
Exercises for
Chapter 4:
Conditional
Control: IF
Statements
The Labs below provide you with exercises and suggested answers with discussion related to
how those answers resulted. The most important thing to realize is whether your answer works.
You should figure out the implications of the answers here and what the effects are from any
different answers you may come up with.

Lab 4.1 IF Statements
Answer the following questions:

IF-THEN Statements
In this exercise, you will use the IF-THEN statement to test whether the date provided by the
user falls on the weekend, in other words, if the day happens to be Saturday or Sunday.

Create the following PL/SQL script:

For Example ch04_6a.sql

DECLARE

 v_date DATE := TO_DATE('&sv_user_date', 'DD-MON-YYYY');

 v_day VARCHAR2(15);

BEGIN

 v_day := RTRIM(TO_CHAR(v_date, 'DAY'));

 IF v_day IN ('SATURDAY', 'SUNDAY')

 THEN

 DBMS_OUTPUT.PUT_LINE (v_date||' falls on weekend');

 END IF;

 DBMS_OUTPUT.PUT_LINE ('After IF statement…');

END;

In order to test this script fully, execute it twice. For the first run, enter ‘13-SEP-2014’, and
for the second run, enter ‘16-SEP-2014’. Execute the script, and then answer the following
questions:

a) What output was generated by the script (for both dates)?

Answer: The first output produced is for the date of 13-SEP-2014:
09/13/2014 00:00 falls on weekend

After IF statement…

The second output produced for the date is 16-SEP-2014:
After IF statement…

b) Explain why the output produced for the two dates is different.

Answer: When the value of 13-SEP-2014 is entered for the variable v_date, the day of
the week is determined with the help of the functions TO_CHAR and RTRIM, and then
assigned to the variable v_day.

Next, the following condition is evaluated:
v_day IN ('SATURDAY', 'SUNDAY')

Because the value of the variable v_day is ‘SATURDAY,’ the condition evaluates to
TRUE, and the DBMS_OUTPUT.PUT_LINE statement in the body of the IF-THEN
statement is executed. As a result, ‘09/13/2014 00:00 falls on weekend’ is displayed in
the Dbms Output window. Next, the control of the execution is passed to the last
DBMS_OUTPUT.PUT_LINE statement and ‘After IF statement…’ is displayed in the
Dbms Output window.

For the second run, the variable v_date is assigned value of 16-SEP-2014. And just
like in the previous run, the value of the variable v_day is derived from the value of the
variable v_date. Next, the condition of the IF-THEN statement is evaluated. Because
it evaluates to FALSE, the IF-THEN statement does not execute, and the control of the
execution is passed to the last DBMS_OUTPUT.PUT_LINE statement, and ‘After IF
statement…’ is displayed in the Dbms Output window.

c) Remove the RTRIM function from the assignment statement for the variable v_day as
follows
v_day := TO_CHAR(v_date, 'DAY');

and run the script again, for ‘14-SEP-2014’ date. What output was
generated in this case? Why?

Answer: The script should look similar to the following. Changes are highlighted in
bold.

For Example ch04_6b.sql

DECLARE

 v_date DATE := TO_DATE('&sv_user_date', 'DD-MON-YYYY');

 v_day VARCHAR2(15);

BEGIN

 v_day := TO_CHAR(v_date, 'DAY');

 IF v_day IN ('SATURDAY', 'SUNDAY')

 THEN

 DBMS_OUTPUT.PUT_LINE (v_date||' falls on weekend');

 END IF;

 DBMS_OUTPUT.PUT_LINE ('After IF statement…');

END;

When the value of 14-SEP-2014 is entered for the variable v_date, the new version of
the script produces output as shown:
After IF statement…

In the original example, the variable v_day is calculated with the help of the statement,
RTRIM(TO_CHAR(v_date, 'DAY'))

First, the function TO_CHAR returns the day of the week padded with blanks. In this
case, the size of the value retrieved by the function TO_CHAR is always 9 bytes. Next, the
RTRIM function removes trailing spaces.

