
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134034287
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134034287
https://plusone.google.com/share?url=http://www.informit.com/title/9780134034287
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134034287
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134034287/Free-Sample-Chapter

Praise for Effective Python

“Each item in Slatkin’s Effective Python teaches a self-contained lesson with its
own source code. This makes the book random-access: Items are easy to browse
and study in whatever order the reader needs. I will be recommending Effective
Python to students as an admirably compact source of mainstream advice on a
very broad range of topics for the intermediate Python programmer.”

—Brandon Rhodes, software engineer at Dropbox and chair of PyCon 2016-2017

“I’ve been programming in Python for years and thought I knew it pretty well.
Thanks to this treasure trove of tips and techniques, I realize there’s so much
more I could be doing with my Python code to make it faster (e.g., using built-in
data structures), easier to read (e.g., enforcing keyword-only arguments), and
much more Pythonic (e.g., using zip to iterate over lists in parallel).”

—Pamela Fox, educationeer, Khan Academy

“If I had this book when I first switched from Java to Python, it would have saved
me many months of repeated code rewrites, which happened each time I realized I
was doing particular things ‘non-Pythonically.’ This book collects the vast major-
ity of basic Python ‘must-knows’ into one place, eliminating the need to stum-
ble upon them one-by-one over the course of months or years. The scope of the
book is impressive, starting with the importance of PEP8 as well as that of major
Python idioms, then reaching through function, method and class design, effec-
tive standard library use, quality API design, testing, and performance measure-
ment—this book really has it all. A fantastic introduction to what it really means
to be a Python programmer for both the novice and the experienced developer.”

—Mike Bayer, creator of SQLAlchemy

“Effective Python will take your Python skills to the next level with clear guide-
lines for improving Python code style and function.”

—Leah Culver, developer advocate, Dropbox

“This book is an exceptionally great resource for seasoned developers in other lan-
guages who are looking to quickly pick up Python and move beyond the basic lan-
guage constructs into more Pythonic code. The organization of the book is clear,
concise, and easy to digest, and each item and chapter can stand on its own as a
meditation on a particular topic. The book covers the breadth of language constructs
in pure Python without confusing the reader with the complexities of the broader
Python ecosystem. For more seasoned developers the book provides in-depth exam-
ples of language constructs they may not have previously encountered, and provides
examples of less commonly used language features. It is clear that the author is
exceptionally facile with Python, and he uses his professional experience to alert the
reader to common subtle bugs and common failure modes. Furthermore, the book
does an excellent job of pointing out subtleties between Python 2.X and Python 3.X
and could serve as a refresher course as one transitions between variants of Python.”

—Katherine Scott, software lead, Tempo Automation

“This is a great book for both novice and experienced programmers. The code
examples and explanations are well thought out and explained concisely and
thoroughly.”

—C. Titus Brown, associate professor, UC Davis

“This is an immensely useful resource for advanced Python usage and building
cleaner, more maintainable software. Anyone looking to take their Python skills
to the next level would benefit from putting the book’s advice into practice.”

—Wes McKinney, creator of pandas; author of Python for Data Analysis; and
software engineer at Cloudera

Effective Python

The Effective Software Development Series provides expert advice on all aspects of
modern software development. Titles in the series are well written, technically sound,

and of lasting value. Each describes the critical things experts always do — or always
avoid — to produce outstanding software.

Scott Meyers, author of the best-selling books Effective C++ (now in its third edition),
More Effective C++, and Effective STL (all available in both print and electronic versions),
conceived of the series and acts as its consulting editor. Authors in the series work with
Meyers to create essential reading in a format that is familiar and accessible for software
developers of every stripe.

Visit informit.com/esds for a complete list of available publications.

Make sure to connect with us!
informit.com/socialconnect

The Effective Software
Development Series

Scott Meyers, Consulting Editor

Effective Python
59 SPECIFIC WAYS TO WRITE BETTER PYTHON

Brett Slatkin

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but
make no expressed or implied warranty of any kind and assume no responsibility
for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or
programs contained herein.

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs;
and content particular to your business, training goals, marketing focus,
or branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact
international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Slatkin, Brett, author.
Effective Python : 59 specific ways to write better Python / Brett Slatkin.

pages cm
Includes index.
ISBN 978-0-13-403428-7 (pbk. : alk. paper)—ISBN 0-13-403428-7 (pbk. : alk.
paper)

1. Python (Computer program language) 2. Computer programming. I. Title.
QA76.73.P98S57 2015
005.13’3—dc23

 2014048305

Copyright © 2015 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior
to any prohibited reproduction, storage in a retrieval system, or transmission in
any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. To obtain permission to use material from this work, please submit a
written request to Pearson Education, Inc., Permissions Department, One Lake
Street, Upper Saddle River, New Jersey 07458, or you may fax your request to
(201) 236-3290.

ISBN-13: 978-0-13-403428-7
ISBN-10: 0-13-403428-7

Text printed in the United States on recycled paper at RR Donnelley in
Crawfordsville, Indiana.
First printing, March 2015

Editor-in-Chief
Mark L. Taub

Senior Acquisitions Editor
Trina MacDonald

Managing Editor
John Fuller

Full-Service Production
Manager
Julie B. Nahil

Copy Editor
Stephanie Geels

Indexer
Jack Lewis

Proofreader
Melissa Panagos

Technical Reviewers
Brett Cannon
Tavis Rudd
Mike Taylor

Editorial Assistant
Olivia Basegio

Cover Designer
Chuti Prasertsith

Compositor
LaurelTech

To our family, loved and lost

This page intentionally left blank

Contents

Preface xiii

Acknowledgments xvii

About the Author xix

Chapter 1: Pythonic Thinking 1
Item 1: Know Which Version of Python You’re Using 1

Item 2: Follow the PEP 8 Style Guide 2

Item 3: Know the Differences Between bytes, str, and unicode 5

Item 4: Write Helper Functions Instead of Complex
Expressions 8

Item 5: Know How to Slice Sequences 10

Item 6: Avoid Using start, end, and stride in a Single Slice 13

Item 7: Use List Comprehensions Instead of map and filter 15

Item 8: Avoid More Than Two Expressions in List
Comprehensions 16

Item 9: Consider Generator Expressions for Large
Comprehensions 18

Item 10: Prefer enumerate Over range 20

Item 11: Use zip to Process Iterators in Parallel 21

Item 12: Avoid else Blocks After for and while Loops 23

Item 13: Take Advantage of Each Block in try/except/
else/finally 26

Chapter 2: Functions 29
Item 14: Prefer Exceptions to Returning None 29

Item 15: Know How Closures Interact with Variable Scope 31

x Contents

Item 16: Consider Generators Instead of Returning Lists 36

Item 17: Be Defensive When Iterating Over Arguments 38

Item 18: Reduce Visual Noise with Variable Positional
Arguments 43

Item 19: Provide Optional Behavior with Keyword Arguments 45

Item 20: Use None and Docstrings to Specify Dynamic
Default Arguments 48

Item 21: Enforce Clarity with Keyword-Only Arguments 51

Chapter 3: Classes and Inheritance 55
Item 22: Prefer Helper Classes Over Bookkeeping with

Dictionaries and Tuples 55

Item 23: Accept Functions for Simple Interfaces Instead
of Classes 61

Item 24: Use @classmethod Polymorphism to Construct
Objects Generically 64

Item 25: Initialize Parent Classes with super 69

Item 26: Use Multiple Inheritance Only for Mix-in Utility Classes 73

Item 27: Prefer Public Attributes Over Private Ones 78

Item 28: Inherit from collections.abc for Custom
Container Types 83

Chapter 4: Metaclasses and Attributes 87
Item 29: Use Plain Attributes Instead of Get and Set Methods 87

Item 30: Consider @property Instead of Refactoring Attributes 91

Item 31: Use Descriptors for Reusable @property Methods 95

Item 32: Use __getattr__, __getattribute__, and
__setattr__ for Lazy Attributes 100

Item 33: Validate Subclasses with Metaclasses 105

Item 34: Register Class Existence with Metaclasses 108

Item 35: Annotate Class Attributes with Metaclasses 112

Chapter 5: Concurrency and Parallelism 117
Item 36: Use subprocess to Manage Child Processes 118

Item 37: Use Threads for Blocking I/O, Avoid for Parallelism 122

Item 38: Use Lock to Prevent Data Races in Threads 126

Item 39: Use Queue to Coordinate Work Between Threads 129

 Contents xi

Item 40: Consider Coroutines to Run Many Functions
Concurrently 136

Item 41: Consider concurrent.futures for True Parallelism 145

Chapter 6: Built-in Modules 151
Item 42: Define Function Decorators with functools.wraps 151

Item 43: Consider contextlib and with Statements for
Reusable try/finally Behavior 153

Item 44: Make pickle Reliable with copyreg 157

Item 45: Use datetime Instead of time for Local Clocks 162

Item 46: Use Built-in Algorithms and Data Structures 166

Item 47: Use decimal When Precision Is Paramount 171

Item 48: Know Where to Find Community-Built Modules 173

Chapter 7: Collaboration 175
Item 49: Write Docstrings for Every Function, Class,

and Module 175

Item 50: Use Packages to Organize Modules and Provide
Stable APIs 179

Item 51: Define a Root Exception to Insulate Callers
from APIs 184

Item 52: Know How to Break Circular Dependencies 187

Item 53: Use Virtual Environments for Isolated and
Reproducible Dependencies 192

Chapter 8: Production 199
Item 54: Consider Module-Scoped Code to Configure

Deployment Environments 199

Item 55: Use repr Strings for Debugging Output 202

Item 56: Test Everything with unittest 204

Item 57: Consider Interactive Debugging with pdb 208

Item 58: Profile Before Optimizing 209

Item 59: Use tracemalloc to Understand Memory Usage
and Leaks 214

Index 217

This page intentionally left blank

Preface

The Python programming language has unique strengths and charms
that can be hard to grasp. Many programmers familiar with other
languages often approach Python from a limited mindset instead of
embracing its full expressivity. Some programmers go too far in the
other direction, overusing Python features that can cause big prob-
lems later.

