

Exercises for
Chapter 10:
Exceptions:
Advanced Concepts
The Labs below provide you with exercises and suggested answers with discussion related to how
those answers resulted. The most important thing to realize is whether your answer works. You should
figure out the implications of the answers here and what the effects are from any different answers you
may come up with.

Lab 10.1 RAISE_APPLICATION_ERROR
In this exercise, you calculate how many students are registered for a given section of a given course.
You then display a message on the screen that contains the course number and the number of students
registered for it. The original PL/SQL script will not contain any exception handlers, so you will be
asked to add the RAISE_APPLICATION_ERROR statements.

Create the following PL/SQL script:

For Example ch10_6a.sql

DECLARE

 v_students NUMBER(3) := 0;

BEGIN

 SELECT COUNT(*)

 INTO v_students

 FROM enrollment e, section s

 WHERE e.section_id = s.section_id

 AND s.course_no = 25

 AND s.section_id = 89;

 DBMS_OUTPUT.PUT_LINE ('Course 25, section 89 has '||v_students||' students');

END;

Execute the script, and then answer the following questions:

a) What output is produced by this script?

Answer: The output should look similar to the following:

Course 25, section 89 has 12 students

b) Modify this script so that if a section of a course has more than 10 students enrolled in it, an

error message is displayed indicating that this course has too many students enrolled.
Answer: The script should look similar to the script shown. Newly added statements are
highlighted in bold.

For Example ch10_6b.sql

DECLARE

 v_students NUMBER(3) := 0;

BEGIN

 SELECT COUNT(*)

 INTO v_students

 FROM enrollment e, section s

 WHERE e.section_id = s.section_id

 AND s.course_no = 25

 AND s.section_id = 89;

 IF v_students > 10

 THEN

 RAISE_APPLICATION_ERROR

 (-20002, 'Course 25, section 89 has more than 10 students');

 END IF;

 DBMS_OUTPUT.PUT_LINE ('Course 25, section 89 has '||v_students||' students');

END;

Consider the result if you were to add an IF statement to this script, one in which the IF
statement checks whether the value of the variable v_students exceeds 10. If the value of
the variable does exceed 10, the RAISE_APPLICATION_ERROR statement executes, and the
error message is displayed on the screen.

c) Execute the new version of the script. What output is produced by this version of the script?

Answer: The output should look similar to the following:
ORA-20002: Course 25, section 89 has more than 10 students

ORA-06512: at line 13

Note that in this case the error message generated by the script did not appear in the Dbms
Output window of the Oracle SQL Developer. Instead, the error message was displayed in the
Script Output window.

Lab 10.2 EXCEPTION_INIT Pragma
In this exercise, you insert a record in the COURSE table. The original PL/SQL script does not contain
any exception handlers, so you are asked to define an exception and add the EXCEPTION_INIT
pragma.

Create the following PL/SQL script:

For Example ch10_7a.sql

BEGIN

 INSERT INTO course

 (course_no, description, created_by, created_date)

 VALUES

 (COURSE_NO_SEQ.NEXTVAL, 'Test Course', USER, SYSDATE);

 COMMIT;

 DBMS_OUTPUT.PUT_LINE ('One course has been added');

END;

Execute the script, and then answer the following questions:

a) What output was generated by the script?

Answer: The output should look like the following:
ORA-01400: cannot insert NULL into ("STUDENT"."COURSE"."MODIFIED_BY")

ORA-06512: at line 2

b) Explain why the script does not execute successfully.

Answer: The script does not execute successfully because a NULL is inserted for the
MODIFIED_BY and MODIFIED_DATE columns. The MODIFED_BY and MODIFIED_DATE
columns have check constraints defined on them. These constraints can be viewed by querying
one of the data dictionary tables.

