
Exercises for
Chapter 5:
Conditional Control:
CASE Statements
The Labs below provide you with exercises and suggested answers with discussion related to how
those answers resulted. The most important thing to realize is whether your answer works. You should
figure out the implications of the answers here and what the effects are from any different answers you
may come up with.

Lab 5.1 CASE Statements
Answer the following questions:

CASE Statements
In this exercise, you will use the CASE statement to display the name of a day based on the number of
the day in a week. In other words, if the number of a day of the week is 3, then it is Tuesday.

Create the following PL/SQL script:

For Example ch05_7a.sql

DECLARE

 v_date DATE := TO_DATE('&sv_user_date', 'DD-MON-YYYY');

 v_day VARCHAR2(1);

BEGIN

 v_day := TO_CHAR(v_date, 'D');

 CASE v_day

 WHEN '1' THEN

 DBMS_OUTPUT.PUT_LINE ('Today is Sunday');

 WHEN '2' THEN

 DBMS_OUTPUT.PUT_LINE ('Today is Monday');

 WHEN '3' THEN

 DBMS_OUTPUT.PUT_LINE ('Today is Tuesday');

 WHEN '4' THEN

 DBMS_OUTPUT.PUT_LINE ('Today is Wednesday');

 WHEN '5' THEN

 DBMS_OUTPUT.PUT_LINE ('Today is Thursday');

 WHEN '6' THEN

 DBMS_OUTPUT.PUT_LINE ('Today is Friday');

 WHEN '7' THEN

 DBMS_OUTPUT.PUT_LINE ('Today is Saturday');

 END CASE;

END;

Execute the script, and then answer the following questions:

a) If the value of v_date equals ‘19-SEP-2014’, what output is generated by the script?

Answer: The output should look like the following:
Today is Friday

When the value of 19-SEP-2014 is entered for the variable v_date, the number of the day of
the week is determined for the variable v_day with the help of the TO_CHAR function. Next,
each expression of the CASE statement is compared sequentially to the value of the selector.
Because the value of the selector equals ‘6’, the DBMS_OUTPUT.PUT_LINE statement
associated with the sixth WHEN clause is executed. As a result, the message ‘Today is Friday’ is
displayed in the Dbms Output window. The rest of the expressions are not evaluated, and the
control of the execution is passed to the first executable statement after END CASE.

b) How many times is the CASE selector v_day evaluated?

Answer: The CASE selector v_day is evaluated only once. However, the WHEN clauses are
checked sequentially. When the value of the expression in the WHEN clause equals to the value
of the selector, the statements associated with that WHEN clause are executed.

c) Rewrite this script using the ELSE clause in the CASE statement.

Answer: The script should look similar to the following. Changes are shown in bold.

For Example ch05_7b.sql

DECLARE

 v_date DATE := TO_DATE('&sv_user_date', 'DD-MON-YYYY');

 v_day VARCHAR2(1);

BEGIN

 v_day := TO_CHAR(v_date, 'D');

 CASE v_day

 WHEN '1' THEN

 DBMS_OUTPUT.PUT_LINE ('Today is Sunday');

 WHEN '2' THEN

 DBMS_OUTPUT.PUT_LINE ('Today is Monday');

 WHEN '3' THEN

 DBMS_OUTPUT.PUT_LINE ('Today is Tuesday');

 WHEN '4' THEN

 DBMS_OUTPUT.PUT_LINE ('Today is Wednesday');

 WHEN '5' THEN

 DBMS_OUTPUT.PUT_LINE ('Today is Thursday');

 WHEN '6' THEN

 DBMS_OUTPUT.PUT_LINE ('Today is Friday');

 ELSE

 DBMS_OUTPUT.PUT_LINE ('Today is Saturday');

 END CASE;

END;

Notice that the last WHEN clause has been replaced by the ELSE clause. If ‘20-SEP-2014’ is
provided at runtime, the example produces the following output:
Today is Saturday

None of the expressions listed in the WHEN clauses are equal to the value of the selector because
the date of ‘20-SEP-2014’ falls on Saturday, which is the seventh day of the week. As a result,
the ELSE clause is executed, and the message ‘Today is Saturday’ is displayed in the Dbms
Output window.

