
Exercises for
Chapter 8:
Error Handling and
Built-In Exceptions
The Labs below provide you with exercises and suggested answers with discussion related to how
those answers resulted. The most important thing to realize is whether your answer works. You should
figure out the implications of the answers here and what the effects are from any different answers you
may come up with.

Lab 8.1 Handling Errors
In this exercise, you will calculate the value of the square root of a number and display it on the
screen. Create the following PL/SQL script:

For Example ch08_5a.sql

DECLARE

 v_num NUMBER := &sv_num;

BEGIN

 DBMS_OUTPUT.PUT_LINE ('Square root of '||v_num||' is '||SQRT(v_num));

EXCEPTION

 WHEN VALUE_ERROR

 THEN

 DBMS_OUTPUT.PUT_LINE ('An error has occurred');

END;

In the preceding script, the exception VALUE_ERROR, is raised when conversion or type mismatch
errors occur. This exception is covered in greater detail in Lab 8.2 of this chapter.

In order to test this script fully, execute it two times. For the first run, enter a value of 4 for the
variable v_num. For the second run, enter the value of –4 for the variable v_num.

Execute the script, and then answer the following questions:

a) What output was generated by the script (for both runs)?

Answer: The first version of the output is produced when the value of the variable v_num is 4.
The output should look like the following:
Square root of 4 is 2

The second version of the output is produced when the value of the variable v_num is –4. The
output should look like the following:
An error has occurred

b) Why do you think an error message was generated when the script was run a second time?

Answer: Error message “An error has occurred” was generated for the second run of example
because a runtime error has occurred. The built-in function SQRT is unable to accept a negative
number as its argument. Therefore, the exception VALUE_ERROR was raised, and the error
message was displayed in the Dbms Output window.

c) Assume that you are not familiar with the exception VALUE_ERROR. How would you change
this script to avoid this runtime error?

Answer: The new version of the script should look similar to the one below. All changes are
shown in bold.

For Example ch08_5b.sql

DECLARE

 v_num NUMBER := &sv_num;

BEGIN

 IF v_num >= 0

 THEN

 DBMS_OUTPUT.PUT_LINE ('Square root of '||v_num||' is '||SQRT(v_num));

 ELSE

 DBMS_OUTPUT.PUT_LINE ('A number cannot be negative');

 END IF;

END;

Notice that in this version of the script, the value of the v_num variable is checked with the
help of IF-THEN-ELSE statement. If the incoming value is negative, the message “A number
cannot be negative” is displayed in the Dbms Output window. When the value of –4 is entered
for the variable v_num, this script produces the following output:
A number cannot be negative

Lab 8.2 Built-In Exceptions
In this exercise, you will learn more about some built-in exceptions discussed in this chapter. Create
the following PL/SQL script:

For Example ch08_6a.sql

DECLARE

 v_exists NUMBER(1);

 v_total_students NUMBER(1);

 v_zip CHAR(5):= '&sv_zip';

BEGIN

 SELECT count(*)

 INTO v_exists

 FROM zipcode

 WHERE zip = v_zip;

 IF v_exists != 0

 THEN

 SELECT COUNT(*)

 INTO v_total_students

 FROM student

 WHERE zip = v_zip;

 DBMS_OUTPUT.PUT_LINE ('There are '||v_total_students||' students');

 ELSE

 DBMS_OUTPUT.PUT_LINE (v_zip||' is not a valid zip');

 END IF;

EXCEPTION

 WHEN VALUE_ERROR OR INVALID_NUMBER

 THEN

 DBMS_OUTPUT.PUT_LINE ('An error has occurred');

END;

This script contains two exceptions, VALUE_ERROR and INVALID_NUMBER. However, only one
exception handler is written for both exceptions. You can combine different exceptions in a single
exception handler when you want to handle both exceptions in a similar way. Often the exceptions
VALUE_ERROR and INVALID_NUMBER are used in a single exception handler because these Oracle
errors refer to the conversion problems that may occur at runtime.

