
Exercises for
Chapter 15:
Collections
The Labs below provide you with exercises and suggested answers with discussion related to how
those answers resulted. The most important thing to realize is whether your answer works. You should
figure out the implications of the answers here and what the effects are from any different answers you
may come up with.

Lab 15.1 PL/SQL Tables
Answer the following questions:

Associative Arrays
In this exercise, you will modify a script that populates an associative array with course descriptions.
Create the following PL/SQL script:

For Example ch15_5a.sql

DECLARE

 CURSOR course_cur IS

 SELECT description

 FROM course;

 TYPE course_type IS TABLE OF course.description%TYPE

 INDEX BY PLS_INTEGER;

 course_tab course_type;

 v_counter PLS_INTEGER := 0;

BEGIN

 FOR course_rec IN course_cur

 LOOP

 v_counter := v_counter + 1;

 course_tab(v_counter) := course_rec.description;

 END LOOP;

END;

Answer the following questions:

a) Explain the script ch15_5a.sql.

Answer: The declaration section of the script contains definition of the associative array type,
course_type. This type is based on the column DESCRIPTION of the table COURSE. Next,
the actual associative array is declared as course_tab.

The executable section of the script populates associative array course_tab in the cursor
FOR loop. Each element of the associative array is referenced by its subscript, v_counter.
For each iteration of the loop, the value of v_counter is incremented by 1 so that each new
description value is stored in the new row of the associative array.

b) Modify the script so that rows of the associative array are displayed on the screen.

Answer: The script should look similar to the following script. Newly added statements are
shown in bold.

For Example ch15_5b.sql

DECLARE

 CURSOR course_cur IS

 SELECT description

 FROM course;

 TYPE course_type IS TABLE OF course.description%TYPE

 INDEX BY PLS_INTEGER;

 course_tab course_type;

 v_counter PLS_INTEGER := 0;

BEGIN

 FOR course_rec IN course_cur

 LOOP

 v_counter := v_counter + 1;

 course_tab(v_counter):= course_rec.description;

 DBMS_OUTPUT.PUT_LINE('course('||v_counter||'): '||course_tab(v_counter));

 END LOOP;

END;

Consider another version of the same script.

For Example ch15_5c.sql

DECLARE

 CURSOR course_cur IS

 SELECT description

 FROM course;

 TYPE course_type IS TABLE OF course.description%TYPE

 INDEX BY PLS_INTEGER;

 course_tab course_type;

 v_counter PLS_INTEGER := 0;

BEGIN

 FOR course_rec IN course_cur

 LOOP

 v_counter := v_counter + 1;

 course_tab(v_counter):= course_rec.description;

 END LOOP;

 FOR i IN 1..v_counter

 LOOP

 DBMS_OUTPUT.PUT_LINE('course('||i||'): '||course_tab(i));

 END LOOP;

END;

When run, both versions produce the same output:
course(1): Technology Concepts

course(2): Intro to Information Systems

course(3): Intro to Programming

course(4): Programming Techniques

course(5): Hands-On Windows

course(6): Intro to Java Programming

course(7): Intermediate Java Programming

course(8): Advanced Java Programming

course(9): Java Developer I

course(10): Intro to Unix

course(11): Basics of Unix Admin

course(12): Advanced Unix Admin

course(13): Unix Tips and Techniques

course(14): Systems Analysis

course(15): Project Management

course(16): Database Design

course(17): Internet Protocols

course(18): Java for C/C++ Programmers

course(19): GUI Design Lab

course(20): Intro to SQL

course(21): Oracle Tools

course(22): PL/SQL Programming

course(23): Intro to the Internet

course(24): Intro to the BASIC Language

course(25): Operating Systems

course(26): Network Administration

course(27): Java Developer II

course(28): Database System Principles

course(29): Java Developer III

course(30): DB Programming with Java

c) Modify the script so that only first and last rows of the associative array are displayed on the

screen.

Answer: The script should look similar to the following script. Changes are shown in bold.

