
Exercises for
Chapter 14: Mutating
Tables and
Compound Triggers
The Labs below provide you with exercises and suggested answers with discussion related to how
those answers resulted. The most important thing to realize is whether your answer works. You should
figure out the implications of the answers here and what the effects are from any different answers you
may come up with.

Lab 14.1 Mutating Tables
Answer the following questions:

Mutating Table
a) What is a mutating table?

Answer: A table having A DML statement issues against it is called mutating table. For a
trigger, it is the table on which this trigger is defined.

b) What causes a mutating table error?

Answer: If a trigger tries to read or modify a table on which it is defined, it causes a mutating
table error. For example, if trigger is defined on the STUDENT table and it tries to read from it
as well, it will cause a mutating table error. Note that the trigger in this case must be a row
level trigger.

c) Is it possible to detect a mutating table error at the time of trigger compilation?

Answer: No, as a mutating table error is a runtime error. The trigger will compile successfully
and will cause a mutating table error at the time when it fires.

Resolving Mutating Table Issues
In this exercise, you modify a trigger that causes a mutating table error when an INSERT statement is
issued against the ENROLLMENT table. Create the following trigger:

For Example ch14_5a.sql

CREATE OR REPLACE TRIGGER enrollment_biu

BEFORE INSERT OR UPDATE ON enrollment

FOR EACH ROW

DECLARE

 v_total NUMBER;

 v_name VARCHAR2(30);

BEGIN

 SELECT COUNT(*)

 INTO v_total

 FROM enrollment

 WHERE student_id = :NEW.student_id;

 -- check if the current student is enrolled into too

 -- many courses

 IF v_total >= 3

 THEN

 SELECT first_name||' '||last_name

 INTO v_name

 FROM student

 WHERE student_id = :NEW.STUDENT_ID;

 RAISE_APPLICATION_ERROR

 (-20000, 'Student, '||v_name||', is registered for 3 courses already');

 END IF;

EXCEPTION

 WHEN NO_DATA_FOUND

 THEN

 RAISE_APPLICATION_ERROR (-20001, 'This is not a valid student');

END;

Issue the following INSERT and UPDATE statements:

INSERT INTO enrollment

 (student_id, section_id, enroll_date, created_by, created_date, modified_by

 ,modified_date)

VALUES (184, 98, SYSDATE, USER, SYSDATE, USER, SYSDATE);

INSERT INTO enrollment

 (student_id, section_id, enroll_date, created_by, created_date, modified_by

 ,modified_date)

VALUES (399, 98, SYSDATE, USER, SYSDATE, USER, SYSDATE);

UPDATE enrollment

 SET student_id = 399

 WHERE student_id = 283;

Answer the following questions:

a) What output is produced after the INSERT and UPDATE statements are issued?

Answer: Once the trigger is created, the INSERT and UPDATE statements issued against the
ENROLLMENT table produce the following output:

INSERT INTO ENROLLMENT

 (student_id, section_id, enroll_date, created_by, created_date, modified_by

 ,modified_date)

VALUES (184, 98, SYSDATE, USER, SYSDATE, USER, SYSDATE);

ORA-20000: Student, Salewa Zuckerberg, is registered for 3 courses already

ORA-06512: at "STUDENT.ENROLLMENT_BIU", line 19

ORA-04088: error during execution of trigger 'STUDENT.ENROLLMENT_BIU'

INSERT INTO ENROLLMENT

 (student_id, section_id, enroll_date, created_by, created_date, modified_by

 ,modified_date)

VALUES (399, 98, SYSDATE, USER, SYSDATE, USER, SYSDATE);

1 rows inserted.

UPDATE enrollment

 SET student_id = 399

WHERE student_id = 283;

ORA-04091: table STUDENT.ENROLLMENT is mutating, trigger/function may not see it

ORA-06512: at "STUDENT.ENROLLMENT_BIU", line 5

ORA-04088: error during execution of trigger 'STUDENT.ENROLLMENT_BIU'

b) Explain why two of the statements did not succeed.

Answer: The INSERT statement does not succeed because it tries to create a record in the
ENROLLMENT table for a student that is already registered for three courses.

