
Exercises for
Chapter 13: Triggers
The Labs below provide you with exercises and suggested answers with discussion related to how
those answers resulted. The most important thing to realize is whether your answer works. You should
figure out the implications of the answers here and what the effects are from any different answers you
may come up with.

Lab 13.1 What Triggers Are
Answer the following questions.

Database Trigger
In this exercise, you need to determine the trigger firing event, its type, and so on, based on the
CREATE clause of the trigger. Consider the following CREATE clause:

CREATE TRIGGER student_au

AFTER UPDATE ON STUDENT

FOR EACH ROW

WHEN (NVL(NEW.ZIP, ' ') <> OLD.ZIP)

 Trigger Body…

Answer the following questions:

a) Assume a trigger named STUDENT_AU already exists in the database. If you use the CREATE
TRIGGER clause above to modify the existing trigger, what error message is generated?
Explain your answer.

Answer: An error message stating STUDENT_AU name is already used by another object is
displayed on the screen. The CREATE TRIGGER clause has the ability to create new objects in
the database, but it is unable to handle modifications. In order to modify the existing trigger, the
reserved word REPLACE must be added to the CREATE TRIGGER clause. In this case, the old
version of the trigger is dropped without warning, and the new version of the trigger is created.

b) If an update statement is issued on the STUDENT table, how many times does this trigger fire?

Answer: The trigger fires as many times as there are rows affected by the triggering event
because statement FOR EACH ROW is present in the CREATE TRIGGER clause. When FOR
EACH ROW statement is not present in the CREATE TRIGGER clause, the trigger fires once for
the triggering event. In this case, if the following UPDATE statement
UPDATE student

 SET zip = '01247'

 WHERE zip = '02189';

is issued against the STUDENT table, it updates as many records as there are students with ZIP
code 02189. Accordingly, the trigger will fire as many times as there are records affected by this
UPDATE statement.

c) How many times does this trigger fire if an UPDATE statement is issued against the STUDENT

table, but the ZIP column is not changed?

Answer: The trigger does not fire at all because the condition of the WHEN statement evaluates
to FALSE.

The condition
(NVL(NEW.ZIP, ' ') <> OLD.ZIP)

of the WHEN statement compares the new value of ZIP code to the old value of ZIP code. If the
value of the ZIP code is not changed, this condition evaluates to FALSE. As a result, this trigger
does not fire if an UPDATE statement does not modify the value of ZIP code for a specified
record.

d) Why do you think there is a NVL function present in the WHEN statement of the CREATE
TRIGGER clause?

Answer: If an UPDATE statement does not modify the column ZIP, the value of the field
NEW.ZIP is undefined. In other words, it is NULL. A NULL value of ZIP cannot be compared
with a non-NULL value of ZIP. Therefore, the NVL function is present in the WHEN condition.
Note that because the column ZIP has a NOT NULL constraint defined, there is no need to use
the NVL function for the OLD.ZIP field. For an UPDATE statement issued against the
STUDENT table, there is always a value of ZIP that is currently present in the table.

BEFORE Triggers
In this exercise, you create a trigger on the INSTRUCTOR table that fires before an INSERT
statement is issued against the table. The trigger determines the values for the columns
CREATED_BY, MODIFIED_BY, CREATED_DATE, and MODIFIED_DATE. In addition, it
determines if the value of zip provided by an INSERT statement is valid. Create the following trigger:

For Example ch13_8a.sql

CREATE OR REPLACE TRIGGER instructor_bi

BEFORE INSERT ON INSTRUCTOR

FOR EACH ROW

DECLARE

 v_work_zip CHAR(1);

BEGIN

 :NEW.CREATED_BY := USER;

 :NEW.CREATED_DATE := SYSDATE;

 :NEW.MODIFIED_BY := USER;

 :NEW.MODIFIED_DATE := SYSDATE;

 SELECT 'Y'

 INTO v_work_zip

 FROM zipcode

 WHERE zip = :NEW.ZIP;

EXCEPTION

 WHEN NO_DATA_FOUND

 THEN

 RAISE_APPLICATION_ERROR (-20001, 'Zip code is not valid!');

END;

Answer the following questions:

a) If an INSERT statement issued against the INSTRUCTOR table is missing a value for the
column ZIP, does the trigger raise an exception? Explain your answer.