For Example ch15_5d.sql

DECLARE

 CURSOR course_cur IS

 SELECT description

 FROM course;

 TYPE course_type IS TABLE OF course.description%TYPE

 INDEX BY PLS_INTEGER;

 course_tab course_type;

 v_counter PLS_INTEGER := 0;

BEGIN

 FOR course_rec IN course_cur

 LOOP

 v_counter := v_counter + 1;

 course_tab(v_counter) := course_rec.description;

 END LOOP;

 DBMS_OUTPUT.PUT_LINE('course('||course_tab.FIRST||'): '||

 course_tab(course_tab.FIRST));

 DBMS_OUTPUT.PUT_LINE('course('||course_tab.LAST||'): '||

 course_tab(course_tab.LAST));

END;

Consider the statements
course_tab(course_tab.FIRST)

and
course_tab(course_tab.LAST)

used in this example. While these statements look somewhat different from the statements that
you have seen so far, they produce the same effect as
course_tab(1)

and
course_tab(30)

statements because, as mentioned in Chapter 15, the FIRST and LAST methods return the
subscripts of the first and last elements of a collection, respectively. In this example, the
associative array contains 30 elements, where the first element has subscript of 1, and the last
element has subscript of 30.

This version of the script produces the following output:
course(1): Technology Concepts

course(30): DB Programming in Java

d) Modify the script by adding the following statements and explain the output produced:

 i) Display the total number of elements in the associative array after it has been
populated on the screen.

 ii) Delete the last element, and display the total number of elements of the associative
array again.

 iii) Delete the fifth element, and display the total number of elements and the subscript
of the last element of the associative array again.

Answer: The script should look similar to the following script. All changes are shown in bold.

For Example ch15_5e.sql

DECLARE

 CURSOR course_cur IS

 SELECT description

 FROM course;

 TYPE course_type IS TABLE OF course.description%TYPE

 INDEX BY PLS_INTEGER;

 course_tab course_type;

 v_counter PLS_INTEGER := 0;

BEGIN

 FOR course_rec IN course_cur

 LOOP

 v_counter := v_counter + 1;

 course_tab(v_counter) := course_rec.description;

 END LOOP;

 -- Display the total number of elements in the associative array

 DBMS_OUTPUT.PUT_LINE ('1. Total number of elements: '||course_tab.COUNT);

 -- Delete the last element of the associative array

 -- Display the total number of elements in the associative array

 course_tab.DELETE(course_tab.LAST);

 DBMS_OUTPUT.PUT_LINE ('2. Total number of elements: '||course_tab.COUNT);

 -- Delete the fifth element of the associative array

 -- Display the total number of elements in the associative array

 -- Display the subscript of the last element of the associative array

 course_tab.DELETE(5);

 DBMS_OUTPUT.PUT_LINE ('3. Total number of elements: '||course_tab.COUNT);

 DBMS_OUTPUT.PUT_LINE ('3. The subscript of the last element: '||course_tab.LAST);

END;

When run, this version of the script produces the following output:
1. Total number of elements: 30

2. Total number of elements: 29

3. Total number of elements: 28

3. The subscript of the last element: 29

First, the total number of the elements in the associative array is calculated via the COUNT
method and displayed on the screen.

Second, the last element is deleted via the DELETE and LAST methods, and the total number
of the elements in the associative array is displayed on the screen again.

Third, the fifth element is deleted, and the total number of the elements in the associative
array and the subscript of the last element are displayed on the screen.

Consider the last two lines on the output. After the fifth element of the associative array is
deleted, the COUNT method returns value 28, and the LAST method returns the value 29.
Usually, the values returned by the COUNT and LAST methods are equal. However, when an
element is deleted from the middle of the associative array, the value returned by the LAST
method is greater than the value returned by the COUNT method because the LAST method
ignores deleted elements.

Nested Tables
In this exercise, you will modify script created in the previous section of this lab. Instead of using
associative arrays you will be asked to use nested tables.

Answer the following questions:

a) Modify the script 15_5a.sql. Instead of using an associative array, use a nested table.

Answer: The new script should look similar to the following script. Changes are highlighted in
bold.