This book provides insight into the Pythonic way of writing programs:
the best way to use Python. It builds on a fundamental understanding
of the language that I assume you already have. Novice programmers
will learn the best practices of Python’s capabilities. Experienced pro-
grammers will learn how to embrace the strangeness of a new tool
with confidence.

My goal is to prepare you to make a big impact with Python.

What This Book Covers

Each chapter in this book contains a broad but related set of items.
Feel free to jump between items and follow your interest. Each item
contains concise and specific guidance explaining how you can write
Python programs more effectively. Items include advice on what to
do, what to avoid, how to strike the right balance, and why this is the
best choice.

The items in this book are for Python 3 and Python 2 programmers
alike (see Item 1: “Know Which Version of Python You’re Using”).
Programmers using alternative runtimes like Jython, IronPython, or
PyPy should also find the majority of items to be applicable.

Chapter 1: Pythonic Thinking

The Python community has come to use the adjective Pythonic to
describe code that follows a particular style. The idioms of Python

xiv Preface

have emerged over time through experience using the language and
working with others. This chapter covers the best way to do the most
common things in Python.

Chapter 2: Functions

Functions in Python have a variety of extra features that make a pro-
grammer’s life easier. Some are similar to capabilities in other pro-
gramming languages, but many are unique to Python. This chapter
covers how to use functions to clarify intention, promote reuse, and
reduce bugs.

Chapter 3: Classes and Inheritance

Python is an object-oriented language. Getting things done in Python
often requires writing new classes and defining how they interact
through their interfaces and hierarchies. This chapter covers how to use
classes and inheritance to express your intended behaviors with objects.

Chapter 4: Metaclasses and Attributes

Metaclasses and dynamic attributes are powerful Python features.
However, they also enable you to implement extremely bizarre and
unexpected behaviors. This chapter covers the common idioms for using
these mechanisms to ensure that you follow the rule of least surprise.

Chapter 5: Concurrency and Parallelism

Python makes it easy to write concurrent programs that do many
different things seemingly at the same time. Python can also be
used to do parallel work through system calls, subprocesses, and
C-extensions. This chapter covers how to best utilize Python in these
subtly different situations.

Chapter 6: Built-in Modules

Python is installed with many of the important modules that you’ll
need to write programs. These standard packages are so closely inter-
twined with idiomatic Python that they may as well be part of the lan-
guage specification. This chapter covers the essential built-in modules.

Chapter 7: Collaboration

Collaborating on Python programs requires you to be deliberate about
how you write your code. Even if you’re working alone, you’ll want to
understand how to use modules written by others. This chapter cov-
ers the standard tools and best practices that enable people to work
together on Python programs.

 Preface xv

Chapter 8: Production

Python has facilities for adapting to multiple deployment environ-
ments. It also has built-in modules that aid in hardening your pro-
grams and making them bulletproof. This chapter covers how to use
Python to debug, optimize, and test your programs to maximize qual-
ity and performance at runtime.

Conventions Used in This Book

Python code snippets in this book are in monospace font and have
syntax highlighting. I take some artistic license with the Python style
guide to make the code examples better fit the format of a book or
to highlight the most important parts. When lines are long, I use
➥ characters to indicate that they wrap. I truncate snippets with
ellipses comments (#. . .) to indicate regions where code exists that
isn’t essential for expressing the point. I’ve also left out embedded
documentation to reduce the size of code examples. I strongly suggest
that you don’t do this in your projects; instead, you should follow the
style guide (see Item 2: “Follow the PEP 8 Style Guide”) and write doc-
umentation (see Item 49: “Write Docstrings for Every Function, Class,
and Module”).

Most code snippets in this book are accompanied by the correspond-
ing output from running the code. When I say “output,” I mean console
or terminal output: what you see when running the Python program
in an interactive interpreter. Output sections are in monospace font
and are preceded by a >>> line (the Python interactive prompt). The
idea is that you could type the code snippets into a Python shell and
reproduce the expected output.

Finally, there are some other sections in monospace font that are not
preceded by a >>> line. These represent the output of running pro-
grams besides the Python interpreter. These examples often begin
with $ characters to indicate that I’m running programs from a com-
mand-line shell like Bash.

Where to Get the Code and Errata

It’s useful to view some of the examples in this book as whole pro-
grams without interleaved prose. This also gives you a chance to tin-
ker with the code yourself and understand why the program works as
described. You can find the source code for all code snippets in this
book on the book’s website (http://www.effectivepython.com). Any
errors found in the book will have corrections posted on the website.

http://www.effectivepython.com

This page intentionally left blank

This book would not have been possible without the guidance,
 support, and encouragement from many people in my life.

Thanks to Scott Meyers for the Effective Software Development series.
I first read Effective C++ when I was 15 years old and fell in love with
the language. There’s no doubt that Scott’s books led to my academic
experience and first job at Google. I’m thrilled to have had the oppor-
tunity to write this book.

Thanks to my core technical reviewers for the depth and thorough-
ness of their feedback: Brett Cannon, Tavis Rudd, and Mike Taylor.
Thanks to Leah Culver and Adrian Holovaty for thinking this book
would be a good idea. Thanks to my friends who patiently read ear-
lier versions of this book: Michael Levine, Marzia Niccolai, Ade
Oshineye, and Katrina Sostek. Thanks to my colleagues at Google
for their review. Without all of your help, this book would have been
inscrutable.

Thanks to everyone involved in making this book a reality. Thanks
to my editor Trina MacDonald for kicking off the process and being
supportive throughout. Thanks to the team who were instrumen-
tal: development editors Tom Cirtin and Chris Zahn, editorial assis-
tant Olivia Basegio, marketing manager Stephane Nakib, copy editor
Stephanie Geels, and production editor Julie Nahil.

Thanks to the wonderful Python programmers I’ve known and worked
with: Anthony Baxter, Brett Cannon, Wesley Chun, Jeremy Hylton,
Alex Martelli, Neal Norwitz, Guido van Rossum, Andy Smith, Greg
Stein, and Ka-Ping Yee. I appreciate your tutelage and leadership.
Python has an excellent community and I feel lucky to be a part of it.

Thanks to my teammates over the years for letting me be the worst
player in the band. Thanks to Kevin Gibbs for helping me take risks.
Thanks to Ken Ashcraft, Ryan Barrett, and Jon McAlister for showing
me how it’s done. Thanks to Brad Fitzpatrick for taking it to the next

Acknowledgments

xviii Acknowledgments

level. Thanks to Paul McDonald for co-founding our crazy project.
Thanks to Jeremy Ginsberg and Jack Hebert for making it a reality.

Thanks to the inspiring programming teachers I’ve had: Ben Chelf,
Vince Hugo, Russ Lewin, Jon Stemmle, Derek Thomson, and Daniel
Wang. Without your instruction, I would never have pursued our craft
or gained the perspective required to teach others.

Thanks to my mother for giving me a sense of purpose and encour-
aging me to become a programmer. Thanks to my brother, my grand-
parents, and the rest of my family and childhood friends for being role
models as I grew up and found my passion.

Finally, thanks to my wife, Colleen, for her love, support, and laugh-
ter through the journey of life.

About the Author

Brett Slatkin is a senior staff software engineer at Google. He is the
engineering lead and co-founder of Google Consumer Surveys. He for-
merly worked on Google App Engine’s Python infrastructure. He is
the co-creator of the PubSubHubbub protocol. Nine years ago he cut
his teeth using Python to manage Google’s enormous fleet of servers.

Outside of his day job, he works on open source tools and writes
about software, bicycles, and other topics on his personal website
(http://onebigfluke.com). He earned his B.S. in computer engineer-
ing from Columbia University in the City of New York. He lives in San
Francisco.

http://onebigfluke.com

This page intentionally left blank

2 Functions

The first organizational tool programmers use in Python is the func-
tion. As in other programming languages, functions enable you to
break large programs into smaller, simpler pieces. They improve read-
ability and make code more approachable. They allow for reuse and
refactoring.

Functions in Python have a variety of extra features that make the
programmer’s life easier. Some are similar to capabilities in other
programming languages, but many are unique to Python. These
extras can make a function’s purpose more obvious. They can elimi-
nate noise and clarify the intention of callers. They can significantly
reduce subtle bugs that are difficult to find.

Item 14: Prefer Exceptions to Returning None

When writing utility functions, there’s a draw for Python program-
mers to give special meaning to the return value of None. It seems to
makes sense in some cases. For example, say you want a helper func-
tion that divides one number by another. In the case of dividing by
zero, returning None seems natural because the result is undefined.

def divide(a, b):
 try:
 return a / b
 except ZeroDivisionError:
 return None

Code using this function can interpret the return value accordingly.

result = divide(x, y)
if result is None:
 print('Invalid inputs')

30 Chapter 2 Functions

What happens when the numerator is zero? That will cause the
return value to also be zero (if the denominator is non-zero). This
can cause problems when you evaluate the result in a condition like
an if statement. You may accidentally look for any False equivalent
value to indicate errors instead of only looking for None (see Item 4:
“Write Helper Functions Instead of Complex Expressions” for a similar
situation).

x, y = 0, 5
result = divide(x, y)
if not result:
 print('Invalid inputs') # This is wrong!

This is a common mistake in Python code when None has special
meaning. This is why returning None from a function is error prone.
There are two ways to reduce the chance of such errors.

The first way is to split the return value into a two-tuple. The first
part of the tuple indicates that the operation was a success or failure.
The second part is the actual result that was computed.

def divide(a, b):
 try:
 return True, a / b
 except ZeroDivisionError:
 return False, None

Callers of this function have to unpack the tuple. That forces them
to consider the status part of the tuple instead of just looking at the
result of division.

success, result = divide(x, y)
if not success:
 print('Invalid inputs')

The problem is that callers can easily ignore the first part of the tuple
(using the underscore variable name, a Python convention for unused
variables). The resulting code doesn’t look wrong at first glance. This
is as bad as just returning None.