In order to test this script fully, execute it three times for the following ZIP code values: 07024,
00914, and 12345, and then answer the following questions:

a) What output was generated by the script (for all values of zip)?

Answer: The first version of the output is produced when the value of zip is 07024. The second
version of the output is produced when the value of zip is 00914. The third version of the output
is produced when the value of zip is 12345.

The first output should look like the following:
There are 9 students

When “07024” is entered for the variable v_zip, the first SELECT INTO statement is
executed. This SELECT INTO statement checks whether the value of zip is valid, or, in other
words, if a record exists in the ZIPCODE table for a given value of zip. Next, the value of the
variable v_exists is evaluated with the help of the IF statement. For this run of the example,
the IF statement evaluates to TRUE, and, as a result, the SELECT INTO statement against the
STUDENT table is executed. Next, the DBMS_OUTPUT.PUT_LINE statement following the
SELECT INTO statement is executed, and the message “There are 9 students” is displayed in
the Dbms Output window.

The second output should look like the following:
There are 0 students

For the second run, the value “00914” is entered for the variable v_zip. Similarly to the above,
the SELECT INTO statement against the ZIPCODE table is executed. Next, the variable
v_exists is evaluated with the help of the IF statement. Because the IF statement evaluates

to TRUE, the SELECT INTO statement against the STUDENT table is executed as well, and
the message “There are 0 students” is displayed in the Dbms Output window.

Note that because the SELECT INTO statement against the STUDENT table uses group
function, COUNT, there is no reason to use the exception NO_DATA_FOUND, because the
COUNT function will always return data.

The third output should look like the following:
12345 is not a valid zip

For the third run, the value “12345” is entered for the variable v_zip. The SELECT INTO
statement against the ZIPCODE table is executed. Next, the variable v_exists is evaluated
with the help of the IF statement. Because the value of v_exists equals 0, the IF statement
evaluates to FALSE. As a result, the ELSE part of the IF statement is executed, and the
message “12345 is not a valid zip” is displayed in the Dbms Output window.

b) Explain why no exception has been raised for these values of the variable v_zip.

Answer: The exceptions VALUE_ERROR or INVALID_NUMBER have not been raised because
there was no conversion or type mismatch error. Both variables, v_exists and
v_total_students, have been defined as NUMBER(1).
The group function COUNT used in the SELECT INTO statements returns a NUMBER datatype.
Moreover, on both occasions, a single digit number is returned by the COUNT function. As a
result, neither exception has been raised.

c) Insert a record into the STUDENT table with a zip having the value of “07024” as indicated
below:
INSERT INTO student (student_id, salutation, first_name, last_name, zip,

 registration_date, created_by, created_date, modified_by, modified_date)

VALUES (STUDENT_ID_SEQ.NEXTVAL, 'Mr.', 'John', 'Smith', '07024',

 SYSDATE, 'STUDENT', SYSDATE, 'STUDENT', SYSDATE);

Run the script again for the same value of zip (“07024”). What output was generated by the
script? Why?

Answer: After a student has been added, the output should look like the following:
An error has occurred

Once a new record has been inserted into the STUDENT table with a ZIP having a value of
“07024,” the total number of students in this ZIP code changes from 9 to 10. As a result, the
SELECT INTO statement against the STUDENT table causes an error, because the variable
v_total_students has been defined as NUMBER(1). This means that only a single-digit
number can be stored in this variable. The number 10 is a two-digit number, so the exception
INVALID_NUMBER is raised. As a result, the message “An error has occurred” is displayed in
the Dbms Output window.

Watch Out!
After completing this exercise remember to rollback your changes to the STUDENT table as newly added
record may affect the outputs of the future examples and exercises.

