Massachusetts.
You can contact him at www.joyofux.com.

About the Author

http://www.joyofux.com

This page intentionally left blank

I n t r o d u c t I o n

UX RUles the Roost

User experience (UX) is the primary driver of

competitive advantage in software today. Programs

with bad UX just won’t sell, nor will the hardware or

services they are supposed to enable.

Good UX is not that hard, but it requires you to think

in new ways. This book shows you how, step by step,

with examples along the way.

2 IntroductIon UX RULES THE ROOST

Your Biggest Advantage
UX is the primary driver of competitive advantage in the software industry today. Whether you
design and sell software as a product (Microsoft), or use it to sell hardware (Apple) or services
(UPS), the user experience of your software is absolutely critical.

Just as smoking in public places was once common, it was once common to force users to
contort themselves into five-dimensional hyper-pretzels to match their software—to become
“computer literate,” in the term of that day. UX guru Alan Cooper wrote that a computer-literate
user is one who “has been hurt so often that the scar tissue is so thick that he no longer feels
the pain.” Users once accepted this as the price of getting their computing jobs done. They
won’t do that anymore.

Remember when Apple was left for dead in 1997, kept alive solely by a cash infusion from
Microsoft so that Microsoft could claim it wasn’t a monopoly? How did Apple become the most
valuable company ever seen on the face of the planet? By turning out great UX, for which its
customers pay premium prices. That’s how important UX has become.

UX is critical to the enterprise sector as well. In December of 2014, Avon had to kill a new version
of its order management software. The Wall Street Journal reported that the company’s sales
force of independent reps “found the new system so burdensome and disruptive to their daily
routine that many left Avon.”

Even IBM, the stodgiest of stodgy companies, recently announced that it was spending $100
million on its UX consulting business, opening ten new labs worldwide and hiring 1,000 new
workers.

Whatever you are doing, and whomever you are doing it for, you need an excellent UX. It’s not
optional anymore.

UX Is Not Fonts and Colors
Too many developers and managers think that UX design is selecting colors and fonts and
button radii. Nothing could be further from the truth. The rounded window corners and cutesy
animations are the last and least important pieces of the UX. My fellow Software Legend Billy
Hollis calls that stuff “decoration, not design.”

What’s the difference between user experience (UX) and user interface (UI)? As is always the
case when specific meanings are forced onto generic words, it is difficult to find any two writers
who agree on what they mean. Throughout this book, I will use UI to mean the decoration func-
tion that is the very last thing you do to a piece of software. I will use UX in the meaning pub-
lished by Jakob Nielsen and Donald Norman, who wrote that “user experience encompasses
all aspects of the end-user’s interaction with the company, its services, and its products.” That

US IS NOT FONTS AND COLORS 3

means that anything the user ever sees, hears, touches, or thinks about is the UX: a program’s
workflows, its feature sets, its required inputs, the form of its outputs.

Figure 0.1 illustrates the differences. Figure 0.1a shows a product. Consider this to be the com-
puting job that you need done. Figure 0.1b shows the UI, the tool with which you interact with
that product. Figure 0.1c shows the full UX, the totality of your interaction with that product.

The battle for good UX is usually won or lost long before the program reaches the decorators.
Think of your program as a piece of furniture—say, a table. The decoration is the surface finish
on that table. Certainly tables should be finished well rather than poorly, and so should your
programs. But if you build the table out of the wrong material, one that doesn’t satisfy the
user’s needs, even the best finish in the world can’t help. If your user wants a decorative table
for a nature-inspired living room, choosing wood will probably make him happy. On the other
hand, if your user needs a working table for a cafeteria kitchen that undergoes daily sanitizing,
metal would be far better. And backing up a step, does your user really need a table, or would a
chair solve his problem better?

(a) (b)

(c)

Figure 0.1 (a) Product, (b) UI, and (c) UX. (Ed Lea, Product Design)

4 IntroductIon UX RULES THE ROOST

Fundamental Example
Let’s look at an example of the fundamental development decisions that make or break a UX.
I was teaching in Sweden some time ago and opened up Google by using its base address,
www.google.com. Its servers detected the country in which I was located and automatically
replied with the Swedish version of the page (Figure 0.2). This decision is correct for most users
most of the time and requires just one click (lower center) to fix it permanently (persistent
cookie) if it’s ever wrong.

On the other hand, consider UPS.com, home of the package delivery company (Figure 0.3).
UPS.com requires users to select their country before they can do anything at all. That takes
30 clicks if you’re in Sweden. You also have to explicitly tell the site to remember you (see the
check box) or it’ll make you do it again next time. That’s no way to treat customers.

What happened here? Were the Google programmers so much smarter than the UPS program-
mers that Google could detect the incoming country of a Web request while UPS couldn’t?

No way. According to UPS.com, its site handled over 100 million tracking requests on its peak
day in 2014. The UPS programmers have to be pretty good to build a site that successfully
handles such a large volume. There’s no way that such skillful programmers wouldn’t know
how to find the IP address of an incoming request, and hence determine its probable country
of origin. (It’s not difficult: simple static table lookup, cache it in RAM for speed, update the
table once per day. Easy.) UPS is therefore choosing to make users explicitly enter their country,
instead of automatically detecting it.

Figure 0.2 Google home page accessed from Sweden.

http://www.google.com

FUNDAMENTAL EXAMPLE 5

In my opinion, UPS is committing the cardinal sin of all UX work: failing to put itself in its users’
shoes. The technologists who made this choice are behaving like the geeks they undoubtedly
are (and I am, and you are too). We are trained mathematically, logically. We get it hammered
into us from middle-school algebra onward: a theorem that’s true in 99 cases but false in the
100th case is a false theorem. Bad geek. Throw it away; go find a true one. UPS won’t make a
guess because it might be wrong.

That’s acceptable for mathematical theorems, but not for human users. Unlike a theorem, if
your program makes 99 out of 100 users happy, you are probably having a pretty good day.
And it’s probably more important to make those 99 users happy again tomorrow than it is to
figure out how to please that 100th user—especially if what that user wants would annoy the
other 99. Clearly there are cases when that’s not good enough—air traffic control springs to
mind. But for most business and consumer situations, the world is a better place when you
handle the main case seamlessly and fix unusual cases only as they arise, rather than annoying
all users by making them do work that the site could be and should be doing on their behalf.

Google’s language selection algorithm doesn’t always guess right; maybe the request isn’t
actually coming from Sweden, maybe it is but the user doesn’t speak Swedish (me), or maybe
it is and the user does speak Swedish but doesn’t want to right now (for example, a Swedish
college student practicing English). But making its best guess, and having the user correct any
resulting errors, is a large net profit for the overall user population. Which company’s approach
makes you feel that it values your time and effort, and makes you want to come back? In fact,

Figure 0.3 UPS home page accessed from Sweden.

6 IntroductIon UX RULES THE ROOST

Google has thought so long and hard about its users that it has figured out how to recognize
a UPS tracking number. If you type one directly into Google search, Google will offer to track it
for you (Figure 0.4). If you click that link, Google will jump you straight to the UPS tracking page
(Figure 0.5) with the correct language already selected. That’s why I always use Google to track
my UPS packages, instead of hassling with UPS.com. And I can’t suppress an ironic chuckle as I
do so.

You can see that this isn’t a graphical design problem, not at all. Both sites have their logos,
their corporate color palettes and fonts, everything. But one site makes all users do extraneous
work—overhead, excise, distraction—before users can even begin to do what they went to the
site for: their business logic, in this case tracking packages. The other site jumps right in and
starts banging away as best it can, taking care of most users seamlessly and allowing correc-
tions as needed.

The difference between these sites is one of interaction design, sometimes known as behavioral
design, and occasionally as information architecture. That’s what this book is about. We won’t
be discussing graphical design. We won’t be discussing how to program these designs, either.
There are lots of books on both of these topics. We’ll be studying how to decide what should get

programmed. And we will always, always, be hammering on the side of the user.

Figure 0.4 Google automatically recognizes a UPS tracking number and offers to track the package.

THE THREE FUNDAMENTAL COROLLARIES 7

Platt’s FiRst, last, and only law oF UX design

The Talmud speaks of the impatient man who came to the famous rabbi Hillel, saying,
“Teach me the Torah [the first five books of the Hebrew Bible] while I stand on one foot.”
Hillel replied, “What you do not want done to yourself, do not do to others. The rest is
commentary, go and study.”

Do you want to know everything there is to know about UX? I can answer in one sen-
tence, Platt’s First, Last, and Only Law of User Experience:

KNOW THY USER, FOR HE IS NOT THEE.

The rest is commentary, my friends. Come and study along with me.

The Three Fundamental Corollaries
I majored in physics as an undergraduate, and there’s still enough of the physicist in me to insist
on setting forth the fundamental principles from which I derive my judgments as to good and
bad usage. Starting from the FLaO Law mentioned in the sidebar, we can derive the following
corollaries:

■■ First Corollary: The software that you write has zero value in and of itself. The only
value that your software ever has or ever will have is the degree to which it makes your
users happier or more productive.

Figure 0.5 Google automatically displays the UPS tracking page in the language of the user’s
browser—much easier than going through UPS.com.

8 IntroductIon UX RULES THE ROOST

■■ Second Corollary: The software increases the happiness or productivity of users
in one of two ways. First, it could help a user solve a specific problem—write an
article, pay a bill, navigate a car. Or it might put the user into a state that she finds
pleasurable—listening to music, playing a game, video phoning her grandchildren.
Those are the only two cases that ever can exist, though sometimes they blend into a
hybrid.

■■ Third Corollary: In neither of these cases do users want to think about the programs
they are using. At all. Ever. In the former case, they want to think about the problem
they are solving: the wording of the document they are writing, or whether they have
enough money to pay their bills, and which unpaid creditor would hurt them the
most. In the latter case, the users want to get into that pleasurable state as quickly as
they can and stay there as long as they can. Anything that delays the start of their fix,
or distracts them from it while they’re enjoying it, is even less welcome than the inter-
ruption of a work task.

To summarize these three corollaries: Users don’t care about your program, or you either. Never
have, never will. Your mother might, because you wrote it and she loves you, and then again
she might not; but no one else does. Users care only about their own productivity or their own
pleasure. Every single user of every single program wants what Donald Norman calls the “invis-
ible computer” in his landmark book of that title.

You can see in that earlier simple example that Google does its best to be as invisible as it can,
while UPS does not. With the FLaO Law and its corollaries in mind, let’s examine another com-
mon case.

Example: Save Me?
Here’s a situation you see every day. It’s probably become second nature, to the point where
you don’t think about it anymore. But we’re going to think about it now.

You open a document in Microsoft Word. You add or edit some text, and then you go to close
Word. What does Word do? It pops up a dialog box asking, “Do you want to save changes?”
(Figure 0.6). The beret-wearing, incense-burning graphical designer can decorate the “Save
Changes?” dialog box with nifty fonts and color gradients and nicely rounded corners. But he
doesn’t, can’t, address the question of whether the program should prompt the user on exit,
as it does, or whether it should automatically save changes as they are made, as does Microsoft
OneNote. Which would make the user happier and more productive? It falls to us, the UX inter-
action designers, to make that determination. What should we choose?

Start by doing the arithmetic. Word requires a choice and a mouse click each time the user
closes a document. If the user has 100 editing sessions, he makes 100 choices, 100 clicks. If we
switch to automatic saving, we have to put the capability of a complete rollback somewhere

EXAMPLE: SAVE ME? 9

else—possibly a “Discard Entire Session” item on the Edit menu, which would take perhaps five
clicks to access. If users save their changes 99% of the time, automatic saving would eliminate
95 clicks out of every 100 in the saving process, a huge reduction of overall user effort.1 If users
save their changes only 50% of the time, automatic saving would actually increase the overall
user effort by a lot; every 100 clicks in the saving process now mushroom to 250 clicks.2 Which
choice is right for your program?

As usual, it depends. How often do you save your changes in Word? Or look at it the other way:
how often do you screw up your document so badly that you discard the changes by selecting
“Don’t Save”?