Answer: Yes, the trigger raises an exception. When an INSERT statement does not provide a
value for the column ZIP, the value of the data element :NEW.ZIP is NULL. This value is used
in the WHERE clause of the SELECT INTO statement. As a result, the SELECT INTO
statement is unable to return data. Therefore, the exception NO_DATA_FOUND is raised by the
trigger.

b) Modify this trigger so that a more appropriate error message is displayed when an INSERT
statement is missing a value for the column ZIP.

Answer: The script should look similar to the following script. All changes are shown in bold.

For Example ch13_8b.sql

CREATE OR REPLACE TRIGGER instructor_bi

BEFORE INSERT ON INSTRUCTOR

FOR EACH ROW

DECLARE

 v_work_zip CHAR(1);

BEGIN

 :NEW.CREATED_BY := USER;

 :NEW.CREATED_DATE := SYSDATE;

 :NEW.MODIFIED_BY := USER;

 :NEW.MODIFIED_DATE := SYSDATE;

 IF :NEW.ZIP IS NULL

 THEN

 RAISE_APPLICATION_ERROR (-20002, 'Zip code is missing!');

 ELSE

 SELECT 'Y'

 INTO v_work_zip

 FROM zipcode

 WHERE zip = :NEW.ZIP;

 END IF;

EXCEPTION

 WHEN NO_DATA_FOUND

 THEN

 RAISE_APPLICATION_ERROR (-20001, 'Zip code is not valid!');

END;

Notice that an IF-ELSE statement is added to the body of the trigger. This IF-ELSE
statement evaluates incoming value of ZIP (:NEW.ZIP). If the incoming value of ZIP is NULL,
the IF-ELSE statement evaluates to TRUE, and another error message is displayed stating that

the value of ZIP is missing. If the IF-ELSE statement evaluates to FALSE, the control is
passed to the ELSE part of the statement, and the SELECT INTO statement is executed.

c) Modify this trigger so there is no need to supply the value for the instructor’s ID at the time of

the INSERT statement.

Answer: The version of the trigger should look similar to the one shown. All changes are
highlighted in bold.

For Example ch13_8c.sql

CREATE OR REPLACE TRIGGER instructor_bi

BEFORE INSERT ON INSTRUCTOR

FOR EACH ROW

DECLARE

 v_work_zip CHAR(1);

BEGIN

 :NEW.CREATED_BY := USER;

 :NEW.CREATED_DATE := SYSDATE;

 :NEW.MODIFIED_BY := USER;

 :NEW.MODIFIED_DATE := SYSDATE;

 SELECT 'Y'

 INTO v_work_zip

 FROM zipcode

 WHERE zip = :NEW.ZIP;

 :NEW.INSTRUCTOR_ID := INSTRUCTOR_ID_SEQ.NEXTVAL;

EXCEPTION

 WHEN NO_DATA_FOUND

 THEN

 RAISE_APPLICATION_ERROR (-20001, 'Zip code is not valid!');

END;

The original version of this trigger does not derive a value for the instructor’s ID. Therefore, an
INSERT statement issued against the INSTRUCTOR table has to populate the
INSTRUCTOR_ID column as well. The new version of the trigger populates the value of the
INSTRUCTOR_ID column, so that the INSERT statement does not have to do it. Generally, it
is a good idea to populate columns holding IDs in the trigger because when a user issues an
INSERT statement, he or she might not know that an ID must be populated at the time of the
insert operation. Furthermore, a user may not know—and more than likely does not know—how
to operate sequences to populate the ID.