For Example ch15_6a.sql

DECLARE

 CURSOR course_cur IS

 SELECT description

 FROM course;

 TYPE course_type IS TABLE OF course.description%TYPE;

 course_tab course_type := course_type();

 v_counter PLS_INTEGER := 0;

BEGIN

 FOR course_rec IN course_cur

 LOOP

 v_counter := v_counter + 1;

 course_tab.EXTEND;

 course_tab(v_counter) := course_rec.description;

 END LOOP;

END;

b) Modify the script by adding the following statements and explain the output produced:
 i) Delete the last element of the nested table, and then reassign a new value to it.

Execute the script.
 ii) Trim the last element of the nested table, and then reassign a new value to it. Execute

the script.

Answer:
i) This version of the script should look similar to the following script. Newly added

statements are shown in bold.

For Example ch15_6b.sql

DECLARE

 CURSOR course_cur IS

 SELECT description

 FROM course;

 TYPE course_type IS TABLE OF course.description%TYPE;

 course_tab course_type := course_type();

 v_counter PLS_INTEGER := 0;

BEGIN

 FOR course_rec IN course_cur

 LOOP

 v_counter := v_counter + 1;

 course_tab.EXTEND;

 course_tab(v_counter) := course_rec.description;

 END LOOP;

 course_tab.DELETE(30);

 course_tab(30) := 'New Course';

END;

ii) This version of the script should look similar to the following script. Newly added
statements are shown in bold.

For Example ch15_6c.sql

DECLARE

 CURSOR course_cur IS

 SELECT description

 FROM course;

 TYPE course_type IS TABLE OF course.description%TYPE;

 course_tab course_type := course_type();

 v_counter PLS_INTEGER := 0;

BEGIN

 FOR course_rec IN course_cur

 LOOP

 v_counter := v_counter + 1;

 course_tab.EXTEND;

 course_tab(v_counter) := course_rec.description;

 END LOOP;

 course_tab.TRIM;

 course_tab(30) := 'New Course';

END;

When run, this version of the script produces the following error:
ORA-06533: Subscript beyond count

ORA-06512: at line 19

In the previous version of the script, the last element of the nested table is removed via the
DELETE method. As mentioned in Chapter 15, when the DELETE method is used, the PL/SQL
keeps a placeholder of the deleted element. Therefore, the statement
course_tab(30) := 'New Course';

does not cause any errors.
In the current version of the script, the last element of the nested table is removed via the

TRIM method. In this case, the PL/SQL does not keep placeholder of the trimmed element
because the TRIM method manipulates the internal size of a collection. As a result, the reference
to the trimmed elements causes ‘Subscript beyond count’ error.

c) How would you modify the script created, so that there is no error generated when a new value
is assigned to the trimmed element?

Answer: The script should be modified as follows. Changes are shown in bold.

For Example ch15_6d.sql

DECLARE

 CURSOR course_cur IS

 SELECT description

 FROM course;

 TYPE course_type IS TABLE OF course.description%TYPE;

 course_tab course_type := course_type();

 v_counter PLS_INTEGER := 0;

BEGIN

 FOR course_rec IN course_cur

 LOOP

 v_counter := v_counter + 1;

 course_tab.EXTEND;

 course_tab(v_counter) := course_rec.description;

 END LOOP;

 course_tab.TRIM;

 course_tab.EXTEND;

 course_tab(30) := 'New Course';

END;

In order to reference the trimmed element, the EXTEND method is use to increase the size on the
collection. As a result, the assignment statement
course_tab(30) := 'New Course';

does not cause any errors.

Lab 15.2 Varrays
In this exercise, you will need to debug the following script, which populates city_varray with 10
cities selected from the ZIPCODE table and displays its individual elements on the screen. Create the
following PL/SQL script:

For Example ch15_7a.sql

DECLARE

 CURSOR city_cur IS

 SELECT city

 FROM zipcode

 WHERE rownum <= 10;

 TYPE city_type IS VARRAY(10) OF zipcode.city%TYPE;

 city_varray city_type;

 v_counter PLS_INTEGER := 0;

BEGIN

 FOR city_rec IN city_cur

 LOOP

 v_counter := v_counter + 1;

 city_varray(v_counter) := city_rec.city;

 DBMS_OUTPUT.PUT_LINE('city_varray('||v_counter||'): '||city_varray(v_counter));

 END LOOP;

END;

Execute the script, and then answer the following questions:

a) What output was produced by the script? Explain it.

