
Exercises for
Chapter 22: Stored
Code
Try It Yourself
The projects in this section are meant to have you utilize all of the skills that you have acquired
throughout this chapter. Here are some exercises that will help you test the depth of your
understanding.

1) Add a function in student_api package specification called get_course_
descript. The caller takes a course.cnumber%TYPE parameter and it returns a
course.description%TYPE.

Answer: The package should look similar to the following:
CREATE OR REPLACE PACKAGE student_api AS

 v_current_date DATE;

 PROCEDURE discount;

 FUNCTION new_instructor_id

 RETURN instructor.instructor_id%TYPE;

 FUNCTION total_cost_for_student

 (p_student_id IN student.student_id%TYPE)

 RETURN course.cost%TYPE;

 PRAGMA RESTRICT_REFERENCES

 (total_cost_for_student, WNDS, WNPS, RNPS);

 PROCEDURE get_student_info

 (p_student_id IN student.student_id%TYPE,

 p_last_name OUT student.last_name%TYPE,

 p_first_name OUT student.first_name%TYPE,

 p_zip OUT student.zip%TYPE,

 p_return_code OUT NUMBER);

 PROCEDURE get_student_info

 (p_last_name IN student.last_name%TYPE,

 p_first_name IN student.first_name%TYPE,

 p_student_id OUT student.student_id%TYPE,

 p_zip OUT student.zip%TYPE,

 p_return_code OUT NUMBER);

 PROCEDURE remove_student

 (p_studid IN student.student_id%TYPE,

 p_ri IN VARCHAR2 DEFAULT 'R');

 FUNCTION get_course_descript

 (p_cnumber course.course_no%TYPE)

 RETURN course.description%TYPE;

END student_api;

2) Create a function in the student_api package body called get_course_
description. A caller passes in a course number and it returns the course description.
Instead of searching for the description itself, it makes a call to
get_course_descript_private. It passes its course number to
get_course_descript_private. It passes back to the caller the description it gets
back from get_course_descript_private.

Answer: Package body should look similar to the following:
CREATE OR REPLACE PACKAGE BODY student_api AS

PROCEDURE discount

IS

 CURSOR c_group_discount IS

 SELECT distinct s.course_no, c.description

 FROM section s, enrollment e, course c

 WHERE s.section_id = e.section_id

 GROUP BY s.course_no, c.description,

 e.section_id, s.section_id

 HAVING COUNT(*) >=8;

BEGIN

 FOR r_group_discount IN c_group_discount LOOP

 UPDATE course

 SET cost = cost * .95

 WHERE course_no = r_group_discount.course_no;

 DBMS_OUTPUT.PUT_LINE

 ('A 5% discount has been given to'||

 r_group_discount.course_no||' '||

 r_group_discount.description);

 END LOOP;

END discount;

FUNCTION new_instructor_id

RETURN instructor.instructor_id%TYPE

IS

 v_new_instid instructor.instructor_id%TYPE;

BEGIN

 SELECT INSTRUCTOR_ID_SEQ.NEXTVAL

 INTO v_new_instid

 FROM dual;

 RETURN v_new_instid;

EXCEPTION

 WHEN OTHERS THEN

 DECLARE

 v_sqlerrm VARCHAR2(250) := SUBSTR(SQLERRM,1,250);

 BEGIN

 RAISE_APPLICATION_ERROR

 (-20003, 'Error in instructor_id: '||v_sqlerrm);

 END;

END new_instructor_id;

FUNCTION get_course_descript_private

 (p_course_no course.course_no%TYPE)

RETURN course.description%TYPE

IS

 v_course_descript course.description%TYPE;

BEGIN

 SELECT description

 INTO v_course_descript

 FROM course

 WHERE course_no = p_course_no;

 RETURN v_course_descript;

EXCEPTION

 WHEN OTHERS THEN

 RETURN NULL;

END get_course_descript_private;

FUNCTION total_cost_for_student

 (p_student_id IN student.student_id%TYPE)

RETURN course.cost%TYPE

IS

 v_cost course.cost%TYPE;

BEGIN

 SELECT sum(cost)

 INTO v_cost

 FROM course c, section s, enrollment e

 WHERE c.course_no = c.course_no

 AND e.section_id = s.section_id

 AND e.student_id = p_student_id;

 RETURN v_cost;

EXCEPTION

 WHEN OTHERS THEN

 RETURN NULL;

END total_cost_for_student;

PROCEDURE get_student_info

 (p_student_id IN student.student_id%TYPE,

 p_last_name OUT student.last_name%TYPE,

 p_first_name OUT student.first_name%TYPE,

 p_zip OUT student.zip%TYPE,

 p_return_code OUT NUMBER)

IS

BEGIN

 SELECT last_name, first_name, zip

 INTO p_last_name, p_first_name, p_zip

 FROM student

 WHERE student.student_id = p_student_id;

 p_return_code := 0;

EXCEPTION

 WHEN NO_DATA_FOUND THEN

 DBMS_OUTPUT.PUT_LINE ('Student ID is not valid.');

 p_return_code := -100;

 p_last_name := NULL;

 p_first_name := NULL;

 p_zip := NULL;

 WHEN OTHERS THEN

 DBMS_OUTPUT.PUT_LINE

 ('Error in procedure get_student_info');

END get_student_info;