As mentioned previously, the ability to access sequence via PL/SQL expression is a relatively
new feature introduced in Oracle 11g. Prior to Oracle 11g, you would need to employ the
SELECT INTO statement in the body of the trigger in order to populate INSTRUCTOR_ID
column. This is illustrated by the code fragment below:
CREATE OR REPLACE TRIGGER instructor_bi

BEFORE INSERT ON INSTRUCTOR

…

 SELECT INSTRUCTOR_ID_SEQ.NEXTVAL

 INTO v_instructor_id

 FROM dual;

 :NEW.INSTRUCTOR_ID := v_instructor_id;

…

END;

AFTER Triggers
In this exercise, you create a trigger on the COURSE table that fires after an UPDATE statement is
issued against the table. Create the following log table and the trigger on the COURSE table:

For Example ch13_9a.sql

CREATE TABLE course_cost_log

 (course_no NUMBER

 ,cost NUMBER

 ,modified_by VARCHAR2(30)

 ,modified_date DATE)

/

CREATE OR REPLACE TRIGGER course_au

AFTER UPDATE ON COURSE

FOR EACH ROW

WHEN (NEW.COST <> OLD.COST)

BEGIN

 INSERT INTO course_cost_log

 (course_no, cost, modified_by, modified_date)

 VALUES

 (:old.course_no, :old.cost, USER, SYSDATE);

END;

/

Answer the following questions:

a) Describe the trigger created above.

Answer: The trigger created above fires after UPDATE statement is issued on the COURSE
table. The WHEN clause compares new and old values of the COST column, and if these are not
the same, the old value of the COST column is recorded in the COURSE_COST_LOG table
along with the course number, user’s name, and date of change.

For the next set of questions, execute example ch13_9a.sql, and add a new course to the COURSE
table as follows:

INSERT INTO course

 (course_no, description, created_by, created_date, modified_by, modified_date)

VALUES

 (999, 'Test Course', user, sysdate, user, sysdate);

COMMIT;

Note that the INSERT statement above does not provide value for COST column. To correct it,
issue the following UPDATE statement:

UPDATE course

 SET cost = 0

 WHERE course_no = 999;

 COMMIT;

b) Check how many records are in the COURSE_COST_LOG table? Explain your findings.

Answer: There are no records in the COURSE_COST_LOG table. Even though the UPDATE
statement modifies COST column, the condition in the WHEN clause evaluates to FALSE. This is
because the old value of the COST column is NULL and it cannot be compared to the new non-
value of the COST column. As a result, even though the value of the COST column has changed,
there is no record written in the COURSE_COST_LOG table.

c) How would you change the trigger so that it records all changes to the COST column? In other
words, if COST column is updated from NULL to non-NULL value or vice versa, the appropriate
record is created in the COURSE_COST_LOG table.

Answer: The new version of the trigger should look similar to the following. Modified
statements are highlighted in bold.

For Example ch13_9b.sql
CREATE OR REPLACE TRIGGER course_au

AFTER UPDATE ON COURSE

FOR EACH ROW

WHEN (NVL(NEW.COST, -1) <> NVL(OLD.COST, -1))

BEGIN

 INSERT INTO course_cost_log

 (course_no, cost, modified_by, modified_date)

 VALUES

 (:old.course_no, :old.cost, USER, SYSDATE);

END;

Note that this version of the trigger employs NVL function in the WHEN condition. This
guarantees that if the course cost is changed from NULL to some value or vice versa, it will be
properly recorded in the log table. In addition, the NULL value of cost is defaulted to –1 because
it is an unlikely value for a course cost.

Autonomous Transaction
Answer the following questions:

a) What is an autonomous transaction?

Answer: Autonomous transaction is an independent transaction started by another transaction
that is usually referred to as main transaction. In other words, autonomous transaction may issue
various DML statements and commit or roll them back, without committing or rolling back the
DML statements issued by the main transaction.

b) How would you define an autonomous transaction?