Answer: The output should look similar to the following:
ORA-06531: Reference to uninitialized collection

ORA-06512: at line 15

Recall that when a varray is declared, it is automatically NULL. In other words, the collection
itself is NULL, not its individual elements. Therefore, before it can be used, it must be initialized
via the constructor function with the same name as the varray type. Furthermore, once the
collection is initialized, the EXTEND method must be used before its individual elements can be
referenced in the script.

b) Modify the script so that no errors are returned at the runtime.

Answer: The script should look similar to the following script. Changes are highlighted in bold.

For Example ch15_7b.sql

DECLARE

 CURSOR city_cur IS

 SELECT city

 FROM zipcode

 WHERE rownum <= 10;

 TYPE city_type IS VARRAY(10) OF zipcode.city%TYPE;

 city_varray city_type := city_type();

 v_counter INTEGER := 0;

BEGIN

 FOR city_rec IN city_cur

 LOOP

 v_counter := v_counter + 1;

 city_varray.EXTEND;

 city_varray(v_counter) := city_rec.city;

 DBMS_OUTPUT.PUT_LINE('city_varray('||v_counter||'): '||

 city_varray(v_counter));

 END LOOP;

END;

When run, this version of the script produces the following output:
city_varray(1): New York

city_varray(2): Santurce

city_varray(3): North Adams

city_varray(4): Dorchester

city_varray(5): Tufts Univ. Bedford

city_varray(6): Weymouth

city_varray(7): Sandwich

city_varray(8): Ansonia

city_varray(9): Middlefield

city_varray(10): Oxford

c) Modify the script as follows: Double the size of the varray and populate the last ten elements
with the first ten elements. In other words, the value of the eleventh element should be equal to
the value of the first element; the value of the twelfth element should be equal to the value of
the second element; and so forth.

Answer: The script should look similar to the following script. Newly added statements are
shown in bold.

For Example ch15_7c.sql

DECLARE

 CURSOR city_cur IS

 SELECT city

 FROM zipcode

 WHERE rownum <= 10;

 TYPE city_type IS VARRAY(20) OF zipcode.city%TYPE;

 city_varray city_type := city_type();

 v_counter INTEGER := 0;

BEGIN

 FOR city_rec IN city_cur

 LOOP

 v_counter := v_counter + 1;

 city_varray.EXTEND;

 city_varray(v_counter) := city_rec.city;

 END LOOP;

 FOR i IN 1..v_counter

 LOOP

 -- extend the size of varray by 1 and copy the current element

 -- to the last element

 city_varray.EXTEND(1, i);

 END LOOP;

 FOR i IN 1..20

 LOOP

 DBMS_OUTPUT.PUT_LINE('city_varray('||i||'): '||

 city_varray(i));

 END LOOP;

END;

In this version of the script, the maximum size of the varray has been increased to 20. Next, the
first 10 elements of the varray city_varray are populated via cursor FOR LOOP just like in
the previous versions of the script. After the first 10 elements of the varray are populated, the
last ten elements are populated via numeric FOR LOOP and the EXTEND method as follows:
FOR i IN 1..v_counter

LOOP

 -- extend the size of varray by 1 and copy the current element

 -- to the last element

 city_varray.EXTEND(1, i);

END LOOP;

In this loop, the loop counter is implicitly incremented by one. So for the first iteration of the
loop, the size of the varray is increased by one and the first element of the varray is copied to
the eleventh element. In the same manner, the second element of the varray is copied to the
twelfth element, and so forth.

Finally, in order to display all elements of the varray, the DBMS_OUTPUT.PUT_LINE
statement has been moved to its own numeric FOR loop that iterates 20 times.