Searched CASE Statements
In this exercise, you will modify the script ch05_7a.sql created in the previous section. In this exercise
you will using searched CASE statement instead of CASE statement.

Create the following PL/SQL script:

For Example ch05_8a.sql

DECLARE

 v_date DATE := TO_DATE('&sv_user_date', 'DD-MON-YYYY');

BEGIN

 CASE

 WHEN TO_CHAR(v_date, 'D') = '1' THEN

 DBMS_OUTPUT.PUT_LINE ('Today is Sunday');

 WHEN TO_CHAR(v_date, 'D') = '2' THEN

 DBMS_OUTPUT.PUT_LINE ('Today is Monday');

 WHEN TO_CHAR(v_date, 'D') = '3' THEN

 DBMS_OUTPUT.PUT_LINE ('Today is Tuesday');

 WHEN TO_CHAR(v_date, 'D') = '4' THEN

 DBMS_OUTPUT.PUT_LINE ('Today is Wednesday');

 WHEN TO_CHAR(v_date, 'D') = '5' THEN

 DBMS_OUTPUT.PUT_LINE ('Today is Thursday');

 WHEN TO_CHAR(v_date, 'D') = '6' THEN

 DBMS_OUTPUT.PUT_LINE ('Today is Friday');

 WHEN TO_CHAR(v_date, 'D') = '7' THEN

 DBMS_OUTPUT.PUT_LINE ('Today is Saturday');

 END CASE;

END;

Try to answer the following questions first, and then execute the script:

a) Explain the differences between the ch05_7a.sql and ch05_8a.sql scripts:

Answer: Because the ch05_8a.sql script employs searched CASE statement, there is no need to
declare variable v_day. This variable was used in the ch05_7a.sql script because CASE
statement requires a selector. However, for the searched CASE statement the v_date variable
is evaluated by each WHEN clause. Otherwise, this version of the script produces the same
output as the original script for the same value of the variable v_date as demonstrated below:
Today is Friday

b) What output will be generated by the script if NULL is provided for the variable v_date at the
run time?

Answer: If NULL is provided for the variable v_date at the run time, the script is unable to
execute successfully. This is because none of the searched conditions listed account for the
value of the variable v_date being NULL as illustrated by the error message below:
ORA-06592: CASE not found while executing CASE statement

ORA-06512: at line 4

c) Rewrite this script so that it executes successfully when NULL is provided for the variable
v_date at the run time.

Answer: Your script should look similar to one of the following scripts. Newly added
statements are highlighted bold.

For Example ch05_8b.sql – Adding WHEN Clause

DECLARE

 v_date DATE := TO_DATE('&sv_user_date', 'DD-MON-YYYY');

BEGIN

 CASE

 WHEN TO_CHAR(v_date, 'D') IS NULL

 THEN

 DBMS_OUTPUT.PUT_LINE ('v_date is NULL');

 WHEN TO_CHAR(v_date, 'D') = '1'

 THEN

 DBMS_OUTPUT.PUT_LINE ('Today is Sunday');

 WHEN TO_CHAR(v_date, 'D') = '2'

 THEN

 DBMS_OUTPUT.PUT_LINE ('Today is Monday');

 WHEN TO_CHAR(v_date, 'D') = '3'

 THEN

 DBMS_OUTPUT.PUT_LINE ('Today is Tuesday');

 WHEN TO_CHAR(v_date, 'D') = '4'

 THEN

 DBMS_OUTPUT.PUT_LINE ('Today is Wednesday');

 WHEN TO_CHAR(v_date, 'D') = '5'

 THEN

 DBMS_OUTPUT.PUT_LINE ('Today is Thursday');

 WHEN TO_CHAR(v_date, 'D') = '6'

 THEN

 DBMS_OUTPUT.PUT_LINE ('Today is Friday');

 WHEN TO_CHAR(v_date, 'D') = '7'

 THEN

 DBMS_OUTPUT.PUT_LINE ('Today is Saturday');

 END CASE;

END;

Note that in this version, a new WHEN clause has been added to the searched CASE statement
that tests whether v_date variable is NULL. This version of the script produces output as
shown below:
v_date is NULL

Next, consider another version of the script where the searched CASE statement is extended
with the ELSE clause. Because the ELSE clause does not check for any specific condition, the
message in the newly added DBMS_OUTPUT.PUT_LINE statement has modified to a more
generic one.