Answer: Autonomous transaction is defined with the AUTONOMOUS_TRANSACTION pragma
that is placed in the declaration portion of a trigger.

c) What are some of the reasons to employ an autonomous transaction?

Answer: As stated previously, autonomous transaction is fully independent of its main
transaction. As a result, it enables you to log information even if the main transaction is rolled
back. For example, you may decide to log data changes in the ENROLLMENT table even when
they are rolled back. In such case, you may define a row-level AFTER trigger on the
ENROLLMENT table that employs autonomous transaction, and thus is able to record these data
changes.

Lab 13.2 Types of Triggers
Answer the following questions.

Row and Statement Triggers
In this exercise, you create a trigger that fires before an INSERT statement is issued against the
COURSE table. Create the following trigger:

For Example ch13_10a.sql

CREATE OR REPLACE TRIGGER course_bi

BEFORE INSERT ON COURSE

FOR EACH ROW

BEGIN

 :NEW.COURSE_NO := COURSE_NO_SEQ.NEXTVAL;

 :NEW.CREATED_BY := USER;

 :NEW.CREATED_DATE := SYSDATE;

 :NEW.MODIFIED_BY := USER;

 :NEW.MODIFIED_DATE := SYSDATE;

END;

Answer the following questions:

a) What type of trigger is created on the COURSE table (row or statement)? Explain your answer.

Answer: The trigger created on the COURSE table is a row trigger because the CREATE
TRIGGER clause contains the statement FOR EACH ROW. It means this trigger fires every time a
record is added to the COURSE table.

b) Based on the answer you provided for question (a), explain why this particular type is chosen
for the trigger.

Answer: This trigger is a row trigger because its operations depend on the data in the individual
records. For example, for every record inserted into the COURSE table, the trigger calculates the
value for the column COURSE_NO. All values in this column must be unique, because it is
defined as a primary key. A row trigger guarantees every record added to the COURSE table has
a unique number assigned to the COURSE_NO column.

c) When an INSERT statement is issued against the COURSE table, which actions are performed

by the trigger?

Answer: First, the trigger assigns a number derived from the sequence COURSE_ NO_SEQ to
the variable v_course_no. Second, the values containing the current user’s name and date are

assigned to the fields CREATED_BY, MODIFIED_BY, CREATED_DATE, and
MODIFIED_DATE of the :NEW pseudorecord.

d) Modify this trigger so that if there is a prerequisite course supplied at the time of the insert, its
value is checked against the existing courses in the COURSE table.

Answer: The trigger you created should look similar to the following trigger. Newly added
statements are highlighted in bold.

For Example ch13_10b.sql

CREATE OR REPLACE TRIGGER course_bi

BEFORE INSERT ON COURSE

FOR EACH ROW

DECLARE

 v_prerequisite COURSE.COURSE_NO%TYPE;

BEGIN

 IF :NEW.PREREQUISITE IS NOT NULL

 THEN

 SELECT course_no

 INTO v_prerequisite

 FROM course

 WHERE course_no = :NEW.PREREQUISITE;

 END IF;

 :NEW.COURSE_NO := COURSE_NO_SEQ.NEXTVAL;

 :NEW.CREATED_BY := USER;

 :NEW.CREATED_DATE := SYSDATE;

 :NEW.MODIFIED_BY := USER;

 :NEW.MODIFIED_DATE := SYSDATE;

EXCEPTION

 WHEN NO_DATA_FOUND

 THEN

 RAISE_APPLICATION_ERROR (-20002, 'Prerequisite is not valid!');

END;

Notice that because the PREREQUISITE is not a required column, or, in other words, there is
no NOT NULL constraint defined against it, the IF statement validates the existence of the
incoming value. Next, the SELECT INTO statement validates that the prerequisite already exists
in the COURSE table. If there is no record corresponding to the prerequisite course, the
NO_DATA_FOUND exception is raised and the error message “Prerequisite is not valid!” is
raised. Once this version of the trigger is created, the INSERT statement
INSERT INTO COURSE (description, cost, prerequisite)

VALUES ('Test Course', 0, 9999);

causes the following error:
SQL Error: ORA-20002: Prerequisite is not valid!