_, result = divide(x, y)
if not result:
 print('Invalid inputs')

The second, better way to reduce these errors is to never return None
at all. Instead, raise an exception up to the caller and make them
deal with it. Here, I turn a ZeroDivisionError into a ValueError to indi-
cate to the caller that the input values are bad:

 Item 15: Know How Closures Interact with Variable Scope 31

def divide(a, b):
 try:
 return a / b
 except ZeroDivisionError as e:
 raise ValueError('Invalid inputs') from e

Now the caller should handle the exception for the invalid input case
(this behavior should be documented; see Item 49: “Write Docstrings
for Every Function, Class, and Module”). The caller no longer requires
a condition on the return value of the function. If the function didn’t
raise an exception, then the return value must be good. The outcome
of exception handling is clear.

x, y = 5, 2
try:
 result = divide(x, y)
except ValueError:
 print('Invalid inputs')
else:
 print('Result is %.1f' % result)

>>>
Result is 2.5

Things to Remember

✦	Functions that return None to indicate special meaning are error
prone because None and other values (e.g., zero, the empty string)
all evaluate to False in conditional expressions.

✦	Raise exceptions to indicate special situations instead of returning
None. Expect the calling code to handle exceptions properly when
they’re documented.

Item 15: Know How Closures Interact with Variable
Scope

Say you want to sort a list of numbers but prioritize one group of
numbers to come first. This pattern is useful when you’re rendering a
user interface and want important messages or exceptional events to
be displayed before everything else.

A common way to do this is to pass a helper function as the key argu-
ment to a list’s sort method. The helper’s return value will be used
as the value for sorting each item in the list. The helper can check
whether the given item is in the important group and can vary the
sort key accordingly.

32 Chapter 2 Functions

def sort_priority(values, group):
 def helper(x):
 if x in group:
 return (0, x)
 return (1, x)
 values.sort(key=helper)

This function works for simple inputs.

numbers = [8, 3, 1, 2, 5, 4, 7, 6]
group = {2, 3, 5, 7}
sort_priority(numbers, group)
print(numbers)

>>>
[2, 3, 5, 7, 1, 4, 6, 8]

There are three reasons why this function operates as expected:

	■ Python supports closures: functions that refer to variables from
the scope in which they were defined. This is why the helper func-
tion is able to access the group argument to sort_priority.

	■ Functions are first-class objects in Python, meaning you can refer
to them directly, assign them to variables, pass them as argu-
ments to other functions, compare them in expressions and if
statements, etc. This is how the sort method can accept a closure
function as the key argument.

	■ Python has specific rules for comparing tuples. It first compares
items in index zero, then index one, then index two, and so on.
This is why the return value from the helper closure causes the
sort order to have two distinct groups.

It’d be nice if this function returned whether higher-priority items
were seen at all so the user interface code can act accordingly. Add-
ing such behavior seems straightforward. There’s already a closure
function for deciding which group each number is in. Why not also
use the closure to flip a flag when high-priority items are seen? Then
the function can return the flag value after it’s been modified by the
closure.

Here, I try to do that in a seemingly obvious way:

def sort_priority2(numbers, group):
 found = False
 def helper(x):
 if x in group:
 found = True # Seems simple

 Item 15: Know How Closures Interact with Variable Scope 33

 return (0, x)
 return (1, x)
 numbers.sort(key=helper)
 return found

I can run the function on the same inputs as before.

found = sort_priority2(numbers, group)
print('Found:', found)
print(numbers)

>>>
Found: False
[2, 3, 5, 7, 1, 4, 6, 8]

The sorted results are correct, but the found result is wrong. Items
from group were definitely found in numbers, but the function returned
False. How could this happen?

When you reference a variable in an expression, the Python inter-
preter will traverse the scope to resolve the reference in this order:

1. The current function’s scope

2. Any enclosing scopes (like other containing functions)

3. The scope of the module that contains the code (also called the
global scope)

4. The built-in scope (that contains functions like len and str)

If none of these places have a defined variable with the referenced
name, then a NameError exception is raised.

Assigning a value to a variable works differently. If the variable is
already defined in the current scope, then it will just take on the new
value. If the variable doesn’t exist in the current scope, then Python
treats the assignment as a variable definition. The scope of the newly
defined variable is the function that contains the assignment.

This assignment behavior explains the wrong return value of the
sort_priority2 function. The found variable is assigned to True in the
helper closure. The closure’s assignment is treated as a new variable
definition within helper, not as an assignment within sort_priority2.

def sort_priority2(numbers, group):
 found = False # Scope: 'sort_priority2'
 def helper(x):
 if x in group:
 found = True # Scope: 'helper' -- Bad!
 return (0, x)

34 Chapter 2 Functions

 return (1, x)
 numbers.sort(key=helper)
 return found

Encountering this problem is sometimes called the scoping bug
because it can be so surprising to newbies. But this is the intended
result. This behavior prevents local variables in a function from pol-
luting the containing module. Otherwise, every assignment within a
function would put garbage into the global module scope. Not only
would that be noise, but the interplay of the resulting global variables
could cause obscure bugs.

Getting Data Out

In Python 3, there is special syntax for getting data out of a closure.
The nonlocal statement is used to indicate that scope traversal should
happen upon assignment for a specific variable name. The only limit
is that nonlocal won’t traverse up to the module-level scope (to avoid
polluting globals).

Here, I define the same function again using nonlocal:

def sort_priority3(numbers, group):
 found = False
 def helper(x):
 nonlocal found
 if x in group:
 found = True
 return (0, x)
 return (1, x)
 numbers.sort(key=helper)
 return found

The nonlocal statement makes it clear when data is being assigned
out of a closure into another scope. It’s complementary to the global
statement, which indicates that a variable’s assignment should go
directly into the module scope.

However, much like the anti-pattern of global variables, I’d caution
against using nonlocal for anything beyond simple functions. The side
effects of nonlocal can be hard to follow. It’s especially hard to under-
stand in long functions where the nonlocal statements and assign-
ments to associated variables are far apart.

When your usage of nonlocal starts getting complicated, it’s bet-
ter to wrap your state in a helper class. Here, I define a class that
achieves the same result as the nonlocal approach. It’s a little

 Item 15: Know How Closures Interact with Variable Scope 35

longer, but is much easier to read (see Item 23: “Accept Functions
for Simple Interfaces Instead of Classes” for details on the __call__
 special method).

class Sorter(object):
 def __init__(self, group):
 self.group = group
 self.found = False

 def __call__(self, x):
 if x in self.group:
 self.found = True
 return (0, x)
 return (1, x)

sorter = Sorter(group)
numbers.sort(key=sorter)
assert sorter.found is True

Scope in Python 2

Unfortunately, Python 2 doesn’t support the nonlocal keyword. In
order to get similar behavior, you need to use a work-around that
takes advantage of Python’s scoping rules. This approach isn’t pretty,
but it’s the common Python idiom.

Python 2
def sort_priority(numbers, group):
 found = [False]
 def helper(x):
 if x in group:
 found[0] = True
 return (0, x)
 return (1, x)
 numbers.sort(key=helper)
 return found[0]

As explained above, Python will traverse up the scope where the
found variable is referenced to resolve its current value. The trick is
that the value for found is a list, which is mutable. This means that
once retrieved, the closure can modify the state of found to send data
out of the inner scope (with found[0] = True).

This approach also works when the variable used to traverse the
scope is a dictionary, a set, or an instance of a class you’ve defined.

36 Chapter 2 Functions

Things to Remember

✦	Closure functions can refer to variables from any of the scopes in
which they were defined.

✦	By default, closures can’t affect enclosing scopes by assigning
variables.

✦	In Python 3, use the nonlocal statement to indicate when a closure
can modify a variable in its enclosing scopes.

✦	In Python 2, use a mutable value (like a single-item list) to work
around the lack of the nonlocal statement.

✦	Avoid using nonlocal statements for anything beyond simple
functions.

Item 16: Consider Generators Instead of Returning
Lists

The simplest choice for functions that produce a sequence of results is
to return a list of items. For example, say you want to find the index
of every word in a string. Here, I accumulate results in a list using the
append method and return it at the end of the function:

def index_words(text):
 result = []
 if text:
 result.append(0)
 for index, letter in enumerate(text):
 if letter == ' ':
 result.append(index + 1)
 return result

This works as expected for some sample input.

address = 'Four score and seven years ago...'
result = index_words(address)
print(result[:3])

>>>
[0, 5, 11]

There are two problems with the index_words function.

The first problem is that the code is a bit dense and noisy. Each time
a new result is found, I call the append method. The method call’s
bulk (result.append) deemphasizes the value being added to the list
(index + 1). There is one line for creating the result list and another

 Item 16: Consider Generators Instead of Returning Lists 37

for returning it. While the function body contains ~130 characters
(without whitespace), only ~75 characters are important.

A better way to write this function is using a generator. Generators are
functions that use yield expressions. When called, generator func-
tions do not actually run but instead immediately return an iterator.
With each call to the next built-in function, the iterator will advance
the generator to its next yield expression. Each value passed to yield
by the generator will be returned by the iterator to the caller.

Here, I define a generator function that produces the same results as
before:

def index_words_iter(text):
 if text:
 yield 0
 for index, letter in enumerate(text):
 if letter == ' ':
 yield index + 1

It’s significantly easier to read because all interactions with the result
list have been eliminated. Results are passed to yield expressions
instead. The iterator returned by the generator call can easily be con-
verted to a list by passing it to the list built-in function (see Item 9:
“Consider Generator Expressions for Large Comprehensions” for how
this works).

result = list(index_words_iter(address))

The second problem with index_words is that it requires all results to
be stored in the list before being returned. For huge inputs, this can
cause your program to run out of memory and crash. In contrast, a
generator version of this function can easily be adapted to take inputs
of arbitrary length.