The IF statement

IF v_total >= 3

THEN

 SELECT first_name||' '||last_name

 INTO v_name

 FROM student

 WHERE student_id = :NEW.STUDENT_ID;

 RAISE_APPLICATION_ERROR

 (-20000, 'Student, '||v_name||', is registered for 3 courses already');

END IF;

in the body of the trigger evaluates to TRUE, and as a result the
RAISE_APPLICATION_ERROR statement raises a user-defined exception.

The UPDATE statement does not succeed, because a trigger tries to read data from the mutating
table. The SELECT INTO statement

SELECT COUNT(*)

 INTO v_total

 FROM enrollment

 WHERE student_id = :NEW.STUDENT_ID;

is issued against the ENROLLMENT table that is being modified and therefore is mutating.

c) Modify the trigger so that it does not cause a mutating table error when an UPDATE statement is
issued against the ENROLLMENT table.

Answer: First, create a package to hold the student’s ID and name as follows:

CREATE OR REPLACE PACKAGE student_pkg

AS

 g_student_id student.student_id%TYPE;

 g_student_name varchar2(50);

END;

Next, modify the existing trigger, ENROLLMENT_BIU as follows:

For Example ch14_5b.sql

CREATE OR REPLACE TRIGGER enrollment_biu

BEFORE INSERT OR UPDATE ON enrollment

FOR EACH ROW

BEGIN

 IF :NEW.student_id IS NOT NULL

 THEN

 BEGIN

 student_pkg.g_student_id := :NEW.student_id;

 SELECT first_name||' '||last_name

 INTO student_pkg.g_student_name

 FROM student

 WHERE student_id = student_pkg.g_student_id;

 EXCEPTION

 WHEN NO_DATA_FOUND

 THEN

 RAISE_APPLICATION_ERROR (-20001, 'This is not a valid student');

 END;

 END IF;

END;

Finally, create a new statement-level trigger on the ENROLLMENT table as follows:

For Example ch14_6a.sql

CREATE OR REPLACE TRIGGER enrollment_aiu

AFTER INSERT OR UPDATE ON enrollment

DECLARE

 v_total INTEGER;

BEGIN

 SELECT COUNT(*)

 INTO v_total

 FROM enrollment

 WHERE student_id = student_pkg.g_student_id;

 -- check if the current student is enrolled into too

 -- many courses

 IF v_total >= 3

 THEN

 RAISE_APPLICATION_ERROR

 (-20000, 'Student, '||student_pkg.g_student_name||

 ', is registered for 3 courses already ');

 END IF;

END;

Once the package and two triggers are created, the UPDATE statement does not cause a
mutating table error. However, the UPDATE statement

UPDATE enrollment

 SET student_id = 399

WHERE student_id = 283;

causes different kind of error:
ORA-02292: integrity constraint (STUDENT.GR_ENR_FK) violated - child record found

Note that this error does not relate to the trigger implementation, rather it is based on the foreign
key constraint defined between the GRADE and ENROLLMENT tables.

Lab 14.2 Compound Triggers
Answer the following questions:

Compound Trigger
a) What is a compound trigger?

Answer: A compound trigger allows you to combine different types of triggers into one
trigger.

b) What types of triggers may be combined into a compound trigger?

Answer: You may combine the following triggers into a compound trigger:

§ Statement trigger that fires before the firing statement
§ Row Trigger that fires before each row that the firing statement affects
§ Row Trigger that fires after each row that the firing statement affects
§ Statement trigger that fires after the firing statement

c) What are some of the restrictions on the compound triggers?

Answer: Some of the restrictions on the compound triggers are:

§ A compound trigger may be defined on a table or a view only.
§ A triggering event of a compound trigger is limited to the DML statements.
§ A compound trigger may not contain an autonomous transaction. In other words,

its declaration portion cannot include PRAGMA
AUTOTONOMOUS_TRANSACTION.

§ An exception that occurs in one executable section must be handled within that
section. For example, if an exception occurs in the AFTER EACH ROW section it
cannot propagate to the AFTER STATEMENT section. It must be handled in the
AFTER EACH ROW section.

Resolving Mutating Table Issues with
Compound Triggers
In this exercise, you modify trigger created in exercise section of Lab 14.1 that causes a mutating table
error when an UPDATE statement is issued against the ENROLLMENT table.