For Example ch05_8c.sql – Adding ELSE Clause

DECLARE

 v_date DATE := TO_DATE('&sv_user_date', 'DD-MON-YYYY');

BEGIN

 CASE

 WHEN TO_CHAR(v_date, 'D') = '1'

 THEN

 DBMS_OUTPUT.PUT_LINE ('Today is Sunday');

 WHEN TO_CHAR(v_date, 'D') = '2'

 THEN

 DBMS_OUTPUT.PUT_LINE ('Today is Monday');

 WHEN TO_CHAR(v_date, 'D') = '3'

 THEN

 DBMS_OUTPUT.PUT_LINE ('Today is Tuesday');

 WHEN TO_CHAR(v_date, 'D') = '4'

 THEN

 DBMS_OUTPUT.PUT_LINE ('Today is Wednesday');

 WHEN TO_CHAR(v_date, 'D') = '5'

 THEN

 DBMS_OUTPUT.PUT_LINE ('Today is Thursday');

 WHEN TO_CHAR(v_date, 'D') = '6'

 THEN

 DBMS_OUTPUT.PUT_LINE ('Today is Friday');

 WHEN TO_CHAR(v_date, 'D') = '7'

 THEN

 DBMS_OUTPUT.PUT_LINE ('Today is Saturday');

 ELSE

 DBMS_OUTPUT.PUT_LINE ('Today is Unknown');

 END CASE;

END;

This version of the script produces the following output:
Today is Unknown

Lab 5.2 CASE Expressions
In this exercise, you will modify the script ch04_8c.sql created in the Lab 4.2 of the previous chapter.
The original script used ELSIF statement to assign letter grade to the variable v_letter_grade.
In this new version of the script, the ELSIF statement is replaced by the CASE expression to display a
letter grade for a student registered for a specific section of course number 25.

The original version of the script is provided below for your reference:

For Example ch04_8c.sql

DECLARE

 v_student_id NUMBER := 102;

 v_section_id NUMBER := 89;

 v_final_grade NUMBER;

 v_letter_grade CHAR(1);

BEGIN

 SELECT final_grade

 INTO v_final_grade

 FROM enrollment

 WHERE student_id = v_student_id

 AND section_id = v_section_id;

 IF v_final_grade >= 90

 THEN

 v_letter_grade := 'A';

 ELSIF v_final_grade >= 80

 THEN

 v_letter_grade := 'B';

 ELSIF v_final_grade >= 70

 THEN

 v_letter_grade := 'C';

 ELSIF v_final_grade >= 60

 THEN

 v_letter_grade := 'D';

 ELSE

 v_letter_grade := 'F';

 END IF;

 -- control resumes here

 DBMS_OUTPUT.PUT_LINE ('Letter grade is: '||v_letter_grade);

EXCEPTION

 WHEN NO_DATA_FOUND

 THEN

 DBMS_OUTPUT.PUT_LINE ('There is no such student or section');

END;

Answer the following questions:

a) Modify the script ch04_8c.sql shown above. Replace the ELSIF statement with the CASE
expression so that the value returned by this CASE expression is assigned to the variable
v_letter_grade.

Answer: The script should look similar to the script below. Changes are shown in bold.

For Example ch05_9a.sql

DECLARE

 v_student_id NUMBER := 102;

 v_section_id NUMBER := 89;

 v_final_grade NUMBER;

 v_letter_grade CHAR(1);

BEGIN

 SELECT final_grade

 INTO v_final_grade

 FROM enrollment

 WHERE student_id = v_student_id

 AND section_id = v_section_id;

 v_letter_grade := CASE

 WHEN v_final_grade >= 90 THEN 'A'

 WHEN v_final_grade >= 80 THEN 'B'

 WHEN v_final_grade >= 70 THEN 'C'

 WHEN v_final_grade >= 60 THEN 'D'

 ELSE 'F'

 END;

 DBMS_OUTPUT.PUT_LINE ('Letter grade is: '||v_letter_grade);

EXCEPTION

 WHEN NO_DATA_FOUND

 THEN

 DBMS_OUTPUT.PUT_LINE ('There is no such student or section');

END;

b) Run the script created in part (a) and explain the output produced.