In the statement,
v_day := TO_CHAR(v_date, 'DAY')

the TO_CHAR function is used without the RTRIM function. Therefore, trailing blanks are
not removed after the day of the week has been derived. As a result, the condition of the
IF-THEN statement evaluates to FALSE even though given date falls on the weekend. As
a result, the control of the execution is passed to the last DBMS_ OUTPUT.PUT_LINE
statement.

d) Rewrite this script using the LIKE operator instead of the IN operator, so that it produces
the same results for the dates specified earlier.

Answer: The script should look similar to the following. Newly modified statements are
shown in bold.

For Example ch04_6c.sql

DECLARE

 v_date DATE := TO_DATE('&sv_user_date', 'DD-MON-YYYY');

 v_day VARCHAR2(15);

BEGIN

 v_day := TO_CHAR(v_date, 'DAY');

 IF v_day LIKE 'S%'

 THEN

 DBMS_OUTPUT.PUT_LINE (v_date||' falls on weekend');

 END IF;

 DBMS_OUTPUT.PUT_LINE ('After IF statement…');

END;

Since both days, Saturday and Sunday, are the only days of the week that start with the
letter ‘S’, there is no need to spell out the names of the days or specify any additional
characters for the LIKE operator.

When this version of the script is executed for the original dates of 13-SEP-2014 and
16-SEP-2014 it produces the same output as the original example:
09/13/2014 00:00 falls on weekend

After IF statement…

And
After IF statement…

IF-THEN-ELSE Statement
In this exercise, you will use the IF-THEN-ELSE statement to check how many students are
enrolled in course number 25, section 1. If there are 15 or more students enrolled, section 1 of
course number 25 is full. Otherwise, section 1 of course number 25 is not full and more students
can register for it. In both cases, a message should be displayed to the user indicating whether
section 1 is full. Try to answer the questions before you run the script. Once you have answered
the questions, run the script and check your answers.

Create the following PL/SQL script:

For Example ch04_7a.sql

DECLARE

 v_total NUMBER;

BEGIN

 SELECT COUNT(*)

 INTO v_total

 FROM enrollment e

 JOIN section s USING (section_id)

 WHERE s.course_no = 25

 AND s.section_no = 1;

 -- check if section 1 of course 25 is full

 IF v_total >= 15

 THEN

 DBMS_OUTPUT.PUT_LINE ('Section 1 of course 25 is full');

 ELSE

 DBMS_OUTPUT.PUT_LINE ('Section 1 of course 25 is not full');

 END IF;

 -- control resumes here

END;

Try to answer the following questions first and then execute the script:

a) What DBMS_OUTPUT.PUT_LINE statement is executed if there are 15 students
enrolled in section 1 of course number 25?

Answer: If there are 15 or more students enrolled in section 1 of course number 25, the
first DBMS_OUTPUT.PUT_LINE statement is executed and message ‘Section 1 of
course 25 is full’ is displayed in the Dbms Output window. This is because the condition
v_total >= 15

evaluates to TRUE, and as a result, the statement
DBMS_OUTPUT.PUT_LINE ('Section 1 of course 25 is full');

is executed.

b) What DBMS_OUTPUT.PUT_LINE statement is executed if there are 3 students enrolled
in section 1 of course number 25?

Answer: If there are 3 students enrolled in section 1 of course number 25, the second
DBMS_OUTPUT.PUT_LINE statement is executed and the message ‘Section 1 of course
25 is not full’ is displayed in the Dbms Output window. This is because the condition
v_total >= 15

evaluates to FALSE, and control of the execution is passed to the ELSE part on the IF-
THEN-ELSE statement. As a result, the statement
DBMS_OUTPUT.PUT_LINE ('Section 1 of course 25 is not full');

is executed.

c) What DBMS_OUTPUT.PUT_LINE statement is executed if there is no section 1 for
course number 25?

Answer: If there is no section 1 for course number 25, the second
DBMS_OUTPUT.PUT_LINE statement is executed and the message ‘Section 1 of course
25 is not full’ is displayed in the Dbms Output window. This is because the COUNT
function used in the SELECT statement
SELECT COUNT(*)

 INTO v_total

 FROM enrollment e

 JOIN section s USING (section_id)

 WHERE s.course_no = 25

 AND s.section_no = 1;

returns 0, and the condition of the IF-THEN-ELSE statement evaluates to FALSE.
Therefore, the control of the execution is passed to the ELSE part of the IF-THEN-
ELSE statement, and the second DBMS_OUTPUT.PUT_LINE statement is executed and
its message is displayed in the Dbms Output window.

d) How would you change this script so that if there are less than 15 students enrolled in
section 1 of course number 25, a message indicating how many students can still be
enrolled is displayed?