When run, this version of the script produces the following output:
city_varray(1): New York

city_varray(2): Santurce

city_varray(3): North Adams

city_varray(4): Dorchester

city_varray(5): Tufts Univ. Bedford

city_varray(6): Weymouth

city_varray(7): Sandwich

city_varray(8): Ansonia

city_varray(9): Middlefield

city_varray(10): Oxford

city_varray(11): New York

city_varray(12): Santurce

city_varray(13): North Adams

city_varray(14): Dorchester

city_varray(15): Tufts Univ. Bedford

city_varray(16): Weymouth

city_varray(17): Sandwich

city_varray(18): Ansonia

city_varray(19): Middlefield

city_varray(20): Oxford

Lab 15.3 Multilevel Collections
In this exercise, you will experiment with multilevel collections. Create the following PL/SQL script:

For Example ch15_8a.sql

DECLARE

 TYPE table_type1 IS TABLE OF INTEGER INDEX BY PLS_INTEGER;

 TYPE table_type2 IS TABLE OF TABLE_TYPE1 INDEX BY PLS_INTEGER;

 table_tab1 table_type1;

 table_tab2 table_type2;

BEGIN

 FOR i IN 1..2

 LOOP

 FOR j IN 1..3

 LOOP

 IF i = 1

 THEN

 table_tab1(j) := j;

 ELSE

 table_tab1(j) := 4 - j;

 END IF;

 table_tab2(i)(j) := table_tab1(j);

 DBMS_OUTPUT.PUT_LINE ('table_tab2('||i||')('||j||'): '||table_tab2(i)(j));

 END LOOP;

 END LOOP;

END;

Execute the script, and then answer the following questions:

a) Execute the script above and explain the output produced.

Answer: The output should look similar to the following:
table_tab2(1)(1): 1

table_tab2(1)(2): 2

table_tab2(1)(3): 3

table_tab2(2)(1): 3

table_tab2(2)(2): 2

table_tab2(2)(3): 1

This script uses multilevel associative arrays or an associative array of associative arrays. The
declaration portion of the script defines a multilevel associative array table_tab2. Each row
of this table is an associative array consisting of multiple rows.

The executable portion of the script populates the multilevel table via nested numeric FOR
LOOP. In the first iteration of the outer loop, the inner loop populates the associative array
table_tab1 with values 1, 2, 3, and the first row of the multilevel table table_tab2. In
the second iteration of the outer loop, the inner loop populates the associative array
table_tab1 with values 3, 2, 1, and the second row of the multilevel table table_tab2.

b) Modify the script so that instead of using multilevel associative arrays it uses a nested table of
associative arrays.

Answer: The new version of the script should look similar to the following. Affected statements
are highlighted in bold.

For Example ch15_8b.sql

DECLARE

 TYPE table_type1 IS TABLE OF INTEGER INDEX BY PLS_INTEGER;

 TYPE table_type2 IS TABLE OF TABLE_TYPE1;

 table_tab1 table_type1;

 table_tab2 table_type2 := table_type2();

BEGIN

 FOR i IN 1..2

 LOOP

 table_tab2.EXTEND;

 FOR j IN 1..3 LOOP

 IF i = 1

 THEN

 table_tab1(j) := j;

 ELSE

 table_tab1(j) := 4 - j;

 END IF;

 table_tab2(i)(j) := table_tab1(j);

 DBMS_OUTPUT.PUT_LINE ('table_tab2('||i||')('||j||'): '||table_tab2(i)(j));

 END LOOP;

 END LOOP;

END;

In this version of the script, the table_type2 is declared as a nested table of associative
arrays. Next, table_tab2 is initialized prior to its use, and its size is extended before a new
element is assigned a value.

c) Modify the script so that instead of using multilevel associative arrays it uses a nested table of
varrays.

Answer: The script should look similar to the following script. Modifications are shown in
bold.

For Example ch15_8c.sql

DECLARE

 TYPE table_type1 IS VARRAY(3) OF PLS_INTEGER;

 TYPE table_type2 IS TABLE OF TABLE_TYPE1;

 table_tab1 table_type1 := table_type1();

 table_tab2 table_type2 := table_type2(table_tab1);

BEGIN

 FOR i IN 1..2

 LOOP

 table_tab2.EXTEND;

 table_tab2(i) := table_type1();

 FOR j IN 1..3

 LOOP

 IF i = 1

 THEN

 table_tab1.EXTEND;

 table_tab1(j) := j;

 ELSE

 table_tab1(j) := 4 - j;

