
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134177410
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134177410
https://plusone.google.com/share?url=http://www.informit.com/title/9780134177410
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134177410
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134177410/Free-Sample-Chapter

PRAISE FOR CUDA FOR ENGINEERS

“First there was FORTRAN, circa 1960, which enabled us to program main-
frames. Then there was BASIC, circa 1980, which enabled us to program the
first microcomputers. And now there is CUDA, which enables us to program
super-microcomputers.

“CUDA for Engineers allows researchers in engineering and mathematics to
perform calculations hundreds of times faster than was previously possible on
microcomputers. This permits new kinds of calculations to be performed and
reveals this book to be a game changer.”

— Richard H. Rand, professor of mechanical and aerospace engineering,
and of mathematics, Cornell University

“CUDA for Engineers has been put together in a very thoughtful and practical
way. The reader is quickly immersed in the world of parallel programming with
CUDA and results are seen right away. This book is a great introduction and
helps readers from many different scientific and engineering disciplines become
exposed to the benefits of GPU programming. This book is an enjoyable read and
has great support through top-notch example programs and exercises.”

— Dr. Mark Staveley, senior program manager, Azure High Performance Computing

“CUDA for Engineers lives up to its name by stepping the reader through con-
cepts, strategies, terminology, and examples, which work together to form an
educational framework so that experts and non-experts alike can approach
high- performance computing with foresight and understanding.”

— Joseph M. Iaquinto, Ph.D., research specialist, VA Puget Sound

“This book reflects a practical approach that is in perfect agreement with the
way I teach numerical methods for engineers. It would make a fine supplement
for engineering students or practitioners to add CUDA to their numerical tool-
box, and thus embark on the study of high-performance scientific computing.
It’s perfect for newcomers to CUDA who already have a foundation in program-
ming. I recommend following the authors’ advice and working immediately with
the hands-on exercis es, step by step. After this immersion, you will approach
proficiency by simply adding some personal projects in GPU computing and
delving into the NVIDIA CUDA Guide and developer community.”

— Lorena A. Barba, associate professor of mechanical and aerospace engineering, The
George Washington University

This page intentionally left blank

CUDA for Engineers

This page intentionally left blank

CUDA for Engineers
An Introduction to High-Performance
Parallel Computing

Duane Storti
Mete Yurtoglu

New York • Boston • Indianapolis • San Francisco
Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may
include electronic versions; custom cover designs; and content particular to your business, training
goals, marketing focus, or branding interests), please contact our corporate sales department at
 corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Names: Storti, Duane, author. | Yurtoglu, Mete.
Title: CUDA for engineers : an introduction to high-performance parallel
 computing / Duane Storti, Mete Yurtoglu.
Description: New York : Addison-Wesley, 2015. | Includes bibliographical
 references and index.
Identifiers: LCCN 2015034266 | ISBN 9780134177410 (pbk. : alk. paper)
Subjects: LCSH: Parallel computers. | CUDA (Computer architecture)
Classification: LCC QA76.58 .S76 2015 | DDC 004/.35—dc23
LC record available at http://lccn.loc.gov/2015034266

Copyright © 2016 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. To obtain permission to use material from this work, please submit a written
request to Pearson Education, Inc., Permissions Department, 200 Old Tappan Road, Old Tappan, New
Jersey 07675, or you may fax your request to (201) 236-3290.

NVIDIA, the NVIDIA logo, CUDA, GeForce GeForce GTX, Jetson, Kepler, NVIDIA Maxwell, Nsight,
Optimus, Pascal, Quadro, and Tesla are trademarks and/or registered trademarks of NVIDIA
Corporation in the U.S. and/or other countries.

Microsoft, Visual Studio, and Windows are trademarks of the Microsoft group of companies.

Apple, the Apple logo, Mac, OpenCL, and OS X are trademarks of Apple Inc., registered in the U.S. and
other countries.

Intel and Intel Core are trademarks of Intel Corporation in the U.S. and other countries.

ArrayFire and the ArrayFire logo are trademarks of ArrayFire LLC.

UNIX is a registered trademark of The Open Group.

Wikipedia is a registered trademark of the Wikimedia Foundation, Inc.

IBM, Blue Gene, and PowerPC are trademarks of International Business Machines Corp., registered in
many jurisdictions worldwide.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

ISBN-13: 978-0-13-417741-0
ISBN-10: 0-13-417741-X
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, November 2015

Editor-in-Chief
Mark L. Taub

Executive Editor
Laura Lewin

Development Editor
Songlin Qiu

Managing Editor
John Fuller

Project Editor
Elizabeth Ryan

Copy Editor
Teresa Barensfeld

Indexer
Jack Lewis

Proofreader
Anna Popick

Technical Reviewers
Tom Bradley
Richard Rand
Mark Staveley

Editorial Assistant
Olivia Basegio

Cover Designer
Chuti Prasertsith

Compositor
The CIP Group

http://lccn.loc.gov/2015034266

To the family, friends, and teachers
who inspire us to keep learning cool things

and to share what we have learned.

This page intentionally left blank

ix

Contents

Acknowledgments . xvii

About the Authors . xix

Introduction . 1

What Is CUDA? . 1

What Does “Need-to-Know” Mean for Learning CUDA? 2

What Is Meant by “for Engineers”? . 3

What Do You Need to Get Started with CUDA? 4

How Is This Book Structured? . 4

Conventions Used in This Book . 8

Code Used in This Book . 8

User’s Guide . 9

Historical Context . 10

References . 12

Chapter 1: First Steps . 13

Running CUDA Samples . 13

CUDA Samples under Windows . 14

CUDA Samples under Linux . 17

Estimating “Acceleration” . 17

x

CONTENTS

Running Our Own Serial Apps . 19

dist_v1 . 19

dist_v2 . 20

Summary . 22

Suggested Projects . 23

Chapter 2: CUDA Essentials 25

CUDA’s Model for Parallelism . 25

Need-to-Know CUDA API and C Language Extensions 28

Summary . 31

Suggested Projects . 31

References . 31

Chapter 3: From Loops to Grids 33

Parallelizing dist_v1 . 33

Executing dist_v1_cuda . 37

Parallelizing dist_v2 . 38

Standard Workflow . 42

Simplified Workflow . 43

Unified Memory and Managed Arrays . 43

Distance App with cudaMallocManaged() 44

Summary . 47

Suggested Projects . 48

References . 48

Chapter 4: 2D Grids and Interactive Graphics 49

Launching 2D Computational Grids . 50

Syntax for 2D Kernel Launch . 51

 CONTENTS

xi

Defining 2D Kernels . 52

dist_2d . 53

Live Display via Graphics Interop . 56

Application: Stability . 66

Running the Stability Visualizer . 73

Summary . 76

Suggested Projects . 76

References . 77

Chapter 5: Stencils and Shared Memory 79

Thread Interdependence . 80

Computing Derivatives on a 1D Grid . 81

Implementing dd_1d_global . 82

Implementing dd_1d_shared . 85

Solving Laplace’s Equation in 2D: heat_2d 88

Sharpening Edges in an Image: sharpen 102

Summary . 117

Suggested Projects . 118

References . 119

Chapter 6: Reduction and Atomic Functions 121

Threads Interacting Globally . 121

Implementing parallel_dot . 123

Computing Integral Properties: centroid_2d 130

Summary . 138

Suggested Projects . 138

References . 138

xii

CONTENTS

Chapter 7: Interacting with 3D Data 141

Launching 3D Computational Grids: dist_3d 144

Viewing and Interacting with 3D Data: vis_3d 146

Slicing . 149

Volume Rendering . 153

Raycasting . 154

Creating the vis_3d App . 156

Summary . 171

Suggested Projects . 171

References . 171

Chapter 8: Using CUDA Libraries 173

Custom versus Off-the-Shelf . 173

Thrust . 175

Computing Norms with inner_product() 176

Computing Distances with transform() 180

Estimating Pi with generate(), transform(), and reduce() . . . 185

cuRAND . 190

NPP . 193

sharpen_npp . 194

More Image Processing with NPP . 198

Linear Algebra Using cuSOLVER and cuBLAS 201

cuDNN . 207

ArrayFire . 207

Summary . 207

Suggested Projects . 208

References . 209

 CONTENTS

xiii

Chapter 9: Exploring the CUDA Ecosystem 211

The Go-To List of Primary Sources . 211

CUDA Zone . 211

Other Primary Web Sources . 212

Online Courses . 213

CUDA Books . 214

Further Sources . 217

CUDA Samples . 217

CUDA Languages and Libraries . 217

More CUDA Books . 217

Summary . 218

Suggested Projects . 219

Appendix A: Hardware Setup 221

Checking for an NVIDIA GPU: Windows . 221

Checking for an NVIDIA GPU: OS X . 222

Checking for an NVIDIA GPU: Linux . 223

Determining Compute Capability . 223

Upgrading Compute Capability . 225

Mac or Notebook Computer with a CUDA-Enabled GPU 225

Desktop Computer . 226

Appendix B: Software Setup 229

Windows Setup . 229

Creating a Restore Point . 230

Installing the IDE . 230

Installing the CUDA Toolkit . 230

Initial Test Run . 235

xiv

CONTENTS

OS X Setup . 238

Downloading and Installing the CUDA Toolkit 239

Linux Setup . 240

Preparing the System Software for CUDA Installation 240

Downloading and Installing the CUDA Toolkit 240

Installing Samples to the User Directory 241

Initial Test Run . 242

Appendix C: Need-to-Know C Programming 245

Characterization of C . 245

C Language Basics . 246

Data Types, Declarations, and Assignments 248

Defining Functions . 250

Building Apps: Create, Compile, Run, Debug 251

Building Apps in Windows . 252

Building Apps in Linux . 258

Arrays, Memory Allocation, and Pointers 262

Control Statements: for, if . 263

The for Loop . 264

The if Statement . 265

Other Control Statements . 267

Sample C Programs . 267

dist_v1 . 267

dist_v2 . 271

dist_v2 with Dynamic Memory . 275

References . 277

 CONTENTS

xv

Appendix D: CUDA Practicalities: Timing, Profiling,
Error Handling, and Debugging 279

Execution Timing and Profiling . 279

Standard C Timing Methods . 280

CUDA Events . 282

Profiling with NVIDIA Visual Profiler . 284

Profiling in Nsight Visual Studio . 288

Error Handling . 292

Debugging in Windows . 298

Debugging in Linux . 305

CUDA-MEMCHECK . 308

Using Visual Studio Property Pages . 309

References . 312

Index . 313

This page intentionally left blank

xvii

Acknowledgments

The authors wish to express their thanks to a variety of people without whom
this book would never have come into existence.

Thank you to all the family members who received a bit less attention while
we were consumed by the writing of this book. Thank you to Laura Lewin and
everyone at Pearson who contributed to the editing, production, and marketing
efforts. Thank you to Nicholas Wilt (formerly at NVIDIA and currently at Ama-
zon), who first put us in contact with Laura and really got the ball rolling. Thanks
also to our technical reviewers Thomas Bradley of NVIDIA, Mark Staveley of
Microsoft, and Richard Rand of Cornell University, all of whom provided helpful
comments, corrections, and insights.

Thank you to the many colleagues here at the University of Washington–Seattle
Department of Mechanical Engineering who contributed via discussions rang-
ing from big-picture perspective down to the finest technical details. That list
includes but is not limited to Mark Ganter, Di Zhang, and Ben Weiss (who helped
create several of the figures and also provided us with some lifesaving software
to support logical tags and automated code formatting). We would also like to
thank Mechanical Engineering Department Chair Per Reinhall for his approval
for us to offer the class that helped to inspire the creation of much of the book’s
content. Additional thanks go to our colleagues David Haynor of University of
Washington Department of Radiology and William Ledoux of the Seattle VA Hos-
pital, whose research initiatives continue to motivate meaningful journeys into
CUDA territory.

We wish to say a special thank you to the good folks at NVIDIA, including CEO
Jen-Hsun Huang who not only had, but also acted on, a vision of what could be
accomplished by enhancing access to GPU-based parallel computing; Chandra
Cheij, Academic Programs Manager; Kimberly Powell, Director of Higher Edu-
cation and Healthcare Industries; Jon Saposhnik and Bob Crovella, helpful and
inspirational CUDA gurus; and last, but definitely not least, Jay White, Director

ACKNOWLEDGMENTS

xviii

of Strategic Marketing, who sustains the Seattle-area GPU-computing meet-up
group and serves as our local go-to guy.

We would also like to thank all the students who had the sense of adventure to
participate in the initial CUDA-based class offerings at the University of Wash-
ington, especially former ME graduate student Grant Marchelli (now Grant
Marchelli, Ph.D., CTO of Envitrum Inc.), who played a key role in everything from
setting up the lab to providing code samples and delivering guest lectures. A
special thank you goes to Gerald Barnett, who was so generous with his time
and expertise when it came time to edit the first draft.

Finally, a big thanks to you, the reader. The value of having something important
to share depends on having people to share it with; we appreciate your inter-
est, and we sincerely hope this book provides you with useful and productive
experiences.

xix

About the Authors

Duane Storti received a Ph.D. in theoretical and applied mechanics from Cornell
University in 1984. Since then, he has served as a professor of mechanical
engineering at the University of Washington–Seattle. Duane has 35 years of
experience in teaching and research in the areas of engineering mathematics,
dynamics and vibrations, computer-aided design, 3D printing, and applied GPU
computing. When not on campus, he can often be found in the gym, coaching
youth volleyball.

Mete Yurtoglu received a B.S. in physics and a B.S. in mechanical engineering
in 2008, and an M.S. in 2011 from Bogazici University in Istanbul, Turkey. He
is currently a graduate student at the University of Washington–Seattle pur-
suing an M.S. in applied mathematics and a Ph.D. in mechanical engineering.
His research interests focus on GPU-based methods for computer vision and
machine learning. Mete enjoys family time, playing soccer, and working out.