Answer: The script should look similar to this script. Newly added statements are
highlighted in bold.

For Example ch04_7b.sql

DECLARE

 v_total NUMBER;

 v_students NUMBER;

BEGIN

 SELECT COUNT(*)

 INTO v_total

 FROM enrollment e

 JOIN section s USING (section_id)

 WHERE s.course_no = 25

 AND s.section_no = 1;

 -- check if section 1 of course 25 is full

 IF v_total >= 15

 HEN

 DBMS_OUTPUT.PUT_LINE ('Section 1 of course 25 is full');

 ELSE

 v_students := 15 - v_total;

 DBMS_OUTPUT.PUT_LINE (v_students||

 ' students can still enroll into section 1 of course 25');

 END IF;

 -- control resumes here

END;

Notice that if the IF-THEN-ELSE statement evaluates to FALSE, the statements
associated with the ELSE part are executed. In this case, the value of the variable
v_total is subtracted from 15. The result of this operation indicates how many more
students can enroll in section 1 of course number 25.

Lab 4.2 ELSIF Statements
In this exercise, you will use an ELSIF statement to display a letter grade for a student
registered for a specific section of course number 25.

Create the following PL/SQL script:

For Example ch04_8a.sql

DECLARE

 v_student_id NUMBER := 102;

 v_section_id NUMBER := 89;

 v_final_grade NUMBER;

 v_letter_grade CHAR(1);

BEGIN

 SELECT final_grade

 INTO v_final_grade

 FROM enrollment

 WHERE student_id = v_student_id

 AND section_id = v_section_id;

 IF v_final_grade BETWEEN 90 AND 100

 THEN

 v_letter_grade := 'A';

 ELSIF v_final_grade BETWEEN 80 AND 89

 THEN

 v_letter_grade := 'B';

 ELSIF v_final_grade BETWEEN 70 AND 79

 THEN

 v_letter_grade := 'C';

 ELSIF v_final_grade BETWEEN 60 AND 69

 THEN

 v_letter_grade := 'D';

 ELSE

 v_letter_grade := 'F';

 END IF;

 -- control resumes here

 DBMS_OUTPUT.PUT_LINE ('Letter grade is: '||v_letter_grade);

EXCEPTION

 WHEN NO_DATA_FOUND

 THEN

 DBMS_OUTPUT.PUT_LINE ('There is no such student or section');

END;

Note, that you may need to change the values for the variables v_student_id and
v_section_id as you see fit in order to test some of your answers.

Try to answer the following questions first, and then execute the script:

a) What letter grade will be displayed in the Dbms Output window:
 i) if the value of v_final_grade is equal to 85?
 ii) if the value of v_final_grade is NULL?
 iii) if the value of v_final_grade is greater than 100?
Answers:
i) If the value of v_final_grade is equal to 85, the value “B” of the letter grade

will be displayed in the Dbms Output window.

The conditions of the ELSIF statement are evaluated in sequential order. The first
condition
v_final_grade BETWEEN 90 AND 100

evaluates to FALSE, and control is passed to the first ELSIF part of the ELSIF
statement. Then, the second condition
v_final_grade BETWEEN 80 AND 89

evaluates to TRUE, and the letter “B” is assigned to the variable v_letter_grade. The
control of the execution is then passed to first executable statement after END IF
statement, and the message ‘Letter grade is: B’ is displayed in the Dbms Output window.

ii) If the value of v_final_grade is NULL, value “F” of the letter grade will be

displayed of the screen.

If the value of the variable v_final_grade is undefined or NULL, then all conditions
of the ELSIF statement evaluate to NULL (notice, they do not evaluate to FALSE). As a
result, the ELSE part of the ELSIF statement is executed, and letter “F” is assigned to the
variable v_letter_grade. Thus, the message ‘Letter grade is: F’ is displayed in the
Dbms Output window.

iii) If the value of v_final_grade is greater than 100, value “F” of the letter

grade will be displayed of the screen.

