
Exercises for
Chapter 19:
Procedures
Try It Yourself
The projects in this section are meant to have you utilize all of the skills that you have acquired
throughout this chapter. Here are some exercises that will help you test the depth of your
understanding.

Part 1
1. Write a procedure with no parameters. The procedure will let you know if the current day

is a weekend or a weekday. Additionally, it will let you know the user name and current
time. It will also let you know how many valid and invalid procedures are in the database.

Answer: The procedure should look similar to the following:
CREATE OR REPLACE PROCEDURE current_status

AS

 v_day_type CHAR(1);

 v_user VARCHAR2(30);

 v_valid NUMBER;

 v_invalid NUMBER;

BEGIN

 SELECT SUBSTR(TO_CHAR(sysdate, 'DAY'), 0, 1)

 INTO v_day_type

 FROM dual;

 IF v_day_type = 'S' THEN

 DBMS_OUTPUT.PUT_LINE ('Today is a weekend.');

 ELSE

 DBMS_OUTPUT.PUT_LINE ('Today is a weekday.');

 END IF;

 --

 DBMS_OUTPUT.PUT_LINE('The time is: '||

 TO_CHAR(sysdate, 'HH:MI AM'));

 --

 SELECT user

 INTO v_user

 FROM dual;

 DBMS_OUTPUT.PUT_LINE ('The current user is '||v_user);

 --

 SELECT NVL(COUNT(*), 0)

 INTO v_valid

 FROM user_objects

 WHERE status = 'VALID'

 AND object_type = 'PROCEDURE';

 DBMS_OUTPUT.PUT_LINE

 ('There are '||v_valid||' valid procedures.');

 --

 SELECT NVL(COUNT(*), 0)

 INTO v_invalid

 FROM user_objects

 WHERE status = 'INVALID'

 AND object_type = 'PROCEDURE';

 DBMS_OUTPUT.PUT_LINE

 ('There are '||v_invalid||' invalid procedures.');

END;

SET SERVEROUTPUT ON

EXEC current_status;

2. Write a procedure that takes in a zip code, city, and state and inserts the values into the
ZIPCODE table. There should be a check to see if the zip code is already in the database.
If it is, an exception will be raised and an error message will be displayed. Write an
anonymous block that uses the procedure and inserts your zip code.

Answer: The script should look similar to the following:
CREATE OR REPLACE PROCEDURE insert_zip

 (I_ZIPCODE IN zipcode.zip%TYPE,

 I_CITY IN zipcode.city%TYPE,

 I_STATE IN zipcode.state%TYPE)

AS

 v_zipcode zipcode.zip%TYPE;

 v_city zipcode.city%TYPE;

 v_state zipcode.state%TYPE;

 v_dummy zipcode.zip%TYPE;

BEGIN

 v_zipcode := i_zipcode;

 v_city := i_city;

 v_state := i_state;

--

 SELECT zip

 INTO v_dummy

 FROM zipcode

 WHERE zip = v_zipcode;

--

 DBMS_OUTPUT.PUT_LINE('The zipcode '||v_zipcode||

 ' is already in the database and cannot be'||

 ' reinserted.');

--

EXCEPTION

 WHEN NO_DATA_FOUND THEN

 INSERT INTO ZIPCODE

 VALUES (v_zipcode, v_city, v_state, user, sysdate,

 user, sysdate);

 WHEN OTHERS THEN

 DBMS_OUTPUT.PUT_LINE ('There was an unknown error '||

 'in insert_zip.');

END;

SET SERVEROUTPUT ON

BEGIN

 insert_zip (10035, 'No Where', 'ZZ');

END;

BEGIN

 insert_zip (99999, 'No Where', 'ZZ');

END;

ROLLBACK;

Part 2
3. Create a stored procedure based on the script ch17_1c.sql (version 3), created in first lab

of chapter 17. The procedure should accept two parameters to hold a table name and an
ID, and return six parameters with first name, last name, street, city, state, and zip
information.

