
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780133927313
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780133927313
https://plusone.google.com/share?url=http://www.informit.com/title/9780133927313
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780133927313
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780133927313/Free-Sample-Chapter

Praise for Books by Mark G. Sobell

“I have said before on several occasions that Sobell does really good work. Well,
[A Practical Guide to Ubuntu Linux®, Third Edition] holds true to my words. This is
a big book with some 1250+ pages in it absolutely filled to the brim with useful infor-
mation. The review on the front cover mentions that the book is ‘comprehensive’ and
that just might be understating it a little. This book has practically anything you might
want to know about Ubuntu, and references a lot of really helpful general Linux and
userland program information and it’s put together in a very straight forward and
understandable way. Having the word ‘Practical’ in the name is also a really good fit
as the book offers great walk-throughs on things people will want to do with their
Ubuntu install from beginner things like configuring a printer all the way up to things
like some Perl programming and running your own Web server. All in all, this book is
not only worth a look, but it is a keeper. It’s a good read and great technical reference.”

—Lincoln C. Fessenden, Linux Guy / I.T. Manager

“The third updated edition of A Practical Guide to Ubuntu Linux® offers a fine ref-
erence perfect for any Ubuntu Linux computer collection, packing in hundreds of prac-
tical applications for Ubuntu with keys to security, Perl scripting, common
administration tasks, and more. From keeping Ubuntu systems current to handling con-
figuration issues, this is a solid reference to the latest Ubuntu applications and chal-
lenges.”

—Jim Cox, Midwest Book Review

“This is an excellent text and I am using it as of this term as the textbook for the class
in Linux that I am teaching at the local Community College. The first book on UNIX
that I used twenty-five years ago was written by Sobell. He hasn’t lost his touch.”

—James J. Sherin, Part-Time Faculty, Westmoreland County
Community College

“When I first started working with Linux just a short 10 years or so ago, it was a
little more difficult than now to get going. . . . Now, someone new to the community
has a vast array of resources available on the web, or if they are inclined to begin
with Ubuntu, they can literally find almost every single thing they will need in the
single volume of Mark Sobell’s A Practical Guide to Ubuntu Linux®.

“Overall, I think it’s a great, comprehensive Ubuntu book that’ll be a valuable
resource for people of all technical levels.”

—John Dong, Ubuntu Forum Council Member, Backports Team Leader

“I would so love to be able to use this book to teach a class about not just Ubuntu
or Linux but about computers in general. It is thorough and well written with good
illustrations that explain important concepts for computer usage.”

—Nathan Eckenrode, New York Local Community Team

000.book Page i Friday, November 21, 2014 6:41 PM

“Ubuntu is gaining popularity at the rate alcohol did during Prohibition, and it’s great
to see a well-known author write a book on the latest and greatest version. Not only
does it contain Ubuntu-specific information, but it also touches on general computer-
related topics, which will help the average computer user to better understand what’s
going on in the background. Great work, Mark!”

—Daniel R. Arfsten, Pro/ENGINEER Drafter/Designer

“This is well-written, clear, comprehensive information for the Linux user of any
type, whether trying Ubuntu on for the first time and wanting to know a little about
it, or using the book as a very good reference when doing something more complicated
like setting up a server. This book’s value goes well beyond its purchase price and it’ll
make a great addition to the Linux section of your bookshelf.”

—Linc Fessenden, Host of The LinuxLink TechShow, tllts.org

“Overall, A Practical Guide to Ubuntu Linux® by Mark G. Sobell provides all of the
information a beginner to intermediate user of Linux would need to be productive.
The inclusion of the Live DVD of Ubuntu makes it easy for the user to test-drive
Linux without affecting his installed OS. I have no doubts that you will consider this
book money well spent.”

—Ray Lodato, Slashdot contributor, www.slashdot.org

“I’m sure this sounds a bit like hyperbole. Everything a person would need to know?
Obviously not everything, but this book, weighing in at just under 1200 pages,
covers so much so thoroughly that there won’t be much left out. From install to
admin, networking, security, shell scripting, package management, and a host of
other topics, it is all there. GUI and command line tools are covered. There is not
really any wasted space or fluff, just a huge amount of information. There are screen
shots when appropriate but they do not take up an inordinate amount of space.
This book is information-dense.”

—JR Peck, Editor, GeekBook.org

“Sobell tackles a massive subject, the vast details of a Linux operating system, and
manages to keep the material clear, interesting and engaging. . . . If you want to know
how to get the most out of your Red Hat, Fedora, or CentOS system, then this is one
of the best texts available, in my opinion.”

—Jesse Smith, Feature Writer for DistroWatch

“I had the chance to use your UNIX books when I when was in college years ago at Cal
Poly, San Luis Obispo, CA. I have to say that your books are among the best! They’re
quality books that teach the theoretical aspects and applications of the operating system.”

—Benton Chan, IS Engineer

“I currently own one of your books, A Practical Guide to Linux®. I believe this book
is one of the most comprehensive and, as the title says, practical guides to Linux I

000.book Page ii Friday, November 21, 2014 6:41 PM

http://www.slashdot.org

have ever read. I consider myself a novice and I come back to this book over and
over again.”

—Albert J. Nguyen

“The book has more than lived up to my expectations from the many reviews I read,
even though it targets FC2. I have found something very rare with your book: It
doesn’t read like the standard technical text, it reads more like a story. It’s a pleasure
to read and hard to put down. Did I say that?! :-)”

—David Hopkins, Business Process Architect

“Thanks for your work and for the book you wrote. There are really few books that
can help people to become more efficient administrators of different workstations.
We hope (in Russia) that you will continue bringing us a new level of understanding
of Linux/UNIX systems.”

—Anton Petukhov

“Mark Sobell has written a book as approachable as it is authoritative.”

—Jeffrey Bianchine, Advocate, Author, Journalist

“Since I’m in an educational environment, I found the content of Sobell’s book to be
right on target and very helpful for anyone managing Linux in the enterprise. His
style of writing is very clear. He builds up to the chapter exercises, which I find to be
relevant to real-world scenarios a user or admin would encounter. An IT/IS student
would find this book a valuable complement to their education. The vast amount of
information is extremely well balanced and Sobell manages to present the content
without complicated asides and meandering prose. This is a ‘must have’ for anyone
managing Linux systems in a networked environment or anyone running a Linux
server. I would also highly recommend it to an experienced computer user who is
moving to the Linux platform.”

—Mary Norbury, IT Director, Barbara Davis Center, University of
Colorado at Denver, from a review posted on slashdot.org

“Excellent reference book, well suited for the sysadmin of a Linux cluster, or the
owner of a PC contemplating installing a recent stable Linux. Don’t be put off by the
daunting heft of the book. Sobell has striven to be as inclusive as possible, in trying
to anticipate your system administration needs.”

—Wes Boudville, Inventor

“The JumpStart sections really offer a quick way to get things up and running, allowing
you to dig into the details of the book later.”

—Scott Mann, Aztek Networks

“A Practical Guide to Red Hat® Linux® is a brilliant book. Thank you Mark Sobell.”

—C. Pozrikidis, University of California at San Diego

000.book Page iii Friday, November 21, 2014 6:41 PM

“Overall I found this book to be quite excellent, and it has earned a spot on the very
front of my bookshelf. It covers the real ‘guts’ of Linux—the command line and its
utilities—and does so very well. Its strongest points are the outstanding use of examples,
and the Command Reference section. Highly recommended for Linux users of all skill
levels. Well done to Mark Sobell and Prentice Hall for this outstanding book!”

—Dan Clough, Electronics Engineer and Slackware Linux User

“This book presents the best overview of the Linux operating system that I have
found. . . . [It] should be very helpful and understandable no matter what the reader’s
background: traditional UNIX user, new Linux devotee, or even Windows user. Each
topic is presented in a clear, complete fashion and very few assumptions are made
about what the reader knows. . . . The book is extremely useful as a reference, as it
contains a 70-page glossary of terms and is very well indexed. It is organized in such
a way that the reader can focus on simple tasks without having to wade through more
advanced topics until they are ready.”

—Cam Marshall, Marshall Information Service LLC, Member of Front
Range UNIX, Users Group [FRUUG], Boulder, Colorado

“Conclusively, this is THE book to get if you are a new Linux user and you just got
into RH/Fedora world. There’s no other book that discusses so many different topics
and in such depth.”

—Eugenia Loli-Queru, Editor in Chief, OSNews.com

“This book is a very useful tool for anyone who wants to ‘look under the hood’ so
to speak, and really start putting the power of Linux to work. What I find particularly
frustrating about man pages is that they never include examples. Sobell, on the other
hand, outlines very clearly what the command does and then gives several common,
easy-to-understand examples that make it a breeze to start shell programming on
one’s own. As with Sobell’s other works, this is simple, straight-forward, and easy to
read. It’s a great book and will stay on the shelf at easy arm’s reach for a long time.”

—Ray Bartlett, Travel Writer

“Totally unlike most Linux books, this book avoids discussing everything via GUI
and jumps right into making the power of the command line your friend.”

—Bjorn Tipling, Software Engineer, ask.com

“This book is the best distro-agnostic, foundational Linux reference I’ve ever seen,
out of dozens of Linux-related books I’ve read. Finding this book was a real stroke
of luck. If you want to really understand how to get things done at the command line,
where the power and flexibility of free UNIX-like OSes really live, this book is among
the best tools you’ll find toward that end.”

—Chad Perrin, Writer, TechRepublic

000.book Page iv Friday, November 21, 2014 6:41 PM

“Thank you for writing a book to help me get away from Windows XP and to never
touch Windows Vista. The book is great; I am learning a lot of new concepts and
commands. Linux is definitely getting easier to use.”

—James Moritz

“I am so impressed by how Mark Sobell can approach a complex topic in such an
understandable manner. His command examples are especially useful in providing a
novice (or even an advanced) administrator with a cookbook on how to accomplish
real-world tasks on Linux. He is truly an inspired technical writer!”

—George Vish II, Senior Education Consultant, Hewlett-Packard
Company

“I read a lot of Linux technical information every day, but I’m rarely impressed by
tech books. I usually prefer online information sources instead. Mark Sobell’s books
are a notable exception. They’re clearly written, technically accurate, comprehensive,
and actually enjoyable to read.”

—Matthew Miller, Senior Systems Analyst/Administrator, BU Linux
Project, Boston University Office of Information Technology

“The author has done a very good job at clarifying such a detail-oriented operating
system. I have extensive Unix and Windows experience and this text does an excellent
job at bridging the gaps between Linux, Windows, and Unix. I highly recommend
this book to both ‘newbs’ and experienced users. Great job!”

—Mark Polczynski, Information Technology Consultant

“I have been wanting to make the jump to Linux but did not have the guts to do so—
until I saw your familiarly titled A Practical Guide to Red Hat® Linux® at the book-
store. I picked up a copy and am eagerly looking forward to regaining my freedom.”

—Carmine Stoffo, Machine and Process Designer to the
pharmaceutical industry

“I am currently reading A Practical Guide to Red Hat® Linux® and am finally under-
standing the true power of the command line. I am new to Linux and your book is a
treasure.”

—Juan Gonzalez

000.book Page v Friday, November 21, 2014 6:41 PM

This page intentionally left blank

A Practical Guide to Ubuntu Linux

FOURTH EDITION

®

000.book Page vii Friday, November 21, 2014 6:41 PM

This page intentionally left blank

A Practical Guide to Ubuntu Linux

FOURTH EDITION

Mark G. Sobell

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

®

000.book Page ix Friday, November 21, 2014 6:41 PM

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any
kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic
versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact international@pearsoned.com.

Visit us on the Web: informit.com/ph

Library of Congress Cataloging-in-Publication Data

Sobell, Mark G.
 A practical guide to Ubuntu Linux / Mark G. Sobell.—Fourth edition.
 pages cm
 Includes index.
 ISBN 978-0-13-392731-3 (pbk. : alk. paper)
 1. Ubuntu (Electronic resource) 2. Linux. 3. Operating systems (Computers) I. Title.
 QA76.76.O63S59497 2015
 005.4'46—dc23
 2014036709

Copyright © 2015 Mark G. Sobell

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must
be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use material
from this work, please submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper
Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-13-392731-3
ISBN-10: 0-13-392731-8

Text printed in the United States on recycled paper at Edwards Brothers Malloy in Ann Arbor, Michigan.

First printing, December 2014

000.book Page x Friday, November 21, 2014 6:41 PM

For my father,
Morton Sobell

000.book Page xi Friday, November 21, 2014 6:41 PM

This page intentionally left blank

xiiixiii

Brief Contents

List of JumpStarts xv
Contents xvii
Preface xliii

1 Welcome to Linux 1

PART I Installing Ubuntu Linux 23

2 Installation Overview 25

3 Step-by-Step Installation 55

PART II Using Ubuntu Linux 95

4 Introduction to Ubuntu 97

5 The Shell 149

6 The Linux Filesystem 183

7 The Linux Utilities 223

8 Networking and the Internet 285

PART III System Administration 331

9 The Bourne Again Shell (bash) 333

10 System Administration: Core Concepts 425

11 Files, Directories, and Filesystems 479

12 Finding, Downloading, and Installing Software 509

000.book Page xiii Monday, November 24, 2014 11:19 AM

xiv Brief Contents

13 Printing with CUPS 539

14 Administration Tasks 563

15 System Security 595

16 Configuring and Monitoring a LAN 661

17 Setting Up Virtual Machines Locally and in the Cloud 687

PART IV Using Clients and Setting Up Servers 711

18 The OpenSSH Secure Communication Utilities 713

19 The rsync Secure Copy Utility 741

20 FTP: Transferring Files Across a Network 753

21 postfix: Setting Up Mail Servers, Clients, and More 779

22 NIS and LDAP 813

23 NFS: Sharing Directory Hierarchies 843

24 Samba: Linux and Windows File and Printer Sharing 869

25 DNS/BIND: Tracking Domain Names and Addresses 891

26 ufw, gufw, and iptables: Setting Up a Firewall 923

27 Apache (apache2): Setting Up a Web Server 951

PART V Programming Tools 1001

28 Programming the Bourne Again Shell (bash) 1003

29 The Python Programming Language 1103

30 The MariaDB SQL Database Management System 1135

PART VI Appendixes 1159

A Regular Expressions 1161

B Help 1171

C Keeping the System Up to Date Using yum 1177

D LPI and Comptia Certification 1183

Glossary 1231

JumpStart Index 1285

File Tree Index 1287

Utility Index 1291

Main Index 1297

000.book Page xiv Monday, November 24, 2014 11:19 AM

xvxv

JumpStarts

JumpStarts get you off to a quick start when you need to use a client or set up a server.
Once you have the client or server up and running, you can refine its configuration
using the information presented in the sections following each JumpStart.

APT (Software Packages)

JumpStart: Installing and Removing Software Packages Using apt-get 512

CUPS (Printing)

JumpStart I: Configuring a Printer Using system-config-printer 542
JumpStart II: Setting Up a Local or Remote Printer 544

OpenSSH (Secure Communication)

JumpStart I: Using ssh and scp to Connect to an OpenSSH Server 716
JumpStart II: Starting an OpenSSH Server 728

FTP (Download and Upload Files)

JumpStart I: Downloading Files Using ftp 756
JumpStart II: Starting a vsftpd FTP Server 765

Email

JumpStart: Configuring postfix to Use Gmail as a Smarthost 787

000.book Page xv Monday, November 24, 2014 11:19 AM

xvi JumpStarts

NFS (Network Filesystem)

JumpStart I: Mounting a Remote Directory Hierarchy 848
JumpStart II: Configuring an NFS Server Using shares-admin 855

Samba (Linux/Windows File Sharing)

JumpStart: Configuring a Samba Server Using shares-admin 879

DNS (Domain Name Service)

JumpStart: Setting Up a DNS Cache 906

Apache (HTTP)

JumpStart: Getting Apache Up and Running 955

000.book Page xvi Monday, November 24, 2014 11:19 AM

xviixvii

Contents

Preface xliii

Chapter 1: Welcome to Linux 1

The History of UNIX and GNU–Linux 2
The Heritage of Linux: UNIX 2
Fade to 1983 3
Next Scene, 1991 4
The Code Is Free 5
Linux Is More Than a Kernel 6
Open-Source Software and Licensing 6
What Is So Good About Linux? 7

Overview of Linux 11
Linux Has a Kernel Programming Interface 11
Linux Can Support Many Users 12
Linux Can Run Many Tasks 12
Linux Provides a Secure Hierarchical Filesystem 12
The Shell: Command Interpreter and Programming Language 13
X Window System 15
GUIs: Graphical User Interfaces 16
A Large Collection of Useful Utilities 18
Interprocess Communication 18
(Inter)Networking Utilities 18
System Administration 19
Software Development 19

Choosing an Operating System 19
Chapter Summary 21
Exercises 21

000.book Page xvii Monday, November 24, 2014 11:19 AM

xviii Contents

PART I Installing Ubuntu Linux 23

Chapter 2: Installation Overview 25

Conventions Used in This Book 26
LPI and CompTIA Certification Icons 28

More Information 29
Planning the Installation 30

Considerations 30
Requirements 30
Processor Architecture 32
Interfaces: Installer and Installed System 33
Gathering Information About the System 34

Ubuntu Releases, Editions, and Derivatives 35
Ubuntu Releases 35
Ubuntu Standard Editions: Desktop and Server Images 35
Ubuntu Derivatives 37

Setting Up the Hard Disk 38
Primary, Extended, and Logical Partitions 39
The Linux Directory Hierarchy 40
Mount Points 40
Partitioning a Disk 41
RAID 45
LVM: Logical Volume Manager 46

Downloading an Image File and Burning/Writing the Installation Medium 47
The Easy Way to Download an Installation Image File 47
Other Ways to Download an Installation Image File 48
Verifying an Installation Image File 51
Burning a DVD 52
Writing to a USB Flash Drive 52

Chapter Summary 53
Exercises 54
Advanced Exercises 54

Chapter 3: Step-by-Step Installation 55

Booting Ubuntu and Running a Live Session 56
Automatic Boot Sequence 56
Displaying the Boot Menu 57
Running a Live Session 59

Basic Installation 59
Installing from a Live Session 60
Installing from the Desktop Boot Menu 61
The ubiquity Graphical Installer 61

000.book Page xviii Monday, November 24, 2014 11:19 AM

 Contents xix

The ubiquity Advanced Partitioning Screen 67
Initializing Databases and Updating the System 70

Advanced Installation 71
The Boot Menus 72
Modifying Boot Parameters (Options) 75
Rescue Mode: Rescuing a Broken System 77
debian-installer: The Ubuntu Textual Installer 78
gnome-disks: The GNOME Disk Utility 88
Setting Up a Dual-Boot System 91

Chapter Summary 93
Exercises 94
Advanced Exercises 94

PART II Using Ubuntu Linux 95

Chapter 4: Introduction to Ubuntu 97

Curbing Your Power: root Privileges/sudo 98
Logging In on the System 99

The Unity Desktop 100
Installing the GNOME Flashback Desktop 103

Working with the Unity Desktop 104
Terminology 105
The Dash and the Run a Command Window 106
Context Menus 106
Windows 106
Cutting and Pasting Objects Using the Clipboard 107
Logging Out 108

Using the Nautilus File Manager 108
The Nautilus File Browser Window 109
The Sidebar 109
Opening Files 110
Selecting Objects 110
The Object Properties Window 111

The System Settings Window 113
Desktop Appearance 115
Displays 116
Mouse & Touchpad 116
Time & Date 117
User Accounts: Changing Your Account Type and Password (GUI) 118

Getting Help 118
The Ubuntu Desktop Guide 118
Using the Internet to Get Help 119

000.book Page xix Monday, November 24, 2014 11:19 AM

xx Contents

Installing, Removing, and Updating Software Packages 121
Software & Updates Window 122
Updating Software 123
Adding and Removing Software 124
Installing Other Desktop Environments 124

Working from the Command Line 125
Running Commands from the Command Line 126
The Shell 128
Running Basic Command-Line Utilities 132
Writing and Executing a Basic Shell Script 134
Getting Help from the Command Line 135

More About Logging In and Passwords 142
What to Do If You Cannot Log In 142
Password Security 143
passwd: Changing Your Password (CLI) 144

Chapter Summary 145
Exercises 146
Advanced Exercises 147

Chapter 5: The Shell 149

Special Characters 150
Ordinary Files and Directory Files 151

The Working Directory 151
Your Home Directory 151

The Command Line 152
A Simple Command 152
Syntax 152
Simple Commands 155
Processing the Command Line 156
Executing a Command 158
Editing the Command Line 159

Standard Input and Standard Output 159
The Screen as a File 160
The Keyboard and Screen as Standard Input and Standard Output 160
Redirection 161
Pipelines 166
Lists 170

Running a Command in the Background 171
Moving a Job from the Foreground to the Background 172
kill: Aborting a Background Job 172

Filename Generation/Pathname Expansion 173
The ? Special Character 173

000.book Page xx Monday, November 24, 2014 11:19 AM

 Contents xxi

The * Special Character 174
The [] Special Characters 176

Builtins 178
Chapter Summary 178

Utilities and Builtins Introduced in This Chapter 179
Exercises 179
Advanced Exercises 181

Chapter 6: The Linux Filesystem 183

The Hierarchical Filesystem 184
Ordinary Files and Directory Files 185

Filenames 186
Pathnames 189

Absolute Pathnames 189
Relative Pathnames 190

Working with Directories 191
mkdir: Creates a Directory 192
cd: Changes to Another Working Directory 193
rmdir: Deletes a Directory 194
Using Pathnames 195
mv, cp: Move or Copy Files 195
mv: Moves a Directory 196
Important Standard Directories and Files 197

Access Permissions 199
ls –l: Displays Permissions 199
chmod: Changes File Access Permissions 201
chown: Changes File Ownership 203
chgrp: Changes File Group Association 203
Setuid and Setgid Permissions 204
Directory Access Permissions 205

ACLs: Access Control Lists 206
Enabling ACLs 207
Working with Access Rules 207
Setting Default Rules for a Directory 210

Links 211
Hard Links 212
Symbolic Links 214
rm: Removes a Link 216

Chapter Summary 217
Exercises 219
Advanced Exercises 220

000.book Page xxi Monday, November 24, 2014 11:19 AM

xxii Contents

Chapter 7: The Linux Utilities 223

Basic Utilities 224
cat: Joins and Displays Files 224
date: Displays the System Time and Date 226
echo: Displays Arguments 227
hostname: Displays the System Name 227
less Is more: Display a Text File One Screen at a Time 228
ls: Displays Information About Files 229
rm: Removes a File (Deletes a Link) 231

Working with Files 232
cp: Copies Files 232
cut: Selects Characters or Fields from Input Lines 233
diff: Displays the Differences Between Two Text Files 235
file: Displays the Classification of a File 237
find: Finds Files Based on Criteria 237
grep: Searches for a Pattern in Files 240
head: Displays the Beginning of a File 243
lpr: Sends Files to Printers 243
mv: Renames or Moves a File 245
sort: Sorts and/or Merges Files 247
tail: Displays the Last Part of a File 249
touch: Changes File Modification and Access Times 251
wc: Displays the Number of Lines, Words, and Bytes in Files 252

Compressing and Archiving Files 253
xz, bzip2, and gzip: Compress and Decompress Files 253
tar: Stores or Extracts Files to/from an Archive File 257

Displaying User and System Information 260
free: Displays Memory Usage Information 261
uptime: Displays System Load and Duration Information 261
w: Lists Users on the System 262
who: Lists Users on the System 262

Miscellaneous Utilities 263
which and whereis: Locate a Utility 263
locate: Searches for a File 264
script: Records a Shell Session 265
tr: Replaces Specified Characters 266
unix2dos: Converts Linux Files to Windows and Macintosh Format 268
xargs: Converts Standard Input to Command Lines 268

Editing Files 270
Tutorial: Using vim to Create and Edit a File 270
Tutorial: Using nano to Create and Edit a File 277

Chapter Summary 280
Exercises 282
Advanced Exercises 283

000.book Page xxii Monday, November 24, 2014 11:19 AM

 Contents xxiii

Chapter 8: Networking and the Internet 285

Introduction to Networking 286
Types of Networks and How They Work 288

Broadcast Networks 288
Point-to-Point Networks 289
Switched Networks 289
LAN: Local Area Network 290
WAN: Wide Area Network 293
Internetworking Through Gateways and Routers 293
Network Protocols 296
IPv4 298
IPv6 299
Host Address 302
CIDR: Classless Inter-Domain Routing 306
Hostnames 306

Communicate over a Network 307
Mailing List Servers 307

Network Utilities 308
Trusted Hosts 308
OpenSSH Tools 309
telnet: Logs In on a Remote System 309
ftp: Transfers Files over a Network 311
ping: Tests a Network Connection 311
traceroute: Traces a Route over the Internet 312
host and dig: Query Internet Nameservers 313
whois: Looks Up Information About an Internet Site 314

Distributed Computing 315
The Client/Server Model 315
DNS: Domain Name Service 316
Ports 318
NIS: Network Information Service 319
NFS: Network Filesystem 319
Network Services 319
Common Daemons 320
Proxy Servers 322
RPC Network Services 323

WWW: World Wide Web 325
Browsers 326
Search Engines 326
URL: Uniform Resource Locator 326

Chapter Summary 327
Exercises 328
Advanced Exercises 328

000.book Page xxiii Monday, November 24, 2014 11:19 AM

xxiv Contents

PART III System Administration 331

Chapter 9: The Bourne Again Shell (bash) 333

Background 334
Startup Files 335

Login Shells 336
Interactive Nonlogin Shells 336
Noninteractive Shells 337
Setting Up Startup Files 337
. (Dot) or source: Runs a Startup File in the Current Shell 338

Commands That Are Symbols 339
Redirecting Standard Error 339
Writing and Executing a Shell Script 342

chmod: Makes a File Executable 343
#! Specifies a Shell 344
Begins a Comment 346
Executing a Shell Script 346

Control Operators: Separate and Group Commands 347
; and NEWLINE Separate Commands 347
| and & Separate Commands and Do Something Else 348
&& and || Boolean Control Operators 349
() Groups Commands 350
\ Continues a Command 351

Job Control 352
jobs: Lists Jobs 352
fg: Brings a Job to the Foreground 353
Suspending a Job 354
bg: Sends a Job to the Background 354

Manipulating the Directory Stack 355
dirs: Displays the Stack 355
pushd: Pushes a Directory on the Stack 356
popd: Pops a Directory off the Stack 357

Parameters and Variables 358
User-Created Variables 359
Variable Attributes 362
Keyword Variables 364

Special Characters 372
Locale 374

LC_: Locale Variables 374
locale: Displays Locale Information 375

Time 377
Processes 379

Process Structure 379

000.book Page xxiv Monday, November 24, 2014 11:19 AM

 Contents xxv

Process Identification 380
Executing a Command 381

History 382
Variables That Control History 383
Reexecuting and Editing Commands 384
The Readline Library 392

Aliases 398
Single Versus Double Quotation Marks in Aliases 399
Examples of Aliases 400

Functions 402
Controlling bash: Features and Options 404

bash Command-Line Options 405
Shell Features 405

Processing the Command Line 409
History Expansion 410
Alias Substitution 410
Parsing and Scanning the Command Line 410
Command-Line Expansion 410

Chapter Summary 420
Exercises 421
Advanced Exercises 423

Chapter 10: System Administration: Core Concepts 425

The Upstart Event-Based init Daemon 427
Software Package 428
Terminology 428
Jobs 430
SysVinit (rc) Scripts: Start and Stop System Services 435

System Operation 437
Runlevels 438
Booting the System 438
Going to Graphical Multiuser Mode 439
Logging In 440
Logging Out 441
Bringing the System Down 441
Crash 443
Using Loadable Kernel Modules 444

GRUB: The Linux Boot Loader 444
Terminology 445
Configuring GRUB 445
grub-mkconfig: Generates the grub.cfg File 449
grub-install: Installs the MBR and GRUB Files 450

000.book Page xxv Monday, November 24, 2014 11:19 AM

xxvi Contents

Recovery (Single-User) Mode 450
Booting the System to Recovery (Single-User) Mode 451

Textual System Administration Utilities 454
Setting Up a Server 460

Standard Rules in Configuration Files 461
rpcinfo: Displays Information About rpcbind 463

DHCP: Configures Network Interfaces 464
How DHCP Works 465
DHCP Client 465
DHCP Server 466

nsswitch.conf: Which Service to Look at First 468
Information 469
Methods 469
Search Order 469
Action Items 470
compat Method: ± in passwd, group , and shadow Files 471

X Window System 471
Starting X from a Character-Based Display 472
Remote Computing and Local Displays 472
Stopping the X Server 475
Remapping Mouse Buttons (CLI) 475

Getting Help 476
Chapter Summary 477
Exercises 478
Advanced Exercises 478

Chapter 11: Files, Directories, and Filesystems 479

Important Files and Directories 480
File Types 493

Ordinary Files, Directories, Links, and Inodes 493
Device Special Files 494

Filesystems 497
mount: Mounts a Filesystem 499
umount: Unmounts a Filesystem 501
du: Displays Disk Usage Information 501
fstab: Keeps Track of Filesystems 502
fsck: Checks Filesystem Integrity 503
tune2fs: Changes Filesystem Parameters 504

The XFS Filesystem 506
Chapter Summary 507
Exercises 508
Advanced Exercises 508

000.book Page xxvi Monday, November 24, 2014 11:19 AM

 Contents xxvii

Chapter 12: Finding, Downloading, and

Installing Software 509

Introduction 510
JumpStart: Installing and Removing Software Packages Using apt-get 512
Finding the Package That Holds an Application or File You Need 514
APT: Keeps the System Up to Date 515

Repositories 515
sources.list: Specifies Repositories for APT to Search 516
The APT Local Package Indexes and the APT Cache 518
The apt cron Script and APT Configuration Files 518
apt-get: Works with Packages and the Local Package Index 519
apt-cache: Displays Package Information 522
apt-get source: Downloads Source Files 523

dpkg: The Debian Package Management System 524
deb Files 524
dpkg: The Foundation of the Debian Package Management System 526

BitTorrent 531
Prerequisites 531
transmission-cli: Downloading a BitTorrent File 532

Installing Non-dpkg Software 533
The /opt and /usr/local Directories 534
GNU Configure and Build System 534

Keeping Software Up to Date 535
Bugs 535

curl: Downloads Files Noninteractively 536
Chapter Summary 536
Exercises 537
Advanced Exercises 537

Chapter 13: Printing with CUPS 539

Introduction 540
Prerequisites 541
More Information 541
Notes 542

The System Configures a Local Printer Automatically 542
JumpStart I: Configuring a Printer Using system-config-printer 542

Configuration Tabs 543
JumpStart II: Setting Up a Local or Remote Printer 544
Working with the CUPS Web Interface 548

000.book Page xxvii Monday, November 24, 2014 11:19 AM

xxviii Contents

Configuring Printers 549
Modifying a Printer 549
Using the CUPS Web Interface 550
CUPS on the Command Line 551
Sharing CUPS Printers 555

Traditional UNIX Printing 557
Printing from Windows 558

Printing Using CUPS 558
Printing Using Samba 559

Printing to Windows 560
Chapter Summary 560
Exercises 561
Advanced Exercises 561

Chapter 14: Administration Tasks 563

Configuring User and Group Accounts 564
unity-control-center: Manages User Accounts 564
Managing User Accounts from the Command Line 566

Backing Up Files 568
Choosing a Backup Medium 569
Backup Utilities 569
Performing a Simple Backup 572

Scheduling Tasks 573
cron and anacron: Schedule Routine Tasks 573
at: Runs Occasional Tasks 576

System Reports 576
vmstat: Reports Virtual Memory Statistics 576
top: Lists Processes Using the Most Resources 577

Maintaining the System 578
timedatectl: Reports on and Sets the System Clock 579
parted: Reports on and Partitions a Hard Disk 579
logrotate: Manages Log Files 582
rsyslogd: Logs System Messages 585
Solving Problems 587

Chapter Summary 593
Exercises 594
Advanced Exercises 594

 Chapter 15: System Security 595

Running Commands with root Privileges 596
Administrator 596
The Special Powers of a User Working with root Privileges 596

000.book Page xxviii Monday, November 24, 2014 11:19 AM

 Contents xxix

Gaining root Privileges 597
Real UID Versus Effective UID 599
Using su to Gain root Privileges 600
Using sudo to Gain root Privileges 602
Unlocking the root Account (Assigning a Password to root) 613
Avoiding a Trojan Horse 613

Passwords 615
Securing a Server 616

TCP Wrappers 616
Setting Up a chroot Jail 617

PAM 621
Cryptography 626

Features 626
Terminology 627
Encrypting a Message 627
Cryptographic Hash Functions 632
Signing a Message Using a Hash Value 636
SSL Certificates 637

GPG (GNU Privacy Guard) 641
Tutorial: Using GPG to Secure a File 641
gpg-agent: Holds Your Private Keys 648
Make Your Communication More Secure 648
Encrypting and Decrypting a File 649
Signing and Encrypting a File 650
Signing a Key on Your Keyring 651
Using a Keyserver 652

Security Resources 656
Chapter Summary 659
Exercises 660
Advanced Exercises 660

Chapter 16: Configuring and Monitoring a LAN 661

More Information 662
Setting Up the Hardware 662

Connecting the Computers 662
Routers 663
NIC: Network Interface Card 664
Tools 664

Configuring the Systems 666
NetworkManager: Configures Network Connections 667

The NetworkManager Applet Menu 668
Setting Up Servers 672

000.book Page xxix Monday, November 24, 2014 11:19 AM

xxx Contents

Introduction to Cacti 674
Configuring SNMP 675
Setting Up LAMP 675
Prerequisites 675
Configuring MySQL 676
Setting Up Cacti 677
Configuring Cacti 678
Basic Cacti Administration 680
Setting Up a Data Source 681

Chapter Summary 683
Exercises 684
Advanced Exercises 685

Chapter 17: Setting Up Virtual Machines Locally and in

the Cloud 687

VMs (Virtual Machines) 688
Implementations 690

gnome-boxes 690
QEMU/KVM 691

Prerequisites 692
virt-manager: Installing Ubuntu on QEMU/KVM 693
virsh: Work with VMs on the Command Line 697

VMware Player: Installing Ubuntu on VMware 698
Installing VMware Player on a Linux System 699
Installing VMware Player on a Windows System 700
Installing Ubuntu on VMware Player 700

Cloud Computing 703
AWS: Setting Up a Virtual System in the Cloud 704

Chapter Summary 708
Exercises 709
Advanced Exercises 709

PART IV Using Clients and Setting Up Servers 711

Chapter 18: The OpenSSH Secure Communication

Utilities 713

Introduction to OpenSSH 714
Files 714
More Information 716

Running the ssh, scp, and sftp OpenSSH Clients 716
Prerequisites 716

000.book Page xxx Monday, November 24, 2014 11:19 AM

 Contents xxxi

JumpStart I: Using ssh and scp to Connect to an OpenSSH Server 716
Configuring OpenSSH Clients 717
ssh: Logs in or Executes Commands on a Remote System 720
scp: Copies Files to and from a Remote System 723
sftp: A Secure FTP Client 725
~/.ssh/config and /etc/ssh/ssh_config Configuration Files 726

