
Exercises for
Chapter 1: PL/SQL
Concepts
The Labs below provide you with exercises and suggested answers with discussion related to
how those answers resulted. The most important thing to realize is whether your answer works.
You should figure out the implications of the answers here and what the effects are from any
different answers you may come up with.

By the Way
Note that there is no Exercise section for Lab 1.2 PL/SQL Development Environment.

Lab 1.1 PL/SQL Architecture
Answer the following questions:

PL/SQL Architecture
a) Why it is more efficient to combine SQL statements into PL/SQL blocks?

Answer: It is more efficient to use SQL statements within PL/SQL blocks because
network traffic can be decreased significantly, and an application becomes more efficient
as well.
When an SQL statement is issued on the client computer, the request is made to the
database on the server, and the result set is sent back to the client. As a result, a single
SQL statement causes two trips on the network. If multiple SELECT statements are
issued, the network traffic can increase significantly very quickly. For example, four
SELECT statements cause eight network trips. If these statements are part of the PL/SQL
block, there are still only two network trips made, as in the case of a single SELECT
statement.

b) What are the differences between named and anonymous PL/SQL blocks?

Answer: Named PL/SQL blocks can be stored in the database and referenced later by
their names. Since anonymous PL/SQL blocks do not have names, they cannot be stored
in the database and referenced later.

PL/SQL Block Structure
For the next two questions, consider the following code:
DECLARE

 v_name VARCHAR2(50);

 v_total NUMBER;

BEGIN

 SELECT i.first_name||' '||i.last_name, COUNT(*)

 INTO v_name, v_total

 FROM instructor i, section s

 WHERE i.instructor_id = s.instructor_id

 AND i.instructor_id = 102

 GROUP BY i.first_name||' '||i.last_name;

 DBMS_OUTPUT.PUT_LINE ('Instructor '||v_name||' teaches '||v_total||' courses');

EXCEPTION

 WHEN NO_DATA_FOUND

 THEN

 DBMS_OUTPUT.PUT_LINE ('There is no such instructor');

END;

a) Based on the code example provided, describe the structure of a PL/SQL block.

Answer: PL/SQL blocks contain three sections: declaration section, executable section,
and exception-handling section. The executable section is the only mandatory section of
the PL/SQL block.
The declaration section holds definitions of PL/SQL identifiers such as variables,
constants, and cursors. The declaration section starts with the keyword DECLARE. The
declaration section
DECLARE

 v_name VARCHAR2(50);

 v_total NUMBER;

contains definitions of two variables, v_name and v_total.
The executable section holds executable statements. It starts with the keyword BEGIN
and ends with the keyword END. The executable section shown in bold letters
BEGIN

 SELECT i.first_name||' '||i.last_name, COUNT(*)

 INTO v_name, v_total

 FROM instructor i, section s

 WHERE i.instructor_id = s.instructor_id

 AND i.instructor_id = 102

 GROUP BY i.first_name||' '||i.last_name;

 DBMS_OUTPUT.PUT_LINE

 ('Instructor '||v_name||' teaches '||v_total||' courses');

EXCEPTION

 WHEN NO_DATA_FOUND

 THEN

 DBMS_OUTPUT.PUT_LINE ('There is no such instructor');

END;

contains a SELECT INTO statement that assigns values to the variables v_name and
v_total, and a DBMS_OUTPUT.PUT_LINE statement that displays their values on
the screen.
The exception-handling section of the PL/SQL block contains statements that are
executed only if runtime errors occur in the PL/SQL block. The following exception-
handling section

EXCEPTION

 WHEN NO_DATA_FOUND

 THEN

 DBMS_OUTPUT.PUT_LINE ('There is no such instructor');

contains the DBMS_OUTPUT.PUT_LINE statement that is executed when runtime error
NO_DATA_FOUND occurs.

b) What happens when runtime error NO_DATA_FOUND occurs in the PL/SQL block just
shown?