Here, I define a generator that streams input from a file one line at a
time and yields outputs one word at a time. The working memory for
this function is bounded to the maximum length of one line of input.

def index_file(handle):
 offset = 0
 for line in handle:
 if line:
 yield offset
 for letter in line:
 offset += 1
 if letter == ' ':
 yield offset

38 Chapter 2 Functions

Running the generator produces the same results.

with open('/tmp/address.txt', 'r') as f:
 it = index_file(f)
 results = islice(it, 0, 3)
 print(list(results))

>>>
[0, 5, 11]

The only gotcha of defining generators like this is that the callers
must be aware that the iterators returned are stateful and can’t be
reused (see Item 17: “Be Defensive When Iterating Over Arguments”).

Things to Remember

✦	Using generators can be clearer than the alternative of returning
lists of accumulated results.

✦	The iterator returned by a generator produces the set of values
passed to yield expressions within the generator function’s body.

✦	Generators can produce a sequence of outputs for arbitrarily large
inputs because their working memory doesn’t include all inputs and
outputs.

Item 17: Be Defensive When Iterating Over Arguments

When a function takes a list of objects as a parameter, it’s often
important to iterate over that list multiple times. For example, say you
want to analyze tourism numbers for the U.S. state of Texas. Imag-
ine the data set is the number of visitors to each city (in millions per
year). You’d like to figure out what percentage of overall tourism each
city receives.

To do this you need a normalization function. It sums the inputs to
determine the total number of tourists per year. Then it divides each
city’s individual visitor count by the total to find that city’s contribu-
tion to the whole.

def normalize(numbers):
 total = sum(numbers)
 result = []
 for value in numbers:
 percent = 100 * value / total
 result.append(percent)
 return result

 Item 17: Be Defensive When Iterating Over Arguments 39

This function works when given a list of visits.

visits = [15, 35, 80]
percentages = normalize(visits)
print(percentages)

>>>
[11.538461538461538, 26.923076923076923, 61.53846153846154]

To scale this up, I need to read the data from a file that contains
every city in all of Texas. I define a generator to do this because then
I can reuse the same function later when I want to compute tourism
numbers for the whole world, a much larger data set (see Item 16:
“Consider Generators Instead of Returning Lists”).

def read_visits(data_path):
 with open(data_path) as f:
 for line in f:
 yield int(line)

Surprisingly, calling normalize on the generator’s return value pro-
duces no results.

it = read_visits('/tmp/my_numbers.txt')
percentages = normalize(it)
print(percentages)

>>>
[]

The cause of this behavior is that an iterator only produces its results
a single time. If you iterate over an iterator or generator that has
already raised a StopIteration exception, you won’t get any results
the second time around.

it = read_visits('/tmp/my_numbers.txt')
print(list(it))
print(list(it)) # Already exhausted

>>>
[15, 35, 80]
[]

What’s confusing is that you also won’t get any errors when you iter-
ate over an already exhausted iterator. for loops, the list constructor,
and many other functions throughout the Python standard library
expect the StopIteration exception to be raised during normal opera-
tion. These functions can’t tell the difference between an iterator that
has no output and an iterator that had output and is now exhausted.

40 Chapter 2 Functions

To solve this problem, you can explicitly exhaust an input iterator
and keep a copy of its entire contents in a list. You can then iter-
ate over the list version of the data as many times as you need to.
Here’s the same function as before, but it defensively copies the input
iterator:

def normalize_copy(numbers):
 numbers = list(numbers) # Copy the iterator
 total = sum(numbers)
 result = []
 for value in numbers:
 percent = 100 * value / total
 result.append(percent)
 return result

Now the function works correctly on a generator’s return value.

it = read_visits('/tmp/my_numbers.txt')
percentages = normalize_copy(it)
print(percentages)

>>>
[11.538461538461538, 26.923076923076923, 61.53846153846154]

The problem with this approach is the copy of the input iterator’s con-
tents could be large. Copying the iterator could cause your program
to run out of memory and crash. One way around this is to accept a
function that returns a new iterator each time it’s called.

def normalize_func(get_iter):
 total = sum(get_iter()) # New iterator
 result = []
 for value in get_iter(): # New iterator
 percent = 100 * value / total
 result.append(percent)
 return result

To use normalize_func, you can pass in a lambda expression that calls
the generator and produces a new iterator each time.

percentages = normalize_func(lambda: read_visits(path))

Though it works, having to pass a lambda function like this is clumsy.
The better way to achieve the same result is to provide a new con-
tainer class that implements the iterator protocol.

The iterator protocol is how Python for loops and related expres-
sions traverse the contents of a container type. When Python sees a

 Item 17: Be Defensive When Iterating Over Arguments 41

statement like for x in foo it will actually call iter(foo). The iter
built-in function calls the foo.__iter__ special method in turn. The
__iter__ method must return an iterator object (which itself imple-
ments the __next__ special method). Then the for loop repeat-
edly calls the next built-in function on the iterator object until it’s
exhausted (and raises a StopIteration exception).

It sounds complicated, but practically speaking you can achieve all of
this behavior for your classes by implementing the __iter__ method
as a generator. Here, I define an iterable container class that reads
the files containing tourism data:

class ReadVisits(object):
 def __init__(self, data_path):
 self.data_path = data_path

 def __iter__(self):
 with open(self.data_path) as f:
 for line in f:
 yield int(line)

This new container type works correctly when passed to the original
function without any modifications.

visits = ReadVisits(path)
percentages = normalize(visits)
print(percentages)

>>>
[11.538461538461538, 26.923076923076923, 61.53846153846154]

This works because the sum method in normalize will call
ReadVisits.__iter__ to allocate a new iterator object. The for loop to
normalize the numbers will also call __iter__ to allocate a second
iterator object. Each of those iterators will be advanced and exhausted
independently, ensuring that each unique iteration sees all of the
input data values. The only downside of this approach is that it reads
the input data multiple times.

Now that you know how containers like ReadVisits work, you can
write your functions to ensure that parameters aren’t just iterators.
The protocol states that when an iterator is passed to the iter built-in
function, iter will return the iterator itself. In contrast, when a con-
tainer type is passed to iter, a new iterator object will be returned
each time. Thus, you can test an input value for this behavior and
raise a TypeError to reject iterators.

42 Chapter 2 Functions

def normalize_defensive(numbers):
 if iter(numbers) is iter(numbers): # An iterator -- bad!
 raise TypeError('Must supply a container')
 total = sum(numbers)
 result = []
 for value in numbers:
 percent = 100 * value / total
 result.append(percent)
 return result

This is ideal if you don’t want to copy the full input iterator like
normalize_copy above, but you also need to iterate over the input
data multiple times. This function works as expected for list and
ReadVisits inputs because they are containers. It will work for any
type of container that follows the iterator protocol.

visits = [15, 35, 80]
normalize_defensive(visits) # No error
visits = ReadVisits(path)
normalize_defensive(visits) # No error

The function will raise an exception if the input is iterable but not a
container.

it = iter(visits)
normalize_defensive(it)

>>>
TypeError: Must supply a container

Things to Remember

✦	Beware of functions that iterate over input arguments multiple
times. If these arguments are iterators, you may see strange behav-
ior and missing values.

✦	Python’s iterator protocol defines how containers and iterators inter-
act with the iter and next built-in functions, for loops, and related
expressions.

✦	You can easily define your own iterable container type by imple-
menting the __iter__ method as a generator.

✦	You can detect that a value is an iterator (instead of a container) if
calling iter on it twice produces the same result, which can then be
progressed with the next built-in function.

 Item 18: Reduce Visual Noise with Variable Positional Arguments 43

Item 18: Reduce Visual Noise with Variable Positional
Arguments

Accepting optional positional arguments (often called star args in ref-
erence to the conventional name for the parameter, *args) can make a
function call more clear and remove visual noise.

For example, say you want to log some debug information. With a
fixed number of arguments, you would need a function that takes a
message and a list of values.

def log(message, values):
 if not values:
 print(message)
 else:
 values_str = ', '.join(str(x) for x in values)
 print('%s: %s' % (message, values_str))

log('My numbers are', [1, 2])
log('Hi there', [])

>>>
My numbers are: 1, 2
Hi there

Having to pass an empty list when you have no values to log is cum-
bersome and noisy. It’d be better to leave out the second argument
entirely. You can do this in Python by prefixing the last positional
parameter name with *. The first parameter for the log message is
required, whereas any number of subsequent positional arguments
are optional. The function body doesn’t need to change, only the call-
ers do.

def log(message, *values): # The only difference
 if not values:
 print(message)
 else:
 values_str = ', '.join(str(x) for x in values)
 print('%s: %s' % (message, values_str))

log('My numbers are', 1, 2)
log('Hi there') # Much better

>>>
My numbers are: 1, 2
Hi there

44 Chapter 2 Functions

If you already have a list and want to call a variable argument func-
tion like log, you can do this by using the * operator. This instructs
Python to pass items from the sequence as positional arguments.

favorites = [7, 33, 99]
log('Favorite colors', *favorites)

>>>
Favorite colors: 7, 33, 99

There are two problems with accepting a variable number of posi-
tional arguments.

The first issue is that the variable arguments are always turned into
a tuple before they are passed to your function. This means that if
the caller of your function uses the * operator on a generator, it will
be iterated until it’s exhausted. The resulting tuple will include every
value from the generator, which could consume a lot of memory and
cause your program to crash.

def my_generator():
 for i in range(10):
 yield i

def my_func(*args):
 print(args)

it = my_generator()
my_func(*it)

>>>
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

Functions that accept *args are best for situations where you know
the number of inputs in the argument list will be reasonably small.
It’s ideal for function calls that pass many literals or variable names
together. It’s primarily for the convenience of the programmer and the
readability of the code.