Setting Up an OpenSSH Server (sshd) 727
Prerequisites 727
Note 728
JumpStart II: Starting an OpenSSH Server 728
Authorized Keys: Automatic Login 728
Randomart Image 730
ssh-agent: Holds Your Private Keys 731
Command-Line Options 732
/etc/ssh/sshd_config Configuration File 732

Troubleshooting 735
Tunneling/Port Forwarding 735

Forwarding X11 736
Port Forwarding 737

Chapter Summary 738
Exercises 739
Advanced Exercises 739

Chapter 19: The rsync Secure Copy Utility 741

Syntax 742
Arguments 742
Options 742

Notes 744
More Information 745

Examples 745
Using a Trailing Slash (/) on source-file 745
Removing Files 746
Copying Files to and from a Remote System 748
Mirroring a Directory 748
Making Backups 749
Restoring a File 752

Chapter Summary 752
Exercises 752

Chapter 20: FTP: Transferring Files Across a Network 753

Introduction to FTP 754
Security 754
FTP Connections 755
FTP Clients 755
More Information 755
Notes 756

000.book Page xxxi Monday, November 24, 2014 11:19 AM

xxxii Contents

Running the ftp and sftp FTP Clients 756
Prerequisites 756
JumpStart I: Downloading Files Using ftp 756
Anonymous FTP 759
Automatic Login 760
Binary Versus ASCII Transfer Mode 760
ftp Specifics 761

Setting Up an FTP Server (vsftpd) 764
Prerequisites 764
Notes 765
JumpStart II: Starting a vsftpd FTP Server 765
Troubleshooting 765
Configuring a vsftpd Server 766

Chapter Summary 777
Exercises 778
Advanced Exercises 778

Chapter 21: postfix: Setting Up Mail Servers,

Clients, and More 779

Overview 780
Mailboxes: mbox Versus maildir Format 780
Protocols: IMAP and POP3 781

Introduction to postfix 781
Outbound Email 782
Inbound Email 782
The postfix to sendmail Compatibility Interface 782
Alternatives to postfix 783
More Information 783

Setting Up a postfix Mail Server 784
Prerequisites 784
Notes 784
Testing postfix 785
postfix Log Files 786

JumpStart: Configuring postfix to Use Gmail as a Smarthost 787
Configuring postfix 789

The /etc/mailname File 789
The /etc/postfix/main.cf File 789
postfix Lookup Tables 793
The /etc/postfix/master.cf File 794
Aliases and Forwarding 794
dpkg-reconfigure: Reconfigures postfix 796

000.book Page xxxii Monday, November 24, 2014 11:19 AM

 Contents xxxiii

SpamAssassin 797
How SpamAssassin Works 797
Prerequisites 797
Testing SpamAssassin 798
Configuring SpamAssassin 799

Additional Email Tools 801
Webmail 801
Mailing Lists 804

dovecot: Setting Up an IMAP or POP3 Mail Server 807
Prerequisites 807
Notes 808
Testing dovecot 808

Chapter Summary 810
Exercises 811
Advanced Exercises 812

Chapter 22: NIS and LDAP 813

Introduction to NIS 814
How NIS Works 814
More Information 816

Running an NIS Client 817
Prerequisites 817
Notes 818
Configuring an NIS Client 818
Troubleshooting an NIS Client 820
yppasswd: Changes NIS Passwords 821

Setting Up an NIS Server 822
Prerequisites 823
Notes 823
Configuring an NIS Server 824
Troubleshooting an NIS Server 829
yppasswdd: The NIS Password Update Daemon 830

Introduction to LDAP 830
More Information 833

Setting Up an LDAP Server 833
Prerequisites 833
Notes 834
Test the Server 834
Modifying and Adding Directory Entries 834
Using Thunderbird with LDAP 838

Chapter Summary 839
Exercises 840
Advanced Exercises 840

000.book Page xxxiii Monday, November 24, 2014 11:19 AM

xxxiv Contents

Chapter 23: NFS: Sharing Directory Hierarchies 843

Introduction to NFS 845
More Information 847

Running an NFS Client 847
Prerequisites 847
JumpStart I: Mounting a Remote Directory Hierarchy 848
mount: Mounts a Directory Hierarchy 849
Improving Performance 852
/etc/fstab: Mounts Directory Hierarchies Automatically 853

Setting Up an NFS Server 853
Prerequisites 853
Notes 854
JumpStart II: Configuring an NFS Server Using shares-admin 855
Manually Exporting a Directory Hierarchy 857
Where the System Keeps NFS Mount Information 860
exportfs: Maintains the List of Exported Directory Hierarchies 861
Troubleshooting 862

automount: Mounts Directory Hierarchies on Demand 863
Chapter Summary 866
Exercises 867
Advanced Exercises 867

Chapter 24: Samba: Linux and Windows File and

Printer Sharing 869

Introduction to Samba 870
More Information 871
Notes 871
Samba Users, User Maps, and Passwords 871
smbpasswd and pdbedit: Work with Samba Users and Passwords 873

Running Samba Clients 874
Prerequisites 874
Working with Shares from Linux 874
Working with Shares from Windows 877

Setting Up a Samba Server 878
Prerequisites 878
JumpStart: Configuring a Samba Server Using shares-admin 879
smb.conf: Manually Configuring a Samba Server 880

Troubleshooting 887
Chapter Summary 889
Exercises 890
Advanced Exercises 890

000.book Page xxxiv Monday, November 24, 2014 11:19 AM

 Contents xxxv

Chapter 25: DNS/BIND: Tracking Domain Names

and Addresses 891

Introduction to DNS 892
Nodes, Domains, and Subdomains 893
Zones 895
Queries 896
Servers 896
Resource Records 897
DNS Queries and Responses 901
Reverse Name Resolution 902
How DNS Works 903
More Information 904

Setting Up a DNS Server 904
Prerequisites 904
Notes 905
JumpStart: Setting Up a DNS Cache 906

Configuring a DNS Server 907
named.conf: The named Configuration File 907
Zone Files 910
Setting Up a DNS Cache 911
DNS Glue Records 914
TSIGs: Transaction Signatures 915
Running BIND in a chroot Jail 917
Troubleshooting 919

Chapter Summary 920
Exercises 921
Advanced Exercises 921

Chapter 26: ufw, gufw, and iptables: Setting

Up a Firewall 923

ufw: The Uncomplicated Firewall 924
gufw: The Graphical Interface to ufw 927

The Firewall Window 927
Adding Rules 928

Introduction to iptables 932
More Information 935
Prerequisites 935
Notes 935
Anatomy of an iptables Command 936

Building a Set of Rules Using iptables 937
Commands 938
Packet Match Criteria 939
Display Criteria 940
Match Extensions 940
Targets 942

000.book Page xxxv Monday, November 24, 2014 11:19 AM

xxxvi Contents

Copying Rules to and from the Kernel 944
Sharing an Internet Connection Using NAT 945

Connecting Several Clients to a Single Internet Connection 946
Connecting Several Servers to a Single Internet Connection 948

Chapter Summary 948
Exercises 949
Advanced Exercises 949

Chapter 27: Apache (apache2): Setting Up a

Web Server 951

Introduction 952
More Information 952
Notes 953

Running an Apache Web Server 954
Prerequisites 954
JumpStart: Getting Apache Up and Running 955
Configuring Apache 957
Filesystem Layout 959

Configuration Directives 961
Directives You Might Want to Modify as You Get Started 962
Contexts and Containers 966
Advanced Configuration Directives 971

Advanced Configuration 984
Redirects 984
Content Negotiation 985
Server-Generated Directory Listings (Indexing) 986
Virtual Hosts 986

Troubleshooting 990
Modules 991

mod_cgi and CGI Scripts 992
mod_ssl 992
Authentication Modules and .htaccess Files 994
Scripting Modules 995
Multiprocessing Modules (MPMs) 996

webalizer: Analyzes Web Traffic 997
Error Codes 997
Chapter Summary 998
Exercises 998
Advanced Exercises 999

000.book Page xxxvi Monday, November 24, 2014 11:19 AM

 Contents xxxvii

PART V Programming Tools 1001

Chapter 28: Programming the Bourne Again

Shell (bash) 1003

Control Structures 1004
if...then 1005
if...then...else 1009
if...then...elif 1011
for...in 1017
for 1019
while 1021
until 1025
break and continue 1027
case 1028
select 1034
Here Document 1036

File Descriptors 1038
Opening a File Descriptor 1039
Duplicating a File Descriptor 1039
File Descriptor Examples 1039
Determining Whether a File Descriptor Is Associated with the Terminal 1042

Parameters 1044
Positional Parameters 1044
Special Parameters 1049

Variables 1053
Shell Variables 1053
Environment, Environment Variables, and Inheritance 1054
Expanding Null and Unset Variables 1058
Array Variables 1060
Variables in Functions 1061

Builtin Commands 1062
type: Displays Information About a Command 1063
read: Accepts User Input 1063
exec: Executes a Command or Redirects File Descriptors 1067
trap: Catches a Signal 1069
kill: Aborts a Process 1072
eval: Scans, Evaluates, and Executes a Command Line 1073
getopts: Parses Options 1074
A Partial List of Builtins 1077

Expressions 1078
Arithmetic Evaluation 1078

000.book Page xxxvii Monday, November 24, 2014 11:19 AM

xxxviii Contents

Logical Evaluation (Conditional Expressions) 1079
String Pattern Matching 1080
Arithmetic Operators 1081

Implicit Command-Line Continuation 1085
Shell Programs 1086

A Recursive Shell Script 1087
The quiz Shell Script 1090

Chapter Summary 1096
Exercises 1098
Advanced Exercises 1100

Chapter 29: The Python Programming Language 1103

Introduction 1104
Invoking Python 1104
More Information 1106
Writing to Standard Output and Reading from Standard Input 1107
Functions and Methods 1107

Scalar Variables, Lists, and Dictionaries 1108
Scalar Variables 1108
Lists 1109
Dictionaries 1113

Control Structures 1114
if 1115
if...else 1115
if...elif...else 1116
while 1117
for 1117

Reading from and Writing to Files 1119
File Input and Output 1119
Exception Handling 1120
Pickle 1122

Regular Expressions 1123
Defining a Function 1124
Using Libraries 1125

Standard Library 1125
Nonstandard Libraries 1125
SciPy and NumPy Libraries 1126
Namespace 1126
Importing a Module 1127
Example of Importing a Function 1128

Lambda Functions 1129

000.book Page xxxviii Monday, November 24, 2014 11:19 AM

 Contents xxxix

List Comprehensions 1130
Chapter Summary 1131
Exercises 1132
Advanced Exercises 1132

Chapter 30: The MariaDB SQL Database

Management System 1135

History 1136
Notes 1136

Terminology 1137
Syntax and Conventions 1138
More Information 1139

Installing a MariaDB Server 1140
Client Options 1140

Setting Up MariaDB 1141
Assigning a Password to the MariaDB User Named root 1141
Removing Anonymous Users 1141
Running the Secure Installation Script 1142
~/.my.cnf: Configures a MariaDB Client 1142
~/.mysql_history: Stores Your MariaDB History 1142
Creating a Database 1143
Adding a User 1144

Examples 1145
Logging In 1145
Creating a Table 1145
Adding Data 1147
Retrieving Data 1148
Backing Up a Database 1150
Modifying Data 1150
Creating a Second Table 1151
Joins 1152

Chapter Summary 1157
Exercises 1157
Advanced Exercises 1157

PART VI Appendixes 1159

Appendix A: Regular Expressions 1161

Characters 1162
Delimiters 1162

000.book Page xxxix Monday, November 24, 2014 11:19 AM

xl Contents

Simple Strings 1162
Special Characters 1162

Periods 1163
Brackets 1163
Asterisks 1164
Carets and Dollar Signs 1164
Quoting Special Characters 1165

Rules 1165
Longest Match Possible 1165
Empty Regular Expressions 1166

Bracketing Expressions 1166
The Replacement String 1166

Ampersand 1167
Quoted Digit 1167

Extended Regular Expressions 1167
Appendix Summary 1169

Appendix B: Help 1171

Solving a Problem 1172
Finding Linux-Related Information 1173

Desktop Applications 1173
Programming Languages 1174
Linux Newsgroups 1174
Mailing Lists 1175

Specifying a Terminal 1175

Appendix C: Keeping the System Up to Date Using yum 1177

Installing and Removing Software Packages Using yum 1178
Working with yum 1179

Finding the Package That Holds a File You Need 1179
Updating Packages 1180
yum Commands 1181
yum.conf: Configures yum 1182
yum Repositories 1182

Appendix D: LPI and Comptia Certification 1183

More Information 1184
Linux Essentials 1184

Topic 1: The Linux Community and a Career in Open Source 1184

000.book Page xl Monday, November 24, 2014 11:19 AM

 Contents xli

Topic 2: Finding Your Way on a Linux System 1187
Topic 3: The Power of the Command Line 1190
Topic 4: The Linux Operating System 1192
Topic 5: Security and File Permissions 1195

Certification Exam 1 Objectives: LX0-101 1198
101 System Architecture 1198
102 Linux Installation and Package Management 1200
103 GNU and Unix Commands 1203
104 Devices, Linux Filesystems, Filesystem Hierarchy Standard 1210

Certification Exam 2 Objectives: LX0-102 1214
105 Shells, Scripting and Data Management 1214
106 User Interfaces and Desktops 1217
107 Administrative Tasks 1218
108 Essential System Services 1221
109 Networking Fundamentals 1223
110 Security 1226

Glossary 1231

JumpStart Index 1285

File Tree Index 1287

Utility Index 1291

Main Index 1297

000.book Page xli Monday, November 24, 2014 11:19 AM

This page intentionally left blank

xliiixliii

M Preface

Preface

The book Whether you are an end user, a system administrator, or a little of both, this book
explains with step-by-step examples how to get the most out of an Ubuntu system.
In 30 chapters, this book takes you from installing an Ubuntu system, through
understanding its inner workings, to setting up secure servers that run on the
system.

The audience This book is designed for a wide range of readers. It does not require you to have pro-
gramming experience, although having some experience using a general-purpose
computer, such as a Windows, Macintosh, UNIX, or another Linux system is
certainly helpful. This book is appropriate for:

• Students who are taking a class in which they use Linux

• Home users who want to set up and/or run Linux

• Professionals who use Linux at work

• System administrators who need an understanding of Linux and the tools
that are available to them, including the bash and Python scripting
languages

• Computer science students who are studying the Linux operating system

• Technical executives who want to get a grounding in Linux

Benefits A Practical Guide to Ubuntu Linux®, Fourth Edition, gives you a broad understanding
of many facets of Linux, from installing Ubuntu through using and customizing it. No
matter what your background, this book provides the knowledge you need to get on
with your work. You will come away from this book understanding how to use Linux,
and this book will remain a valuable reference for years to come.

000.book Page xliii Friday, November 21, 2014 6:41 PM

xliv Preface

Features in
this edition

This edition covers many topics to help you get your work done using Ubuntu.

• Full coverage of LPI’s Linux Essentials certification learning goals and
extensive coverage of CompTIA’s Linux+ exam objectives (Appendix D;
page 1183)

• Updated chapters reflecting new features in Ubuntu 14.04 (Trusty Tahr)—
the LTS (Long Term Support) release Canonical will support into 2019

• A new chapter that covers setting up VMs (virtual machines) and working
in the cloud (Chapter 17; page 687)

• A new chapter on the Python programming language (Chapter 29;
page 1103)

• A new chapter on system security (Chapter 15; page 595)

• A new chapter covering 32 Linux utilities (Chapter 7; page 223)

• A new chapter on the MariaDB/MySQL relational database (Chapter 30;
page 1135)

• Updated coverage of the ufw and gufw firewall utilities (Chapter 26;
page 924)

• Tutorials on the vim and nano editors (Chapter 7; pages 270 and 277)

• Nine chapters on system administration (Part III; page 331)

• A chapter on writing programs using bash (Chapter 28; page 1003)

• Coverage of the XFS filesystem (Chapter 11; page 506)

• Coverage of LDAP (Chapter 22; page 830)

• A section on the Cacti network monitoring tool (Chapter 16; page 674)

• Coverage of IPv6 (Chapter 8; page 299)

• Four indexes, making it easier to quickly find what you are looking for.
These indexes locate tables (page numbers followed by the letter t), provide
definitions (italic page numbers), and differentiate between light and
comprehensive coverage (light and standard fonts).

◆ The JumpStart index (page 1285) lists all JumpStart sections in this
book. These sections help you set up servers and clients quickly.

◆ The File Tree index (page 1287) lists, in hierarchical fashion, most files
mentioned in this book. These files are also listed in the Main index.

◆ The Utility index (page 1291) supplies the location of all utilities
mentioned in this book. A page number in a light font indicates a brief
mention of the utility, whereas the regular font indicates more substantial
coverage. The Utility index also appears on the inside of the front and
back covers of the print book.

◆ The revised Main index (page 1297) is designed for ease of use.

000.book Page xliv Friday, November 21, 2014 6:41 PM

This Book Includes an Ubuntu 14.04 (Trusty Tahr) DVD xlv

Overlap If you have read A Practical Guide to Linux® Commands, Editors, and Shell Pro-
gramming, Third Edition, you will notice some overlap between that book and the
one you are reading now. The first chapter, the chapters on the utilities, the filesystem,
and rsync, the appendix on regular expressions, and the Glossary are very similar in
the two books, as are the three chapters on the Bourne Again Shell (bash) and the
chapters on Python and MariaDB. Chapters that appear in this book but do not
appear in A Practical Guide to Linux® Commands, Editors, and Shell Programming,
Third Edition, include Chapters 2 and 3 (installation), Chapter 4 (Ubuntu and the
GUI), Chapter 8 (networking), and all of the chapters in Part III (system administra-
tion) and Part IV (servers).

Differences While this book explains how to use Linux from a graphical interface and from the
command line (a textual interface), A Practical Guide to Linux® Commands, Editors,
and Shell Programming, Third Edition, works exclusively with the command line
and covers Mac OS X in addition to Linux. It includes full chapters on the vim and
emacs editors, as well as chapters on the gawk pattern processing language and the
sed stream editor. In addition, it has a command reference section that provides
extensive examples of the use of 98 of the most important Linux and Mac OS X util-
ities. You can use these utilities to solve problems without resorting to programming
in C.

This Book Includes an Ubuntu 14.04 (Trusty Tahr) DVD

The print book includes a DVD that holds a Desktop Image (installation image) of
Ubuntu 14.04 (Trusty Tahr). You can use this DVD to install an Ubuntu 14.04 desk-
top system. Chapter 2 helps you get ready to install Ubuntu. Chapter 3 provides step-
by-step instructions for installing Ubuntu from this DVD. This book guides you
through learning about, using, and administrating an Ubuntu system.

Live system In addition to installing Ubuntu from the DVD, you can use the DVD to run a live
Ubuntu session that displays the Unity desktop without making any changes to your
computer: Boot from the DVD, run an Ubuntu live session, and log off. Your system
remains untouched: When you reboot, it is exactly as it was before you ran the
Ubuntu live session. For more information refer to “Booting Ubuntu and Running a
Live Session” on page 56.

DVD features The Desktop Image DVD includes many of the software packages supported by
Ubuntu. You can use it to perform a graphical installation of a graphical Ubuntu sys-
tem. If you do not have an Internet connection, you can use the DVD as a software
repository: After you have installed Ubuntu, you can install supported software
packages from the DVD.

For Readers of Digital Editions

If you are reading a digital edition of this book, see “Downloading an Image File and
Burning/Writing the Installation Medium” on page 47 for instructions on how to
download an installation image and create a DVD or USB flash drive that holds that
image.

000.book Page xlv Friday, November 21, 2014 6:41 PM

xlvi Preface

Features of This Book

This book is designed and organized so you can get the most out of it in the least
amount of time. You do not have to read this book straight through in page order.
Instead, once you are comfortable using Linux, you can use this book as a reference:
Look up a topic of interest in the table of contents or in an index and read about it.
Or think of the book as a catalog of Linux topics: Flip through the pages until a topic
catches your eye. The book includes many pointers to Web sites where you can obtain
additional information: Consider the Internet to be an extension of this book.

A Practical Guide to Ubuntu Linux®, Fourth Edition, is structured with the following
features.

• Optional sections enable you to read the book at different levels, returning
to more difficult material when you are ready to delve into it.

• Caution boxes highlight procedures that can easily go wrong, giving you
guidance before you run into trouble.

• Tip boxes highlight ways you can save time by doing something differently
or situations when it might be useful or just interesting to have additional
information.

• Security boxes point out places where you can make a system more secure.
Chapter 15 presents a thorough background in system security concepts
and issues and includes a tutorial on GPG.

• Concepts are illustrated by practical examples throughout the book.

• Each chapter starts with a list of chapter objectives—a list of important
tasks you should be able to perform after reading the chapter.

• Chapter summaries review the important points covered in each chapter.

• Review exercises are included at the end of each chapter for readers who
want to further hone their skills. Answers to even-numbered exercises are
posted at www.sobell.com.

• The Glossary defines more than 500 commonly encountered terms.

• The chapters covering servers include JumpStart sections that get you off to
a quick start using clients and setting up servers. Once a server is up and
running, you can test and modify its configuration, as is explained in the rest
of each of these chapters.

• This book provides resources for finding software on the Internet. It also
explains how to download and install software using apt-get, the Ubuntu
Software Center window, and BitTorrent. It details controlling automatic
updates using the Software & Updates window.

• This book describes in detail many important GNU tools, including the
Nautilus File Browser, the parted and gnome-disks partition editors, the gzip

000.book Page xlvi Friday, November 21, 2014 6:41 PM

http://www.sobell.com

Key Topics Covered in This Book xlvii

compression utility, and many command-line utilities that come from the
GNU Project. It also covers the Unity desktop, Ubuntu’s graphical shell for
the GNOME desktop environment.

• Pointers throughout the text provide help in obtaining online documentation
from many sources, including the local system, the Ubuntu Web sites, and
other locations on the Internet.

• Multiple comprehensive indexes help you locate topics quickly and easily.

Key Topics Covered in This Book

This section distills and summarizes the information covered by this book. In addition,
“Details” (starting on page l) describes what each chapter covers. Finally, the Table of
Contents (starting on page xvii) provides more detail. This book:

Installation • Describes how to download Ubuntu installation image files from the Internet
and write or burn the image file to a USB flash drive, CD, or DVD.

• Helps you plan the layout of the system’s hard disk. It includes a discussion
of partitions, partition tables, and mount points, and explains how to use
ubiquity, the gnome-disks disk utility, or the Ubuntu textual partition editor
to examine and partition the hard disk.

• Explains how to set up a dual-boot system so you can install Ubuntu on a
Windows system and boot either operating system.

• Discusses booting a live Ubuntu session and installing Ubuntu from that
session.

• Describes in detail how to install Ubuntu from an installation image using
the ubiquity graphical installer. It also explains how to use the textual
installer to install Ubuntu. The graphical installer is fast and easy to use. The
textual installer gives you more options and works on systems with less
RAM (system memory).

• Covers testing installation media for defects, setting boot command-line
parameters (boot options), and creating a RAID array.

• Describes how to set up a VM (virtual machine) and install Ubuntu on
the VM.

• Describes how the Logical Volume Manager (LVM2) can set up, grow, and
migrate logical volumes, which are similar in function to traditional disk
partitions.

Working with
Ubuntu

• Introduces the Unity desktop (GUI), and explains how to use desktop tools,
including application and context menus, the Settings window, the Nautilus
File Browser, and the GNOME terminal emulator; also covers installation
of the GNOME 3 and GNOME 2 (Classic or Flashback) desktops.

000.book Page xlvii Friday, November 21, 2014 6:41 PM

xlviii Preface

• Covers the Bourne Again Shell (bash) in three chapters, including an entire
chapter on shell programming, which includes many sample shell scripts.
These chapters provide clear explanations and extensive examples of how
bash works both from the command line in day-to-day work and as a
programming language in which to write shell scripts.

• Explains the textual (command-line) interface and introduces more than 32
command-line utilities.

• Presents tutorials on the vim and nano textual editors.

• Covers types of networks, network protocols (including IPv6), and network
utilities.

• Explains hostnames, IP addresses, and subnets, and explores how to use
host and dig to look up domain names and IP addresses on the Internet.

• Covers distributed computing and the client/server model.

• Explains how to use ACLs (Access Control Lists) to fine-tune user access
permissions.

System
administration

• Explains how to use the Ubuntu graphical and textual (command-line) tools
to configure the display, DNS, NFS, Samba, Apache, a firewall, a network
interface, and more. You can also use these tools to add users and manage
local and remote printers.

• Explains how you can unlock the root account if necessary and describes
how to use su to work with root privileges (become Superuser), and the
advantages and dangers of working with escalated privileges.

• Goes into detail about using sudo to allow specific users to work with root
privileges and customizing the way sudo works by editing the sudoers
configuration file.

• Describes how to use the following tools to download and install software
to keep a system up to date and to install new software:

◆ The Software & Updates window controls which Ubuntu and third-
party software repositories Ubuntu downloads software packages from
and whether Ubuntu downloads updates automatically. You can also
use this window to cause Ubuntu to download and install security
updates automatically.

◆ Based on how you set up updates in the Software & Updates window,
the Software Updater window appears on the desktop to let you know
when software updates are available. You can download and install
updates from the Software Updater window.

◆ The Ubuntu Software Center window provides an easy way to select,
download, and install a wide range of software packages.

◆ APT downloads and installs software packages from the Internet (or the
included DVD), keeping a system up to date and resolving dependencies as

000.book Page xlviii Friday, November 21, 2014 6:41 PM

Key Topics Covered in This Book xlix

it processes the packages. You can use APT from the Synaptic graphical
interface or from the apt-get textual interface.

◆ BitTorrent is a good choice for distributing large amounts of data such
as Ubuntu installation images. The more people who use BitTorrent to
download a file, the faster it works.

• Covers graphical system administration tools, including the many tools
available from the Unity desktop.

• Explains system operation, including the boot process, recovery (single-user)
and multiuser modes, and steps to take if the system crashes.

• Details the workings of the Upstart init daemon, which replaces the System
V init daemon.

• Explains how to set up and use the Cacti network monitoring tool to graph
system and network information over time, including installing and setting
up the LAMP (Linux, Apache, MariaDB/MySQL, and PHP) stack.

• Provides instructions on installing, setting up, and using a MariaDB/
MySQL relational database.

• Discusses setting up and repairing an XFS filesystem.

• Describes files, directories, and filesystems, including types of files and file-
systems, fstab (the filesystem table), and automatically mounted filesystems,
and explains how to fine-tune and check the integrity of filesystems.

• Covers backup utilities, including tar and cpio.

• Describes compression/archive utilities, including xz, gzip, bzip2, compress,
and zip.

Security • Helps you manage basic system security issues using ssh (secure shell),
vsftpd (secure FTP server), Apache (Web server), ufw and iptables (firewalls),
and more.

• Discusses cryptography, including concepts of authentication, confidentiality
(secrecy), data integrity, and nonrepudiation of origin.

• Explains how to encrypt a message using symmetric/private key and
asymmetric/public key encryption as well as how to use a hybrid
encryption system.

• Describes how to use a cryptographic hash function to verify the integrity
of a downloaded file and how a salt helps protect against dictionary attacks.

• Describes how to use OpenSSL to create an SSL certificate.

• Covers using GPG (GNU Privacy Guard) to provide identification, secrecy,
and message integrity in email and file sharing, and includes a tutorial on its use.

• Describes how to use the textual uncomplicated firewall (ufw) and its
graphical interface (gufw) to protect the system.

000.book Page xlix Friday, November 21, 2014 6:41 PM

l Preface

• Provides instructions on using iptables to share an Internet connection over
a LAN and to build advanced firewalls.

• Describes how to set up a chroot jail to help protect a server system.

• Explains how to use TCP wrappers to control who can access a server.

Clients and servers • Explains how to set up and use the most popular Linux servers, providing
a chapter on each: Apache; Samba; OpenSSH; postfix; DNS; NFS; FTP; ufw,
gufw, and iptables; and NIS/LDAP.

• Describes how to set up a CUPS printer server.

• Explains how to set up and use a MariaDB/MySQL relational database.

• Describes how to set up and use a DHCP server.

Programming • Provides a chapter on the Python programming language and a full chapter
covering shell programming using bash, including many examples.

Details

Chapter 1 Chapter 1 presents a brief history of Linux and describes some of the features that
make it a cutting-edge operating system.

Part I Part I, “Installing Ubuntu Linux,” discusses how to install Ubuntu Linux. Chapter 2
presents an overview of the process of installing Ubuntu Linux, including hardware
requirements, downloading and burning or writing the installation medium, and
planning the layout of the hard disk. The “Conventions Used in This Book” section
on page 26 details the typefaces and terminology used in this book. Chapter 3 is a
step-by-step guide to installing Ubuntu; it covers installing from an installation
image, from a live session, and using the textual installer.

Part II Part II, “Using Ubuntu Linux,” familiarizes you with Ubuntu, covering logging in, the
GUI, utilities, the filesystem, and the shell. Chapter 4 introduces desktop features;
describes configuring the system using the System Settings window; explains how to
use the Nautilus File Browser to manage files, run programs, and connect to FTP and
HTTP servers; covers dealing with login problems and using the window manager;
and presents some suggestions on where to find documentation, including manuals,
tutorials, software notes, and HOWTOs. The introduction to the command line
includes information on terminal emulators, virtual consoles, correcting mistakes on
the command line, a few basic utilities, and how to write and execute a simple shell
script. Chapter 5 introduces the Bourne Again Shell (bash) and discusses command-
line arguments and options, redirecting input to and output from commands, running
programs in the background, and using the shell to generate and expand filenames.
Chapter 6 discusses the Linux hierarchical filesystem, covering files, filenames, path-
names, working with directories, access permissions, and hard and symbolic links.
Chapter 7 provides in-depth coverage of 32 useful utilities and presents tutorials on
the vim and nano text editors. Chapter 8 explains networks, network security, and the
Internet and discusses types of networks, subnets, protocols, addresses, hostnames,
and various network utilities. A section covers the all-important IPv6 protocol. The

000.book Page l Friday, November 21, 2014 6:41 PM

Key Topics Covered in This Book li

section on distributed computing describes the client/server model and some of the
servers you can use on a network. (Details of setting up and using clients and servers
are reserved until Part IV.)

Part III Part III, “System Administration,” goes into more detail about administrating the
system. Chapter 9 extends the bash coverage from Chapter 5, explaining how to
redirect error output, avoid overwriting files, and work with job control, processes,
startup files, important shell builtin commands, parameters, shell variables, and
aliases. Chapter 10 discusses core concepts of system operation, including a discus-
sion of the Upstart init daemon; the GRUB boot loader; general information about
how to set up a server; and DHCP. Chapter 11 explains the Linux filesystem, going
into detail about types of files, including special (device) files; the use of fsck both
to verify the integrity of filesystems and to repair them; the use of tune2fs to change
filesystem parameters; and the XFS filesystem and related utilities. Chapter 12
explains how to keep a system up to date by downloading software from the Inter-
net and installing it, including examples that use APT programs such as apt-get and
apt-cache to perform these tasks. It also covers the dpkg software packaging system
and the use of some dpkg utilities. Finally, it explains how to use BitTorrent from
the command line to download files. Chapter 13 explains how to set up the CUPS
printing system so you can print on both local and remote printers. Chapter 14 cov-
ers additional administration tasks, including setting up user accounts, backing up
files, scheduling automated tasks, tracking disk usage, and solving general prob-
lems. Chapter 15 covers system security, including using su and sudo to run
commands with root privileges; securing servers using TCP wrappers, chroot jails,
and PAM; how to use cryptography and hashes to secure and verify data; creating
and using an SSL certificate; and securing data in transit using GPG (GNU Privacy
Guard). Chapter 16 explains how to set up a local area network (LAN), including
both hardware (including wireless) and software configuration and how to set up
Cacti to monitor the network. Chapter 17 describes VMs (virtual machines), how
to set up and work with VMs, and how to work with VMs in the cloud.

Part IV Part IV goes into detail about setting up and running servers and connecting to them
using clients. Where appropriate, these chapters include JumpStart sections, which
get you off to a quick start in using clients and setting up servers. The chapters in Part
IV cover the following clients/servers:

• OpenSSH—Set up an OpenSSH server and use ssh, scp, and sftp to communicate
securely over the Internet.

• rsync—Use rsync to copy files securely from one system to another.

Experienced users may want to skim Part II

tip If you have used a UNIX or Linux system before, you may want to skim or skip some or all of the
chapters in Part II. Do not skip “Conventions Used in This Book” (page 26), which explains the
typographic and layout conventions used in this book. Both “Getting Help” (page 118), which
explains how to get help using a GUI, and “Getting Help from the Command Line” (page 135) point
out both local and remote sources of Linux and Ubuntu documentation.

000.book Page li Friday, November 21, 2014 6:41 PM

lii Preface

• FTP—Set up a vsftpd secure FTP server and use any of several FTP clients
to exchange files with the server.

• Email—Configure postfix and use Webmail, POP3, or IMAP to retrieve
email; use SpamAssassin to combat spam.

• NIS and LDAP—Set up NIS to facilitate system administration of a LAN
and LDAP to maintain databases.

• NFS—Share filesystems between systems on a network.

• Samba—Share filesystems and printers between Windows and Linux
systems.

• DNS/BIND—Set up a domain nameserver to let other systems on the
Internet know the names and IP addresses of local systems they may need
to contact.

• ufw, gufw, and iptables—Set up a firewall to protect local systems and share
a single Internet connection between systems on a LAN.

• Apache—Set up an HTTP server that serves Web pages, which browsers can
then display. This chapter includes many suggestions for increasing Apache
security.

Part V Part V covers three important programming tools that are used extensively in Ubuntu
system administration and general-purpose programming. Chapter 28 continues
where Chapter 9 left off, going into greater depth about shell programming using
bash, with the discussion enhanced by extensive examples. Chapter 29 introduces the
flexible and friendly Python programming language, including coverage of lists and
dictionaries, using libraries, defining functions, regular expressions, and list compre-
hensions. Chapter 30 covers the widely used MariaDB/MySQL RDBMS (relational
database management system), including installation, creating a database, adding a
user, creating and modifying tables, joins, and adding data to the database.

Part VI Part VI includes appendixes on regular expressions, helpful Web sites, updating soft-
ware using yum, and a map that indexes LPI’s Linux Essentials certification learning
goals and CompTIA’s Linux+ exam objectives to the pages in this book that cover each
topic. This part also includes an extensive Glossary with more than 500 entries plus
the JumpStart index, the File Tree index, the Utility index, and the comprehensive
Main index.

Supplements

The author’s home page (www.sobell.com) contains downloadable listings of the
longer programs from this book, as well as pointers to many interesting and useful
Linux sites on the World Wide Web, a list of corrections to the book, answers to
even-numbered exercises, and a solicitation for corrections, comments, and
suggestions.

000.book Page lii Friday, November 21, 2014 6:41 PM

http://www.sobell.com

Thanks liii

Thanks

First and foremost, I want to thank Mark L. Taub, Editor-in-Chief, Prentice Hall,
who provided encouragement and support through the hard parts of this project.
Mark is unique in my 30+ years of book writing experience: an editor who works
with the tools I write about. Because Mark runs Linux on his home computer, we
shared experiences as I wrote this book. Mark, your comments and direction are
invaluable; this book would not exist without your help. Thank you, Mark T.