This page intentionally left blank

49

Chapter 4

 2D Grids and Interactive
Graphics

In this chapter, we see that the CUDA model of parallelism extends readily to
two dimensions (2D). We go through the basics of launching a 2D computational
grid and create a skeleton kernel you can use to compute a 2D grid of values for
functions of interest to you. We then specialize the kernel to create dist_2d,
an app that computes the distance from a reference point in the plane to each
member of a uniform 2D grid of points. By identifying the grid of points with pixels
in an image, we compute data for an image whose shading is based on distance
values.

Once we are generating image data, it is only natural to take advantage of
CUDA’s graphics interoperability (or graphics interop for short) capability,
which supports cooperation with standard graphics application programming
interfaces (APIs) including Direct3D [1] and OpenGL [2]. We’ll use OpenGL, and
maintaining our need-to-know approach, we’ll very quickly provide just the
necessities of OpenGL to get your results on the screen at interactive speeds.

By the end of this chapter you will have run a flashlight app that interactively
displays an image with shading based on distance from a reference point that
you can move using mouse or keyboard input and a stability app that inter-
actively displays the results of several hundred thousand numerical simulations
of the dynamics of an oscillator. This experience should get you to the point
where you are ready to start creating your own CUDA-powered interactive apps.

CHAPTER 4 2D GRIDS AND INTERACTIVE GRAPHICS

50

Launching 2D Computational Grids
Here we expand on our earlier examples that involved a 1D array (points dis-
tributed regularly along a line segment) and move on to consider applications
involving points regularly distributed on a portion of a 2D plane. While we will
encounter other applications (e.g., simulating heat conduction) that fit this
scenario, the most common (and likely most intuitive) example involves digital
image processing. To take advantage of the intuitive connection, we will use
image-processing terminology in presenting the concepts—all of which will
transfer directly to other applications.

A digital raster image consists of a collection of picture elements or pixels
arranged in a uniform 2D rectangular grid with each pixel having a quantized
intensity value. To be concrete, let’s associate the width and height directions
with the x and y coordinates, respectively, and say that our image is W pixels wide
by H pixels high. If the quantized value stored in each pixel is simply a number,
the data for an image matches exactly with the data for a matrix of size W x H.

As we move on from 1D to 2D problems in CUDA, we hope you will be pleasantly
surprised by how few adjustments need to be made. In 1D, we specified integer
values for block and grid sizes and computed an index i based on blockDim.x,
blockIdx.x, and threadIdx.x according to the formula

int i = blockIdx.x*blockDim.x + threadIdx.x;

Here we reinterpret the expression on the right-hand side of the assignment
as the specification of a new index c that keeps track of what column each pixel
belongs to. (As we traverse a row of pixels from left to right, c increases from
its minimum value 0 to its maximum value W-1.) We also introduce a second
index r to keep track of row numbers (ranging from 0 to H-1). The row index is
computed just as the column index is, but using the .y components (instead of
the .x components), so the column and row indices are computed as follows:

int c = blockIdx.x*blockDim.x + threadIdx.x;
int r = blockIdx.y*blockDim.y + threadIdx.y;

To keep data storage and transfer simple, we will continue to store and trans-
fer data in a “flat” 1D array, so we will have one more integer variable to index
into the 1D array. We will continue to call that variable i, noting that i played
this role in the 1D case, but in other places (including the CUDA Samples) you
will see variables named idx, flatIdx, and offset indexing the 1D array. We
place values in the 1D array in row major order—that is, by storing the data from

 LAUNCHING 2D COMPUTATIONAL GRIDS

51

row 0, followed by the data from row 1, and so on—so the index i in the 1D array
is now computed as follows:

int i = r*w + c;

To describe the 2D computational grid that intuitively matches up with an image
(or matrix or other regular 2D discretization), we specify block and grid sizes
using dim3 variables with two nontrivial components. Recall that an integer
within the triple chevrons of a kernel call is treated as the .x component of a
dim3 variable with a default value of 1 for the unspecified .y and .z components.
In the current 2D context, we specify nontrivial .x and .y components. The
.z component of the dim3, which here has the default value 1, will come into
play when we get to 3D grids in Chapter 7, “Interacting with 3D Data.”

Without further ado, let’s lay out the necessary syntax and get directly to parallel
computation of pixel values with a 2D grid.

SYNTAX FOR 2D KERNEL LAUNCH

The 2D kernel launch differs from the 1D launch only in terms of the execution
configuration. Computing data for an image involves W columns and H rows, and
we can organize the computation into 2D blocks with TX threads in the x-direction
and TY threads in the y-direction. (You can choose to organize your 2D grid into
1D blocks, but you will run into limits on both maximum block dimension and
total number of threads in a block. See the CUDA C Programming Guide [3] for
details.)

We specify the 2D block size with a single statement:

dim3 blockSize(TX, TY); // Equivalent to dim3 blockSize(TX, TY, 1);

and then we compute the number of blocks (bx and by) needed in each direction
exactly as in the 1D case.

int bx = (W + blockSize.x - 1)/blockSize.x ;
int by = (H + blockSize.y – 1)/blockSize.y ;

The syntax for specifying the grid size (in blocks) is

dim3 gridSize = dim3(bx, by);

With those few details in hand, we are ready to launch:

kernelName<<<gridSize, blockSize>>>(args)

CHAPTER 4 2D GRIDS AND INTERACTIVE GRAPHICS

52

DEFINING 2D KERNELS

The prototype or declaration of a kernel to be launched on a 2D grid will look
exactly as before: it starts with the qualifier __global__ followed by return
type void and a legal name, such as kernel2D, and ends with a comma-
separated list of typed arguments (which better include a pointer to a device
array d_out where the computed image data will be stored, along with the
width and height of the image and any other required inputs). The kernel2D
function begins by computing the row, column, and flat indices and testing that
the row and column indices have values corresponding to a pixel within the
image. All that is left is computing the value for the pixel.

Putting the pieces together, the structure of a typical 2D kernel is given in
Listing 4.1.

Listing 4.1 “Skeleton” listing for a kernel to be launched on a 2D grid. Replace INSERT_CODE_
HERE with your code for computing the output value.
 1 __global__
 2 void kernel2D(float *d_out, int w, int h, …)
 3 {
 4 // Compute column and row indices.
 5 const int c = blockIdx.x * blockDim.x + threadIdx.x;
 6 const int r = blockIdx.y * blockDim.y + threadIdx.y;
 7 const int i = r * w + c; // 1D flat index
 8
 9 // Check if within image bounds.
 10 if ((c >= w) || (r >= h))
 11 return;
 12
 13 d_out[i] = INSERT_CODE_HERE; // Compute/store pixel in device array.
 14 }

A Note on Capitalization of Variable Names
We need to refer to parameter values such as the width and height of an image
inside of function definitions where they are considered as input variables, but the
input value in the function call will typically be a constant value specified using
#define. We will follow the prevailing convention by using uppercase for the con-
stant value and the same name in lowercase for the input variable. For example,
the function kernel2D() in Listing 4.1 has the prototype

void kernel2D(uchar4 *d_out, int w, int h, …)

and the function call

 LAUNCHING 2D COMPUTATIONAL GRIDS

53

#define W 500
#define H 500
kernel2D<<<gridSize, blockSize>>>(d_out, W, H, …)

indicates that the input values for width and height are constants, here with value 500.

One detail worth dealing with at this point is a common data type for images.
The quantized value stored for each pixel is of type uchar4, which is a vector
type storing four unsigned character values (each of which occupies 1 byte
of storage). For practical purposes, you can think of the four components of
the uchar4 (designated as usual by suffixes .x, .y, .z, and .w) as specifying
integer values ranging from 0 to 255 for the red, green, blue, and alpha (opacity)
display channels. This format for describing pixel values in an image is often
abbreviated as RGBA.

Putting the pieces together, the structure of a typical 2D kernel for computing an
image is given in Listing 4.2.

Listing 4.2 “Skeleton” listing for computing data for an image. RED_FORMULA, GREEN_
FORMULA, and BLUE_FORMULA should be replaced with your code for computing desired val-
ues between 0 and 255 for each color channel.
 1 __global__
 2 void kernel2D(uchar4 *d_output, int w, int h, …)
 3 {
 4 // Compute column and row indices.
 5 int c = blockIdx.x*blockDim.x + threadIdx.x;
 6 int r = blockIdx.y*blockDim.y + threadIdx.y;
 7 int i = r * w + c; // 1D flat index
 8
 9 // Check if within image bounds.
 10 if ((r >= h) || (c >= w)) {
 11 return;
 12 }
 13
 14 d_output[i].x = RED_FORMULA; //Compute red
 15 d_output[i].y = GREEN_ FORMULA; //Compute green
 16 d_output[i].z = BLUE_ FORMULA; //Compute blue
 17 d_output[i].w = 255; // Fully opaque
 18 }

dist_2d

Let’s tie the general discussion of 2D grids together with our earlier exam-
ples involving distance apps by coding up an app that produces a 2D array of
distances from a reference point, and then we’ll adapt the app to produce an

CHAPTER 4 2D GRIDS AND INTERACTIVE GRAPHICS

54

array of data for an RGBA image. Listing 4.3 provides all the code for computing
distances on a 2D grid.

Listing 4.3 Computing distances on a 2D grid
 1 #define W 500
 2 #define H 500
 3 #define TX 32 // number of threads per block along x-axis
 4 #define TY 32 // number of threads per block along y-axis
 5
 6 __global__
 7 void distanceKernel(float *d_out, int w, int h, float2 pos)
 8 {
 9 const int c = blockIdx.x*blockDim.x + threadIdx.x;
 10 const int r = blockIdx.y*blockDim.y + threadIdx.y;
 11 const int i = r*w + c;
 12 if ((c >= w) || (r >= h)) return;
 13
 14 // Compute the distance and set d_out[i]
 15 d_out[i] = sqrtf((c - pos.x)*(c - pos.x) +
 16 (r - pos.y)*(r - pos.y));
 17 }
 18
 19 int main()
 20 {
 21 float *out = (float*)calloc(W*H, sizeof(float));
 22 float *d_out; // pointer for device array
 23 cudaMalloc(&d_out, W*H*sizeof(float));
 24
 25 const float2 pos = {0.0f, 0.0f}; // set reference position
 26 const dim3 blockSize(TX, TY);
 27 const int bx = (W + TX - 1)/TX;
 28 const int by = (W + TY - 1)/TY;
 29 const dim3 gridSize = dim3(bx, by);
 30
 31 distanceKernel<<<gridSize, blockSize>>>(d_out, W, H, pos);
 32
 33 // Copy results to host.
 34 cudaMemcpy(out, d_out, W*H*sizeof(float), cudaMemcpyDeviceToHost);
 35
 36 cudaFree(d_out);
 37 free(out);
 38 return 0;
 39 }

The kernel, lines 6–17, is exactly as in Listing 4.1 but with a result computed
using the Pythagorean formula to compute the distance between the location
{c, r} and a reference location pos. (Note that we have defined pos to have
type float2 so it can store both coordinates of the reference location {pos.x,
pos.y}.) The rest of the listing, lines 19–39, gives the details of main() starting
with declaration of an output array of appropriate size initialized to zero. Lines

 LAUNCHING 2D COMPUTATIONAL GRIDS

55

22–23 declare a pointer to the device array d_out and allocate the memory
with cudaMalloc(). Line 25 sets the reference position, and lines 26–29 set
the kernel launch parameters: a 2D grid of bx × by blocks each having TX × TY
threads. Line 31 launches the kernel to compute the distance values, which are
copied back to out on the host side on line 34. Lines 36–37 free the allocated
device and host memory, then main() returns zero to indicate completion.

Next we make a few minor changes to produce an app that computes an array
of RGBA values corresponding to a distance image. The full code is provided in
Listing 4.4.

Listing 4.4 Parallel computation of image data based on distance from a reference point in 2D
 1 #define W 500
 2 #define H 500
 3 #define TX 32 // number of threads per block along x-axis
 4 #define TY 32 // number of threads per block along y-axis
 5
 6 __device__
 7 unsigned char clip(int n) { return n > 255 ? 255 : (n < 0 ? 0 : n); }
 8
 9 __global__
 10 void distanceKernel(uchar4 *d_out, int w, int h, int2 pos)
 11 {
 12 const int c = blockIdx.x*blockDim.x + threadIdx.x;
 13 const int r = blockIdx.y*blockDim.y + threadIdx.y;
 14 const int i = r*w + c;
 15 if ((c >= w) || (r >= h)) return;
 16
 17 // Compute the distance (in pixel spacings)
 18 const int d = sqrtf((c - pos.x) * (c - pos.x) +
 19 (r - pos.y) * (r - pos.y));
 20 // Convert distance to intensity value on interval [0, 255]
 21 const unsigned char intensity = clip(255 - d);
 22
 23 d_out[i].x = intensity; // red channel
 24 d_out[i].y = intensity; // green channel
 25 d_out[i].z = 0; // blue channel
 26 d_out[i].z = 255; // fully opaque
 27 }
 28
 29 int main()
 30 {
 31 uchar4 *out = (uchar4*)calloc(W*H, sizeof(uchar4));
 32 uchar4 *d_out; // pointer for device array
 33 cudaMalloc(&d_out, W*H*sizeof(uchar4));
 34
 35 const int2 pos = {0, 0}; // set reference position
 36 const dim3 blockSize(TX, TY);
 37 const int bx = (W + TX - 1)/TX;
 38 const int by = (W + TY - 1)/TY;

CHAPTER 4 2D GRIDS AND INTERACTIVE GRAPHICS

56

 39 const dim3 gridSize = dim3(bx, by);
 40
 41 distanceKernel<<<gridSize, blockSize>>>(d_out, W, H, pos);
 42
 43 // Copy results to host.
 44 cudaMemcpy(out, d_out, W*H*sizeof(uchar4), cudaMemcpyDeviceToHost);
 45
 46 cudaFree(d_out);
 47 free(out);
 48 return 0;
 49 }

Here the distance is computed in pixel spacings, so the reference position, pos,
now has type int2, and the distance d has type int. The distance value is then
converted to intensity of type unsigned char, whose value is restricted to
the allowed range of 0 to 255 using the function clip(). The output arrays, out
and d_out, have the corresponding vector type uchar4. The assignments
d_out[i].x = intensity and d_out[i].y = intensity store the inten-
sity value in the red and green channels to produce a yellow distance image.
(We set the blue component to zero and the alpha to 255, corresponding to full
opacity, but you should experiment with other color specifications.)