Wrong question. Are you developing this app for yourself? Almost certainly not. Then what
does it matter what you yourself do? It doesn’t. Not in the slightest. Read the FLaO Law again:
Thy user is not thee.

How often do your users save their changes, versus how often do they discard their changes?
Entirely different question. Still, don’t you feel yourself wanting to say, “Well, I hardly ever see
them discarding”? Again, those are your own preferences talking. It is surprisingly difficult to

1. The 99 users who save changes go from one click to zero. The one guy who wants to discard all his changes
now goes from one click to five clicks. One hundred clicks now shrink to only five.
2. The 50 users who save changes go from one click to zero. The other 50 guys who discard all their changes go
from one click to five clicks. One hundred clicks now mushroom to 250.

Figure 0.6 Microsoft Word, prompting the user to save changes. Why not save automatically, as
does Microsoft OneNote?

10 IntroductIon UX RULES THE ROOST

remove yourself from this equation. You subconsciously resist the notion that your users are
different from yourself. So what do you do?

You could try asking the actual users, if you can find them. If you work on an in-house develop-
ment team, building programs for use inside your company, this could work well. You go to the
floor where the users are and ask them. However, there are snags with this approach. Are the
users willing to talk to you? Can they remember accurately? Are they afraid of looking stupid?
Will their bosses allow them to take the time? Talking to actual users is a very good start. Chap-
ters 1 and 3 discuss ways of obtaining information from this channel. But you can’t always get it.

If you don’t work on an in-house development team, that is, if you build products for external
customers, the problem gets harder. Suppose you asked people in your office. Your coworkers,
by definition, spend all day, every day, developing software for sale. Do they resemble your user
population? Unless you are in the business of building software development tools, probably
not. Whatever they would tell you is probably misleading for your user population. Microsoft
has stumbled over this problem more than once.

So how do you find out what percentage of users save their changes? Not by some mystical
telepathic intuition, known only to crystal gazers who burn incense and eat sprouts and wear
berets, but by collecting hard engineering data via telemetry, over many more users than you
could afford to test in the lab. Chapter 5 explains telemetry in more detail. You could also do
some early usability lab testing, as described in Chapter 4.

Bake UX In from the Beginning
The biggest single mistake that I see companies making is not starting their UX planning at
the beginning of a project. “We need to get the services in place first; then we’ll think about
what it looks like.” That’s crazy. That’s like saying to an architect who is designing a house, “We
won’t ask who’s going to live here until we get the heating and the plumbing in place.” Are you
building a house for a downsizing older couple? You’ll want a full bath on the ground floor with
a wide door and the potential for grab bars. For a younger couple with two kids and planning
four more? Entirely different problem. The last thing you want to do is to spend your develop-
ment budget before you know even the most basic things about what you’re building. And the
UX determines that.

As you can see from the previous examples, UX design decisions determine the code that needs
to be written, not just in the top layers that handle the user interactions, but reaching down
to the lowest levels of the application. In the case of Word, the structure of the entire Undo
mechanism depends on UX design decisions about when and how files get saved. And in the
Google versus UPS case earlier in this chapter, the developers who build the home page need
to know if the information about the user’s country will be available to them when their code
runs (Google), or if they need to get that information from the users and put it somewhere for
rest of the site’s code to use (UPS).

WHY DEVELOPERS DON’T CONSIDER UX 11

Good UX design starts at the very beginning of a project. It’s not a superficial layer. It permeates
all levels of an application, as character and honor (or lack thereof) do a human personality. And
it needs attention through all stages of program development, nay, throughout all stages of the
program life cycle, as character and honor need attention throughout all stages of the human
life cycle.

Clients sometimes ask me to critique their UXs just before they ship. That’s way too late to
change anything. The architecture is set, the budgets spent, the attitudes hardened. Consider
yourself warned.

Why Developers Don’t Consider UX
A computer that users can’t figure out how to use, or that requires expensive training to use, or
that makes expensive mistakes because the program misleads users, is a very expensive paper-
weight. Yet many developers or architects think they don’t need to understand UX. Here’s why
they say that, and why they’re wrong.

Our Projects Are Low-Level, So UX
Doesn’t Matter
Nonsense. Every project has some connection to a human user somewhere. Even a programmatic
Web service needs error reporting, installation and configuration, status- and performance-
monitoring dashboards, and so on. If a project has only small amounts of UX, that’s all the more
reason that those pieces need to work well. Twenty years ago, you might have gotten away with
a dialog box saying, “Web Service Failure, Error 20. Consult Documentation.” Today you would get
laughed out of the arena for shipping something like that.

Marketing Decides Our UX
It’s wise to have a good relationship with your marketing department. They certainly feel pain
points from the customer and bring them back to you. At the same time, marketeers are not
interaction designers. They might give you the first clue as to what would make the customer
happier and more productive—“Customers complain that they’re losing work when our app
crashes”—but it’s up to you to take it from there. How often does it happen? How do you detect
and measure it? To fix it: Auto-save? Rollback? How often? Configurable? Imagine asking these
questions of your marketing department, and tell me if they’re really driving the UX. They’re
not; you are, even if they sound the initial alarm.

You should also be talking to your tech support department. They feel your customers’ pain far
more immediately and brutally than the glad-handing marketeers.

12 IntroductIon UX RULES THE ROOST

We Have a UX Group That Does That Stuff
Some large companies have a UX design group that approves every user interaction. If you
have one of these, you’ve already found that their time is in tight supply, as it is for other ultra-
specialists such as ophthalmologists. You can get a 15-minute appointment in six months if you
beg. They can’t follow up or help you iterate. You need to understand what they tell you in your
far-too-limited interactions and implement those principles day to day to make the best use of
the thimblefuls of their concentrated wisdom that you actually get.

Also, their time is (quite rationally) dedicated to your company’s primary, outward-facing
programs. They don’t have time for internal or second-tier apps. A company that has this type
of group values good UX. The apps you work on are held to a higher standard. But your bosses
don’t give you the skill set or resources to meet these demands, now do they? You have to be
ready to do the day-to-day work at a project team level.

UX Is for the Beret-Heads
Also known as graphical designers, more accurately they are decorators. As we’ve seen, the UX
game is almost always won or lost before it reaches them. Be nice to them. But the main battle
isn’t theirs, it’s ours.

Where to Get the Skills
Precisely because your UX needs attention throughout the development process, you need
someone with UX skills assigned directly to your design team. This person will know that the
correct choice in the document-saving example comes not from arguing personal tastes and
philosophies, but from hard user data—knowing what percentage of documents are discarded
rather than saved. And she will know how to obtain that data, ideally by instrumenting the
program, but through skillful interviews and observations if that can’t be done. Where are we
going to get such people, and how are we going to manage them?

Regular programmer geeks don’t know how to do it; they mistakenly think that their users
resemble their geeky selves, and their UX designs come out looking like Visual Studio. Some-
times marketing people want to get into the act, figuring that they interact with customers so
they know what they need. That’s like saying that you have teeth in your mouth, so you know
how to do a root canal. Graphic designers sometimes try to get into the picture, but as you can
see, this interaction design isn’t fundamentally a graphical problem. How do we get the people
we need?

Consider the US Army, specifically its most basic unit of operations, the infantry platoon. It
consists of a green second lieutenant in nominal command, an experienced first sergeant who’s
really running it, and about 40 fighters. And each platoon has a medic. The medic is not a fully
qualified doctor, although the platoon soldiers customarily address him as “Doc.” The army

YOU CAN DO THIS 13

can’t afford to create enough full-fledged doctors to place one in each platoon. The medic
is trained in battlefield first intervention to stabilize the wounded soldier—stopping severe
bleeding, starting IVs, opening airways, and so on. Having this intervention immediately avail-
able is the first link in the amazing chain of battlefield casualty survival today.

What we need in the UX business is the equivalent of a medic. We need someone who knows
the basic concepts of UX design and their most common applications—for example, knowing
that data is the key to most UX questions, and knowing how to start obtaining it. Someone who
knows how to generate a user persona quickly and accurately, to help the design team grasp
the slippery concept of “the user.” Someone who knows how to do a usability test quickly and
cheaply so it doesn’t hold up the project, or get skipped to keep it from holding up the project.
The key point is getting UX questions answered quickly. As in trauma medicine, getting treated
in the golden hour is key.

Sometimes you get pushback on the medic concept in companies that recognize the impor-
tance of UX and have a central UX team that wants to control everything. Continuing the army
medic analogy, these are the highly skilled surgeons in the base hospital. If you frame it right,
these people will be the biggest beneficiaries of having UX medics on the project teams, for
example, having the first round of usability tests already done when they get called in to evalu-
ate the puzzling data.

You Can Do This
My readers and students tell me that the hardest part of producing a good UX is knowing
where to start. It is so very tempting to jump right into the development—OK, we’ve got this
project, the schedule is tight (it’s always tight), let’s get going. No, don’t waste time on that per-
sona nonsense, we have to get going. Stories? What are they? Never mind, fire up Visual Studio
(or Expression Blend if you’re less geeky). Jump right in and drag and drop. Should we have
check boxes here? Radio buttons? How about a set of tabs instead?

I recall the opening of The Joy of Cooking, one of the Joy books that inspired my title choice
for this volume. Written for the person who knew nothing about cooking, it began with the
instruction “Stand facing the stove.” That’s how I’ve written this book, starting you from zero.

After this introduction, each of the first seven chapters represents one step to a great UX.
(That’s five steps fewer than it takes to kick the booze.) Each chapter introduces one specific UX
design technique. I’ve placed them in the order in which I generally use them in my practice,
though as you’ll see, there are certain loopbacks and iterations. If you follow these steps,
without skipping any, you will come up with something good, or at least a whole lot better
than if you had just jumped in and flailed away. With my usual modesty, I call them the Platt UX
Protocol.

14 IntroductIon UX RULES THE ROOST

Chapter 8 and Chapter 9 each presents a case study, working the seven steps from beginning to
end on a specific project. I present personas, stories, sketches, testing, telemetry, security, and
final simplification. My students tell me that this, the end-to-end discussion about how all the
pieces fit together, is their favorite part of the class.

Here’s what each chapter deals with:

■■ Chapter 1: Personas—We learn and understand who the user actually is. Is the user
male or female? Old or young? High or low disposable income? Education type and
level? What do users hope for and what do they fear? We write up this data in the form
of a persona, an artificial person who represents our user population.

■■ Chapter 2: What Do Users Want? (And Where, and When, and Why?)—We work
on understanding a user’s motives and activities in using our software. What problem
is the user trying to solve, or what pleasurable state does the user want to maintain?
What would the user consider to be the characteristics of a good solution or pleasur-
able state? We represent this information through stories, narratives written from the
user’s point of view. (If you’re familiar with stories as part of agile development, you’ll
see that these are different.)

■■ Chapter 3: Sketching and Prototyping—We know who the users are and what they
need. Now, and only now, do we start sketching out some possible solutions. Using a
low-fidelity editor (in this book, Balsamiq), we generate mockups quickly, so that we
can begin the iteration process of testing them and refining them.

■■ Chapter 4: Testing on Live Users—We have some mockups illustrating possible solu-
tions. Now we test them, ideally on actual users but on user surrogates or representa-
tives if that’s not possible. The degree of fidelity that we show to the users depends on
the progress of our project. We will generally iterate steps 3 and 4 several times during
the course of the project.

■■ Chapter 5: Telemetry and Analytics—We plan for our applications to have some sort
of telemetry, so that we can understand what users are actually doing with it. We will
see which features they are using, and in what order, as well as information about their
hardware. Failing to provide telemetry in today’s environment would be like practicing
medicine without X-rays or lab tests.

■■ Chapter 6: Security and Privacy—Security and usability are often seen as polar
opposites. In this chapter, we carefully examine the interaction between these two and
understand what happens when it breaks. We work out a plan for securing our applica-
tion as tightly as needed, while still making it as usable as possible.

■■ Chapter 7: Making It Just Work—As we get closer to release, we start looking not to
add features, but for ways to remove user effort from the features we have. This is the
level of final polish that we give our program.

AND HERE WE GO . . . 15

■■ Chapter 8: Case Study: Commuter Rail Mobile App—We work through all of the
steps as we design a new mobile app for Boston’s commuter rail system.