ORA-06512: at "STUDENT.COURSE_BI", line 20

ORA-04088: error during execution of trigger 'STUDENT.COURSE_BI'

INSTEAD OF Triggers

In this exercise, you create a view STUDENT_ADDRESS and an INSTEAD OF trigger that fires
when an INSERT statement is issued against the view. Create the following view along with the
INSTEAD OF trigger:

For Example ch13_11a.sql

CREATE VIEW student_address

 AS

 SELECT s.student_id, s.first_name, s.last_name, s.street_address, z.city, z.state

 ,z.zip

 FROM student s

 JOIN zipcode z

 ON (s.zip = z.zip);

/

CREATE OR REPLACE TRIGGER student_address_ins

INSTEAD OF INSERT ON student_address

FOR EACH ROW

BEGIN

 INSERT INTO STUDENT

 (student_id, first_name, last_name, street_address, zip, registration_date

 ,created_by, created_date, modified_by, modified_date)

 VALUES

 (:NEW.student_id, :NEW.first_name, :NEW.last_name, :NEW.street_address, :NEW.zip

 ,SYSDATE, USER, SYSDATE, USER, SYSDATE);

END;

/

Issue the following INSERT statements:

INSERT INTO student_address

VALUES (STUDENT_ID_SEQ.NEXTVAL, 'John', 'Smith', '123 Main Street', 'New York'

 ,'NY', '10019');

INSERT INTO student_address

VALUES (STUDENT_ID_SEQ.NEXTVAL, 'John', 'Smith', '123 Main Street', 'New York'

 ,'NY', '12345');

Answer the following questions:

a) What output is produced after each INSERT statement is issued?

Answer: The first INSERT statement completes successfully. Whereas, the second INSERT
statement causes the following error:
ORA-02291: integrity constraint (STUDENT.STU_ZIP_FK) violated - parent key not found

ORA-06512: at "STUDENT.STUDENT_ADDRESS_INS", line 2

ORA-04088: error during execution of trigger 'STUDENT.STUDENT_ADDRESS_INS'

b) Explain why the second INSERT statement causes an error.

Answer: The second INSERT statement causes an error because it violates the foreign key
constraint on the STUDENT table. The value of the ZIP code provided in the INSERT statement
does not have a corresponding record in the ZIPCODE table. Since ZIP column of the

STUDENT table has a foreign key constraint STU_ZIP_FK defined on it, each time a record is
inserted into the STUDENT table, the incoming value of zip code is checked by the system in the
ZIPCODE table. If there is a corresponding record, the INSERT statement against the
STUDENT table does not cause errors. For example, the first INSERT statement is successful
because the ZIPCODE table contains a record corresponding to the value of ZIP ‘10019’. The
second INSERT statement causes an error because there is no record in the ZIPCODE table
corresponding to the value of ZIP ‘12345’.

c) Modify the trigger so that it checks the value of the ZIP code provided by the INSERT
statement against the ZIPCODE table and raises an error if there is no such value.

Answer: The trigger should look similar to the following. Newly added statements are
highlighted in bold.

For Example ch13_11b.sql

CREATE OR REPLACE TRIGGER student_address_ins

INSTEAD OF INSERT ON student_address

FOR EACH ROW

DECLARE

 v_zip VARCHAR2(5);

BEGIN

 SELECT zip

 INTO v_zip

 FROM zipcode

 WHERE zip = :NEW.ZIP;

 INSERT INTO STUDENT

 (student_id, first_name, last_name, street_address, zip, registration_date

 ,created_by, created_date, modified_by, modified_date)

 VALUES

 (:NEW.student_id, :NEW.first_name, :NEW.last_name, :NEW.street_address

 ,:NEW.zip, SYSDATE, USER, SYSDATE, USER, SYSDATE);