Live Display via Graphics Interop
Now that we can construct apps that produce image data, it makes sense to
start displaying those images and exploring what CUDA’s massive parallelism
enables us to do in real time.

Real-time graphic interactivity will involve CUDA’s provision for interoperability
with a standard graphics package. We will be using OpenGL, which could be (and
is) the subject of numerous books all by itself [2,4,5], so we will take our usual
need-to-know approach. We introduce just enough OpenGL to display a single
textured rectangle and provide a few examples of code to support interactions
via keyboard and mouse with the help of the OpenGL Utility Toolkit (GLUT). The
idea is that the rectangle provides a window into the world of your app, and you
can use CUDA to compute the pixel shading values corresponding to whatever
scene you want the user to see. CUDA/OpenGL interop provides interactive
controls and displays the changing scene as a texture on the displayed rectangle
in real time (or, more accurately, at a rate comparable to the ~60Hz refresh rate
typical of modern visual display systems).

 LIVE DISPLAY VIA GRAPHICS INTEROP

57

Here we present the code for a sample app that opens a graphics window and
interactively displays an image based on distance to a reference point that
can be changed interactively using keyboard or mouse input. We call the app
flashlight because it produces a directable circle of light whose intensity
diminishes away from the center of the “spot.” Figure 4.1 shows the screenshot
of the app in its finished state.

This entire app requires a total of less than 200 lines of code, which we have
organized into three files:

• main.cpp contains the essentials of the CUDA/OpenGL set up and interop. It
is about 100 lines of code (half of the total), and while we will provide a brief
explanation of its contents, you should be able to create your own apps by
using flashlight as a template by making only minor changes to main.cpp.

• kernel.cu contains the essential CUDA code, including the clip() function
described above, the definition of the kernelLauncher() function, and the
definition of the actual kernel function (here distanceKernel()), which
must write its output to a uchar4 array.

• interactions.h defines the callback functions keyboard(), mouseMove(),
and mouseDrag() to specify how the system should respond to inputs.

Figure 4.1 Interactive spot of light in the finished application

CHAPTER 4 2D GRIDS AND INTERACTIVE GRAPHICS

58

While we will go through the entire code, the important point is that you can use
the flashlight app as a template to readily create your own apps in just a few
steps:

1. Create a new app based on flashlight by making a copy of the code
directory under Linux or by creating a new project using flashlight as a
template in Visual Studio under Windows.

2. Edit the kernel function to produce whatever data you want to display.

3. In interactions.h, edit the callback functions to specify how your app should
respond to keyboard and mouse inputs, and edit printInstructions() to
customize the instructions for user interactions.

4. Optionally, edit the #define TITLE_STRING statement in interactions.h
to customize the app name in the title bar of the graphics window.

Listings 4.5, 4.6, 4.7, and 4.8 show all the code necessary to display a distance
image on your screen using CUDA/OpenGL interop, and we will walk you
through the necessities while trying not to get hung up on too many details.

Listing 4.5 flashlight/main.cpp
 1 #include "kernel.h"
 2 #include <stdio.h>
 3 #include <stdlib.h>
 4 #ifdef _WIN32
 5 #define WINDOWS_LEAN_AND_MEAN
 6 #define NOMINMAX
 7 #include <windows.h>
 8 #endif
 9 #ifdef __APPLE__
 10 #include <GLUT/glut.h>
 11 #else
 12 #include <GL/glew.h>
 13 #include <GL/freeglut.h>
 14 #endif
 15 #include <cuda_runtime.h>
 16 #include <cuda_gl_interop.h>
 17 #include "interactions.h"
 18
 19 // texture and pixel objects
 20 GLuint pbo = 0; // OpenGL pixel buffer object
 21 GLuint tex = 0; // OpenGL texture object
 22 struct cudaGraphicsResource *cuda_pbo_resource;
 23
 24 void render() {
 25 uchar4 *d_out = 0;
 26 cudaGraphicsMapResources(1, &cuda_pbo_resource, 0);
 27 cudaGraphicsResourceGetMappedPointer((void **)&d_out, NULL,
 28 cuda_pbo_resource);

 LIVE DISPLAY VIA GRAPHICS INTEROP

59

 29 kernelLauncher(d_out, W, H, loc);
 30 cudaGraphicsUnmapResources(1, &cuda_pbo_resource, 0);
 31 }
 32
 33 void drawTexture() {
 34 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, W, H, 0, GL_RGBA,
 35 GL_UNSIGNED_BYTE, NULL);
 36 glEnable(GL_TEXTURE_2D);
 37 glBegin(GL_QUADS);
 38 glTexCoord2f(0.0f, 0.0f); glVertex2f(0, 0);
 39 glTexCoord2f(0.0f, 1.0f); glVertex2f(0, H);
 40 glTexCoord2f(1.0f, 1.0f); glVertex2f(W, H);
 41 glTexCoord2f(1.0f, 0.0f); glVertex2f(W, 0);
 42 glEnd();
 43 glDisable(GL_TEXTURE_2D);
 44 }
 45
 46 void display() {
 47 render();
 48 drawTexture();
 49 glutSwapBuffers();
 50 }
 51
 52 void initGLUT(int *argc, char **argv) {
 53 glutInit(argc, argv);
 54 glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE);
 55 glutInitWindowSize(W, H);
 56 glutCreateWindow(TITLE_STRING);
 57 #ifndef __APPLE__
 58 glewInit();
 59 #endif
 60 }
 61
 62 void initPixelBuffer() {
 63 glGenBuffers(1, &pbo);
 64 glBindBuffer(GL_PIXEL_UNPACK_BUFFER, pbo);
 65 glBufferData(GL_PIXEL_UNPACK_BUFFER, 4*W*H*sizeof(GLubyte), 0,
 66 GL_STREAM_DRAW);
 67 glGenTextures(1, &tex);
 68 glBindTexture(GL_TEXTURE_2D, tex);
 69 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
 70 cudaGraphicsGLRegisterBuffer(&cuda_pbo_resource, pbo,
 71 cudaGraphicsMapFlagsWriteDiscard);
 72 }
 73
 74 void exitfunc() {
 75 if (pbo) {
 76 cudaGraphicsUnregisterResource(cuda_pbo_resource);
 77 glDeleteBuffers(1, &pbo);
 78 glDeleteTextures(1, &tex);
 79 }
 80 }
 81
 82 int main(int argc, char** argv) {
 83 printInstructions();

CHAPTER 4 2D GRIDS AND INTERACTIVE GRAPHICS

60

 84 initGLUT(&argc, argv);
 85 gluOrtho2D(0, W, H, 0);
 86 glutKeyboardFunc(keyboard);
 87 glutSpecialFunc(handleSpecialKeypress);
 88 glutPassiveMotionFunc(mouseMove);
 89 glutMotionFunc(mouseDrag);
 90 glutDisplayFunc(display);
 91 initPixelBuffer();
 92 glutMainLoop();
 93 atexit(exitfunc);
 94 return 0;
 95 }

This is the brief, high-level overview of what is happening in main.cpp. Lines
1–17 load the header files appropriate for your operating system to access the
necessary supporting code. The rest of the explanation should start from the
bottom. Lines 82–95 define main(), which does the following things:

• Line 83 prints a few user interface instructions to the command window.

• initGLUT initializes the GLUT library and sets up the specifications for the
graphics window, including the display mode (RGBA), the buffering (double),
size (W x H), and title.

• gluOrtho2D(0, W, H, 0) establishes the viewing transform (simple
orthographic projection).

• Lines 86–89 indicate that keyboard and mouse interactions will be specified
by the functions keyboard, handleSpecialKeypress, mouseMove, and
mouseDrag (the details of which will be specified in interactions.h).

• glutDisplayFunc(display) says that what is to be shown in the window
is determined by the function display(), which is all of three lines long. On
lines 47–49, it calls render() to compute new pixel values, drawTexture()
to draw the OpenGL texture, and then swaps the display buffers.

• drawTexture() sets up a 2D OpenGL texture image, creates a single
quadrangle graphics primitive with texture coordinates (0.0f, 0.0f), (0.0f, 1.0f),
(1.0f, 1.0f), and (1.0f, 0.0f); that is, the corners of the unit square, corre-
sponding with the pixel coordinates (0, 0), (0, H), (W, H), and (W, 0).

• Double buffering is a common technique for enhancing the efficiency of
graphics programs. One buffer provides memory that can be read to “feed”
the display, while at the same time, the other buffer provides memory into
which the contents of the next frame can be written. Between frames in a
graphics sequence, the buffers swap their read/write roles.

 LIVE DISPLAY VIA GRAPHICS INTEROP

61

• initPixelBuffer(), not surprisingly, initializes the pixel buffer on
lines 62–72. The key for our purposes is the last line which “registers” the
OpenGL buffer with CUDA. This operation has some overhead, but it enables
low-overhead “mapping” that turns over control of the buffer memory to
CUDA to write output and “unmapping” that returns control of the buffer
memory to OpenGL for display. Figure 4.2 shows a summary of the interop
between CUDA and OpenGL.

• glutMainLoop(), on line 92, is where the real action happens. It repeatedly
checks for input and calls for computation of updated images via display
that calls render, which does the following:

• Maps the pixel buffer to CUDA and gets a CUDA pointer to the buffer mem-
ory so it can serve as the output device array

• Calls the wrapper function kernelLauncher that launches the kernel to
compute the pixel values for the updated image

• Unmaps the buffer so OpenGL can display the contents

• When you exit the app, atexit(exitfunc) performs the final clean up by
undoing the resource registration and deleting the OpenGL pixel buffer and
texture before zero is returned to indicate completion of main().

Figure 4.2 Illustration of alternating access to device memory that is mapped to
CUDA to store computational results and unmapped (i.e., returned to OpenGL
control) for display of those results

CHAPTER 4 2D GRIDS AND INTERACTIVE GRAPHICS

62

Of all the code in main.cpp, the only thing you need to change when you create
your own CUDA/OpenGL interop apps is the render() function, where you will
need to update the argument list for kernelLauncher().

Listing 4.6 flashlight/kernel.cu
 1 #include "kernel.h"
 2 #define TX 32
 3 #define TY 32
 4
 5 __device__
 6 unsigned char clip(int n) { return n > 255 ? 255 : (n < 0 ? 0 : n); }
 7
 8 __global__
 9 void distanceKernel(uchar4 *d_out, int w, int h, int2 pos) {
 10 const int c = blockIdx.x*blockDim.x + threadIdx.x;
 11 const int r = blockIdx.y*blockDim.y + threadIdx.y;
 12 if ((c >= w) || (r >= h)) return; // Check if within image bounds
 13 const int i = c + r*w; // 1D indexing
 14 const int dist = sqrtf((c - pos.x)*(c - pos.x) +
 15 (r - pos.y)*(r - pos.y));
 16 const unsigned char intensity = clip(255 - dist);
 17 d_out[i].x = intensity;
 18 d_out[i].y = intensity;
 19 d_out[i].z = 0;
 20 d_out[i].w = 255;
 21 }
 22
 23 void kernelLauncher(uchar4 *d_out, int w, int h, int2 pos) {
 24 const dim3 blockSize(TX, TY);
 25 const dim3 gridSize = dim3((w + TX - 1)/TX, (h + TY - 1)/TY);
 26 distanceKernel<<<gridSize, blockSize>>>(d_out, w, h, pos);
 27 }

The code from kernel.cu in Listing 4.6 should look familiar and require
little explanation at this point. The primary change is a wrapper function
kernelLauncher() that computes the grid dimensions and launches the kernel.
Note that you will not find any mention of a host output array. Computation and
display are both handled from the device, and there is no need to transfer data to
the host. (Such a transfer of large quantities of image data across the PCIe bus
could be time-consuming and greatly inhibit real-time interaction capabilities.)
You will also not find a cudaMalloc() to create space for a device array. The
render() function in main.cpp declares a pointer d_out that gets its value
from cudaGraphicsResourceGetMappedPointer() and provides the CUDA
pointer to the memory allocated for the pixel buffer.

The header file associated with the kernel is shown in Listing 4.7. In addition
to the include guard and kernel function prototype, kernel.h also contains

 LIVE DISPLAY VIA GRAPHICS INTEROP

63

forward declarations for uchar4 and int2 so that the compiler knows of their
existence before the CUDA code (which is aware of their definitions) is built or
executed.

Listing 4.7 flashlight/kernel.h
 1 #ifndef KERNEL_H
 2 #define KERNEL_H
 3
 4 struct uchar4;
 5 struct int2;
 6
 7 void kernelLauncher(uchar4 *d_out, int w, int h, int2 pos);
 8
 9 #endif

Listing 4.8 flashlight/interactions.h that specifies callback functions controlling
interactive behavior of the flashlight app
 1 #ifndef INTERACTIONS_H
 2 #define INTERACTIONS_H
 3 #define W 600
 4 #define H 600
 5 #define DELTA 5 // pixel increment for arrow keys
 6 #define TITLE_STRING "flashlight: distance image display app"
 7 int2 loc = {W/2, H/2};
 8 bool dragMode = false; // mouse tracking mode
 9
 10 void keyboard(unsigned char key, int x, int y) {
 11 if (key == 'a') dragMode = !dragMode; // toggle tracking mode
 12 if (key == 27) exit(0);
 13 glutPostRedisplay();
 14 }
 15
 16 void mouseMove(int x, int y) {
 17 if (dragMode) return;
 18 loc.x = x;
 19 loc.y = y;
 20 glutPostRedisplay();
 21 }
 22
 23 void mouseDrag(int x, int y) {
 24 if (!dragMode) return;
 25 loc.x = x;
 26 loc.y = y;
 27 glutPostRedisplay();
 28 }
 29
 30 void handleSpecialKeypress(int key, int x, int y) {
 31 if (key == GLUT_KEY_LEFT) loc.x -= DELTA;
 32 if (key == GLUT_KEY_RIGHT) loc.x += DELTA;
 33 if (key == GLUT_KEY_UP) loc.y -= DELTA;
 34 if (key == GLUT_KEY_DOWN) loc.y += DELTA;

CHAPTER 4 2D GRIDS AND INTERACTIVE GRAPHICS

64

 35 glutPostRedisplay();
 36 }
 37
 38 void printInstructions() {
 39 printf("flashlight interactions\n");
 40 printf("a: toggle mouse tracking mode\n");
 41 printf("arrow keys: move ref location\n");
 42 printf("esc: close graphics window\n");
 43 }
 44
 45 #endif

The stated goal of the flashlight app is to display an image corresponding to
the distance to a reference point that can be moved interactively, and we are now
ready to define and implement the interactions. The code for interactions.h
shown in Listing 4.8 allows the user to move the reference point (i.e., the center
of the flashlight beam) by moving the mouse or pressing the arrow keys. Pressing
a toggles between tracking mouse motions and tracking mouse drags (with the
mouse button pressed), and the esc key closes the graphics window. Here’s a
quick description of what the code does and how those interactions work:

• Lines 3–6 set the image dimensions, the text displayed in the title bar, and
how far (in pixels) the reference point moves when an arrow key is pressed.