■■ Chapter 9: Case Study: Medical Patient Portal—We work through all of the steps as
we design a new Web portal for a Boston-area hospital system.

This Book’s Web Site
This book, like everything else in the world, has its own Web site, JoyOfUX.com. Figure 0.7
shows a screenshot.

You can find on it all of the resources to which I refer in this book, such as persona templates.
I will also be adding case studies, similar to the ones at the end of this book. So come back
every month or so and have a look at them. And if you have a case study that you’d like to con-
tribute, I’d be happy to see it.

And Here We Go . . .
To paraphrase Arlo Guthrie’s song about resisting the Vietnam War draft: If one guy does it,
they’ll think he’s crazy. And if three guys do it, they’ll think it’s an organization. And if fifty
people do it, they’ll think it’s a movement.

And that’s what I hope our revolt against bad UX will become. So let’s get to it.

Figure 0.7 JoyOfUx.com Web site.

This page intentionally left blank

c h a p t e r 8

Case study: Commuter
rail mobile app

Now that you’ve seen each UX design step

individually, let’s see how they all work together. In

this chapter and the next, we’ll do a case study on

a real-world problem, applying our new skills and

techniques end to end.

We’ll start with a mobile phone app aimed at easing

the daily grind for commuter rail riders. We’ll focus

on Boston’s system, because we can easily find

specific details and riders to work with. When we

start applying what we’ve learned, you’ll see that

we can make things a whole lot better than they

currently are.

158 chapter 8 CASE STUDY: COMMUTER RAIL MOBILE APP

Pity the Poor Commuter
The commuter rail system in the Boston area is owned by a state agency officially named the
Massachusetts Bay Transportation Authority (MBTA), universally called “the T.” It serves approxi-
mately 130,000 riders each weekday over ten lines, 394 miles of track, and 127 stations. It’s the
third-largest such system in the United States, behind New York City and Chicago, tied with
Philadelphia.

The T got absolutely hammered by record snowfall in the winter of 2015. Trains were canceled,
rescheduled, and canceled again, while cold riders shivered on windswept station platforms,
fuming, “Where’s Mussolini when we need him?” The director of the system resigned under fire,
“for personal reasons.” (I say she jumped while being pushed.)1

We can’t make the trains run on time. But we can tell the riders when they actually are running—
the true up-to-the-minute performance, not the wishful thinking of a paper schedule printed
months before. We can smooth out our riders’ lives. They’ll know when to leave their homes or
workplaces for the station, they won’t waste time trying to catch a train that isn’t running, and
they’ll be able to schedule their lives again.

The second need of commuter rail passengers is help with buying their tickets. They have to
wait in line at the very few staffed ticket windows (fewer when the weather is bad, as the gov-
ernment employees stay home) or use the few available vending machines, which are always
broken anyway. This extends their already-annoying commute and causes them stress. It would
be great if we could make that go away too.

Can we make use of our new skills and knowledge, the steps we’ve seen in this book, to make
their lives easier with a well-designed mobile app?

Current State of the Art
The MBTA already has a mobile app for buying tickets. The T made a great fuss over its intro-
duction in late 2012, as the first such app in the nation. When we start examining it, we see that
it doesn’t help our users solve their own problems anywhere near as well as it could and should.

The home screen (Figure 8.1) is terrible. Most of its area is wasted. The top third shows what
some graphic designer probably considered a pretty picture. The designers probably think of it
as “our branding.” The bottom third is completely blank.

1. The memory of that rail fiasco still burns in the region, even as I write these words a year later. As Howie Carr
wrote in the February 24, 2016, Boston Herald, “The only way to stop the [Donald] Trump train now may be to turn
it over to the MBTA.”

CURRENT STATE OF THE ART 159

We can’t do anything at all on the home screen. We have to leave it to accomplish anything—
view a schedule, buy a ticket, see alerts that might affect our commute. They’re squandering
the most precious resource in any mobile app, a resource that could have helped us accomplish
something that we actually cared about. Instead, they’ve given us a picture, a blank space
that sort of balances it visually, and no functionality whatsoever. I suspect it’s the art major’s
revenge for all those jokes ending, “Would you like fries with that?”

The purchasing and displaying of a ticket works not too badly, once you navigate to it from the
home screen. Figure 8.2 shows the process. We select the stations by typing in the first few
letters, and auto-complete (good) narrows the list. The app retains our most recent selection
at the top of the list (also good), because almost everyone on commuter rail uses the same sta-
tions repeatedly (Figure 8.2a). We type in our credit card number, which it also remembers for
the next time (also good), and the transaction is consummated (Figure 8.2b). When we’re ready
to ride, we tap a button to activate the ticket. It then flashes the color code of the day so the
conductor knows it’s valid. It also has a button that shows a bar code for readers that conduc-
tors might someday start carrying (Figure 8.2c).

Figure 8.1 MBTA mobile app home screen with wasted space and no functionality at all.

160 chapter 8 CASE STUDY: COMMUTER RAIL MOBILE APP

Because it works not too badly once you get to it, we won’t discuss the ticket purchase portion
of this app very much. However, even with all the data it remembers, we still have to type in our
credit card CVV number every time. This app is most commonly used by occasional riders, who
will not have that memorized—monthly pass buyers with auto-renewal don’t need it. Occa-
sional users now have to juggle their phones and wallets and credit cards in a crowded public
place, which is uncomfortable, or think ahead, which no human in the universe ever does about
anything. Adding an Instant Purchase button for each recent trip at the top of Figure 8.2a, simi-
lar to Amazon’s 1-Click purchase, would smooth this out even more, especially since commuters
almost always travel the same route.

The app fails miserably at the greater need of commuter rail riders: accurate and timely sched-
ule information. Again, the home screen contains no information whatsoever about schedules.
If we want to see a schedule, we have to go through three steps: tapping Schedules on the
home page, which then takes us to a screen where we are offered the choice between Sched-
ules and Alerts (Figure 8.3a). The app is saying, “I know you selected Schedules, but did you
really want Schedules?” After tapping Schedules again, we have to choose the line for which we
want the schedule (Figure 8.3b). Only then will it show us a schedule in an ugly format that is
very hard to read (Figure 8.3c).

Alerts, whatever they might be, do not appear as an option on the home page. We have to
somehow intuit their existence and go digging—tap Schedules, then tap Alerts (Figure 8.3a),
then look at our line to see if it has any (Figure 8.4a). The green check mark would seem to
indicate that everything is OK, but despite this indicator, the Lowell line has one Upcoming alert

(a) (b) (c)

Figure 8.2 MBTA mobile app ticket purchase—not too bad.

CURRENT STATE OF THE ART 161

and one Ongoing alert. (What the hell is the difference between Upcoming and Ongoing?
I can’t tell, and when I look at the contents of each, they appear to be identical.)

If something is important enough to be called an alert (“an alarm or other signal of danger”), it
surely shouldn’t be buried four screens deep, should it? And isn’t an “ongoing alert” a contra-
diction in terms? Once we look at the alert, we can see that it often impacts the schedule; note
the two canceled trains (Figure 8.4b). Burying this information four levels deep ensures that no
one will ever see it—exactly the opposite of what alerts are for.

The developers of the schedule portion of this app did not apply the skills that they (sort of)
demonstrated in the ticket purchase portion. They didn’t work from the users’ perspective.
They just took their paper schedules and tossed them into an app, with the awful results you
would expect from such an unthinking approach.

The user has to do far more work than she should have to. The app doesn’t make use of the
knowledge it has about the user, or about the repetitive nature of the commuter rail relation-
ship. The developers are saying, “Hey, it’s your job to do all this work.” Maybe that attitude was
acceptable a decade ago, but it sure isn’t today. If a student of mine turned in something like
this, I’d flunk him so fast he’d switch his major to English.

We can do a whole lot better by following the Platt UX Protocol, putting ourselves in the users’
shoes. Once we think about who the users really are and what these users actually need, we can
select the items of information most relevant to them, here and now, and present them clearly
and easily. That will turn this commuter rail app from a brick into an indispensable everyday aid.

(a) (b) (c)

Figure 8.3 Schedules are difficult to find, then difficult to read once we’ve found them.

162 chapter 8 CASE STUDY: COMMUTER RAIL MOBILE APP

Step 1: Who?
Your first impulse, of course, is to bring up Xamarin and start dragging and dropping compo-
nents onto the design surface. I hope this book has shown you that that’s wrong. That’s what
the MBTA’s developers probably did when they wrote this app, and look where it got them:
publicly hammered in this book. Let’s run the Platt UX Protocol on it and see where it takes us.

To begin: Who rides the commuter rail in Boston? What’s our potential user population? Your
immediate response is to shout, “Everyone; it’s public transport.” But you should know better
than that by now.

The basic demographic information is easy to find. A quick search on the MBTA’s Web site for
the term advertising gave me the contact info for the company that manages the advertise-
ments on the T’s vehicles and stations. I emailed them for a customer kit about advertising on
commuter rail and received it within the hour. It contained the basic demographics we need to
get started. You can see an excerpt in Figure 8.5.

Commuter rail riders are just about evenly divided in gender, 52% male and 48% female. Com-
muter rail passengers skew older than the general populace. The largest single cohort is age
45 to 54, constituting 30% of ridership. Seventy-three percent of riders are age 35 or older.
We could speculate that’s because younger people don’t move out to the suburbs until they

(a) (b)

Figure 8.4 We have to select the alert for our line.

STEP 1: WHO? 163

marry and need room for the second kid and the swing set and the golden retriever. So no, it’s
not everyone. Our user population contains very few kids, and not many millennials. Our users
didn’t grow up with smartphones. They are not the kinds of people who say, “Way cool” when
they see, for example, Snapchat. They will always speak geek with an accent.

Well, if they’re that old, do they use smartphones at all? Are we barking up the wrong tree com-
pletely with the notion of any smartphone app? Fortunately, no. A quick Google search finds the
Boston Globe’s coverage of the MBTA ticketing app initial rollout, reporting that 76% of commuter
rail riders carry smartphones. That was written in 2012, and I doubt the percentage has gone
down since then. We have market penetration, if we can provide customers with what they need.

Now that we have basic information about our user population—evenly split in gender, but
skewing older and hence less technophilic—let’s create personas to communicate that informa-
tion to our development team. I worked up two personas, one who travels every workday and
one who travels occasionally.

Claire (Figure 8.6) lives in Salem, Massachusetts. (You can download her full persona from this
book’s Web site.) She’s 42, divorced, with three kids (16, 14, nine) still at home. She works at Mas-
sachusetts General Hospital as a respiratory therapy aide, on a regular eight-to-four weekday
schedule. She depends on commuter rail to get herself to work every day. Commuting on buses
and the subway would take her three times as long, and those kids of hers don’t leave her a free

Figure 8.5 Media kit with commuter rail demographics. (Courtesy of MBTA)

164 chapter 8 CASE STUDY: COMMUTER RAIL MOBILE APP

minute. Driving in Boston’s killer traffic at those peak times would be awful. And parking down-
town costs $30 a day, which would take a huge bite out of her $18-per-hour pay.

Claire drives to the Salem commuter rail station every day and takes the 6:43 a.m. train to North
Station, arriving at 7:18. She then walks or takes a shuttle bus to Mass General. She likes to take
the 4:20 p.m. train home, arriving at 4:53, but often she can’t get out from work in time. Then
she takes the 4:45 train, arriving at 5:16. She knows the train times very well because she takes
the train every day.

Her biggest headache is when the train schedule gets disrupted. It’s not just snow—lightning,
construction, the old equipment breaking down, vehicle accidents at a grade crossing; any-
thing can mess it up. She doesn’t know when she has to get to the station, or when to tell her
family she’ll be home.

Claire pays her fare with a monthly pass. Her employer kicks in 25% of it as a fringe benefit. Her
phone is a four-year-old Android on a T-Mobile family plan because it’s cheap.

For our second persona, I need to tell you of a Boston legend. A hypothetical man on Boston-
area transit is always named Charlie, harking back to the Kingston Trio’s 1959 smash hit “Charlie
on the MTA,” a song about a rider who never returned. Google it; it’s good.