The data dictionary comprises tables owned by the user SYS. These tables provide the
database with information that it uses to manage itself. Consider the following SELECT
statement against one of Oracle’s data dictionary tables, USER_CONSTRAINTS. This table
contains information on various constraints defined on each table of the STUDENT schema.
SELECT constraint_name, search_condition

 FROM user_constraints

WHERE table_name = 'COURSE';

CONSTRAINT_NAME SEARCH_CONDITION

------------------------ ---------------------------

CRSE_CREATED_DATE_NNULL "CREATED_DATE" IS NOT NULL

CRSE_MODIFIED_BY_NNULL "MODIFIED_BY" IS NOT NULL

CRSE_MODIFIED_DATE_NNULL "MODIFIED_DATE" IS NOT NULL

CRSE_DESCRIPTION_NNULL "DESCRIPTION" IS NOT NULL

CRSE_COURSE_NO_NNULL "COURSE_NO" IS NOT NULL

CRSE_CREATED_BY_NNULL "CREATED_BY" IS NOT NULL

CRSE_PK

CRSE_CRSE_FK

Notice that the last two rows refer to the primary and foreign key constraints, so there are no
search conditions specified.

Based on the results produced by the preceding SELECT statement, there are six columns
having a NOT NULL constraint. However, the INSERT statement
INSERT INTO course

 (course_no, description, created_by, created_date)

VALUES

 (COURSE_NO_SEQ.NEXTVAL, 'Test Course', USER, SYSDATE);

has only four columns having NOT NULL constraints. The columns MODIFIED_BY and
MODIFIED_DATE are not included in the INSERT statement. Any column of a table not listed
in the INSERT statement has NULL assigned to it when a new record is added to the table. If a

column has a NOT NULL constraint and is not listed in the INSERT statement, the INSERT
statement fails and causes an error.

c) Add a user-defined exception to the script, so that the error generated by the INSERT statement
is handled.

Answer: The script should look similar to the script shown. All changes are shown in bold.

For Example ch10_7b.sql

DECLARE

 e_constraint_violation EXCEPTION;

 PRAGMA EXCEPTION_INIT(e_constraint_violation, -1400);

BEGIN

 INSERT INTO course

 (course_no, description, created_by, created_date)

 VALUES

 (COURSE_NO_SEQ.NEXTVAL, 'Test Course', USER, SYSDATE);

 COMMIT;

 DBMS_OUTPUT.PUT_LINE ('One course has been added');

EXCEPTION

 WHEN e_constraint_violation

 THEN

 DBMS_OUTPUT.PUT_LINE ('INSERT statement is violating a constraint');

END;

This version of the script contains user-defined exception, e_constraint_violation. This
user-defined exception is associated with unnamed Oracle error by using the
EXCEPTION_INIT pragma. In this case, the Oracle error number ORA-02290 is associated
with the exception named e_constraint_violation. Such association enables processing
of this error by the newly added exception-handling section of the block.

d) Run the new version of the script. Explain the output produced by the new version of the script.

Answer: The output should look similar to the following:
INSERT statement is violating a constraint

Once you define an exception and associate an Oracle error number with it, you can write an
exception handler for it. As a result, as soon as the INSERT statement causes an error, control
of the execution is transferred to the exception-handling section of the block. Then, the message
“INSERT statement . . .” is displayed on the screen. Notice that once an exception is raised and
processed, the execution of the program does not halt. The script completes successfully.

Lab 10.3 SQLCODE and SQLERRM
In this exercise, you add a new record to the ZIPCODE table. The original PL/SQL script does not
contain any exception handlers. You are asked to add an exception-handling section to this script.

Create the following PL/SQL script:

For Example ch10_8a.sql

BEGIN

 INSERT INTO zipcode

 (zip, city, state, created_by, created_date, modified_by, modified_date)

 VALUES

 ('10027', 'NEW YORK', 'NY', USER, SYSDATE, USER, SYSDATE);

 COMMIT;

END;

Execute the script and answer the following questions:

a) Explain the output produced by the script?

Answer: The output should look like the following:
ORA-00001: unique constraint (STUDENT.ZIP_PK) violated

ORA-06512: at line 2

The INSERT statement
INSERT INTO zipcode

 (zip, city, state, created_by, created_date, modified_by, modified_date)

VALUES

 ('10027', 'NEW YORK', 'NY', USER, SYSDATE, USER, SYSDATE);

causes an error because a record with ZIP code 10027 already exists in the ZIPCODE table.
Column ZIP of the ZIPCODE table has a primary key constraint defined on it. Therefore, when
you try to insert another record with the value of ZIP already existing in the ZIPCODE table, the
error message “ORA-00001: unique constraint . . .” is generated.

b) Modify the script so that the script completes successfully, and the error number and message
are displayed on the screen.