• Line 7 sets the initial reference location at {W/2, H/2}, the center of the image.

• Line 8 declares a Boolean variable dragMode that is initialized to false. We
use dragMode to toggle back and forth between tracking mouse motions and
“click-drag” motions.

• Lines 10–14 specify the defined interactions with the keyboard:

• Pressing the a key toggles dragMode to switch the mouse tracking mode.

• The ASCII code 27 corresponds to the Esc key. Pressing Esc closes the
graphics window.

• glutPostRedisplay() is called at the end of each callback function telling
to compute a new image for display (by calling display() in main.cpp)
based on the interactive input.

• Lines 16–21 specify the response to a mouse movement. When dragMode is
toggled, return ensures that no action is taken. Otherwise, the components
of the reference location are set to be equal to the x and y coordinates of the
mouse before computing and displaying an updated image
(via glutPostRedisplay()).

 LIVE DISPLAY VIA GRAPHICS INTEROP

65

• Lines 23–28 similarly specify the response to a “click-drag.” When dragMode
is false, return ensures that no action is taken. Otherwise, the reference
location is reset to the last location of the mouse while the mouse was
clicked.

• Lines 30–36 specify the response to special keys with defined actions. (Note
that standard keyboard interactions are handled based on ASCII key codes [6],
so special keys like arrow keys and function keys that do not generate stan-
dard ASCII codes need to be handled separately.) The flashlight app is set
up so that depressing the arrow keys moves the reference location DELTA
pixels in the desired direction.

• The printInstructions() function on lines 38–43 consists of print state-
ments that provide user interaction instructions via the console.

While all the code and explanation for the flashlight app took about nine
pages, let’s pause to put things in perspective. While we presented numbered
listings totaling about 200 lines, if we were less concerned about readability, the
entire code could be written in many fewer lines, so there is not a lot of code to
digest. Perhaps more importantly, over half of those lines reside in main.cpp,
which you should not really need to change at all to create your own apps
other than to alter the list of arguments for the kernelLauncher() function
or to customize the information displayed in the title bar. If you start with the
 flashlight app as a template, you should be able to (and are heartily encour-
aged to) harness the power of CUDA to create your own apps with interactive
graphics by replacing the kernel function with one of your own design and by
revising the collection of user interactions implemented in interactions.h.

Finally, the Makefile for building the app in Linux is provided in Listing 4.9.

Listing 4.9 flashlight/Makefile
 1 UNAME_S := $(shell uname)
 2
 3 ifeq ($(UNAME_S), Darwin)
 4 LDFLAGS = -Xlinker -framework,OpenGL -Xlinker -framework,GLUT
 5 else
 6 LDFLAGS += -L/usr/local/cuda/samples/common/lib/linux/x86_64
 7 LDFLAGS += -lglut -lGL -lGLU -lGLEW
 8 endif
 9
 10 NVCC = /usr/local/cuda/bin/nvcc
 11 NVCC_FLAGS = -g -G -Xcompiler "-Wall -Wno-deprecated-declarations"
 12
 13 all: main.exe
 14

CHAPTER 4 2D GRIDS AND INTERACTIVE GRAPHICS

66

 15 main.exe: main.o kernel.o
 16 $(NVCC) $^ -o $@ $(LDFLAGS)
 17
 18 main.o: main.cpp kernel.h interactions.h
 19 $(NVCC) $(NVCC_FLAGS) -c $< -o $@
 20
 21 kernel.o: kernel.cu kernel.h
 22 $(NVCC) $(NVCC_FLAGS) -c $< -o $@

Windows users will need to change one build customization and include
two pairs of library files: the OpenGL Utility Toolkit (GLUT) and the OpenGL
 Extension Wrangler (GLEW). To keep things simple and ensure consistency of
the library version, we find it convenient to simply make copies of the library files
(which can be found by searching within the CUDA Samples directory for the
filenames freeglut.dll, freeglut.lib, glew64.dll, and glew64.lib),
save them to the project directory, and then add them to the project with
PROJECT ⇒ Add Existing Item.

The build customization is specified using the Project Properties pages: Right-
click on flashlight in the Solution Explorer pane, then select Properties ⇒
Configuration Properties ⇒ C/C++ ⇒ General ⇒ Additional
Include Directories and edit the list to include the CUDA Samples’
common\inc directory. Its default install location is C:\ProgramData\
NVIDIA Corporation\CUDA Samples\v7.5\common\inc.

Application: Stability
To drive home the idea of using the flashlight app as a template for creat-
ing more interesting and useful apps, let’s do exactly that. Here we build on
 flashlight to create an app that analyzes the stability of a linear oscillator, and
then we extend the app to handle general single degree of freedom (1DoF) sys-
tems, including the van der Pol oscillator, which has more interesting behavior.

The linear oscillator arises from models of a mechanical mass-spring-damper
system, an electrical RLC circuit, and the behavior of just about any 1DoF system
in the vicinity of an equilibrium point. The mathematical model consists of a
single second-order ordinary differential equation (ODE) that can be written in
its simplest form (with suitable choice of time unit) as x″ + 2bx′ + x = 0, where x is
the displacement from the equilibrium position, b is the damping constant, and
the primes indicate time derivatives. To put things in a handy form for finding
solutions, we convert to a system of two first-order ODEs by introducing the

 APPLICATION: STABILITY

67

velocity y as a new variable and writing the first-order ODEs that give the rate of
change of x and y:

′x = y
′y = − x −2by = f x, y , t, …()

As a bit of foreshadowing, everything we do from here generalizes to a wide
variety of 1DoF oscillators by just plugging other expressions in for f(x, y, t, …)
on the right-hand side of the y-equation. While we can write analytical solutions
for the linear oscillator, here we focus on numerical solutions using finite difference
methods that apply to the more general case. Finite difference methods com-
pute values at discrete multiples of the time step dt (so we introduce tk = k * dt,
xk = x(tk), and yk = y(tk) as the relevant variables) and replace exact derivatives
by difference approximations; that is, x′ → (xk+1 – xk) / dt, y′ → (yk+1 – yk) / dt. Here
we apply the simplest finite difference approach, the explicit Euler method, by
substituting the finite difference expressions for the derivatives and solving for
the new values at the end of the time step, xk+1 and yk+1, in terms of the previous
values at the beginning of a time step, xk and yk, to obtain:

x
k+1

= x
k
+dt*y

k

y
k+1

= y
k
+dt* −x

k
−2by

k()
We can then choose an initial state {xo , yo} and compute the state of the system at
successive time steps.

We’ve just described a method for computing a solution (a sequence of states)
arising from a single initial state, and the solution method is completely serial:
Entries in the sequence of states are computed one after another.

However, stability depends not on the solution for one initial state but on the
solutions for all initial states. For a stable equilibrium, all nearby initial states
produce solutions that approach (or at least don’t get further from) the equilibrium.
Finding a solution that grows away from the equilibrium indicates instability. For
more information on dynamics and stability, see [7,8].

It is this collective-behavior aspect that makes stability testing such a good can-
didate for parallelization: By launching a computational grid with initial states
densely sampling the neighborhood of the equilibrium, we can test the solutions
arising from the surrounding initial states. We’ll see that we can compute hun-
dreds of thousands of solutions in parallel and, with CUDA/OpenGL interop, see
and interact with the results in real time.

CHAPTER 4 2D GRIDS AND INTERACTIVE GRAPHICS

68

In particular, we’ll choose a grid of initial states that regularly sample a rect-
angle centered on the equilibrium. We’ll compute the corresponding solutions
and assign shading values based on the fractional change in distance, dist_r
(for distance ratio) from the equilibrium during the simulation. To display the
results, we’ll assign each pixel a red channel value proportional to the distance
ratio (and clipped to [0, 255]) and a blue channel value proportional to the
inverse distance ratio (and clipped). Initial states producing solutions that are
attracted to the equilibrium (and suggest stability) are dominated by blue, while
initial states that produce solutions being repelled from the equilibrium are
dominated by red, and the attracting/repelling transition is indicated by equal
parts of blue and red; that is, purple.

Color Adjustment to Enhance Grayscale Contrast
Since it is difficult to see the difference between red (R) and blue (B) when viewing
figures converted to grayscale, the figures included here use the green (G) channel
to enhance contrast and brightness according to the formula G = 0.3 + (R –B) / 2.
Full color images produced by the stability app are available at
www.cudaforengineers.com.

The result shown in the graphics window will then consist of the equilibrium (at
the intersection of the horizontal x-axis and the vertical y-axis shown using the
green channel) on a field of red, blue, or purple pixels. Figure 4.3 previews a
result from the stability application with both attracting and repelling regions.

Figure 4.3 Stability map with shading adjusted to show a bright central repelling
region and surrounding darker attracting region

http://www.cudaforengineers.com

 APPLICATION: STABILITY

69

We now have a plan for producing a stability image for a single system, but
we will also introduce interactions so we can observe how the stability image
changes for different parameter values or for different systems.

With the plan for the kernel and the interactions in mind, we are ready to look at
the code. As promised, the major changes from the flashlight app involve a
new kernel function (and a few supporting functions), as shown in Listing 4.10,
and new interactivity specifications, as shown in Listing 4.11.

Listing 4.10 stability/kernel.cu

 1 #include "kernel.h"
 2 #define TX 32
 3 #define TY 32
 4 #define LEN 5.f
 5 #define TIME_STEP 0.005f
 6 #define FINAL_TIME 10.f
 7
 8 // scale coordinates onto [-LEN, LEN]
 9 __device__
 10 float scale(int i, int w) { return 2*LEN*(((1.f*i)/w) - 0.5f); }
 11
 12 // function for right-hand side of y-equation
 13 __device__
 14 float f(float x, float y, float param, float sys) {
 15 if (sys == 1) return x - 2*param*y; // negative stiffness
 16 if (sys == 2) return -x + param*(1 - x*x)*y; //van der Pol
 17 else return -x - 2*param*y;
 18 }
 19
 20 // explicit Euler solver
 21 __device__
 22 float2 euler(float x, float y, float dt, float tFinal,
 23 float param, float sys) {
 24 float dx = 0.f, dy = 0.f;
 25 for (float t = 0; t < tFinal; t += dt) {
 26 dx = dt*y;
 27 dy = dt*f(x, y, param, sys);
 28 x += dx;
 29 y += dy;
 30 }
 31 return make_float2(x, y);
 32 }
 33
 34 __device__
 35 unsigned char clip(float x){ return x > 255 ? 255 : (x < 0 ? 0 : x); }
 36
 37 // kernel function to compute decay and shading
 38 __global__
 39 void stabImageKernel(uchar4 *d_out, int w, int h, float p, int s) {
 40 const int c = blockIdx.x*blockDim.x + threadIdx.x;
 41 const int r = blockIdx.y*blockDim.y + threadIdx.y;
 42 if ((c >= w) || (r >= h)) return; // Check if within image bounds

CHAPTER 4 2D GRIDS AND INTERACTIVE GRAPHICS

70

 43 const int i = c + r*w; // 1D indexing
 44 const float x0 = scale(c, w);
 45 const float y0 = scale(r, h);
 46 const float dist_0 = sqrt(x0*x0 + y0*y0);
 47 const float2 pos = euler(x0, y0, TIME_STEP, FINAL_TIME, p, s);
 48 const float dist_f = sqrt(pos.x*pos.x + pos.y*pos.y);
 49 // assign colors based on distance from origin
 50 const float dist_r = dist_f/dist_0;
 51 d_out[i].x = clip(dist_r*255); // red ~ growth
 52 d_out[i].y = ((c == w/2) || (r == h/2)) ? 255 : 0; // axes
 53 d_out[i].z = clip((1/dist_r)*255); // blue ~ 1/growth
 54 d_out[i].w = 255;
 55 }
 56
 57 void kernelLauncher(uchar4 *d_out, int w, int h, float p, int s) {
 58 const dim3 blockSize(TX, TY);
 59 const dim3 gridSize = dim3((w + TX - 1)/TX, (h + TY - 1)/TY);
 60 stabImageKernel<<<gridSize, blockSize>>>(d_out, w, h, p, s);
 61 }

Here is a brief description of the code in kernel.cu. Lines 1–6 include kernel.h
and define constant values for thread counts, the spatial scale factor, and the time
step and time interval for the simulation. Lines 8–35 define new device functions
that will be called by the kernel:

• scale() scales the pixel values onto the coordinate range [-LEN, LEN].

• f() gives the rate of change of the velocity. If you are interested in studying
other 1DoF oscillators, you can edit this to correspond to your system of interest.
In the sample code, three different versions are included corresponding to
different values of the variable sys.

• The default version with sys = 0 is the damped linear oscillator discussed
above.

• Setting sys = 1 corresponds to a linear oscillator with negative effective
stiffness (which may seem odd at first, but that is exactly the case near the
inverted position of a pendulum).