Answer: The output should look similar to the following:
Letter grade is: A

The SELECT INTO statement returns a value of 92 that is assigned to the variable
v_final_grade. As a result, the first searched condition of the CASE expression evaluates to
TRUE and returns a value of ‘A’. This value is then assigned to the variable v_letter_grade
and displayed in the Dbms Output window via the DBMS_OUTPUT.PUT_LINE statement.

c) Rewrite the script created in part (a), ch05_9a.sql so that the result of the CASE expression

is assigned to the variable v_letter_grade via the SELECT INTO statement.

Answer: The script should look similar to the following. Newly modified SELECT INTO
statement is shown on bold.

For Example ch05_9b.sql

DECLARE

 v_student_id NUMBER := 102;

 v_section_id NUMBER := 89;

 v_letter_grade CHAR(1);

BEGIN

 SELECT CASE

 WHEN final_grade >= 90 THEN 'A'

 WHEN final_grade >= 80 THEN 'B'

 WHEN final_grade >= 70 THEN 'C'

 WHEN final_grade >= 60 THEN 'D'

 ELSE 'F'

 END

 INTO v_letter_grade

 FROM enrollment

 WHERE student_id = v_student_id

 AND section_id = v_section_id;

 DBMS_OUTPUT.PUT_LINE ('Letter grade is: '||v_letter_grade);

EXCEPTION

 WHEN NO_DATA_FOUND

 THEN

 DBMS_OUTPUT.PUT_LINE ('There is no such student or section');

END;

In the previous version of the script, the variable v_final_grade was used to hold the value
of the numeric grade as follows:
SELECT final_grade

 INTO v_final_grade

 FROM enrollment

 WHERE student_id = v_student_id

 AND section_id = v_section_id;

This value of the numeric grade was then used by the CASE expression to assign proper letter
grade to the variable v_letter_grade as follows:
CASE

 WHEN v_final_grade >= 90 THEN 'A'

 WHEN v_final_grade >= 80 THEN 'B'

 WHEN v_final_grade >= 70 THEN 'C'

 WHEN v_final_grade >= 60 THEN 'D'

 ELSE 'F'

END;

In the current version of the script, the CASE expression is used as part of the SELECT INTO
statement. As a result, the column FINAL_GRADE is used by the CASE expression as indicated
below
CASE

 WHEN final_grade >= 90 THEN 'A'

 WHEN final_grade >= 80 THEN 'B'

 WHEN final_grade >= 70 THEN 'C'

 WHEN final_grade >= 60 THEN 'D'

 ELSE 'F'

END

This eliminates the need for the variable v_final_grade as the letter grade is assigned to the
variable v_letter_grade via the SELECT INTO statement.

Lab 5.3 NULLIF and COALESCE
Functions
Answer the following questions:

NULLIF Function
In this exercise, you will modify the following script. Instead of using the searched CASE expression,
you will use the NULLIF function.

Create the following PL/SQL script:

For Example ch05_10a.sql

DECLARE

 v_final_grade NUMBER;

BEGIN

 SELECT CASE

 WHEN e.final_grade = g.numeric_grade THEN NULL

 ELSE g.numeric_grade

 END

 INTO v_final_grade

 FROM enrollment e

 JOIN grade g

 ON (e.student_id = g.student_id

 AND e.section_id = g.section_id)

 WHERE e.student_id = 102

 AND e.section_id = 86

 AND g.grade_type_code = 'FI';

 DBMS_OUTPUT.PUT_LINE ('Final grade: '||v_final_grade);

END;

In the preceding script, the value of the final grade is compared to the value of the numeric grade.
If these values are equal, the CASE expression returns NULL. In the opposite case, the CASE
expression returns the numeric grade. The result of the CASE expression is assigned to the variable
v_final_grade which is then displayed in the Dbms Output window via the
DBMS_OUTPUT.PUT_LINE statement.