Answer: The procedure should look similar to the procedure shown
below. All changes are highlighted in bold.

CREATE OR REPLACE PROCEDURE get_name_address

 (table_name_in IN VARCHAR2

 ,id_in IN NUMBER

 ,first_name_out OUT VARCHAR2

 ,last_name_out OUT VARCHAR2

 ,street_out OUT VARCHAR2

 ,city_out OUT VARCHAR2

 ,state_out OUT VARCHAR2

 ,zip_out OUT VARCHAR2)

AS

 sql_stmt VARCHAR2(200);

BEGIN

 sql_stmt := 'SELECT a.first_name, a.last_name, a.street_address'||

 ' ,b.city, b.state, b.zip' ||

 ' FROM '||table_name_in||' a, zipcode b' ||

 ' WHERE a.zip = b.zip' ||

 ' AND '||table_name_in||'_id = :1';

 EXECUTE IMMEDIATE sql_stmt

 INTO first_name_out, last_name_out, street_out, city_out, state_out,

 zip_out

 USING id_in;

END get_name_address;

The procedure above contains two IN parameters whose values are used
by the dynamic SQL statement, and six OUT parameters that hold date
returned by the SELECT statement. Once created, the procedure can be
tested with the following PL/SQL block:

SET SERVEROUTPUT ON

DECLARE

 v_table_name VARCHAR2(20) := '&sv_table_name';

 v_id NUMBER := &sv_id;

 v_first_name VARCHAR2(25);

 v_last_name VARCHAR2(25);

 v_street VARCHAR2(50);

 v_city VARCHAR2(25);

 v_state VARCHAR2(2);

 v_zip VARCHAR2(5);

BEGIN

 get_name_address (v_table_name, v_id, v_first_name, v_last_name,

 v_street, v_city, v_state, v_zip);

 DBMS_OUTPUT.PUT_LINE ('First Name: '||v_first_name);

 DBMS_OUTPUT.PUT_LINE ('Last Name: '||v_last_name);

 DBMS_OUTPUT.PUT_LINE ('Street: '||v_street);

 DBMS_OUTPUT.PUT_LINE ('City: '||v_city);

 DBMS_OUTPUT.PUT_LINE ('State: '||v_state);

 DBMS_OUTPUT.PUT_LINE ('Zip Code: '||v_zip);

END;

When run, this script produces the following output (the first run is
against the STUDENT table, and the second run is against the
INSTRUCTOR table):

Enter value for sv_table_name: student

old 2: v_table_name VARCHAR2(20) := '&sv_table_name';

new 2: v_table_name VARCHAR2(20) := 'student';

Enter value for sv_id: 105

old 3: v_id NUMBER := &sv_id;

new 3: v_id NUMBER := 105;

First Name: Angel

Last Name: Moskowitz

Street: 320 John St.

City: Ft. Lee

State: NJ

Zip Code: 07024

PL/SQL procedure successfully completed.

Enter value for sv_table_name: instructor

old 2: v_table_name VARCHAR2(20) := '&sv_table_name';

new 2: v_table_name VARCHAR2(20) := 'instructor';

Enter value for sv_id: 105

old 3: v_id NUMBER := &sv_id;

new 3: v_id NUMBER := 105;

First Name: Anita

Last Name: Morris

Street: 34 Maiden Lane

City: New York

State: NY

Zip Code: 10015

PL/SQL procedure successfully completed.

4. Modify procedure created in the previous exercise. Instead of using six parameters to hold
name and address information, the procedure should return a user-defined record that
contains six fields that hold name and address information. Note: you may want to create a
package where you define record type. This record may be used later, for example, when
the procedure is invoked in a PL/SQL block.

Answer: The package should look similar to the package shown below.
All changes to the procedure are highlighted in bold.