The second issue with *args is that you can’t add new positional argu-
ments to your function in the future without migrating every caller. If
you try to add a positional argument in the front of the argument list,
existing callers will subtly break if they aren’t updated.

def log(sequence, message, *values):
 if not values:
 print('%s: %s' % (sequence, message))
 else:
 values_str = ', '.join(str(x) for x in values)
 print('%s: %s: %s' % (sequence, message, values_str))

 Item 19: Provide Optional Behavior with Keyword Arguments 45

log(1, 'Favorites', 7, 33) # New usage is OK
log('Favorite numbers', 7, 33) # Old usage breaks

>>>
1: Favorites: 7, 33
Favorite numbers: 7: 33

The problem here is that the second call to log used 7 as the message
parameter because a sequence argument wasn’t given. Bugs like this
are hard to track down because the code still runs without raising
any exceptions. To avoid this possibility entirely, you should use key-
word-only arguments when you want to extend functions that accept
*args (see Item 21: “Enforce Clarity with Keyword-Only Arguments”).

Things to Remember

✦	Functions can accept a variable number of positional arguments by
using *args in the def statement.

✦	You can use the items from a sequence as the positional arguments
for a function with the * operator.

✦	Using the * operator with a generator may cause your program to
run out of memory and crash.

✦	Adding new positional parameters to functions that accept *args
can introduce hard-to-find bugs.

Item 19: Provide Optional Behavior with Keyword
Arguments

Like most other programming languages, calling a function in Python
allows for passing arguments by position.

def remainder(number, divisor):
 return number % divisor

assert remainder(20, 7) == 6

All positional arguments to Python functions can also be passed by
keyword, where the name of the argument is used in an assignment
within the parentheses of a function call. The keyword arguments
can be passed in any order as long as all of the required positional
arguments are specified. You can mix and match keyword and posi-
tional arguments. These calls are equivalent:

remainder(20, 7)
remainder(20, divisor=7)
remainder(number=20, divisor=7)
remainder(divisor=7, number=20)

46 Chapter 2 Functions

Positional arguments must be specified before keyword arguments.

remainder(number=20, 7)

>>>
SyntaxError: non-keyword arg after keyword arg

Each argument can only be specified once.

remainder(20, number=7)

>>>
TypeError: remainder() got multiple values for argument
�'number'

The flexibility of keyword arguments provides three significant
benefits.

The first advantage is that keyword arguments make the function
call clearer to new readers of the code. With the call remainder(20, 7),
it’s not evident which argument is the number and which is the divi-
sor without looking at the implementation of the remainder method.
In the call with keyword arguments, number=20 and divisor=7 make it
immediately obvious which parameter is being used for each purpose.

The second impact of keyword arguments is that they can have
default values specified in the function definition. This allows a func-
tion to provide additional capabilities when you need them but lets
you accept the default behavior most of the time. This can eliminate
repetitive code and reduce noise.

For example, say you want to compute the rate of fluid flowing into
a vat. If the vat is also on a scale, then you could use the difference
between two weight measurements at two different times to deter-
mine the flow rate.

def flow_rate(weight_diff, time_diff):
 return weight_diff / time_diff

weight_diff = 0.5
time_diff = 3
flow = flow_rate(weight_diff, time_diff)
print('%.3f kg per second' % flow)

>>>
0.167 kg per second

In the typical case, it’s useful to know the flow rate in kilograms per
second. Other times, it’d be helpful to use the last sensor measure-
ments to approximate larger time scales, like hours or days. You can

 Item 19: Provide Optional Behavior with Keyword Arguments 47

provide this behavior in the same function by adding an argument for
the time period scaling factor.

def flow_rate(weight_diff, time_diff, period):
 return (weight_diff / time_diff) * period

The problem is that now you need to specify the period argument
every time you call the function, even in the common case of flow rate
per second (where the period is 1).

flow_per_second = flow_rate(weight_diff, time_diff, 1)

To make this less noisy, I can give the period argument a default value.

def flow_rate(weight_diff, time_diff, period=1):
 return (weight_diff / time_diff) * period

The period argument is now optional.

flow_per_second = flow_rate(weight_diff, time_diff)
flow_per_hour = flow_rate(weight_diff, time_diff, period=3600)

This works well for simple default values (it gets tricky for complex
default values—see Item 20: “Use None and Docstrings to Specify
Dynamic Default Arguments”).

The third reason to use keyword arguments is that they provide a
powerful way to extend a function’s parameters while remaining back-
wards compatible with existing callers. This lets you provide addi-
tional functionality without having to migrate a lot of code, reducing
the chance of introducing bugs.

For example, say you want to extend the flow_rate function above
to calculate flow rates in weight units besides kilograms. You can do
this by adding a new optional parameter that provides a conversion
rate to your preferred measurement units.

def flow_rate(weight_diff, time_diff,
 period=1, units_per_kg=1):
 return ((weight_diff / units_per_kg) / time_diff) * period

The default argument value for units_per_kg is 1, which makes the
returned weight units remain as kilograms. This means that all exist-
ing callers will see no change in behavior. New callers to flow_rate
can specify the new keyword argument to see the new behavior.

pounds_per_hour = flow_rate(weight_diff, time_diff,
 period=3600, units_per_kg=2.2)

The only problem with this approach is that optional keyword
 arguments like period and units_per_kg may still be specified as
positional arguments.

48 Chapter 2 Functions

pounds_per_hour = flow_rate(weight_diff, time_diff, 3600, 2.2)

Supplying optional arguments positionally can be confusing because
it isn’t clear what the values 3600 and 2.2 correspond to. The best
practice is to always specify optional arguments using the keyword
names and never pass them as positional arguments.

Note
Backwards compatibility using optional keyword arguments like this is crucial
for functions that accept *args (see Item 18: “Reduce Visual Noise with Vari-
able Positional Arguments”). But an even better practice is to use keyword-only
arguments (see Item 21: “Enforce Clarity with Keyword-Only Arguments”).

Things to Remember

✦	Function arguments can be specified by position or by keyword.

✦	Keywords make it clear what the purpose of each argument is when
it would be confusing with only positional arguments.

✦	Keyword arguments with default values make it easy to add new
behaviors to a function, especially when the function has existing
callers.

✦	Optional keyword arguments should always be passed by keyword
instead of by position.

Item 20: Use None and Docstrings to Specify Dynamic
Default Arguments

Sometimes you need to use a non-static type as a keyword argument’s
default value. For example, say you want to print logging messages
that are marked with the time of the logged event. In the default case,
you want the message to include the time when the function was
called. You might try the following approach, assuming the default
arguments are reevaluated each time the function is called.

def log(message, when=datetime.now()):
 print('%s: %s' % (when, message))

log('Hi there!')
sleep(0.1)
log('Hi again!')

>>>
2014-11-15 21:10:10.371432: Hi there!
2014-11-15 21:10:10.371432: Hi again!

 Item 20: Use None and Docstrings to Specify Dynamic Default Arguments 49

The timestamps are the same because datetime.now is only executed
a single time: when the function is defined. Default argument val-
ues are evaluated only once per module load, which usually happens
when a program starts up. After the module containing this code is
loaded, the datetime.now default argument will never be evaluated
again.

The convention for achieving the desired result in Python is to provide
a default value of None and to document the actual behavior in the
docstring (see Item 49: “Write Docstrings for Every Function, Class,
and Module”). When your code sees an argument value of None, you
allocate the default value accordingly.

def log(message, when=None):
 """Log a message with a timestamp.

 Args:
 message: Message to print.
 when: datetime of when the message occurred.
 Defaults to the present time.
 """
 when = datetime.now() if when is None else when
 print('%s: %s' % (when, message))

Now the timestamps will be different.

log('Hi there!')
sleep(0.1)
log('Hi again!')

>>>
2014-11-15 21:10:10.472303: Hi there!
2014-11-15 21:10:10.573395: Hi again!

Using None for default argument values is especially important when
the arguments are mutable. For example, say you want to load a value
encoded as JSON data. If decoding the data fails, you want an empty
dictionary to be returned by default. You might try this approach.

def decode(data, default={}):
 try:
 return json.loads(data)
 except ValueError:
 return default

The problem here is the same as the datetime.now example above. The
dictionary specified for default will be shared by all calls to decode
because default argument values are only evaluated once (at module
load time). This can cause extremely surprising behavior.

50 Chapter 2 Functions

foo = decode('bad data')
foo['stuff'] = 5
bar = decode('also bad')
bar['meep'] = 1
print('Foo:', foo)
print('Bar:', bar)

>>>
Foo: {'stuff': 5, 'meep': 1}
Bar: {'stuff': 5, 'meep': 1}

You’d expect two different dictionaries, each with a single key and
value. But modifying one seems to also modify the other. The culprit
is that foo and bar are both equal to the default parameter. They are
the same dictionary object.

assert foo is bar

The fix is to set the keyword argument default value to None and then
document the behavior in the function’s docstring.

def decode(data, default=None):
 """Load JSON data from a string.

 Args:
 data: JSON data to decode.
 default: Value to return if decoding fails.
 Defaults to an empty dictionary.
 """
 if default is None:
 default = {}
 try:
 return json.loads(data)
 except ValueError:
 return default

Now, running the same test code as before produces the expected
result.

foo = decode('bad data')
foo['stuff'] = 5
bar = decode('also bad')
bar['meep'] = 1
print('Foo:', foo)
print('Bar:', bar)

>>>
Foo: {'stuff': 5}
Bar: {'meep': 1}

 Item 21: Enforce Clarity with Keyword-Only Arguments 51

Things to Remember

✦	Default arguments are only evaluated once: during function defini-
tion at module load time. This can cause odd behaviors for dynamic
values (like {} or []).

✦	Use None as the default value for keyword arguments that have a
dynamic value. Document the actual default behavior in the func-
tion’s docstring.

Item 21: Enforce Clarity with Keyword-Only
Arguments

Passing arguments by keyword is a powerful feature of Python func-
tions (see Item 19: “Provide Optional Behavior with Keyword Argu-
ments”). The flexibility of keyword arguments enables you to write
code that will be clear for your use cases.