The production people at Prentice Hall are wonderful to work with: Julie Nahil, Full-
Service Production Manager, worked with me day by day during production of this
book providing help and keeping everything on track, while John Fuller, Managing
Editor, kept the large view in focus. Thanks to Stephanie Geels, Copyeditor, and
Andrea Fox, Proofreader, who made each page sparkle and found the mistakes the
author left behind.

Thanks also to the folks at Prentice Hall who helped bring this book to life, especially
Kim Boedigheimer, Associate Editor, who attended to the many details involved in
publishing this book; Heather Fox, Publicist; Stephane Nakib, Marketing Manager;
Dan Scherf, Media Developer; Sandra Schroeder, Design Manager; Chuti Prasertsith,
Cover Designer; and everyone else who worked behind the scenes to make this book
come into being.

I am also indebted to Denis Howe, Editor of The Free On-Line Dictionary of Com-
puting (FOLDOC). Denis has graciously permitted me to use entries from his
compilation. Be sure to visit www.foldoc.org to look at this dictionary.

A big “thank you” to the folks who read through the drafts of the book and made
comments that caused me to refocus parts of the book where things were not clear
or were left out altogether:

Liz Joseph, Linux Systems Administrator for HP on the OpenStack project, Linux
Systems Administrator, Ubuntu project Member since 2007, and member of the
Board of Directors for Partimus.org, had a big impact on this book. She reviewed
drafts of many chapters, providing insights, tips, important links, and corrections
throughout. I was very impressed with the depth and breadth of her knowledge of
Ubuntu.

Nathan Handler, Ubuntu/Debian GNU/Linux Developer; Milo Casagrande, Ubuntu
Community; Ray Perlner, NIST (National Institute of Standards and Technology);
Robert P. J. Day, Crash Course; Ben Whaley, professional system administrator; and
Max Sobell, Carve Systems, provided invaluable input.

Thanks also to the following people who helped with my previous Linux books,
which provided a foundation for this book:

Nicklos See, Instructor, Bismarck State College; Eugene Murray, Chair, School of Infor-
mation Technology, ITT Technical Institute; Doug Hughes, D. E. Shaw Research, LLC;
Carl Draper; Rahul Sundaram, Fedora contributor; Tony Godfrey, ITT Technical

000.book Page liii Friday, November 21, 2014 6:41 PM

http://www.foldoc.org

liv Preface

Institute, Strongsville, Ohio; Susan Lauber, Lauber System Solutions, Inc.; Sam
Sobell, Student, UCLA; Ankur Sinha, Fedora project volunteer; Professor Maria
Ripoll; David A. Lane, long-time Linux user and systems architect; Pete Travis,
Fedora Documentation Project; Rickard Körkkö, Orc Group; Jennifer Davis, Senior
Production Engineer at Yahoo; Matthew Miller, Fedora Project at Red Hat, Inc.; Jiri
Popelka, Red Hat, Inc.; Thomas Woerner, Red Hat, Inc.

Richard Woodbury, Site Reliability Engineer, Google, whose knowledge of IPv6 proved
invaluable; Lennart Poettering, Red Hat, Inc.; George Vish II, Senior Education Con-
sultant, Hewlett-Packard; Garth Snyder; Nathan Handler; Dick Seabrook, Professor
Emeritus, Anne Arundel Community College; Chris Karr, Audacious Software; Scott
McCrea, Instructor, ITT Technical Schools; John Dong, Ubuntu Developer, Forums
Council Member; Andy Lester, author of Land the Tech Job You Love: Why Skill and
Luck Are Not Enough; Scott James Remnant, Ubuntu Development Manager and Desk-
top Team Leader; David Chisnall, Swansea University; Scott Mann, Aztek Networks;
Thomas Achtemichuk, Mansueto Ventures; Daniel R. Arfsten, Pro/Engineer
Drafter/Designer; Chris Cooper, Senior Education Consultant, Hewlett-Packard Edu-
cation Services; Sameer Verma, Associate Professor of Information Systems, San
Francisco State University; Valerie Chau, Palomar College and Programmers Guild;
James Kratzer; Sean McAllister; Nathan Eckenrode, New York Ubuntu Local Commu-
nity Team; Christer Edwards; Nicolas Merline; Michael Price; Mike Basinger, Ubuntu
Community and Forums Council Member; Joe Barker, Ubuntu Forums Staff Member;
James Stockford, Systemateka, Inc.; Stephanie Troeth, Book Oven; Doug Sheppard;
Bryan Helvey, IT Director, OpenGeoSolutions; and Vann Scott, Baker College of Flint.

Also, thanks to Jesse Keating, Fedora Project; Carsten Pfeiffer, Software Engineer and
KDE Developer; Aaron Weber, Ximian; Cristof Falk, Software Developer at
CritterDesign; Steve Elgersma, Computer Science Department, Princeton University;
Scott Dier, University of Minnesota; Robert Haskins, Computer Net Works; Lars
Kellogg-Stedman, Harvard University; Jim A. Lola, Principal Systems Consultant,
Privateer Systems; Eric S. Raymond, Cofounder, Open Source Initiative; Scott Mann;
Randall Lechlitner, Independent Computer Consultant; Jason Wertz, Computer Sci-
ence Instructor, Montgomery County Community College; Justin Howell, Solano
Community College; Ed Sawicki, The Accelerated Learning Center; David Mercer;
Jeffrey Bianchine, Advocate, Author, Journalist; John Kennedy; and Jim Dennis,
Starshine Technical Services.

Thanks also to Dustin Puryear, Puryear Information Technology; Gabor Liptak,
Independent Consultant; Bart Schaefer, Chief Technical Officer, iPost; Michael J.
Jordan, Web Developer, Linux Online; Steven Gibson, Owner, SuperAnt.com; John
Viega, Founder and Chief Scientist, Secure Software; K. Rachael Treu, Internet
Security Analyst, Global Crossing; Kara Pritchard, K & S Pritchard Enterprises;
Glen Wiley, Capital One Finances; Karel Baloun, Senior Software Engineer, Look-
smart; Matthew Whitworth; Dameon D. Welch-Abernathy, Nokia Systems; Josh
Simon, Consultant; Stan Isaacs; and Dr. Eric H. Herrin II, Vice President, Herrin
Software Development.

000.book Page liv Friday, November 21, 2014 6:41 PM

Thanks lv

More thanks go to consultants Lorraine Callahan and Steve Wampler; Ronald Hiller,
Graburn Technology; Charles A. Plater, Wayne State University; Bob Palowoda; Tom
Bialaski, Sun Microsystems; Roger Hartmuller, TIS Labs at Network Associates;
Kaowen Liu; Andy Spitzer; Rik Schneider; Jesse St. Laurent; Steve Bellenot; Ray W.
Hiltbrand; Jennifer Witham; Gert-Jan Hagenaars; and Casper Dik.

A Practical Guide to Ubuntu Linux®, Fourth Edition, is based in part on two of my
previous UNIX books: UNIX System V: A Practical Guide and A Practical Guide to
the UNIX System. Many people helped me with those books, and thanks here go to
Pat Parseghian; Dr. Kathleen Hemenway; Brian LaRose; Byron A. Jeff, Clark Atlanta
University; Charles Stross; Jeff Gitlin, Lucent Technologies; Kurt Hockenbury;
Maury Bach, Intel Israel; Peter H. Salus; Rahul Dave, University of Pennsylvania;
Sean Walton, Intelligent Algorithmic Solutions; Tim Segall, Computer Sciences Cor-
poration; Behrouz Forouzan, DeAnza College; Mike Keenan, Virginia Polytechnic
Institute and State University; Mike Johnson, Oregon State University; Jandelyn
Plane, University of Maryland; Arnold Robbins and Sathis Menon, Georgia Institute
of Technology; Cliff Shaffer, Virginia Polytechnic Institute and State University; and
Steven Stepanek, California State University, Northridge, for reviewing the book.

I continue to be grateful to the many people who helped with the early editions of
my UNIX books. Special thanks are due to Roger Sippl, Laura King, and Roy
Harrington for introducing me to the UNIX system. My mother, Dr. Helen Sobell,
provided invaluable comments on the original manuscript at several junctures. Also,
thanks go to Isaac Rabinovitch, Professor Raphael Finkel, Professor Randolph Bentson,
Bob Greenberg, Professor Udo Pooch, Judy Ross, Dr. Robert Veroff, Dr. Mike Denny,
Joe DiMartino, Dr. John Mashey, Diane Schulz, Robert Jung, Charles Whitaker, Don
Cragun, Brian Dougherty, Dr. Robert Fish, Guy Harris, Ping Liao, Gary Lindgren,
Dr. Jarrett Rosenberg, Dr. Peter Smith, Bill Weber, Mike Bianchi, Scooter Morris,
Clarke Echols, Oliver Grillmeyer, Dr. David Korn, Dr. Scott Weikart, and Dr. Richard
Curtis.

I take responsibility for any errors and omissions in this book. If you find one or just
have a comment, let me know (mgs@sobell.com) and I will fix it in the next printing.
My home page (www.sobell.com) offers copies of the longer scripts from the book
and pointers to interesting Linux pages on the Internet. You can follow me at
twitter.com/marksobell.

Mark G. Sobell
San Francisco, California

000.book Page lv Friday, November 21, 2014 6:41 PM

http://www.sobell.com

This page intentionally left blank

This page intentionally left blank

149149

5Chapter5

Objectives

After reading this chapter you should be able to:

 List special characters and methods of preventing the
shell from interpreting these characters

 Describe a simple command

 Understand command-line syntax and run commands
that include options and arguments

 Explain how the shell interprets the command line

 Redirect output of a command to a file, overwriting
the file or appending to it

 Redirect input for a command so it comes from a file

 Connect commands using a pipeline

 Run commands in the background

 Use special characters as wildcards to generate
filenames

 Explain the difference between a stand-alone utility
and a shell builtin

In This Chapter

The Working Directory. 151

Your Home Directory 151

The Command Line 152

Standard Input and
Standard Output 159

Redirection 161

Pipelines . 166

Running a Command in the
Background 171

kill: Aborting a Background Job . . 172

Filename Generation/Pathname
Expansion 173

Builtins . 178

5
The Shell

000.book Page 149 Friday, November 21, 2014 6:41 PM

150 Chapter 5 The Shell

The introduction to the command line on page 125 described some of the advan-
tages of using the command line over a GUI, how to use a terminal emulator, how
to correct mistakes on the command line, and how to run some command-line util-
ities. This chapter takes a close look at the shell and explains how to use some of
its features. It discusses command-line syntax and describes how the shell pro-
cesses a command line and initiates execution of a program. This chapter also
explains how to redirect input to and output from a command, construct pipelines
and filters on the command line, and run a command in the background. The final
section covers filename expansion and explains how you can use this feature in
your everyday work.

The exact wording of the shell output differs from shell to shell: What the shell
you are using displays might differ slightly from what appears in this book. Refer
to Chapter 9 for more information on bash (the default shell under Ubuntu) and
to Chapter 28 for information on writing and executing bash shell scripts.

 LE Special Characters

Special characters, which have a special meaning to the shell, are discussed in “File-
name Generation/Pathname Expansion” on page 173. These characters are
mentioned here so you can avoid accidentally using them as regular characters until
you understand how the shell interprets them. Avoid using any of the following
characters in a filename (even though emacs and some other programs do) because
they make the file harder to reference on the command line:

& ; | * ? ' " ‘ [] () $ < > { } # / \ ! ~

Whitespace Although not considered special characters, RETURN, SPACE, and TAB have special mean-
ings to the shell. RETURN usually ends a command line and initiates execution of a
command. The SPACE and TAB characters separate tokens (elements) on the command
line and are collectively known as whitespace or blanks.

Quoting special
characters

If you need to use a character that has a special meaning to the shell as a regular char-
acter, you can quote (or escape) it. When you quote a special character, you prevent
the shell from giving it special meaning. The shell treats a quoted special character
as a regular character. However, a slash (/) is always a separator in a pathname, even
when you quote it.

Backslash To quote a character, precede it with a backslash (\). When two or more special
characters appear together, you must precede each with a backslash (e.g., you
would enter ** as **). You can quote a backslash just as you would quote any
other special character—by preceding it with a backslash (\\).

Single quotation
marks

Another way of quoting special characters is to enclose them between single quota-
tion marks: '**'. You can quote many special and regular characters between a pair

000.book Page 150 Friday, November 21, 2014 6:41 PM

Ordinary Files and Directory Files 151

of single quotation marks: 'This is a special character: >'. The regular characters are
interpreted as usual, and the shell also interprets the special characters as regular
characters.

The only way to quote the erase character (CONTROL-H), the line kill character (CONTROL-U),
and other control characters (try CONTROL-M) is by preceding each with a CONTROL-V. Single
quotation marks and backslashes do not work. Try the following:

$ echo 'xxxxxxCONTROL-U'
$ echo xxxxxxCONTROL-V CONTROL-U

optional Although you cannot see the CONTROL-U displayed by the second of the preceding pair
of commands, it is there. The following command sends the output of echo
(page 227) through a pipeline (page 166) to od (octal display; see the od man page)
to display CONTROL-U as octal 25 (025):

$ echo xxxxxxCONTROL-V CONTROL-U | od -c
0000000 x x x x x x 025 \n
0000010

The \n is the NEWLINE character that echo sends at the end of its output.

Ordinary Files and Directory Files

Ordinary files, or simply files, are files that can hold documents, pictures, programs,
and other kinds of data. Directory files, also referred to as directories or folders, can
hold ordinary files and other directory files. For more information refer to “Ordinary
Files and Directory Files” on page 185.

The Working Directory

 LPI pwd While you are logged in on a character-based interface to a Linux system, you are
always associated with a directory. The directory you are associated with is called the
working directory or current directory. Sometimes this association is referred to in a
physical sense: “You are in (or working in) the zach directory.” The pwd (print working
directory) builtin displays the pathname of the working directory.

login: max
Password:
Last login: Wed Oct 20 11:14:21 from 172.16.192.150
$ pwd
/home/max

 LE Your Home Directory

When you first log in on a Linux system or start a terminal emulator window, the
working directory is your home directory. To display the pathname of your home
directory, use pwd just after you log in.

000.book Page 151 Friday, November 21, 2014 6:41 PM

152 Chapter 5 The Shell

 LE The Command Line

Command This book uses the term command to refer to both the characters you type on the
command line and the program that action invokes.

Command line A command line comprises a simple command (below), a pipeline (page 166), or a
list (page 170).

A Simple Command

The shell executes a program when you enter a command in response to its prompt.
For example, when you give an ls command, the shell executes the utility program
named ls. You can cause the shell to execute other types of programs—such as shell
scripts, application programs, and programs you have written—in the same way. The
line that contains the command, including any arguments, is called a simple command.
The following sections discuss simple commands; see page 155 for a more technical
and complete description of a simple command.

Syntax
Command-line syntax dictates the ordering and separation of the elements on a
command line. When you press the RETURN key after entering a command, the shell
scans the command line for proper syntax. The syntax for a simple command is

command [arg1] [arg2] ... [argn] RETURN

Whitespace (any combination of SPACEs and/or TABs) must separate elements on the
command line. The command is the name of the command, arg1 through argn are
arguments, and RETURN is the keystroke that terminates the command line. The
brackets in the command-line syntax indicate that the arguments they enclose are
optional. Not all commands require arguments: Some commands do not allow
arguments; other commands allow a variable number of arguments; and still others
require a specific number of arguments. Options, a special kind of argument, are
usually preceded by one or two hyphens (–).

Command Name

Usage message Some useful Linux command lines consist of only the name of the command without
any arguments. For example, ls by itself lists the contents of the working directory.
Commands that require arguments typically give a short error message, called a usage
message, when you use them without arguments, with incorrect arguments, or with
the wrong number of arguments.

For example, the mkdir (make directory) utility requires an argument that specifies the
name of the directory you want it to create. Without this argument, it displays a usage
message (operand is another term for “argument”):

$ mkdir
mkdir: missing operand
Try 'mkdir --help' for more information.

000.book Page 152 Friday, November 21, 2014 6:41 PM

The Command Line 153

 LE Arguments

Token On the command line each sequence of nonblank characters is called a token or
word. An argument is a token that a command acts on (e.g., a filename, a string of
characters, a number). For example, the argument to a vim or emacs command is the
name of the file you want to edit.

The following command line uses cp to copy the file named temp to tempcopy:

$ cp temp tempcopy

Arguments are numbered starting with the command itself, which is argument zero.
In this example, cp is argument zero, temp is argument one, and tempcopy is argu-
ment two. The cp utility requires at least two arguments on the command line.
Argument one is the name of an existing file. In this case, argument two is the name
of the file that cp is creating or overwriting. Here the arguments are not optional;
both arguments must be present for the command to work. When you do not supply
the right number or kind of arguments, cp displays a usage message. Try typing cp
and then pressing RETURN.

 LE Options

An option is an argument that modifies the effects of a command. These arguments
are called options because they are usually optional. You can frequently specify more
than one option, modifying the command in several ways. Options are specific to and
interpreted by the program that the command line calls, not the shell.

By convention, options are separate arguments that follow the name of the command
and usually precede other arguments, such as filenames. Many utilities require
options to be prefixed with a single hyphen. However, this requirement is specific to
the utility and not the shell. GNU long (multicharacter) program options are fre-
quently prefixed with two hyphens. For example, ––help generates a (sometimes
extensive) usage message.

The first of the following commands shows the output of an ls command without any
options. By default, ls lists the contents of the working directory in alphabetical order,
vertically sorted in columns. Next the –r (reverse order; because this is a GNU utility,
you can also specify ––reverse) option causes the ls utility to display the list of files in
reverse alphabetical order, still sorted in columns. The –x option causes ls to display
the list of files in horizontally sorted rows.

$ ls
hold mark names oldstuff temp zach
house max office personal test
$ ls -r
zach temp oldstuff names mark hold
test personal office max house
$ ls -x
hold house mark max names office
oldstuff personal temp test zach

000.book Page 153 Friday, November 21, 2014 6:41 PM

154 Chapter 5 The Shell

Combining options When you need to use several options, you can usually group multiple single-letter
options into one argument that starts with a single hyphen; do not put SPACEs between
the options. You cannot combine options that are preceded by two hyphens in this way.
Specific rules for combining options depend on the program you are running. The next
example shows both the –r and –x options with the ls utility. Together these options
generate a list of filenames in horizontally sorted rows in reverse alphabetical order.

$ ls -rx
zach test temp personal oldstuff office
names max mark house hold

Most utilities allow you to list options in any order; thus ls –xr produces the same
results as ls –rx. The command ls –x –r also generates the same list.

Option arguments Some utilities have options that require arguments. These arguments are not
optional. For example, the gcc utility (C compiler) has a –o (output) option that must
be followed by the name you want to give the executable file that gcc generates. Typ-
ically an argument to an option is separated from its option letter by a SPACE:

$ gcc -o prog prog.c

Some utilities sometimes require an equal sign between an option and its argument.
For example, you can specify the width of output from diff in two ways:

$ diff -W 60 filea fileb

or

$ diff --width=60 filea fileb

Arguments that start
with a hyphen

Another convention allows utilities to work with arguments, such as filenames, that
start with a hyphen. If a file named –l is in the working directory, the following
command is ambiguous:

The ––help option
tip Many utilities display a (sometimes extensive) help message when you call them with an argument

of ––help. All utilities developed by the GNU Project (page 3) accept this option. Following is the
help message displayed by the bzip2 compression utility (page 253).

$ bzip2 --help
bzip2, a block-sorting file compressor. Version 1.0.6, 6-Sept-2010.

 usage: bunzip2 [flags and input files in any order]

 -h --help print this message
 -d --decompress force decompression
 -z --compress force compression
 -k --keep keep (don't delete) input files
 -f --force overwrite existing output files
...
 If invoked as 'bzip2', default action is to compress.
 as 'bunzip2', default action is to decompress.
 as 'bzcat', default action is to decompress to stdout.
...

000.book Page 154 Friday, November 21, 2014 6:41 PM

The Command Line 155

$ ls -l

This command could be a request to display a long listing of all files in the working
directory (–l option) or a request for a listing of the file named –l. The ls utility inter-
prets it as the former. Avoid creating a file whose name begins with a hyphen. If
you do create such a file, many utilities follow the convention that a –– argument
(two consecutive hyphens) indicates the end of the options (and the beginning of
the arguments). To disambiguate the preceding command, you can type

$ ls -- -l

Using two consecutive hyphens to indicate the end of the options is a convention, not
a hard-and-fast rule, and a number of utilities do not follow it (e.g., find). Following
this convention makes it easier for users to work with a program you write.

For utilities that do not follow this convention, there are other ways to specify a
filename that begins with a hyphen. You can use a period to refer to the working
directory and a slash to indicate the following filename refers to a file in the work-
ing directory:

$ ls ./-l

You can also specify the absolute pathname of the file:

$ ls /home/max/-l

optional

Simple Commands

This section expands on the discussion of command-line syntax that starts on
page 152.

A simple command comprises zero or more variable assignments followed by a
command line. It is terminated by a control operator (e.g., &, ;, |, NEWLINE; page 347).
A simple command has the following syntax:

[name=value ...] command-line

The shell assigns a value to each name and places it in the environment (page 1054)
of the program that command-line calls so it is available to the called program and
its children as a variable. The shell evaluates the name=value pairs from left to right,
so if name appears more than once in this list, the rightmost value takes precedence.

Displaying readable file sizes: the –h option

tip Most utilities that report on file sizes specify the size of a file in bytes. Bytes work well when you
are dealing with smaller files, but the numbers can be difficult to read when you are working with
file sizes that are measured in gigabytes or terabytes. Use the –h (or ––human-readable) option
to display file sizes in kilobytes, megabytes, gigabytes, and terabytes. Experiment with the df –h
(disk free) and ls –lh commands.

000.book Page 155 Friday, November 21, 2014 6:41 PM

156 Chapter 5 The Shell

The command-line might include redirection operators such as > and < (page 161).
The exit status (page 1051) of a simple command is its return value.

Placing a variable
in the environment

of a child

The following commands demonstrate how you can assign a value to a name
(variable) and place that name in the environment of a child program; the variable
is not available to the interactive shell you are running (the parent program). The
script named echo_ee displays the value of the variable named ee. The first call to
echo_ee shows ee is not set in the child shell running the script. When the call to
echo_ee is preceded by assigning a value to ee, the script displays the value of ee
in the child shell. The final command shows ee has not been set in the interactive
shell.

$ cat echo_ee
echo "The value of the ee variable is: $ee"

$./echo_ee
The value of the ee variable is:
$ ee=88 ./echo_ee
The value of the ee variable is: 88
$ echo $ee

$

Processing the Command Line

As you enter a command line, the tty device driver (part of the Linux kernel) exam-
ines each character to see whether it must take immediate action. When you press
CONTROL-H (to erase a character) or CONTROL-U (to kill a line), the device driver immediately
adjusts the command line as required; the shell never sees the character(s) you erased
or the line you killed. Often a similar adjustment occurs when you press CONTROL-W (to
erase a word). When the character you entered does not require immediate action,
the device driver stores the character in a buffer and waits for additional characters.
When you press RETURN, the device driver passes the command line to the shell for
processing.

Parsing the
command line

When the shell processes a command line, it looks at the line as a whole and parses
(breaks) it into its component parts (Figure 5-1). Next the shell looks for the name of
the command. Usually the name of the command is the first item on the command line
after the prompt (argument zero). The shell takes the first characters on the command
line up to the first blank (TAB or SPACE) and then looks for a command with that name.
The command name (the first token) can be specified on the command line either as a
simple filename or as a pathname. For example, you can call the ls command in either
of the following ways:

$ ls

or

$ /bin/ls

000.book Page 156 Friday, November 21, 2014 6:41 PM

The Command Line 157

optional The shell does not require the name of the program to appear first on the command
line. Thus you can structure a command line as follows:

$ >bb <aa cat

This command runs cat with standard input coming from the file named aa and stan-
dard output going to the file named bb. When the shell recognizes the redirect
symbols (page 161), it processes them and their arguments before finding the name
of the program that the command line is calling. This is a properly structured—albeit
rarely encountered and possibly confusing—command line.

 LPI Absolute
versus relative

pathnames

From the command line, there are three ways you can specify the name of a file you
want the shell to execute: as an absolute pathname (starts with a slash [/]; page 189),
as a relative pathname (includes a slash but does not start with a slash; page 190), or
as a simple filename (no slash). When you specify the name of a file for the shell to
execute in either of the first two ways (the pathname includes a slash), the shell looks
in the specified directory for a file with the specified name that you have permission
to execute. When you specify a simple filename (no slash), the shell searches through
a list of directories for a filename that matches the specified name and for which you

Figure 5-1 Processing the command line

NEWLINE

Get first word

command name
and save as

Execute program

Get more

command line
of the

Display

Issue prompt

no

noyes not found
Does

program
exist?

yes

000.book Page 157 Friday, November 21, 2014 6:41 PM

158 Chapter 5 The Shell

have execute permission. The shell does not look through all directories but only the
ones specified by the variable named PATH. Refer to page 365 for more information
on PATH. Also refer to the discussion of the which and whereis utilities on page 263.

When it cannot find the file, bash displays the following message:

$ abc
bash: abc: command not found...

Some systems are set up to suggest where you might be able to find the program
you tried to run. One reason the shell might not be able to find the executable file
is that it is not in a directory listed in the PATH variable. Under bash the following
command temporarily adds the working directory (.) to PATH:

$ PATH=$PATH:.

For security reasons, it is poor practice to add the working directory to PATH
permanently; see the following tip and the one on page 366.

When the shell finds the file but cannot execute it (i.e., because you do not have execute
permission for the file), it displays a message similar to

$ def
bash: ./def: Permission denied

See “ls –l: Displays Permissions” on page 199 for information on displaying access
permissions for a file and “chmod: Changes Access Permissions” on page 201 for
instructions on how to change file access permissions.

Executing a Command

 LE Process If it finds an executable file with the name specified on the command line, the shell
starts a new process. A process is the execution of a command by Linux (page 379).
The shell makes each command-line argument, including options and the name of the
command, available to the called program. While the command is executing, the shell
waits for the process to finish. At this point the shell is in an inactive state named
sleep. When the program finishes execution, it passes its exit status (page 1051) to
the shell. The shell then returns to an active state (wakes up), issues a prompt, and
waits for another command.

The shell does not
process arguments

Because the shell does not process command-line arguments but merely passes them to
the called program, the shell has no way of knowing whether a particular option or
other argument is valid for a given program. Any error or usage messages about options
or arguments come from the program itself. Some utilities ignore bad options.

Try giving a command as ./command
tip You can always execute an executable file in the working directory by prepending ./ to the name of

the file. Because ./filename is a relative pathname, the shell does not consult PATH when looking
for filename. For example, if myprog is an executable file in the working directory, you can execute
it using the following command (regardless of how PATH is set):

$./myprog

000.book Page 158 Friday, November 21, 2014 6:41 PM

Standard Input and Standard Output 159

Editing the Command Line

You can repeat and edit previous commands and edit the current command line. See
pages 131 and 384 for more information.

Standard Input and Standard Output

Standard output is a place to which a program can send information (e.g., text). The
program never “knows” where the information it sends to standard output is going
(Figure 5-2). The information can go to a printer, an ordinary file, or the screen. The
following sections show that by default the shell directs standard output from a com-
mand to the screen1 and describe how you can cause the shell to redirect this output
to another file.

Standard input is a place a program gets information from; by default, the shell
directs standard input from the keyboard. As with standard output the program
never “knows” where the information comes from. The following sections explain
how to redirect standard input to a command so it comes from an ordinary file
instead of from the keyboard.

In addition to standard input and standard output, a running program has a place to
send error messages: standard error. By default, the shell directs standard error to the
screen. Refer to page 339 for more information on redirecting standard error.

optional By convention, a process expects that the program that called it (frequently the shell)
has set up standard input, standard output, and standard error so the process can use
them immediately. The called process does not have to know which files or devices
are connected to standard input, standard output, or standard error.

However, a process can query the kernel to get information about the device that
standard input, standard output, or standard error is connected to. For example, the
ls utility displays output in multiple columns when the output goes to the screen, but
generates a single column of output when the output is redirected to a file or another

Figure 5-2 The command does not know where standard input comes from or
where standard output and standard error gox xxxxx

CommandStandard
input

Standard
output

Standard
error

1. This book uses the term screen to refer to a screen, terminal emulator window, or workstation—in other
words, to the device that the shell displays its prompt and messages on.

000.book Page 159 Friday, November 21, 2014 6:41 PM

160 Chapter 5 The Shell

program. The ls utility uses the isatty() system call to determine whether output is
going to the screen (a tty). In addition, ls can use another system call to determine
the width of the screen it is sending output to; with this information it can modify its
output to fit the screen. Compare the output of ls by itself and when you send it
through a pipeline to less. See page 1042 for information on how you can determine
whether standard input and standard output of shell scripts is going to/coming from
the terminal.

The Screen as a File

 LPI Device file Chapter 6 discusses ordinary files, directory files, and hard and soft links. Linux has
an additional type of file: a device file. A device file resides in the file structure, usually
in the /dev directory, and represents a peripheral device, such as a terminal, printer,
or disk drive.

The device name the who utility displays following a username is the filename of the
terminal that user is working on. For example, when who displays the device name
pts/4, the pathname of the terminal is /dev/pts/4. When you work with multiple win-
dows, each window has its own device name. You can also use the tty utility to display
the name of the device that you give the command from. Although you would not
normally have occasion to do so, you can read from and write to this file as though
it were a text file. Reading from the device file that represents the terminal you are
using reads what you enter on the keyboard; writing to it displays what you write on
the screen.

The Keyboard and Screen as Standard Input and

Standard Output

After you log in, the shell directs standard output of commands you enter to the
device file that represents the terminal (Figure 5-3). Directing output in this manner
causes it to appear on the screen. The shell also directs standard input to come from
the same file, so commands receive as input anything you type on the keyboard.

 LPI cat The cat utility provides a good example of the way the keyboard and screen function
as standard input and standard output, respectively. When you run cat, it copies a file
to standard output. Because the shell directs standard output to the screen, cat displays
the file on the screen.

Up to this point cat has taken its input from the filename (argument) you specify on
the command line. When you do not give cat an argument (i.e., when you give the
command cat followed immediately by RETURN), cat takes its input from standard
input. Thus, when called without an argument, cat copies standard input to standard
output, one line at a time.

To see how cat works, type cat and press RETURN in response to the shell prompt. Nothing
happens. Enter a line of text and press RETURN. The same line appears just under the one

000.book Page 160 Friday, November 21, 2014 6:41 PM

Standard Input and Standard Output 161

you entered. The cat utility is working. Because the shell associates cat’s standard input
with the keyboard and cat’s standard output with the screen, when you type a line of
text cat copies the text from standard input (the keyboard) to standard output (the
screen). The next example shows this exchange.

$ cat
This is a line of text.
This is a line of text.
Cat keeps copying lines of text
Cat keeps copying lines of text
until you press CONTROL-D at the beginning
until you press CONTROL-D at the beginning
of a line.
of a line.
CONTROL-D
$

CONTROL-D

signals EOF
The cat utility keeps copying text until you enter CONTROL-D on a line by itself. Pressing
CONTROL-D causes the tty device driver to send an EOF (end of file) signal to cat. This
signal indicates to cat that it has reached the end of standard input and there is no
more text for it to copy. The cat utility then finishes execution and returns control to
the shell, which displays a prompt.

 LE+ Redirection

The term redirection encompasses the various ways you can cause the shell to alter
where standard input of a command comes from and where standard output goes to.
By default, the shell associates standard input and standard output of a command
with the keyboard and the screen. You can cause the shell to redirect standard input
or standard output of any command by associating the input or output with a com-
mand or file other than the device file representing the keyboard or the screen. This
section demonstrates how to redirect input/output from/to text files and utilities.

Figure 5-3 By default, standard input comes from the keyboard, and
standard output goes to the screenxxxxxxxx.

Command

Standard
input

Standard
output

S
h

el
l

S
h

ell

000.book Page 161 Friday, November 21, 2014 6:41 PM

162 Chapter 5 The Shell

 LPI Redirecting Standard Output

The redirect output symbol (>) instructs the shell to redirect the output of a command
to the specified file instead of to the screen (Figure 5-4). The syntax of a command
line that redirects output is

command [arguments] > filename

where command is any executable program (e.g., an application program or a utility),
arguments are optional arguments, and filename is the name of the ordinary file the
shell redirects the output to.

Using cat to
create a file

The next example uses cat to demonstrate output redirection. This example contrasts
with the example on page 161, where standard input and standard output are associ-
ated with the keyboard and screen. The input in the following example comes from the
keyboard. The redirect output symbol on the command line causes the shell to associate
cat’s standard output with the sample.txt file specified following this symbol.

$ cat > sample.txt
This text is being entered at the keyboard and
cat is copying it to a file.
Press CONTROL-D to indicate the
end of file.
CONTROL-D
$

After giving the command and typing the text shown in the previous example, the sam-
ple.txt file contains the text you entered. You can use cat with an argument of sample.txt
to display this file. The next section shows another way to use cat to display the file.

The previous example shows that redirecting standard output from cat is a handy
way to create a file without using an editor. The drawback is that once you enter a
line and press RETURN, you cannot edit the text until after you finish creating the file.
While you are entering a line, the erase and kill keys work to delete text on that line.
This procedure is useful for creating short, simple files.

Figure 5-4 Redirecting standard output

Command

Standard
input

S
h

ell Standard
outputS

he
ll

File

Redirecting output can destroy a file I

caution Use caution when you redirect output to a file. If the file exists, the shell will overwrite it and destroy
its contents. For more information see the tip “Redirecting output can destroy a file II” on page 164.

000.book Page 162 Friday, November 21, 2014 6:41 PM

Standard Input and Standard Output 163

The next example shows how to run cat and use the redirect output symbol to catenate
(join one after the other—the derivation of the name of the cat utility) several files into
one larger file. The first three commands display the contents of three files: stationery,
tape, and pens. The next command shows cat with three filenames as arguments.
When you call it with more than one filename, cat copies the files, one at a time, to
standard output. This command redirects standard output to the file named
supply_orders. The final cat command shows that supply_orders contains the con-
tents of the three original files.

$ cat stationery
2,000 sheets letterhead ordered: October 7
$ cat tape
1 box masking tape ordered: October 14
5 boxes filament tape ordered: October 28
$ cat pens
12 doz. black pens ordered: October 4

$ cat stationery tape pens > supply_orders

$ cat supply_orders
2,000 sheets letterhead ordered: October 7
1 box masking tape ordered: October 14
5 boxes filament tape ordered: October 28
12 doz. black pens ordered: October 4

 LPI Redirecting Standard Input

Just as you can redirect standard output, so you can redirect standard input. The
redirect input symbol (<) instructs the shell to redirect a command’s input to come
from the specified file instead of from the keyboard (Figure 5-5). The syntax of a
command line that redirects input is

command [arguments] < filename

where command is any executable program (such as an application program or a utility),
arguments are optional arguments, and filename is the name of the ordinary file the shell
redirects the input from.

Figure 5-5 Redirecting standard input

Command

Standard
outputS

h
el

l

Standard
input

File

S
hell

000.book Page 163 Friday, November 21, 2014 6:41 PM

164 Chapter 5 The Shell

The next example shows cat with its input redirected from the supply_orders file cre-
ated in the previous example and standard output going to the screen. This setup
causes cat to display the supply_orders file on the screen. The system automatically
supplies an EOF signal at the end of an ordinary file.

