
Exercices for
Chapter 11:
Introduction to
Cursors
Try It Yourself
The projects in this section are meant to have you use all of the skills that you have acquired
throughout this chapter. Here are some exercises that will help you test the depth of your
understanding.

In this chapter, you learned how to process data with a cursor. Additionally, you learned
how to simplify the code by using a cursor FOR LOOP. You also encountered the more
complex example of nesting cursors within cursors.

1) Write a nested cursor where the parent cursor calls information about each section of a
course. The child cursor counts the enrollment. The only output is one line for each
course with the Course Name and Section Number and the total enrollment.
Answer: The script should look similar to the following:
SET SERVEROUTPUT ON

DECLARE

 CURSOR c_course IS

 SELECT course_no, description

 FROM course

 WHERE course_no < 120;

 CURSOR c_enrollment(p_course_no IN course.course_no%TYPE)

 IS

 SELECT s.section_no section_no, count(*) count

 FROM section s, enrollment e

 WHERE s.course_no = p_course_no

 AND s.section_id = e.section_id

 GROUP BY s.section_no;

BEGIN

 FOR r_course IN c_course LOOP

 DBMS_OUTPUT.PUT_LINE

 (r_course.course_no||' '|| r_course.description);

 FOR r_enroll IN c_enrollment(r_course.course_no) LOOP

 DBMS_OUTPUT.PUT_LINE

 (Chr(9)||'Section: '||r_enroll.section_no||

 ' has an enrollment of: '||r_enroll.count);

 END LOOP;

 END LOOP;

END;

2) Write an anonymous PL/SQL block that finds all the courses that have at least one
section that is at its maximum enrollment. If there are no courses that meet that criterion,
then pick two courses and create that situation for each.

a. For each of those courses, add another section. The instructor for the new section
should be taken from the existing records in the instruct table. Use the instructor
who is signed up to teach the least number of courses. Handle the fact that,
during the execution of your program, the instructor teaching the most courses
may change.

b. Use any exception-handling techniques you think are useful to capture error
conditions.

3) In order to calculate the area of a circle, the circle’s radius must be squared and then
multiplied by π. Write a program that calculates the area of a circle. The value for the
radius should be provided with the help of a substitution variable. Use 3.14 for the value
of π. Once the area of the circle is calculated, display it on the screen.
Answer: The script should look similar to the following:
SET SERVEROUTPUT ON

DECLARE

 v_instid_min instructor.instructor_id%TYPE;

 v_section_id_new section.section_id%TYPE;

 v_snumber_recent section.section_no%TYPE := 0;

 -- This cursor determines the courses that have at least

 -- one section filled to capacity.

 CURSOR c_filled IS

 SELECT DISTINCT s.course_no

 FROM section s

 WHERE s.capacity = (SELECT COUNT(section_id)

 FROM enrollment e

 WHERE e.section_id = s.section_id);

BEGIN

 FOR r_filled IN c_filled LOOP

 -- For each course in this list, add another section.

 -- First, determine the instructor who is teaching

 -- the least number of courses. If there are more

 -- than one instructor teaching the same number of

 -- minimum courses (e.g. if there are three

 -- instructors teaching 1 course) use any of those

 -- instructors.

 SELECT instructor_id

 INTO v_instid_min

 FROM instructor

 WHERE EXISTS (SELECT NULL

 FROM section

 WHERE section.instructor_id =

 instructor.instructor_id

 GROUP BY instructor_id

 HAVING COUNT(*) =

 (SELECT MIN(COUNT(*))

 FROM section

 WHERE instructor_id IS NOT NULL

 GROUP BY instructor_id)

)

 AND ROWNUM = 1;

 -- Determine the section_id for the new section

 -- Note that this method would not work in a multi-user

 -- environment. A sequence should be used instead.

 SELECT MAX(section_id) + 1

 INTO v_section_id_new

 FROM section;

 -- Determine the section number for the new section

 -- This only needs to be done in the real world if

 -- the system specification calls for a sequence in

 -- a parent. The sequence in parent here refers to

 -- the section_no incrementing within the course_no,

 -- and not the section_no incrementing within

 -- the section_id.

 DECLARE

 CURSOR c_snumber_in_parent IS

 SELECT section_no

 FROM section

 WHERE course_no = r_filled.course_no

 ORDER BY section_no;

 BEGIN

 -- Go from the lowest to the highest section_no

 -- and find any gaps. If there are no gaps make

 -- the new section_no equal to the highest

 -- current section_no + 1.

 FOR r_snumber_in_parent IN c_snumber_in_parent LOOP

 EXIT WHEN

 r_snumber_in_parent.section_no > v_snumber_recent + 1;

 v_snumber_recent := r_snumber_in_parent.section_no + 1;

 END LOOP;

 -- At this point, v_snumber_recent will be equal

 -- either to the value preceeding the gap or to

 -- the highest section_no for that course.

 END;

 -- Do the insert.

 INSERT INTO section

 (section_id, course_no, section_no, instructor_id)

 VALUES

 (v_section_id_new, r_filled.course_no, v_snumber_recent,

 v_instid_min);

 COMMIT;

 END LOOP;

EXCEPTION

 WHEN OTHERS THEN

 DBMS_OUTPUT.PUT_LINE ('An error has occurred');

END;