For example, say you want to divide one number by another but
be very careful about special cases. Sometimes you want to ignore
ZeroDivisionError exceptions and return infinity instead. Other
times, you want to ignore OverflowError exceptions and return zero
instead.

def safe_division(number, divisor, ignore_overflow,
 ignore_zero_division):
 try:
 return number / divisor
 except OverflowError:
 if ignore_overflow:
 return 0
 else:
 raise
 except ZeroDivisionError:
 if ignore_zero_division:
 return float('inf')
 else:
 raise

Using this function is straightforward. This call will ignore the float
overflow from division and will return zero.

result = safe_division(1, 10**500, True, False)
print(result)

>>>
0.0

52 Chapter 2 Functions

This call will ignore the error from dividing by zero and will return
infinity.

result = safe_division(1, 0, False, True)
print(result)

>>>
inf

The problem is that it’s easy to confuse the position of the two Bool-
ean arguments that control the exception-ignoring behavior. This
can easily cause bugs that are hard to track down. One way to
improve the readability of this code is to use keyword arguments. By
default, the function can be overly cautious and can always re-raise
exceptions.

def safe_division_b(number, divisor,
 ignore_overflow=False,
 ignore_zero_division=False):
 # ...

Then callers can use keyword arguments to specify which of the
ignore flags they want to flip for specific operations, overriding the
default behavior.

safe_division_b(1, 10**500, ignore_overflow=True)
safe_division_b(1, 0, ignore_zero_division=True)

The problem is, since these keyword arguments are optional behavior,
there’s nothing forcing callers of your functions to use keyword argu-
ments for clarity. Even with the new definition of safe_division_b,
you can still call it the old way with positional arguments.

safe_division_b(1, 10**500, True, False)

With complex functions like this, it’s better to require that callers are
clear about their intentions. In Python 3, you can demand clarity by
defining your functions with keyword-only arguments. These argu-
ments can only be supplied by keyword, never by position.

Here, I redefine the safe_division function to accept keyword-only
arguments. The * symbol in the argument list indicates the end
of positional arguments and the beginning of keyword-only
arguments.

def safe_division_c(number, divisor, *,
 ignore_overflow=False,
 ignore_zero_division=False):
 # ...

 Item 21: Enforce Clarity with Keyword-Only Arguments 53

Now, calling the function with positional arguments for the keyword
arguments won’t work.

safe_division_c(1, 10**500, True, False)

>>>
TypeError: safe_division_c() takes 2 positional arguments but
�4 were given

Keyword arguments and their default values work as expected.

safe_division_c(1, 0, ignore_zero_division=True) # OK

try:
 safe_division_c(1, 0)
except ZeroDivisionError:
 pass # Expected

Keyword-Only Arguments in Python 2

Unfortunately, Python 2 doesn’t have explicit syntax for specify-
ing keyword-only arguments like Python 3. But you can achieve the
same behavior of raising TypeErrors for invalid function calls by using
the ** operator in argument lists. The ** operator is similar to the *
operator (see Item 18: “Reduce Visual Noise with Variable Positional
Arguments”), except that instead of accepting a variable number of
positional arguments, it accepts any number of keyword arguments,
even when they’re not defined.

Python 2
def print_args(*args, **kwargs):
 print 'Positional:', args
 print 'Keyword: ', kwargs

print_args(1, 2, foo='bar', stuff='meep')

>>>
Positional: (1, 2)
Keyword: {'foo': 'bar', 'stuff': 'meep'}

To make safe_division take keyword-only arguments in Python 2,
you have the function accept **kwargs. Then you pop keyword argu-
ments that you expect out of the kwargs dictionary, using the pop
method’s second argument to specify the default value when the key
is missing. Finally, you make sure there are no more keyword argu-
ments left in kwargs to prevent callers from supplying arguments that
are invalid.

54 Chapter 2 Functions

Python 2
def safe_division_d(number, divisor, **kwargs):
 ignore_overflow = kwargs.pop('ignore_overflow', False)
 ignore_zero_div = kwargs.pop('ignore_zero_division', False)
 if kwargs:
 raise TypeError('Unexpected **kwargs: %r' % kwargs)
 # ...

Now, you can call the function with or without keyword arguments.

safe_division_d(1, 10)
safe_division_d(1, 0, ignore_zero_division=True)
safe_division_d(1, 10**500, ignore_overflow=True)

Trying to pass keyword-only arguments by position won’t work, just
like in Python 3.

safe_division_d(1, 0, False, True)

>>>
TypeError: safe_division_d() takes 2 positional arguments but 4
�were given

Trying to pass unexpected keyword arguments also won’t work.

safe_division_d(0, 0, unexpected=True)

>>>
TypeError: Unexpected **kwargs: {'unexpected': True}

Things to Remember

✦	Keyword arguments make the intention of a function call more
clear.

✦	Use keyword-only arguments to force callers to supply keyword
arguments for potentially confusing functions, especially those that
accept multiple Boolean flags.

✦	Python 3 supports explicit syntax for keyword-only arguments in
functions.

✦	Python 2 can emulate keyword-only arguments for functions by
using **kwargs and manually raising TypeError exceptions.

Index

Symbols
%r, for printable strings, 203
%s, for human-readable strings, 202
* operator, liability of, 44–45
* symbol, for keyword-only arguments,

52–53
*args

optional keyword arguments and, 48
variable positional arguments and,

43–45
**kwargs, for keyword-only arguments,

53–54

A
__all__ special attribute

avoiding, 183
listing all public names, 181–183

ALL_CAPS format, 3
Allocation of memory, tracemalloc

module and, 214–216
APIs (application programming

interfaces)
future-proofing, 186–187
internal, allowing subclass access to,

80–82
packages providing stable, 181–184
root exceptions and, 184–186
using functions for, 61–64

append method, 36–37
Arguments

defensively iterating over, 38–42
keyword, 45–48
keyword-only, 51–54
optional positional, 43–45

as clauses, in renaming modules, 181
as targets, with statements and,

155–156
assertEqual helper method, verifying

equality, 206

assertRaises helper method, verifying
exceptions, 206

assertTrue helper method, for Boolean
expressions, 206

asyncio built-in module, vs. blocking
I/O, 125

AttributeError exception raising,
102–103

Attribute(s). See also Private attributes;
Public attributes

adding missing default values,
159–160

lazily loading/saving, 100–105
metaclasses annotating, 112–115
names, conflicts over, 81–82

B
Binary mode, for reading/writing

data, 7
Binary tree class, inheriting from

collections.abc, 84–86
bisect module, for binary searches, 169
Blocking operations, in Queue class,

132–136
Bookkeeping

with dictionaries, 55–58
helper classes for, 58–60

bt command, of interactive debugger,
208

Buffer sizes, in Queue class, 132–136
Bytecode, interpreter state for, 122
bytes instances, for character

sequences, 5–7

C
__call__ special method, with instances,

63–64
callable built-in function, 63
CapitalizedWord format, 3

218 Index

Central processing unit. See CPU
(central processing unit)

C-extension modules
for CPU bottlenecks, 145
problems with, 146

chain function, of itertools module, 170
Child classes, initializing parent classes

from, 69–73
Child processes, subprocess managing,

118–121
Circular dependencies

dynamic imports resolving, 191–192
import reordering for, 189–190
import/configure/run steps for,

190–191
in importing modules, 187–188
refactoring code for, 189

Clarity, with keyword arguments, 51–54
Class interfaces

@property method improving, 91–94
use public attributes for defining,

87–88
class statements, metaclasses receiving,

106–107
__class__ variable

registering classes and, 108–112
super built_in function with, 73

Classes. See also Metaclasses;
Subclasses

annotating properties of, 112–115
for bookkeeping, 58–60
docstrings for, 177
initializing parent, 69–73
metaclasses registering, 108–112
mix-in, 73–78
versioning, 160–161

@classmethod
in accessing private attributes, 78–79
polymorphism, for constructing

objects generically, 67–69
Closures, interacting with variable

scope, 31–36
collections module

defaultdict class from, 168
deque class from, 166–167
OrderedDict class from, 167–168

collections.abc module, custom
containers inheriting from, 84–86

combination function, of itertools
module, 170

Command-lines
correct Python version, 1, 2
starting child processes, 119–120

communicate method
reading child process output,

118–119
timeout parameter with, 121

Community-built modules, Python
Package Index for, 173–174

Complex expressions, helper functions
and, 8–10

Concurrency
coroutines and, 137–138
defined, 117
in pipelines, 129–132
Queue class and, 132–136

concurrent.futures built-in module,
enabling parallelism, 146–148

configparser built-in module, for
production configuration, 201

Containers
inheriting from collections.abc,

84–86
iterable, 41–42

contextlib built-in module, enabling
with statements, 154–155

contextmanager decorator
purpose of, 154
as targets and, 155–156

continue command, of interactive
debugger, 209

Conway’s Game of Life, coroutines and,
138–143

Coordinated Universal Time (UTC), in
time conversions, 162–165

copyreg built-in module
adding missing attribute values,

159–160
controlling pickle behavior, 158
providing stable import paths,

161–162
versioning classes with, 160–161

Coroutines
in Conway’s Game of Life, 138–143
purpose of, 137–138
in Python 2, 143–145

count method, for custom container
types, 85–86

cProfile module, for accurate profiling,
210–213

CPU (central processing unit)
bottleneck difficulties, 145–146
time, threads wasting, 131–132
usage, child processes and, 118–121

CPython interpreter, effect of GIL on,
122–123

 Index 219

CPython runtime
memory management with, 214

cumtime column, in profiler statistics,
211

cumtime percall column, in profiler
statistics, 211

cycle function, of itertools module, 170

D
Data models, @property improving,

91–95
Data races, Lock preventing, 126–129
datetime built-in module, for time

conversions, 164–166
deactivate command, disabling pyvenv

tool, 195–196
Deadlocks, timeout parameter avoiding,

121
Deallocation of memory, tracemalloc

managing, 214–216
Debuggers, decorator problems with,

151, 153
Debugging

interactive, with pdb module,
208–209

memory usage, 214–216
print function and, 202
repr strings for, 202–204
root exceptions for, 185–186