 END IF;

 table_tab2(i).EXTEND;

 table_tab2(i)(j):= table_tab1(j);

 DBMS_OUTPUT.PUT_LINE ('table_tab2('||i||')('||j||'): '||table_tab2(i)(j));

 END LOOP;

 END LOOP;

END;

In the declaration portion of the script, the table_type1 is defined as a varray with
maximum of three integer elements, and the table_type2 is declared as a nested table of
varrays. Next, table_tab1 and table_tab2 are initialized prior to their uses.
In the executable portion of the script, the size of the table_tab2 is incremented via the
EXTEND method and its individual elements are initialized as follows:
table_tab2(i) := table_type1();

Notice that that each element is initialized via the constructor associated with the varray type
table_type1. Furthermore, in order to populate a nested table, a new varray element must be
added to the each nested table element as shown:
table_tab2(i).EXTEND;

Without this statement, the script causes the following error:
ORA-06533: Subscript beyond count

ORA-06512: at line 21

When run, this version of the script produces output identical to the original example:
table_tab2(1)(1): 1

table_tab2(1)(2): 2

table_tab2(1)(3): 3

table_tab2(2)(1): 3

table_tab2(2)(2): 2

table_tab2(2)(3): 1

Try It Yourself
The projects in this section are meant to have you use all of the skills that you have acquired
throughout this chapter. Here are some exercises that will help you test the depth of your
understanding.

1) Create the following script. Create an associative array and populate it with the instructor’s full
name. In other words, each row of the associative array should contain first and last names.
Display this information on the screen.

Answer: The script should look similar to the following:

For Example ch15_9a.sql

DECLARE

 CURSOR name_cur IS

 SELECT first_name||' '||last_name name

 FROM instructor;

 TYPE name_type IS TABLE OF VARCHAR2(50) INDEX BY PLS_INTEGER;

 name_tab name_type;

 v_counter INTEGER := 0;

BEGIN

 FOR name_rec IN name_cur

 LOOP

 v_counter := v_counter + 1;

 name_tab(v_counter) := name_rec.name;

 DBMS_OUTPUT.PUT_LINE ('name('||v_counter||'): '||name_tab(v_counter));

 END LOOP;

END;

In the preceding example, the associative array name_tab is populated with instructor full
names. Notice that the variable v_counter is used as a subscript to reference individual
array elements. This example produces the following output:
name(1): Fernand Hanks

name(2): Tom Wojick

name(3): Nina Schorin

name(4): Gary Pertez

name(5): Anita Morris

name(6): Todd Smythe

name(7): Marilyn Frantzen

name(8): Charles Lowry

name(9): Rick Chow

name(10): Irene Willig

2) Modify the script created in the previous exercise (step 1 above). Instead of using an
associative array, use a varray.

Answer: The script should look similar to the following. Affected statements are highlighted
in bold.

For Example ch15_9b.sql

DECLARE

 CURSOR name_cur IS

 SELECT first_name||' '||last_name name

 FROM instructor;

 TYPE name_type IS VARRAY(15) OF VARCHAR2(50);

 name_varray name_type := name_type();

 v_counter INTEGER := 0;

BEGIN

 FOR name_rec IN name_cur

 LOOP

 v_counter := v_counter + 1;

 name_varray.EXTEND;

 name_varray(v_counter) := name_rec.name;

 DBMS_OUTPUT.PUT_LINE ('name('||v_counter||'): '||name_varray(v_counter));

 END LOOP;

END;

In this version of the script, you define a varray of 15 elements. It is important to remember to
initialize the array before referencing its individual elements. In addition, the array must be
extended before new elements are added to it.

3) Modify the script created in the previous exercise (step 2 above). Create an additional varray

and populate it with unique course numbers that each instructor teaches. Display instructor’s
name and the list of courses he or she teaches.