Before starting this exercise it is suggested that you drop triggers and package created in the
exercise section of Lab 14.1 and deleted records added and/or updated in the ENROLLMENT table as
follows:

DROP TRIGGER enrollment_biu;

DROP TRIGGER enrollment_aiu;

DROP PACKAGE student_pkg;

DELETE FROM enrollment

 WHERE student_id = 399;

COMMIT;

Recall ENROLLMENT_BIU trigger created in the previous Lab:

For Example ch14_5a.sql

CREATE OR REPLACE TRIGGER enrollment_biu

BEFORE INSERT OR UPDATE ON enrollment

FOR EACH ROW

DECLARE

 v_total NUMBER;

 v_name VARCHAR2(30);

BEGIN

 SELECT COUNT(*)

 INTO v_total

 FROM enrollment

 WHERE student_id = :NEW.student_id;

 -- check if the current student is enrolled into too

 -- many courses

 IF v_total >= 3

 THEN

 SELECT first_name||' '||last_name

 INTO v_name

 FROM student

 WHERE student_id = :NEW.STUDENT_ID;

 RAISE_APPLICATION_ERROR

 (-20000, 'Student, '||v_name||', is registered for 3 courses already');

 END IF;

EXCEPTION

 WHEN NO_DATA_FOUND

 THEN

 RAISE_APPLICATION_ERROR (-20001, 'This is not a valid student');

END;

Recall the following INSERT and UPDATE statements and the errors they produced:

INSERT INTO ENROLLMENT

 (student_id, section_id, enroll_date, created_by, created_date, modified_by

 ,modified_date)

VALUES (184, 98, SYSDATE, USER, SYSDATE, USER, SYSDATE);

ORA-20000: Student, Salewa Zuckerberg, is registered for 3 courses already

ORA-06512: at "STUDENT.ENROLLMENT_BIU", line 19

ORA-04088: error during execution of trigger 'STUDENT.ENROLLMENT_BIU'

INSERT INTO ENROLLMENT

 (student_id, section_id, enroll_date, created_by, created_date, modified_by

 ,modified_date)

VALUES (399, 98, SYSDATE, USER, SYSDATE, USER, SYSDATE);

1 rows inserted.

UPDATE enrollment

 SET student_id = 399

WHERE student_id = 283;

ORA-04091: table STUDENT.ENROLLMENT is mutating, trigger/function may not see it

ORA-06512: at "STUDENT.ENROLLMENT_BIU", line 5

ORA-04088: error during execution of trigger 'STUDENT.ENROLLMENT_BIU'

Answer the following questions:

a) Create a new compound trigger so that it does not cause a mutating table error when an
UPDATE statement is issued against the ENROLLMENT table.

Answer: The newly created compound trigger should look similar to the following:

For Example ch14_7a.sql

CREATE OR REPLACE TRIGGER enrollment_compound

FOR INSERT OR UPDATE ON enrollment

COMPOUND TRIGGER

 v_student_id STUDENT.STUDENT_ID%TYPE;

 v_student_name VARCHAR2(50);

 v_total INTEGER;

BEFORE EACH ROW IS

BEGIN

 IF :NEW.student_id IS NOT NULL

 THEN

 BEGIN

 v_student_id := :NEW.student_id;

 SELECT first_name||' '||last_name

 INTO v_student_name

 FROM student

 WHERE student_id = v_student_id;

 EXCEPTION

 WHEN NO_DATA_FOUND

 THEN

 RAISE_APPLICATION_ERROR (-20001, 'This is not a valid student');

 END;

 END IF;

END BEFORE EACH ROW;

AFTER STATEMENT IS

BEGIN

 SELECT COUNT(*)

 INTO v_total

 FROM enrollment

 WHERE student_id = v_student_id;

 -- check if the current student is enrolled into too

 -- many courses

 IF v_total >= 3

 THEN

 RAISE_APPLICATION_ERROR

 (-20000, 'Student, '||v_student_name||

 ', is registered for 3 courses already ');

 END IF;

END AFTER STATEMENT;

END enrollment_compound;

In the trigger created above, you declare variables to record student ID and name that were
previously declared in the package STUDENT_PKG. You also declared variable v_total
which was previously declared in the ENROLLMENT_AIU trigger. Next, you create BEFORE
EACH ROW and AFTER STATEMENT sections in the body of the trigger. Note that the
statements in those sections are copies from executable sections of the ENROLLMENT_BIU and
ENROLLMENT_AIU triggers respectively.

b) Run the UPDATE statement listed in the exercise text again. Explain the output produced.

