
Exercises for
Chapter 3: SQL in
PL/SQL
The Labs below provide you with exercises and suggested answers with discussion related to
how those answers resulted. The most important thing to realize is whether your answer works.
You should figure out the implications of the answers here and what the effects are from any
different answers you may come up with.

In the chapter discussion, you learned how to use numerous SQL techniques in a PL/SQL
block. First, you learned how to use SELECT INTO to generate values for a variable. Then you
learned the various DML methods, including the use of a sequence. Finally, you learned how to
manage transactions by using savepoints. Complete the following projects by writing the code
for each step and running it and then going on to the next step.

1. Create a table called CHAP4 with two columns; one is ID (a number) and the second is
NAME, which is a VARCHAR2 (20).
Answer: The answer should look similar to the following:
PROMPT Creating Table 'CHAP4'
CREATE TABLE chap4

 (id NUMBER,

 name VARCHAR2(20));

2. Create a sequence called CHAP4_SEQ that increments by units of 5.
Answer: The answer should look similar to the following:
PROMPT Creating Sequence 'CHAP4_SEQ'
CREATE SEQUENCE chap4_seq

 NOMAXVALUE

 NOMINVALUE

 NOCYCLE

 NOCACHE;

3. Write a PL/SQL block that performs the following in this order:

a. Declares two variables, one for the v_name and one for v_id. The v_name
variable can be used throughout the block for holding the name that will be
inserted, realize that the value will change in the course the block.

b. The block then inserts into the table the name of the student that is enrolled in
the most classes and uses a sequence for the ID; afterward there is
SAVEPOINT A.

c. Then the student with the least enrollments is inserted; afterward there is
SAVEPOINT B.

d. Then the instructor who is teaching the maximum number of courses is inserted
in the same way. Afterward there is SAVEPOINT C.

e. Using a SELECT INTO statement, hold the value of the instructor in the
variable v_id.

f. Undo the instructor insert by the use of rollback.

g. Insert the instructor teaching the least amount of courses, but do not use the
sequence to generate the ID; instead use the value from the first instructor,
whom you have since undone.

h. Now insert the instructor teaching the most number of courses and use the
sequence to populate his ID.

i. Add DBMS_OUTPUT throughout the block to display the values of the
variables as they change. (This is a good practice for debugging.)

Answer: The script should look similar to the following:
DECLARE
 v_name student.last_name%TYPE;

 v_id student.student_id%TYPE;

BEGIN

 BEGIN

 -- A second block is used to capture the possibility of

 -- multiple students meeting this requirement.

 -- The exception section will handles this situation

 SELECT s.last_name

 INTO v_name

 FROM student s, enrollment e

 WHERE s.student_id = e.student_id

 HAVING COUNT(*) = (SELECT MAX(COUNT(*))

 FROM student s, enrollment e

 WHERE s.student_id = e.student_id

 GROUP BY s.student_id)

 GROUP BY s.last_name;

 EXCEPTION

 WHEN TOO_MANY_ROWS THEN

 v_name := 'Multiple Names';

 END;

 INSERT INTO CHAP4

 VALUES (CHAP4_SEQ.NEXTVAL, v_name);

 SAVEPOINT A;

 BEGIN

 SELECT s.last_name

 INTO v_name

 FROM student s, enrollment e

 WHERE s.student_id = e.student_id

 HAVING COUNT(*) = (SELECT MIN(COUNT(*))

 FROM student s, enrollment e

 WHERE s.student_id = e.student_id

 GROUP BY s.student_id)

 GROUP BY s.last_name;

 EXCEPTION

 WHEN TOO_MANY_ROWS THEN

 v_name := 'Multiple Names';

 END;

 INSERT INTO CHAP4

 VALUES (CHAP4_SEQ.NEXTVAL, v_name);

 SAVEPOINT B;

 BEGIN

 SELECT i.last_name

 INTO v_name

 FROM instructor i, section s

 WHERE s.instructor_id = i.instructor_id

 HAVING COUNT(*) = (SELECT MAX(COUNT(*))

 FROM instructor i, section s

 WHERE s.instructor_id = i.instructor_id

 GROUP BY i.instructor_id)

 GROUP BY i.last_name;

 EXCEPTION

 WHEN TOO_MANY_ROWS THEN

 v_name := 'Multiple Names';

 END;

 SAVEPOINT C;

 BEGIN

 SELECT instructor_id

 INTO v_id

 FROM instructor

 WHERE last_name = v_name;

 EXCEPTION

 WHEN NO_DATA_FOUND THEN

 v_id := 999;

 END;

 INSERT INTO CHAP4

 VALUES (v_id, v_name);

 ROLLBACK TO SAVEPOINT B;

 BEGIN

 SELECT i.last_name

 INTO v_name

 FROM instructor i, section s

 WHERE s.instructor_id = i.instructor_id

 HAVING COUNT(*) = (SELECT MIN(COUNT(*))

 FROM instructor i, section s

 WHERE s.instructor_id = i.instructor_id

 GROUP BY i.instructor_id)

 GROUP BY i.last_name;

 EXCEPTION

 WHEN TOO_MANY_ROWS THEN

 v_name := 'Multiple Names';

 END;

 INSERT INTO CHAP4

 VALUES (v_id, v_name);

 BEGIN

 SELECT i.last_name

 INTO v_name

 FROM instructor i, section s

 WHERE s.instructor_id = i.instructor_id

 HAVING COUNT(*) = (SELECT MAX(COUNT(*))

 FROM instructor i, section s

 WHERE s.instructor_id = i.instructor_id

 GROUP BY i.instructor_id)

 GROUP BY i.last_name;

 EXCEPTION

 WHEN TOO_MANY_ROWS THEN

 v_name := 'Multiple Names';

 END;

 INSERT INTO CHAP4

 VALUES (CHAP4_SEQ.NEXTVAL, v_name);

END;