Figure 8.6 Claire, who rides the MBTA commuter rail every day to work in Boston.

STEP 1: WHO? 165

Charlie (Figure 8.7) lives in Ipswich, Massachusetts, on the same rail line as Claire, another
half-hour farther out. (You can also download his persona from this book’s Web site.) He is 56
and married, one child graduated from college and another halfway through, but he hasn’t
downsized his house yet. He is a higher-end computer consultant who sometimes works with
clients in downtown Boston.

Charlie makes 25 or 30 trips per year on commuter rail. They tend to come in bunches, perhaps
four trips this week and three the next, followed by several months with none. His billing rate is
high enough that he could afford to drive and park in Boston, but the traffic drives him batty.
He’d have to leave his house at 5:00 a.m. to beat it, and his clients don’t usually like to start that
early. He’s happy to ride the train, drink coffee, listen to classical music on his iPod, and review
the upcoming day’s material on his MacBook Air. On the way home, he turns off his phone
and reads a book, sometimes drinking a beer (which the conductors wink at if he keeps it in a
paper bag).

He drives from his house to the commuter rail station in Ipswich. He usually takes the 7:13 a.m.
train in, arriving at North Station at 8:10. He then walks or takes the subway to his client. His
default return trip leaves at 5:15 p.m., arriving at 6:07. But sometimes he finishes earlier and
catches an earlier train. And sometimes he has to work later, or stay in town to socialize with

Figure 8.7 Charlie, who rides the MBTA commuter rail into Boston 25 or 30 times per year. (Photo by
redjar on Flickr)

166 chapter 8 CASE STUDY: COMMUTER RAIL MOBILE APP

clients, and catches a later train. He can’t remember the train times from one trip to the next
because he doesn’t take trains frequently enough.

Charlie usually has to buy his tickets aboard the train for cash. There’s no store near his house
that sells them, and no vending machine at his station. That means he has to remember to stop
at the ATM and take out a $20 bill every day for his round trip. The conductor punches out a
paper ticket and gives him $1.50 change. (How nineteenth century.) He has to keep the paper
receipt for his expenses and manually enter it into Quicken. He could buy several from the ticket
window at the main station when he gets in, but waiting in that line at rush hour is way more
trouble than it’s worth.

Charlie always carries the latest iPhone from Apple. He justifies the cost by saying he has to
project a tech-savvy image to his clients. But he really just likes Apple stuff. He won’t camp out
on the sidewalk the night before a new release, but he will pre-order it from Apple’s Web site.

Note that neither of our personas is a tourist or a foreign visitor, someone new to Boston. If we
were dealing with buses and subways, we would definitely want to include them. But com-
muter rail reaches a very different audience—more homogeneous, more suburban, more
repetitive. (It also makes this example much easier.)

Step 2: What (and When, and Where,
and Why)?
What problems do Claire and Charlie need to solve, and what would they consider to be the
characteristics of a good solution?

Riding the commuter rail is a repetitive kind of thing. Almost everyone travels from an outlying
station into the city in the morning and returns to that same station in the evening. Our app
needs to recognize and cater to this repetitive behavior.

It’s rare that a user will change stations, even more rare that he will change the line on which
he travels. It happens occasionally—a guy will stay over at his girlfriend’s house and take a
different train the next day—but not often. Our app needs to be able to handle changes, and
make them as easy as possible on that user, but not at the cost of complicating the much more
common case of “same old, same old.”

What do commuter rail riders need? More than anything else, they need to know when the
trains will actually leave the station. Commuter rail is not like the subway or bus that comes
along every few minutes. Commuter rail trains run every half an hour during peak times,
and less frequently (an hour or two, sometimes longer) outside them. If you miss one, you
might wait quite a while for the next one, and the stations (particularly inbound) are not at all
comfortable.

STEP 2: WHAT (AND WHEN, AND WHERE, AND WHY)? 167

How do riders know the schedule? Historically, the railroad has issued a printed timetable for
each line (Figure 8.8). Riders have to pick up a copy, usually at the main station (where they’ve
got scads for every line but yours), carry it with them, and then remember where they’ve put it
and how to refold it. It’s inconvenient to read, because it covers all stations on a train line and
you have to pick your specific station out of it. Charlie does this every time he travels, and it’s a
pain. “The signal-to-noise ratio is low,” he says. (Geek.)

It is not unusual that the rail schedule gets disrupted by weather or accidents or mechanical
difficulties. Sometimes the delay affects just one line (a train on the Fitchburg line hits a truck),
sometimes it’s all of them (a presidential visit snarls the entire downtown). Riders need to know
about this so they can take an earlier train to work, or drive in if they have to, or pretend to work
from home, or say, “To hell with it” and fake a case of smallpox to take a sick day. Obviously the
paper schedule can’t tell us this.

The MBTA Web site could, but it has to cover an enormous array of topics—bus, subway, boat,
and so on. It’s difficult to find the specific current information that you need even with a

Figure 8.8 Confusing, inconvenient printed timetable. (Courtesy of MBTA)

168 chapter 8 CASE STUDY: COMMUTER RAIL MOBILE APP

full-size Web browser on a PC. And we often don’t have access to a PC, for example, while we’re
waiting on the suburban platform in blowing snow for a train that isn’t there. It’s almost impos-
sible to use the MBTA site on the limited area of a mobile phone.

Riders also need help buying their tickets. A quick Google search finds that 57% buy monthly
passes. The rest have a quandary. Most trips originate in the suburbs. Very few suburban sta-
tions today have staffed ticket windows, or even vending machines. Once in a while a nearby
store will sell tickets as a convenience, but that’s increasingly rare. That was traditionally the
domain of the local tobacco shop, where the riders would also pick up a newspaper and a pack
of smokes for the ride. Those shops are just about all out of business today, along with the
newspapers and the smokers. So most non-monthly-pass riders have to pay cash to the con-
ductor on board. It would be nice to be able to buy tickets on demand, with credit cards.

Now that I had some handle on the problems that Claire and Charlie need to solve, I needed to
ask other riders what they thought about the app. I needed to do this quickly, so I went to my
local commuter rail station on a weekday morning and interviewed as many people as I could.
Here’s what I said to them:

■■ Tell me about your ride today.

■■ What burns you the most about it?

■■ How do you pay for your train ride?

■■ What kind of smartphone do you have?

Note that I started with open-ended questions and moved toward more specific ones. Above
all, I needed these interviews to be quick. The riders start gathering at the station only about
ten minutes before the train arrives, and I needed to talk to as many as I could.

I found that most of the riders complained about not enough trains, because of cancellations.
(We can’t really help them with that one.) Their second complaint, almost universal, was not
knowing when the trains were running. They were angriest about the times the MBTA gave
out wrong information. The Web site would say that a train was on time, the riders would go to
the station, and the train didn’t come. They wait 15 minutes, half an hour, in their cars with the
engines running; still no train. The electronic sign at the station claims that the train’s on time,
but in reality it’s been canceled and the one behind it is two hours late and packed to the gills.
While our app can provide the users with the information that they need, efficiently and in a
pleasing format, we can’t repeal the zeroth law of computer science: “Garbage in, garbage out.”
Our app is only as good as the information that the MBTA gives us to feed to it.

Hardly anybody talked about buying tickets. That wasn’t on their minds when I did this
research. It might increase in importance as schedules returned to more normal conditions, but
the riders weren’t thinking about ticket purchases when I asked them.

STEP 2: WHAT (AND WHEN, AND WHERE, AND WHY)? 169

Riders look at schedules more often than they deal with tickets. Charlie buys a round-trip ticket
once per day when he travels. Claire sets up a monthly pass with auto-renewal and then doesn’t
touch it again. They display their tickets to the conductor once per trip, or twice per day, often
not even that when the train is so crowded the conductor can’t get through to check. But they
look at the schedule a lot: at least once or twice the night before, the same again in the morn-
ing, and the same again in the afternoon. Charlie will probably check it more often per day than
Claire, who can settle into a routine. But they both need to know about any service disruptions.

So here’s what our users, Charlie and Claire, need:

■■ Good, up-to-the-minute schedule info, including any changes

■■ Good, easy ticket purchase and display

■■ And all of it easy, easy, easy to use

Now that I knew what users needed, I started writing it up in the form of stories so that the
geeks who would code this app can understand. Here’s what I wrote:

Story 1
Claire is at home in the evening, getting ready for work tomorrow. She doesn’t know what’s up
with that stupid commuter rail schedule, due to all the snow they’ve had lately. She needs to
know when the trains are running tomorrow, so she can know when to set her alarm for. She
pulls out her Android phone, taps our app. The app sees that it’s evening and that she’s cur-
rently located in the suburbs. It knows from the pass she’s purchased which stations she travels
from and to. So it automatically comes up showing the trains inbound from that station for
tomorrow morning. (She can change that with a few taps in case it’s wrong, but it usually isn’t.)
The app says that everything’s currently on schedule for tomorrow, but Claire doesn’t believe
that for a microsecond. She sighs and wishes she could get a job locally and not have to deal
with this damn commute. But she’s got seniority at her current job, her kids are headed toward
college—she’s stuck with it for the foreseeable future. She sets her alarm clock early anyway
and goes to bed.

Story 2
Charlie is at work in downtown Boston and his client invites him to stay in town for dinner.
Of course he’d love to socialize with his client; that’s how he often hears about new business
coming down the pipe. He needs to know the last trains of the day, so he knows when he has
to leave his social engagement. He pulls out his latest iPhone (his customer’s eyes widen with
longing) and taps our app. The app sees that it’s late afternoon, and its current location is in
the city. So it automatically comes up with the outbound trains highlighted. It knows from the
ticket he purchased this morning where he’s traveling to, so it shows the times for that line.

170 chapter 8 CASE STUDY: COMMUTER RAIL MOBILE APP

There’s a train leaving North Station at 7:40 p.m.; that’s probably too early. He’d have to eat too
fast and probably wouldn’t get around to the business discussion over coffee and brandy. The
next one’s at 9:20, so he has time for a good outing. But the one after that leaves at 11:45. If he
misses the 9:20, he’ll have to sit in North Station for two and a half hours—no fun at all. And if
he misses the 11:45 train, he’ll have to take a $100 cab ride out to Ipswich, or sleep on the sta-
tion benches. Charlie knows what his parameters are and goes off to his dinner meeting with
confidence.

Story 3
Claire wakes up in the morning and turns on the coffeemaker. She looks out the window and
sees some new snow. Damn! She pulls her phone off the charger, taps our app, checks to see if
the train schedule has gotten even more screwed up. Double damn! It has! They canceled her
regular train, but there’s an earlier one (actually an even earlier one that got delayed) that she
can still grab if she hustles. She yells to her older daughter that she’ll have to get the younger
ones out to the school bus, throws on her clothes, and runs out the door cursing the politicians
who screwed up the transport network. But she makes her train, keeps her job, doesn’t even
get her pay docked. She does have to pick up the load for employees who couldn’t get in until
noon because they didn’t have our great app to warn them when their trains got screwed up.
Fortunately, many of the patients got stranded, too, and missed their appointments, so the
workload wasn’t quite as bad as it might have been. The outbound trains are also messed up,
but at least she can see which ones are running. She’ll order pizza delivery for dinner tonight.

Story 4
Charlie needs to buy a ticket every time he takes the train in. There isn’t a ticket outlet near
his stop. He used to need a $20 bill every day to buy it on board from the conductor. But now
Charlie takes out his phone, taps our app, and buys a ticket, which he displays to the conduc-
tor. The bill goes to his credit card and appears magically under the “Travel” category when he
downloads his transactions into Quicken. Charlie’s accountant is happy. Charlie is happy. The
MBTA bean counters, who want to go cashless as soon as the politicians will let them, are happy
too. The world is a better place all around.

Step 3: How?
Now that we know who our users are and what they need to do, we’ll start addressing how they
can do it. We’ll use Balsamiq to make some quick mockups based on our initial research, show
them to users, and get feedback. We won’t spend any time at all making them pretty. As I’ve
said throughout this book, the key point at this stage is to iterate quickly. Polishing the cannon-
ball is counterproductive.