The conditions specified for the ELSIF statement cannot handle a value of the variable
v_final_grade greater than 100. So, for any student whose letter grade should be A+,
will result in a letter grade of “F.” After the ELSIF statement has terminated, message
‘The letter grade is: F’ is displayed in the Dbms Output window.

b) How would you change this script so that a message ‘v_final_grade is null’ is displayed

in the Dbms Output window if v_final_grade is NULL?

Answer: The script should look similar to this script. Changes are shown in bold.

For Example ch04_8b.sql

DECLARE

 v_student_id NUMBER := 102;

 v_section_id NUMBER := 89;

 v_final_grade NUMBER;

 v_letter_grade CHAR(1);

BEGIN

 SELECT final_grade

 INTO v_final_grade

 FROM enrollment

 WHERE student_id = v_student_id

 AND section_id = v_section_id;

 IF v_final_grade IS NULL

 THEN

 DBMS_OUTPUT.PUT_LINE ('v_final_grade is null');

 ELSIF v_final_grade BETWEEN 90 AND 100

 THEN

 v_letter_grade := 'A';

 ELSIF v_final_grade BETWEEN 80 AND 89

 THEN

 v_letter_grade := 'B';

 ELSIF v_final_grade BETWEEN 70 AND 79

 THEN

 v_letter_grade := 'C';

 ELSIF v_final_grade BETWEEN 60 AND 69

 THEN

 v_letter_grade := 'D';

 ELSE

 v_letter_grade := 'F';

 END IF;

 -- control resumes here

 DBMS_OUTPUT.PUT_LINE ('Letter grade is: '||v_letter_grade);

EXCEPTION

 WHEN NO_DATA_FOUND

 THEN

 DBMS_OUTPUT.PUT_LINE ('There is no such student or section');

END;

Note that one more condition has been added to the ELSIF statement. In this case, the
condition
v_final_grade BETWEEN 90 AND 100

becomes the first ELSIF condition. Now, if the value of v_final_grade is NULL, the
message ‘v_final_grade is null’ is displayed in the Dbms Output window. However,
because there is no value assigned to the variable v_letter_grade, the message
‘Letter grade is:’ is displayed as well.

c) How would you change the script to define a letter grade without specifying the upper
limit of the final grade? In the statement, v_final_grade BETWEEN 90 and
100, number 100 is the upper limit.

Answer: The script should look similar to following. Changes are shown in bold.

For Example ch04_8c.sql

DECLARE

 v_student_id NUMBER := 102;

 v_section_id NUMBER := 89;

 v_final_grade NUMBER;

 v_letter_grade CHAR(1);

BEGIN

 SELECT final_grade

 INTO v_final_grade

 FROM enrollment

 WHERE student_id = v_student_id

 AND section_id = v_section_id;

 IF v_final_grade >= 90

 THEN

 v_letter_grade := 'A';

 ELSIF v_final_grade >= 80

 THEN

 v_letter_grade := 'B';

 ELSIF v_final_grade >= 70

 THEN

 v_letter_grade := 'C';

 ELSIF v_final_grade >= 60

 THEN

 v_letter_grade := 'D';

 ELSE

 v_letter_grade := 'F';

 END IF;

 -- control resumes here

 DBMS_OUTPUT.PUT_LINE ('Letter grade is: '||v_letter_grade);

EXCEPTION

 WHEN NO_DATA_FOUND

 THEN

 DBMS_OUTPUT.PUT_LINE ('There is no such student or section');

END;

In this example, there is no upper limit specified for the variable v_final_grade
because the BETWEEN operator has been replaced with the >= operator. Thus, this script is
able to handle a value of the variable v_final_grade that is greater than 100. Instead
of assigning letter ‘F’ to the variable v_letter_grade (in version ch01_8a.sql of the
script), the letter ‘A’ is assigned to the variable v_letter_grade. As a result, this
script produces more accurate results.

Lab 4.3 Nested IF Statements

In this exercise, you will use nested IF statements. This script will convert the value of a
temperature from one system to another. If the temperature is supplied in Fahrenheit, it will be
converted to Celsius, and vice versa.