Answer: The script should resemble the script shown. Newly added exception handling section
is shown in bold.

For Example ch10_8b.sql

BEGIN

 INSERT INTO zipcode

 (zip, city, state, created_by, created_date, modified_by, modified_date)

 VALUES

 ('10027', 'NEW YORK', 'NY', USER, SYSDATE, USER, SYSDATE);

 COMMIT;

EXCEPTION

 WHEN OTHERS

 THEN

 DECLARE

 v_err_code NUMBER := SQLCODE;

 v_err_msg VARCHAR2(100) := SUBSTR(SQLERRM, 1, 100);

 BEGIN

 DBMS_OUTPUT.PUT_LINE ('Error code: '||v_err_code);

 DBMS_OUTPUT.PUT_LINE ('Error message: '||v_err_msg);

 END;

END;

This version of the script has been extended with the exception-handling section and OTHERS
exception handler. Notice that two variables v_err_code and v_err_msg, are declared, in

the exception-handling section of the block. In other words, the exception-handling section
contains a nested (inner) PL/SQL block.

c) Run the new version of the script. Explain the output produced by the new version of the script.

Answer: The output should look similar to the following:
Error code: -1

Error message: ORA-00001: unique constraint (STUDENT.ZIP_PK) violated

Because the INSERT statement causes an error, control is transferred to the OTHERS exception
handler. The SQLCODE function returns -1, and the SQLERRM function returns the text of the
error corresponding to the error code -1. Once the exception-handling section completes its
execution, control is passed to the host environment.

Try It Yourself
The projects in this section are meant to have you use all of the skills that you have acquired
throughout this chapter. Here are some exercises that will help you test the depth of your
understanding.

1. Create the following script. Modify the script created in this section in Chapter 9 (Question 1 of
the Try It Yourself section). Raise a user-defined exception with the
RAISE_APPLICATION_ERROR statement. Otherwise, display how many students there are in
a section. Make sure your program is able to process all sections.

Answer: Consider the version of the script created in Chapter 9 provided here for reference.

For Example ch09_12a.sql

DECLARE

 v_section_id NUMBER := &sv_section_id;

 v_total_students NUMBER;

 e_too_many_students EXCEPTION;

BEGIN

 -- Calculate number of students enrolled

 SELECT COUNT(*)

 INTO v_total_students

 FROM enrollment

 WHERE section_id = v_section_id;

 IF v_total_students >= 10

 THEN

 RAISE e_too_many_students;

 ELSE

 DBMS_OUTPUT.PUT_LINE

 ('There are '||v_total_students||' students in section '||v_section_id);

 END IF;

EXCEPTION

 WHEN e_too_many_students

 THEN

 DBMS_OUTPUT.PUT_LINE

 ('There are too many students in section '||v_section_id);

END;

Next, consider modified version of this script. All changes are highlighted in bold.

For Example ch10_9a.sql

DECLARE

 v_section_id NUMBER := &sv_section_id;

 v_total_students NUMBER;

BEGIN

 -- Calculate number of students enrolled

 SELECT COUNT(*)

 INTO v_total_students

 FROM enrollment

 WHERE section_id = v_section_id;

 IF v_total_students >= 10

 THEN

 RAISE_APPLICATION_ERROR

 (-20000, 'There are too many students for section '||v_section_id);

 ELSE

 DBMS_OUTPUT.PUT_LINE

 ('There are '||v_total_students||' students in section '||v_section_id);

 END IF;

END;

In this version of the script, the RAISE_APPLICATON_ERROR statement is used to handle the
following error condition: If the number of students enrolled for a particular section is equal to
or greater than 10, the error is raised. It is important to remember that the
RAISE_APPLICATION_ERROR statement works with the unnamed user-defined exceptions.
Therefore, there is no reference to the exception e_too_many_students anywhere in this
script. On the other hand, an error number has been associated with the error message.