$ cat < supply_orders
2,000 sheets letterhead ordered: October 7
1 box masking tape ordered: October 14
5 boxes filament tape ordered: October 28
12 doz. black pens ordered: October 4

Utilities that take
input from a file or

standard input

Giving a cat command with input redirected from a file yields the same result as giv-
ing a cat command with the filename as an argument. The cat utility is a member of
a class of utilities that function in this manner. Other members of this class of utilities
include lpr, sort, grep, and Perl. These utilities first examine the command line that
called them. If the command line includes a filename as an argument, the utility takes
its input from the specified file. If no filename argument is present, the utility takes
its input from standard input. It is the utility or program—not the shell or operating
system—that functions in this manner.

noclobber: Prevents Overwriting Files

The shell provides the noclobber feature, which prevents you from overwriting a
file using redirection. Enable this feature by setting noclobber using the command
set –o noclobber. The same command with +o unsets noclobber. With noclobber set,
if you redirect output to an existing file, the shell displays an error message and
does not execute the command. The following example creates a file using touch,

Redirecting output can destroy a file II

caution Depending on which shell you are using and how the environment is set up, a command such as
the following can yield undesired results:

$ cat orange pear > orange
cat: orange: input file is output file

Although cat displays an error message, the shell destroys the contents of the existing orange file.
The new orange file will have the same contents as pear because the first action the shell takes
when it sees the redirection symbol (>) is to remove the contents of the original orange file. If you
want to catenate two files into one, use cat to put the two files into a temporary file and then use
mv to rename the temporary file:

$ cat orange pear > temp
$ mv temp orange

What happens in the next example can be even worse. The user giving the command wants to
search through files a, b, and c for the word apple and redirect the output from grep (page 240)
to the file a.output. Unfortunately the user enters the filename as a output, omitting the period and
inserting a SPACE in its place:

$ grep apple a b c > a output
grep: output: No such file or directory

The shell obediently removes the contents of a and then calls grep. The error message could take
a moment to appear, giving you a sense that the command is running correctly. Even after you see
the error message, it might take a while to realize that you have destroyed the contents of a.

000.book Page 164 Friday, November 21, 2014 6:41 PM

Standard Input and Standard Output 165

sets noclobber, attempts to redirect the output from echo to the newly created file,
unsets noclobber, and performs the same redirection:

$ touch tmp
$ set -o noclobber
$ echo "hi there" > tmp
-bash: tmp: cannot overwrite existing file
$ set +o noclobber
$ echo "hi there" > tmp

You can override noclobber by putting a pipeline symbol after the redirect symbol
(>|). In the following example, the user creates a file by redirecting the output of date.
Next the user sets the noclobber variable and redirects output to the same file again.
The shell displays an error message. Then the user places a pipeline symbol after the
redirect symbol, and the shell allows the user to overwrite the file.

$ date > tmp2
$ set -o noclobber
$ date > tmp2
-bash: tmp2: cannot overwrite existing file
$ date >| tmp2

Appending Standard Output to a File

The append output symbol (>>) causes the shell to add new information to the end
of a file, leaving existing information intact. This symbol provides a convenient way
of catenating two files into one. The following commands demonstrate the action of
the append output symbol. The second command accomplishes the catenation
described in the preceding caution box:

$ cat orange
this is orange
$ cat pear >> orange
$ cat orange
this is orange
this is pear

The first command displays the contents of the orange file. The second command
appends the contents of the pear file to the orange file. The final command displays
the result.

Do not trust noclobber
caution Appending output is simpler than the two-step procedure described in the preceding caution box

but you must be careful to include both greater than signs. If you accidentally use only one greater
than sign and the noclobber feature is not set, the shell will overwrite the orange file. Even if you
have the noclobber feature turned on, it is a good idea to keep backup copies of the files you are
manipulating in case you make a mistake.

Although it protects you from overwriting a file using redirection, noclobber does not stop you
from overwriting a file using cp or mv. These utilities include the –i (interactive) option that helps
protect you from this type of mistake by verifying your intentions when you try to overwrite a file.
For more information see the tip “cp can destroy a file” on page 232.

000.book Page 165 Friday, November 21, 2014 6:41 PM

166 Chapter 5 The Shell

The next example shows how to create a file that contains the date and time (the out-
put from date), followed by a list of who is logged in (the output from who). The first
command in the example redirects the output from date to the file named whoson.
Then cat displays the file. The next command appends the output from who to the
whoson file. Finally cat displays the file containing the output of both utilities.

$ date > whoson
$ cat whoson
Wed Mar 27 14:31:18 PST 2013
$ who >> whoson
$ cat whoson
Wed Mar 27 14:31:18 PST 2013
sam tty1 2013-03-27 05:00(:0)
max pts/4 2013-03-27 12:23(:0.0)
max pts/5 2013-03-27 12:33(:0.0)
zach pts/7 2013-03-26 08:45 (172.16.192.1)

/dev/null: Making Data Disappear

The /dev/null device is a data sink, commonly referred to as a bit bucket. You can
redirect output you do not want to keep or see to /dev/null, and the output will
disappear without a trace:

$ echo "hi there" > /dev/null
$

Reading from /dev/null yields a null string. The following command truncates the file
named messages to zero length while preserving the ownership and permissions of the
file:

$ ls -lh messages
-rw-rw-r--. 1 sam pubs 125K 03-16 14:30 messages
$ cat /dev/null > messages
$ ls -lh messages
-rw-rw-r--. 1 sam pubs 0 03-16 14:32 messages

See also page 481.

 LE+ Pipelines

A pipeline consists of one or more commands separated by a pipeline symbol (|).
The shell connects standard output (and optionally standard error) of the com-
mand preceding the pipeline symbol to standard input of the command following
the pipeline symbol. A pipeline has the same effect as redirecting standard output
of one command to a file and then using that file as standard input to another
command. A pipeline does away with separate commands and the intermediate
file. The syntax of a pipeline is

command_a [arguments] | command_b [arguments]

The preceding command line uses a pipeline to effect the same result as the following
three commands:

000.book Page 166 Friday, November 21, 2014 6:41 PM

Standard Input and Standard Output 167

command_a [arguments] > temp
command_b [arguments] < temp
rm temp

In the preceding sequence of commands, the first line redirects standard output from
command_a to an intermediate file named temp. The second line redirects standard
input for command_b to come from temp. The final line deletes temp. The pipeline
syntax is not only easier to type but also is more efficient because it does not create
a temporary file.

optional More precisely, a bash pipeline comprises one or more simple commands (page 155)
separated by a | or |& control operator. A pipeline has the following syntax:

[time] [!] command1 [| | |& command2 ...]

where time is an optional utility that summarizes the system resources used by the pipe-
line, ! logically negates the exit status returned by the pipeline, and the commands are
simple commands (page 155) separated by | or |&. The | control operator sends stan-
dard output of command1 to standard input of command2. The |& control operator
is short for 2>&1 | (see “Sending errors through a pipeline” on page 341) and sends
standard output and standard error of command1 to standard input of command2.
The exit status of a pipeline is the exit status of the last simple command unless pipefail
(page 409) is set, in which case the exit status is the rightmost simple command that
failed (returned a nonzero exit status) or zero if all simple commands completed
successfully.

Examples of Pipelines

 LPI tr You can include in a pipeline any utility that accepts input either from a file specified
on the command line or from standard input. You can also include utilities that
accept input only from standard input. For example, the tr (translate) utility takes its
input from standard input only. In its simplest usage tr has the following syntax:

tr string1 string2

The tr utility accepts input from standard input and looks for characters that match one
of the characters in string1. Upon finding a match, it translates the matched character in
string1 to the corresponding character in string2. That is, the first character in string1
translates into the first character in string2, and so forth. The tr utility sends its output
to standard output. In both of the following tr commands, tr displays the contents of the
abstract file with the letters a, b, and c translated into A, B, and C, respectively:

$ cat abstract
I took a cab today!

$ cat abstract | tr abc ABC
I took A CAB todAy!
$ tr abc ABC < abstract
I took A CAB todAy!

000.book Page 167 Friday, November 21, 2014 6:41 PM

168 Chapter 5 The Shell

The tr utility does not change the contents of the original file; it cannot change the
original file because it does not “know” the source of its input.

lpr The lpr (line printer) utility accepts input from either a file or standard input. When
you type the name of a file following lpr on the command line, it places that file in
the print queue. When you do not specify a filename on the command line, lpr takes
input from standard input. This feature enables you to use a pipeline to redirect input
to lpr. The first set of the following commands shows how you can use ls and lpr with
an intermediate file (temp) to send a list of the files in the working directory to the
printer. If the temp file exists, the first command overwrites its contents. The second
set of commands uses a pipeline to send the same list (with the exception of temp) to
the printer.

$ ls > temp
$ lpr temp
$ rm temp

or

$ ls | lpr

sort The commands in next example redirect the output from the who utility to temp and
then display this file in sorted order. The sort utility (page 247) takes its input from
the file specified on the command line or, when a file is not specified, from standard
input; it sends its output to standard output. The sort command line takes its input
from standard input, which is redirected (<) to come from temp. The output sort
sends to the screen lists the users in sorted (alphabetical) order. Because sort can take
its input from standard input or from a file named on the command line, omitting
the < symbol from the command line yields the same result.

$ who > temp
$ sort < temp
max pts/4 2013-03-24 12:23
max pts/5 2013-03-24 12:33
sam tty1 2013-03-24 05:00
zach pts/7 2013-03-23 08:45
$ rm temp

The next example achieves the same result without creating the temp file. Using a
pipeline, the shell redirects the output from who to the input of sort. The sort utility
takes input from standard input because no filename follows it on the command line.

$ who | sort
max pts/4 2013-03-24 12:23
max pts/5 2013-03-24 12:33
sam tty1 2013-03-24 05:00
zach pts/7 2013-03-23 08:45

grep When many people are using the system and you want information about only one of
them, you can send the output from who to grep (page 240) using a pipeline. The grep
utility displays the line containing the string you specify—sam in the following example:

000.book Page 168 Friday, November 21, 2014 6:41 PM

Standard Input and Standard Output 169

$ who | grep sam
sam tty1 2013-03-24 05:00

less and more Another way of handling output that is too long to fit on the screen, such as a list of
files in a crowded directory, is to use a pipeline to send the output through less or
more (both on page 228).

$ ls | less

The less utility displays text one screen at a time. To view another screen of text, press
the SPACE bar. To view one more line, press RETURN. Press h for help and q to quit.

optional The pipeline symbol (|) implies continuation. Thus the following command line

$ who | grep 'sam'
sam tty1 2013-03-24 05:00

is the same as these command lines

$ who |
> grep 'sam'
sam tty1 2013-03-24 05:00

When the shell parses a line that ends with a pipeline symbol, it requires more input
before it can execute the command line. In an interactive environment, it issues a sec-
ondary prompt (>; page 368) as shown above. Within a shell script, it processes the
next line as a continuation of the line that ends with the pipeline symbol. See
page 1085 for information about control operators and implicit command-line
continuation.

 LPI Filters

A filter is a command that processes an input stream of data to produce an output
stream of data. A command line that includes a filter uses a pipeline symbol to con-
nect standard output of one command to standard input of the filter. Another
pipeline symbol connects standard output of the filter to standard input of another
command. Not all utilities can be used as filters.

In the following example, sort is a filter, taking standard input from standard output
of who and using a pipeline symbol to redirect standard output to standard input of
lpr. This command line sends the sorted output of who to the printer:

$ who | sort | lpr

The preceding example demonstrates the power of the shell combined with the versatility
of Linux utilities. The three utilities who, sort, and lpr were not designed to work with one
another, but they all use standard input and standard output in the conventional way. By
using the shell to handle input and output, you can piece standard utilities together on
the command line to achieve the results you want.

000.book Page 169 Friday, November 21, 2014 6:41 PM

170 Chapter 5 The Shell

 LPI tee The tee utility copies its standard input both to a file and to standard output. This
utility is aptly named: It takes a single stream of input and sends the output in two
directions. The next example sends the output of who via a pipeline to standard input
of tee. The tee utility saves a copy of standard input in a file named who.out and also
sends a copy to standard output. Standard output of tee goes via a pipeline to stan-
dard input of grep, which displays only those lines containing the string sam. Use tee
with the –a (append) option to cause it to append to a file instead of overwriting it.

$ who | tee who.out | grep sam
sam tty1 2013-03-24 05:00
$ cat who.out
sam tty1 2013-03-24 05:00
max pts/4 2013-03-24 12:23
max pts/5 2013-03-24 12:33
zach pts/7 2013-03-23 08:45

optional

 LE+ Lists

A list is one or more pipelines (including simple commands), each separated from the
next by one of the following control operators: ;, &, &&, or ||. The && and || control
operators have equal precedence; they are followed by ; and &, which have equal pre-
cedence. The ; control operator is covered on page 347 and & on page 348. See
page 1085 for information about control operators and implicit command-line
continuation.

An AND list has the following syntax:

pipeline1 && pipeline2

where pipeline2 is executed if and only if pipeline1 returns a true (zero) exit status.
In the following example, the first command in the list fails (and displays an error
message) so the shell does not execute the second command (cd /newdir; because it
is not executed, it does not display an error message):

$ mkdir /newdir && cd /newdir
mkdir: cannot create directory '/newdir': Permission denied

The exit status of AND and OR lists is the exit status of the last command in the list
that is executed. The exit status of the preceding list is false because mkdir was the
last command executed and it failed.

An OR list has the following syntax:

pipeline1 || pipeline2

where pipeline2 is executed if and only if pipeline1 returns a false (nonzero) exit sta-
tus. In the next example, the first command (ping tests the connection to a remote
machine and sends standard output and standard error to /dev/null) in the list fails so the

000.book Page 170 Friday, November 21, 2014 6:41 PM

Running a Command in the Background 171

shell executes the second command (it displays a message). If the first command had
completed successfully, the shell would not have executed the second command (and
would not have displayed the message). The list returns an exit status of true.

$ ping -c1 station &>/dev/null || echo "station is down"
station is down

For more information refer to “&& and || Boolean Control Operators” on page 349.

 LPI Running a Command in the Background

 LPI Foreground All commands up to this point have been run in the foreground. When you run a com-
mand in the foreground, the shell waits for it to finish before displaying another
prompt and allowing you to continue. When you run a command in the background,
you do not have to wait for the command to finish before running another command.

Jobs A job is another name for a process running a pipeline (which can be a simple command).
You can have only one foreground job in a window or on a screen, but you can have
many background jobs. By running more than one job at a time, you are using one of
Linux’s features: multitasking. Running a command in the background can be useful
when the command will run for a long time and does not need supervision. It leaves the
screen free so you can use it for other work. Alternately, when you are using a GUI, you
can open another window to run another job.

Job number,
PID number

To run a command in the background, type an ampersand (&; a control operator)
just before the RETURN that ends the command line. The shell assigns a small number
to the job and displays this job number between brackets. Following the job number,
the shell displays the process identification (PID) number—a larger number assigned
by the operating system. Each of these numbers identifies the command running in
the background. The shell then displays another prompt, and you can enter another
command. When the background job finishes, the shell displays a message giving
both the job number and the command line used to run the command.

The following example runs in the background; it is a pipeline that sends the output
of ls to lpr, which sends it to the printer.

$ ls -l | lpr &
[1] 22092
$

The [1] following the command line indicates that the shell has assigned job number
1 to this job. The 22092 is the PID number of the first command in the job. When
this background job completes execution, you see the message

[1]+ Done ls -l | lpr

(In place of ls –l, the shell might display something similar to ls ––color=auto –l. This
difference is due to the fact that ls is aliased [page 398] to ls ––color=auto.)

000.book Page 171 Friday, November 21, 2014 6:41 PM

172 Chapter 5 The Shell

 LPI Moving a Job from the Foreground to the Background

CONTROL-Z

and bg
You can suspend a foreground job (stop it from running) by pressing the suspend key,
usually CONTROL-Z. The shell then stops the process and disconnects standard input from
the keyboard. It does, however, still send standard output and standard error to the
screen. You can put a suspended job in the background and restart it by using the bg
command followed by the job number. You do not need to specify the job number
when there is only one suspended job.

Redirect the output of a job you run in the background to keep it from interfering
with whatever you are working on in the foreground (on the screen). Refer to
“Control Operators: Separate and Group Commands” on page 347 for more detail
about background tasks.

fg Only the foreground job can take input from the keyboard. To connect the keyboard to
a program running in the background, you must bring the program to the foreground.
To do so, type fg without any arguments when only one job is in the background. When
more than one job is in the background, type fg, or a percent sign (%), followed by the
number of the job you want to bring to the foreground. The shell displays the command
you used to start the job (promptme in the following example), and you can enter input
the program requires to continue.

$ fg 1
promptme

 LPI kill: Aborting a Background Job

The interrupt key (usually CONTROL-C) cannot abort a background process because the
keyboard is not attached to the job; you must use kill (page 455) for this purpose.
Follow kill on the command line with either the PID number of the process you
want to abort or a percent sign (%) followed by the job number.

Determining the
PID of a process

using ps

If you forget a PID number, you can use the ps (process status) utility (page 380) to
display it. The following example runs a find command in the background, uses ps to
display the PID number of the process, and aborts the job using kill:

$ find / -name memo55 > mem.out &
[1] 18228
$ ps | grep find
18228 pts/10 00:00:01 find
$ kill 18228
[1]+ Terminated find / -name memo55 > mem.out
$

 LPI Determining
the number of a job

using jobs

If you forget a job number, you can use the jobs command to display a list of jobs
that includes job numbers. The next example is similar to the previous one except
it uses the job number instead of the PID number to identify the job to be killed.
Sometimes the message saying the job is terminated does not appear until you press
RETURN after the RETURN that executes the kill command.

000.book Page 172 Friday, November 21, 2014 6:41 PM

Filename Generation/Pathname Expansion 173

$ find / -name memo55 > mem.out &
[1] 18236

$ bigjob &
[2] 18237

$ jobs
[1]- Running find / -name memo55 > mem.out &
[2]+ Running bigjob &
$ kill %1
$ RETURN
[1]- Terminated find / -name memo55 > mem.out
$

 LE+ Filename Generation/Pathname Expansion

Wildcards, globbing When you specify an abbreviated filename that contains special characters, also called
metacharacters, the shell can generate filenames that match the names of existing files.
These special characters are also referred to as wildcards because they act much as the
jokers do in a deck of cards. When one of these characters appears in an argument on
the command line, the shell expands that argument in sorted order into a list of filenames
and passes the list to the program called by the command line. Filenames that contain
these special characters are called ambiguous file references because they do not refer to
one specific file. The process the shell performs on these filenames is called pathname
expansion or globbing.

Ambiguous file references can quickly refer to a group of files with similar names,
saving the effort of typing the names individually. They can also help find a file whose
name you do not remember in its entirety. If no filename matches the ambiguous file
reference, the shell generally passes the unexpanded reference—special characters
and all—to the command. See “Brace Expansion” on page 411 for a technique that
generates strings that do not necessarily match filenames.

The ? Special Character

The question mark (?) is a special character that causes the shell to generate file-
names. It matches any single character in the name of an existing file. The following
command uses this special character in an argument to the lpr utility:

$ lpr memo?

The shell expands the memo? argument and generates a list of files in the working
directory that have names composed of memo followed by any single character. The
shell then passes this list to lpr. The lpr utility never “knows” the shell generated the
filenames it was called with. If no filename matches the ambiguous file reference, the
shell passes the string itself (memo?) to lpr or, if it is set up to do so, passes a null string
(see nullglob on page 408).

000.book Page 173 Friday, November 21, 2014 6:41 PM

174 Chapter 5 The Shell

The following example uses ls first to display the names of all files in the working
directory and then to display the filenames that memo? matches:

$ ls
mem memo12 memo9 memomax newmemo5
memo memo5 memoa memos

$ ls memo?
memo5 memo9 memoa memos

The memo? ambiguous file reference does not match mem, memo, memo12,
memomax, or newmemo5. You can also use a question mark in the middle of an
ambiguous file reference:

$ ls
7may4report may4report mayqreport may_report
may14report may4report.79 mayreport may.report

$ ls may?report
may4report mayqreport may_report may.report

echo You can use echo and ls to practice generating filenames. The echo builtin displays
the arguments the shell passes to it:

$ echo may?report
may4report mayqreport may_report may.report

The shell first expands the ambiguous file reference into a list of files in the working
directory that match the string may?report. It then passes this list to echo, as though
you had entered the list of filenames as arguments to echo. The echo utility displays
the list of filenames.

A question mark does not match a leading period (one that indicates a hidden filename;
page 188). When you want to match filenames that begin with a period, you must
explicitly include the period in the ambiguous file reference.

The * Special Character

The asterisk (*) performs a function similar to that of the question mark but matches
any number of characters, including zero characters, in a filename. The following
example first shows all files in the working directory and then shows commands that
display all the filenames that begin with the string memo, end with the string mo, and
contain the string alx:

$ ls
amemo memalx memo.0612 memoalx.0620 memorandum sallymemo
mem memo memoa memoalx.keep memosally user.memo

$ echo memo*
memo memo.0612 memoa memoalx.0620 memoalx.keep memorandum memosally

$ echo *mo
amemo memo sallymemo user.memo

$ echo *alx*
memalx memoalx.0620 memoalx.keep

000.book Page 174 Friday, November 21, 2014 6:41 PM

Filename Generation/Pathname Expansion 175

The ambiguous file reference memo* does not match amemo, mem, sallymemo, or
user.memo. Like the question mark, an asterisk does not match a leading period in a
filename.

The –a option causes ls to display hidden filenames (page 188). The command
echo * does not display . (the working directory), .. (the parent of the working
directory), .aaa, or .profile. In contrast, the command echo .* displays only those
four names:

$ ls
aaa memo.0612 memo.sally report sally.0612 saturday thurs

$ ls -a
. aaa memo.0612 .profile sally.0612 thurs
.. .aaa memo.sally report saturday

$ echo *
aaa memo.0612 memo.sally report sally.0612 saturday thurs

$ echo .*
. .. .aaa .profile

In the following example, .p* does not match memo.0612, private, reminder, or
report. The ls .* command causes ls to list .private and .profile in addition to the con-
tents of the . directory (the working directory) and the .. directory (the parent of the
working directory). When called with the same argument, echo displays the names
of files (including directories) in the working directory that begin with a dot (.) but
not the contents of directories.

$ ls -a
. .. memo.0612 private .private .profile reminder report

$ echo .p*
.private .profile

$ ls .*
.private .profile
.:
memo.0612 private reminder report
..:
...

$ echo .*
. .. .private .profile

You can plan to take advantage of ambiguous file references when you establish
conventions for naming files. For example, when you end the names of all text files
with .txt, you can reference that group of files with *.txt. The next command uses
this convention to send all text files in the working directory to the printer. The
ampersand causes lpr to run in the background.

$ lpr *.txt &

000.book Page 175 Friday, November 21, 2014 6:41 PM

176 Chapter 5 The Shell

The [] Special Characters

A pair of brackets surrounding one or more characters causes the shell to match file-
names containing the individual characters within the brackets. Whereas memo?
matches memo followed by any character, memo[17a] is more restrictive: It matches
only memo1, memo7, and memoa. The brackets define a character class that includes
all the characters within the brackets. (GNU calls this a character list; a GNU char-
acter class is something different.) The shell expands an argument that includes a
character-class definition by substituting each member of the character class, one at
a time, in place of the brackets and their contents. The shell then passes the list of
matching filenames to the program it is calling.

Each character-class definition can replace only a single character within a filename.
The brackets and their contents are like a question mark that substitutes only the
members of the character class.

The first of the following commands lists the names of all files in the working directory
that begin with a, e, i, o, or u. The second command displays the contents of the files
named page2.txt, page4.txt, page6.txt, and page8.txt.

$ echo [aeiou]*
...

$ less page[2468].txt
...

A hyphen within brackets defines a range of characters within a character-class def-
inition. For example, [6–9] represents [6789], [a–z] represents all lowercase letters in
English, and [a–zA–Z] represents all letters, both uppercase and lowercase, in
English.

The following command lines show three ways to print the files named part0, part1,
part2, part3, and part5. Each of these command lines causes the shell to call lpr with
five filenames:

$ lpr part0 part1 part2 part3 part5

$ lpr part[01235]

$ lpr part[0-35]

The first command line explicitly specifies the five filenames. The second and third
command lines use ambiguous file references, incorporating character-class defini-
tions. The shell expands the argument on the second command line to include all files
that have names beginning with part and ending with any of the characters in the
character class. The character class is explicitly defined as 0, 1, 2, 3, and 5. The third

The shell expands ambiguous file references
tip The shell does the expansion when it processes an ambiguous file reference, not the program

that the shell runs. In the examples in this section, the utilities (ls, cat, echo, lpr) never see the
ambiguous file references. The shell expands the ambiguous file references and passes a list of
ordinary filenames to the utility. In the previous examples, echo demonstrates this fact because
it simply displays its arguments; it never displays the ambiguous file reference.

000.book Page 176 Friday, November 21, 2014 6:41 PM

Filename Generation/Pathname Expansion 177

command line also uses a character-class definition but defines the character class to
be all characters in the range 0–3 plus 5.

The following command line prints 39 files, part0 through part38:

$ lpr part[0-9] part[12][0-9] part3[0-8]

The first of the following commands lists the files in the working directory whose
names start with a through m. The second lists files whose names end with x, y, or z.

$ echo [a-m]*
...

$ echo *[x-z]
...

optional When an exclamation point (!) or a caret (^) immediately follows the opening bracket
([) that starts a character-class definition, the character class matches any character
not between the brackets. Thus [^tsq]* matches any filename that does not begin
with t, s, or q.

The following examples show that *[^ab] matches filenames that do not end with
the letter a or b and that [^b-d]* matches filenames that do not begin with b, c, or d.

$ ls
aa ab ac ad ba bb bc bd cc dd

$ ls *[^ab]
ac ad bc bd cc dd

$ ls [^b-d]*
aa ab ac ad

You can cause a character class to match a hyphen (–) or a closing bracket (]) by placing
it immediately before the final (closing) bracket.

The next example demonstrates that the ls utility cannot interpret ambiguous file
references. First ls is called with an argument of ?old. The shell expands ?old into
a matching filename, hold, and passes that name to ls. The second command is
the same as the first, except the ? is quoted (by preceding it with a backslash [\];
refer to “Special Characters” on page 150). Because the ? is quoted, the shell does
not recognize it as a special character and passes it to ls. The ls utility generates
an error message saying that it cannot find a file named ?old (because there is no
file named ?old).

$ ls ?old
hold

$ ls \?old
ls: ?old: No such file or directory

Like most utilities and programs, ls cannot interpret ambiguous file references; that
work is left to the shell.

000.book Page 177 Friday, November 21, 2014 6:41 PM

178 Chapter 5 The Shell

Builtins

A builtin is a utility (also called a command) that is built into a shell. Each of the
shells has its own set of builtins. When it runs a builtin, the shell does not fork a new
process. Consequently builtins run more quickly and can affect the environment of
the current shell. Because builtins are used in the same way as utilities, you will not
typically be aware of whether a utility is built into the shell or is a stand-alone utility.

For example, echo is a shell builtin. It is also a stand-alone utility. The shell always
executes a shell builtin before trying to find a command or utility with the same
name. See page 1062 for an in-depth discussion of builtin commands and page 1077
for a list of bash builtins.

Listing bash
builtins

To display a list of bash builtins, give the command info bash shell builtin. To display
a page with information on each builtin, move the cursor to the Bash Builtins line
and press RETURN. Alternately, you can view the builtins man page.

Getting help with
bash builtins

You can use the bash help command to display information about bash builtins. See
page 141 for more information.

Chapter Summary

The shell is the Linux command interpreter. It scans the command line for proper
syntax, picking out the command name and arguments. The name of the command
is argument zero. The first argument is argument one, the second is argument two,
and so on. Many programs use options to modify the effects of a command. Most
Linux utilities identify an option by its leading one or two hyphens.

When you give it a command, the shell tries to find an executable program with the
same name as the command. When it does, the shell executes the program. When it
does not, the shell tells you it cannot find or execute the program. If the command is
a simple filename, the shell searches the directories listed in the PATH variable to
locate the command.

When it executes a command, the shell assigns one file or device to the command’s
standard input and another file to its standard output. By default, the shell causes a
command’s standard input to come from the keyboard and its standard output to go
to the screen. You can instruct the shell to redirect a command’s standard input from
or standard output to any file or device. You can also connect standard output of one
command to standard input of another command to form a pipeline. A filter is a com-
mand that reads its standard input from standard output of one command and writes
its standard output to standard input of another command.

When a command runs in the foreground, the shell waits for the command to finish
before it displays a prompt and allows you to continue. When you put an ampersand
(&) at the end of a command line, the shell executes the command in the background

000.book Page 178 Friday, November 21, 2014 6:41 PM

Exercises 179

and displays another prompt immediately. Run slow commands in the background
when you want to enter other commands at the shell prompt. The jobs builtin dis-
plays a list of suspended jobs and jobs running in the background and includes the
job number of each.

The shell interprets special characters on a command line to generate filenames. A
reference that uses special characters (wildcards) to abbreviate a list of one or more
filenames is called an ambiguous file reference. A question mark represents any single
character, and an asterisk represents zero or more characters. A single character
might also be represented by a character class: a list of characters within brackets.

A builtin is a utility that is built into a shell. Each shell has its own set of builtins.
When it runs a builtin, the shell does not fork a new process. Consequently builtins
run more quickly and can affect the environment of the current shell.

Utilities and Builtins Introduced in This Chapter

Table 5-1 lists the utilities introduced in this chapter.

Exercises

1. What does the shell ordinarily do while a command is executing? What
should you do if you do not want to wait for a command to finish before
running another command?

2. Using sort as a filter, rewrite the following sequence of commands:

$ sort list > temp
$ lpr temp
$ rm temp

3. What is a PID number? Why are these numbers useful when you run processes
in the background? Which utility displays the PID numbers of the commands
you are running?

Table 5-1 New utilities

Utility Function

tr Maps one string of characters to another (page 167)

tee Sends standard input to both a file and standard output (page 170)

bg Moves a process to the background (page 172)

fg Moves a process to the foreground (page 172)

jobs Displays a list of suspended jobs and jobs running in the background
(page 172)

000.book Page 179 Friday, November 21, 2014 6:41 PM

180 Chapter 5 The Shell

4. Assume the following files are in the working directory:

$ ls
intro notesb ref2 section1 section3 section4b
notesa ref1 ref3 section2 section4a sentrev

Give commands for each of the following, using wildcards to express file-
names with as few characters as possible.

a. List all files that begin with section.

b. List the section1, section2, and section3 files only.

c. List the intro file only.

d. List the section1, section3, ref1, and ref3 files.

5. Refer to the info or man pages to determine which command will

a. Display the number of lines in its standard input that contain the word a
or A.

b. Display only the names of the files in the working directory that contain
the pattern $(.

c. List the files in the working directory in reverse alphabetical order.

d. Send a list of files in the working directory to the printer, sorted by size.

6. Give a command to

a. Redirect standard output from a sort command to a file named
phone_list. Assume the input file is named numbers.

b. Translate all occurrences of the characters [and { to the character (, and
all occurrences of the characters] and } to the character), in the file
permdemos.c. (Hint: Refer to the tr man page.)

c. Create a file named book that contains the contents of two other files:
part1 and part2.

7. The lpr and sort utilities accept input either from a file named on the command
line or from standard input.

a. Name two other utilities that function in a similar manner.

b. Name a utility that accepts its input only from standard input.

8. Give an example of a command that uses grep

a. With both input and output redirected.

b. With only input redirected.

c. With only output redirected.

d. Within a pipeline.

In which of the preceding cases is grep used as a filter?

000.book Page 180 Friday, November 21, 2014 6:41 PM

Advanced Exercises 181

9. Explain the following error message. Which filenames would a subsequent
ls command display?

$ ls
abc abd abe abf abg abh
$ rm abc ab*
rm: cannot remove 'abc': No such file or directory

Advanced Exercises

10. When you use the redirect output symbol (>) on a command line, the shell
creates the output file immediately, before the command is executed. Dem-
onstrate that this is true.

11. In experimenting with variables, Max accidentally deletes his PATH vari-
able. He decides he does not need the PATH variable. Discuss some of the
problems he could soon encounter and explain the reasons for these prob-
lems. How could he easily return PATH to its original value?

12. Assume permissions on a file allow you to write to the file but not to delete it.

a. Give a command to empty the file without invoking an editor.

b. Explain how you might have permission to modify a file that you cannot
delete.

13. If you accidentally create a filename that contains a nonprinting character,
such as a CONTROL character, how can you remove the file?

14. Why does the noclobber variable not protect you from overwriting an
existing file with cp or mv?

15. Why do command names and filenames usually not have embedded SPACEs?
How would you create a filename containing a SPACE? How would you
remove it? (This is a thought exercise, not recommended practice. If you
want to experiment, create a file and work in a directory that contains only
your experimental file.)

16. Create a file named answer and give the following command:

$ > answers.0102 < answer cat

Explain what the command does and why. What is a more conventional
way of expressing this command?

000.book Page 181 Friday, November 21, 2014 6:41 PM

This page intentionally left blank

12971297

Main Index

An italic page number such as 123 indicates a definition. A light page number such as 456 indicates a
brief mention. Page numbers followed by the letter t refer to tables. Only variables that must always
appear with a leading dollar sign are indexed with a leading dollar sign. Other variables are indexed
without a leading dollar sign.