STEP 3: HOW? 171

The operation that users do most often is to check schedules, both promised and actual. Four
or five times per day is not unusual. The more the users perceive that the schedule is likely to
change, the more frequently they’ll check it. So the more critical this piece is, the more critical it
becomes. It’s important to get it right.

The next most common thing users do is to display a ticket to the conductor. Buying is less
common. Claire sets it up once in her life and the pass continues forever. Charlie does it on days
he takes the train in, usually buying a round-trip, which means he does this just once per day.

We want to minimize the number of touches that the user has to make. The original MBTA app
does not do that, and it never seems to have occurred to its developers that they should try.
Let’s take the app’s knowledge of the repetitive patterns of most commuter rail users and lever-
age it to the max.

I made my best initial guesses based on what my live users had told me, and on what Claire and
Charlie said when they disturbed my dreams at night. Figure 8.9 shows my first mockups.

I started by trying to fit everything onto just one page. In direct contrast to the MBTA app
where the home page does nothing at all, this home page does everything. We don’t need any

Figure 8.9 Two ideas for our first iteration of the MBTA mobile app.

172 chapter 8 CASE STUDY: COMMUTER RAIL MOBILE APP

navigation because we never have to go anywhere else for schedules or alerts or ticket display.
Purchasing a ticket or pass requires another screen, for which we provide a button, but as I said
before, this is much less common.

The first thing we see at the top is a line of three radio buttons. Users check schedules at three
main times during the day: in the morning before they head out from home to the station, in
the afternoon before they head out from work to the station, and in the evening at home, to
see what’s up for the next day. So perhaps two times out of three they want to see the current
day’s schedule, but in the evening they want to see the next day’s schedule. The app automati-
cally figures out which one to show, based on the time of day and the user’s cell-level location.
(That’s precise enough for our needs and draws no extra power.) The selected radio button
displays the current choice. If the user sees yesterday and needs today, or vice versa, she just
taps the radio button that she wants. If she needs to see another day, perhaps on the weekend
to go into town for a show, picking “Another Day” brings up a date picker to specify that date.

Next, we see the inbound and outbound trains. Here’s the key improvement over the original
app: because the app knows the ticket that the user bought, it knows which trains and which
times to show. Claire bought a pass originating in Salem. Charlie’s tickets originated in Ipswich.
Both specified North Station as their destination. The app uses this knowledge to populate the
labels above the list boxes and the train times within them, with the next available train at the
top. Each station has a link to change it if needed. That feature likely will not get used much, but
telemetry (next section) will tell us if we’re wrong.

I tried two different approaches to displaying the train times. Figure 8.9a uses list boxes, dis-
playing the train times in a vertical arrangement that the user is probably familiar with. In Fig-
ure 8.9b, I saved space by putting train times in a horizontal line. The app automatically places
the next available train as the first in the list. Either scroll bars or horizontal arrows indicate to
the user that she can scroll them if she needs to see more trains than fit in that space.

The app doesn’t show the trains’ arrival times. I figured most commuters probably wouldn’t
care. They know approximately how long their train ride takes and can therefore easily extrapo-
late. Plus, arrival time is often affected by factors beyond the rider’s control, so it doesn’t much
matter what the schedule says. If needed, we could make train arrival information accessible
with a tap on a particular train. I wonder how many users would say they need that.

Below the train displays is a text box. This carries a countdown clock, showing the time to the
next train inbound (if the user is in the suburbs) or outbound (if the user is in the city). The users
won’t have to do mental subtraction to see if they can make that train. This text box also shows
any alerts pertaining to this line or their station. Users won’t have to tap down three levels to
find out if there’s anything they care about.

Below all this is the monthly pass or ticket display. Claire’s automatically updates every day to
show the correct color for validity. Charlie will have to explicitly activate one, using a button
(not shown).

STEP 4: TRY IT OUT 173

The main drawback with this layout is that it’s a little bit cramped. Ideally it won’t bother our
user population much. In a reader app that they’d use for half an hour or more at a time, that
would be a deal breaker, but they’ll look at this app for no more than ten or 20 seconds at a pop.
The main criterion was for users to be able to pick out immediately the data that they need.
I carefully selected everything users needed (or so I thought), and nothing that they didn’t
(ditto).

The point is not that this layout is perfect, or even very good. This is my first draft. The point is
that it didn’t take long to dummy up these layouts and try them on actual users, to see what they
liked and what they didn’t like. To that trial we now turn our attention.

Step 4: Try It Out
I next needed to ask a number of users if they’d look at my app. I emailed my student list, asking
for anyone who rode commuter rail and wouldn’t mind taking a look. Obviously, this selection
has a certain amount of skew. My students tend to be younger than the average rider, although
since I teach in the continuing education division, they’re not undergrads. They tend to be
better educated than the majority of commuter rail users, although here in the Boston area
we have more college grads than most places. All of them did explicitly identify themselves as
commuter rail users, either current or recent, so they do know what they themselves need.

If I were going to invest major money in this mobile app, I’d need real users. I’d probably hand
out cards at the commuter rail station offering $20 to any rider who’d do a half-hour Skype call
to look at the app. I’d get as many riders as I wanted. Again, at this stage, I need to move quickly,
so I’m thinking fewer test users rather than more. I decided to go with Steve Krug’s suggestion
of three. If all three of them like something, it’s probably pretty good, and if all three of them
hate something, it’s probably pretty bad.

I arranged Skype calls with three of my former students who are regular commuter rail riders.
They know me and aren’t afraid to call ’em as they see ’em. Once we got our Skype session
established, we chatted a little bit about their current activities to break the ice and get the
conversation flowing, and then I started with open-ended prompts such as “Tell me about your
commute.” Then I read them the blurb from Chapter 4, how “We’re not testing you. You cannot
possibly make a mistake here. We’re checking how well our software fits what you’re trying
to do.”

I used Story 3 above, the one about Claire waking up in the morning. I figured it was the most
critical one. I read it to the test subject, substituting his name for hers: “Imagine, John, that
you’ve woken up at five in the morning to get ready for your day. You’re sipping your first cup of
coffee and you look out the window and damn, it’s snowed six inches. You figure you had bet-
ter check and see how the trains are running. You pull out your phone, tap the icon [now I share
the screen in Balsamiq], and here’s what you see. What do you do now?”

174 chapter 8 CASE STUDY: COMMUTER RAIL MOBILE APP

One of the users started talking out loud as she thought, which is helpful. I had to prompt the
other two to get them started: “John, it would be really helpful if you could maybe speak out
loud as you are thinking. You’re obviously figuring something out; could you maybe tell me
about it?” and so on.

I won’t repeat the conversations verbatim, but here is a summary of what I found. The first thing
every user noticed was the set of radio buttons showing Today/Tomorrow/Other. I thought
those buttons were important, but the users didn’t know what to make of them. I said, “OK, no
problem, ignore them for now and continue. What are you thinking?” If these buttons had been
a real problem, if they were too distracting to continue this test, I could have easily removed
them from the Balsamiq mockup, but these users were happy enough continuing on.

They started looking at the departure times in the left list box. All of them said that they would
find the one that they wanted to take and tap on it, expecting to see information about that
train. I had expected the departure time to be all the information that the user needed, but
these users didn’t see it that way. They wanted to see the arrival time, and they wanted some
sort of indicator to know if it really was on time.

Two of the three noticed the countdown timer and alerts box and understood what it was. It’s
a little harder to notice here in the static mockup, because in a real app you would see the time
counting down and that would give a clue to its purpose. The third subject didn’t notice it at
first but understood it immediately when I asked him to look at it.

This was all great feedback. I thought initially that the users would not care about the arrival
time, because they already knew how long the train ride takes. That wasn’t the case. They all
wanted to see it when making their choice of trains. They didn’t want to have to add it mentally;
they wanted that information in tandem with the departure times, perhaps to go to the same
place in their brains. Also, they said that they didn’t care about seeing the evening return trains
at this point. They’d look at return trains in the afternoon when they were thinking of heading
home. The return trains weren’t horribly distracting, but they weren’t the slightest help right
then either, and their real estate could be used for something else that users cared about.

They all preferred the vertical arrangement of trains in Figure 8.9a to the horizontal line in
Figure 8.9b. That’s how they’re shown in the timetable, that’s how they’re shown on the moni-
tor in the station, and the testers found it confusing to view them otherwise. No one liked the
horizontal line. OK, no problem; I learned something else.

They all said that the layout was too cramped, making it too hard to pick out the thing that they
needed. In my zeal to get rid of all the navigation, I had crammed too much into one place and
made the user do work of a different sort. Clearly, I hadn’t found the optimax yet.

Was I angry that a bunch of idiots couldn’t see the brilliance of the design? Did I scream to the
heavens demanding to know how I had gotten such a brain-damaged set of test users? On the

STEP 4: TRY IT OUT 175

contrary. They told me things I didn’t know. They made this app better. They made me smarter.
And now you too, I hope.

So back I went to Balsamiq. I split this information into two different screens, with the easi-
est possible navigation between them. The hamburger control is popular in mobile apps,
but this app has such a small amount of navigation that the extra tap it would require (tap
the hamburger to see the choices, then tap the choice you want) would have been cumber-
some. Instead, I used a tab control for its visible navigation. The amount of screen real estate it
consumes is small compared to the benefit of instant and obvious access to this small number
of choices. I put the schedule on one tab and the ticket or pass on another. You can see it in
Figure 8.10.

The test users liked this one much better. They all said it was way easier to find the times that
they wanted. They didn’t have to tap on anything to see the arrival times. “That table, that’s
how they’re shown on the monitor in the station, so it’s really familiar,” said one, and the others

Figure 8.10 Second iteration of the MBTA mobile app, incorporating feedback from the first attempt.

176 chapter 8 CASE STUDY: COMMUTER RAIL MOBILE APP

agreed when I asked them. “We never use the train number at all. We always think of them as
departure time, like the 8:57 train. So you might as well get rid of the column.” The other users,
when I asked them, said that no, they never used it either and agreed we might as well get
rid of it.

They loved the tab control for navigation. I thought it might be more of a PC-based idiom, not
so much for mobile phones, but they all grabbed onto it right away. Maybe it’s the fact that the
test users are older and more used to PCs, but then so are the actual commuter rail riders. The
only disagreement was over where the tabs should go. At the top, as I originally showed? One
tester wanted them at the bottom so he could select the tab with the thumb of his hand that
held the phone, convenient when the train got crowded. I decided to keep them on top for
now. It’s not a huge deal one way or the other. That choice can easily be made in further refine-
ments, and if we really need it both ways, we could make it configurable.

Again I encountered the desire for separation of morning inbound train times and afternoon
outbound train times. Every test user said, “Better, but I still have to tell one table from another.
It’s easier than the first one you showed us, but why not have each in a separate tab?”

Finally, I asked each tester about the alert and countdown timer box. One said that the count-
down timer was extremely important, as it told her when she had to run to make her next train.
She wanted it on top for that reason. It would be nice to have the track number on it as well,
if we were able to get that. That’s the sort of information you will get only from conversations
with your users. Telemetry can’t tell you that.

Again I went back and made the changes suggested by the test users. They had said they were
happy with tab navigation. They can see all the choices at once, and it takes only one tap to
select any of them. They didn’t care about having inbound and outbound on the same screen,
so I decided to place each on a separate tab.

I moved the countdown timer to the top. Only one test user had specifically requested that, but
the others all said they liked it when they saw this design.

I used the extra space on the tab to show more trains, and to make the font larger for easier
reading. Think about the demographics. Half of the users are age 45 and over. The developer
community skews much younger than this. It is common for them to dismiss the need for larger
type as a special need; it’s not the main thing, so we’ll get to it when we can—definitely not
version 1, probably not version 2 either, maybe version 3, or then again maybe not. But age-
related presbyopia (farsightedness) begins around age 40. At least half of our user base would
appreciate something easier to read. You can’t call half the user population an obscure special
case. They need relaxed-fit text as they need relaxed-fit jeans. They probably aren’t happy
about needing it, but they’d sure appreciate having it. The third tab made reading easier for
everyone. The users’ requirements are now working together toward the optimal solution. The
result is shown in Figure 8.11.