Answer: When a runtime error occurs in the PL/SQL block, control is passed to the -
exception-handling section of the block. The exception NO_DATA_FOUND is evaluated
then with the help of the WHEN clause.
When the SELECT INTO statement
SELECT i.first_name||' '||i.last_name, COUNT(*)

 INTO v_name, v_total

 FROM instructor i, section s

WHERE i.instructor_id = s.instructor_id

 AND i.instructor_id = 102

GROUP BY i.first_name||' '||i.last_name;

does not return any rows, control of execution is passed to the exception-
handling section of the block. Next, the DBMS_OUTPUT.PUT_LINE statement
associated with the exception NO_DATA_FOUND is executed. As a result, the message
“There is no such instructor” is displayed on the screen.

How PL/SQL Gets Executed

a) What happens when an anonymous PL/SQL block is executed?

Answer: When an anonymous PL/SQL block is executed, the code is sent to the PL/SQL
engine on the server, where it is compiled.

b) What steps are included in the compilation process of a PL/SQL block?

Answer: The compilation process includes syntax checking, binding, and p-code
generation.
Syntax checking involves checking PL/SQL code for compilation errors. Once syntax
errors have been corrected, a storage address is assigned to the variables that are used to
hold data for Oracle. This process is called binding. Next, p-code is generated for the
PL/SQL block. P-code is a list of instructions to the PL/SQL engine. For named blocks,
p-code is stored in the database, and it is used the next time the program is executed.

c) What is a syntax error?

Answer: A syntax error occurs when a statement does not correspond to the syntax rules
of the programming language. An undefined variable or a misplaced keyword are
examples of syntax error.

d) How does a syntax error differ from a runtime error?

Answer: A syntax error can be detected by the PL/SQL compiler. A runtime error occurs
while the program is running and cannot be detected by the PL/SQL compiler.
A misspelled keyword is an example of the syntax error. For example, the script
BEIN

 DBMS_OUTPUT.PUT_LINE ('This is a test');

END;

contains a syntax error. You should try to find this error.
A SELECT INTO statement returning no rows is an example of a runtime error. This
error can be handled with the help of the exception-handling section of the PL/SQL
block.

Lab 1.3 PL/SQL: The Basics
Answer the following questions.

DBMS_OUTPUT.PUT_LINE Statement

a) What the DBMS_OUTPUT.PUT_LINE statement is used for?

Answer: The DBMS_OUTPUT.PUT_LINE statement is used to display information on
the screen.

b) Where does the DBMS_OUTPUT.PUT_LINE statement write its information prior to

displaying it on the screen?

Answer: First, the information is written into the buffer for storage. Once a program has
been completed, the information from the buffer is displayed on the screen. The size of
the buffer can be set between 2,000 and 1,000,000 bytes.

For the next two questions, create the following PL/SQL script:

For Example ch01_3a.sql

DECLARE

 v_num NUMBER := 10;

 v_result NUMBER;

BEGIN

 v_result := POWER(v_num, 2);

END;

c) Modify the script above so that the value of the v_result variable is displayed on the
screen.

Answer: The script should be modified similar the following. Newly added
DBMS_OUTPUT.PUT_LINE statement is shown in bold.

For Example ch01_3b.sql

DECLARE

 v_num NUMBER := 10;

 v_result NUMBER;

BEGIN

 v_result := POWER(v_num, 2);

 DBMS_OUTPUT.PUT_LINE ('The value of v_result is: '||v_result);

END;

Watch Out!

When executing the script in SQL Developer, you need to enable the Dbms Output window. To
enable the DBMS_OUTPUT in SQL*Plus, you enter one of the following statement before the
PL/SQL block:

SET SERVEROUTPUT ON;

Otherwise, you will not be able to see the results of the DBMS_OUTPUT.PUT_LINE statement on
the screen!

d) What output is generated by the script?

Answer: The following output is shown in the Dbms Output window:
The value of v_result is: 100

Substitution Variable Feature

a) What are substitution variables?