Answer the following questions:

a) Modify script ch05_10a.sql. Substitute the CASE expression with the NULLIF function.

Answer: The script should look similar to the following script. Changes are highlighted in bold.

For Example ch05_10b.sql

DECLARE

 v_final_grade NUMBER;

BEGIN

 SELECT NULLIF(g.numeric_grade, e.final_grade)

 INTO v_final_grade

 FROM enrollment e

 JOIN grade g

 ON (e.student_id = g.student_id

 AND e.section_id = g.section_id)

 WHERE e.student_id = 102

 AND e.section_id = 86

 AND g.grade_type_code = 'FI';

 DBMS_OUTPUT.PUT_LINE ('Final grade: '||v_final_grade);

END;

In the original version of the script, the CASE expression is used in order to assign a value to the
variable v_final_grade as follows:
CASE

 WHEN e.final_grade = g.numeric_grade THEN NULL

 ELSE g.numeric_grade

END

In this case, the value stored in the column FINAL_GRADE is compared to the value stored in
the column NUMERIC_GRADE. If these values are equal, then NULL is assigned to the variable
v_final_grade; otherwise, the value stored in the column NUMERIC_GRADE is assigned to
the variable v_final_grade.

In the new version of the script, the CASE expression is replaced by the NULLIF function as
follows:
NULLIF(g.numeric_grade, e.final_grade)

By the Way
Did you notice that the NUMERIC_GRADE column is referenced first in the NULLIF function? This is
because the NULLIF function compares expression1 to expression2. If expression1 equals
expression2, the NULLIF functions returns NULL. If expression1 does not equal expression2, the
NULLIF function returns expression1. In order to return the value stored in the column
NUMERIC_GRADE, it must be referenced first in the NULLIF function.

b) Run the modified version of the script and explain the output produced.

Answer: The output should look similar to the following:
Final grade: 85

The NULLIF function compares values stored in the columns NUMERIC_GRADE and
FINAL_GRADE. Because the column FINAL_GRADE is not populated, the NULLIF function
returns the value stored in the column NUMERIC_GRADE. This value is assigned to the variable
v_final_grade and displayed in the Dbms Output window with the help of the
DBMS_OUTPUT.PUT_LINE statement.

c) Change the order of columns in the NULLIF function. Run the modified version of the script
and explain the output produced.

Answer: The script should look similar to the following. Changes are shown in bold.

For Example ch05_10c.sql

DECLARE

 v_final_grade NUMBER;

BEGIN

 SELECT NULLIF(e.final_grade, g.numeric_grade)

 INTO v_final_grade

 FROM enrollment e

 JOIN grade g

 ON (e.student_id = g.student_id

 AND e.section_id = g.section_id)

 WHERE e.student_id = 102

 AND e.section_id = 86

 AND g.grade_type_code = 'FI';

 DBMS_OUTPUT.PUT_LINE ('Final grade: '||v_final_grade);

END;

The version of the script produces output as indicated below:
Final grade:

In this version of the script, the columns NUMERIC_GRADE and FINAL_GRADE are listed in
the opposite order as follows:
NULLIF(e.final_grade, g.numeric_grade)

The value stored in the column FINAL_GRADE is compared to the value stored in the column
NUMERIC_GRADE. Because these values are not equal, the NULLIF function returns the value
of the column FINAL_GRADE. Since this column is not populated, NULL is assigned to the
variable v_final_grade.

COALESCE Function
In this exercise, you will modify the following script. Instead of using the nested CASE expressions,
you will use the COALESCE function.