Answer: The script should look similar to the following:

For Example ch15_10a.sql

DECLARE

 CURSOR instructor_cur IS

 SELECT instructor_id, first_name||' '||last_name name

 FROM instructor;

 CURSOR course_cur (p_instructor_id NUMBER) IS

 SELECT unique course_no course

 FROM section

 WHERE instructor_id = p_instructor_id;

 TYPE name_type IS VARRAY(15) OF VARCHAR2(50);

 name_varray name_type := name_type();

 TYPE course_type IS VARRAY(10) OF NUMBER;

 course_varray course_type;

 v_counter1 INTEGER := 0;

 v_counter2 INTEGER;

BEGIN

 FOR instructor_rec IN instructor_cur

 LOOP

 v_counter1 := v_counter1 + 1;

 name_varray.EXTEND;

 name_varray(v_counter1) := instructor_rec.name;

 DBMS_OUTPUT.PUT_LINE ('name('||v_counter1||'): '||name_varray(v_counter1));

 -- Initialize and populate course_varray

 v_counter2 := 0;

 course_varray := course_type();

 FOR course_rec in course_cur (instructor_rec.instructor_id)

 LOOP

 v_counter2 := v_counter2 + 1;

 course_varray.EXTEND;

 course_varray(v_counter2) := course_rec.course;

 DBMS_OUTPUT.PUT_LINE ('course('||v_counter2||'): '||

 course_varray(v_counter2));

 END LOOP;

 DBMS_OUTPUT.PUT_LINE ('===========================');

 END LOOP;

END;

Consider the script just created. First, you declare two cursors, instructor_cur and
course_cur. The course_cur accepts a parameter because it returns a list of courses
taught by a particular instructor. Notice that the SELECT statement uses function UNIQUE to
retrieve distinct course numbers. Second, you declare two varray types and variables,
name_varray and course_varray. Notice that you do not initialize the second varray at
the time of declaration. Next, you declare two counters and initialize the first counter only.

In the body of the block, you open instructor_cur and populate name_varray with
its first element. Next, you initialize the second counter and course_varray. This step is
necessary because you need to repopulate course_varray for the next instructor. Finally,
you open course_cur to retrieve corresponding courses and display them on the screen.

When run, the script produces the following output:
name(1): Fernand Hanks

course(1): 25

course(2): 450

course(3): 134

course(4): 120

course(5): 240

course(6): 125

course(7): 140

course(8): 146

course(9): 122

===========================

name(2): Tom Wojick

course(1): 25

course(2): 100

course(3): 134

course(4): 120

course(5): 240

course(6): 125

course(7): 140

course(8): 146

course(9): 124

course(10): 10

===========================

name(3): Nina Schorin

course(1): 25

course(2): 310

course(3): 100

course(4): 147

course(5): 134

course(6): 120

course(7): 20

course(8): 130

course(9): 142

course(10): 124

===========================

name(4): Gary Pertez

course(1): 25

course(2): 100

course(3): 330

course(4): 120

course(5): 20

course(6): 135

course(7): 130

course(8): 142

course(9): 124

course(10): 204

===========================

name(5): Anita Morris

course(1): 25

course(2): 100

course(3): 20

course(4): 210

course(5): 350

course(6): 135

course(7): 130

course(8): 142

course(9): 124

course(10): 122

===========================

name(6): Todd Smythe

course(1): 25

course(2): 100

course(3): 144

course(4): 20

course(5): 220

course(6): 350

course(7): 135

course(8): 125

course(9): 130

course(10): 122

===========================

name(7): Marilyn Frantzen

course(1): 25

course(2): 120

course(3): 132

course(4): 230

course(5): 350

course(6): 135

course(7): 125

course(8): 145

course(9): 122

===========================

name(8): Charles Lowry

course(1): 25

course(2): 120

course(3): 132

course(4): 230

course(5): 125

course(6): 140

course(7): 420

course(8): 145

course(9): 122

===========================

name(9): Rick Chow

===========================

name(10): Irene Willig

===========================

As mentioned earlier, it is important to reinitialize the variable v_counter2 that is used to
reference individual elements of course_varray. When this step is omitted and the
variable is initialized only once at the time declaration, the script generates the following
runtime error:
ORA-06533: Subscript beyond count

ORA-06512: at line 33

4) Find and explain errors in the following script:

For Example ch15_11a.sql

DECLARE

 TYPE varray_type1 IS VARRAY(7) OF INTEGER;