PROCEDURE get_student_info

 (p_last_name IN student.last_name%TYPE,

 p_first_name IN student.first_name%TYPE,

 p_student_id OUT student.student_id%TYPE,

 p_zip OUT student.zip%TYPE,

 p_return_code OUT NUMBER)

IS

BEGIN

 SELECT student_id, zip

 INTO p_student_id, p_zip

 FROM student

 WHERE UPPER(last_name) = UPPER(p_last_name)

 AND UPPER(first_name) = UPPER(p_first_name);

 p_return_code := 0;

EXCEPTION

 WHEN NO_DATA_FOUND THEN

 DBMS_OUTPUT.PUT_LINE ('Student name is not valid.');

 p_return_code := -100;

 p_student_id := NULL;

 p_zip := NULL;

 WHEN OTHERS THEN

 DBMS_OUTPUT.PUT_LINE

 ('Error in procedure get_student_info');

END get_student_info;

PROCEDURE remove_student

 -- the parameters student_id and p_ri give user an

 -- option of cascade delete or restrict delete for

 -- the given students records

 (p_studid IN student.student_id%TYPE,

 p_ri IN VARCHAR2 DEFAULT 'R')

IS

 -- declare exceptions for use in procedure

 enrollment_present EXCEPTION;

 bad_pri EXCEPTION;

BEGIN

 -- the R value is for restrict delete option

 IF p_ri = 'R' THEN

 DECLARE

 -- a variable is needed to test if the student

 -- is in the enrollment table

 v_dummy CHAR(1);

 BEGIN

 -- This is a standard existence check

 -- If v_dummy is assigned a value via the

 -- SELECT INTO, the exception

 -- enrollment_present will be raised

 -- If the v_dummy is not assigned a value, the

 -- exception no_data_found will be raised

 SELECT NULL

 INTO v_dummy

 FROM enrollment e

 WHERE e.student_id = p_studid

 AND ROWNUM = 1;

 -- The rownum set to 1 prevents the SELECT

 -- INTO statement raise to_many_rows exception

 -- If there is at least one row in enrollment

 -- table with corresponding student_id, the

 -- restrict delete parameter will disallow

 -- the deletion of the student by raising

 -- the enrollment_present exception

 RAISE enrollment_present;

 EXCEPTION

 WHEN NO_DATA_FOUND THEN

 -- The no_data_found exception is raised

 -- when there are no students found in the

 -- enrollment table

 -- Since the p_ri indicates a restrict

 -- delete user choice the delete operation

 -- is permitted

 DELETE FROM student

 WHERE student_id = p_studid;

 END;

 -- when the user enter "C" for the p_ri

 -- he/she indicates a cascade delete choice

 ELSIF p_ri = 'C' THEN

 -- delete the student from the enrollment and

 -- grade tables

 DELETE FROM enrollment

 WHERE student_id = p_studid;

 DELETE FROM grade

 WHERE student_id = p_studid;

 -- delete from student table only after

 -- corresponding records have been removed from

 -- the other tables because the student table is

 -- the parent table

 DELETE

 FROM student

 WHERE student_id = p_studid;

 ELSE

 RAISE bad_pri;

 END IF;

EXCEPTION

 WHEN bad_pri THEN

 RAISE_APPLICATION_ERROR

 (-20231, 'An incorrect p_ri value was '||

 'entered. The remove_student procedure can '||

 'only accept a C or R for the p_ri parameter.');

 WHEN enrollment_present THEN

 RAISE_APPLICATION_ERROR

 (-20239, 'The student with ID'||p_studid||

 ' exists in the enrollment table thus records'||

 ' will not be removed.');

END remove_student;

FUNCTION get_course_descript

 (p_cnumber course.course_no%TYPE)

RETURN course.description%TYPE

IS

BEGIN

 RETURN get_course_descript_private(p_cnumber);

END get_course_descript;

BEGIN

 SELECT trunc(sysdate, 'DD')

 INTO v_current_date

 FROM dual;

END student_api;

3) Add a PRAGMA RESTRICT_REFERENCES for get_course_description
specifying: writes no database state, writes no package state, and reads no package state.

Answer: The package should look similar to the following:
CREATE OR REPLACE PACKAGE student_api AS

 v_current_date DATE;

 PROCEDURE discount;

 FUNCTION new_instructor_id

 RETURN instructor.instructor_id%TYPE;

 FUNCTION total_cost_for_student

 (p_student_id IN student.student_id%TYPE)

 RETURN course.cost%TYPE;

 PRAGMA RESTRICT_REFERENCES

 (total_cost_for_student, WNDS, WNPS, RNPS);

 PROCEDURE get_student_info

 (p_student_id IN student.student_id%TYPE,

 p_last_name OUT student.last_name%TYPE,

 p_first_name OUT student.first_name%TYPE,

 p_zip OUT student.zip%TYPE,

 p_return_code OUT NUMBER);

 PROCEDURE get_student_info

 (p_last_name IN student.last_name%TYPE,

 p_first_name IN student.first_name%TYPE,

 p_student_id OUT student.student_id%TYPE,

 p_zip OUT student.zip%TYPE,

 p_return_code OUT NUMBER);

 PROCEDURE remove_student

 (p_studid IN student.student_id%TYPE,

 p_ri IN VARCHAR2 DEFAULT 'R');

 FUNCTION get_course_descript

 (p_cnumber course.course_no%TYPE)

 RETURN course.description%TYPE;

 PRAGMA RESTRICT_REFERENCES

 (get_course_descript,WNDS, WNPS, RNPS);

END student_api;