Answer: Substitution variables are special type of variables that enable PL/SQL to
accept input from a user at a run-time. Substitution variables cannot be used to output
values because no memory is allocated for them. Substitution variables are replaced with
the values provided by the user before the PL/SQL block is sent to the database.

b) How do you recognize substitution variable in a PL/SQL script?

Answer: Substitution variables are usually prefixed by the ampersand (&) character or
double ampersand (&&) character.

c) Why is it considered a good practice to enclose substitution variables with single quotes
for string datatypes?

Answer: A program cannot depend wholly on a user to provide text information in single
quotes. Enclosing a substitution variable with single quotes allows a program to be less
error-prone.

d) Modify script ch01_3b.sql created in the previous section so that it prompts a user to
provide input value for the variable v_num.

Answer: The script should be modified similar the following. Newly added substitution
variable is highlighted in bold.

For Example ch01_3c.sql

DECLARE

 v_num NUMBER := &sv_num;

 v_result NUMBER;

BEGIN

 v_result := POWER(v_num, 2);

 DBMS_OUTPUT.PUT_LINE ('The value of v_result is: '||v_result);

END;

In this version of the script, the assignment statement in the declaration portion has been
modified. Instead of initializing the variable v_num to 10, it is now initialized to a value
provided at the run time. When this version of the script is executed, and the value of 5 is
provided at the run time, it produces the output is as shown:

The value of v_result is: 25

By the Way?
When a substitution variable is used in a PL/SQL script, a user is prompted to enter the value for
the variable regardless of the Dbms Output setting. The user prompt is provided by SQL Developer
and SQL*Plus tools and does not depend on whether the Dbms Output setting has been enabled
for a particular script execution.

Try It Yourself
The projects in this section are meant to have you utilize all of the skills that you have acquired
throughout this chapter. Here are some exercises that will help you test the depth of your
understanding.

1) In order to calculate the area of a circle, the circle’s radius must be squared and then
multiplied by π. Write a program that calculates the area of a circle. The value for the
radius should be provided with the help of a substitution variable. Use 3.14 for the value
of π. Once the area of the circle is calculated, display it on the screen.

Answer: The script should look similar to the following:

For Example ch01_4a.sql

DECLARE

 v_radius NUMBER := &sv_radius;

 v_area NUMBER;

BEGIN

 v_area := POWER(v_radius, 2) * 3.14;

 DBMS_OUTPUT.PUT_LINE ('The area of the circle is: '||v_area);

END;

The declaration section of this script contains definitions of two variables, v_radius
and v_area, to store the values for the radius of the circle and its area, respectively.
Note that the value for variable v_radius is provided at the run via substitution
variable &sv_radius.
Next, the executable section computes the area of a circle and assigns its value to the
variable v_area. This is accomplished with the help of the built-in function POWER and
the value stored in the variable v_radius. Finally, it displays newly calculated value of
the v_area on the screen.
For example, if value of 5 is provided at the run time, then the script produces the
following output:
The area of the circle is: 78.5

2) Create a script that displays the name and time of the day based on the system date. The

sample output is provided below for your reference: 'Today is Monday at 10:49 AM'

Answer: The script should look similar to the following:

For Example ch01_5a.sql

DECLARE

 v_date DATE := SYSDATE;

BEGIN

 DBMS_OUTPUT.PUT_LINE ('Today is '||to_char(v_date, 'fmDay')||

 ' at ' ||to_char(v_date, 'hh:mi AM'));

END;

The declaration section of this script contains definition and initialization of the variable,
v_date. The executable section contains a single DBMS_OUTPUT.PUT_LINE
statement that construct the output message displayed on the screen. Note the usage of the
TO_CHAR function. In the first instance, it is used to extract the name of the day, and in
the second instance it is used to extract the time of the day. When run, the script produces
the following output:
Today is Monday at 03:49 PM