Answer: The output should look as follows:

UPDATE enrollment

 SET student_id = 399

WHERE student_id = 283;

ORA-02292: integrity constraint (STUDENT.GR_ENR_FK) violated - child record found

Note that the error generated by the UPDATE statement is not a mutating table error. This error
refers to the integrity constraint violation because there is a child record in the GRADE table
with student ID of 283.

c) Modify compound trigger so that values for the CREATED_BY, CREATED_DATE,
MODIFIED_BY, MODIFIED_DATE columns are populated by the trigger.

Answer: The new version of the trigger should look similar to the following. Changes are
highlighted in bold.

For Example ch14_7b.sql

CREATE OR REPLACE TRIGGER enrollment_compound

FOR INSERT OR UPDATE ON enrollment

COMPOUND TRIGGER

 v_student_id STUDENT.STUDENT_ID%TYPE;

 v_student_name VARCHAR2(50);

 v_total INTEGER;

 v_date DATE;

 v_user STUDENT.CREATED_BY%TYPE;

BEFORE STATEMENT IS

BEGIN

 v_date := SYSDATE;

 v_user := USER;

END BEFORE STATEMENT;

BEFORE EACH ROW IS

BEGIN

 IF INSERTING

 THEN

 :NEW.created_date := v_date;

 :NEW.created_by := v_user;

 ELSIF UPDATING

 THEN

 :NEW.created_date := :OLD.created_date;

 :NEW.created_by := :OLD.created_by;

 END IF;

 :NEW.MODIFIED_DATE := v_date;

 :NEW.MODIFIED_BY := v_user;

 IF :NEW.STUDENT_ID IS NOT NULL

 THEN

 BEGIN

 v_student_id := :NEW.STUDENT_ID;

 SELECT first_name||' '||last_name

 INTO v_student_name

 FROM student

 WHERE student_id = v_student_id;

 EXCEPTION

 WHEN NO_DATA_FOUND

 THEN

 RAISE_APPLICATION_ERROR (-20001, 'This is not a valid student');

 END;

 END IF;

END BEFORE EACH ROW;

AFTER STATEMENT IS

BEGIN

 SELECT COUNT(*)

 INTO v_total

 FROM enrollment

 WHERE student_id = v_student_id;

 -- check if the current student is enrolled into too

 -- many courses

 IF v_total >= 3 THEN

 RAISE_APPLICATION_ERROR

 (-20000, 'Student, '||v_student_name||

 ', is registered for 3 courses already ');

 END IF;

END AFTER STATEMENT;

END enrollment_compound;

In this version of the trigger, you defined two new variables v_date and v_user in the
declaration section of the trigger. You added a BEFORE STATEMENT section to initialize these
variables. You also modified BEFORE EACH ROW section where you now initialize
CREATED_BY, CREATED_DATE, MODIFIED_BY, and MODIFIED_DATE columns. Note that
the ELSIF statement
IF INSERTING THEN

 :NEW.CREATED_DATE := v_date;

 :NEW.CREATED_BY := v_user;

ESLIF UPDATING THEN

 :NEW.created_date := :OLD.created_date;

 :NEW.created_by := :OLD.created_by;

END IF;

checks whether the current operation is an INSERT or UPDATE in order to determine how to
populate the CREATED_DATE and CREATED_BY columns. For the INSERT operation, these
columns are assigned values based on the v_date and v_user variables. For the UPDATE
operation CREATED_BY and CREATED_DATE columns do not change their values, and as a
result, the values are copied from the OLD pseudorecord. Since MODIFIED_BY and
MODIFIED_DATE columns are always populated with the new values, there is no need to
evaluate whether current record is being inserted or updated.

This version of the trigger may be tested as follows. Note that in this case the values of
student and section IDs have been changed to allow trigger to execute successfully:
INSERT INTO enrollment

 (student_id, section_id, enroll_date, final_grade)

VALUES (102, 155, sysdate, null);

ORA-20000: Student, Fred Crocitto, is registered for 3 courses already

ORA-06512: at "STUDENT.ENROLLMENT_COMPOUND", line 55

ORA-04088: error during execution of trigger 'STUDENT.ENROLLMENT_COMPOUND'

INSERT INTO enrollment

 (student_id, section_id, enroll_date, final_grade)

VALUES (103, 155, sysdate, null);

1 rows inserted.