STEP 4: TRY IT OUT 177

I’m still stuck on the case of Charlie sitting at home Sunday night, needing to take the train in
on Monday and wondering what the schedule will be. That was the point of the radio buttons
in the original mockup, which all the test users hated. But we don’t want Charlie to do any
additional work by having to click the Schedule for Other Days link. So I brought in a pattern
I see in airports. When the monitor lists flights by time, at the end of the day when there aren’t
many left, they show a little banner after the last of tonight’s flights, and then they start show-
ing tomorrow’s flights. So we can easily see that we’re at the end of today and what’s hap-
pening first thing tomorrow. I made a small change and came up with the iteration shown in
Figure 8.12.

The app would be smart enough to bring up the correct tab based on the user’s location. If
Charlie opened it while downtown, it would figure he’s most likely headed home, so it would
bring up the outbound tab. Story 2 discusses this. But if Charlie opens the app in the suburbs
in the evening, it would automatically show the inbound tab, with the last of today’s inbound
trains (if any) and the first of tomorrow’s inbound trains. All the users loved this when I showed
it to them.

Some other ideas surfaced here as well. One tester said, “What about a space for ads?” Much as
I’d personally hate to see them, the rail agency could charge a lot of money for delivering this

Figure 8.11 Third iteration of the MBTA mobile app, incorporating feedback from previous attempts.

178 chapter 8 CASE STUDY: COMMUTER RAIL MOBILE APP

clientele to advertisers, especially if it were location based and time based. Imagine that you’re
walking toward the station and your phone beeps. “I see you have an extra ten minutes. Here’s
a coupon for a free donut with purchase of a coffee at Dunkin’ Donuts.” Or whatever.

There was some discussion about phone-level alerts or text messages when the schedule got
seriously messed up, not just notifications within the app. Interestingly, all three test users
expressed a desire for some information as to how crowded a train was. After further discus-
sion, we judged these to be impractical, as you don’t know for sure how crowded a train will be
until it fills up around departure time. Also, regular commuters usually know which trains are
the most crowded. And there’s not much they can do about a crowded train anyway.

The point of this discussion is not to learn how to make your first design perfect. Your first
design will never be perfect. It probably won’t even be all that great; mine wasn’t. It is meant to
stimulate discussion, to get users thinking and talking to you. You need to iterate, and therefore
you need to iterate as quickly and cheaply as possible. It shouldn’t take more than a week to go
from sketches to testing and iterations. Lather, rinse, repeat.

There will be more detailed design, and better graphic design, as we continue development.
But the point is that rapid sketching and quick feedback give us huge, huge advantages very

Figure 8.12 Fourth iteration of the MBTA mobile app, automatically showing tomorrow’s trains at the
end of the day.

STEP 5: TELEMETRY PLAN 179

quickly and very cheaply. We were able to switch designs before we’d spent much money, or
much time, or gotten emotionally invested in any design. As I put on the shoes of my users, I
learned all sorts of things that I never knew that I never knew. Now I know them, and so do you.

Step 5: Telemetry Plan
Every modern app uses telemetry. What will we record with our telemetry in this MBTA com-
muter rail mobile app, and what use will we make of that information?

In order for our app to provide the seamless capabilities we are asking of it, we need to make
steadily better guesses as to what the users want. As you have seen, much of our logic is based
on the time of day and the location at which the user makes requests. For example, when the
user looks at the schedule in the morning in the suburbs, we deduce that he wants to see the
inbound trains and come up with that tab showing. If he’s in the city in the morning, he prob-
ably has a reverse commute, or pulled an all-nighter, so we bring up the morning outbound
trains.

For each UX event, we need to record the time of day and the location of the phone. We won’t
use GPS location because of the power drain, and also potential privacy problems. But cell-level
location, easily available on all phones, will serve well enough for our needs. We won’t be able
to tell if the user looks at our app on First Street versus Second Street. But we’ll certainly know if
the guy is in Salem or in downtown Boston.

The first thing most telemetry focuses on is the feature usage profile. How often do users use
each feature? We went to a great deal of trouble to figure out which schedule tab to show. Did
we get it right? How often do users change it? We make our best guess as to which trains to
show in the schedule displays. How often do users scroll? We infer the station from the tickets
the user purchases. How often does anyone change it? Does anyone ever use the Schedule for
Other Days link?

Since we’re selling tickets with this app, we’ll want to know how often that feature gets used.
We can compare that data against other channels. What percentage of monthly pass users do
as Claire did, setting up her monthly pass on a Web browser on her PC, versus doing it on her
phone? How many tickets does Charlie buy at a time? At what time of day does Charlie buy his
tickets, and what is the peak load?

We’d learn a lot from this feature tracking. We probably shouldn’t go any further until we’ve
digested this amount of data and iterated our UX a few times based on it. We can then evolve it
to almost anything we care about. Our data miners will certainly have their requests.

If we really wanted to get fancy, we could gather data from the phone’s accelerometer, com-
pare it with location and time, and figure out how often anyone ever runs for a train.

180 chapter 8 CASE STUDY: COMMUTER RAIL MOBILE APP

Step 6: Security and Privacy Plan
Now we come to the security and privacy plan. At first glance, this app has very little security or
privacy need. All of the data on the schedule side is public. You do not need to authenticate if
you want to know when the next train is arriving. There’s not a whole lot to be concerned with.

Certainly someone who steals the phone can see which train line the user has been looking at,
and it’s a pretty good bet that’s the one she’s been riding all along. A user has far worse things
to worry about if her phone gets stolen, like the content of her text messages. A user will secure
almost anything else, even her Kindle reading list, before she cares about locking up her train
schedule. If a user does worry about her commuter rail profile becoming public, she’ll get a
phone that encrypts its entire contents and locks it all up with a fingerprint reader.

The only piece that needs to be secure is the credit card number used for purchasing tickets. It’s
important to store it in a way that the user doesn’t have to take out her credit card and type it
in every time. A user doesn’t want pickpockets or purse snatchers in a rush hour station to get a
look at her wallet. The choices are to store the number on the phone itself, perhaps encrypted,
or store it on a central server, like Amazon does, and fetch it when she wants to purchase a
ticket.

Which will users prefer? It might depend on when we ask them. If there had been a data breach
in the last few weeks, like the one that hit Target in 2013, they’ll want it stored on the handset.
They’ll figure a bad guy will focus on hitting big targets where he can steal millions at a time,
not one at a time by stealing phones. There’s not a whole lot you can do to prevent that. On the
other hand, if Claire wants her monthly pass to automatically renew, she has to give the T some
sort of ongoing financial authority, whether it’s credit card or automatic checking account with-
drawal. And once it’s there, we might as well keep it all there.

With privacy, our biggest problem will be the tracking of user movements and locations. In
theory, this information becomes a problem only when it is personally identifiable. We could
give each user a unique identifier, a random number assigned when the app is installed. We
would know that anonymous user 24168302 went into town on the 6:00 a.m. train and came
home on the 4:30 p.m. train. We wouldn’t know that particular user was Mary Smith, but we’d
know somebody did it. We could then work out individual profiles, which could be of great use
to data miners.

The problem is that if we collect this information, it’s liable to get abused somewhere. We
could, or someone could, correlate user movements with ticket purchases and work out who
each user was.

Suppose the news leaked out that the T was collecting the movements of individual riders.
“To serve you better,” they’d doubtless say. “We’re only doing good stuff with it.” What do
you suppose the local Fox News affiliate would do with that story? How long would it take for

STEP 7: MAKE IT JUST WORK 181

customers to ditch our app? That’s like the dentist saying, “This won’t hurt.” No, it won’t hurt
him a bit, will it? Suppose one of the programmers got caught stalking an ex-girlfriend?

As riders, we don’t have an intimate relationship with the T. We don’t have any reason for them
to be tracking us as individuals. I’d suggest that this app should not collect data on specific
users, even if it’s anonymized. If we’re not recording it, we can’t possibly leak it. Project manag-
ers will sleep a whole lot more soundly at night that way.

Step 7: Make It Just Work
Now that we’ve worked out our designs for this project, let’s go back and review them against
the commandments that I gave you in Chapter 7. We’re trying make this app just work. How are
we doing?

Start with Good Defaults
This is probably the biggest improvement that we’ve made from the original app. Instead of
throwing all the documentation for the entire commuter rail network at the user, and forcing
her to strain out the pieces she cares about, our app automatically deduces the pieces that she
cares about. We generate her default stations from her ticket purchases, and her current loca-
tion from cell-level positioning. We show them to her front and center.

Remember Everything That You Should
We do this very well in this app. The most important item that we remember is the user’s usual
commuting route—the stations that he goes to and from. We use that information to deter-
mine the schedules to show him, and the time to the next train.

Speak Your Users’ Language
We are careful to speak our users’ language at all times. Probably the biggest decision I made
in relation to this was omitting the train number from the schedule grid view. Certainly the T
uses train numbers internally, as airlines do. But riders, according to their interviews, never, ever
think in terms of those. They always think in terms of the time: “Damn, missed the 6:20 and they
canceled the 6:50; the next one goes at 7:14.”

Don’t Make Users Do Your Work
The original app made our users do a lot of work to find and then read the information they
needed. This app automatically figures out what the user wants and then shows it to her. She’s
doing a whole lot less work than she used to do, as close as we can get to no work at all. Even

182 chapter 8 CASE STUDY: COMMUTER RAIL MOBILE APP

the tabs that we show are carefully selected—the outbound trains if she’s in town, the inbound
trains if not. We’ve done this well.

Don’t Let Edge Cases Dictate the Mainstream
The main case of the rail commuter is making the same trip over and over, day after day. This
app is highly optimized for that case. If he wants something else, like “Hey, if I take the train in
for the Bruins game on Saturday, when are the trains?” there’s a link for it, but he’ll have to do
some work. A rail fan whose hobby is riding every line to every station will have to do much
more work. We have carefully optimized for the main case.

Don’t Make the User Think
This app’s biggest de-thinker is the countdown timer. It shows the time until the next train, so
you don’t have to look at the schedule, look at the clock, and do math. It shows you the track
number so you can go directly there. This app requires as little thinking as I could possibly
make it.

Don’t Confirm
We don’t have any confirmation in this app. This app doesn’t do anything that would require it.

Do Undo
The scheduling portion of the app doesn’t have anything that we could undo. In the ticket
purchase portion, perhaps we could allow return of purchased tickets. But the T doesn’t refund
paper tickets, so electronic tickets won’t get refunded either.

Have the Correct Configurability
This app automatically detects the stations that the user travels to and from. If for some reason
our automatic detection is wrong, or the user changes her pattern, we provide a link by which
she can make changes. We also provide a link if she wants to look at other times. Nothing else is
configurable. That’s a good place to start for this app. We may gain a little more configurability
in the future, such as the choice of putting the tabs at the top or bottom of the screen.

Lead the Witness
This app leads the witness in everything—automatically detecting which stations we use,
which trains we ride, automatically showing us when the next one leaves. Compare it to the
original app where the user has to dig for every last scrap. This is a damn good app, if I do say so
myself. Which I do, because it is.