Create the following PL/SQL script:

For Example ch04_9a.sql

DECLARE

 v_temp_in NUMBER := &sv_temp_in;

 v_scale_in CHAR := '&sv_scale_in';

 v_temp_out NUMBER;

 v_scale_out CHAR;

BEGIN

 IF v_scale_in != 'C' AND v_scale_in != 'F'

 THEN

 DBMS_OUTPUT.PUT_LINE ('This is not a valid scale');

 ELSE

 IF v_scale_in = 'C'

 THEN

 v_temp_out := ((9 * v_temp_in) / 5) + 32;

 v_scale_out := 'F';

 ELSE

 v_temp_out := ((v_temp_in - 32) * 5) / 9;

 v_scale_out := 'C';

 END IF;

 DBMS_OUTPUT.PUT_LINE ('New scale is: '||v_scale_out);

 DBMS_OUTPUT.PUT_LINE ('New temperature is: '||v_temp_out);

 END IF;

END;

Execute the script, and then answer the following questions:

a) What output is generated by the script if the value of 100 is entered for the temperature,
and the letter ‘C’ is entered for the scale?

Answer: The output should look like the following:
New scale is: F

New temperature is: 212

Once the values for the variables v_temp_in and v_scale_in have been provided,
the condition
v_scale_in != 'C' AND v_scale_in != 'F'

of the outer IF statement evaluates to FALSE, and control of the execution is passed to
the ELSE part of the outer IF statement. Next, the condition
v_scale_in = 'C'

of the inner IF statement evaluates to TRUE, and the values of the variables
v_temp_out and v_scale_out are calculated. Control of the execution is then
passed back to the outer IF statement, and the new value for the temperature and the
scale are displayed in the Dbms Output window.

b) Run this script without providing a value for the temperature. What output will be
generated by the script in this case? Why?

Answer: If the value for the temperature is not entered, the script will not compile at all.
The compiler will try to assign a value to the variable v_temp_in with the help of the
substitution variable. Because the value for v_temp_in has not been entered, the
assignment statement will fail, and the following error message will be displayed.
ORA-06550: line 2, column 26:
PLS-00103: Encountered the symbol ";" when expecting one of
the following:
 (- + case mod new not null <an identifier>
 <a double-quoted delimited-identifier> <a bind variable>
 continue avg count current exists max min prior sql stddev
 sum variance execute forall merge time timestamp interval
 date <a string literal with character set specification>
 <a number> <a single-quoted SQL string> pipe
 <an alternatively-quoted string literal with character set

specification>

You have probably noticed that even though the mistake seems small and insignificant,
the error message is fairly long and confusing.

c) Try to run this script providing an invalid letter for the temperature scale, for example,

letter ‘V’. What message will be displayed in the Dbms Output window? Why?

Answer: If an invalid letter is entered for the scale, the message ‘This is not a valid
scale’ will be displayed in the Dbms Output window.

The condition of the outer IF statement will be evaluated to TRUE. As a result, the
inner IF statement will not be executed at all, and the message ‘This is not a valid scale’
will be displayed in the Dbms Output window. This is illustrated further by the output
below:
This is not a valid scale

d) Rewrite this script so that if an invalid letter is entered for the scale, the variable

v_temp_out is initialized to 0 and the variable v_scale_out is initialized to C.

Answer: The script should look similar to the following script. Newly added and modified
statements are shown in bold. Notice that the last two DBMS_OUTPUT.PUT_LINE
statements have been moved from the body of the outer IF statement.

For Example ch04_9b.sql

DECLARE

 v_temp_in NUMBER := &sv_temp_in;

 v_scale_in CHAR := '&sv_scale_in';

 v_temp_out NUMBER;

 v_scale_out CHAR;

BEGIN

 IF v_scale_in != 'C' AND v_scale_in != 'F'

 THEN

 DBMS_OUTPUT.PUT_LINE ('This is not a valid scale');

 v_temp_out := 0;

 v_scale_out := 'C';

 ELSE

 IF v_scale_in = 'C'

 THEN

 v_temp_out := ((9 * v_temp_in) / 5) + 32;

 v_scale_out := 'F';

 ELSE

 v_temp_out := ((v_temp_in - 32) * 5) / 9;

 v_scale_out := 'C';

 END IF;

 END IF;

 DBMS_OUTPUT.PUT_LINE ('New scale is: '||v_scale_out);

 DBMS_OUTPUT.PUT_LINE ('New temperature is: '||v_temp_out);

END;

This version of the script produces output as follows:
This is not a valid scale.