Symbols

–– argument 155, 1011
^ in regular expressions 1164
^ quick substitution character 390
, (comma) operator 1083
; control operator 170, 347, 1085
;; control operator 1028, 1085
: (null) builtin 1059, 1071
:– substitutes default values for a

variable 1059
::1 (IP address) 485
:? sends to standard error an error

message for a variable 1060
:= assigns default values for a

variable 1059
! (NOT) Boolean operator 1085
! event reference 387
!! reexecutes the previous event

388
? in extended regular expressions

1168
? special character 173
. (dot) builtin 338, 1067
. directory 194, 493
. in regular expressions 1163
./ executes a file in the working

directory 344, 366
.. directory 194, 493
.jpg filename extension 1255
‘ ...‘ see command, substitution
() control operator 350
((...)) see arithmetic, evaluation

[] character class (regular
expressions) 1163, 1238

[] special characters 176
[...] see test utility
[[...]] builtin 1080
{} around positional parameters

1045
{} around variable names 361
{} expansion 411, 1018, 1073
{} in array variables 1060
{} in functions 402
@ (origin, DNS) 910
@ in a network address 307

* in regular expressions 1164

* special character 174
/ (root) directory 40, 42, 185,

189, 197, 617, 1270
/ trailing within pathnames 40
/ within pathnames 40
\ escape character 150, 351, 360
\(in regular expressions 1166
\) in regular expressions 1166
& (AND) bitwise operator 1084
& control operator 170, 171, 348,

381, 1085
& in replacement strings (regular

expressions) 1167
&& (AND) Boolean operator

535, 1079, 1084
&& control operator 170, 349,

1043, 1085
&> redirects standard output and

standard error 171, 341

comment 346, 1014
prompt 597
#! specifies a script shell 344,

1014
+ in extended regular expressions

1168
< redirects standard input

163–164
<< Here document 1036–1038
> redirects standard output

162–163
>& duplicates output file

descriptor 341, 1008
>&2 duplicates file descriptor

341, 1008
>> redirects and appends standard

output 165
>| redirects output without

clobber 165
| (OR) bitwise operator 1084
| (OR) Boolean operator

(extended regular
expression) 1168

| control operator 167, 348, 1021,
1083, 1085

| see pipeline
|& control operator 167, 341,

1085
|& shorthand for 2>&1 341
|| (OR) Boolean operator 1079,

1084
|| control operator 170, 349, 1085
~– synonym for OLDPWD 414

000.book Page 1297 Friday, November 21, 2014 6:41 PM

1298 Main Index

~ (tilde) expansion 190, 365, 413
~ in directory stack manipulation

414
~ see home directory
~+ synonym for PWD 414
$ bash parameters 1044–1052
$ in regular expressions 1164
$ in variable names 359
$– parameter 1052
$_ parameter 1052
$! parameter 1051
$? parameter 1051
$(...) see command, substitution
$((...)) see arithmetic, expansion
${...} string length 1081
${} expands variables 1058
$@ parameter 1019, 1021, 1048
$* parameter 1048
$# parameter 1049
$$ parameter 1034, 1050
$0 parameter 1044
$n parameters 1045

Numerics

0< redirects standard input 340
000-default.conf file 955
1> redirects standard output 340
1>&2 duplicates file descriptor

341, 1008
10.0.0.0 (IP address) 1232
100BaseT cable 291
10Base2 cable 291
10BaseT cable 291
1000BaseT cable 291
127.0.0.1 (IP address) 306, 485
127.0.1.1 (IP address) 485
172.16.0.0 (IP address) 1232
192.168.0.0 (IP address) 1232
2> redirects standard error 340
3-DES encryption 629
32-bit versus 64-bit Ubuntu 31
64-bit PC processor architecture

33
64-bit versus 32-bit Ubuntu 31
802.11 wireless specification 1232

A

–a (AND) Boolean operator 1012,
1079

a2dismod utility 957
a2dissite utility 958
a2enmod utility 957
a2ensite utility 958
aborting execution see kill builtin
absolute pathnames 157, 189,

1232
access 1232
Access Control Lists see ACLs
access permissions 199–211, 1232

change using chmod 201–203
directory 205–206
display using ls 200
execute 343–344
Nautilus 111
setgid see setgid
setuid see setuid

access.conf file 599
ACLs 206–211, 1232

access rules 207–211
default rules 210
effective rights mask 208
getfacl utility 207–211
setfacl utility 207–211

acpi boot parameter 76
acpid daemon 320
active window 1232
active workspace 105
ad hoc mode, wireless 664
addbanner shell script 1072
addition operators 1082
address see the type of address

you are looking for (e.g.,
MAC address, IP address)
or see the specific address
(e.g., 192.168.0.0)

address mask see network, mask
address space, private see

network, private address
space

adfs filesystem 497
adm group 596
admin group 596
administrator 98, 426, 596

adm group 596

lpadmin group 596
sudo group 596, 604, 609
wheel group 625

AES (Advanced Encryption
Standard) 629

affs filesystem 497
AIDE utility 614
algorithm 1087
alias 398–401, 1232

examples 400–401
mail 794
quotation marks in 399
recursion 399
recursive plunge 401
substitution 410

alias builtin 398
alias.conf file 959
aliases file 589, 794
aliases.db file 795
Alice (placeholder name) 627
Almquist Shell see dash shell
alphanumeric character 1232
alternatives directory 483
amanda utility 569
ambiguous file references 173,

1232
AMD64 processor architecture 33
anacron daemon 320
anacron file 575
anacron init script 573
anacron utility 575
anacrontab file 320, 575
anacrontab utility 320
AND (–a) Boolean operator 1012,

1079
AND (&) bitwise operator 1084
AND (&&) Boolean operator

535, 1079, 1084
Andreessen, Marc 325
angle bracket 1232
animate 1232
anonymous FTP 759
ANSI 11
ansi terminal name 1175
anti-aliasing 1233
Apache 952–998

see also Apache containers;
Apache directives

000-default.conf file 955

000.book Page 1298 Friday, November 21, 2014 6:41 PM

Main Index 1299

a2dismod utility 957
a2dissite utility 958
a2enmod utility 957
a2ensite utility 958
alias.conf file 959
apache2 daemon 954
apache2 directory 960
apache2 file 953, 959
apache2 init script 954
apache2.conf file 958, 959, 960,

962
apache2ctl file 959
apache2ctl utility 955, 990
authentication modules 994
CGI (Common Gateway

Interface) 992, 995
.conf filename extension 960
conf-available directory 960
conf-enabled directory 960
configuration directives see

Apache directives
configuring (Cacti) 677
containers see Apache

containers
content negotiation 985
content, adding 957
contexts 967
directives see Apache directives
directory context 967
directory listings 986
document root 953, 961
documentation 952
DSOs (dynamic shared objects)

952, 991
envvars file 960
error codes 997
filename extensions 966
filesystem layout 959–961
.htaccess context 967
.htaccess file 961, 967, 982, 994
html directory 957, 961
.htpasswd file 994
htpasswd file 959
httpd daemon 953
HTTPS protocol 992
https:// URI prefix 992
indexing 986
JumpStart: getting Apache up

and running 955

LANG variable 953
locale 953
logresolve utility 973
logs 960
magic file 960
mod_perl.so file 959
modifying content 953
mods-available directory 957,

959
mods-enabled directory 957
modules 952, 957, 991
modules directory 959
more information 952
MPMs (multiprocessing

modules) 996
MultiViews option 986
Perl code 995
PHP code 995
ports.conf file 960
prerequisites 954
privileged port 953
process 953
public_html directory 965
Python code 995
redirects 984
reverse name resolution 973
role alias 964
root privileges 953
rotatelogs file 959
scripting modules 995
self-signed certificate 993–994
server 953
server config context 967
sites-available directory 955,

958, 960
sites-enabled directory 958, 960
slash, trailing and redirects 984
Software Foundation 952
SSL 992–994
telnet utility 991
terminology 953
testing 956
threads 996
troubleshooting 990
type maps 985
user content, publishing 965
.var filename extension 985
virtual host context 967
virtual hosts 958, 986, 986–990

webalizer utility 997
www-data group 953

Apache containers 967–971
<Directory> 967, 968
<Files> 968
<IfModule> 969
<Limit> 969
<LimitExcept> 970
<Location> 970
<LocationMatch> 971
<VirtualHost> 971

Apache directives 961, 961–984
AddHandler 974, 985, 992
Alias 975
Allow 981
AllowOverride 982
Deny 982
DirectoryIndex 966
DocumentRoot 964
ErrorDocument 975
ErrorLog 974
Group 979
HostnameLookups 973
Include 958, 979
IncludeOptional 979
IndexOptions 976
Listen 962
LoadModule 958, 979
LogLevel 974
MaxClients see Apache

directives,
MaxRequestWorkers

MaxConnectionsPerChild 971
MaxRequestsPerChild see

Apache directives,
MaxConnectionsPerChild

MaxRequestWorkers 971
MaxSpareServers 972
MinSpareServers 972
Options 980
Order 983
Redirect 962
RedirectMatch 963
Require 984
ScriptAlias 981
security 981
ServerAdmin 956, 963
ServerName 956, 964
ServerRoot 959, 978

000.book Page 1299 Friday, November 21, 2014 6:41 PM

1300 Main Index

Apache directives, continued
ServerSignature 956, 978
ServerTokens 978
special 967–971
StartServers 972
Timeout 973
UseCanonicalName 973, 984
User 959, 981
UserDir 965

apache2 daemon 954, see also
Apache

apache2 directory 960
apache2 file 953, 959
apache2 init script 954
apache2.conf file 958, 959, 960,

962
apache2ctl file 959
apache2ctl utility 955, 990
API 1233
apic boot parameter 76
apm boot parameter 76
apmd daemon 320
append 1233
append standard output using >>

165
applet 1233
Application Switcher 102
application, textual 106
applications, desktop 1173t
applications.d directory 925
apropos utility 70, 137, 432
APT 511, 515

see also apt-get

apt cron script 518
apt file 519
apt.conf file 518
apt.conf.d directory 518
apt-cache utility 522
apt-file utility 515
apt-get 512–514, 519–522
cache 518
configuration files 518
dependencies see software

packages, dependencies
local package indexes 518
software-properties-gtk utility 518
source code, download using

apt-get 523
sources.list file 516

sources.list.d directory 516
update-notifier 518

apt cron script 518
apt file 519
apt.conf file 518
apt.conf.d directory 518
apt-cache utility 522
apt-file utility 515
apt-get 512–514, 519–522

see also APT
commands, list of 520
dependencies see software

packages, dependencies
dist-upgrade command 522
install error 516
installing packages 512
JumpStart: installing and

removing software
packages using apt-get 512

log file, apt 519
options 520
purging configuration files 513
removing packages 513
update command 521
updating the package index 521
upgrade command 521

architecture, processor 32
archive 1233

files 257–260
shell file 1037
tar utility 257–260

archives directory (APT) 518, 524
arguments 153, 1233

command line 1048
convert standard input into

using xargs 268
testing 1007, 1015

arithmetic
evaluation (bash) 414, 1022,

1062, 1078–1079
expansion (bash) 414–416,

1083
expression 1233
operators 1081t, 1081–1085

armor (ASCII) 645
ARP (Address Resolution

Protocol) 303
arp utility 303
array 1233

ASCII 1233
ASCII armor 645
ascii file 1233
ASCII terminal 1233
ash see dash shell
ASLR (address space layout

randomization) 31
ASP (application service provider)

1234
aspell utility 1023
assembly language 10
assignment operators 1083
asterisk special character 174
asymmetric encryption see

encryption, public key
asynchronous communication

495
asynchronous event 1234
at utility 320, 484, 576
at.allow file 484
at.deny file 484
AT&T Bell Laboratories 3, 334
atd daemon 320
Athena, Project 15
ATM link 289
attachments 1234
attribute, LDAP 831
auth.log file 492, 622, 1172
authentication 1234

see also cryptography,
authentication

Apache 994
OpenSSH 631, 714, 717
stack, PAM 621

authorized_keys file 715, 730
auto.master file 864
autoconfiguration, IPv6 301
autofs directory hierarchy 864
autofs file 865
automatic mounting 1234
automount 863–866

auto.master file 864
autofs file 865
home directory 863

available file (dpkg) 524, 526
avoided 1234
awk utility see gawk utility
AWS 704–708
Axmark, David 1136
Azure, Microsoft 703

000.book Page 1300 Friday, November 21, 2014 6:41 PM

Main Index 1301

B

B language 10
back door 1234
back ticks see command,

substitution
background

command, running in the 171
desktop 115
foreground versus 171
jobs 171–173
process 381, 1235

backports software package
category 516

backslash escape character 150,
351, 360

backslash in replacement strings
1167

BACKSPACE key (erase character) 130
backup 568–573

amanda utility 569
cp utility 232
cpio utility 571, 572
dump/restore utilities 572
full 568
incremental 568
media 569
partition planning and 44
rsync utility 749
simple 572
tar utility 257–260, 569, 571t,

572
utilities 569

base operators 1084
basename 189, 1235
basename utility 1033
bash 334, 1236

see also alias; bash history; bash
variables; builtin;
command; command line;
operators; shell scripts

alias see alias
archive 1037
arguments 1048
arithmetic evaluation 414,

1022, 1062, 1078–1079
arithmetic operators 1081t,

1081–1085
arrays see bash variables, array

background process 381
builtins see builtins
calling program, name of 1044
command line see command

line
command not found error

message 158, 344
command substitution see

command, substitution
commands see command
conditional expressions 1079
control operator see control

operator
control structures see control

structures
debugging prompt 369, 1017
directory stack 355–357
expressions 1078–1085
features 405–409
file descriptors 1038,

1038–1041
functions 402–404, 1040,

1061–1062
globbing 418
hash table 382
help command 141
history see bash history
inheritance 1054
logical evaluation 1079
menu 1034
No such file or directory error

message 365
operators see operators
option flags, displaying 1052
options, command line 405
pathname expansion 360
Permission denied error message

158, 343, 365
prompt (PS1) 367
prompt (PS2) 368
prompt (PS3) 369, 1035
prompt (PS4) 369, 1017
quiz shell script 1094
quotation mark removal 419
recursion 1087
redirection operators 342t
sequence expression 412, 1018
set, turns features on and off

406

shopt, turns features on and off
406

special characters 150, 372,
372t

standard error see standard
error

standard input see standard
input

standard output see standard
output

startup files 335–339
step values 1018
string operators 1080t
variables see bash variables
word splitting 369
–x option 1016, 1088

bash history 382, 382–398
bind builtin 397
C Shell mechanism, classic

387–392
commands

editing 386–387, 392–398
reexecuting 384–392
viewing 385–386

event 382
designators 388t
modifiers 392t
numbers 383, 388
reference using ! 387–392

expansion 410
history builtin 383
INPUTRC variable 396
quick substitution 391
Readline Library 392–398
Readline variables 396t
substitute modifier 390
variables 383, 383t
word designators 389, 389t

bash parameters 358, 358–371
see also bash variables
$– 1052
$_ 1052
$! 1051
$? 1051
$@ 1019, 1021, 1048
$* 1048
$# 1049
$$ 1034, 1050
$0 1044

000.book Page 1301 Friday, November 21, 2014 6:41 PM

1302 Main Index

bash parameters, continued
$n 1045
parameter null or not set error

message 1060
positional 1044, 1044–1049
special 1049–1052
substitution 359

bash variables 358, 358–371,
1053–1062

see also bash parameters
@ subscript 1060

* subscript 1060
array 1060
assigning values to 358
attributes 362–364
attributes, listing 363
BASH_ENV 337
braces around 361
CDPATH 370
COLUMNS 1035
completion 395
default values, assigning 1059
default values, substituting

1059
DEFAULT_RUNLEVEL 435,

439
DISPLAY 474
EDITOR 386, 607
ENV 337
environment 1054
environment, display using

printenv 1056
error messages, sending to

standard error 1060
expansion 414
exported see bash variables,

environment
global see bash variables,

environment
HISTFILE 383
HISTFILESIZE 383
history 383, 383t
HISTSIZE 383
HOME 365
IFS 369–370
INPUTRC 396
keyword 359, 364–371, 371t
LANG 374, 953, 1176
LC_ALL 374

LC_COLLATE 374
LC_CTYPE 374
LC_MESSAGES 374
LC_NUMERIC 374
LINES 1035
local 1054
MAIL 366
MAILCHECK 367
MAILPATH 367
naming 358
noclobber 164–166
null, expanding 1058
OLDPWD 414
OPTARG 1074
OPTIND 1074
parameter substitution 359
PATH 158, 337, 365–366, 613,

614, 1033
PREVLEVEL 433
PRINTER 244
PS1 367, 368t
PS2 351, 368
PS3 369, 1035
PS4 369, 1017
PWD 414
quoting 360
RANDOM 1019, 1093
Readline 396t
readonly 362
removing 362
REPLY 1035, 1064
RESOLVCONF (DNS) 905
RUNLEVEL 433
shell 1053
SUDO_EDITOR 607
syntax 361
TERM 129, 1176
TZ 377
unexport 1056
unset using unset 362
unset, expanding 1058
user created 358, 359–362
VISUAL 607

BASH_ENV variable 337
.bash_history file 383
.bash_login file 336
.bash_logout file 336
.bash_profile file 336–338, 383,

403, 480

bash.bashrc file 484
.bashrc file 337–338, 480
bashrc file 337
baud 1235
baud rate 1235
Bazaar version control 511
BCPL language 10
BDB 831
beer, free 2
Bell Laboratories 3, 334
Berkeley DB 831
Berkeley Internet Name

Domain see DNS
Berkeley UNIX 3, 1235
Berners-Lee, Tim 325
best practices, least privilege 597
bg builtin 172, 354
/bin directory 197
bin directory 198
bind builtin 397
bind directory 907, 912
BIND see DNS
bind9 file 905, 906
binding, key 1255
BIOS 445, 1235

DVD or flash drive, set to boot
from 32

security 32
birthday shell script 1036
bit 1235

bucket 166, 481
depth see color depth
-mapped display 1236

BitTorrent 531–533
BitTorrent, download Ubuntu

using 48, 50
bitwise operators 1082, 1084
blank characters 360, 1236, 1273
blanks 150
blkid utility 454, 502
block

device 496, 1236
devices, list using lsblk 665
disk 1236
number 1236
special file 1236

blocking factor 1236
Blowfish encryption 629
.bmp filename extension 188

000.book Page 1302 Friday, November 21, 2014 6:41 PM

Main Index 1303

Bob (placeholder name) 627
Boolean operators 1236

! (NOT) 1085
&& (AND) 535, 1079, 1084
| (OR; extended regular

expression) 1168
|| (OR) 1079, 1084
–a (AND) 1012, 1079
control see && control

operator and || control
operator

–o (OR) 1079
boot 1236

failure 439
flag 85
loader 1236
netboot 1261
options 75–77
parameter 76

modifying 75–77
quiet 58
splash 58

system, the 56, 438
/boot directory 43, 197, 445, 581
Boot menus, installation 72–75
bootable flag 85
bootstrap 1236
Bourne, Steve 334, 1236
Bourne Again Shell see bash
Bourne Shell (original) 334, 1236
brace 1236
brace expansion 411, 1073
braces, variables and 361
bracket 1236
bracket, character class 1163
branch 1236
break control structure 1027
bridge, network 292, 1237
broadcast 1237

address 1237
network 288, 1237

browsers 325, 326
file see Nautilus
Mosaic 325

BSD see Berkeley UNIX
btmp file 584
buffer 1237

copy 107
primary 107
selection 107

bug 535, 1237
BugSplat 536
Bugzilla 536
defect-tracking system 511, 536
Launchpad 511

builtins 178, 1062–1077, 1077t,
1237

: (null) 1059, 1071
. (dot) 338, 1067
[[...]] 1080
alias 398
bg 172, 354
bind 397
cd 193, 216, 370
commands that are symbols

339t
declare 363–364, 1060
dirs 355
echo 134, 174, 227, 1031,

1031t, 1050
eval 404, 1073
exec 1039, 1067–1069
executing 381
exit 128, 1008, 1051
export 363, 1054–1056
fc 384–387
fg 172, 353
getopts 1074–1076
history 383
jobs 131, 172, 352
kill 131, 172, 455–457, 1070,

1072
let 416, 1078
list using info 178
local 403, 1062
: (null) 1059, 1071
popd 357
pushd 356
pwd 151, 192, 193, 356, 416
read 1025, 1063–1065, 1065t,

1065–1066
readonly 362, 363
set 406, 1013, 1016, 1046,

1058
shift 1011, 1047
shopt 406
source 338
symbols as commands 339t

test 1005–1007, 1007t, 1008,
1012, 1015, 1018, 1022,
1027

tput 1026
trap 1026, 1069–1072
type 1063
typeset see builtins, declare

umask 459
unalias 399, 401
unset 362
utilities versus 1006

bundle shell script 1037
bunzip2 utility 256
busybox utility 78
button, gear 108
by-path file 481
byte 1237
bytecode 1237
by-uuid file 481
.bz2 filename extension 188
bzcat utility 256
bzgrep utility 256
bzip2 utility 253–257, 570, 572
bzless utility 256

C

.c filename extension 188
C locale 375
C programming language 9, 10,

1237
C++ programming language 11
C89 programming language 11
CA (Certificate Authority) 1238
cable modems 1238
cables 291
cache 1238
cache, DNS see DNS, cache; DNS

servers, cache
Cacti 674–683

cacti (crontab) file 678
cacti.conf file 678
configuring 678
debian.php file 677
firewall setup 676, 681
remote data source 681
SNMP 681

cacti (crontab) file 678
cacti.conf file 678

000.book Page 1303 Friday, November 21, 2014 6:41 PM

1304 Main Index

cancel utility 557
Canonical 35
cascading stylesheet see CSS
cascading windows 1238
case control structure 1028–1034
case-sensitive 1238
cat utility 133, 160, 162, 164, 224,

491, 721, 1011
categories, software package 122,

516
category n cables 291
catenate 163, 224, 1238
cd builtin 193, 216, 370
CD device 481
CDPATH variable 370
CD-ROM, mount 500
CERN 325
certificate authority see CA
certificate, SSL see SSL, certificate
certification, CompTIA 1183–1229
certification, LPI 1183–1229
.cgi filename extension 966
CGI scripts (Apache) 992
chage utility 489, 567
chain loading 1238
character

alphanumeric 1232
-based 1238
-based interface see command

line; textual, interface
-based terminal 1238
blank 150, 360, 1236, 1273
class 176, 1169t, 1238
control 1241
device 496, 1239
escaping 150, 351
list see character, class
map 374
meta 1259, see also special

characters
nonprinting 1263
printable 1266
quoting 150, 351
regular 1269
special see special characters
special file 1239
typeface conventions 27

Charlie (placeholder name) 627
charmap 374

CHARSET 374
check see tick
check box 26, 1239
check mark see tick
checksum 1239
chgrp utility 203
child directories 185, 186
child processes 380, 1239
Chinese Ubuntu 38
chkargs shell script 1006, 1008
chmod utility 201–203, 343
chown utility 203
chroot jail 617–621

BIND 917
DNS 917
FTP 769
named daemon 917

chroot utility 617–621
chsh utility 335, 454
CIDR 306, 1239
CIFS 871, 1239
CIPE 1239
cipher 627, 1239
ciphertext 627, 1240
Clark, Jim 325
class, character 1238
Classless Inter-Domain

Routing see CIDR
clear utility 454
cleartext 627, 1240
CLI 1240, see also command line;

textual interface
click and right-click 105
client 1240
client, specifying 461t
client/server model 316
clipboard 108
clock, system, display using date

226
clock, system, set using the Date

& Time window 117
clock, system, set using timedatectl

579
cloud 703–708, 1240
CMOS setup 32
CN, LDAP 832, 832
coaxial cable 291
coda filesystem 497
Codd, E. F. 1137

code, reentrant 1268
CODEC 1240
collating sequence, machine 1258
collision domain 292
color depth 1240
color quality see color depth
column 1137
COLUMNS variable 1035
combo box 1240
Comer, Doug 5
comma operator 1083
command 152, 1240

see also builtins; command line
arguments 153
arguments, convert standard

input into using xargs 268
completion 394–395
continuing 351
control flow see control

structures
editing/repeating 131
execute using exec 1067–1069
executing 381
execution environment 1054
grouping 350
–h option 155
––help option 154
human-readable option 155
interpreter, shell 128
line see command line
names 152
network extension 307
run remotely using ssh 720–722
separating 347–351
simple 152, 155
substitution 416, 416–417, 447,

1015, 1033, 1240
command line 125–142, 152,

152–159, 1240
see also command; shell
–– argument 155, 1011
advantages of 125
arguments 153, 1045
arguments, initialize using set

1046
arguments, promote using shift

1047
brace expansion 411, 1073
continuation 169, 351, 1085

000.book Page 1304 Friday, November 21, 2014 6:41 PM

Main Index 1305

control operators 170
editing 131, 392–398
executing 158
expansion 410–419
filters 169
interface 1240, see also textual,

interface
lists 170
mistakes, correcting 129
options 153, 153–155, 405,

405t
parse 156, 410
print utilities 557t
printing from the 557
processing 156–158, 409
syntax 152
tokens 153, 410
whitespace on the 348
words 153, 410

command not found error
message 158, 344

command_menu shell script 1030
comments, MariaDB 1138
comments, shell scripts 346, 1014
Common Name, LDAP 832
Common UNIX Printing

System see CUPS
communication, asynchronous

495
communication, interprocess 495
comparison operators 1082
completion

command 394–395
filename 1247
pathname 395
Readline 394
Readline commands 394–395
variable 395

component architecture 1240
compress utility 257, 260
compress/decompress files

253–257
bunzip2 utility 256
bzcat utility 256
bzgrep utility 256
bzip2 utility 253–257, 572
bzless utility 256
compress utility 257, 260
gunzip utility 256

gzip utility 253–257, 260
OpenSSH 738
unxz utility 256
unzip utility 257
utilities 281t
WinZip utility 257
xz utility 253–257
xzcat utility 256
xzgrep utility 256
xzless utility 256
zcat utility 256
zgrep utility 256
zip utility 257

CompTIA certification 1183–1229
computer, diskless 1244
computing, distributed 1244
concatenate see catenate
concentrator see hub
condition code see exit status
conditional evaluation operators

1083
conditional expressions 1079
.conf filename extension 461, 960
conf-available directory 960
conf-enabled directory 960
confidentiality see cryptography,

confidentiality
config file (OpenSSH) 715, 726
configuration file rules 461
Configure and Build System, GNU

534
configure shell script 534
connectionless protocol 1241
connection-oriented protocol 297,

1241
console 1241

recovery mode 450
security 597
virtual 61, 127, 1280

context menu 106
continuation, command line 169,

1085
continue control structure 1027
control character 1241
CONTROL characters, display using

cat 225
control flow see control

structures
CONTROL key 27

control operator 347, 347–352,
1241

; 170, 347, 1085
;; 1028, 1085
() 350
& 170, 348, 1085
&& 170, 349, 1043, 1085
| 167, 348, 1021, 1083, 1085
|& 167, 341, 1085
|| 170, 349, 1085
continuation, implicit command

line 1085
NEWLINE 347
short-circuiting 349

control structures 1004–1038,
1241

break 1027
case 1028–1030, 1030t,

1030–1034
continue 1027
for 1019–1021
for...in 1017–1020
Here document 1036–1038
if...then 1005–1008
if...then...elif 1011–1016
if...then...else 1009–1011
Python 1114–1118
select 1034–1036
until 1025–1027
while 1021–1024

CONTROL-\ key (quit) 131
CONTROL-ALT-DEL 442
control-alt-delete.conf file 442
CONTROL-C key (copy) 107
CONTROL-C key (interrupt) 130
CONTROL-D key (EOF) 128, 161
CONTROL-H key (erase character) 130,

156
CONTROL-U key (line kill) 130, 156
CONTROL-V key (paste) 107
CONTROL-V key (quote CONTROL keys)

151
CONTROL-W key (erase word) 130,

156
CONTROL-X key (cut) 107
CONTROL-X key (line kill) 130
CONTROL-Z key (suspend) 130, 172
convention, end line key 27

000.book Page 1305 Friday, November 21, 2014 6:41 PM

1306 Main Index

conventions used in this book
26–28

cookie 1241
Coordinated Universal Time see

UTC
copy buffer 107
copyleft 5
core file 591
correcting typing mistakes 129
count shell script 1022
count_down function 1062
country code domain name

designation 316
cp utility 133, 153, 196, 232
cp versus ln 213
cpdir shell script 351
cpio utility 571, 572
CPU 1241

architecture 32
information about, display 491
installation requirements 31
intensive processes, report on

using top 577
virtualization extensions 692

cpuinfo virtual file 241
crack utility 615
cracker 1242
crash 443, 1242
creation date of files, display using

ls 200
cron daemon 320, 573
cron.allow file 484
cron.d directory 320, 573, 575
cron.deny file 484
crontab 573
crontab file 320, 574
crontab files 573
crontab utility 320, 484
crontabs directory 320, 573
cryptography 626, 1242

see also encryption; GPG; hash
function; PGP

Alice (placeholder name) 627
asymmetric key 629
authentication 626, 629, 637
Bob (placeholder name) 627
Charlie (placeholder name) 627
ciphertext 627
cleartext 627

confidentiality 626, 628, 629,
637

data integrity 626
decryption 627
digital signature 627, 629
fingerprint 627
hash function see hash function
integrity versus authenticity 634
key 627, 628
key space 628
key, OpenSSH 631
Mallory (placeholder name) 627
message 627
nonrepudiation of origin 626
passphrase 627
plaintext 627
public key 629
salt 634
signing 627, 629
SSL certificate see SSL

certificate
csh Shell 1237
.cshrc file 1242
.csr filename extension 638
CSRG (Computer Systems

Research Group) 3
CSS 1242
CUPS 540

see also printer; printing
command-line interface

551–555
configuring a local printer

automatically 542
configuring a printer 550–551
cups init script 541
cupsd.conf file 555
cupsdisable utility 555
cupsenable utility 555
cupsys init script 541
drivers, display using lpinfo 552
firewall setup 542
IPP protocol 540
JumpStart: configuring a printer

using system-config-printer
542

JumpStart: setting up a local or
remote printer 544

more information 541
ppd directory 553

PPD files 552
prerequisites 541
print queue, managing 544, 555
setting up a local or remote

printer using the CUPS Web
interface 548

URIs 546, 552
Web interface 548–549,

550–551
cups init script 541
cupsaccept utility 555
cups-browsed utility 437
cupsd.conf file 555
cupsdisable utility 555
cupsenable utility 555
cupsreject utility 555
cupsys init script 541
curl utility 536
current 1242
current directory see working

directory
cursor 1242
cut and paste 107, 321
cut utility 233, 415
cycling, window 102
cypher 1239

D

daemons 320t, 1243
see also service
in. prefix 319
messages 492
network 286, 319
rpc. prefix 319
start and stop using sysv-rc-conf

436–437
daily file 575
dash shell 13, 335
Dash, the 101
data integrity see cryptography,

data integrity
data link layer, IP model protocol

297
data sink 166
data structure 1243
database 1137

see also MariaDB
Berkeley 831

000.book Page 1306 Friday, November 21, 2014 6:41 PM

Main Index 1307

dbm 1243
gdbm 1243
locate 70
makewhatis 137
mandb 70, 137
ndbm 1243
NIS 1262
printcap 487
Sleepycat 831
SQL 1274

datagram, network 1243
datagram-oriented protocol 298
dataless system 846, 1243
date utility 134, 226, 376, 377,

604, 1046
date, set using the Date & Time

window 117
date, set using timedatectl 579
DB_CONFIG file 834
db.127 file (DNS) 914
db.local file (DNS) 913
db.root file (DNS) 912
dbm database 1243
DC, LDAP 831
dd utility 482, 483, 491, 722
DDoS attack 1243
.deb filename extension 511, 524
deb files 524
Debian Almquist Shell see dash

shell
debian.php file (Cacti) 677
debian-installer 78–82
debug 1243

bash prompt 369, 1017
FTP 763
NIS 820, 829
scp using –v 725
server using telnet 310
shell scripts using –e and –u 345
shell scripts using –x 1016
shell scripts using xtrace 1088
ssh using –v 723, 735
sshd using –d 732, 735

DEBUG signal 1070
declare builtin 363–364, 1060
decompress files see

compress/decompress files
decrement operators 1083
default 1243

default directory 484
DEFAULT_RUNLEVEL variable

435, 439
defaultdomain file (NIS) 818
defect-tracking system 511, 536
DEL key (erase character) 130
delete character using BACKSPACE 129
delete line using CONTROL-U 130
delete word using CONTROL-W 130
delimiter, regular expression 1162
delta, SCCS 1243
demand mounting, filesystem 864
denial of service see DoS attack;

DDoS attack
dependencies 510, see also

software packages,
dependencies

depmod utility 444
dereference 1243
derivatives, Ubuntu 37
descriptors, file 340
desktop 17, 104–108, 1244

active workspace 105
alternate 37
appearance 115
Application Switcher 102
applications 1173t
background 115
context menu 106
Dash, the 101
environment, Unity 17
focus 1248
GNOME Flashback 103–104
Guide, Ubuntu 118
install different 124
manager 17, 1244
object 105
panel 105, see also panel
Run a Command window 106
Search screen 101
System Settings window 113
terminology 105
Unity 17, 100–103
unity-tweak-tool utility 102
window see window
workspace 105

Desktop edition 36
Desktop Image 71

detached process see background,
process

/dev directory 160, 197, 481–483,
494

devfs filesystem 494
device 1244

block 496, 1236
character 496, 1239
drivers 494, 496, 1244
filename 1244
files 160, 494, 1244
files, exporting 857
hotplug 495
independence 14
major number 496, 1258
MD 86
minor number 496, 1260
multidisk 86
names, dynamic (udev) 494
null 166, 481
number, major 496, 1258
number, minor 496, 1260
physical 1265
pseudoterminal 482
raw 496
raw mode 496
special files see device, files;

special files
terminal 1068
UUID numbers 481

devpts filesystem 497
df utility 846, 866
dhclient utility 465
dhclient-*-interface.lease file 465
DHCP 464–468, 1244

dhclient utility 465
dhclient.conf file 465
dhclient-*-interface.lease file

465
dhcpd daemon 465, 466
dhcpd.conf file 466, 468
IPv6 302
isc-dhcp-server init script 466
MAC addresses 468
prerequisites, client 465
prerequisites, server 466
static IP addresses 467

dhcpd daemon 465, 466
dhcpd.conf file 466, 468

000.book Page 1307 Friday, November 21, 2014 6:41 PM

1308 Main Index

dialog box 1244
dial-up connection 128
dictionaries, Python 1113–1114
die, process 381
diff utility 235
diff3 utility 235
Diffie-Hellman encryption 629
dig utility 314, 901, 902–903, 906,

919
digest, hash 632
digital signature 627, 629
directory 12, 151, 185, 493, 1244,

see also the File Tree
index (1287)

. 194, 493

.. 194, 493
/ (root) 189, 197
~ (home) see home directory
access permissions 205–206
access, speed up using tune2fs

505
change using cd 193
child 185, 186
compacting 592
create using mkdir 192–193
current see working directory
delete using rmdir 194
file 151, 185, 1244
folder and 108
hierarchy 40, 1244
home see home directory
important 480
LDAP 830
links to 211–217
list using ls 132, 229
make using mkdir 192–193
mount remote using NFS

848–852
move using mv 196
moving (inodes) 493
parent 185, 186
pathname 185
remove using rmdir 194
rename using mv 196
root (/) 40, 42, 185, 189, 197,

617, 1270
service 1244
stack 355, 355–357, 414
standard 197–199

subdirectories 185
tree 184, see also directory,

hierarchy
working see working directory

dirs builtin 355
disk

block 1236
encrypt using gnome-disks 90
encryption 30
filesystem 39
formatting, low-level 38
fragmentation 590
free space 38, 591, 1249
hot-swap 45
LBA addressing mode 445
monitor using SMART 91
partition see partition
quotas 592
RAM 60, 1268
space, installation requirements

32
usage, display using du 501
usage, monitoring 590
utility, gnome-disks 88–91
volume label 455

diskless system 845, 1244
display

bit-mapped 1236
color depth 1240
configuring 116
graphical 1249
number, X Window System 474

––display option, X Window
System 475

DISPLAY variable 474
displaying

see also displaying a file
date using date 134, 226
file classification using file 237
file information using ls 229
hidden filenames using ls 175,

229
kernel messages using dmesg

439, 454
machine name using hostname

227
PID using pidof 457
text using echo 134, 227

displaying a file
beginning of, using head 243
cat 133, 224
classification using file 237
end of, using tail 249
group, using ls 200
hidden using ls 175, 188, 229
less 228
links, number of using ls 200
more 228
number of lines/words/bytes in

using wc 252
owner of, using ls 200
size of, using ls 200
sorted, using sort 247–249
type of, using ls 200

distributed computing 315, 1244
distribution, Linux 6
division operator 1082
dmesg utility 439, 454
DMZ 1244
DN, LDAP 831
DNS 316–318, 892–904, 1245

see also DNS records; DNS
servers; DNS zones

@ (origin) 910
address, look up using host 313
authority 895
BIND 318
bind directory 907, 912
bind9 file 906
bind9 init script 904
cache 897, 901
cache, setting up 911–914
chroot jail 917
configuring 907–910
database 897
db.127 file 914
db.local file 913
db.root file 912
delegation 895
dig utility 314, 901, 902–903,