EXCEPTION

 WHEN NO_DATA_FOUND

 THEN

 RAISE_APPLICATION_ERROR (-20002, 'Zip code is not valid!');

END;

In this version of the trigger, the incoming value of ZIP code is checked against the ZIPCODE
table via the SELECT INTO statement. If the SELECT INTO statement does not return any
rows, the NO_DATA_FOUND exception is raised and the error message stating ‘ZIP code is not
valid!’ is raised. Once this version of the trigger is created, the second INSERT statement
produces output as follows:
INSERT INTO student_address

VALUES (STUDENT_ID_SEQ.NEXTVAL, 'John', 'Smith', '123 Main Street', 'New York'

 ,'NY', '12345');

ORA-20002: Zip code is not valid!

ORA-06512: at "STUDENT.STUDENT_ADDRESS_INS", line 19

ORA-04088: error during execution of trigger 'STUDENT.STUDENT_ADDRESS_INS'

d) Modify the trigger so that it checks the value of the ZIP code provided by the INSERT
statement against the ZIPCODE table. If there is no corresponding record in the ZIPCODE
table, the trigger should create a new record for the given value of zip before adding a new
record to the STUDENT table.

Answer: This version of the trigger should look similar to the following. All changes are shown
in bold.

For Example ch13_11c.sql

CREATE OR REPLACE TRIGGER student_address_ins

INSTEAD OF INSERT ON student_address

FOR EACH ROW

DECLARE

 v_zip VARCHAR2(5);

BEGIN

 BEGIN

 SELECT zip

 INTO v_zip

 FROM zipcode

 WHERE zip = :NEW.zip;

 EXCEPTION

 WHEN NO_DATA_FOUND

 THEN

 INSERT INTO ZIPCODE

 (zip, city, state, created_by, created_date, modified_by, modified_date)

 VALUES

 (:NEW.zip, :NEW.city, :NEW.state, USER, SYSDATE, USER, SYSDATE);

 END;

 INSERT INTO STUDENT

 (student_id, first_name, last_name, street_address, zip, registration_date

 ,created_by, created_date, modified_by, modified_date)

 VALUES

 (:NEW.student_id, :NEW.first_name, :NEW.last_name, :NEW.street_address

 ,:NEW.zip, SYSDATE, USER, SYSDATE, USER, SYSDATE);

END;

Just like in the previous version, the existence of the incoming value of ZIP code is checked
against the ZIPCODE table via the SELECT INTO statement. When a new value of ZIP code is
provided by the INSERT statement, the SELECT INTO statement does not return any rows and
causes the NO_DATA_FOUND exception. As a result, the INSERT statement against the
ZIPCODE table is executed. Next, control is passed to the INSERT statement against the
STUDENT table.
It is important to realize that the SELECT INTO statement and the exception-handling section
have been placed in the inner block. This placement ensures that once the exception
NO_DATA_FOUND is raised the trigger does not terminate but proceeds with its normal
execution.
Once this trigger is created, the second INSERT statement completes successfully:
INSERT INTO student_address

VALUES (STUDENT_ID_SEQ.NEXTVAL, 'John', 'Smith', '123 Main Street', 'New York'

 ,'NY', '12345');

1 row created.

Try It Yourself
The projects in this section are meant to have you use all of the skills that you have acquired
throughout this chapter. Here are some exercises that will help you test the depth of your
understanding.

1. Create or modify a trigger on the ENROLLMENT table that fires before an INSERT statement.
Make sure all columns that have NOT NULL and foreign key constraints defined on them are
populated with their proper values.