Try It Yourself

The projects in this section are meant to have you use all of the skills that you have acquired
throughout this chapter. Here are some exercises that will help you test the depth of your
understanding

1) Create the following script: For a given student ID, display student’s first and last names, and
the number of courses that this student is registered for. Note that the script should contain
appropriate exception handling.

Answer: The script should look similar to the following:

For Example ch08_7a.sql

DECLARE

 v_student_id NUMBER := &sv_student_id;

 v_name VARCHAR2(30);

 v_enrollments NUMBER;

BEGIN

 SELECT first_name||' '||last_name

 INTO v_name

 FROM student

 WHERE student_id = v_student_id;

 SELECT COUNT(*)

 INTO v_enrollments

 FROM enrollment

 WHERE student_id = v_student_id;

 DBMS_OUTPUT.PUT_LINE

 ('Student '||v_name||' has '||v_enrollments||' enrollments');

EXCEPTION

 WHEN NO_DATA_FOUND

 THEN

 DBMS_OUTPUT.PUT_LINE ('This student does not exist');

END;

This script above accepts a value for student’s ID from a user. For a given student ID, it
determines the student’s name via the SELECT INTO statement. Then, it checks the number
of enrollments that a given student has via the SELECT INTO statement against the
ENROLLMENT table. Finally it displays this information it in the Dbms Output window.

Note that this script has exception-handling section with a single exception,
NO_DATA_FOUND. This exception is necessary because first SELECT INTO statement
causes NO_DATA_FOUND exception when non-existent student ID is passed into the script. In
such a case, the control of the execution is passed to the exception-handling section and the
message “This student does not exist” is displayed in the Dbms Output window.

Consider testing this script, for these student IDs: 230, 284, and 999. Each run produces
output as indicated below:
Student George Kocka has 1 enrollments

Student Salewa Lindeman has 0 enrollments

This student does not exist

Note that for the second run (student ID 248), the SELECT INTO statement against the
ENROLLMENT table completes successfully because it employs COUNT function which does
not cause the NO_DATA_FOUND exception as it is a group function.

Next, consider a different approach that may be used to achieve the same result. Note that in
this case even though the SELECT INTO statement contains COUNT function, it may cause
NO_DATA_FOUND exception due to how the data is selected from the STUDENT and
ENROLLMENT tables. All changes are highlighted in bold.

For Example ch08_7b.sql

DECLARE

 v_student_id NUMBER := &sv_student_id;

 v_name VARCHAR2(30);

 v_enrollments NUMBER;

BEGIN

 SELECT s.first_name||' '||s.last_name, COUNT(*)

 INTO v_name, v_enrollments

 FROM student s, enrollment e

 WHERE s.student_id = e.student_id

 AND s.student_id = v_student_id

 GROUP BY s.first_name||' '||s.last_name;

 DBMS_OUTPUT.PUT_LINE

 ('Student '||v_name||' has '||v_enrollments||' enrollments');

EXCEPTION

 WHEN NO_DATA_FOUND

 THEN

 BEGIN

 SELECT first_name||' '||last_name

 INTO v_name

 FROM student

 WHERE student_id = v_student_id;

 DBMS_OUTPUT.PUT_LINE ('Student '||v_name||' is not enrolled');

 EXCEPTION

 WHEN NO_DATA_FOUND

 THEN

 DBMS_OUTPUT.PUT_LINE ('This student does not exist');

 END;

END;

In this version of the script, there is a single SELECT INTO statement against the STUDENT
and ENROLLMENT tables. As a result, for a given student ID it is possible to encounter a
NO_DATA_FOUND exception in two cases:

§ There is no student record in the STUDENT table
§ There is no student record in the ENROLLMENT table

This is demonstrated further by the script output for the same student ID values used
earlier (230, 284, and 999):
Student George Kocka has 1 enrollments

And
Student Salewa Lindeman has 0 enrollments

And
This student does not exist

To attain similar behavior, the exception-handling section in this version has been expanded to
contain a nested PL/SQL block. This is done for error-reporting as when the SELECT INTO
statement against the STUDENT and ENROLLMENT table causes NO_DATA_FOUND exception
the reason for it is not known in advance.