New scale is: C

New temperature is: 0

Try It Yourself
The projects in this section are meant to have you use all of the skills that you have acquired
throughout this chapter. Here are some exercises that will help you test the depth of your
understanding.

1) Create the following script. For a given instructor, determine how many sections he or
she is teaching. If the number is greater than or equal to 3, display a message saying that
the instructor needs a vacation. Otherwise, display a message saying how many sections
this instructor is teaching.

Answer: The script should look similar to the following:

For Example ch04_10a.sql

DECLARE

 v_instructor_id NUMBER := &sv_instructor_id;

 v_total NUMBER;

BEGIN

 SELECT COUNT(*)

 INTO v_total

 FROM section

 WHERE instructor_id = v_instructor_id;

 -- check if instructor teaches 3 or more sections

 IF v_total >= 3

 THEN

 DBMS_OUTPUT.PUT_LINE ('This instructor needs a vacation');

 ELSE

 DBMS_OUTPUT.PUT_LINE ('This instructor teaches '||v_total||' sections');

 END IF;

 -- control resumes here

END;

The script above declares two variables, v_instructor_id and v_total. Both
variables are used by the SELECT INTO statement to check the number of sections

taught by an instructor. Next, the IF-THEN-ELSE statement evaluates whether an
instructor teaches 3 or more sections. If a particular instructor teaches three or more
sections, the condition of the IF-THEN-ELSE statement evaluates to TRUE, and the
message ‘This instructor needs a vacation’ is displayed in the Dbms Output window.
In the opposite case, the message stating how many sections instructor is teaching is
displayed.

Assume that value 101 is provided for instructor ID at the runtime. Then the script
produces output as follows:
This instructor needs a vacation

2) Execute the two PL/SQL blocks below and explain why they produce different output for
the same value of the variable v_num.

For Example ch04_11a.sql

-- Block 1

DECLARE

 v_num NUMBER := NULL;

BEGIN

 DBMS_OUTPUT.PUT_LINE ('PL/SQL Block 1');

 IF v_num > 0

 THEN

 DBMS_OUTPUT.PUT_LINE ('v_num is greater than 0');

 ELSE

 DBMS_OUTPUT.PUT_LINE ('v_num is not greater than 0');

 END IF;

END;

/

-- Block 2

DECLARE

 v_num NUMBER := NULL;

BEGIN

 DBMS_OUTPUT.PUT_LINE ('PL/SQL Block 2');

 IF v_num > 0

 THEN

 DBMS_OUTPUT.PUT_LINE ('v_num is greater than 0');

 END IF;

 IF NOT (v_num > 0)

 THEN

 DBMS_OUTPUT.PUT_LINE ('v_num is not greater than 0');

 END IF;

END;

/

Answer: Consider outputs produced by the preceding scripts:
PL/SQL Block 1

v_num is not greater than 0

PL/SQL Block 2

The outputs produced by Block 1 and Block 2 are different, even though in both
examples the variable v_num has been defined as NULL.

First, take a closer look at the IF-THEN-ELSE statement used in Block 1:
IF v_num > 0

THEN

 DBMS_OUTPUT.PUT_LINE ('v_num is greater than 0');

ELSE

 DBMS_OUTPUT.PUT_LINE ('v_num is not greater than 0');

END IF;

The condition v_num > 0 evaluates to FALSE because NULL has been assigned to the
variable v_num. As a result, the control of the execution is transferred to the ELSE part
of the IF-THEN-ELSE statement. So, the message ‘v_num is not greater than 0’ is
displayed in the Dbms Output window.

Second, take a closer look at the IF-THEN statements used in Block 2:
IF v_num > 0

THEN

 DBMS_OUTPUT.PUT_LINE ('v_num is greater than 0');

END IF;

IF NOT (v_num > 0)

THEN

 DBMS_OUTPUT.PUT_LINE ('v_num is not greater than 0');

END IF;

For both IF-THEN statements their conditions evaluate to FALSE, and as a result none
of the messages are in the Dbms Output window.