When run, this exercise produces the following output (the same section IDs are used for this
script as well: 101, 116, and 999).

When 101 is provided for the section ID (this section has more than 10 students), this script
produces output as follows:
ORA-20000: There are too many students for section 101

ORA-06512: at line 13

Note that the error message generated by the RAISE_APPLICATION_ERROR statement
appears in the Script Output window and not in the Dbms Output window when this script is run
in Oracle SQL Developer.

When 116 is provided for the section ID (this section has less than 10 students), this script
produces different output:
There are 8 students in section 116

For non-existent section ID, the script produces this output:
There are 0 students in section 999

2. Create the following script. Try to add a record to the INSTRUCTOR table without providing

values for the columns CREATED_BY, CREATED_DATE, MODIFIED_BY, and
MODIFIED_DATE. Define an exception and associate it with the Oracle error number, so that
the error generated by the INSERT statement is handled.

Answer: Consider the following script. Notice that this initial version does not have any
exception handlers:

For Example ch10_10a.sql

BEGIN

 INSERT INTO instructor

 (instructor_id, salutation, first_name, last_name, street_address, zip, phone)

 VALUES

 (INSTRUCTOR_ID_SEQ.NEXTVAL, 'Mr', 'John', 'Smith', '123 Main St.', '00914'

 ,'1234567890');

 COMMIT;

END;

When run, this version of the script causes error message as shown below:
ORA-01400: cannot insert NULL into ("STUDENT"."INSTRUCTOR"."CREATED_BY")

ORA-06512: at line 2

This error message states that a NULL value cannot be inserted in to the column CREATED_BY
of the INSTRUCTOR table. Therefore, in order for the script to terminate gracefully (i.e. handle
this error), an exception section must be added as shown. All newly added statements are
highlighted in bold.

For Example ch10_10b.sql

DECLARE

 e_non_null_value EXCEPTION;

 PRAGMA EXCEPTION_INIT(e_non_null_value, -1400);

BEGIN

 INSERT INTO instructor

 (instructor_id, salutation, first_name, last_name, street_address, zip, phone)

 VALUES

 (INSTRUCTOR_ID_SEQ.NEXTVAL, 'Mr', 'John', 'Smith', '123 Main St.', '00914'

 ,'1234567890');

 COMMIT;

EXCEPTION

 WHEN e_non_null_value

 THEN

 DBMS_OUTPUT.PUT_LINE

 ('A NULL value cannot be inserted. '||

 'Check constraints on the INSTRUCTOR table.');

END;

In this version of the script, a new user-defined exception, e_non_null_value, is associated
with Oracle error number. As a result, an exception-handling section is able to trap it when this
error generated by Oracle. When run, the new version produces the following output:
A NULL value cannot be inserted. Check constraints on the INSTRUCTOR table.

3. Modify the script created in the previous exercise. Instead of declaring a user-defined exception,

add the OTHERS exception handler to the exception-handling section of the block. Then display
the error number and the error message on the screen.

Answer: The script should look similar to the following. All changes are shown in bold letters.

For Example ch10_10c.sql
BEGIN

 INSERT INTO instructor

 (instructor_id, salutation, first_name, last_name, street_address, zip, phone)

 VALUES

 (INSTRUCTOR_ID_SEQ.NEXTVAL, 'Mr', 'John', 'Smith', '123 Main St.', '00914'

 ,'1234567890');

 COMMIT;

EXCEPTION

 WHEN OTHERS

 THEN

 DBMS_OUTPUT.PUT_LINE ('Error code: '||SQLCODE);

 DBMS_OUTPUT.PUT_LINE ('Error message: '||SUBSTR(SQLERRM, 1, 200));

END;

Notice that as long as the OTHERS exception handler is used, there is no need associate an
Oracle error number with a user-defined exception. When run, this version of the script
produces output as shown:
Error code: -1400

Error message: ORA-01400: cannot insert NULL into

("STUDENT"."INSTRUCTOR"."CREATED_BY")