Numbers
1-Click order system, Amazon.com

effective for impulse purchases, 116
excellent usage of default settings, 134–135
removal of confirmation box, 145
ships to your address without further

authentication, 118–119
undoing purchase, 147

80-20 rule
sketching mockup with Balsamiq, 65
UX testing, 70

A
A-B test, telemetry in, 92
About Face (Cooper), 78
Advertisers, commuter rail mobile app, 177–178
Age

adding to persona, 22–23
designing app for user population by, 162–163,

176, 193
Google Analytics figuring out visitor, 24
grokkability items for persona, 24
suggested by persona name, 19–20
technology choices reinforcing persona, 24

Aircraft ejection seats, 148–150
Alerts, commuter rail mobile app

current state of, 160–162
mockup, 172
trying out, 174, 176, 178

Amazon Kindle
font face/size configurations, 153–154
redefining what it means to read/write

books, 116
storytelling about using, 43–45
three-day return policy for digital books, 147

Amazon.com
best usage of default values in 1-Click, 134
descriptive shipping options of, 138–139
removing confirmation box in 1-Click, 145
security/usability tradeoffs, 115–116
undoing purchase in 1-Click, 147
usability of credit card entry, 140–141

American Association of Orthopedic Surgeons,
149–151

Analytics
Google Analytics, 93, 98, 101
telemetry and. See Telemetry

Apple
credit card entry, 140

INdex

undo capability of Trash Can, 146–147
UX critical to success of, 2

Application Insights, Microsoft, 98
Applications

evolution of telemetry for, 93–96
feature driven, 132–135

Appointment schedule, medical patient portal
creating mockup, 199–201
current state of, 185–187
trying out, 204

Authentication, Amazon.com, 118, 119
Auto-fetch

Google search, 155–156
medical patient portal search, 205

Auto-search, Microsoft Start menu, 105
Auto-suggest

Google search, 155–156
medical patient portal search, 205

Automatic saving, UX design, 8–10, 90–91
Avon, UX critical to success of, 2

B
Ballmer, Steve, 98
Balsamiq

commuter rail mobile app, 170–173, 175–176
demonstrating through live action, 64–65
interaction through storyboard, 61–64
medical patient portal, 198–201
sketching UX layout, 51–60
user testing example, 79–86

Battlefield casualty survival concept, 12–13
Berra, Yogi, 37
Beth Israel Deaconess Medical Center. See Medical

patient portal, case study
Beyond Fear: Thinking Sensibly about Security in an

Uncertain World (Schneier), 129
Bezos, Jeff, 145
Brooks, Frederick P., 87
BugSweeper sample app, Xamarin, 100–104
Business interactions, knowing how user relates

to, 23
Business layer, undoable operations in, 147
Buttons

demonstrating through live action, 64–65
Nextel walkie-talkie phone, 52–54
researching problems/solutions, 85–86
showing interaction through storyboard, 61–64
sketching mockup with Balsamiq, 54–60
user testing example of, 81–85

214 INDEX

C
Calendar sync, medical patient portal, 204
Camera, design/setup of test area, 75–76
Case studies

Amazon.com, 116–121
commuter rail. See Commuter rail mobile app,

case study
medical patient. See Medical patient portal,

case study
testing constantly/testing throughout in, 68
on this book’s Web site, 15

CEIP (Customer Experience Improvement
Program), Microsoft, 95

Certificate errors, 125–126
Chaining, defined, 145
Clinical information, medical patient portal

creating mockup for, 198–201
current state of, 187–192
trying out, 202–205

Cliq smartphone case, hardware buttons, 62
CNN.com, search box, 154
Code, early sketches and, 50
Color

early sketches in monochrome vs., 50
user experience and, 2–3

Commuter rail mobile app, case study
creating mobile app for commuters, 158
current state of the art, 158–162
deducing correct default settings from app

usage, 134–135
overview of, 157
Step 1: Who? 162–166
Step 2: What, When, Where and Why? 166–170
Step 3: How? 170–173
Step 4: Try it out, 173–179
Step 5: telemetry plan, 179
Step 6: security and privacy plan, 180–181
Step 7: make it just work, 181–182

Compensation, test user, 75, 81
Computer literate users, 2, 108–109
Concept, creating/refining sketches, 49–51
Confidentiality, medical patient portal, 184,

209–211
Configurability, correct

commuter rail mobile app, 182
make it just work, 152–154
medical patient portal, 212

Confirmation
avoiding asking user for, 144–146
creating commuter rail mobile app, 182
creating medical patient portal, 212
Empty Recycle Bin and, 147, 149
for non-undoable operations, 148–151

Cooper, Alan, 2, 78, 122
Corollaries, three fundamental, 7–8
Cost, UX not tested due to perceived, 69–70

Countdown timer box, commuter rail mobile app,
174, 176

Credit cards
Amazon security, 118, 120
commuter rail mobile app security,

159–160, 180
cooperating with other security layers, 128–129
making users work when entering, 139–140

Ctrl-Alt-Delete operation, guarding against slips, 149
Current state of the art

commuter rail mobile app, 158–162
medical patient portal, 184–193

Customer Experience Improvement Program
(CEIP), Microsoft, 95

D
Data collection

commuter rail mobile app, 180–181
as key to most UX questions, 13
strengthening stories with, 127–128
telemetry for medical patient portal, 207–209
in telemetry today, 105

Dead Center (Ribowsky), 52
Debriefing developers, after watching user

interaction, 79
Default settings

changing administrator account passwords,
127–128

checking optimal configuration of app,
132–135

creating commuter rail mobile app, 181
creating medical patient portal, 211
understanding users’ hassle budget, 122–123

Defense in depth, Amazon, 121
Demographic information

adding detail to persona, 22–23
on commuter rail riders for mobile app,

162–163
usage of computers in medicine, 194–195

Design
setup of test area and, 75–76
use of telemetry today, 104–105
UX testing is not a separate stage, 70–71

Design funnel
sketching ideas and concepts, 50–51
sketching mockup with Balsamiq, 54–60

The Design of Design: Essays from a Computer
Scientist (Brooks), 87

Desktop apps, evolution of telemetry for, 93–95
Detail, adding to persona, 22–26
Developers

failure to understand UX, 11–12
registering app with telemetry provider, 91–92
watching test users and debriefing, 78–79
why testing of UX design is not done, 69–71

INDEX 215

Dialog boxes, tracking usage with telemetry, 100
DiscoverBulk.com, 141–142
Don’t Make Me Think (Krug), 141–142
Dotfuscator, as telemetry provider, 98
Drag and drop, sketching mockup with

Balsamiq, 59

e
Edge cases, complicating mainstream

creating commuter rail mobile app, 182
creating medical patient portal, 212
making it just work, 141–142

Education level, adding to persona, 22–23
Email, medical patient portal, 188–189, 210–211
Empty Recycle Bin, confirmation and, 147, 149
Enterprise sector

permission for telemetry from, 96
UX critical to success of, 2

Events, tracking with telemetry, 103, 179
Evolution, of telemetry, 93–96
External business applications, test users for, 74

F
Fallibility, not testing UX and developer, 69
Features

combating complexity of, 132–135
edge cases complicating main cases, 141–142
nonconfigurable, 152–154
tracking usage with telemetry, 99, 179

Feedback
starting with good sketch, 49–51
testing early/often, 72
trying out commuter rail mobile app, 173–179
UX testing giving early, 72–73

Feynman, Richard, 113
Final app review. See Make it just work
Firefox, telemetry configuration, 96
Fonts

Amazon Kindle configurable, 153–154
size persisting through sessions, 136–137
user experience and, 2–3

Full-screen presentation mode, Balsamiq Mockups,
64–65

G
Gender, adding to persona, 22–23
Genealogy (family tree), creating simple persona

for, 18–22
Google Analytics

as telemetry provider, 93, 98
Xamarin Insights vs., 101

Google Chrome, telemetry configuration, 96

Google Maps, based on telemetry, 95–96
Google search, 155–156, 205
Google.com, language selection algorithm, 4–7
Google’s auto-fetch, 155–156
Graphic designers, UX developers vs., 12
Grokkability items

creating simple persona, 24
writing stories by adding, 42

Group
editing internal items of, 59–60
simulating image button by making, 58–59

Guessing game era, telemetry and, 90–91
Guthrie, Arlo, 15

H
Hardware buttons, 62–65
Hardware, how persona will run app, 23–24
Hassle budgets, user

deciding, not asking and, 124–127
real-life workaround for, 113–116
respecting, 112–113
securing applications by understanding,

121–122
security requirements and, 110–112, 209–211
starting with good defaults, 122–123

Health coach mobile app, 206–207
Help system, tracking topics with telemetry, 100
Herley, Cormac

on certificate error messages, 126
on cost-benefit tradeoff of security policies,

115–116
on economics of users’ hassle budgets,

112–113
on usable security, 129–130

Hidden observation, of users, 37
HIPAA Law, 209
Hollis, Billy, 2
Home page

after user logs in at Amazon, 117
current state of medical patient portal,

185–187
mockup for commuter rail mobile app,

171–172
mockup for medical patient portal, 198–201

How?
commuter rail mobile app case study,

170–173
medical patient portal case study, 198–201
writing stories, 198–201

Human users
adapting software to, 108–109
periodic password changes and lazy, 114–115
security requirements/hassle budget of,

110–112
what they really care about, 109–110

216 INDEX

I
IBM, spending on UX, 2
Ideas

creating/refining sketches, 49–51
sketches intended to provoke/incite, 68

In-house development team, consulting users
via, 10

Individual consumer applications, finding test
users, 74

Individual users, tracking mobile apps with
telemetry, 103–104

Informed consent, and users’ hassle budget,
125–126

Insert key, on Microsoft keyboard, 99
Interaction

demonstrating through live action, 64–65
disadvantages of live user testing, 90
interviewing users, 35–36
of persona with your app’s business, 23
security dependent on user, 107, 112–113
showing through storyboard, 61–64
testing on live users, 73
watching user, 78–79

Internet
evolution of telemetry, 93–94
Google Maps traffic based on telemetry, 95–96
portal case study. See Medical patient portal,

case study
understanding user behavior via telemetry,

91–93
Internet Explorer, 126
Interviewing users

finding out what they want, 35–36, 168–170
story example, 43–45

IT team, blocking access to actual users, 34
Iterative process

importance of telemetry in quick, 93
mockup for commuter rail mobile app,

170–173
producing design that works with, 49

J
Johansson, Jesper, 110
Junk mail, default Outlook settings, 122–124

K
Key performance indicators, telemetry, 99,

102–103

L
Lab testing. See Testing on live users
Language selection algorithm, google.com, 5–6

Language, speaking users’
commuter rail mobile app, 181
making it just work, 137–139
medical patient portal, 211

Layers, cooperating with other security, 128–129
Layout

commuter rail mobile app, 170–173, 174–179
current state of medical patient portal, 184–185
sketching with Balsamiq Mockup, 54–60
user experience and, 51–54

Leading the witness
creating commuter rail mobile app, 182
creating medical patient portal, 212
making it just work, 154–156

The Lean Startup (Ries), 93
Line of business applications, finding test users, 73
Live365.com, 79–86
Localytics, telemetry provider, 98
Log in

Amazon.com, 117–118
medical patient portal, 184–185, 208–210

Lolita (Nabokov), 70
Low-level projects, user experience in, 11

M
Make it just work

creating commuter rail mobile app, 181–182
creating medical patient portal, 211–212
doing undo, 146–151
don’t confirm, 144–146
don’t let edge cases dictate mainstream,

141–142
don’t make user think, 142–144
don’t make users do your work, 139–141
having correct configurability, 152–154
key to everything, 132
leading the witness, 154–156
overview of, 131
remembering everything you should, 136–137
speaking your users’ language, 137–139
starting with good defaults, 132–135

Marketing, user experience and, 11
Marx, Groucho, 146
Massachusetts Bay Transportation Authority

(MBTA). See Commuter rail mobile app, case
study

MBTA (Massachusetts Bay Transportation
Authority). See Commuter rail mobile app, case
study

Medical patient portal, case study
current state of the art, 184–193
first try, 184
health coach mobile app, 206–207
overview of, 183
Step 1: Who? 193–196

INDEX 217INDEX 217

Step 2: What, When, Where and Why? 196–198
Step 3: How? 198–201
Step 4: trying it out, 201–207
Step 5: telemetry plan, 207–209
Step 6: security and privacy plan, 209–211
Step 7: making it just work, 211–212

Microsoft
Application Insights, 98
evolution of telemetry, 94–95
telemetry configuration, 96
Windows 8 wrong telemetry, 105–106

Microsoft Office
overconfigurable floating menu bar, 152–153
tracking feature usage in, 99
without Quick Print button, 134

Microsoft OneNote, 8, 90–91
Microsoft Outlook default junk mail, 122–124
Microsoft SQL Server administrator account,