 TYPE table_type2 IS TABLE OF varray_type1 INDEX BY PLS_INTEGER;

 varray1 varray_type1 := varray_type1(1, 2, 3);

 table2 table_type2 := table_type2(varray1, varray_type1(8, 9, 0));

BEGIN

 DBMS_OUTPUT.PUT_LINE ('table2(1)(2): '||table2(1)(2));

 FOR i IN 1..10 LOOP

 varray1.EXTEND;

 varray1(i) := i;

 DBMS_OUTPUT.PUT_LINE ('varray1('||i||'): '||varray1(i));

 END LOOP;

END;

Answer: Consider the error generated by the preceding script:
ORA-06550: line 6, column 26:

PLS-00222: no function with name 'TABLE_TYPE2' exists in this scope

ORA-06550: line 6, column 11:

PL/SQL: Item ignored

ORA-06550: line 9, column 44:

PLS-00320: the declaration of the type of this expression is incomplete or

malformed

ORA-06550: line 9, column 4:

PL/SQL: Statement ignored

Notice that this error refers to the initialization of the collection variable table2, which has
been declared as an associative array of varrays. You will recall that associative arrays are not
initialized prior to their use. As a result, the declaration of table2 must be modified.
Furthermore, additional assignment statement must be added to the executable portion of the
script as follows:

For Example ch15_11b.sql

DECLARE

 TYPE varray_type1 IS VARRAY(7) OF INTEGER;

 TYPE table_type2 IS TABLE OF varray_type1 INDEX BY PLS_INTEGER;

 varray1 varray_type1 := varray_type1(1, 2, 3);

 table2 table_type2;

BEGIN

 -- These statements populate associative array

 table2(1) := varray1;

 table2(2) := varray_type1(8, 9, 0);

 DBMS_OUTPUT.PUT_LINE ('table2(1)(2): '||table2(1)(2));

 FOR i IN 1..10

 LOOP

 varray1.EXTEND;

 varray1(i) := i;

 DBMS_OUTPUT.PUT_LINE ('varray1('||i||'): '||varray1(i));

 END LOOP;

END;

When run, this version of the script produces a different error:
ORA-06532: Subscript outside of limit

ORA-06512: at line 16

Notice that this is a runtime error that refers to the collection variable varray1. This error
occurs because varray is extended beyond its limit. Varray1 can contain up to seven integers.
After initialization, the varray contains three integers. As a result, it can be populated with no
more than four additional integer numbers. When the fifth iteration of the loop tries to extend
the varray to eighth element, it causes causes a subscript beyond count error.

It is important to note that there is no correlation between the loop counter and the EXTEND
method. Every time the EXTEND method is called, it increases the size of the varray by one
element. Since the varray has been initialized to three elements, the EXTEND method adds a
fourth element to the array for the first iteration of the loop. At this same time, the first element
of the varray is assigned a value of 1 via the loop counter. For the second iteration of the loop,
the EXTEND method adds a fifth element to the varray while the second element is assigned a
value of 2, and so forth.

Finally, consider the error-free version of the script and its output:

For Example ch15_11c.sql

DECLARE

 TYPE varray_type1 IS VARRAY(7) OF INTEGER;

 TYPE table_type2 IS TABLE OF varray_type1 INDEX BY BINARY_INTEGER;

 varray1 varray_type1 := varray_type1(1, 2, 3);

 table2 table_type2;

BEGIN

 -- These statements populate associative array

 table2(1) := varray1;

 table2(2) := varray_type1(8, 9, 0);

 DBMS_OUTPUT.PUT_LINE ('table2(1)(2): '||table2(1)(2));

 FOR i IN 4..7

 LOOP

 varray1.EXTEND;

 varray1(i) := i;

 END LOOP;

 -- Display elements of the varray

 FOR i IN 1..7

 LOOP

 DBMS_OUTPUT.PUT_LINE ('varray1('||i||'): '||varray1(i));

 END LOOP;

END;

The script output should look similar to the following:
table2(1)(2): 2

varray1(1): 1

varray1(2): 2

varray1(3): 3

varray1(4): 4

varray1(5): 5

varray1(6): 6

varray1(7): 7