CREATE OR REPLACE PACKAGE dynamic_sql_pkg AS

 -- Create user-defined record type

 TYPE name_addr_rec_type IS RECORD

 (first_name VARCHAR2(25),

 last_name VARCHAR2(25),

 street VARCHAR2(50),

 city VARCHAR2(25),

 state VARCHAR2(2),

 zip VARCHAR2(5));

 PROCEDURE get_name_address (table_name_in IN VARCHAR2

 ,id_in IN NUMBER

 ,name_addr_rec OUT name_addr_rec_type);

END dynamic_sql_pkg;

/

CREATE OR REPLACE PACKAGE BODY dynamic_sql_pkg AS

PROCEDURE get_name_address (table_name_in IN VARCHAR2

 ,id_in IN NUMBER

 ,name_addr_rec OUT name_addr_rec_type)

IS

 sql_stmt VARCHAR2(200);

BEGIN

 sql_stmt := 'SELECT a.first_name, a.last_name, a.street_address'||

 ' ,b.city, b.state, b.zip' ||

 ' FROM '||table_name_in||' a, zipcode b' ||

 ' WHERE a.zip = b.zip' ||

 ' AND '||table_name_in||'_id = :1';

 EXECUTE IMMEDIATE sql_stmt

 INTO name_addr_rec

 USING id_in;

END get_name_address;

END dynamic_sql_pkg;

In the package specification created above, you declare a user-defined
record type. This record type is used by the procedure for its OUT
parameter, name_addr_rec. Once the package is created, its procedure
can be tested with the following PL/SQL block (changes are shown in
bold):

SET SERVEROUTPUT ON

DECLARE

 v_table_name VARCHAR2(20) := '&sv_table_name';

 v_id NUMBER := &sv_id;

 name_addr_rec DYNAMIC_SQL_PKG.NAME_ADDR_REC_TYPE;

BEGIN

 dynamic_sql_pkg.get_name_address (v_table_name, v_id, name_addr_rec);

 DBMS_OUTPUT.PUT_LINE ('First Name: '||name_addr_rec.first_name);

 DBMS_OUTPUT.PUT_LINE ('Last Name: '||name_addr_rec.last_name);

 DBMS_OUTPUT.PUT_LINE ('Street: '||name_addr_rec.street);

 DBMS_OUTPUT.PUT_LINE ('City: '||name_addr_rec.city);

 DBMS_OUTPUT.PUT_LINE ('State: '||name_addr_rec.state);

 DBMS_OUTPUT.PUT_LINE ('Zip Code: '||name_addr_rec.zip);

END;

Notice that instead of declaring six variables, you declare one variable of
the user-defined record type, name_addr_rec_type. Because this
record type has been defined in the package DYNAMIC_SQL_PKG, the
name of the record type is prefixed by the name of the package.
Similarly, the name of package has been added to the procedure call
statement.

When run, this script produces the output shown below (the first output
is against the STUDENT table, and the second output is against the
INSTRUCTOR table):

Enter value for sv_table_name: student

old 2: v_table_name VARCHAR2(20) := '&sv_table_name';

new 2: v_table_name VARCHAR2(20) := 'student';

Enter value for sv_id: 105

old 3: v_id NUMBER := &sv_id;

new 3: v_id NUMBER := 105;

First Name: Angel

Last Name: Moskowitz

Street: 320 John St.

City: Ft. Lee

State: NJ

Zip Code: 07024

PL/SQL procedure successfully completed.

Enter value for sv_table_name: instructor

old 2: v_table_name VARCHAR2(20) := '&sv_table_name';

new 2: v_table_name VARCHAR2(20) := 'instructor';

Enter value for sv_id: 105

old 3: v_id NUMBER := &sv_id;

new 3: v_id NUMBER := 105;

First Name: Anita

Last Name: Morris

Street: 34 Maiden Lane

City: New York

State: NY

Zip Code: 10015

PL/SQL procedure successfully completed.