127–128
Microsoft Store, credit card entry, 139–141
Microsoft Word

manual saving of changes, 8–10, 90–91
Quick Print button in 2003, 133–134

Mobile device apps
commuter rail. See Commuter rail mobile app,

case study
deducing default settings from usage of, 134
evolution of telemetry for, 95–96
example persona photos for, 20–21
Google’s auto-fetch for, 156
syncing medical appointments to online

calendars, 204
telemetry configuration in, 96–98
telemetry example for phone, 100–104

Mockups
creating commuter rail mobile app, 170–173
creating medical patient portal, 198–201
demonstrating through live action, 64–65
showing interaction through storyboard, 61–64
sketching UX layout with Balsamiq, 51–60
testing early/often with low-fidelity, 72
trying out commuter rail mobile app, 173–179
trying out medical patient portal, 202–207
user testing example, 79–86

Moderator, usability test, 76–77, 81–86
Monochrome, early sketches in, 50
Mordac the Preventer, comic strip, 129
The Mythical Man-Month (Brooks), 87

N
Nabokov, Vladimir, 70
Names

choosing for persona, 19–20
learning how users describe problems,

137–139

for mockups sketched with Balsamiq, 58–59
writing stories by starting with, 42

Navigation structure
commuter rail mobile app, 175–176
for medical patient portal, 185, 198–201

New York Times search box, 155
Nextel walkie-talkie phones, 52–53, 61–64
Non-undoable operations, 148–150
Nonconfigurable features, 152–154
Norman, Donald, 8
Norton Internet Security dialog box, 124–125

O
Observing users, 37–39
Open observation, of users, 37–39
OpenNotes section, medical patient portal, 187
Orientation, tracking mobile apps with

telemetry, 103
Overconfigurability, avoiding, 152–154

P
Pandora, user experience of, 77–78
Passwords

administrator account, 127–128
Amazon not insisting on strong/changed, 120
companies forcing users to change, 114–115
creating secure, 113–114

Permissions, telemetry configuration, 96–98
Personal essay, of persona, 25–26, 28–29
Personality cues, adding to persona, 25
Personas

adding detail, 22–26
communicating with subconscious mind, 20
creating for commuter rail mobile app,

163–166
creating for medical patient portal, 193–196
creating simplest, 18–22
developing skill in, 13
overview of, 17
putting a face on, 18
succeeding with, 28–29
thinking in terms of, 18
using, 27–28
writing stories by starting with name, 42

Pet peeves, adding to persona, 25
Petzold, Charles, 100–104
Picture buttons, 58–59, 64–65
Picture, choosing for persona, 20–22
Platt’s FLaO Law of UX design

commuter rail mobile app, 161–162
example of, 8–10
fundamental corollaries of, 7–8
overview of, 7

Pleasure, users only caring about, 7–8

218 INDEX218 INDEX

Posters, of persona, 27–28
PreEmptive Solutions, as telemetry provider, 98
Prescriptions, medical patient portal, 202–203, 210
Prescriptive approach, for user requirements,

39–40
Pressy addon hardware button, Android, 62–63
Privacy

complying telemetry with, 105
in telemetry configuration, 96–98
uselessness of, 98

Private networks, telemetry providers for, 98–99
Privileges, Amazon user, 119
Productivity, users only caring about, 7–8
Programs, users not caring about, 7–8
Prototyping, 48–51
Provider, telemetry, 91–92, 98–99

Q
Questions

finding out what users want via, 32–33
interviewing users with specific, 35–36
writing stories to answer, 42–45

R
Random generator, for new passwords, 113
Recycle Bin, Windows, 146–147
Remember everything you should

commuter rail mobile app, 136
medical patient portal, 211

Reminders, and medical patient portal, 204
Repeat purchases, Amazon.com, 118
Representative, finding out what users want via, 34
Research, user testing example of, 85–86
Ribowsky, Shiya, 52
Rocket Surgery Made Easy (Krug), 68

S
Saint-Exupéry, Antoine de, 132
Save the Children charity, 18
Schedule, commuter rail mobile app

creating mockup, 171–173
current state of, 160–161
trying out, 173–179
what commuter rail riders need, 166–170

Schneier, Bruce, 107
Script, for usability test moderator, 76–77
Search

Google using pre-fetched data for, 155
medical patient portal, 204–205, 212
range control and edge cases, 141–142

Secrets and Lies (Schneier), 107
Security and privacy

adjusting for usability, 121
Amazon.com case study, 116–121

in commuter rail mobile app, 180–181
cooperating with other security layers,

128–129
deciding, not asking user, 124–127
everything is a trade-off, 108
last word on, 129–130
in medical patient portal, 209–211
overview of, 107
reading good book on, 129
starting with good defaults, 122–124
strengthening stories with data, 127–128
understanding user hassle budgets, 110–116,

121–122
usability people vs. security people, 129
users as humans, 108–109
using persona/story skills, 127
what users really care about, 109–110

Security and Usability (Whitten and Tygar), 109
Separate step, UX testing is not, 70
Sequences of operations, tracking with

telemetry, 99
Shipping options, in your users’ language, 138–139
Sign Out menu option, Amazon, 119
Sign Your Site, American Association of Orthopedic

Surgeons, 149–151
Sketching

demonstrating through live action, 64–65
intended to provoke/incite ideas, 68
mockup for commuter rail mobile app,

170–173
mockup for medical patient portal, 198–201
overview of, 49
prototyping vs., 48
showing interaction through storyboard, 61–64
starting with good sketch, 49–51
throughout development process, 71
UX layout with mockup tool, 51–60

Skype
for commuter rail mobile app, 173
telemetry configuration for, 96–98
user experience of, 52

Smartphones
sketching mockup with Balsamiq, 51–60
storyboard of button with walkie-talkie app,

61–64
Software

fundamental corollaries of, 7–8
knowing how persona will run app, 23–24
quality assurance and telemetry, 98

Songza, 80, 84
Spool, Jared, 69, 77–78
Stalin, putting face on the user, 18
Start menu, Microsoft Windows 8/10 and, 105–106
Sticky notes, contributing ideas to persona, 28
Storyboards

demonstrating through live action, 64–65
discovering/fixing problems with, 61
showing sequence of interaction, 61–64

INDEX 219INDEX 219

Storytelling
advantages of, 41
interview and story example, 43–45
strengthening with data, 127–128
user requirements expressed via, 40–41
writing stories, 42–43

Stream of consciousness, in UX testing, 73, 77
Subject matter experts, finding out what users

want via, 35
Surely You’re Joking, Mr. Feynman (Feynman),

113
Surrogate, finding out what users want via, 34
Surveillance cameras, watching users via, 37

T
Tagline, choosing persona, 21–22
Tasks, test user, 77–78
Tech support, considering UX via, 11
Technophiles, as test users, 74
Telemetry

choosing default settings based on, 133–134
collecting hard engineering data via, 10
creating commuter rail mobile app, 179
creating medical patient portal, 207–209
evolution of, 93–96
example of, 100–104
getting it wrong, 105–106
guessing game era and, 90–91
overview of, 89
permission and privacy in, 96–98
in-person testing vs., 72–73, 78
process of, 91–93
selecting provider, 98–99
as a solution, 91–93
strengthening stories with data from, 127–128
suggestions for using today, 104–105
what to track, 99–100

Test result comparisons, medical patient portal,
202–205

Testing on live users
compensating test users, 75
example, 79–86
finding test users, 73–75
last word, 87
limitations of, 90
number of users needed, 75
overview of, 67
starting early, 72
task design and description, 77–78
telemetry as complement to. See Telemetry
test area design and setup, 75–76
test constantly/test throughout, 68
using moderator, 76–77
watching and debriefing, 78–79
what we learn from, 72–73
why it is not done, 69–71

Text
Amazon Kindle configurable font face/size,

153–154
auto-suggest/auto-fetch search functions,

155–156, 205
changing label inside button group, 59–60
font size persisting through sessions, 136–137

The T. See Commuter rail mobile app, case study
Think, don’t force user to

creating commuter rail mobile app, 182
creating medical patient portal, 212
make it just work, 142–144

Thinking out loud. See also Testing on live users
commuter rail mobile app, 174
medical patient portal, 202–205

Third-party problem, 34
Ticket purchases/display, commuter rail mobile

app
creating mockup, 171–173
current state of, 159–160
telemetry plan for, 179
trying out, 173–179
what commuter rail riders need, 168–170

Trade-offs, security/usability, 108, 116–121

U
UI (user interface), user experience vs. design of,

2–3
Underhill, Paco, 22
Undo feature

creating commuter rail mobile app, 182
creating medical patient portal, 212
overview of, 146–150

Unsubscription forms, 142–144
Updates, persona, 28
UPS.com, 4–7, 133
Usability testing. See also Testing on live users

communicating users’ feeling with video
of, 128

developing skill in, 13
open observation vs., 38
telemetry plan for medical patient portal and,

207–209
trying out commuter rail mobile app, 173–179
trying out medical patient portal, 202–207

Usage patterns, Amazon security, 120–121
User experience (UX). See UX (user experience)
User requirements

asking right questions, 32–33
explaining to the geeks, 39–41
finding users to examine, 34–35
gathering, 39
interviewing users, 35–36
observing users, 37–39
overview of, 31–32
storytelling and, 41–45

220 INDEX220 INDEX

Users
as human, 108–109
security requirements/hassle budgets of,

110–112
what they really care about, 109–110

UX (user experience)
chapter outlines, 14–15
designing at beginning of project, 10–11
fundamental corollaries of, 7–8
fundamental example of, 4–7
Platt’s FLaO Law of UX design, 7
as primary driver of competitive advantage, 2
user interface design vs., 2–3
web site for this book on, 15
where to get skills, 12–13
why developers don’t consider, 11–12
you can do this, 13–14

V
Video, usability testing, 128
VRBO.com, unsubscription form of, 142–144

W
Wall space, dedicating to persona, 28
Watching users

advantages of in-person testing, 78–79
overview of, 37–39

Web site for this book, 15
Web Site Usability: A Designer’s Guide (Spool), 69, 77
Web sites

combating complexity of feature driven,
132–135

evolution of telemetry for, 93–94

Webcam control, sketching mockup with
Balsamiq, 59

What/When/Where/Why?
commuter rail mobile app, 166–170
interview/story example, 43–45
medical patient portal, 196–198
writing stories to answer, 42–43

Who?
commuter rail mobile app, 162–166
medical patient portal, 193–196
writing stories to answer, 42

Why We Buy: The Science of Shopping (Underhill),
22

Work, don’t make users do your
creating commuter rail mobile app, 181–182
creating medical patient portal, 211
overview of, 139–141

Writing stories
and interviewing, 43–45
overview of, 42–43

Wrong-site surgeries, as non-undoable, 149–151

X
Xamarin, 100–104

Y
Your Account dropdown, Amazon, 119

Z
Zoom, sketching with Balsamiq, 56

	Cover
	Title Page
	Copyright Page
	Contents
	Foreword
	About the Author
	Introduction: UX Rules the Roost
	Your Biggest Advantage
	UX Is Not Fonts and Colors
	Fundamental Example
	The Three Fundamental Corollaries
	Example: Save Me?
	Bake UX In from the Beginning
	Why Developers Don’t Consider UX
	Our Projects Are Low-Level, So UX Doesn’t Matter
	Marketing Decides Our UX
	We Have a UX Group That Does That Stuff
	UX Is for the Beret-Heads

	Where to Get the Skills
	You Can Do This
	This Book’s Web Site
	And Here We Go
	8 Case Study: Commuter Rail Mobile App
	Pity the Poor Commuter
	Current State of the Art
	Step 1: Who?
	Step 2: What (and When, and Where, and Why)?
	Story 1
	Story 2
	Story 3
	Story 4

	Step 3: How?
	Step 4: Try It Out
	Step 5: Telemetry Plan
	Step 6: Security and Privacy Plan
	Step 7: Make It Just Work
	Start with Good Defaults
	Remember Everything That You Should
	Speak Your Users’ Language
	Don’t Make Users Do Your Work
	Don’t Let Edge Cases Dictate the Mainstream
	Don’t Make the User Think
	Don’t Confirm
	Do Undo
	Have the Correct Configurability
	Lead the Witness

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