• Setting sys = 2 corresponds to a personal favorite, the van der Pol oscil-
lator, which has a nonlinear damping term.

• euler() performs the simulation for a given initial state and returns a float2
value corresponding to the location of the trajectory at the end of the simulation
interval. (Note that the float2 type allows us to bundle the position and
velocity together into a single entity. The alternative approach, passing a
pointer to memory allocated to store multiple values as we do to handle
larger sets of output from kernel functions, is not needed in this case.)

 APPLICATION: STABILITY

71

Lines 34–35 define the same clip() function that we used in the flashlight
app, and the definition of the new kernel, stabImageKernel(), starts on line 38.
Note that arguments have been added for the damping parameter value, p, and
the system specifier, s. The index computation and bounds checking in lines
40–43 is exactly as in distanceKernel() from the flashlight app. On
lines 44–45 we introduce {x0, y0} as the scaled float coordinate values
(which range from –LEN to LEN) corresponding to the pixel location and compute
the initial distance, dist_0, from the equilibrium point at the origin. Line 47
calls euler() to perform the simulation with fixed time increment TIME_STEP
over an interval of duration FINAL_TIME and return pos, the state the sim-
ulated trajectory has reached at the end of the simulation. Line 50 compares
the final distance from the origin and to the initial distance. Lines 51–54 assign
shading values based on the distance comparison with blue indicating decay
toward equilibrium (a.k.a. a vote in favor of stability) and red indicating growth
away from equilibrium (which vetoes other votes for stability). Line 52 uses the
green channel to show the horizontal x-axis and the vertical y-axis which intersect
at the equilibrium point.

Lines 57–61 define the revised wrapper function kernelLauncher()with the
correct list of arguments and name of the kernel to be launched.

Listing 4.11 stability/interactions.h

 1 #ifndef INTERACTIONS_H
 2 #define INTERACTIONS_H
 3 #define W 600
 4 #define H 600
 5 #define DELTA_P 0.1f
 6 #define TITLE_STRING "Stability"
 7 int sys = 0;
 8 float param = 0.1f;
 9 void keyboard(unsigned char key, int x, int y) {
 10 if (key == 27) exit(0);
 11 if (key == '0') sys = 0;
 12 if (key == '1') sys = 1;
 13 if (key == '2') sys = 2;
 14 glutPostRedisplay();
 15 }
 16
 17 void handleSpecialKeypress(int key, int x, int y) {
 18 if (key == GLUT_KEY_DOWN) param -= DELTA_P;
 19 if (key == GLUT_KEY_UP) param += DELTA_P;
 20 glutPostRedisplay();
 21 }
 22
 23 // no mouse interactions implemented for this app
 24 void mouseMove(int x, int y) { return; }
 25 void mouseDrag(int x, int y) { return; }
 26

CHAPTER 4 2D GRIDS AND INTERACTIVE GRAPHICS

72

 27 void printInstructions() {
 28 printf("Stability visualizer\n");
 29 printf("Use number keys to select system:\n");
 30 printf("\t0: linear oscillator: positive stiffness\n");
 31 printf("\t1: linear oscillator: negative stiffness\n");
 32 printf("\t2: van der Pol oscillator: nonlinear damping\n");
 33 printf("up/down arrow keys adjust parameter value\n\n");
 34 printf("Choose the van der Pol (sys=2)\n");
 35 printf("Keep up arrow key depressed and watch the show.\n");
 36 }
 37
 38 #endif

The description of the alterations to interactions.h, as shown in Listing 4.11,
is also straightforward. To the #define statements that set the width W and
height H of the image, we add DELTA_P for the size of parameter value incre-
ments. Lines 7–8 initialize variables for the system identifier sys and the
parameter value param, which is for adjusting the damping value.

There are a few keyboard interactions: Pressing Esc exits the app; pressing
number key 0, 1, or 2 selects the system to simulate; and the up arrow and down
arrow keys decrease or increase the damping parameter value by DELTA_P.
There are no planned mouse interactions, so mouseMove() and mouseDrag()
simply return without doing anything.

Finally, there are a couple details to take care of in other files:

• kernel.h contains the prototype for kernelLauncher(), so the first line of
the function definition from kernel.cu should be copied and pasted (with a
colon terminator) in place of the old prototype in flashlight/kernel.h.

• A couple small changes are also needed in main.cpp:

• The argument list for the kernelLauncher() call in render() has
changed, and that call needs to be changed to match the syntax of the
revised kernel.

• render() is also an appropriate place for specifying information to be
displayed in the title bar of the graphics window. For example, the sample
code displays an application name (“Stability”) followed by the values of
param and sys. Listing 4.12 shows the updated version of render() with
the title bar information and updated kernel launch call.

 APPLICATION: STABILITY

73

Listing 4.12 Updated render() function for stability/main.cpp
 1 void render() {
 2 uchar4 *d_out = 0;
 3 cudaGraphicsMapResources(1, &cuda_pbo_resource, 0);
 4 cudaGraphicsResourceGetMappedPointer((void **)&d_out, NULL,
 5 cuda_pbo_resource);
 6 kernelLauncher(d_out, W, H, param, sys);
 7 cudaGraphicsUnmapResources(1, &cuda_pbo_resource, 0);
 8 // update contents of the title bar
 9 char title[64];
 10 sprintf(title, "Stability: param = %.1f, sys = %d", param, sys);
 11 glutSetWindowTitle(title);
 12 }

RUNNING THE STABILITY VISUALIZER

Now that we’ve toured the relevant code, it is time to test out the app. In
Linux, the Makefile for building this project is the same as the Makefile for the
 flashlight app that was provided in Listing 4.9. In Visual Studio, the included
library files and the project settings are the same as described in flashlight.
When you build and run the application, two windows should open: the usual
command window showing a brief summary of supported user inputs and a
graphics window showing the stability results. The default settings specify the
linear oscillator with positive damping, which you can verify from the title bar
that displays Stability: param = 0.1, sys = 0, as shown in Figure 4.4(a).
Since all solutions of an unforced, damped linear oscillator are attracted toward
the equilibrium, the graphics window should show the coordinate axes on a dark
field, indicating stability. Next you might test the down arrow key. A single press
reduces the damping value from 0.1 to 0.0 (which you should be able to verify
in the title bar), and you should see the field changes from dark to moderately
bright, as shown in Figure 4.4(b). The linear oscillator with zero damping is neu-
trally stable (with sinusoidal oscillations that remain near, but do not approach,
the equilibrium). The explicit Euler ODE solver happens to produce small errors
that systematically favor repulsion from the origin, but the color scheme cor-
rectly indicates that all initial states lead to solutions that roughly maintain their
distance from the equilibrium. Another press of the down arrow key changes
the damping parameter value to −0.1, and the bright field shown in Figure 4.4(c)
legitimately indicates instability.

Now press the 1 key to set sys = 1 corresponding to a system with negative
effective stiffness, and increase the damping value. You should now see the axes

CHAPTER 4 2D GRIDS AND INTERACTIVE GRAPHICS

74

on a bright field with a dark sector (and moderately bright transition regions), as
shown in Figure 4.5. In this case, some solutions are approaching the equilib-
rium, but almost all initial conditions lead to solutions that grow away from the
equilibrium, which is unstable.

 (a) (b)

(c)

Figure 4.4 Stability visualization for the linear oscillator with different damping
parameter values. (a) For param = 0.1, the dark field indicates solutions
attracted to a stable equilibrium. (b) For param = 0.0, the moderately bright
field indicates neutral stability. (c) For param = -0.1, the bright field indicates
solutions repelled from an unstable equilibrium.

 APPLICATION: STABILITY

75

Setting the damping param = 0.0 and sys = 2 brings us to the final case
in the example, the van der Pol oscillator. With param = 0.0, this system is
identical to the undamped linear oscillator, so we again see the equilibrium in
a moderately bright field. What happens when you press the up arrow key to
make the damping positive? The equilibrium is surrounded by a bright region, so
nearby initial states produce solutions that are repelled and the equilibrium is
unstable. However, the outer region is dark, so initial states further out produce
solutions that are attracted inwards. There is no other equilibrium point to go
to, so where do all these solutions end up? It turns out that there is a closed,
attracting loop near the shading transition corresponding to a stable period
motion or “limit cycle” (Figure 4.6).

Note that the results of this type of numerical stability analysis should be
considered as advisory. The ODE solver is approximate, and we only test a few
hundred thousand initial states, so it is highly likely but not guaranteed that we
did not miss something.

Before we are done, you might want to press and hold the up arrow key and
watch the hundreds of thousands of pixels in the stability visualization change in
real time. This is something you are not likely to be able to do without the power
of parallel computing.

Figure 4.5 Phase plane of a linear oscillator with negative stiffness. A dark
sector appears, but the bright field indicates growth away from an unstable
equilibrium.

CHAPTER 4 2D GRIDS AND INTERACTIVE GRAPHICS

76

Summary
In this chapter, we covered the essentials of defining and launching kernels
on 2D computational grids. We presented and explained sample code, the
flashlight app that takes advantage of CUDA/OpenGL interop to implement
real-time graphical display and interaction with the results from 2D compu-
tational grids. Finally, we showed how to use flashlight as a template and
perform modifications to make it applicable to a real engineering problem,
numerical exploration of dynamic stability.

Suggested Projects
1. Modify the flashlight app to be a version of the “hotter/colder” game.

Provide an interface for player A to pick a target pixel. Player B then seeks
out the target pixel based on the color of the spot, which turns blue (or red)
as it is moved farther from (or closer to) the target.

Figure 4.6 Phase plane of the van der Pol oscillator. The bright central region
indicates an unstable equilibrium. The dark outer region indicates solutions
decaying inwards. These results are consistent with the existence of a stable
periodic “limit cycle” trajectory in the moderately bright region.

 REFERENCES

77

2. Find another 1DoF system of interest and modify the stability app to study
the nature of its equilibrium.

3. The explicit Euler method is perhaps the simplest and least reliable method
for numerical solution of ODEs. Enhance the stability app by implement-
ing a more sophisticated ODE solver. A Runge-Kutta method would be a good
next step into a major field.

4. The van der Pol limit cycle turns out to be nearly circular for param = 0.1.
Modify the stability app so the shading depends on the difference
between the final distance and a new parameter rad. Implement interactive
control of rad, and run the modified app to identify the size of the limit cycle.

References
 [1] Microsoft Window s Dev Center. “Direct3D,” 2015, https://msdn.microsoft.com/

en-us/library/windows/desktop/hh309466(v=vs.85).aspx.

 [2] Mason Woo, Jackie Neider, Tom Davis, and Dave Shreiner, OpenGL Programming
Guide: The Official Guide to Learning OpenGL, Version 1.2, Third Edition. (Reading,
MA: Addison-Wesley, 1999).

 [3] NVIDIA Corporation . “CUDA C Programming Guide,” NVIDIA Developer Zone,
CUDA Toolkit Documentation, 2015, http://docs.nvidia.com/cuda/cuda-c-
programming-guide/index.html#abstract.

 [4] Graham Sellers, Rich ard S. Wright, Jr., and Nicholas Haemel, OpenGL Superbible:
Comprehensive Tutorial and Reference, Seventh Edition. (Boston, MA: Addison-
Wesley, 2016).

 [5] Randi J. Rost et al. , OpenGL Shading Language, Third Edition. (Boston, MA:
 Addison-Wesley, 2010).

 [6] cppreference.com, “A SCII Chart,” 2015, http://en.cppreference.com/w/cpp/
language/ascii.

 [7] Richard H. Rand. Lectur e Notes on Nonlinear Vibrations, Cornell University
eCommons, May 2012, http://hdl.handle.net/1813/28989.

 [8] Steven H. Strogatz, Non linear Dynamics and Chaos, Second Edition. (Cambridge,
MA: Westview Press, 2014).

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#abstract
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#abstract
http://en.cppreference.com/w/cpp/language/ascii
http://hdl.handle.net/1813/28989
https://msdn.microsoft.com/en-us/library/windows/desktop/hh309466(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/hh309466(v=vs.85).aspx
http://en.cppreference.com/w/cpp/language/ascii

This page intentionally left blank

313

Symbols
/ (slash), syntax of C language, 248
_ (underscore), variable names and, 249
(number or hash sign), syntax of C language, 247
() (parentheses), syntax of C language, 247
* (asterisk)

as dereference operator, 273
syntax of C language, 248

[] (brackets), syntax of C language, 247
{ } (braces), syntax of C language, 247
<<, >> (double angle brackets or chevrons), bit

shift operators, 186
<<<, >>> (triple angle brackets or chevrons), in

syntax for parallel computation, 28

Numbers
1D grids, computing derivatives on, 81–82
1DoF, 66
2D data

locating centroid of state map. See
centroid_2d app

solving Laplace’s equation in 2D (heat_2d),
88–92

2D grids
defining 2D kernel, 52–53
dist_2d app, 53–56
launching, 50–51
moving to 3D grids, 144
overview of, 49
syntax for 2D kernel launch, 51

3D data
creating vis_3d app, 156
generating relocatable device code, 167–170
launching 3D computational grids, 144–145
listing for dist_3d/kernel.cu, 145
listing for vis_3d/device_funcs.cu, 164–167

listing for vis_3d/device_funcs.cuh, 164
listing for vis_3d/interactions.h,

159–161
listing for vis_3d/kernel.cu, 162–163
listing for vis_3d/kernel.h, 161
listing for vis_3d/main.cpp, 157–259
listing for vis_3d/Makefile, 168–169
overview of, 141–143
raycasting, 154–156
slice visualization of, 149–153
viewing and interacting with, 146–149
volume rendering, 153

3D grids
launching computational grids, 144–145
steps in, 142
uses of, 141

5-point stencil, 91

A
AABBs (axis-aligned bounding boxes), in ray-box

intersection testing, 149
About CUDA, CUDA resources, 211
About This Mac, checking for NVIDIA GPU,

222–223
Acceleration, estimating, 17–19
Actions/activities, Nsight Visual Studio profiling,