UPDATE enrollment

 SET final_grade = 85

 WHERE student_id = 105

 AND section_id = 155;

1 rows updated.

ROLLBACK;

rollback complete.

It is important to note that when the CREATED_DATE and CREATED_BY columns are not
initialized to any values in the body of the trigger for the UPDATE operation, the trigger causes

NOT NULL constraint violation. In other words, the CREATED_DATE and CREATED_BY
columns should be reinitialized to their original values explicitly in the BEFORE EACH ROW
section of the trigger. Consider modified version of the BEFORE EACH ROW section that causes
NOT NULL constraint violation error for the UPDATE operation. In this code fragment, the
ELSIF portion of the IF statement has been omitted (modified portion is highlighted in bold):
BEFORE EACH ROW IS

BEGIN

 IF INSERTING THEN

 :NEW.created_date := v_date;

 :NEW.created_by := v_user;

 END IF;

 :NEW.modified_date := v_date;

 :NEW.modified_by := v_user;

 IF :NEW.STUDENT_ID IS NOT NULL THEN

 BEGIN

 v_student_id := :NEW.student_id;

 SELECT first_name||' '||last_name

 INTO v_student_name

 FROM student

 WHERE student_id = v_student_id;

 EXCEPTION

 WHEN NO_DATA_FOUND THEN

 RAISE_APPLICATION_ERROR

 (-20001, 'This is not a valid student');

 END;

 END IF;

END BEFORE EACH ROW;

This version of the trigger causes the following error when an UPDATE is issued against the
ENROLLMENT table:
ORA-01407: cannot update ("STUDENT"."ENROLLMENT"."CREATED_DATE") to NULL

Try It Yourself
The projects in this section are meant to have you use all of the skills that you have acquired
throughout this chapter. Here are some exercises that will help you test the depth of your
understanding.

1) Create a compound trigger on the INSTRUCTOR table that fires on the INSERT and UPDATE
statements. The trigger should not allow insert on the INSTRUCTOR table during off hours
where off hours are times of day outside the 9:00 am–5:00 pm window and weekends. The
trigger should also populate INSTRUCTOR_ID, CREATED_BY, CREATED_DATE,
MODIFIED_BY, MODIFIED_DATE columns with their default values.

Answer: The trigger should look similar to the following:

For Example ch14_8a.sql

CREATE OR REPLACE TRIGGER instructor_compound

FOR INSERT OR UPDATE ON instructor

COMPOUND TRIGGER

 v_date DATE;

 v_user VARCHAR2(30);

BEFORE STATEMENT IS

BEGIN

 IF RTRIM(TO_CHAR(SYSDATE, 'DAY')) NOT LIKE 'S%' AND

 RTRIM(TO_CHAR(SYSDATE, 'HH24:MI')) BETWEEN '09:00' AND '17:00'

 THEN

 v_date := SYSDATE;

 v_user := USER;

 ELSE

 RAISE_APPLICATION_ERROR

 (-20000, 'A table cannot be modified during off hours');

 END IF;

END BEFORE STATEMENT;

BEFORE EACH ROW IS

BEGIN

 IF INSERTING

 THEN

 :NEW.instructor_id := INSTRUCTOR_ID_SEQ.NEXTVAL;

 :NEW.created_by := v_user;

 :NEW.created_date := v_date;

 ELSIF UPDATING

 THEN

 :NEW.created_by := :OLD.created_by;

 :NEW.created_date := :OLD.created_date;

 END IF;

 :NEW.modified_by := v_user;

 :NEW.modified_date := v_date;

END BEFORE EACH ROW;

END instructor_compound;

The compound trigger created above has two executable sections, BEFORE STATEMENT and
BEFORE EACH ROW. The BEFORE STATEMENT portion prevents any updates to the
INSTRUCTOR table during off hours. In addition, it populates v_date and v_user variables
that are used to populate the CREATED_BY, CREATED_DATE, MODIFIED_BY,
MODIFIED_BY columns. The BEFORE EACH ROW section populates the above specified
columns. In addition, it assigns value to the INSTRUCTOR_ID column from the
INSTRUCTOR_ID_SEQ.