Decimal class, for numerical precision,
171–173

Decorators, functionality of, 151–153
functools, 151–153

Default arguments
approach to serialization, 159–160
namedtuple classes and, 59
using dynamic values for, 48–51

Default value hooks, 62–64
defaultdict using, 62–64

Default values
copyreg built-in module and,

159–160
of keyword arguments, 46–47

defaultdict class, for dictionaries, 168
Dependencies

circular, 187–192
reproducing, 196–197
transitive, 192–194

Dependency injection, 191
Deployment environments, module-

scoped code for, 199–201
deque class, as double-ended queue,

166–167

Descriptors
enabling reusable property

logic, 90
in modifying class properties,

112–115
for reusable @property methods,

97–100
Deserializing objects

default attribute values and,
159–160

pickle built-in module for, 157–158
stable import paths and, 161–162

Development environment, unique
configurations/assumptions for,
199–201

Diamond inheritance, initializing parent
classes and, 70–71

__dict__ attribute, viewing object
internals, 204

Dictionaries
bookkeeping with, 55–58
comprehension expressions in, 16
default, 168
ordered, 167–168
translating related objects into,

74–75
__doc__ special attribute, retrieving

docstrings, 175–176
Docstrings

class-level, 177
documenting default behavior in,

48–51
for functions, 178–179
importance/placement of,

175–176
module, 176–177

doctest built-in module, 179
Documentation

docstrings for. See Docstrings
importance of, 175

Documentation-generation tools, 176
Double-ended queues, deque classes as,

166–167
__double_leading_underscore format, 3
down command, of interactive debugger,

209
dropwhile function, of itertools module,

170
Dynamic imports

avoiding, 192
resolving circular dependencies,

191–192
Dynamic state, defined, 55

220 Index

E
else blocks

after for/while loops, 23–25
during exception handling, 26–27

end indexes, in slicing sequences,
10–13

__enter__ method, in defining new
classes, 154

enumerate built-in function, preferred
features of, 20–21

environ dictionary, tailoring modules
with, 201

eval built-in function, for re-creating
original values, 203

Exceptions
raising, 29–31
root, 184–187
try/finally blocks and, 26–28

Execution time, optimization of,
209–213

__exit__ method, in defining new
classes, 154

Expressions
in list comprehensions, 16–18
PEP 8 guidance for, 4

F
filter built-in function, list

comprehensions vs., 15–16
filterfalse function, of itertools

module, 170
finally blocks, during exception

handling, 26–27
First-in-first-out queues, deque class for,

166–167
for loops

else blocks after, 23–25
iterator protocol and, 40–42

Fraction class, for numerical precision,
172

Functions
closure/variable scope interaction,

31–36
decorated, 151–153
docstrings for, 178–179
exceptions vs. return None, 29–31
as first-class objects, 32, 63–64
generator vs. returning lists, 36–38
iterating over arguments, 38–42
keyword arguments for, 45–48
keyword-only arguments for, 51–54
optional positional arguments for,

43–45

for simple interfaces, 61–64
simultaneous, coroutines for,

137–138
functools built-in module, for defining

decorators, 152–153

G
Game of Life, coroutines in, 138–143
Garbage collector, cleanup by, 99
gc built-in module, debugging memory

usage, 214–215
Generator(s)

coroutine extensions of, 137–138
expressions, for large

comprehensions, 18–20
returning lists vs., 36–38

Generic class method, for constructing
objects, 67–69

Generic functionality, with mix-in
classes, 74–78

__get__ method, for descriptor protocol,
97–100

__getattr__ special method, to lazily
load attributes, 100–103

__getattribute__ method, accessing
instance variables in, 104–105

__getattribute__ method, descriptor
protocol and, 98–100

__getattribute__ special method, for
repeated access, 102–105

__getitem__ special method
custom implementation of, 84–86
in slicing sequences, 10

Getter methods
descriptor protocol for, 98–100
problems with using, 87–88
providing with @property, 88–89

GIL (global interpreter lock)
corruption of data structures and,

126–127
defined, 122
preventing parallelism in threads,

122–125, 145, 146–147
Global scope, 33

H
hasattr built-in function, determining

existence of properties, 103
hashlib built-in module, 120
heappop function, for priority queues,

168–169
heappush function, for priority queues,

168–169

 Index 221

heapq module, for priority queues,
168–169

help function
decorator problems with,

152–153
in interactive debugger, 208

Helper classes
for bookkeeping, 58–60
providing stateful closure behavior,

62–63
Helper functions, complex expressions

into, 8–10
Hooks

to access missing attributes,
100–105

default value, 62–64
functions acting as, 61–62
in modifying class properties, 113

I
IEEE 754 (IEEE Standard for Floating-

Point Arithmetic), 171–172
if/else expressions, for simplification,

9–10
import * statements

avoiding, 183–184
in providing stable APIs, 182–183

Import paths, stable, copyreg providing,
161–162

Import reordering, for circular
dependencies, 189–190

import statements
as dynamic imports, 191–192
with packages, 180–181

Incrementing in place, public attributes
for, 88

index method, for custom container
types, 85–86

Infinite recursion, super() function
avoiding, 101–105

Inheritance
from collections.abc, 84–86
method resolution order (MRO) and,

71
multiple, for mix-in utility classes,

77–78
__init__ method

as single constructor per class, 67,
69

initializing parent class, 69–71
__init__.py

defining packages, 180
modifying, 182

Initializing parent classes
__init__ method for, 69–71
method resolution order (MRO) and,

71
super built-in function for, 70–73

Integration tests, 207
Interactive debugging, with pdb,

208–209
Intermediate root exceptions, future-

proofing APIs, 186–187
I/O (input/output)

between child processes, 118–121
threads for blocking I/O, 124–125

IOError, except blocks and, 26–27
IronPython runtime, 1, 2
isinstance

bytes/str/unicode and, 5–6
with coroutines, 142
dynamic type inspection with,

74–75
metaclasses and, 114
pickle module and, 158
testing and, 205

islice function, of itertools
module, 170

iter built-in function, 41–42
__iter__ method

as generator, 41–42
iterable container class, defined,

41–42
Iterator protocol, 40–42
Iterators

as function arguments, 39
generators returning, 37–38
zip function processing, 21–23

itertools built-in module
functions of, 169–170

izip_longest function, for iterating in
parallel, 23

J
join method, of Queue class, 132–136
Jython runtime, 1, 2

K
Keyword arguments

constructing classes with, 58
dynamic default argument values,

48–51
providing optional behavior, 45–48

Keyword-only arguments
for clarity, 51–53
in Python 2, 53–54

222 Index

L
lambda expression

as key hook, 61
vs. list comprehensions, 15–16
producing iterators and, 40
in profiling, 210–212

Language hooks, for missing attributes,
100–105

Lazy attributes, __getattr__/
__setattr__/__getattribute__ for,
100–105

_leading_underscore format, 3
Leaky bucket quota, implementing,

92–95
len built-in function, for custom

sequence types, 85
__len__ special method, for custom

sequence types, 85
list built-in type, performance as FIFO

queue , 166–167
List comprehensions

generator expressions for, 18–20
instead of map/filter, 15–16
number of expressions in, 16–18

list type, subclassing, 83–84
Lists, slicing, 10–13
locals built-in function, 152, 208
localtime function, from time module,

163–164
Lock class

preventing data races, 126–129
in with statements, 153–154

Logging
debug function for, 154–156
severity levels, 154–155

Loops
else blocks after, 23–25
in list comprehensions, 16–18
range/enumerate functions, 20–21

lowercase_underscore format, 3

M
map built-in function, list

comprehensions vs., 15–16
Memory

coroutine use of, 137
threads requiring, 136

Memory leaks
by descriptor classes, 99–100
identifying, 214–216

Memory management, with tracemalloc
module, 214–216

Meta.__new__ method
in metaclasses, 107
setting class attributes, 114

__metaclass__ attribute, in Python 2,
106–107

Metaclasses
annotating attributes with,

112–115
for class registration, 108–112
defined, 87, 106
validating subclasses, 105–108

method resolution order (MRO), for
superclass initialization order,
70–73

Mix-in classes
composing from simple behaviors,

74–75
defined, 73–74
pluggable behaviors for, 75–76
utility, creating hierachies of,

77–78
mktime, for time conversion, 163, 165
Mock functions and classes

unittest.mock built-in module,
206

__module__ attribute, 106, 153
Modules

breaking circular dependencies in,
187–192

community-built, 173–174
docstrings, 176–177
packages for organizing, 179–184
providing stable APIs from,

181–184
tailoring for deployment

environment, 199–201
Module-scoped code, for deployment

environments, 199–201
MRO (method resolution order), for

superclass initialization order,
70–73

Multiple conditions, in list
comprehensions, 16–18

Multiple inheritance, for mix-in utility
classes, 73–78

Multiple iterators, zip built-in function
and, 21–23

Multiple loops, in list comprehensions,
16–18

multiprocessing built-in module,
enabling parallelism,
146–148

 Index 223

Mutual-exclusion locks (mutex)
GIL as, 122
Lock class as, 126–129
in with statements, 153–154

N
__name__ attribute in defining

decorators, 151, 153
in registering classes, 109–110
testing and, 206

namedtuple type
defining classes, 58
limitations of, 59

NameError exception, 33
Namespace packages, with Python 3.4,

180
Naming conflicts, private attributes to

avoid, 81–82
Naming styles, 3–4
ncalls column in profiler statistics, 211
__new__ method, of metaclasses,

106–108
next built-in function, 41–42
next command, of interactive debugger,

209
__next__ special method, iterator object

implementing, 41
Noise reduction, keyword arguments

and, 45–48
None value

functions returning, 29–31
specifying dynamic default values,

48–51
nonlocal statement, in closures

modifying variables, 34–35
nsmallest function, for priority queues,

168–169
Numerical precision, with Decimal class,

171–173

O
Objects, accessing missing attributes in,

100–105
On-the-fly calculations, using @property

for, 91–95
Optimization, profiling prior to, 209–213
Optional arguments

keyword, 47–48
positional, 43–45

OrderedDict class, for dictionaries,
167–168

OverflowError exceptions, 51

P
Packages

dividing modules into namespaces,
180–181

as modules containing modules,
179–180

providing stable APIs with, 181–184
Parallelism

avoiding threads for, 122–123
child processes and, 118–121
concurrent.futures for true, 146–148
corruption of data structures and,