906, 919
dnssec-keygen utility 915
domain 893, 894

name 893
qualification 910
server 892

error messages 905

000.book Page 1308 Friday, November 21, 2014 6:41 PM

Main Index 1309

firewall setup 905
FQDN 894
hints zone 912
host utility 313, 900, 903
in-addr.arpa domain 902
inverse mapping see DNS,

reverse name resolution
ip6.int domain 902
iterative queries 896
JumpStart: setting up a DNS

cache 906
log 919
more information 904
name, look up using host 313
named daemon 905
named directory 917
named.conf file 907, 911–912
named.conf.options file 912
nameserver 892
node 893
nsswitch.conf file 903
origin 900
origin see DNS zones, name
prerequisites 904
queries 896, 901
recursive queries 896
resolv.conf file 905, 906
resolvconf utility 488, 905
RESOLVCONF variable 905
resolver 894
reverse mapping see DNS,

reverse name resolution
reverse name resolution

902–903
root domain 893, 893, 895
root node 893
security 893
server 892
subdomain 894
terminology 905
time format 910
troubleshooting 919
TSIGs (transaction signatures)

915–917, 920
TTL value 900
working directory is not

writable error message 905
DNS records

A (address, IPv4) 898

AAAA (address, IPv6) 302, 898
CNAME 898
glue 914
MX 899
NS 899
PTR 899
resource 898–900
SOA 899
TXT 900

DNS servers 892
cache 897, 906
caching only 897
primary master 896
secondary 897
slave 897
types of 896

DNS zones 895
clause, named.conf 909
files 910, 912
hint file 912
name 910
root 912

dnssec-keygen utility 915
doc directory 141, 199, 1172
Document Object Model see

DOM
documentation see help
DOM 1245
domain

see also DNS
DNS 893, 894
in-addr.arpa 902
ip6.int 902
name 893, 1245

country code 316
not case-sensitive 317

NIS 814
root 895
server 892
VM 688

Domain Name Service see DNS
door 1245
DoS attack 1245
DOS files, convert from/to Linux

format using
unix2dos/dos2unix 268

dos2unix utility 268
double quotation marks see

quotation marks

double-click timeout, mouse 116
Dovecot IMAP and POP servers

807
dovecot, firewall setup 808
dovecot, starting 808
downloading Ubuntu 29, 47–50
dpkg 510, 524–530

deb file, contents 524
deb files 524
dpkg utility 526–530
dpkg utility letter codes 527t
postinst script 525
preinst script 525
prerm script 525
source files 525

dpkg utility 526–530
dpkg-reconfigure utility 789, 796
DPMS 1245
drag 1245
drag-and-drop 1245
drive, optical 1263
drivers, device 494, 1244
drop-down list 1245
druid 1246
DSA (Digital Signature

Algorithm) 1246
DSA, LDAP 831
DSE, LDAP 831
DSL 289, 1246
DSO, Apache 952
du utility 501
dual-boot system 91–93
dump utility 503, 572
duplex network 291
DVD device 481
DVD, Ubuntu see installation

image
Dynamic Host Configuration

Protocol see DHCP
dynamic IP address 304, 670
dynamic shared objects, Apache

952

E

e2label utility 455
echo builtin 134, 174, 227, 1031,

1031t, 1050
echo utility 1050

000.book Page 1309 Friday, November 21, 2014 6:41 PM

1310 Main Index

ed utility 240
Edbuntu 37
edition see Desktop Image; Server

Image; Netboot Image
EDITOR variable 386, 607
editors 1246

command line 392–398
ed 240
EDITOR variable 607
gnome-disks 88–91
nano 277–280
parted 579–582
Readline Library 392–398
root privileges, running with

607
SUDO_EDITOR variable 607
vi see vim

vim see vim

VISUAL variable 607
edquota utility 593
educational derivative of Ubuntu

37
Edwards, Dan 1278
EEPROM 1246
effective UID 599, 1246
egrep utility 241, 692, 1168
element 1246
ElGamal encryption 629
email see mail; postfix
emoticon 1246
empty regular expressions 1166
emulator, operating system 8
emulator, terminal 126, 128
encapsulation see tunneling
encrypt

see also encryption
disk using gnome-disks 90
home directory 67
partition 90
Ubuntu installation 64

encryption 627, 627–632, 1246
see also cryptography; encrypt;

GPG; hash function
3-DES 629
AES 629
algorithm 627
asymmetric see encryption,

public key
Blowfish 629

Diffie-Hellman 629
disk 30
ElGamal 629
hybrid 630
IDEA 629
OpenSSH 631, 714
PGP 641
private key 629
public key 629, 629
RC5 629
RSA 629, 1271
secret key see encryption,

symmetric key
symmetric key 628, 628
web of trust 641

end line key 27
end of file see EOF
Enquire program 325
ENTER key 27
entropy 642, 1246
entropy, lack of hangs system 482,

642
entry, LDAP 831
env utility 404, 1057
ENV variable 337
environment file 716
environment variable see

variables, environment
environment, command execution

1054
envvars file 960
EOF 1246
EOF signal, send using CONTROL-D

161
epositories 1182
EPROM 1246
–eq relational operator 1079
equality operators 1082
erase key (CONTROL-H) 129, 156
erase word key (CONTROL-W) 156
erasing a file completely 482
ERR signal 1070
error messages

see also messages; usage
messages

404 Not Found (Apache) 997
Apache 997
command not found 158, 344
DNS 905

Login incorrect 440
mount: RPC: Program not

registered 862
NFS 862
NFS server xxx not responding

862
No such file or directory 365
parameter null or not set 1060
Permission denied 158, 343,

365
redirecting to standard error

341, 1008
rlimit_max (testparm) 887
send to standard error for a

variable using :? 1060
server not responding (NFS)

851
Stale NFS file handle 862
standard error see standard

error
system 492

error, standard see standard error
errors, correcting typing mistakes

129
errors, lack of entropy hangs

system 482, 642
escape a character 150, see also

quotation marks; quoting
ESXi 690
etab file 861
/etc directory 198, 483, 483–490
Ethernet address see MAC

address
Ethernet network 290, 1247
Eucalyptus 703
eval builtin 404, 1073
event 432, 1247

asynchronous 1234
bash history see bash history
Upstart 428
X Window System 471

evince utility 188
Evolution 800
exabyte 1247
exception, Python 1120
exec builtin 1039, 1067–1069
exec() system call 380
execute

access permission 199, 343–344

000.book Page 1310 Friday, November 21, 2014 6:41 PM

Main Index 1311

commands 158, 381
files in the working directory

344
shell scripts 346

exim4 783
exit builtin 128, 1008, 1051
EXIT signal 1069
exit status 416, 1006, 1008, 1051,

1247
expansion

arithmetic (bash) 414–416,
1083

command line 410–419
pathname 173
tilde 190

exploit 1247
exponentiation operator 1082
export builtin 363, 1054–1056
export, device files 857
export, links 857
exported variable see

environment variable
exportfs utility 856, 861
exports file 855, 857–860, 861
expressions 1247

arithmetic 1233
logical 1257
regular see regular expression

ext2/ext3/ext4 filesystem 497, 504
extended regular expressions see

regular expression,
extended

Extensible Markup Language see
XML

extensions, filename see filename,
extensions

extranet 287, 1247
extras software package category

516

F

Fahlman, Scott 1273
failsafe session 1247
fake RAID 45
false utility 349, 487
Favorites list 101
fc builtin 384–387
FDDI 1247

fg builtin 172, 353
FHS (Linux Filesystem Hierarchy

Standard) 12, 197
Fiber Distributed Data

Interface see FDDI
FIFO special file 495
fifth layer, IP model protocol 297
file 12, 1247

see also displaying a file;
filename

access permissions see access
permissions

access time, change using touch
251

ambiguous references 173
archiving 257–260
backup see backup
block special 1236
browser see Nautilus
character special 1239
compare using diff 235
compress see

compress/decompress files
configuration, rules 461
contents, identify using file 237
convert from/to

Linux/Windows format
using unix2dos/dos2unix 268

copy over a network using rsync
748

copy using cp 133, 195, 232
create empty using touch 134,

251
create using cat 162
creation date, display using ls

200
creation mask, specify using

umask 459
crontab 573
deb 524
decompress see

compress/decompress files
descriptors 340, 1038,

1038–1041, 1042
device see /dev directory; device

files; special files
directory see directory
display see displaying a file
edit using nano 277–280

edit using vim 270–277
erase completely 482
file utility 237, 492, 592
find using find 237–240
group assignment 485
group, change using chgrp 203
group, display using ls 200
growing quickly 591
handle, Python 1119
hidden 188, 1251
hidden, display using ls 175,

188, 229
important 480
information about, displaying

using ls 229
inode see inodes
invisible see filename, hidden
ISO image 47
job definition (Upstart) 429
links to 211–217
links, display number of using ls

200
log, checking 590
manager see Nautilus
map 865
modification time, change using

touch 251
move using mv 195, 245
moving (inodes) 493
names see filename
open using Nautilus 110
open, locate using lsof 589
order using sort 247–249
ordinary 151, 185, 493, 1263
owner, change using chown 203
owner, display using ls 200
pathname 185
permissions see access

permissions
PPD 552
print using lpr 243–245
recover using testdisk 231
reference, ambiguous 1232
remove using rm 133, 231
rename using mv 195, 245
rotate 1270
search for using locate 264
setuid 598
sharing model 316

000.book Page 1311 Friday, November 21, 2014 6:41 PM

1312 Main Index

file, continued
size, display using ls 200
size, displaying easily readable

155
software package containing,

search for 514, 530, 1179
sort using sort 247–249
sparse 1274
special see /dev directory;

device, files
standard 197–199
startup 188, 335–339, 1274
tar 257
temporary 1034, 1050
terminal 160
trash, moving to 109
truncating 591
type of, display using ls 200
utilities 280t
wiping 482

File Browser window 108
file utility 237, 379, 492, 592
filename 189, 1247

/ (root) 189
ambiguous references 173
basename 189, 1235
case-sensitivity 27, 187
change using mv 245
characters allowed in 186
completion 1247
conventions 27
device 1244
extensions 187, 188t, 1247
extensions, remove using an

event modifier 392
generation 14, 173–177, 418,

1247
hidden 188, 1251
length 186, 187, 458, 1034
root directory (/) 189
simple 157, 189, 1272
temporary 1034, 1050
typeface in this book 27
unique 1034, 1050
Windows 187

filesystem 39, 184, 497t, 1247
access, speed up using tune2fs

505
autofs 864

bootable flag 85
create using mkfs 457
create using mkfs.xfs 506
demand mounting 864
devfs 494
ext2/ext3/ext4 497, 504
filename length 458
free list 493, 1249
hierarchy 184
Hierarchy Standard, Linux

(FHS) 12
independence 41
integrity check 503
journaling 497, 505, 1255
mount

automatically 864
on demand 864
point 40, 40, 85, 499, 865,

1260
remote 848–852
remount option 207
table 502
using mount 499–501

naming 41
proc 490
RAID see RAID
remote 1269
remount 207
reorganize using xfs_fsr 507
repair using xfs_repair 506
repairing 443
Standard, Linux (FSSTND) 197
structure 12
superblock 1275
swap 42, 491
sys 492, 495
tune using tune2fs 504–505
unmount using umount 501
XFS 498, 506–507

Filesystem, Standard, Linux
(FSSTND) 12

Filesystems Hierarchy Standard,
Linux (FHS) 12

filling 1248
filters 18, 169, 1248
find utility 237–240, 571, 592,

614, 1016
findmnt utility 499

finger utility 321
fingerd daemon 321
fingerprint 627, 644, see also

randomart image
FIOS 289
firewall 294, 924, 924–948, 1248,

see also gufw; iptables; ufw;
“firewall setup” under the
protocol you are running
(e.g., NFS, firewall setup)

firmware 1248
Flashback desktop, GNOME

103–104
FLOSS 7
focus, desktop 1248
focus, input 102
folder 108, see also directory
font, antialiasing 1233
footer 1248
for control structure 1019–1021
for...in control structure

1017–1020
foreground 171, 1248
foreground versus background

171
fork 379, 1248
fork() system call 379, 380, 381,

996
.forward file 796
FOSS 7
FQDN 306, 317, 894, 1248
FQDN, display using hostname

227
fragmentation, disk 590
frame 26
frame, network 1248
free beer 2
free list, filesystem 493, 1249
free software 7
free space, disk 38, 591, 1249
Free Standards Group (FSG) 197
free utility 261
freedesktop.org group 18
fsck utility 497, 503
FSG (Free Standards Group) 197
FSSTND (Linux Filesystem

Standard) 12, 197
fstab file 500, 502, 849, 853

000.book Page 1312 Friday, November 21, 2014 6:41 PM

Main Index 1313

FTP
see also FTP clients; vsftpd
ASCII transfer mode 760
binary transfer mode 760
debugging 763
ftp directory 765
ftp utility 754, 761–764
ftpd daemon 321
ftpusers file 777
ip_conntrack_ftp module

(iptables) 942
JumpStart: downloading files

using ftp 756
JumpStart: starting a vsftpd FTP

server 765
lftp client 725
more information 755
PASV (passive) connection 755,

1264
PORT (active) connections 755
prerequisites 756, 764
pub directory 760
security 754, 760, 765, 770
sftp client 725
site 754

FTP clients
see also FTP; vsftpd
anonymous login 759
automatic login 760
basic commands 756
prerequisites 756
tutorial 757–759
using 759–764

ftp directory 765, 769
ftp file 765, 769
ftp utility 754, 761–764
ftpd daemon 321
ftpusers file 777
full backup 568
full duplex 1249
full regular expression see regular

expression, extended
full-duplex network 291
fully qualified domain name see

FQDN
function keys, Boot menu 73
functions 1249

bash 402–404, 1040,
1061–1062

count_down 1062
makepath 1088
mycp 1040
Python 1107, 1107t
shell 1272

fuser utility 501

G

games directory 198
gateway 1249

network 293
proxy 322

gawk utility 1168
gcc see C programming language
GCOS see GECOS
gdbm database 1243
–ge relational operator 1079
gear button 108
GECOS 830, 1249
generic operating system 9
getfacl utility 207–211
gethostbyname() system call 903
getopts builtin 1074–1076
getpwnam() function 815
getpwuid() function 815
getty utility 380, 440
GFS filesystem 497
gibibyte 42, 1249
GID 485, 1250

display using id 601
passwd file, in 486

.gif filename extension 188
gigabyte 42, 1249
gksudo utility 604
global variable see environment

variable
globbing 173, 418
glyph 1249
GMT see UTC
GNOME 17

Boxes 690
desktop, Flashback 103–104
desktop, installing 125
desktop see also desktop
Flashback desktop 103–104
gnome-terminal utility 126
GTK 17
Nautilus see Nautilus
object see object

panel see panel
Ubuntu derivative 38
workspace see workspace

gnome-boxes utility 690
gnome-disks partition editor 88–91
gnome-terminal utility 126
GNU

Configure and Build System 534
General Public License (GPL) 5
Privacy Guard see GPG

GnuPG see GPG
Google Cloud Platform 703
gopher utility 325
GPG 641–656

armor 645
ASCII armor 645
encryption 641–656
file, encrypting and decrypting

649
file, signing and encrypting 650
fingerprint 644
gpg utility 641–656
key pair, creating 641
keyring 634, 642
keyserver 652
OpenPGP Message Format 641
public key, signing 651
public keys, exporting and

importing 644
public keyserver 644
seahorse utility 641
signing and verifying a file 646
web of trust 641

gpg utility 641–656, see also GPG
GPL (GNU General Public

License) 5
gpm daemon 321
GPT (GUID Partition Table) 445
graphical display 1249
graphical installation 61–67

see also installation
installer language 63
keyboard layout 65
keyboard, using 62
mouse, using 61
partitioning 63
partitioning, guided 65
time zone 65
ubiquity 61–67
user, first 66

000.book Page 1313 Friday, November 21, 2014 6:41 PM

1314 Main Index

graphical user interface see GUI
grave accent see command,

substitution
grep utility 168, 240–242, 256,

1024, 1036
group 484

access permission 199
add a user to a 567
add using groupadd 567
adm 596
admin 596
change using chgrp 203
display name using ls 200
file assigned to 485
group file 484, 567
ID see GID
libvirtd 692, 698
lpadmin 596
modify using groupmod 567
password 484
remove using groupdel 567
sudo 596, 604, 609
user private 485
user, display using groups 485
users 1249
wheel and su 625
windows 1249
www-data (Apache) 953

group file 484, 567
groupadd utility 567
groupdel utility 567
groupmod utility 567
groups utility 485
GRUB 444–450

configuring 445–448
GPT (GUID Partition Table)

445
grub file 446–448
grub.cfg file 449
grub.d directory 448
grub-install utility 450
grub-mkconfig utility 449–450
hidden timeout 447
MBR (master boot record) 82,

445, 450
menu 451–453
menu.lst file 446

GRUB 2 see GRUB
grub file 446–448

grub.cfg file 449
grub.d directory 448
grub-install utility 450
grub-mkconfig utility 449–450
gssd daemon 848
–gt relational operator 1079
GTK 17
guest, VM 688
gufw 927–931

Advanced tab 930
Preconfigured tab 928
rules, adding 928
Simple tab 930

GUI 33, 33, 1250
check see GUI, tick
check box 1239
check mark see GUI, tick
combo box 1240
dialog box 1244
drag 1245
drag-and-drop 1245
drop-down list 1245
list box see GUI, drop-down list
radio button 1267
root privileges and 604
scrollbar 1271
slider 1272
spin box 1274
spinner see GUI, spin box
text box 1277
thumb 1277
tick 1277
tick box see GUI, check box
tooltip 1278
WYSIWYG 1282
X Window System 16

GUID Partition Table 445
guided partitioning 41, 65, 65
gunzip utility 256, 260
.gz filename extension 188
gzip utility 253–257, 260

H

–h option 140, 155
hacker 1250
half duplex 1250
half-duplex network 291
halt utility 441

hang up signal 1069
hard disk see disk
hard links see links, hard
hardware

installation requirements 30
list using lshw 457, 665
PCI devices, list using lspci 665
USB devices, list using lsusb 666

hash 632, 1250
table 382, 1250
value 632

hash function 632, 632–637
digest 632
integrity versus authenticity 634
MD5 1258
md5sum utility 633
message digest 632
one-way 1263
salt 634
SHA1 1272
sha1sum utility 633
SHA2 1272
sha224sum utility 632, 633
sha256sum utility 633
sha384sum utility 633
sha512sum utility 633
signing a 636

hash utility 382
hashbang 344
HDB (Hash Database) 831
head utility 243
header, document 1250
help

bash command 141
documentation 118–121,

135–142
error messages 119
GNU manuals 120, 1172
–h option 140
––help option 140, 154
–help option 140
HOWTOs 121
info utility 137–140
Internet 119
Linux Documentation Project

120
local 141
log files 1172
mailing lists 1175t

000.book Page 1314 Friday, November 21, 2014 6:41 PM

Main Index 1315

man pages 135–137
newsgroups 476, 1174
obtaining 118–121, 135–142,

476, 1173–1175
problem solving 1172
security 656
system manuals 135–140
Ubuntu Web site 119
window, Ubuntu 118

––help option 140, 154
–help option 140
Here document control structure

1036–1038, 1250
hesiod 1251
heterogeneous 1251
hexadecimal number 1251
hfs filesystem 498
hidden filenames 188, 1251
hidden filenames, display using ls

175, 229
hidden timeout, GRUB 447
hierarchy 1251
hierarchy, filesystem 184
hinting, subpixel 1275
HISTFILE variable 383
HISTFILESIZE variable 383
history 1251, see also bash history
history builtin 383
HISTSIZE variable 383
/home directory 44, 198
home directory 151, 364, 1252

~, shorthand for 190, 365
automount 863
export using NFS 673
passwd file and 487
startup files 188
working directory versus 194

HOME variable 365
host 688

address 302, 304
based trust 308
key, OpenSSH 631
nickname 306
specifying 461t
trusted 308

host utility 313, 900, 903
hostname 306–307

characters allowed in 894
symbolic 318

hostname file 485
hostname utility 227, 307
hostnamectl utility 227
hosts file 306, 485
hosts.allow file 464, 616–617
hosts.deny file 464, 616–617
hosts.equiv file 308
hotplug system 495
hot-swap 45
hover 104, 1252
HOWTOs 121
hpfs filesystem 498
hping utility 657
.htaccess file 961, 967, 982, 994
.htm filename extension 966
HTML 325, 1252
html directory 957, 961
.html filename extension 966
htop utility 578
.htpasswd file 994
htpasswd file 959
HTTP protocol 1252
HTTPS protocol 992
https:// URI prefix 992
hub 291, 662, 1252
human-readable option 155
humor 7, 845, 1273
HUP signal 1069
hypertext 325, 1252
Hypertext Markup Language see

HTML
Hypertext Transfer Protocol see

HTTP
hypervisor 688

I

I/O device see device
i18n 374, 1252
IaaS 703
IANA (Internet Assigned

Numbers Authority) 319,
1252

ICANN (Internet Corporation for
Assigned Names and
Numbers) 298

ICMP packet 311, 924, 941, 943,
1252

icmp_seq 312
icon 1252

iconify 1253
ID string, X Window System 474
id utility 601, 606
id_dsa file 716
id_dsa.pub file 716
id_ecdsa file 716, 729
id_ecdsa.pub file 716, 729
id_ed25519 file 716
id_ed25519.pub file 716
id_rsa file 716
id_rsa.pub file 716
IDEA encryption 629
idmapd daemon 848
IDSs 658
if...then control structure

1005–1008
if...then...elif control structure

1011–1016
if...then...else control structure

1009–1011
IFS variable 369–370
ignored window 1253
image see Desktop Image; Server

Image; Netboot Image
IMAP server 807
in. prefix (daemon) 319
in.fingerd daemon 321
in-addr.arpa domain 902
include directory 198
increment operators 1083
incremental backup 568
indentation see indention
indention 1253
inequality operator 1082
info directory 199
info utility 137–140, 178
infrastructure mode, wireless 664
inheritance, bash 1054
init daemon 380, see also Upstart
init directory 429, 433
init scripts 435
init.d directory 435
initctl utility 429
inittab file 435, 486
inodes 493, 1253

alter using mv 493
create reference using ln 493
delete reference using rm 493
display using ls 214
locate using find 1016

000.book Page 1315 Friday, November 21, 2014 6:41 PM

1316 Main Index

input 1253
input focus 102, 102
input, standard see standard

input
input/output device see device
.inputrc file 396
INPUTRC variable 396
insmod utility 444
installation 59–93

see also installation disk;
installation image;
installation medium; ubiquity

BIOS, set to boot from DVD or
flash drive 32

boot command line 74
boot commands 76
boot menu, displaying 57
Boot menus 72–75
boot parameters 75–77
booting 56
CD/DVD, software, installing

from 122
CMOS setup 32
computer 1253
CPU requirements 31
databases, initializing 70
Desktop Boot menu 72
display, configuring 116
dual-boot system 91–93
Expert mode 75
failure 56
function keys 73
gnome-disks partition editor

88–91
hardware requirements 30
installation image, from an

59–61
ISO image file, verifying 633
language overlay 57, 71, 73
live session, from a 60
MD5SUMS file 633
medium 36
medium, testing 58
minimal system 74
Netboot Boot menu 75
old/slow systems 32
partitioning, manual 42
partitioning, manual (textual)

82–87

planning 30–46
processor architecture 32
RAID 45–46, 86
RAM (memory) requirements

31
RAM (memory), test using

memtest86+ 72
Server Boot menu 72
SHA1SUMS file 51, 633
SHA256SUMS file 633
textual installer 71, 78–82
ubiquity installer see ubiquity
ubiquity partition editor 67–70
UEFI 32
unetbootin utility 52
updating the system 70
verifying an ISO image file 633
virtual consoles 61

installation disk
see also installation; installation

image; installation medium;
ubiquity

formatting 38
free space 38
guided partitioning 41
partition

delete using gnome-disks 91
display using gnome-disks 88
set up 38
set up using gnome-disks 88–91
setup, guided 41

setup 63
space requirements 32

installation image 36
see also installation; installation

disk; installation medium;
ubiquity

checking for defects 72
Desktop 36, 71
downloading 47–50
function keys 73
installing 61–67
Netboot 37, 71
Server 37, 71
verifying 51

installation medium
see also installation; installation

disk; installation image;
ubiquity

BIOS, set to boot from 32

burning a DVD 52
checking for defects 72
testing 58
writing to a USB flash drive 52

INT signal 1069
Integrated Services Digital

Network see ISDN
integrity versus authenticity 634
interactive 1253
interface 1253

character-based see command
line; textual, interface

command-line see command
line; textual, interface

graphical user see GUI
pseudographical 33, 126
textual see command line;

textual, interface
user 1279

interface-local 301
internal field separator see IFS

variable
International Organization for

Standardization see ISO
internationalization 374
Internet 286, 1253

Assigned Numbers
Authority see IANA

browsers 326
connection sharing 945–948
Control Message Protocol see

ICMP
look up site information using

whois 314
multiple clients on a single

connection 946
multiple servers on a single

connection 948
netiquette 1261
Printing Protocol see IPP
Protocol Security see IPSec
Protocol see IP; TCP/IP
search engines 326
service provider see ISP
URI 1279
URL 326, 1279

internet (lowercase “eye”) 1253
internetwork 286
InterNIC 314

000.book Page 1316 Friday, November 21, 2014 6:41 PM

Main Index 1317

interprocess communication 18,
495, 495

interrupt key 130
intranet 287, 1254
intrusion detection system see

IDS
invisible files see hidden filenames
IP 1254

see also IP address; IPv6
masquerading 933, 943, 946
multicast see multicast
protocol model 296
spoofing 1254
TTL header field 312
version 6 see IPv6

IP address 1254
client, specifying 461t
computations 305t
dynamic 304, 670
loopback service 485
representation 298
static 304, 467, 670

ip utility 468
ip6.int domain 902
ip6tables-restore utility 944
ip6tables-save utility 944
IPC 1254
ipchains utility 932
IPP 540
iptables 932–948

see also gufw; iptables rules; ufw

chain 932
chain policy 938
classifiers 932
command line 936–937
commands 938
connection tracking 934, 942
conntrack module 934
counters 944
display criteria 940
DNAT targets 933, 942
Filter table 933
ICMP packet 941, 943
Internet connection sharing

945–948
IP masquerading 946
ip_conntrack_ftp module 942
ip6tables-restore utility 944
ip6tables-save utility 944

ipchains utility 932
iptables-restore utility 944
iptables-save utility 944
jumps 937
Mangle table 934
masquerade 1258
MASQUERADE targets 933,

943
match criteria 936
match extensions 940–942
matches 932
more information 935
NAT table 933
NAT, running from 945–948
netfilter 932
network packet 934
packet match criteria 936, 939
ping utility 943
policy command 938
prerequisites 935
protocols file 940
resetting rules 935
router 945, 948
services file 941
SNAT targets 933, 943
state machine 934, 942
targets 932, 933, 937, 942–944

iptables rules 932
building a set of 937
example 932
match criteria 937
number 937
saving 944
specification 936

iptables-restore utility 944
iptables-save utility 944
IPv4 298
IPv6 299–302, 1254

see also IP
address 300
address records, DNS 302, 898
DHCP 302
interface-local 301
link-local addresses 301
multihoming 301
ping6 312
traceroute6 313
tunnel brokers 299

IRC, Ubuntu channels 120

irqpoll boot parameter 77
is_regfile shell script 1007
isatty() system call 160
ISDN 289, 1254
ISO 1254
ISO image file 47
ISO image file, verifying 633
ISO protocol model 297
ISO9660 filesystem 498, 1255
ISP 1255
iterable 1112, 1117, 1118

J

jffs2 filesystem 498
job 171, 352

control 15, 171, 352–355, 1255
jobs builtin 172, 352
number 171
number, display using jobs 172
suspend using CONTROL-Z 172
Upstart 428, 429, 430–432

jobs builtin 131
john utility (John the Ripper) 615,

657
join 1137
journaling filesystem 497, 505,

1255
Joy, Bill 1237
JPEG 1255
.jpeg filename extension 188,

1255
.jpg filename extension 188, 1255
JumpStarts see the JumpStart

index (1285)
justify 1255

K

K&R 11
KDE 17

desktop 37, 125
Qt toolkit 17

Kerberos 1255
kernel 7, 1255

see also Linux
booting 438
command execution

environment 1054

000.book Page 1317 Friday, November 21, 2014 6:41 PM

1318 Main Index

kernel, continued
depmod utility 444
insmod utility 444
loadable module 444, 1257
lsmod utility 444
messages, display using dmesg

439, 454
modinfo utility 444
modprobe utility 444
module 444, 1257
modules file 444
modules, tools for working with

444t
packages, list installed using

dpkg 449
packages, remove using aptitude

449
packet filtering see gufw;

iptables; ufw

proc pseudofilesystem 490
programming interface 11
rmmod utility 444
space 1255
version, display using uname

449
kernelspace 1255
Kernighan & Ritchie 11
key space 628
keyboard 1255
keyboard as standard input 160
keyboard layout, graphical

installation 65
keyring 634, 642
keys

BACKSPACE (erase character) 130
binding 1255
CONTROL 27
CONTROL-\ (quit) 131
CONTROL-C (copy) 107
CONTROL-C (interrupt) 130
CONTROL-D (EOF) 128, 161
CONTROL-H (erase character) 130,

156
CONTROL-U (line kill) 130, 156
CONTROL-V (paste) 107
CONTROL-W (erase word) 130, 156
CONTROL-X (cut) 107
CONTROL-X (line kill) 130
CONTROL-Z (suspend) 130, 131, 172

cryptographic 627
DEL (erase character) 130
end line 27
ENTER 27
erase 129
interrupt 130
line kill 130, 156
META 1259
NEWLINE 27
RETURN 27, 156
typeface 27

keyserver 652
keyword variables 359
keywords, search for using apropos

137
kill builtin 131, 172, 455–457,

1070, 1072
kill line key (CONTROL-U) 130, 156
kill process 501
KILL signal 131, 1070
killall utility 457
kilo- 1256
known_hosts file 716, 718
Korn, David 335, 1256
Korn Shell 335, 1256
ksh shell 335, 1256
Kubuntu 37
KVM 690
KVM kernel modules 692
Kylin desktop 38

L

l10n 374, 1256
LAMP 37, 675, 1136
LAN 290, 1256

more information 662
setting up 662–666

LANG variable 374, 953, 1176
language, procedural 1086
language, programming 1174t
large number 1256
last utility 623
launchd daemon 427
Launchpad 511, 657
LBA addressing mode, disk 445
LC_ALL variable 374
LC_COLLATE variable 374
LC_CTYPE variable 374

LC_MESSAGES variable 374
LC_NUMERIC variable 374
LDAP 830–839, 1256

BDB 831
Berkeley DB 831
CN 832
Common Name 832
DB_CONFIG file 834
DC 831
directory 830
DN 831
DSA 831
DSE 831
entry 831
firewall setup 834
GECOS 830
HDB (Hash Database) 831
ldapadd utility 835
ldapdelete utility 835
ldapmodify utility 834
ldapsearch utility 834, 835, 836
LDIF 832, 832
makedbm utility 826
objectClass 832
OpenLDAP 831
passwd utility 821
prerequisites 833
RDN 831
RTC 831
schema directory 831
server, test 834
setting up a server 833
slapcat utility 835
slapd daemon 833
slapd service, starting 833
Sleepycat Berkeley Database

831
Thunderbird client 838

ldapadd utility 835
ldapdelete utility 835
ldapmodify utility 834
ldapsearch utility 834, 835, 836
ldd utility 616, 618
.ldif filename extension 832
LDIF, LDAP 832
–le relational operator 1079
leaf 1256
least privilege 597, 1256
left-click 105

000.book Page 1318 Friday, November 21, 2014 6:41 PM

Main Index 1319

left-handed mouse 116, 475
less utility 136, 169, 228, 1011
let builtin 416, 1078
lftp utility 725
lftp.conf file 725
.lftprc file 725
/lib directory 198
lib directory 198
/lib64 directory 198
libexec directory 492
libraries called by executable, list

using ldd 616
library 1256
library, libwrap 616
libvirt 690
libvirtd group 692, 698
libwrap library 616
LightDM display manager 440
lightdm.conf file 473
lightweight desktop see LXDE

desktop
Lightweight Directory Access

Protocol see LDAP
line kill key (CONTROL-U) 130, 156
line numbers, display using cat

225
Line Printer Daemon see lpd

daemon
LINES variable 1035
link-local addresses (IPv6) 301
links 13, 211, 211–217, 1256

alternatives directory 483
delete using rm 216, 493
display using ls 214
exporting 857
find using lnks 1013
hard 212–214, 493, 1250, 1256
hard versus symbolic 212, 214
hard, create using ln 212, 493
hypertext 325
inode 493
number of, display using ls 200
point-to-point 1265
remove using rm 216
soft see links, symbolic
symbolic 214, 494, 1256, 1276

as special files 494
cd and 216
create using ln 215

dereference 1243
versus hard 212, 214

symlinks see links, symbolic
utility names 483

links utility 326
Linux

see also kernel
benefits 7–9
distribution 6
documentation 118–121,

135–142
Documentation Project 120
FHS (Filesystem Hierarchy

Standard) 12, 197
file namespace 40
Foundation 197
FSSTND (Filesystem Standard)

12, 197
history 2–9
LSB (Linux Standard Base) 197
manual sections 136
newsgroups 476, 1174
overview 11–19
PAM see PAM
Pluggable Authentication

Modules see PAM
standards 8
Terminal Server Project 845
UNIX heritage 2

linux terminal name 1175
linux-vdso.so.1 file 618
list box see drop-down list
list operator see character, class
lists 170
lists directory (APT) 518
lists, Python 1109–1113
listserv 307
live session 36, 59, 60
live session, RAM usage 36
ln utility 212, 215, 493
ln utility versus cp 213
lnks shell script 1013
load average, display using uptime

261
load average, display using w 262
loadable modules 444, 1257
local area network see LAN
local builtin 403, 1062
/local directory 44

local directory 198, 534
local variables 382
local.cf file 799
locale 374–376, 1257

Apache 953
C 375
i18n 374
internationalization 374
l10n 374
LANG variable 374
LC_ variables, setting 376
LC_ALL variable 374
LC_COLLATE variable 374
LC_CTYPE variable 374
LC_MESSAGES variable 374
LC_NUMERIC variable 374
locale utility 375–376
locales directory 376
localization 374
setlocale() system call 375

locale utility 375–376
locales directory 376
localhost 306
locality, process 1054
localization 374
localtime file 379
locate database 70
locate utility 70, 264
lockd daemon 321, 848
locking the root account 613
locktty shell script 1026
log

analyze using swatch 659
DNS 919
email 786
files

checking 590
obtain help using 1172
rotate using logrotate 582–584

FTP 774
in see login
log directory 492, 585
machine 589, 589t
OpenSSH 735
out 441, 1257

log directory 199, 1172
logging in 1257

see also login
problems 142
remotely 128

000.book Page 1319 Friday, November 21, 2014 6:41 PM

1320 Main Index

logging out 128
logical

evaluation 1079
expressions 1257
operators see Boolean

operators
Logical Volume Manager see

LVM
login 440

automatic using OpenSSH
728–730

name see usernames
options 99
problems 587
prompt 440
root 599, 1270
screen 99
shell 336, 1257
user, controlling 599