Note the use of the INSERTING and UPDATING functions in the BEFORE EACH ROW
section. The INSERTING function is used because INSTRUCTOR_ID, CREATED_BY, and
CREATED_DATE columns are populated with new values only if record is being inserted in the
INSTRUCTOR table. This is not so when a record is being updated. In this case, the
CREATE_BY and CREATED_DATE columns are populated with the values copied from the

OLD pseudorecord. However, MODIFIED_BY and MODIFIED_DATE columns need to be
populated with the new values regardless of the INSERT or UPDATE operation.

The newly created trigger may be tested as follows:
DECLARE

 v_date VARCHAR2(20);

BEGIN

 v_date := TO_CHAR(SYSDATE, 'DD/MM/YYYY HH24:MI');

 DBMS_OUTPUT.PUT_LINE ('Date: '||v_date);

 INSERT INTO instructor

 (salutation, first_name, last_name, street_address, zip, phone)

 VALUES

 ('Mr.', 'Test', 'Instructor', '123 Main Street', '07112',

 '2125555555');

 ROLLBACK;

END;

Date: 17/11/2014 11:10

DECLARE

 v_date VARCHAR2(20);

BEGIN

 v_date := TO_CHAR(SYSDATE, 'DD/MM/YYYY HH24:MI');

 DBMS_OUTPUT.PUT_LINE ('Date: '||v_date);

 UPDATE instructor

 SET phone = '2125555555'

 WHERE instructor_id = 101;

 ROLLBACK;

END;

Date: 16/11/2014 11:50

ORA-20000: A table cannot be modified during off hours

ORA-06512: at "STUDENT.INSTRUCTOR_COMPOUND", line 17

ORA-04088: error during execution of trigger 'STUDENT.INSTRUCTOR_COMPOUND'

ORA-06512: at line 7

2) Create a compound trigger on the ZIPCODE table that fires on the INSERT and UPDATE

statements. The trigger should populate MODIFIED_BY, MODIFIED_DATE columns with
their default values. In addition it should record in the STATISTICS table type of the
transaction, name of the user who issued the transaction, date of the transaction, and number of
records affected by the transaction. Assume the STATISTICS table has the following structure:

Name Null? Type

------------------------------- -------- ----

TABLE_NAME VARCHAR2(30)

TRANSACTION_NAME VARCHAR2(10)

TRANSACTION_USER VARCHAR2(30)

TRANSACTION_DATE DATE

Answer: The trigger should look similar to the following:

For Example ch14_9a.sql

CREATE OR REPLACE TRIGGER zipcode_compound

FOR INSERT OR UPDATE ON zipcode

COMPOUND TRIGGER

 v_date DATE;

 v_user VARCHAR2(30);

 v_type VARCHAR2(10);

BEFORE STATEMENT IS

BEGIN

 v_date := SYSDATE;

 v_user := USER;

END BEFORE STATEMENT;

BEFORE EACH ROW IS

BEGIN

 IF INSERTING

 THEN

 :NEW.created_by := v_user;

 :NEW.created_date := v_date;

 ELSIF UPDATING

 THEN

 :NEW.created_by := :OLD.created_by;

 :NEW.created_date := :OLD.created_date;

 END IF;

 :NEW.modified_by := v_user;

 :NEW.modified_date := v_date;

END BEFORE EACH ROW;

AFTER STATEMENT IS

BEGIN

 IF INSERTING

 THEN

 v_type := 'INSERT';

 ELSIF UPDATING

 THEN

 v_type := 'UPDATE';

 END IF;

 INSERT INTO statistics

 (table_name, transaction_name, transaction_user, transaction_date)

 VALUES ('ZIPCODE', v_type, v_user, v_date);

END AFTER STATEMENT;

END zipcode_compound;

This trigger may be tested as follows:

UPDATE zipcode

 SET city = 'Test City'

 WHERE zip = '01247';

1 rows updated.

SELECT *

 FROM statistics

 WHERE transaction_date >= TRUNC(sysdate);

TABLE_NAME TRANSACTION_NAME TRANSACTION_USER TRANSACTION_DATE

---------- ---------------- ---------------- ----------------

ZIPCODE UPDATE STUDENT 11/17/2014 11:28

ROLLBACK;

rollback complete.