Answer: The trigger should look similar to the following:

For Example ch13_12a.sql

CREATE OR REPLACE TRIGGER enrollment_bi

BEFORE INSERT ON ENROLLMENT

FOR EACH ROW

DECLARE

 v_valid NUMBER := 0;

BEGIN

 SELECT COUNT(*)

 INTO v_valid

 FROM student

 WHERE student_id = :NEW.STUDENT_ID;

 IF v_valid = 0

 THEN

 RAISE_APPLICATION_ERROR (-20000, 'This is not a valid student');

 END IF;

 SELECT COUNT(*)

 INTO v_valid

 FROM section

 WHERE section_id = :NEW.SECTION_ID;

 IF v_valid = 0

 THEN

 RAISE_APPLICATION_ERROR (-20001, 'This is not a valid section');

 END IF;

 :NEW.ENROLL_DATE := SYSDATE;

 :NEW.CREATED_BY := USER;

 :NEW.CREATED_DATE := SYSDATE;

 :NEW.MODIFIED_BY := USER;

 :NEW.MODIFIED_DATE := SYSDATE;

END;

Consider this trigger. It fires before the INSERT statement on the ENROLLMENT table. First, it
validates the values provided for student ID and section ID. If one of the IDs is invalid, the
exception is raised and the trigger is terminated. As a result, the INSERT statement would

causes an error. If both student and section IDs are found in the STUDENT and SECTION
tables, respectively, the ENROLL_DATE, CREATED_DATE, and MODIFIED_DATE are
populated with current date, and columns CREATED_BY and MODIFIED_BY are populated
with current user name. Consider the following INSERT statement:
INSERT INTO enrollment (student_id, section_id)

VALUES (777, 123);

The value 777 in this INSERT statement does not exist in the STUDENT table and therefore is
invalid. As a result, this statement causes the following error:
ORA-20000: This is not a valid student

ORA-06512: at "STUDENT.ENROLLMENT_BI", line 11

ORA-04088: error during execution of trigger 'STUDENT.ENROLLMENT_BI'

2. Create or modify a trigger on the SECTION table that fires before an UPDATE statement.

Make sure that the trigger validates incoming values so that there are no constraint violation
errors.

Answer: The trigger should look similar to the following:

For Example ch13_13a.sql

CREATE OR REPLACE TRIGGER section_bu

BEFORE UPDATE ON SECTION

FOR EACH ROW

DECLARE

 v_valid NUMBER := 0;

BEGIN

 IF :NEW.INSTRUCTOR_ID IS NOT NULL

 THEN

 SELECT COUNT(*)

 INTO v_valid

 FROM instructor

 WHERE instructor_id = :NEW.instructor_ID;

 IF v_valid = 0

 THEN

 RAISE_APPLICATION_ERROR (-20000, 'This is not a valid instructor');

 END IF;

 END IF;

 :NEW.MODIFIED_BY := USER;

 :NEW.MODIFIED_DATE := SYSDATE;

END;

This trigger fires before the UPDATE statement on the SECTION table. First, it checks if there
is a new value for an instructor ID with the help of an IF-THEN statement. If the IF-THEN
statement evaluates to TRUE, the instructor’s ID is checked against the INSTRUCTOR table. If
a new instructor ID does not exist in the INSTRUCTOR table, the exception is raised, and the
trigger is terminated. Otherwise, all columns with NOT NULL constraints are populated with
their respected values.

Note that this trigger does not populate CREATED_BY and CREATED_DATE columns with
the new values. This is because when record is updated, the values for these columns do not
change as they reflect when this record was added to the SECTION table.
Consider the following UPDATE statement:
UPDATE section

 SET instructor_id = 220

 WHERE section_id = 79;

The value 220 in this UPDATE statement does not exist in the INSTRUCTOR table and
therefore is invalid. As a result, this UPDATE statement when run causes an error:
ORA-20000: This is not a valid instructor

ORA-06512: at "STUDENT.SECTION_BU", line 13

ORA-04088: error during execution of trigger 'STUDENT.SECTION_BU'

Next, consider another UPDATE statement that does not cause any errors:
UPDATE section

 SET instructor_id = 105

 WHERE section_id = 79;

1 row updated.