289–290
Algebra, using cuSolver and cuBLAS, 201–207
ALU (Arithmetic logic unit), in CUDA model for

parallelization, 26
Angle brackets or chevrons

bit shift operators, 186
in syntax for parallel computation, 28

APIs. See Application programming interfaces
(APIs)

Apple computers. See Mac OS X systems

Index

INDEX

314

Application programming interfaces (APIs)
creating CUDA apps, 25
functions of CUDA Runtime API, 30, 292
passing Thrust device vector as argument to

CUDA API function or kernel, 189–190
standard graphics, 49

Apps. See also by individual types
building in C programming, 251
building in Linux, 258–262
building in Windows, 252–258
estimating acceleration, 17–19
running, 13
running serial, 19–22
running under Linux systems, 17
running under Windows systems, 14–17
use in book structure, 4

Arguments
passing by value in C, 246
passing CUDA device array as argument to

Thrust function, 189–190
passing Thrust device vector as argument to

CUDA API function or kernel, 190
typed arguments, 250

Arithmetic logic unit (ALU), in CUDA model for
parallelization, 26

Arithmetic operations
compound or augmented assignment, 250
in syntax of C language, 248
variable names and, 249

ArrayFire library, 207
Arrays

coefficient array. See Stencils
comparing serial and parallel computing, 25
costs and benefits of standard workflow, 42
declarations, 262–263
parallelizing dist_v2, 38–42
passing CUDA device array as argument to

Thrust function, 189–190
producing 2D array of distances from

reference point, 53–56
reduction, 121
running serial apps, 19–22
shared. See Shared arrays
unified memory and managed arrays, 43–47
using Thrust functions with, 178

Assignments
array declarations and, 263

in C programming, 248–250
compound or augmented, 250

Asterisk (*)
as dereference operator, 273
syntax of C language, 248

Asynchronous operations, execution timing and,
282

Atomic functions
available in CUDA, 129
dealing with race conditions, 128–129
specifying value of ATOMIC set, 124
use in centroid_2d app, 130

Axis-aligned bounding boxes (AABBs), in ray-box
intersection testing, 149

B
Basic Linear Algebra Subprograms (BLAS), 201
Bit shift operators (<<, >>), 186
BLAS (Basic Linear Algebra Subprograms), 201
blockDim, 29
blockIdx, 29
Blocks

about, 26
in 3D computational grid, 146
choosing execution configuration, 37
execution configuration for parallelizing

dist_v2, 41
execution configuration of kernel launch, 28
launching kernel and, 27
organizing threads by, 26
sharing information between, 79
syntax for 2D kernel launch, 51

Books, CUDA resources, 214–218
Bottlenecks, thread, 79
Bounding boxes, terminating loops, 155
Bounds checking, in 3D computational grid, 146
Braces ({ }), syntax of C language, 247
Brackets ([]), syntax of C language, 247
break statements, types of control statements

in C, 267
Breakpoints

setting for debugging, 306–308
setting when building apps, 256

Buffering
double buffering for efficiency of graphics

applications, 60
pixel buffers, 61

 INDEX

315

Builds
building apps in Linux, 258–262
building apps in Windows, 252–258
files in build process, 259–260

C
C programming

array declarations, 262–263
basics, 246–248
building apps (create, compile, run, debug),

251
building apps in Linux, 258–262
building apps in Windows, 252–258
characterizations of, 245–246
control statements, 263, 267
data types, declarations, and assignments,

248–250
defining functions, 250–251
dist_v1 sample, 267–270
dist_v2 sample, 271–275
dist_v2 sample with dynamic memory,

275–277
foundations for working with CUDA, 3
if statements, 265–266
invoking NVIDIA C Compiler, 37
for loops, 264–265
pointer arithmetic, 273
samples, 267
syntax, 247

C++
benefits of unified memory, 44
CImg toolkit for, 102–103
CUDA development environment based on, 1
lambda functions, 183
syntax, 176
templates, 175

Cache, requirements for minimizing latency, 27
Callback functions

defined by interactions.h file, 57
keyboard and mouse, 95
vis_3d app, 159–161

calloc, creating host array out, 146
Case sensitivity

in C language, 249
capitalization of variable names, 52

Central processing units (CPUs), GPUs compared
with, 26–27

centroid_2d app
centroid_2d/kernel.cu with Thrust,

188–189
computing integral properties, 130–131
listing for centroid_2d/kernel.cu, 131–133
listing for centroid_2d/kernel.h, 135
listing for centroid_2d/main.cpp, 135–136
listing for centroid_2d/Makefile, 136
output image with axes locating centroid,

136–137
Chevrons or angle brackets

bit shift operators, 186
in syntax for parallel computation, 28

CImg toolkit
for C++, 102–104
importing/exporting data from image files, 174

clip(), utility functions of heat2d app, 96
clock(), timing methods in C, 280
Code

code libraries, 122
generating relocatable device code, 167–170
libraries. See Libraries
placing Thrust code in .cu file, 177
used in book, 8–9

Color, image processing using NPP, 198–199
Command-line interface

checking for NVIDIA GPU in Linux, 223
console window, 15–17

Compilation, splitting kernel code into multiple
files requiring separate compilation,
167–170

Compiled languages, C as, 245
Compiler

invoking from IDE, 245
invoking NVIDIA C Compiler, 37

Computational grids
2D. See 2D grids
3D. See 3D grids

Compute capability, 223–224
Computed tomography (CT), uses of 3D data

grids, 141
Computer graphics, impact on surface

appearance, 156
Computing integral properties, 130–131. See also

centroid_2d app
Console window, accessing command-line

interface, 15–17

INDEX

316

Containers, in C++ standard library, 175–176
continue statements, types of control

statements in C, 267
Control panel, checking for NVIDIA GPU in

Windows, 221–222
Control statements, in C

if statements, 265–266
for loops, 264–265
other options, 267
overview of, 263

Conventions, used in book, 8
CPUs (central processing units), GPUs compared

with, 26–27
CT (computed tomography), uses of 3D data

grids, 141
.cu file, placing Thrust code in, 177
cuBLAS library, for linear algebra, 201–207
CUDA Deep Neural Network (CuDNN) library, 207
CUDA ecosystem

books, 214–218
CUDA languages and libraries, 217
CUDA samples, 217
CUDA Zone website, 211–212
online courses, 213–214
primary web sources, 212–213

CUDA events, 282–284
CUDA Random Number Generation (CuRAND)

library, 190–192
CUDA Runtime API, 292
CUDA Toolkit

about, 1
install under Linux, 240
install under OS X, 239
install under Windows, 230

cudaDeviceSynchronize(), 30
cudaFree(), 30
cuda-gdb commands

for debugging, 258, 261
debugging Linux systems, 305–308

cudaMalloc(), allocating device memory, 36
cudaMallocManaged(), allocating memory for

managed arrays, 44
CUDA-MEMCHECK tool, error handling with,

308–309
cudaMemcpy(), transferring data between host

and device, 44
cuDNN (CUDA Deep Neural Network) library, 207

cuRAND (CUDA Random Number Generation)
library, 190–192

cuSolver library, for linear algebra, 201–207

D
Data types

C programming, 248–250
CUDA supported, 30
for images, 53
typed arguments and, 250

dd_1d_global app
computing derivatives on 1D grid, 81–82
implementing, 82
listing for dd_1d_global/kernel.cu, 83
listing for dd_1d_global/kernel.h, 84
listing for dd_1d_global/main.cpp, 82–83
listing for dd_1d_global/Makefile, 84

dd_1d_shared app, implementing, 85–88
Debugging. See also Error handling; Profiling

building apps in Windows and, 254–258
cuSolver and cuBLAS in, 207
Debug execution in Visual Studio, 270
limitations of Visual Studio or gdb, 38
in Linux systems, 305–308
viewing thrust vectors in debugger, 190
in Windows systems, 298–304

Declarations
array, 262–263
C programming, 248–250

“Deep copy” issues, benefits of unified memory
for, 44

Deep Neural Networks, 207
#define

specifying input value of function call, 52
specifying value of ATOMIC set, 124

Degrees of freedom (DOF)
1DOF in stability app, 66–67
velocity of 1DOF ocscillators, 70

Densities, of 3D data values, 147
Depth, of stack, 144
Dereference operator (*), 273
Derivatives. See also dd_1d_global app

computing derivatives of a function, 80
computing on 1D grid, 81–82
implementing dd_1d_global app, 82–85
implementing dd_1d_shared app, 85–86
solving Laplace’s equation in 2D, 88–92

 INDEX

317

Desktop computers, upgrading computing
capability of GPU, 226–228

__device__ qualifier, function qualifiers, 29, 45
Device

about, 26
generating relocatable device code, 167–170
lambda, 183
passing CUDA device array as argument to

Thrust function, 189–190
requirements for changing from serial to

parallel computing, 25–26
transferring data between host and device, 44
volumetric medical scanners, 141

Devices, 3D data app
listing for vis_3d/device_funcs.cu, 164–167
listing for vis_3d/device_funcs.cuh, 164

Difference operator, finite
computing derivatives of a function, 80
computing derivatives on 1D grid, 81–82

Differential equations, 66–67
Differential equations, equilibrium temperature

distribution, 88–92
Digital image processing, uses of 2D grids, 50
Digital light projection (DLP), uses of 3D data

grids, 142
dim3 variable, CUDA supported vector types, 30
Dimension variables, kernel qualifiers, 29
Direct numerical simulation (DNS), in fluid

dynamics, 141
Direct3D graphics APIs, 49
dist_1d app

computing distances, 180
for experimental lambda feature compatibility,

183–184
listing for dist_1d_thrust/kernel.cu,

180, 184–185
listing for dist_1d_thrust/kernel.cu

with device lambda expressions, 183
listing for dist_1d_thrust/Makefile, 183

dist_2d app
computing distances on 2D grid, 54
parallel computation of image data based on

distance from reference point in 2D grid,
55–56

producing 2D array of distances from
reference point, 53–54

dist_3d app, parallel computation of 3D grid of
distances from reference point, 145

dist_v1 app
applying for loop, 19–20
C programming sample, 267–270
executing dist_v1_cuda, 37–38
listing for dist_v1/main.cpp, 267–268
parallelizing, 33–37

dist_v1_cuda app
executing, 37–38
parallelizing dist_v1, 33–37

dist_v2 app
C programming sample, 271–275
creating array of input points, 19
dist_v2_cuda/Makefile for building app

with error handling, 295
files in, 20–22
listing for dist_v1/main.cpp with dynamic

memory management, 276
listing for dist_v2/aux_functions.cpp,

273
listing for dist_v2/aux_functions.h, 272
listing for dist_v2/main.cpp, 271
listing for dist_v2/Makefile, 274
listing for dist_v2_cuda/kernel.cu for

CPU timing, 280–281
listing for dist_v2_cuda/kernel.cu

modified for memory transfer, 283–284
modifying for error handling, 294–295
parallelizing, 38–42
sample with dynamic memory, 275–277

distanceArray() function
comparing serial and parallel computing, 25
parallelizing dist_v2, 41, 44
running serial apps, 19–22

Distances
2D array of distances from a reference point.

See dist_2d app
3D grid of distances from a reference point, 145
computing image distance using NPP, 199–200
computing using Thrust library, 180–185
interactive display of an image based on

distance to a reference point. See
flashlight app

parallel distance app. See dist_v2 app
serial distance app. See dist_v1 app
signed distance functions, 155

divUp()
utility function used with 2D grid, 96
utility function used with 3D grid, 144

INDEX

318

DLP (digital light projection), uses of 3D data
grids, 142

DNS (direct numerical simulation), in fluid
dynamics, 141

do statements, types of control statements in C,
267

Documentation, 212. See also CUDA ecosystem
DOF (degrees of freedom)

1DOF in stability app, 66–67
velocity of 1DOF ocscillators, 70

Dot product
computing norms with Thrust built-in

functions, 176–180
parallelizing computation of. See

parallel_dot app
dotKernel(), dot product kernel, 124
dotLauncher(), dot product wrapper function,

124
Double buffering, for efficiency of graphics

applications, 60
Downloads, CUDA resources, 212
Dynamic memory, in serial distance app, 276

E
Ecosystem. See CUDA ecosystem
Education & Training, CUDA resources, 212–214
Element-wise operations, ease of parallelization,

122
else clause, using with if statements, 266
Embarrassingly parallel, threads with no

interactions between, 122
Engineers, value of CUDA for, 3
Equilibrium. See also heat_2d app

adding stability app to flashlight app,
67–68

solving Laplace’s equation in 2D, 88–92
Error handling. See also Debugging; Profiling

building distance app with error handling, 295
with CUDA-MEMCHECK tool, 308–309
cuSolver and cuBLAS for, 207
modifying dist_v2_cuda/kernel.cu for,

294–295
overview of, 292–294

Errors, profiling to test for, 112–117
Events, CUDA events, 282–284
Executables, locating in bin folder, 14–15
Execution configuration

choosing for best performance, 37
of kernel launch, 28

for parallelizing dist_v2, 41
specifying computational stream number, 87

Execution timing
CUDA events and, 282–284
overview of, 279–280
standard methods in C, 280–282

F
Factorization, solving with cuSolver, 202–203
Files

in build process, 259–260
in dist_v2 app, 20–22
in flashlight app, 57
importing/exporting data from image files, 174
library files, 66
makefiles. See Makefiles

Filtering, 79. See also Stencils
Finite difference operator

computing derivatives of a function, 80
computing derivatives on 1D grid, 81–82

flashlight app
adding stability visualizer to. See stability

app
explanation of functionality of flashlight/

interactions.h, 64–65
explanation of functionality of flashlight/

main.cpp, 60–61
files in, 57
interactive display of an image based on

distance to a reference point, 57
listing for flashlight/interactions.h,

63–64
listing for flashlight/kernel.cu, 62
listing for flashlight/kernel.h, 63
listing for flashlight/main.cpp, 58–60
listing for flashlight/Makefile, 65–66
as template, 58, 66

flatten(), utility functions of heat2d app, 97
Floating point operations per second (FLOPS), 1
Floating-point numbers, associative nature of

floating-point addition in reduction, 130
Floating-point units (FPUs), in CUDA model for

parallelization, 26
FLOPS (floating point operations per second), 1
for loops

control statements in C, 264–265
in dist_v1 app, 19–20
scale() qualifier, 45
syntax of, 264