.login file 1257
Login incorrect error message 440
login utility 380, 440
login.defs file 486, 566
.logout file 1257
logresolve utility 973
logrotate utility 582–584
logrotate.conf file 582–584
logrotate.d directory 582–584
logvsftpd.log file 777
logwatch utility 590
loopback service 485
lossless 253
lost+found directory 443, 480
lp utility 557
lpadmin group 596
lpadmin utility 552–555
lpd daemon 540
LPI certification 1183–1229
lpinfo utility 552
lpq utility 245, 557
LPR line printer system 540
lpr utility 168, 243–245, 557
lprm utility 245, 557
lpstat utility 557
ls utility 132, 153, 199, 229
LSB (Linux Standard Base) 197
lsb_release utility 447
lsblk utility 665
lshw utility 457, 665

lsmod utility 444, 692
lsof utility 589
lspci utility 665
lsusb utility 666
–lt relational operator 1079
LTS release 35
Lubuntu 37
LV see LVM, LV
LVM 46

LV 46
PV 46
VG 46

LXDE desktop 37, 125
lynx utility 326

M

MAAS 72
MAC address 302, 468, 1257
Mac processor architecture 33
mac2unix utility 268
machine collating sequence 1258
machine log 589, 589t
machine name, display using

hostname 227
macro 1258
magic file 492, 960, 1258
magic number 492, 1258
mail

see also postfix
aliases 483, 794
aliases file 794
checking root’s 590
dovecot 807
Evolution 800
exim 783
firewall setup 784, 808
forwarding 794–796
IMAP server (Dovecot) 807
list server 307
log 786
mail directory 794
MAIL variable 366
mail.err file 590
mail.log file 590, 786
mailbox 366
MAILCHECK variable 367
maildir format 781
mailing list 804–807

Mailman 805–807
MAILPATH variable 367
mailq utility 786
mbox format 781
MDA 780, 1258
more information 783
MTA 780, 1260
MUA 780, 1260
newaliases utility 795
POP3 server (dovecot) 807
postmaster 590
Qmail 783
sendmail 783
sendmail daemon 322
SMTP 780
spam see spam
SpamAssassin see

SpamAssassin
SquirrelMail 802–804
Thunderbird 800
UCE see spam
Webmail 801–804

mail directory 794
MAIL variable 366
mail.err file 590
mail.log file 590, 786
mailbox 366
MAILCHECK variable 367
maildir format 781
mailing list 804–807
Mailman 805–807
mailman service, starting 806
mailname file 787, 789
MAILPATH variable 367
mailq utility 786
main memory 1258

see memory; RAM
main software package category

516
main.cf file 787, 789
mainframe computer 9
mainframe model 315
major device number 496, 1258
makedbm utility 826
makepath function 1088
makewhatis database 137
Mallory (placeholder name) 627
MAN 293, 1258
man directory 199

000.book Page 1320 Friday, November 21, 2014 6:41 PM

Main Index 1321

man utility 135–137
manager, file see Nautilus
mandb database 70, 137
man-in-the-middle attack 631,

1258
manuals see help
map files 865
mapping a share 871
MariaDB 1136–1155

see also SQL
adding a user 1144
adding data 1147
column 1137
comments 1138
creating a database 1143
creating a table 1145
database 1137
datatypes 1138
history 1136
installing 1140
joins 1137, 1152–1155
logging in 1145
.my.cnf file 1142
MySQL compatibility 1136
mysql_history file 1142
mysqldump utility 1150
options 1140
prompt 1138
relational database management

system 1137
retrieving data 1148
root password 1141
row 1137
SELECT statement 1148
SQL 1137
table 1137
terminology 1137

mask see network, mask
masquerading, IP 933, 943, 946,

1258
Massachusetts Institute of

Technology see MIT
master.cf file 794
mawk utility 1021
mbox format 781
MBR (master boot record) 82,

445, 450
MD device 86
MD5 1258

md5sum utility 633
MD5SUMS file 633
MDA 780, 1258
mebibyte 42, 1259
megabyte 1259
memory

see also RAM
free, allocating to buffers 261
information about, display via

proc 491
main 1258
memtest86+ utility 72, 448
paging 491
shared 483
test using memtest86+ 72
usage, display using free 261
virtual and swap space 491
virtual, report on using vmstat

576
memtest86+ utility 72, 448
menu 1259

bash 1034
panel see panel
shell script 1030
Window Operations 106

menu.lst file 446
menubar 106
merge 1259
message

see also error messages; usage
messages

daemon 492, 585–586
messages directory 492
of the day see motd file
rsyslog.conf file 585–586
rsyslogd daemon 585–586
security 492
system 492
usage see usage messages

message digest 632
Message Digest 5 see MD5
messages file 1172
META characters, display using cat

225
META key 1259
metabit 1233
metacharacters 1259, see also

special characters
metadata 1259

metapackage 519
metropolitan area network 293,

1258
microprocessor 10
Microsoft Azure 703
Microsoft Windows see

Windows
middle mouse button 107
MIME 112, 1259
mingetty utility 380
minicomputer 9
mini-HOWTOs 121
Minimal edition 37
Minimal Image 37
minimal system 74
minimize window 1260
MINIX 5
minix filesystem 498
minor device number 496, 1260
mirror 748
mirrors, Ubuntu 49
mistakes, correct typing 129
MIT, Project Athena 15
MIT, X Consortium 15
MITM see man-in-the-middle

attack
mkdir utility 192–193
mkfifo utility 495
mkfs utility 457, 480
mkfs.xfs utility 506
mklost+found utility 480
mkswap utility 491
mm_cfg.py file (Mailman) 806
/mnt directory 198
mod_perl.so file 959
modem 1260
modem, cable 1238
modinfo utility 444
modprobe utility 444
mods-available directory 957, 959
mods-enabled directory 957
module, kernel 444
modules directory 198, 959
modules file 444
moduli file 715
monitor, configuring 116
monthly file 575
more utility 228
Mosaic Web browser 325

000.book Page 1321 Friday, November 21, 2014 6:41 PM

1322 Main Index

most utility 228
motd file 486
motherboard 1260
mount 1260

automatic 864, 1234
CD-ROM 500
filesystem using mount 499–501
find mounted filesystems using

findmnt 499
point 40, 40, 85, 499, 865,

1260
remote filesystems 848–852
remount option 207
table 486, 502

mount utility 207, 486, 499–501,
848, 849–852, 876

mountd daemon 321
mounts file 486
mouse 1260

click 105
double-click timeout 116
left-handed 116, 475
middle button 107
mouseover 1260
pointer 1260
pointer, hover 104, 1252
preferences, setting 116
remapping buttons 116, 475
right-click 106
right-handed 475
wheel 475

mouseover 1260
mpage utility 554
msdos filesystem 498
MTA 780, 1260
mtab file 486
mtr utility 313
MUA 780, 1260
multiboot specification 1260
multicast 1260
multidisk device 86
multihoming 301
multimedia Ubuntu 38
multiplication operator 1082
Multipurpose Internet Mail

Extension see MIME
multitasking 12, 1261
multiuser 12, 1261
multiuser mode 439

multiverse software package
category 516

mv utility 195, 196, 245, 493
MX records, DNS 899
.my.cnf file 1142
mycp function 1040
mysql_history file 1142
mysqldump utility 1150
Mythbuntu 38

N

name
command 152
daemon 319
domain see domain, name
login see username
servers 316, 318

named daemon 905
named directory 917
named pipe 495
named.conf file 907, 911
named.conf.options file 912
nameserver 892
namespace 40, 1126, 1261
nano utility 277–280
NAT 1261

routers and 663
running from iptables 945–948
table, iptables 933

National Center for Supercomputer
Applications 325

Nautilus 108–113
access permissions 111
File Browser window 108
file, open with 110
Open With selection 112
terminal emulator, open with

110
NBT 1261
ncpfs filesystem 498
ndbm database 1243
NdisWrapper 664
–ne relational operator 1079
negation operator 1082
nessus utility 658
net use utility (Windows) 888
net utility 870
net view utility (Windows) 888

NetBIOS 1261
netboot 846, 1261
Netboot edition 37
Netboot Image 71
netiquette 1261
.netrc file 760
Netscape 6, 325
Netscape BugSplat bug tracking

system 536
network

see also IP address; protocols;
wireless

address 304, 1261
address, @ in 307
analyze using wireshark 659
ARP (Address Resolution

Protocol) 303
arp utility 303
boot 1261
bottleneck, find using traceroute

312
bridge 292, 1237
broadcast 288, 1237
broadcast address 1237
cables see cables
client/server model 316
collision domain 292
concentrator see network, hub
configure using

NetworkManager 667–672
connection, test using ping 311
daemons 286, 319
datagram 1243
DNS see DNS
drivers 664
duplex 291
Ethernet 290, 1247
extranet 287, 1247
FDDI 1247
file sharing model 316
firewall see firewall
frame 1248
full-duplex 291
gateway 293, 1249
half-duplex 291
hops 312
host address 302, 304
hostname, FQDN see FQDN
hosts file 306

000.book Page 1322 Friday, November 21, 2014 6:41 PM

Main Index 1323

hub 291, 662, 1252
ICMP packet 1252
interface card see network, NIC
internet (lowercase “eye”) 1253
Internet see Internet
internetwork 286
intranet 287
layer, IP model protocol 297
local area see LAN
MAC address 302
mainframe model 315
mask 304, 462, 1262
metropolitan area 293, 1258
monitor with Cacti 674–683
multicast 1260
nameservers 316, 318
NdisWrapper 664
NIC 302, 664
node 662
node address 304
number see network, address
packet 288, 934, 1264
packet filtering 1264, see also

gufw; iptables; ufw
packet sniffer 1264
partner net 287
point-to-point link 289
port forwarding 1266
private address space 667, 667t,

1266
privileged port 1266
PTP (peer-to-peer) model 316
resolver 318
route, display using traceroute

312
router 292, 293, 663, 1270
segment 291, 1262
services 286, 319
setting up 662–666
sniff 1273
sockets 495
specifications 288t
subnet 304, 304, 1275, see also

network, address
addresses 1275
masks 304, 1275
numbers 1275
specifying 462, 462t

switch 289, 291, 662, 1262
token ring 1278

topologies 288
topology, shared 1272
trusted hosts 308
tunneling 1278
UDP 1278
unicast 1279
VPN 287, 1280
WAN see WAN
wide area see WAN
Wi-Fi 1281, see also wireless
wireless see wireless

Network Address Translation see
NAT

Network File System see NFS
Network Information Service see

NIS
Network Time Protocol see NTP
NetworkManager

applet 667
daemon 667
nmcli utility 671
static IP address 670

newaliases utility 795
NEWLINE control operator 347
NEWLINE key 27
NEWLINE, quote using a backslash

351
newlist utility 805
news, Internet see newsgroups
newsgroups 476, 1174
NFS 844–847, 1262

all_squash option 860
attribute caching options 850
block size 852
data flow 844
df utility 846
directory, shared 673
error handling options 851
error messages 851, 862
etab file 861
exportfs utility 856, 861
exporting device files 857
exporting directory hierarchies

857–860
exporting links 857
exports file 855, 857–860, 861
filesystem 498
firewall setup 854
fstab file 849, 853
gssd daemon 848

home directory, export using
673

idmapd daemon 848
JumpStart: configuring an NFS

server using shares-admin
855–856

JumpStart: mounting a remote
directory hierarchy 848

line speed, testing 852
lockd daemon 321, 848
more information 847
mount utility 848, 849–852
mountd daemon 321
mounting remote directory

hierarchies 848–852
NFS server xxx not responding

error message 862
nfs-common init script 848
nfsd daemon 321
nfs-kernel-server init script 854
NIS and 860
options 858–860

all_squash 860
attribute caching 850
error handling 851
miscellaneous 851
root_squash 860

performance, improving 852
prerequisites 847, 853
rpc.gssd daemon 848
rpc.idmapd daemon 848
rpc.lockd daemon 848
rpc.statd daemon 848
rpcbind daemon 847, 854
rpcbind service, starting 847,

854
rquotad daemon 321
running clients 847
security 847, 855, 860
server not responding error

message 851
server–server dependency 864
setuid 848
shares-admin utility 855–856,

858
Stale file handle error message

862
statd daemon 321, 848
testing 862
timeout 851, 852

000.book Page 1323 Friday, November 21, 2014 6:41 PM

1324 Main Index

nfsd daemon 321
NIC 302, 664, 1262
nice utility 576
nickname, host 306
nicknames file (NIS) 816
NIS 814–816, 1262

broadcast mode 817
client, setting up 817–822
debugging 820, 829
defaultdomain file 818
domain 814
domain name 818, 1262
firewall setup 823
GECOS 830
makedbm utility 826
Makefile file 826
maps 815
master servers 814
more information 816
NFS and 860
nicknames file 816
nis file 818, 823, 824, 830
nisdomainname utility 818
nsswitch.conf file 814
passwd utility 821
prerequisites 817, 823
rpcbind service, starting 817,

823
rpcinfo utility 820
securenets file 826
server, setting up 822–829
server, specifying 819
slave servers 814
source files 815
terminology 816
testing 829
troubleshooting 820, 829
users, adding and removing 822
Yellow Pages 814
yp.conf file 819
ypbind daemon 818, 820
ypinit utility 828
yppasswd utility 821–822
yppasswdd daemon 830
yppush utility 826
ypserv.conf file 824
ypwhich utility 820
ypxfr utility 823
ypxfrd daemon 823

nis file 818, 823, 824, 830
nmap utility 658
nmbd daemon 870, 888
nmblookup utility 888
nmcli utility 671
NNTP (Network News Transfer

Protocol) 1262
No such file or directory error

message 365
noacpi boot parameter 76
noapic boot parameter 76
noapm boot parameter 76
noclobber variable 164–166
node 662, 1262
node address 304
node, VM 688
nodma boot parameter 76
nofb boot parameter 77
nolapic boot parameter 77
–nolisten tcp option (X Window

System) 472
nologin file 442, 625
nologin utility 487
nologin.txt file 487
nonprinting character 1263
nonrepudiation of origin see

cryptography,
nonrepudiation of origin

nonvolatile storage 1263
NOT (!) Boolean operator 1085
nsswitch.conf file 468–471, 814,

903
ntfs filesystem 498
NTP 1263
ntpd daemon 321
null device 166
null file 166, 481, 591, 1024
null string 1263
number

block 1236
gibibyte 1249
gigabyte 1249
hexadecimal 1251
kilo- 1256
large 1256
magic 492, 1258
mebibyte 1259
megabyte 1259
octal 1263

sexillion 1272
tera- 1276
undecillion 1279

O

–o (OR) Boolean operator 1079
.o filename extension 188
object 104, 105

copying 107
cut and paste 107
panel see panel
right-click 106
selecting 110
trash, moving to 109

Object Properties window
111–113

objectClass, LDAP 832
octal number 1263
octet 298
od utility 483
old systems, installation on 32
OLDPWD variable 414
one-way hash 1263
Open Group 15
open source 6, 1263
Open Source Initiative see OSI
OpenLDAP 831
OpenPGP Message Format 641
OpenShift 703
OpenSSH 714–738, 1263

authentication 631, 714, 717
authorized keys 728–730
authorized_keys file 715, 730
automatic login 728–730
client, configuring 717–719
clients 716–727
compression 738
config file 715
configuration file, server

732–734
configuration files, client

726–727
configuration files, client and

server 714–716
debugging 723, 725, 732, 735
encryption 631, 714
environment file 716
firewall setup 728

000.book Page 1324 Friday, November 21, 2014 6:41 PM

Main Index 1325

firewall, working with 738
id_dsa file 716
id_dsa.pub file 716
id_ecdsa file 716, 729
id_ecdsa.pub file 716, 729
id_ed25519 file 716
id_ed25519.pub file 716
id_rsa file 716
id_rsa.pub file 716
init script 728
JumpStart: starting an

OpenSSH server 728
JumpStart: using ssh and scp to

connect to an OpenSSH
server 716

key files, host 728
keys 631
keys, personal, store using ssh-

agent 731–732
known_hosts file 716, 718
log file 735
moduli file 715
more information 716
opening a remote shell 720
password vs. personal key

authentication 730
port forwarding 735–737
prerequisites 716, 727
randomart image 730
recommended settings, client

717
recommended settings, server

728
rhost authentication 715
rsync utility 724
running commands remotely

720–722
security 714
server, setting up 727–734
ssh_host_dsa_key file 715
ssh_host_dsa_key.pub file 715
ssh_host_ecdsa_key file 715
ssh_host_ecdsa_key.pub file

715
ssh_host_ed25519_key file 715
ssh_host_ed25519_key.pub file

715
ssh_host_rsa_key file 715

ssh_host_rsa_key.pub file 715
ssh_known_hosts file 715, 719
ssh-add utility 732
ssh-agent utility 731–732
ssh-copy-id utility 730
sshd daemon 727–734
sshd_config file 730
ssh-import-id utility 715
ssh-keygen utility 729–731
troubleshooting 735
tunneling 735–737
X11 forwarding 717, 726, 734,

736
OpenSSL 637–641
openssl utility 637–641
OpenStack 703
operand 152
operating system 1263

choosing 19
generic 9
proprietary 9

Operations menu, Window 106
operators

arithmetic (bash) 1081t,
1081–1085

Boolean see Boolean operators
list see character, class
logical see Boolean operators
redirection (bash) 342, 342t
relational 1079
remainder 1084
short-circuiting 349
string 1080t
ternary 1084

/opt directory 44, 198
opt directory 198, 534
OPTARG variable 1074
optical, drive 1263
OPTIND variable 1074
optional sections (in this book) 28
options 153, 1263

boot 75–77
command line 153–155, 405
flags, displaying (bash) 1052

OR (|) Boolean operator
(extended regular
expression) 1168

OR (||) Boolean operator 1079,
1084

OR (–o) Boolean operator 1079
OR bitwise operator (|) 1084
ordinary file 151, 185, 493, 1263
OSDL (Open Source Development

Labs) 197
OSI 7
other access permission 199
out shell script 1011
output 1264
output, standard see standard

output
owner access permission 199
owner of file, display using ls 200

P

.p filename extension 1122
P2P 1264
Paas 703
package group 519
package management system, 510
package see software packages
PackageKit 511
packet 1264

filtering 1264, see also gufw;
iptables; ufw

network see network, packet
sequence number (icmp_seq)

312
sniffer 1264

page breaks 276
pagers 136, 228, 1264
paging 491, 1264
PAM 621–626, 1264

auth.log file 622
authentication stack 621
control flag keywords 624t
features 440
module type indicators 623t
more information 622
pam.d directory 621
security file 621
stack 621

pam.d directory 621
panel 104, 105
parameter null or not set error

message 1060

000.book Page 1325 Friday, November 21, 2014 6:41 PM

1326 Main Index

parameters 358
see also bash parameters
boot, modifying 75–77
expansion (bash) 414
positional 1044, 1044–1049
quiet boot 58
shell 358, 358–371
special 1049–1052
splash boot 58

parent directories 185, 186
parent process 380, 1264
parentheses, group commands

using 350
parse 156, 410
parted utility 579–582
partition 38, 1264

see also name of partition (e.g.,
/var [indexed under var
directory])

create manually (graphical) 63
create manually (textual) 82–87
create using gnome-disks 90
create using parted 579–582
create, guided 41, 65, 65
creating, about 41
delete using gnome-disks 91
display using gnome-disks 88
editor, ubiquity 67–70
encrypt using gnome-disks 90
extended 39
filesystem 39
logical 39
naming 41
primary 39
RAID see RAID
sizes, minimum 44t
sizes, suggested 42
swap 42
table 38
table, write using gnome-disks 89
type 84
UUID number 502
work with using gnome-disks

88–91
partner net 287
partner software package category

516
PASC (Portable Application

Standards Committee) 335

passive FTP see FTP, PASV
passphrase 627
passwd file 440, 486–487, 599
passwd utility 144, 821
passwords 1264

change using passwd 144
change using User Accounts

window 118
choosing 143, 615
cracking 615
generating using pwgen 144
group 484
hashed 489
John the Ripper utility 657
locked 489
no password 489
passwd file 440, 486–487, 599
root account 598
root account and sudo 612
root account, assigning to 613
Samba 873
security 143, 615

PASV FTP see FTP, PASV
path, search 263
PATH variable 158, 337,

365–366, 613, 614, 1033
pathnames 185, 189, 195, 1264

/ trailing within 40
/ within 40
~ (tilde) in a 190
absolute 157, 189, 1232
completion 395
elements 1265
expansion 173, 173–177, 360,

418
last element of 1264
relative 157, 190, 1269

PC processor architecture 33
PCI devices, list using lspci 664
pdbedit utility (Samba) 873
.pdf filename extension 188
PDF printer, setting up a virtual

542
peer, BitTorrent 531
.pem filename extension 705
Perens, Bruce 7
period special character 1163
peripheral device see device

Perl, Apache, scripts called from
995

Perl, CGI script 992
Permission denied error message

158, 343, 365
permissions see access

permissions
persistent 1265
PGP 641, see also GPG
pgrep utility 456
philosophy, UNIX 307
phish 1265
.php filename extension 966
physical device 1265
physical layer, IP model protocol

297
PID 1265

$! variable 1051
$$ variable 1050
background process 171
display using ps 172
fg 334
number 380
number 1 380, 439

pidof utility 457
pinfo utility 139
ping utility 311, 458, 852, 943
ping6 utility 311, 312
pipe, named 495
pipe, named, create using mkfifo

495
pipeline 18, 166, 166–170, 1265

see also pipeline symbol
precedence of 1083

pipeline symbol (|)
see also pipeline
continuation, implicit 1021,

1085
extended regular expressions, in

1168
filters, in 169
lists, in 170
noclobber and 165

pixel 1265
pkexec utility 604
PKI 1265
pkill utility 458
.pl filename extension 966
plaintext 627, 1265

000.book Page 1326 Friday, November 21, 2014 6:41 PM

Main Index 1327

Pluggable Authentication
Module see PAM

plus sign (+) in extended regular
expressions 1168

PMS (package management
system) 510

point release 35
point-to-point link 289, 1265
Point-to-Point Protocol see PPP
PolicyKit 604
POP3 server (Dovecot) 807
popd builtin 357
portable 9
portmapper 323, 1266
ports 318, 1265

connect to using telnet 310
forwarding 1266
forwarding using OpenSSH

735–737
privileged 318
scan for open using nmap 658
setting serial information 458

ports.conf file 960
positional parameters 1044,

1044–1049
POSIX 8, 335
postfix 781–796

see also mail
aliases 794
aliases.db file 795
alternatives 783
configuration parameters

790–793
configuring 789–796
daemon 799
dpkg-reconfigure utility 789, 796
firewall setup 784
.forward file 796
forwarding 794–796
init script 784
JumpStart: configuring postfix

to use Gmail as a smarthost
787

logs 590, 785, 786
lookup tables 793
mail directory 794
mail.log file 786
mailname file 787, 789

main.cf file 787, 789
master.cf file 794
parameters, configuration

790–793
port 25 782
postmap utility 788, 793, 794
prerequisites 784
sasl_passwd file 788, 794
sendmail 780
sendmail compatibility interface

782
smarthost 782
testing 785
testing with telnet 786
tls_policy file 788, 793

postinst script (dpkg) 525
postmap utility 788, 793, 794
postmaster 590
postrm script (dpkg) 525
PostScript Printer Definition see

PPD
power management 320
power supply 1266
power, turning off 443
poweroff utility 441
PowerPC processor architecture

33
ppd directory (CUPS) 553
PPD files 552
PPID see parent process
PPP (Point-to-Point Protocol) 298
Preboot Execution Environment

846
preinst script (dpkg) 525
prerm script (dpkg) 525
Pretty Good Privacy see PGP,

GPG
PREVLEVEL variable 433
primary buffer 107
printable character 1266
printcap file 244
printenv utility 1056
printer

see also CUPS; printing
accepting/rejecting jobs 544t
capability database 487
classes 551
configure using lpadmin 552–555

configure using system-config-

printer 542–548
control using lpq/lpr/lprm

243–245
default 542
disable using cupdisable 555
disable using cupsreject 555
enable using cupsaccept 555
enable using cupsenable 555
enable/disable 544t
IPP protocol 540
JumpStart: setting up a remote

printer 544
network 540
page breaks 276
PDF, virtual 542
print files using lpr 243–245
print queue 540
printcap file 487
queue, managing 544, 555
queues and 540
remote, configuring 544–548
server settings 543
sharing 555
status 544t

PRINTER variable 244
printing

see also CUPS; printer
command line, from the 557
command-line utilities 557t
lpd daemon 540
LPR line printer system 540
quotas 554
system 540
UNIX traditional 557
Windows, from using CUPS 558
Windows, from using Samba

559
Windows, to using CUPS 560

private address space 667, 667t,
1266

private key 629
privilege, least 597, 1256
privilege, process 599
privileged ports 318, 1266
privileged user see root privileges
privileges, root see root privileges
problem solving 1172
/proc directory 198, 490, 498

000.book Page 1327 Friday, November 21, 2014 6:41 PM

1328 Main Index

procedural language 1086
procedure 1266
process 158, 379, 379–382, 1266

background 381, 1235
child 380, 1239
die 381
files held open by a, locate using

lsof 589
first 439
foreground 1248
fork 379
ID see PID
identification see PID
init 439
kill 455–457, 501
kill using kill 131, 172, 1072
list using top 577
locality 1054
numbers, display using pidof 457
parent 380, 1264
parent of all 439
privilege 599
search for processes using pgrep

456
sleep 381
spawn see process, fork
spontaneous 380
structure 379
substitution 419
wake up 381

processor architecture 32
.profile file 336, 1266
profile file 336, 487
profile.d directory 336, 487
program 1266, see also builtins;

the Utility index (1291)
name of calling 1044
terminating see kill builtin

programming language 1174t
Project Athena 15
PROM 1266
prompts 1267

597
$ 27
bash 367–369
login 440
MariaDB 1138
Python 1105
representation 27
shell 27

proprietary operating systems 9
protocols 296, 296–298, 1267

connectionless 1241
connection-oriented 297, 1241
datagram-oriented 298
DHCP 464–468
HTTPS 992
ICMP 311
IP model 296
IPP 540
ISO model 297
PPP 298
protocols file 488
stream-based 297
TCP 296, 297
TCP/IP 296
UDP 296, 298

protocols file 940
proxy 322, 1267
proxy gateway 322, 1267
proxy server 322, 1267
.ps filename extension 188
ps utility 172, 345, 380, 456,

1050
PS1 variable 367, 368t
PS2 variable 351, 368
PS3 variable 369, 1035
PS4 variable 369, 1017
pseudographical interface 33, 126
pseudoterminal 482
pstree utility 381
PTP (peer-to-peer) model 316
pts directory 160, 482
pub directory (FTP) 760
public key encryption see

encryption, public key
Public Key Infrastructure see PKI
public keyserver 644
public_html directory 965
pushd builtin 356
PV see LVM, PV
pwd builtin 151, 192, 193, 356,

416
pwd utility 216
PWD variable 414
pwgen utility 144
PXE 846

Python 1104–1131, 1267
+ in a print statement 1107
append() method, list 1110
bool() function 1123
control structures 1114–1118
dictionaries 1113–1114
exception handling 1120
file input/output 1119–1122
file modes 1119t
file object methods 1119t
findall() method, re 1123
floating point variable 1109
for control structure 1117
function 1107, 1107t

defining 1124
importing 1128
Lambda 1129

group() method, re 1124
if control structure 1115
if...elif...else control structure

1116
if...else control structure 1115
implied display 1105
indenting logical blocks 1114
invoking 1104
items() method, dictionary 1114
iterable 1112, 1117, 1118
keys() method, dictionary 1113
Lambda function 1129
len() function 1111
libraries 1125
list comprehensions 1130
list methods 1111t
lists 1109–1113
logical blocks, indenting 1114
map() function 1129
match() method, re 1124
MatchObject 1123
methods 1108
module, importing 1127
namespace 1126
NumPy library 1126
open() function 1119
pickle 1122
print statement 1107
prompt 1105
quotation marks, single and

double 1106
range() function 1118, 1118t

000.book Page 1328 Friday, November 21, 2014 6:41 PM

Main Index 1329

raw_input() function 1107
readlines() method, file 1120
regular expressions 1123
remove() method, list 1110
reverse() method, list 1110
scalar variable 1108
SciPy library 1126
search() method, re 1123
sort() method, list 1110
sorted() function 1111
standard input, reading from

1107
standard output, writing to

1107
strings 1118
type() function 1124
values() method, dictionary

1113
version 1104
while control structure 1117

Q

QEMU 690
QEMU/KVM 691–698
Qmail 783
qnx4 filesystem 498
Qt toolkit 17
question mark (?) in extended

regular expressions 1168
quiescent 451
quiet boot parameter 58
QUIT signal 131, 1070
quota utility 593
quotaon utility 593
quotation marks

see also quoting
around variables 360
around whitespace 360
double 1006
in aliases 399
in pathname expansion 418
in Python 1106
removal of (bash) 419
single 150

quoting 1267
see also quotation marks
characters 150
let arguments 416

NEWLINE characters using \ 351
parentheses in regular

expressions 1166
shell variables using \ 360
special characters in regular

expressions 1165, 1165t
trap, arguments to 1070

R

radio button 1267
RAID 45–46, 86, 1268

backups, does not replace 568
fake 45

RAM 1268
see also memory
disk 60, 1268
installation requirements 31
swap and 42, 491
testing 72

random access memory see RAM
random bytes, generating 642
random file 482
random number generator 482
RANDOM variable 1019, 1093
randomart image (OpenSSH) 730,

see also fingerprint
RAS 1268
raw devices 496
raw mode, device 496
Raymond, Eric 7
rc script see init script
rc.conf file 433, 451
RC5 encryption 629
rcn.d directory 435–437
rcS.conf file 451
rc-sysinit task 435
rc-sysinit.conf file 435
RDBMS 1137, see also MariaDB
RDF 1268
RDN, LDAP 831
read access permission 199
read builtin 1025, 1063–1066
Readline completion commands

394–395
Readline Library command editor

392–398
Readline variables 396t
readonly builtin 362, 363

readonly memory see ROM
real UID 599, 1268
reboot system 442
reboot utility 441
recovery mode 450, 450–453

from multiuser mode 442
rescue mode, versus 77
root password 451
root privileges 598

recursion, infinite (aliases) 401
Red Hat OpenShift 703
redirect

output of sudo using > 606
output of sudo using tee 606

redirection 14, 161, 1268, see also
standard error; standard
input; standard output

redirection operators (bash) 342t
redundant array of inexpensive

disks see RAID
reentrant code 1268
regular character 1269
regular expression 1161,

1161–1168, 1269
^ 1164
\(...\) brackets expressions 1166
$ 1164
ampersand in replacement

strings 1167
anchors 1164
asterisks 1164, 1164t
brackets 1163, 1163t, 1166
carets and dollar signs 1164t
character class 1238
character classes and bracketed

1169t
characters 1162
delimiters 1162
empty 1166
extended 1167, 1168t, 1169t

pipe symbol (|) 1168
plus sign (+) 1168
question mark (?) 1168
summary 1169

full 1167, 1168t
list operator see character, class
longest match 1165
periods 1163, 1163t

000.book Page 1329 Friday, November 21, 2014 6:41 PM

1330 Main Index

regular expression, continued
Python 1123
quoted digits 1167
quoted parentheses 1166
quoting special characters 1165,

1165t
replacement strings 1166, 1170t
rules 1165
simple strings 1162, 1162t
special characters 1162, 1162,

1165, 1169t
summary 1169

reiserfs filesystem 498
relational database management

system 1137, see also
MariaDB

relational operators 1079
relative pathnames 157, 190,

1269
releases, Ubuntu 35
religious statue, miniature see

icon
reload utility 430
remainder operators 1082, 1084
remapping mouse buttons 116,

475
remote

computing and local displays
472

filesystem 1269
login 128
procedure call see RPC

remount filesystem 207
replacement strings in regular

expressions 1166
REPLY variable 1035, 1064
.repo filename extension 1182
reports, system 576, 591
repositories 122, 511, 515,

515–517
repquota utility 593
request for comments see RFC
rescue boot parameter 77
rescue mode

see also single-user mode
Netboot Image, from 77
Server Image, from 77
versus recovery mode 77, 453

reserved ports see privileged ports
reset utility 458

resolution boot parameter 77
resolv.conf file 488, 894, 905, 906
resolvconf utility 488, 905
RESOLVCONF variable (DNS)

905
resolver 318, 488, 894, 1269
Resource Description Framework

1268
resource records, DNS 898–900
restart utility 430
restore 1269
restore utility 572
restricted deletion flag see sticky

bit
restricted software package

category 516
return code see exit status
RETURN key 27, 150, 156
reverse name resolution, DNS

902–903
RFC 1269
rhost authentication, OpenSSH

715
.rhosts file 308
right-click, mouse 106
right-handed mouse 475
Ritchie, Dennis 10
rm utility 133, 216, 231, 493
rmdir utility 194
rmmod utility 444
rngd daemon 642
roam 1269
role alias (Apache) 964
ROM 1270
romfs filesystem 498
root

see also root account; root
privileges

directory (/) 40, 42, 185, 189,
197, 617, 1270

domain (DNS) 893, 895
filesystem (/) 1270
node (DNS) 893
window 1270

root account
see also root privileges
locked 98, 598
locking 613
login 1270

password 98
password and recovery mode

451
password and rescue mode 451
password and sudo 612
prompt (#) 597
Ubuntu 600
unlocking 613

/root directory 198
root privileges 98, 596–613

see also root account
edit a file using 605, 607
explained 596
gain using pkexec 604
gaining 597–599
graphical programs and 597, 604
PATH and security 602
prompt (#) 597
setuid see setuid
shell with 600, 605
sudo group and 604, 609
using su to gain 600–602
using sudo to gain 602–613
wheel group and 625

root shell 600
root user see root account
rootkit 1270
ROT13 267
rotate files 1270
rotatelogs file 959
round robin 1270
router 663, 1270

network 292, 293
set up using iptables 945–948

row 1137
RPC 323, 1270
rpc file 489
rpc. prefix (daemon) 319
rpc.gssd daemon 848
rpc.idmapd daemon 848
rpc.lockd daemon 848
rpc.statd daemon 848
rpcbind

daemon 323, 463–464, 847,
854

display information about using
rpcinfo 463–464

service, starting 817, 823, 847,
854

000.book Page 1330 Friday, November 21, 2014 6:41 PM

Main Index 1331

rpcinfo utility 463–464, 820
RPM 1178
rpm directory 1178
.rpm filename extension 1178
rquotad daemon 321
RSA encryption 629, 1271
rsync utility 724, 742–752
rsyncd daemon 744
rsyslog.conf file 585–586, 587
rsyslogd daemon 585–586
run 1271
Run a Command window 102,