126–128
defined, 117
need for, 145–146

Parent classes
accessing private attributes of,

79–81
initializing, 70–73

pdb built-in module, for interactive
debugging, 208–209

pdb.set_trace() statements, 208–209
PEP 8 (Python Enhancement Proposal

#8) style guide
expression/statement rules, 4
naming styles in, 3–4, 80
overview of, 2–3
whitespace rules, 3

permutations function, of itertools
module, 170

pickle built-in module
adding missing attribute values,

159–160
providing stable import paths for,

161–162
serializing/deserializing objects,

157–158
versioning classes for, 160–161

pip command-line tool
reproducing environments, 196–197
transitive dependencies and,

192–193
for utilizing Package Index, 173

pip freeze command, saving package
dependencies, 196

Pipelines
concurrency in, 129–131
problems with, 132
Queue class building, 132–136

Polymorphism
@classmethods utilizing, 65–69
defined, 64

224 Index

Popen constructor, starting child
processes, 118

Positional arguments
constructing classes with, 58
keyword arguments and, 45–48
reducing visual noise, 43–45

print function, for debugging output,
202–203, 208

print_stats output, for profiling, 213
Printable representation, repr function

for, 202–204
Private attributes

accessing, 78–80
allowing subclass access to, 81–83
indicating internal APIs, 80

ProcessPoolExecutor class, enabling
parallelism, 147–148

product function, of itertools module,
170

Production environment, unique
configurations for, 199–201

profile module, liabilities of, 210
@property method

defining special behavior with,
88–89

descriptors for reusing, 97–100
giving attributes new functionality,

91–94
improving data models with, 95
numerical attributes, into on-the-fly

calculations, 91–95
problems with overusing, 95–96
unexpected side effects in, 90–91

@property.setter, modifying object state
in, 91

pstats built-in module, extracting
statistics, 211

Public attributes
accessing, 78
defining new class interfaces with,

87–88
giving new functionality to, 91–94
preferred features of, 80–82

Pylint tool, for Python source code, 4
PyPI (Python Package Index), for

community-built modules,
173–174

PyPy runtime, 1, 2
Python 2

coroutines in, 143–145
determining use of, 2
keyword-only arguments in, 53–54
metaclass syntax in, 106–107
mutating closure variables in, 35

str and unicode in, 5–7
zip built-in function in, 22

Python 3
class decorators in, 111
determining use of, 2
closures and nonlocal statements in,

34–35
keyword-only arguments in, 51–53
metaclass syntax in, 106
str and bytes in, 5–7

Python Enhancement Proposal #8. See
PEP 8 (Python Enhancement
Proposal #8) style guide

Python Package Index (PyPI), for
community-built modules, 173–174

Python threads. See Threads
pytz module

installing, 173
pyvenv tool and, 194
for time conversions, 165–166

pyvenv command-line tool
purpose of, 194
reproducing environments, 196–197
for virtual environments, 194–196

Q
quantize method, of Decimal class, for

numerical data, 172
Queue class, coordinating work between

threads, 132–136

R
range built-in function, in loops, 20
Read the Docs community-funded site,

176
Refactoring attributes, @property

instead of, 91–95
Refactoring code, for circular

dependencies, 189
Registering classes, metaclasses for,

108–112
Repetitive code

composing mix-ins to minimize, 74
keyword arguments eliminating,

45–48
__repr__ special method, customizing

class printable representation,
203–204

repr strings, for debugging output,
202–204

requirements.txt file, for installing
packages, 197

return command, of interactive
debugger, 209

 Index 225

return statements
in generators, 140
not allowed in Python 2 generators,

144
Root exceptions

finding bugs in code with, 185–186
future-proofing APIs, 186–187
insulating callers from APIs,

184–185
Rule of least surprise, 87, 90, 91
runcall method, for profiling, 211–213

S
Scopes, variable, closure interaction

with, 31–36
Scoping bug, in closures, 34
select built-in module, blocking I/O,

121, 124
Serializing, data structures, 109
Serializing objects, pickle and

default argument approach to,
159–160

default attribute values and,
159–160

pickle built-in module for, 157–158
stable import paths and, 161–162

__set__ method, for descriptor protocol,
97–100

set_trace function, pdb module running,
208–209

setattr built-in function
annotating class attributes and, 113
in bad thread interactions, 127–128
lazy attributes and, 101–102, 104

__setattr__ special method, to lazily set
attributes, 103–105

__setitem__ special method, in slicing
sequences, 10

Sets, comprehension expressions in, 16
setter attribute, for @property method,

88–89
Setter methods

descriptor protocol for, 98–100
liability of using, 87–88
providing with @property, 88–89

setuptools, in virtual environments,
195–197

Single constructor per class, 67, 69
Single-line expressions, difficulties

with, 8–10
six tool, in adopting Python 3, 2
Slicing sequences

basic functions of, 10–13
stride syntax in, 13–15

Sort, key argument, closure functions
as, 31–32

source bin/activate command, enabling
pyvenv tool, 195

Speedup, concurrency vs. parallelism
for, 117

Star args (*args), 43
start indexes, in slicing sequences,

10–13
Statements, PEP 8 guidance for, 4
Static type checking, lack of, 204–205
Stats object, for profiling information,

211–213
step command, of interactive debugger,

209
StopIteration exception, 39, 41
str instances, for character sequences,

5–7
stride syntax, in slicing sequences,

13–15
strptime functions, conversion to/from

local time, 163–164
Subclasses

allowing access to private fields,
81–83

constructing/connecting generically,
65–69

list type, 83–84
TestCase, 206–207
validating with metaclasses,

105–108
subprocess built-in module, for child

processes, 118–121
super built-in function, initializing

parent classes, 71–73
super method, avoiding infinite

recursion, 101–105
Superclass initialization order, MRO

resolving, 70–73
Syntax

decorators, 151–153
for closures mutating variables,

34–35
for keyword-only arguments, 52–53
loops with else blocks, 23
list comprehensions, 15
metaclasses, 106
slicing, 10–13

SyntaxError exceptions, dynamic
imports and, 192

sys module, guiding module definitions,
201

System calls, blocking I/O and,
124–125

226 Index

T
takewhile function, of itertools module,

170
task_done call, method of the Queue

class, in building pipelines, 134
tee function, of itertools module, 170
Test methods, 206–207
TestCase classes, subclassing, 206–207
threading built-in module, Lock class in,

126–129
ThreadPoolExecutor class, not enabling

parallelism, 147–148
Threads

blocking I/O and, 124–125
coordinating work between, 132–136
parallelism prevented by, 122–123,

145, 146–147
preventing data races between,

126–129
problems with, 136
usefulness of multiple, 124

time built-in module, limitations of,
163–164

Time zone conversion methods, 162–166
timeout parameter, in child process I/O,

121
tottime column, in profiler statistics,

211
tottime percall column, in profiler

statistics, 211
tracemalloc built-in module, for memory

optimization, 214–216
Transitive dependencies, 192–194
try/except statements, root exceptions

and, 185
try/except/else/finally blocks, during

exception handling, 27–28
try/finally blocks

during exception handling, 26–27
with statements providing reusable,

154–155
Tuples

extending, 58
rules for comparing, 32
as values, 57
variable arguments becoming, 44
zip function producing, 21–23

TypeError
exceptions, for keyword-only

arguments, 53–54
rejecting iterators, 41–42

tzinfo class, for time zone operations,
164–165

U
unicode instances, for character

sequences, 5–7
Unit tests, 207
unittest built-in module, for writing

tests, 205–207
UNIX timestamp, in time conversions,

163–165
Unordered dictionaries, 167
up command, of interactive debugger,

209
UTC (Coordinated Universal Time), in

time conversions, 162–165
Utility classes, mix-in, creating

hierarchies of, 77–78

V
Validation code, metaclasses running,

105–108
ValueError exceptions, 30–31, 184
Values

from iterators, 40–42
tuples as, 57
validating assignments to, 89

Variable positional arguments
keyword arguments and, 47–48
reducing visual noise, 43–45

Variable scopes, closure interaction
with, 31–36

--version flag, determining version of
Python, 1–2

Virtual environments
pyvenv tool creating, 194–196
reproducing, 196–197

virtualenv command-line tool, 194
Visual noise, positional arguments

reducing, 43–45

W
WeakKeyDictionary, purpoose of, 99
weakref module, building descriptors,

113
while loops, else blocks following, 23–25
Whitespace, importance of, 3
Wildcard imports, 183
with statements

mutual-exclusion locks with,
153–154

for reusable try/finally blocks,
154–155

as target values and, 155–156
wraps helper function, from functools,

for defining decorators, 152–153

 Index 227

Y
yield expression

in coroutines, 137–138
in generator functions, 37
use in contextlib, 155

yield from expression, unsupported in
Python 2, 144

Z
ZeroDivisionError exceptions, 30–31, 51
zip built-in function

for iterators of different lengths, 170
processing iterators in parallel, 21–23

zip_longest function, for iterators of
different length, 22–23, 170

	Contents
	Preface
	Acknowledgments
	About the Author
	Chapter 2: Functions
	Item 14: Prefer Exceptions to Returning None
	Item 15: Know How Closures Interact with Variable Scope
	Item 16: Consider Generators Instead of Returning Lists
	Item 17: Be Defensive When Iterating Over Arguments
	Item 18: Reduce Visual Noise with Variable Positional Arguments
	Item 19: Provide Optional Behavior with Keyword Arguments
	Item 20: Use None and Docstrings to Specify Dynamic Default Arguments
	Item 21: Enforce Clarity with Keyword-Only Arguments

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