 INDEX

319

FPUs (floating-point units), in CUDA model for
parallelization, 26

Function calls
kernel launch similar to, 28
specifying input value of, 52

Function objects (functor), in Thrust
transform(), 182

Function qualifiers, 28
Functions

of CUDA Runtime API, 30
defining in C programming, 250–251
overloading, 175
parallel functions in NPP, 193
passing CUDA device array as argument to

Thrust function, 189–190
syntax, 250–251
type qualifiers, 28

Functor (function objects), in Thrust
transform(), 182

Fusion, 184

G
gdb

cuda-gdb commands, 258, 261, 305–308
limitations of debugging tools, 38

GeForce, CUDA-enabled GPUs, 223
General purpose GPU (GPGPU), advantages of

parallelism and, 25
generate(), estimating Pi using built-in Thrust

functionality, 185–189
Getting Started, CUDA resources, 212
GLEW (OpenGl Extension Wrangler), 66
Global index, referencing global memory, 85
Global memory

allocating arrays in device memory, 80–81
implementing dd_1d_global app, 82–85
profiling, 113
slow access speed of, 81
transferring data to shared memory, 87

__global__ qualifier
defining 2D kernel, 52
kernel qualifiers, 28

GLUT. See OpenGL Utility Toolkit (GLUT)
gmake, building apps in Linux, 258
goto statements, types of control statements in

C, 267
GPGPU (General Purpose GPU), advantages of

parallelism and, 25

Graphical processing units (GPUs)
checking for NVIDIA GPU in Linux, 223
checking for NVIDIA GPU in OS X, 222–223
checking for NVIDIA GPU in Windows,

221–222
CPUs compared with, 26–27
CUDA-enabled parallel processing, 1–2
determining computing capability of, 223–225
Kepler GPUs, 133–134
memory areas of, 81
upgrading computing capability of, 225–228

Graphics, impact on surface appearance, 156
Graphics interoperability

adding stability app to flashlight app,
66–69

explanation of functionality of flashlight/
interactions.h, 64–65

explanation of functionality of flashlight/
main.cpp, 60–61

explanation of functionality of stability/
interactions.h, 72–73

explanation of functionality of stability/
kernel.cu, 70–71

files in flashlight app sample, 57
listing for flashlight/interactions.h,

63–64
listing for flashlight/kernel.cu, 62
listing for flashlight/kernel.h, 63
listing for flashlight/main.cpp, 58–60
listing for flashlight/Makefile, 65–66
listing for stability/interactions.h,

71–72
listing for stability/kernel.cu, 69–70
OpenGL graphic package for, 56–57
running the stability visualizer app, 73–76
using flashlight app as template, 58, 66

gridDim, 29
Grids

2D. See 2D grids
3D. See 3D grids
choosing execution configuration, 37
computational grid in kernel launch, 27
computing derivatives on 1D grid, 81–82
converting loops to. See Loops, converting to

grids
execution configuration for parallelizing

dist_v2, 41
execution configuration of kernel launch, 28

INDEX

320

H
Halo cells

obtaining and storing values of, 87–88
use with shared array, 85

Hardware requirements, for changing from
serial to parallel computing, 25–26

Hardware setup
checking for NVIDIA GPU in Linux, 223
checking for NVIDIA GPU in OS X, 222–223
checking for NVIDIA GPU in Windows, 221–222
determining computing capability of GPU,

223–225
upgrading computing capability of GPU,

225–228
Harris, Mark, 133
heat_2d app

listing for heat_2d/interactions.h, 95–96
listing for heat_2d/kernel.h, 94
listing for heat_2d/main.cpp, 92–94
solving for equilibrium temperature

distribution in region with specified
temperature, 88–89

solving Laplace’s equation in 2D, 89–92
Header guard. See Include guard
Heterogeneous Parallel Programming, online

courses, 213–214
__host__ qualifier, function qualifiers, 28
Host

about, 26
transferring data between host and device, 44

I
IDE (Integrated Development Environment),

invoking compiler from, 245
idxclip(), utility functions of heat2d app, 97
if statements

control statements in C, 265–266
syntax of, 265

Image files, importing/exporting data from, 174
Images

data types, 53
processing using NPP, 193, 198–201
sharpening image edges. See sharpen app
sharpening image edges using NPP. See

sharpen_npp app
Include guard, 272
Index/indices

for 2D grids, 50–51

for 3D grids, 144
array declarations, 263
comparing serial and parallel computing, 38
in computational grids, 36, 41
global and local, 85
index variables of kernel, 29
for serial loops, 25–27

Inner products, applications of reduction. See
parallel_dot app

inner_product(), Thrust built-in functions,
176–180

int type, 41
Integer arithmetic, in execution configuration for

parallelizing dist_v2, 41
Integral properties, computing, 130–131. See also

centroid_2d app
Integrated Development Environment (IDE),

invoking compiler from, 245
Intensities, of pixel values (2D array), 147
Interactions, flashlight app

editing callback functions, 58
explanation of functionality of flashlight/

interactions.h, 64–65
files in flashlight app, 57
listing for flashlight/interactions.h,

63–64
Interactions, heat_2d app, 95–96
Interactions, stability app

explanation of functionality of stability/
interactions.h, 72–73

listing for stability/interactions.h,
71–72

Interactions, visualization app
listing for vis_3d/interactions.h,

159–161
viewing and interacting with 3D data, 146–149

Interactive graphics. See Graphics
interoperability

Interop. See Graphics interoperability
Interpreted languages, compared with compiled,

246
Introductory section

benefits of CUDA for engineers, 3–4
book structure, 4–6
chapter dependencies, 7
code used, 8–9
conventions used, 8
historical context, 10–12

 INDEX

321

need-to-know GPU-based parallel computing,
2–3

references, 10–12
user’s guide, 9–10
what is CUDA, 1–2

Iterators, C++ style, 176

J
Jacobi iteration

occuring between screen updates, 97
reduction and, 122
solving Laplace’s equation and, 91

K
Kepler GPUs, 133–134
Kernel

capabilities and limits, 29
costs and benefits of standard workflow, 43
distanceKernel() qualifier, 45
launching, 28
mandatory return type is void, 36
passing Thrust device vector as argument to

CUDA API function or kernel, 189–190
requirements for SIMT implement of

parallelization, 27
splitting kernel code into multiple files,

167–170
stencil functions, 97–98

Kernel, 1D distance app
listing for dist_1d_thrust/kernel.cu,

180, 184
listing for dist_1d_thrust/kernel.cu

with device lambda expressions, 183
Kernel, 2D distance app

defining 2D kernel, 52–53
syntax for 2D kernel launch, 51

Kernel, 3D visualization app
listing for vis_3d/kernel.cu, 162–163
listing for vis_3d/kernel.h, 161

Kernel, computing derivative on 1D grid
kernel.cu, 83
kernel.h, 84

Kernel, computing integral properties
listing for centroid_2d/kernel.cu,

131–133
listing for parallel_dot/kernel.h, 135

Kernel, graphics interop app
files in flashlight app, 57

listing for flashlight/kernel.cu, 62
listing for flashlight/kernel.h, 63

Kernel, launch parameters. See Execution
configuration

Kernel, parallel dot product app
listing for parallel_dot/kernel.cu,

124–125
listing for parallel_dot/kernel.h, 125

Kernel, sharpen app
listing for sharpen/kernel.cu with global

memory implementation, 105–107
listing for sharpen/kernel.cu with input

and output shared memory arrays,
109–112

listing for sharpen/kernel.cu with shared
memory implementation, 107–109

listing for sharpen/kernel.h, 104
Kernel, stability app

explanation of functionality of stability/
kernel.cu, 70–71

listing for stability/kernel.cu, 69–70
Kernel, temperature distribution app

kernel functions, 97
listing for heat_2d/kernel.cu, 98–100
listing for heat_2d/kernel.h, 94

kernelLauncher(), wrapper or launcher
functions of heat2d app, 97

Keyboards
callback function, 95
callback functions in vis_3d app, 159–161
interactions in flashlight app, 60
interactions in stability app, 70

Keywords, in C language, 249

L
Lambda expressions, passing functions and,

183–184
Lamberian radiance model, matte appearance

and, 155
Languages. See also C programming

compiled, 245
CUDA ecosystem, 217
Interpreted, 246

Laplace’s equation, solving in 2D (heat_2d),
88–92

Laser Doppler velocimetry (LDV), uses of 3D data
grids, 141

Latency, comparing CPUs with GPUs, 27

INDEX

322

Launcher function. See Wrapper functions
LDV (Laser Doppler Velocimetry), uses of 3D data

grids, 141
Least-squares problems, solving with cuSolver,

202
Libraries

ArrayFire, 207
computing distances using built-in Thrust

functionality, 180–185
computing norms using built-in Thrust

functionality, 176–180
CUDA ecosystem, 217
cuDNN, 207
cuRAND (CUDA Random Number Generation),

190–192
cuSolver and cuBLAS, 201–207
customization vs. off-the-shelf approach,

173–175
documentation of Thrust library, 175–176
estimating Pi using built-in Thrust

functionality, 185–189
image processing using NPP, 198–201
linking library files, 193–194
navigating NPP documentation, 197–198
NVIDIA Performance Primitives (NPP), 193
passing CUDA device array as argument to

Thrust function, 189–190
passing Thrust device vector as argument to

CUDA API function or kernel, 190
reduction and, 122
Windows system requirements for

flashlight app, 66
Linear Algebra Package (LAPACK), 201–202
Linear algebra, using cuSolver and cuBLAS,

201–207
Linear oscillator. See Oscillators
Linear regression, solving with cuSolver,

203–206
Linking. See Libraries, linking library files
Linux software setup

initial test run, 242
installing CUDA samples to user directory,

241–242
installing CUDA toolkit, 240–241
overview of, 240
preparing for CUDA installation, 240

Linux systems
building apps using C, 258–262

checking for NVIDIA GPU in Linux, 223
converting dist_v1 to executable app, 269
debugging in, 305–308
invoking NVIDIA C Compiler, 37
running CUDA samples under, 17
viewing values in managed arrays, 46

Local index, of items in shared array, 85
Locals pane, 256
Locals window. See Locals pane
Loops

for loops. See for loops
termination by exiting bounding box, 155
while loops, 155, 267

Loops, converting to grids
executing dist_v1_cuda, 37–38
overview of, 33
parallelizing dist_v1, 33–37
simplified workflow, 43–47
standard workflow, 42–43

M
Mac. See OS X
main()

building apps and, 251
in heat_2d app, 91

main.cpp
dd_1d_global app, 82–83
explanation of functionality of flashlight/

main.cpp, 60–61
files in flashlight app, 57
listing for dist_v1/main.cpp, 267–268
listing for dist_v2/main.cpp, 271
listing for flashlight/main.cpp, 58–60
listing for heat_2d/main.cpp, 92–94
listing for parallel_dot/main.cpp, 126,

135–136
listing for sharpen_npp/main.cpp,

194–195
listing for sharpen/main.cpp, 103–104
listing for vis_3d/main.cpp, 157–259

make. See gmake
Makefiles

building Linux apps with, 37
for compile/link process, 259–260
for dd_1d_global, 84
for dist_1d_thrust, 183
for dist_v1, 19–20
for dist_v1_cuda, 37

 INDEX

323

for dist_v2, 22
for dist_v2_cuda, 39, 42
for flashlight, 65–66
for heat_2d, 100–102
for parallel_dot, 126–127, 136
for sharpen, 105
for sharpen_npp, 194
for stability, 73
for thrustpi, 192

malloc(), allocating host memory, 36
Managed arrays

allocating memory for, 44
unified memory and, 43–47

Mathematics, foundations for working with
CUDA, 3–4

Matlab, ArrayFire and, 207
Matrices

reduction and, 122
solving linear algebra problems with

cuSolver, 203
Memory

developments in memory access, 29
dynamic memory management, 276
kernel access to device memory not host

memory, 36
memory allocation in array declarations, 262
“nearer is faster” principle in data storage,

80–81
overhead of parallelizing, 42
shared memory. See Shared memory
unified memory and managed arrays, 43–47

Monte Carlo estimation, of Pi, 185–189
Mouse

callback function, 95
specifying interactions for flashlight app,

60

N
Namespaces, in resolution of naming conflicts,

176
Naming conventions, variables, 52
nbody sample

estimating acceleration, 17–18
running under Linux systems, 17
running under Windows systems, 14–17

“Nearer is faster” principle in data storage,
80–81

Neural networks, 207

Norms, computing using functions in Thrust
library, 176–180

Notation, C++, 176
Notebook computers, upgrading computing

capability of GPU, 225–226
NPP (NVIDIA Performance Primitives) library

image processing using, 198–201
linking to NPP files, 193–197
navigating NPP documentation, 197–198
overview of, 193

Nsight
debugging Linux systems, 305–308
debugging Windows systems, 298–304
profiling with Nsight Visual Studio, 288–292
requirements for running CUDA samples

under Windows systems, 14
Number or hash sign (#), syntax of C language,

247
nvcc

building apps in Linux, 258
handling uchar4 variables, 94
invoking NVIDIA C Compiler, 37

NVIDIA
checking for NVIDIA GPU in Linux, 223
checking for NVIDIA GPU in OS X, 222–223
checking for NVIDIA GPU in Windows, 221–222
debugging Linux systems, 305–308
debugging Windows systems, 298–304
DIGITS, 207
invoking NVIDIA C Compiler, 37

NVIDIA Performance Primitives (NPP) library
image processing using, 198–201
linking to NPP files, 193–197
navigating NPP documentation, 197–198
overview of, 193

NVIDIA Visual Profiler (NVVP)
cross platform visual profiling tool, 284–288
profiling to test for errors, 112–117