106
run command scripts 435
/run directory 198
runlevel 438, 438t, 1271

DEFAULT_RUNLEVEL
variable 435, 439

emulation in Upstart 429
event 433
initdefault, and 435
PREVLEVEL variable 433
RUNLEVEL variable 433

runlevel utility 438
RUNLEVEL variable 433
run-parts utility 574

S

Saas 703
safedit shell script 1032
salt, hash function 634
Samba 870, 871, 1271

see also Samba parameters
Anonymous user 872
CIFS 871
configure by editing smb.conf

880–887
configure using shares-admin

879–880
credentials file 876
directory, shared 673
firewall setup, client 874
firewall setup, server 878
guest user 872
home directories, sharing 881
[homes] share 881

JumpStart: configuring a Samba
server using shares-admin
879

Linux shares, working with
from Windows 877

mapping a share 871
more information 871
mount utility 876
NBT 1261
net use utility (Windows) 888
net utility 870
net view utility (Windows) 888
NetBIOS 1261
nmbd daemon 870, 888
nmblookup utility 888
parameters see Samba

parameters
password 873
passwords 872, 873
passwords, edit using smbpasswd

873
passwords, Linux 872
pdbedit utility 873
ping utility 887
prerequisites 878
printing from Windows 559
share 871, 1272
shares-admin utility 879–880
SMB 1272
smb.conf file 880–887
smbclient utility 875, 889
smbd daemon 870
smbpasswd file 873
smbpasswd utility 873
smbstatus utility 871
smbtar utility 871
smbtree utility 874
testparm utility 887
troubleshooting 887
user map 872, 872
users 871
users, list using pdbedit 873
utilities 870t
Windows shares 874–877, 1272
Windows user 871
WINS 1281

Samba parameters
communication 886
domain master browser 885

global 882
hosts allow 883
hosts deny 883
logging 885
passdb backend 873
security 882
share 886

samhain utility 658
sample-spam.txt file 799
SAN 1271
sandbox, VM 688
sasl_passwd file 788. 794
/sbin directory 198
sbin directory 199
schema 1271
schema directory 831
Schneier, Bruce 658
scp utility 717, 723–725, see also

OpenSSH
screen 159

as standard output 160
number, X Window System 474

script utility 265
scripts, shell see shell scripts
scroll 1271
scrollbar 1271
sdiff utility 235
sdn device file 481
seahorse utility 641
search

engines 326
for a pattern using grep 240–242
for files using locate 264
for inodes using find 1016
for keywords using apropos 137
for open files using lsof 589
for processes using pgrep 456
for setgid files using find 614
for setuid files using find 614
for software package containing

a file 514
for software package containing

a file using dpkg 530
for software package containing

a file using yum 1179
for strings using grep 240–242
for utilities using whereis 263
for utilities using which 263
path 263

000.book Page 1331 Friday, November 21, 2014 6:41 PM

1332 Main Index

Search screen 101
Search text box 101
secret key encryption see

encryption, symmetric key
secure file 590
.secure filename extension 638
Secure Sockets Layer see SSL
securenets file 826
security

see also firewall
access permissions 199–211
ACL 1232
AIDE utility 614
Apache directives 981
authentication 1234
back door 1234
BIOS 32
checksum 1239
chroot jail see chroot jail
cipher 627, 1239
ciphertext 1240
cleartext 1240
console 597
cookie 1241
cracker 1242
cryptography 1242 see also

cryptography
cypher 1239
DDoS attack 1243
DNS 893
DoS attack 1245
encryption see encryption
FTP 754, 760, 765, 770
GPG see GPG
hole 535
host-based trust 308
hping utility 657
IP spoofing 1254
John the Ripper utility 657
Kerberos 1255
Linux features 13
login shell 487
man-in-the-middle attack 631,

1258
MD5 encryption 1258
messages 492
MITM see security, man-in-

the-middle attack
nessus utility 658

NFS 847, 855, 860
NIS 826
nmap utility 658
OpenSSH 714
PAM 440
passphrase 627
password 143, 486, 615, 1264
PATH and root privileges 602
PATH variable 366, 613
resources 656
.rhosts file 308
root password 615
RSA encryption 1271
samhain utility 658
Schneier, Bruce 658
server, securing a 616–621
setgid files 204
setuid files 204, 205, 614
SHA1 hash algorithm 1272
SHA2 hash algorithm 1272
snort utility 658
software, keeping up-to-date

511, 535
spoofing 1254
ssh see ssh

sudo group 615
swatch utility 659
system 615
TCP wrappers 616–617
telnet utility 309
tripwire utility 659
Trojan horse 613, 1278
trusted hosts 308
virus 1280
web of trust 641
wiping a file 482
wireshark utility 659
worm 1282
xhost 473

security file 621
sed utility 592
seed, BitTorrent 531
segment, network 291, 1262
select control structure

1034–1036
selection buffer 107
self-signed certificate 630
self-signed certificates 993–994

sendmail 780, 783
daemon 322
masquerade 1258
postfix compatibility interface

782
seq utility 413, 1019
sequence expression, bash 412,

1018
serial ports, setting information

458
Server edition 37
Server Image 71
Server Message Block

protocol see Samba, SMB
servers 1271

see also specific server name
(e.g., DNS, FTP)

debug using telnet 310
mail list 307
name 316, 318
proxy 322
securing 616–621
setting up 460–464, 672
X 471, 1282

service
see also daemons
configuring 436–437
directory 1244
network 319
Upstart 429

service utility 430
services file 319, 489, 941
session 1271

failsafe 1247
initialize 440
key, OpenSSH 631
record using script 265

set builtin 406, 1013, 1016, 1046,
1058

set group ID see setgid
permissions

set user id see setuid
set utility 1015
setfacl utility 207–211
setgid files, search for using find

614
setgid permissions 204, 1271
setlocale() system call 375
setserial utility 458

000.book Page 1332 Friday, November 21, 2014 6:41 PM

Main Index 1333

setuid 204, 598, 1271
files, dangerous 599
files, search for using find 614
files, security 598, 614
NFS 848
nosuid option to mount 501, 848

sexillion 1272
sftp utility 725
.sh filename extension 336
sh Shell 334, 1236
SHA1 hash algorithm 1272
sha1sum utility 51, 633
SHA1SUMS file 51, 633
SHA2 hash algorithm 1272
sha224sum utility 632, 633
sha256sum utility 633
SHA256SUMS file 633
sha384sum utility 633
sha512sum utility 633
shadow file 440, 489, 613, 636
shar file 1037
share 855, 1272
share directory 199
share, Samba 871, 879
shared memory 483
shared network topology 1272
shares-admin utility 855–856, 858,

879–880
shebang 344
shell 13–15, 1272

see also bash; bash parameters;
bash variables; command
line; job control; shell
features; shell scripts; usage
messages

~ (tilde) expansion 190
archive file 1037
Bourne (original) 1236
command interpreter 128
csh 1237
dash 13, 335
Debian Almquist see shell, dash

default, change using chsh 335
features 405–406
filename generation 173–177
functions 1272, see also bash,

functions
identifying 129
job control see job, control

ksh 335
login 336, 1257
OpenSSH 720
options 405–406
parameters 358, 358–371
pathname expansion 173–177
prompt 27
quoting special characters 360
root privileges see root

privileges
sh 334, 1236
sleep 158
subshell 350
variables see bash variables

shell scripts 342, 342–346,
1003–1094, 1272

see also bash, functions; usage
messages

addbanner 1072
arguments, testing 1015
bash 1086–1096
birthday 1036
bundle 1037
chkargs 1006, 1008
chmod, using to make executable

343–344
command_menu 1030
comments, begin using # 346,

1014
configure 534
count 1022
count_down 1062
cpdir 351
debug using –e and –u 345
debug using –x 1016
debug using xtrace 1088
executing 346
exit status 416, 1006, 1008,

1051, 1247
filename, unique 1050
Here document 1036–1038
input, read using read

1063–1066
is_ordfile 1007
lnks 1013
locale 375
locktty 1026
makepath function 1088
menu 1030

out 1011
positional parameters 1044,

1044–1049
quiz 1094
recursion 1087
safedit 1032
shebang 344
shell, specify using #! 344, 1014
sortmerg 1040
special parameters 1049–1052
spell_check 1023
temporary files 1034, 1050
whos 1020
writing a basic 134

shells file 454
shift builtin 1011, 1047
shm file 483
shopt builtin 406
short-circuiting operators 349
shortcut see link
shutdown utility 433, 441
signals 1069, 1069t, 1272

see also signal name (e.g., KILL)
display list of using kill 1073

Silicon Graphics 325
simple command 152, 155
simple filenames 157, 189, 1272
single quotation marks see

quotation marks
single-user mode 450–453
single-user system 1272
sites-available directory 955, 958,

960
sites-enabled directory 958, 960
skel directory 566
slapcat utility 835
slapd daemon 833
sleep, shell 158
sleep utility 1051
sleep() system call 381
slice see partition
slider 1272
slow systems, installation on 32
SMART disk monitoring 91
smarthost 782
SMB see Samba, SMB
smb.conf file 880–887
smbclient utility 875, 889
smbd daemon 870

000.book Page 1333 Friday, November 21, 2014 6:41 PM

1334 Main Index

smbfs filesystem 498
smbpasswd file 873
smbpasswd utility 873
smbstatus utility 871
smbtar utility 871
smbtree utility 874
SMF 427
smiley (smilies, plural) 1273
SMTP 780, 1273
SMTP relay see smarthost
snakeoil certificate 630, 637
snap, window 1273
snapshot, VM 689
sneakernet 1273
sniff 1273
SNMP 681
snmpd

daemon 681
firewall setup 681
snmpd file 681
snmpd.conf file 681

snmpd.conf file 681
snort utility 658
SOA records, DNS 899
sockets 495
SOCKS 1273
soft links see links, symbolic
software

bug 535
bug tracking 511
GNU Configure and Build

System 534
keeping up-to-date 511, 535
library see library
termination signal 1070
update preferences 122
Updater window 123
updates 123
updating 123

software packages 510
adding/removing 121–125
categories 122, 516
contents of 524
dependencies 510, 512, 520,

522
display information about using

apt-cache 522–523

display information using dpkg
529

file, search for the package
containing using dpkg 530

files, list using dpkg 530
find using yum 1179
finding 514
information about 526
install using apt-get 512
install using dpkg 527
install/remove 123–124
install/remove using apt-get

512–514
install/remove using yum

1178–1179
installing from a CD/DVD 122
metapackage 519
package group 519
package management system,

510
PMS 510
remove configuration files using

apt-get 513
remove using apt-get 513
remove using dpkg 528
remove using yum 1178
repositories 511
source code 525
source code, download using

apt-get 523
Ubuntu Software Center

window 124
update list of available using

dpkg 526
update using yum 1180
virtual 519
yum repositories 1182

software-properties-gtk utility 518
sort 1273
sort utility 168, 247–249, 419,

1040
sortmerg shell script 1040
source builtin 338
source code, download using

apt-get 523
source code, dpkg files 525
sources.list file 516
sources.list.d directory 516

SPACE 1273, see also whitespace
SPACE bar 150
spam 1273

see also SpamAssassin
sample file 799

SpamAssassin 797–800
client, using with a 800
configuring 799
local.cf file 799
prerequisites 797
running on a mail server using

postfix 799
sample file 799
spam file, sample 799
spamassassin utility 797
spamassissin init script 798
spamc utility 797
spamd daemon 797, 800
spamd init script 798
testing 798
user_prefs file 799

spamassassin utility 797
spamassissin init script 798
spamc utility 797
spamd daemon 797, 800
spamd init script 798
sparse file 1274
spawn see fork
special characters 150, 173, 1162,

1274
? 173
[] 176

* 174
bash 372t
filename generation 173–177
pathname expansion 173–177
quoting 360
regular expressions 1161, 1169t

special files 494, 1239, see also
device files

special parameters 1049–1052
spell_check shell script 1023
spin box 1274
spinner see spin box
splash boot parameter 58
spontaneous process 380
spoofing, IP 1254
spool 1274

000.book Page 1334 Friday, November 21, 2014 6:41 PM

Main Index 1335

spool directory 199, 1172
SQL 1137, 1274, see also

MariaDB
square brackets 1274
square brackets, using in place of

test 1008
SquirrelMail 802–804
squirrelmail-configure utility 803
sr0 file 481
src directory 199
.ssh directory 715
ssh directory 715
ssh init script 728
ssh utility 717, 720–723, see also

OpenSSH
ssh_config file 726
ssh_host_dsa_key file 715
ssh_host_dsa_key.pub file 715
ssh_host_ecdsa_key file 715
ssh_host_ecdsa_key.pub file 715
ssh_host_ed25519_key file 715
ssh_host_ed25519_key.pub file

715
ssh_host_rsa_key file 715
ssh_host_rsa_key.pub file 715
ssh_known_hosts file 715, 719
ssh-add utility 732
ssh-agent utility 731–732
ssh-copy-id utility 730
sshd daemon 727–734
sshd_config file 730, 732
ssh-import-id utility 715
ssh-keygen utility 729–731
SSL 637

see also SSL certificate
Apache 992–994
OpenSSL 637–641

SSL certificate 637–641
generating a key pair 638
generating a self-signed 638
self-signed 630
signing an 639
snakeoil 630, 637

stack, directory 355, 355–357, 414
stack, PAM 621
Stale NFS file handle error

message 862
Stallman, Richard 3

standard error 159, 339, 1274
duplicate file descriptor using

1>&2 341, 1008
error message, sending to 1060
file descriptor 340, 1038
redirect 339–342
redirect error messages to 341,

1008
redirect using 2> 340
redirect using exec 1068
redirect while redirecting

standard output 340
redirect with standard output

using &> 171
test if it is going to the screen

1042
standard input 159, 1274

file descriptor 340, 1038
keyboard as 160
redirect using < 163–164
redirect using 0< 340
redirect using exec 1068
test if it is coming from the

keyboard 1042
standard output 159, 1274

duplicate file descriptor using
2>&1 341

file descriptor 340, 1038
redirect and append using >>

165
redirect output of sudo using tee

606
redirect using > 162–163
redirect using 1> 340
redirect using exec 1068
redirect using tee 170
redirect while redirecting

standard error 340
redirect with standard error

using &> 171
screen as 160
test if it is going to the screen

1042
standards

directories and files 197–199
FHS (Linux Filesystem

Hierarchy Standard) 197
FSG (Free Standards Group) 197
FSSTND (Linux Filesystem

Standard) 197

Linux 8
LSB (Linux Standard Base) 197
OpenPGP Message Format 641
option handling 1076
POSIX 8, 335

start utility 430
STARTTLS 792
startup files 188, 335–339, 1274

bash 335–339
BASH_ENV variable 337
.bash_login 336
.bash_logout 336
.bash_profile 336–338, 403, 480
bash.bashrc 484
.bashrc 337–338, 480
bashrc 337
.cshrc 1242
ENV variable 337
.inputrc 396
.login 1257
.logout 1257
.netrc 760
.profile 336, 1266
profile 336, 487
profile.d 487
.toprc 578

startx utility 472
stat utility 458
statd daemon 321, 848
static IP address 304, 467, 670
status file 524
status line 1274
status utility 430, 431
status, exit 1247
sticky bit 204, 1275
stop utility 430
stopping a program see kill builtin
stream-based protocols 297
streaming tape 1275
streams see connection-oriented

protocol
strings 1275

comparing 1080
length (${...}) 1081
null 1263
operators 1080t
pattern matching 1080
search for using grep 240–242
within double quotation marks

360

000.book Page 1335 Friday, November 21, 2014 6:41 PM

1336 Main Index

Stroustrup, Bjarne 11
strtok() system call 996
Structured Query Language see

SQL; MariaDB
stty utility 130, 480
Studio desktop 38
stylesheet see CSS
su utility 600–602

see also root privileges
root shell, spawning 600

subdirectories 185, 1275
subdomain (DNS) 894
subnet 304, 1275

see also network, address
address 1275
mask 304, 1275
number 1275
specifying 462, 462t

subpixel hinting 1275
subroutine see procedure
subshell 350, 1275
subtraction operator 1082
sudo group 596, 604, 609
sudo utility 98, 602–613

see also root privileges
configuring 607–613
defaults (options) 611
edit sudoers file using visudo 607
editing a file using –e or sudoedit

607
environment 606
options 607
redirecting output 606
redirecting output using tee 606
root account password and 612
root shell, spawning 605
sudo group 596, 604, 609
SUDO_EDITOR variable 607
sudoers file 607–613
timestamps 604

SUDO_EDITOR variable 607
sudoers file 607–613
Sun Microsystems 814, 844
superblock 1275
Superuser 98, 596, 1276, see also

root account; root privileges
suspend key (CONTROL-Z) 130, 131,

172

SVID see System V Interface
Definition

swap 1276
filesystem 42, 491
RAM and 42
space 491, 1276
space, display usage using free

261
swapon utility 491

swarm, BitTorrent 531
swatch utility 659
switch, network 289, 291, 662,

1262
symbolic hostname 318
symbolic links see links, symbolic
symlinks see links, symbolic
symmetric key encryption see

encryption, symmetric key
/sys directory 198, 492, 495
sysctl.conf file 531
syslog file 587, 590, 919
system

see also system calls
administrator see administrator
boot failure 439
booting 438
characteristics of a well-

maintained 426
clock and hardware clock 226
clock, display using date 226
clock, set using timedatectl 579
console see console
crash 443
dataless 846, 1243
diskless 845
hangs because of lack of entropy

482, 642
logging in 99
logs 585–586
memory see memory; RAM
messages 492
messages, rsyslogd daemon

585–586
minimal 74
mode 1276
name see hostname
powering down 443
RAM see RAM
rebooting 442

reports 576, 591
security 615
shutting down 441
single-user 1272
slow 588

system calls 11
exec() 380
fork() 379, 380, 381, 996
gethostbyname() 903
isatty() 160
setlocale() 375
sleep() 381
strtok() 996

System Settings window 113
System V 1276

init daemon 427
init script see init script
Interface Definition 8

system-config-printer utility
542–548

systemd daemon 427
sysv filesystem 498
SysVinit 427
SysVinit scripts see init script
sysv-rc-conf utility 436–437

T

T-1 line 289
T-3 line 289
TAB key 150
table, database 1137
table, hash 1250
TABs

see also whitespace
display using cat 225

tail utility 249
talk utility 322
talkd daemon 322
Tanenbaum, Andrew 5, 498
tape archive see tar utility
tape, streaming 1275
tar file 257
tar utility 257–260, 351, 569,

571t, 572
.tar.bz2 filename extension 257
.tar.gz filename extension 188,

257
.tar.Z filename extension 257

000.book Page 1336 Friday, November 21, 2014 6:41 PM

Main Index 1337

tarball 257
task, Upstart 428
.tbz filename extension 257
TC Shell 1276
TCP 296, 297, 1276
TCP wrappers 616–617, 776
TCP/IP 296
tcpdump utility 659
tcsh 1276
tee utility 170, 606
teletypewriter 1278
telinit utility 433, 438, 442
telnet utility 309–311, 786, 991
temporary file 1034, 1050
tera- 1276
TERM signal 130, 131, 1070
TERM variable 129, 1176
Termcap 1175
termcap file 1277
terminal 1277

ASCII 1233
character-based 1238
device 1068
emulator 126, 128
emulator, open using Nautilus

110
files 160
interrupt signal 1069
names 1175
pseudo 482
reset using reset 458
specifying 1175
standard input 160
standard output 160
virtual see console, virtual
X 1282

Terminal Server Project, Linux
845

Terminal see gnome-terminal

terminating execution see kill
builtin

Terminfo 1175
terminfo file 1277
terminology

Apache 953
bash features and options 405
check box 26
desktop 105
DNS 905

filesystem naming 41
frame 26
installation image 36
installation medium 36
MariaDB 1137
mask, subnet mask, network

mask 304
NIS 816
partition name 41
root privileges 599
screen 159
single-user versus recovery

modes 451
SQL 1137
switching 290
tick 26
Upstart daemon 428

ternary operator 1084
test builtin 1005–1007, 1007t,

1008, 1012, 1015, 1018,
1022, 1027

test utility 1042–1043
testdisk utility 231
testparm utility 887
text box 1277
textual

installer 78–82
partitioning, manual 82–87

textual interface 33
see also command line
advantages of 125

tftp utility 846
tftpd daemon 322
.tgz filename extension 188, 257
theme 1277
thicknet 291, 1277
thinnet 291, 1277
Thompson, Ken 10, 1234
thread safe see reentrant code
threads in Apache 996
three-finger salute 442
thumb 1277
Thunderbird 800
Thunderbird LDAP client 838
tick 26, 1277
tick box see check box
.tif filename extension 188, 1277
.tiff filename extension 188, 1277
tilde expansion 190, 365, 413

tildes in directory stack
manipulation 414

tiled windows 1277
time

display using date 226
localtime file 379
series data 674
set using Date & Time window

117
set using timedatectl 579
setting the system to UTC 377
synchronize using ntpd 321
timezone file 378
to live see TTL
TZ variable 377
tzconfig utility 378
tzselect utility 378
zone, graphical installation 65
zoneinfo directory 377, 378
zones 377

time utility 255
timed daemon 322
timedatectl utility 579
timezone file 378
titlebar 106
tls_policy file 788, 793
/tmp directory 198, 1034
toggle 1277
token ring network 1278
tokens 153, 410, 1277
toolbar 107
tooltip 1278
top utility 577, 578t
topologies 288
.toprc file 578
.torrent filename extension 531
torrent, BitTorrent 531
Torvalds, Linus 2, 4, 7, 1255
touch utility 134, 164, 195, 251,

442, 499
tput builtin 1026
tr utility 167, 234, 266, 268, 340
traceroute utility 312
traceroute6 utility 312, 313
tracker, BitTorrent 531
transaction signatures, DNS see

DNS, TSIG
transient window 1278

000.book Page 1337 Friday, November 21, 2014 6:41 PM

1338 Main Index

Transmission Control
Protocol see TCP

Transmission Control
Protocol/Internet
Protocol see TCP/IP

transmission-cli utility 532
transmission-show utility 533
Transport Layer Security see TLS
transport layer, IP model protocol

297
trap builtin 1026, 1069–1072
trap door see back door
trash, emptying 109
tripwire utility 659
Trojan horse 613, 1278
Trolltech 17
troubleshooting, when the system

will not boot 439
true utility 349, 1071
trusted hosts 308
tset utility 458
TSTP signal 1070
TTL 312, 900, 1278
tty file 1068
tty utility 482
TTY see teletypewriter
tty1 file 434
TUI 33
tune2fs utility 504–505
tunneling 1278
tunneling using OpenSSH

735–737
tutorial

ftp 757–759
GPG 641–656
nano 277–280
vim 270–277

twisted pair cable 291
.txt filename extension 188
.txz filename extension 257
type builtin 1063
typeface conventions 26
typescript file 265
typeset builtin see declare builtin
TZ variable 377
tzconfig utility 378
tzselect utility 378

U

ubiquity partition editor 67–70
ubiquity utility 61–71
Ubuntu

see also graphical installation;
installation; installation
disk; installation image;
installation medium; ubiquity

32-bit versus 64-bit 31
booting 56
Canonical 35
Chinese 38
derivatives 37
Desktop Guide 118
Desktop Image see Desktop

Image
Destkop edition 36
downloading 29, 47–50
DVD see installation image 26
Edbuntu 37
editions 35
educational derivative 37
GNOME derivative 38
help window 118
installation see installation
IRC channels 120
Kubuntu derivative 37
Kylin derivative 38
Launchpad 657
live session see live session
LTS release 35
Lubuntu derivative 37
Minimal edition 37
minimal system 74
mirrors 49
multimedia 38
Mythbuntu derivative 38
Netboot edition 37
point release 35
recovery mode see recovery

mode
releases 35
Server edition 37
Software Center window 124
Studio 38
Studio derivative 38
ubiquity installer see ubiquity

upgrade to new release 64

upgrading 26, 64, 123
Web site, obtaining help from

119
Xubuntu derivative 38

ubuntu (user) 59
UCE see spam
uchroot.c program 619
udev utility 494
UDP (User Datagram Protocol)

296, 298, 1278
UEFI 32, 32, 448
ufs filesystem 498
ufw 924–927

enabling 924
logs 926
ports, opening 924
rules, deleting 926
services 925
status 925

UID 1279
display using id 601
effective 599, 1246
effective, display using whoami

600
passwd file, in 486
real 599, 1268
real, display using who 600

umask builtin 459
umount utility 486, 501
umsdos filesystem 498
unalias builtin 399, 401
uname utility 449, 460, 720
unary operators 1081
undecillion 1279
unetbootin utility 52
unexport a variable 1056
unicast packet 1279
unicode 1279
Unity

Dash, the 101
desktop see desktop
Favorites list 101
Nautilus see Nautilus
object see object
panel see panel
Run a Command window 102,

106
Search text box 101

000.book Page 1338 Friday, November 21, 2014 6:41 PM

Main Index 1339

Systems Settings window 113
unity-tweak-tool utility 102
workspace see workspace

unity-control-center utility 564–566
unity-tweak-tool utility 102
universe software package

category 516
University of Illinois 325
UNIX

Bourne Shell 334
Linux roots in 2
philosophy 307
printing, traditional 557
System V 3, 1276
System V Interface Definition 8

unix2dos utility 268
unix2mac utility 268
unlocking the root account 613
unmanaged window 1279
unmount a filesystem using umount

501
unset builtin 362
unshielded twisted pair see UTP
until control structure 1025–1027
unxz utility 256
unzip utility 257
updatedb utility 264
upgrading Ubuntu 26, 64, 123
Upstart

see also Upstart daemon
DEFAULT_RUNLEVEL

variable 435, 439
event 432
initctl utility 429
rc-sysinit task 435
reload utility 430
restart utility 430
start utility 430
status utility 430
stop utility 430

Upstart daemon 427–435
see also Upstart
anacron and 575
communicate with Upstart

using initctl 429
event 428
job definition files 433–435
jobs 428, 430–432

rc task 433
rc-default task 435
runlevel 438
runlevel emulation 429
runlevel event 433
runlevel utility 438
service 429
shutdown utility 433
starting 439
status utility 431
task 428
telinit utility 433, 438
terminology 428
ttyn tasks 434

uptime utility 261
uptime, display using w 262
urandom file 482
URI 1279
URL 326, 1279
usage messages 152, 1008, 1011,

1014, 1023, 1279, see also
error messages; messages

USB devices, list using lsusb 666
user

see also user accounts;
usernames

ID see UID
interface 1279
map, Samba 872
mode 1279
name see usernames
private groups 485
Superuser see root account
ubuntu 59

user accounts
see also user; usernames; root

account
add using User Accounts

window 118
add using useradd 566
change using chage 567
graphical installation 66
manage using unity-control-center

564–566
modify using User Accounts

window 118
modify using usermod 567
remove using userdel 566

User Datagram Protocol see UDP
user_prefs file 799
useradd utility 566
userdel utility 566
usermod utility 567, 567, 604
usernames 1279

display using w 262
in the passwd file 486
list using who 262
root see root account

userspace 1280
/usr directory 198
UTC 377, 1280
UTF-8 1280
utilities 18, 1280, see also

commands; the Utility index
(1291); inside front and
back covers

alternative names 483
backup 569
basic 132–134
builtin 178
builtins versus 1006
links to 483
locate using whereis 263
locate using which 263
names, typeface 27

UTP cable 291
UUID 1280

fstab, in 502
number, display using blkid 502
numbers, device 481

V

/var directory 43, 199
.var filename extension 966, 985
variables 1280

see also bash variables
completion 395
environment 1054
Python 1108
shell 1053

version control, Bazaar 511
vfat filesystem 498
VG see LVM, VG
vi see vim

viewport see workspace
vim

000.book Page 1339 Friday, November 21, 2014 6:41 PM

1340 Main Index

case sensitivity 1238
Command mode 272
correcting a mistake 276
correcting text 274
deleting text 275
exit, emergency 272
help system 273
Input mode 272, 273
inserting text 276
Last Line mode 272
moving the cursor 274
Normal mode see vim,

Command mode
page breaks 276
quitting 276
safedit script 1032
starting 271
terminal, specifying 1175
undoing changes 275
vimtutor utility 270
Work buffer 276

virsh utility 697
virt-manager utility 690, 693–697
virtual

see also VM
console 61, 127, 1280
machine see VM
memory and swap space 491
memory, report on using vmstat

576
package 519
private network see VPN
software packages 519
termianl see virtual, console

VirtualBox 690
virt-viewer utility 696
viruses 1280
VISUAL variable 607
visudo utility 607
VLAN 1280
VM 688–703

see also virtual
advantages 688
CPU extensions 692
disadvantages 689
domain 688
ESXi 690
GNOME Boxes 690
gnome-boxes utility 690

guest 688
host 688
host resources 692
hypervisor 688
KVM 690
libvirt 690
libvirtd group 692, 698
node 688
package, virtualization 692
QEMU 690
QEMU/KVM 691–698
sandbox 688
snapshot 689
virsh utility 697
virt-manager utility 693–697
VirtualBox 690
virt-viewer utility 696
vmstat utility 576
VMware 690
VMware ESXi 690
VMware Player 698–703
VMware Tools 702
Xen 690

vmstat utility 576
VMware 690
VMware ESXi 690
VMware Player 698–703
VMware Tools 702
volume label 455
VPN 287, 1280
vsftpd

see also FTP; FTP clients
configuration files 766, 777
configuration parameters

connection 774
display 773
download 770
log 774
logging in 768
message 772
miscellaneous 776
server setup 767
upload 770

daemon 764
firewall setup 765
ftp directory 769
ftp file 765, 769
init script 765
logvsftpd.log file 777

more information 755
prerequisites 764
running in a chroot jail 769
setting up 764–777
testing 765
vsftpd.banned_emails file 769
vsftpd.chroot_list file 777
vsftpd.conf file 766
vsftpd.log file 774
vsftpd.pem file 776
vsftpd.user_list file 768, 777

vsftpd.banned_emails file 769
vsftpd.chroot_list file 777
vsftpd.log file 774
vsftpd.pem file 776
vsftpd.user_list file 768
vt100/vt102/vt104 terminal 1175
Vulcan death grip 442
VxFS filesystem 498

W

w utility 262
W2K 1281
W3 see World Wide Web
W3C 1281
WAN 293, 1281
WAP 663, 1281
wc utility 252, 415
Web

see also World Wide Web
crawler 326
ring 1281

web of trust 641
webalizer utility 997
Webmail 801–804
weekly file 575
Weissman, Terry 536
whatis utility 70, 137, 432
wheel group and su 625
whereis utility 263
which utility 263
while control structure

1021–1024
whiptail utility 1066
whitespace 150, 152, 1281

on the command line 348
quoting 360

who utility 262, 438, 600
whoami utility 600

000.book Page 1340 Friday, November 21, 2014 6:41 PM

Main Index 1341

whois utility 314
whos shell script 1020
wide area network see WAN
Widenius, Michael “Monty”

1136
widget 1281, see also GUI
Wi-Fi 1281, see also wireless
wildcards 173, 1281, see also

special characters
window 106, 1281

see also screen
cascading 1238
clipboard 108
cut and paste 107
cycling 102
focus, input 102
ignored 1253
input focus 102
manager 16, 17, 1281
menubar 106
minimize 1260
moving 107
Object Properties 111–113
Operations menu 106
resizing 107
root 1270
Run a Command 106
scrollbar 1271
slider 1272
snap 1273
thumb 1277
tiled 1277
titlebar 106
toolbar 107
transient 1278
unmanaged 1279
working with 107

Windows
see also Samba
convert files from/to Linux

format 268
dual-boot system 91–93
file namespace versus Linux 40
filename limitations 187
formatting 38
integration see Samba
net use utility (Samba) 888
net view utility (Samba) 888

networks, browse using Samba
875

print from, using CUPS 558
print from, using Samba 559
print to, using CUPS 560
shares

see also Samba, share
mounting 876
working with using Samba

874
WINS 1281
WinZip 257
wiping a file 482
wire see cable
wireless

802.11 specification 1232
access point 663, 1281
ad hoc mode 664
bridge 664
infrastructure mode 664
network 293

wireshark utility 659
words 130, 153, 1282

erase key (CONTROL-W) 130, 156
on the command line 410
splitting 369, 417

Work buffer 1282
working directory 151, 1282

change to another using cd 193
executing a file in 344, 366
relative pathnames and 190
significance of 190
versus home directory 194

workspace 105, 1282
workstation 9, 1282
World Wide Web 325

browsers 325, 326
Consortium 1281
hypertext 325
Mosaic browser 325
Netscape Navigator 325
search engines 326
URLs 326
Web crawler 326

worms 1282
write access permission 199
wtmp file 584
WWW see World Wide Web
WYSIWYG 1282

X

X Consortium 15
X server 1282
X terminal 1282
X utility 16
X Window System 15, 16,

471–476, 1282
client and server 471
display number 474
––display option 475
DISPLAY variable 474
display, access to 473
events 471
exiting from 475
freedesktop.org group 18
ID string 474
–nolisten tcp option 472
remote computing and local

displays 472
screen number 474
server 471
starting 472
startx utility 472
X terminal 1282
X11 forwarding, OpenSSH 717,

726, 734, 736
xev utility 472
XFree86 versus X.org 16
xhost utility 473
Xinerama 1282
xmodmap utility 475

X11 directory 198
x86 processor architecture 33
x86_64 processor architecture 33
x86_64-linux-gnu directory 199
xargs utility 268, 592
XDMCP 1282
xDSL 1282
Xen 690
xev utility 472
Xfce desktop, installing 125
XFS filesystem 498, 506–507
xfs_fsr utility 507
xfs_repair utility 506
xhost utility 473
.xhtml filename extension 966
Xinerama 1282
XINU 5

000.book Page 1341 Friday, November 21, 2014 6:41 PM

1342 Main Index

XML 1282
xmodmap utility 475
XSM 1283
xterm terminal name 1175
Xubuntu 38
xz utility 253–257
xzgrep utility 256
xzless utility 256

Y

Yellow Pages 814
yp.conf file 819
ypbind daemon 818, 820
ypcat utility 816
ypinit utility 828
ypmatch utility 816
yppasswd utility 821–822

yppasswdd daemon 830
yppush utility 826
ypserv.conf file 824
ypwhich utility 820
ypxfr utility 823
ypxfrd daemon 823
yum

commands 1181
remove option 1178
repositories 1182
update option 1180
updating packages 1180
yum.conf file 1182
yum.repos.d file 1182

yum.conf file 1182
yum.repos.d file 1182

Z

.Z filename extension 188, 257
Z Shell 1283
zcat utility 256
zero file 483
zgrep utility 256
Zimmermann, Phil 641
.zip filename extension 257
zip utility 254, 257
zless utility 256
zoneinfo directory 377, 378
zones, DNS 895
zsh shell 1283
zulu time see UTC

000.book Page 1342 Friday, November 21, 2014 6:41 PM

	CONTENTS
	PREFACE
	CHAPTER 5: THE SHELL
	Special Characters
	Ordinary Files and Directory Files
	The Command Line
	Standard Input and Standard Output
	Running a Command in the Background
	Filename Generation/Pathname Expansion
	Builtins
	Chapter Summary
	Exercises
	Advanced Exercises

	MAIN INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