2) Create the following script: For a given course ID, display course name, number of sections
this course has, and total number of students enrolled in this course. Note that the script should
contain appropriate exception handling.

Answer: The script should look similar to the following:

For Example ch08_8a.sql

DECLARE

 v_course_no NUMBER := &sv_course_no;

 v_name VARCHAR2(50);

 v_sections NUMBER;

 v_students NUMBER;

 BEGIN

 SELECT description

 INTO v_name

 FROM course

 WHERE course_no = v_course_no;

 -- check how many sections are offered for a given course

 SELECT COUNT(*)

 INTO v_sections

 FROM section

 WHERE course_no = v_course_no;

 -- check how many students are enrolled in a given course

 SELECT COUNT(e.student_id)

 INTO v_students

 FROM section s

 ,enrollment e

 WHERE s.section_id = e.section_id

 AND s.course_no = v_course_no;

 DBMS_OUTPUT.PUT_LINE

 ('Course '||v_course_no||', '||v_name||', has '||v_sections||' section(s)');

 DBMS_OUTPUT.PUT_LINE (v_students||' students are enrolled in this course');

EXCEPTION

 WHEN NO_DATA_FOUND

 THEN

 DBMS_OUTPUT.PUT_LINE (v_course_no||' is not a valid course');

END;

This script accepts a value for a course number at a run time. For a given course number, it
selects course description from the COURSE table. If provided course number does not exists in
the COURSE table, the control of the execution is passed to the exception-handling section of

the block, where the NO_DATA_FOUND exception is raised. As a result, the message ‘This is
not a valid course’ is displayed in the Dbms Output window. On the other hand, if the value
provided is a valid course number, the second SELECT INTO statement determines how many
sections are offered for a given course number, and the third SELECT INTO statement
determines how many students in total are registered for this course.

To test this script fully, consider running it twice. For the first run, the course number
provided at the run time is a valid course, and for the second run, the course number provided at
the run time should be for non-existent course. This is further demonstrated by the outputs
below for course numbers 25 (valid course number) and 999 (invalid course number):
Course 25, Intro to Programming, has 9 section(s)

45 students are enrolled in this course

And
999 is not a valid course

Next consider another version of the script where the SELECT INTO statements against the
SECTION and ENROLLMENT tables are combined into a single SELECT statement as
demonstrated below (changes are shown in bold):

For Example ch08_8b.sql

DECLARE

 v_course_no NUMBER := &sv_course_no;

 v_name VARCHAR2(50);

 v_sections NUMBER;

 v_students NUMBER;

 BEGIN

 SELECT description

 INTO v_name

 FROM course

 WHERE course_no = v_course_no;

 -- check how many sections are offered for a given course and

 -- how many students are enrolled in a given course

 SELECT COUNT(UNIQUE e.section_id), COUNT(e.student_id)

 INTO v_sections, v_students

 FROM section s

 ,enrollment e

 WHERE s.section_id = e.section_id

 AND s.course_no = v_course_no;

 DBMS_OUTPUT.PUT_LINE

 ('Course '||v_course_no||', '||v_name||', has '||v_sections||' section(s)');

 DBMS_OUTPUT.PUT_LINE (v_students||' students are enrolled in this course');

EXCEPTION

 WHEN NO_DATA_FOUND

 THEN

 DBMS_OUTPUT.PUT_LINE (v_course_no||' is not a valid course');

END;

When this version of the script is executed for the course number 25, it produces slightly
different output:
Course 25, Intro to Programming, has 8 section(s)

45 students are enrolled in this course

This occurs because one of the sections does not have any students enrolled in it, and as a result
does not have any corresponding records in the ENROLLMENT table. Essentially, this version of
the example contains a logical run time error that does not cause any exceptions and produces
incorrect result.