NVS, CUDA-enabled GPUs, 223
Nx acceleration, estimating acceleration, 17–18

O
ODEs (Ordinary Differential Equations), 66–67
Online courses, CUDA resources, 213–214
OpenGL Extension Wrangler (GLEW), 66
OpenGL graphics package

standard graphics APIs, 49
use in graphics interoperability app, 56–57

INDEX

324

OpenGL Utility Toolkit (GLUT)
explanation of functionality of flashlight/

main.cpp, 60–61
in heat_2d app, 92
use in graphics interoperability app, 56–57
Windows system requirements for

flashlight app, 66
Operating systems

Linux. See Linux systems
Mac OS X. See OS X systems
Windows. See Windows systems

Optimus, 225
Order of execution, functions for synchronizing

and coordinating, 30
Ordinary differential equations (ODEs), 66–67
Orthographic projection, as viewing transform, 60
Oscillators

adding stability app to flashlight app,
66–69

numerical simulations of dynamics of, 49
running stability visualizer, 74–76
velocity of 1DOF ocscillators, 70

Overloading, function, 175
OS X hardware setup

checking for NVIDIA GPU in OS X, 222–223
determining computing capability of GPU,

223–225
upgrading computing capability of GPU,

225–226
OS X software setup

installing CUDA toolkit, 239–240
overview of, 238–239

OS X systems, CUDA gdb deprecated on, 305

P
Parallel computing

basic tasks, 28–30
comparing control of order of execution with

serial computing, 38
CUDA model for, 1–2, 25–27
hardware setup for. See Hardware setup
threads in, 148

Parallel Forall, CUDA resources, 134, 213
Parallel functions, in NPP, 193
Parallel patterns, uses of libraries, 174
parallel_dot app

associative nature of floating-point addition,
130

atomics as solution to race conditions,
128–129

building and executing, 127–128
listing for parallel_dot/kernel.cu,

124–125
listing for parallel_dot/kernel.h, 125
listing for parallel_dot/main.cpp, 126
listing for parallel_dot/Makefile,

126–127
parallelizing computation of the dot product of

pair of vectors, 123–124
parentheses (()), syntax of C language, 247
Passing by reference, arguments, 246
Passing by value, arguments, 246
Patterns, uses of parallel patterns, 174
PCI, 226–228
Performance

choosing execution configuration, 37
costs of atomic functions, 129

Pi
estimating using cuRAND, 190–192
estimating using Thrust library, 185–189

Pixels (picture elements)
buffers, 61
describing pixel values via RGBA, 53–56
in digital raster images, 50
image processing using NPP, 199
locating centroid, 130, 137
scaling pixel values, 70

Placeholders, in Thrust transform(), 182
Pointer arithmetic, C programming, 273
Pointers, use in C, 246
pos, as reference position, 146
Preprocessors, syntax of C language, 247
Primitive data types, in C language, 248
printf() statement, support for using from a

kernel, 37–38
Profiling. See also Debugging; Error handling

with cuSolver and cuBLAS, 207
with Nsight Visual Studio, 288–292
with NVIDIA visual profiler, 284–288
to test for errors, 112–117

Programming Massively Parallel Processors
with CUDA, online courses, 214

Property Pages, Visual Studio, 309–311

Q
Quadro, CUDA-enabled GPUs, 223

 INDEX

325

R
Race conditions, resulting in undefined behavior,

128
Radar systems, uses of 3D data grids, 141
Radius, stencil, 85
Random number generation, 190–192
Raster images, uses of 2D grids, 50
Ray tracing, impact on surface appearance, 156
Ray-box intersection tests, 148–149
Raycasting

3D data, 154–156
overview of, 147
sample images of 3D distance field, 143
screenshot of vis_3d raycast visualization, 170

rayCastShader(), 153
Ray-plane intersection tests, 152
Read-modify-write sequence, atomic functions

performing, 128–129
reduce(), estimating Pi using built-in Thrust

functionality, 185–189
Reduction

associative nature of floating-point addition, 130
atomics as solution to race conditions,

128–129
computing dot product of pair of vectors,

123–124
computing integral properties, 130–131
listing for centroid_2d/kernel.cu, 131–133
listing for centroid_2d/kernel.h, 135
listing for centroid_2d/main.cpp, 135–136
listing for centroid_2d/Makefile, 136
listing for parallel_dot/kernel.cu,

124–125
listing for parallel_dot/kernel.h, 125
listing for parallel_dot/main.cpp, 126
listing for parallel_dot/Makefile,

126–127
output image with axes locating centroid,

136–137
overview of, 121
threads interacting globally, 121–122

Redundancy, stencil radius and, 85
Regression, solving linear regression, 203–206
Release folder, accessing CUDA Sample

executables, 15
Relocatable device code, splitting kernel code

into multiple files, 167–170
render(), in heat_2d app, 91

ResetKernel(), in heat2d app, 97
resetTemperature(), in heat2d app, 97
Resources. See CUDA ecosystem
RGB (red, green, blue) color model, image

processing using NPP, 198–199
RGBA

describing pixel values, 53–56
initializing GLUT library and, 60

Rootfinding, locating point where function takes
on given value, 155

Runtime API
error handling and, 292
functions of CUDA Runtime API, 30

S
Samples, CUDA resources, 217
Scalability, of SIMT approach, 26
Scalar products, applications of reduction. See

parallel_dot app
Scoping, defining functions, 250
Seismic exploration, uses of 3D data grids, 141
Separate compilation. See Relocatable device

code
Serial computing

comparing control of order of execution with
parallel computing, 38

comparing serial and parallel computing, 25
running serial apps, 19–22

Serialization, costs of atomic functions, 129
Shading functions

rayCastShader(), 153
sliceShader(), 151–153
volumeRenderShader(), 153

Shared arrays
declaring, 86, 133
index of items in, 85
setting size of, 87

Shared memory
bridging gap between memory access and

speed, 81
computing derivatives on 1D grid, 81–82
declaring shared array, 133
declaring threads as shared, 123
image sharpening app, 103
implementing dd_1d_global app, 82–85
implementing dd_1d_shared app, 85
profiling, 114
sharing information between blocks, 79

INDEX

326

Sharing models, impact on surface appearance,
156

sharpen app
listing for sharpen/kernel.cu with global

memory implementation, 105–107
listing for sharpen/kernel.cu with input

and output shared memory arrays,
109–112

listing for sharpen/kernel.cu with shared
memory implementation, 107–109

listing for sharpen/kernel.h, 104
listing for sharpen/main.cpp, 103–104
listing for sharpen/Makefile, 105
profiling to test for errors, 112–117
sharpening image edges, 102–103

sharpen_npp app
listing for sharpen_npp/main.cpp,

194–195
listing for sharpen_npp/Makefile, 194
reimplementation of sharpen app using NPP,

194
Signal processing, NPP functions for, 193
Signed distance function, 155
Single instruction multiple thread (SIMT)

limits on thread accessibility, 123
model of parallelization, 26

Slash (/), syntax of C language, 248
sliceShader() function, 151–153
Slicing

overview of, 147
sample images of 3D distance field, 143
screenshot of vis_3d slicing, 169
slice visualization of 3D data, 149–153

SMs. See Streaming multiprocessors (SMs)
Software

requirements for changing from serial to
parallel computing, 25

requirements for SIMT implement of
parallelization, 27

setup for Mac OS X. See Mac OS X software
setup

setup for Windows OSs. See Windows
software setup

stability app
explanation of functionality of stability/

interactions.h, 72–73
explanation of functionality of stability/

kernel.cu, 70–71

listing for stability/interactions.h,
71–72

listing for stability/kernel.cu, 69–70
running the stability visualizer app, 73–76
stabilizing visualization app, 69–70

Stack (or stratum), integer variable used in
indexing, 144

Stack overflow error, 146
StackOverflow, CUDA resources, 213
Standard Template Library (STL), Thrust based

on, 175–176
State map, locating centroid on. See

centroid_2d app
Steady-state temperature distribution. See also

heat_2d app
overview of, 91
reduction and, 122

Stencils
5-point stencil, 91
computing derivatives on 1D grid, 81–82
implementing dd_1d_global app, 82–85
implementing dd_1d_shared app, 85–88
kernel functions, 97–98
listing for heat_2d/interactions.h, 95–96
listing for heat_2d/kernel.cu, 98–100
listing for heat_2d/kernel.h, 94
listing for heat_2d/main.cpp, 92–94
listing for heat_2d/Makefile, 100–102
overview of, 79
radius, 85
sharpening image edges. See sharpen app
solving Laplace’s equation in 2D (heat_2d),

88–92
thread interdependence and, 80–81

STL (Standard Template Library), Thrust based
on, 175–176

Stratum (or stack), integer variable used in
indexing, 144

Streaming multiprocessors (SMs)
choosing execution configuration, 37
in CUDA model for parallelization, 26–27
thread interdependences and, 80

Streams, specifying computational stream
number, 87

Synchronous operations
error handling and, 292
execution timing and, 282

__syncthreads(), synchronization of threads, 88

 INDEX

327

T
TEGRA/Jetson, CUDA-enabled GPUs, 223
Temperature, equilibrium temperature

distribution. See heat_2d app
Temperature distribution, equilibrium. See

heat_2d app
tempKernel(), kernel functions of heat2d app,

97
Templates

C++ template library, 175–176
flashlight app as, 58, 66

Tesla, CUDA-enabled GPUs, 223
Tests, for errors, 112–117. See also Profiling
Text editors, for Linux and OS X, 258
Threadblocks, launching kernel and, 27
threadIdx, 29
Thread

about, 26
bottlenecks, 79
breaking tasks into subtasks, 26
choosing execution configuration, 37
debugging Linux systems, 307
execution configuration for parallelizing

dist_v2, 41
execution configuration of kernel launch, 28
interacting globally, 121–122
interdependence, 80–81
launching kernel and, 27
limits on accessibility, 123
in parallel computing, 148
synchronization of, 88

threads per block (TPB), defining constant values
in parallel_dot app, 124

Thrust library
computing distances, 180–185
computing norms, 176–180
documentation of, 175–176
estimating Pi, 185–189
passing CUDA device array as argument to

Thrust function, 189–190
passing Thrust device vector as argument to

CUDA API function or kernel, 190
using with arrays, 178

thrustpi app, 186–188, 190–192
<time.h>, timing methods in C, 280
Timing. See Execution timing
Tools, CUDA resources, 212

TPB (threads per block), defining constant values
in parallel_dot app, 124

Traces, Nsight Visual Studio profiling, 289–290
Training, CUDA resources, 212–214
transform()

computing distances using built-in Thrust
functionality, 180–185

estimating Pi using built-in Thrust
functionality, 185–189

Triggers, Nsight Visual Studio profiling, 289–290
Type qualifiers, functions, 28
Typed arguments, defining functions in C, 250
Typed languages, C as, 246

U
uchar4 variables, nvcc handling of, 94
Udacity CS344:Intro to Parallel Programming,

online courses, 213
uint3 variable, CUDA supported vector types, 30
Underscore (_), variable names and, 249
Unified memory

creating a simplified workflow, 43–47
notes regarding use of, 44

Unsharp masks, 102–103
Upgrades, computing capability of GPU, 225–228

V
van der Pol oscillator

adding stability app to flashlight app,
66

phase plane of, 76
Variables

capitalization of variable names, 52
declaring and naming in C, 248–249

Vectors
container in C++ standard library, 175–176
CUDA supported data types, 30
parallelizing computation of the dot product of

pair of. See parallel_dot app
passing Thrust device vector as argument to

CUDA API function or kernel, 189–190
using Thrust functions with arrays instead of

vectors, 178
viewing thrust vectors in debugger, 190

Video processing
NPP functions for, 193
uses of 3D data grids, 142

INDEX

328

vis_3d app
creating, 156
listing for vis_3d/device_funcs.cu, 164–167
listing for vis_3d/device_funcs.cuh, 164
listing for vis_3d/interactions.h, 159–161
listing for vis_3d/kernel.cu, 162–163
listing for vis_3d/kernel.h, 161
listing for vis_3d/main.cpp, 157–259
listing for vis_3d/Makefile, 168–169
viewing and interacting with 3D data, 146–149

Visual Profiler. See NVIDIA Visual Profiler (NVVP)
Visual Studio

building apps in Windows, 252–258
Debug execution, 270
limitations of debugging tools, 38
messages and warnings, 275
Property Pages, 309–311

Visual Studio Community 2013, 14
Visualization of data

slice visualization of, 149–153
viewing and interacting with 3D data. See

vis_3d app
void, mandatory return type for kernel, 36
Volume elements (voxels)

length scale set by voxel spacing, 155
moving from 2D grids to 3D grids, 144

Volume rendering
3D data, 153
overview of, 147
sample images of 3D distance field, 143
screenshot of vis_3d volume rendering, 170

volumeRenderShader(), 153
Voxels (volume elements)

length scale set by voxel spacing, 155
moving from 2D grids to 3D grids, 144

W
Warps, dividing blocks into, 26–27
Watch window, 277
Web resources

CUDA Zone website, 211–212
primary web sources, 212–213

while loops
termination by exiting bounding box, 155
types of control statements in C, 267

White spaces, in C language, 249
Wikipedia, CUDA resources, 213
Windows hardware setup

checking for NVIDIA GPU in Windows, 221–222
determining computing capability of GPU,

223–225
Windows software setup

creating restore point, 230
initial test run, 235–238
installing CUDA toolkit, 230–234
installing IDE, 230
steps in, 229

Windows systems
building apps using C, 252–258
converting dist_v1 to executable app, 269
debugging in, 298–304
invoking NVIDIA C Compiler, 37
running CUDA samples under, 14–17
viewing thrust vectors in debugger, 190
viewing values in managed arrays, 46–47

Workflow
analyzing costs and benefits of CUDA, 42–43
unified memory simplifying, 43–47

Wrapper functions
about, 41
in vis_3d app, 161

	Contents
	Acknowledgments
	About the Authors
	Chapter 4: 2D Grids and Interactive Graphics
	Launching 2D Computational Grids
	Syntax for 2D Kernel Launch
	Defining 2D Kernels
	dist_2d

	Live Display via Graphics Interop
	Application: Stability
	Running the Stability Visualizer

	Summary
	Suggested Projects
	References

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