For Example ch05_11a.sql

DECLARE

 v_num1 NUMBER := &sv_num1;

 v_num2 NUMBER := &sv_num2;

 v_num3 NUMBER := &sv_num3;

 v_result NUMBER;

BEGIN

 v_result := CASE

 WHEN v_num1 IS NOT NULL

 THEN

 v_num1

 ELSE

 CASE

 WHEN v_num2 IS NOT NULL

 THEN

 v_num2

 ELSE

 v_num3

 END

 END;

 DBMS_OUTPUT.PUT_LINE ('Result: '||v_result);

END;

In the preceding script, the list consisting of three numbers is evaluated by the nested CASE
expressions as follows:

§ If the value of the first number is not NULL, then the outer CASE expression returns the value of
the first number.

§ Otherwise, the control of the execution is passed to the inner CASE expression, which evaluates
the second number.
§ If the value of the second number is not NULL, then the inner CASE expression returns the

value of the second number; in the opposite case, it returns the value of the third number.
The preceding CASE expression is equivalent to the following two CASE expressions:

CASE

 WHEN v_num1 IS NOT NULL

 THEN

 v_num1

 WHEN v_num2 IS NOT NULL

 THEN

 v_num2

 ELSE

 v_num3

END

and

CASE

 WHEN v_num1 IS NOT NULL

 THEN

 v_num1

 ELSE

 COALESCE(v_num2, v_num3)

END

Answer the following questions:

a) Modify script ch05_11a.sql. Substitute the nested CASE expressions with the COALESCE
function.

Answer: The script should look similar to the following script. Newly modified statement is
shown in bold.

For Example ch05_11b.sql

DECLARE

 v_num1 NUMBER := &sv_num1;

 v_num2 NUMBER := &sv_num2;

 v_num3 NUMBER := &sv_num3;

 v_result NUMBER;

BEGIN

 v_result := COALESCE(v_num1, v_num2, v_num3);

 DBMS_OUTPUT.PUT_LINE ('Result: '||v_result);

END;

The original version of the script uses nested CASE expressions in order to assign a value to the
variable v_result as follows:
CASE

 WHEN v_num1 IS NOT NULL

 THEN

 v_num1

 ELSE

 CASE

 WHEN v_num2 IS NOT NULL

 THEN

 v_num2

 ELSE

 v_num3

 END

END;

In the new version of the script, the nested CASE expression is replaced with the COALESCE
function as shown below:
COALESCE(v_num1, v_num2, v_num3)

Based on the values stored in the variables v_num1, v_num2, and v_num3, the COALESCE
function returns value of the first non-null variable.

b) Run the modified version of the script and explain the output produced. Use the following

values for the list of numbers: NULL, 1, 2.

Answer: The output should look similar to the following:
Result: 1

The COALESCE function evaluates its expressions in the sequential order. The variable
v_num1 is evaluated first. Because the variable v_num1 is NULL, the COALESCE function
evaluates the variable v_num2 next. Because the variable v_num2 is not NULL, the
COALSECE function returns the value of the variable v_num2. This value is assigned to the
variable v_result and is displayed in the Dbms Output window via
DBMS_OUTPUT.PUT_LINE statement.

c) What output will be produced by the modified version of the script if NULL is provided for all

three numbers? Try to explain your answer before you run the script.

Answer: The variables v_num1, v_num2, and v_num3 are evaluated by the COALESCE
function in the sequential order. When NULL is assigned to all three variables, none of the
evaluations produce a non-null result. So the COALESCE function returns NULL when all of its
expressions evaluate to NULL. This is illustrated further by the output below:
Result:

Try It Yourself
The projects in this section are meant to have you use all of the skills that you have acquired
throughout this chapter. Here are some exercises that will help you test the depth of your
understanding.

1) Create the following script. Modify the script created in Chapter 4, Question 1 of the Try It
Yourself section, ch04_10a.sql. You can use either CASE statement or searched CASE
statement. The output should look similar to the output produced by the example created in
Chapter 4.

Answer: Consider the original script created in Chapter 4:

For Example ch04_10a.sql

DECLARE

 v_instructor_id NUMBER := &sv_instructor_id;

 v_total NUMBER;

BEGIN

 SELECT COUNT(*)

 INTO v_total

 FROM section

 WHERE instructor_id = v_instructor_id;

 -- check if instructor teaches 3 or more sections

 IF v_total >= 3

 THEN

 DBMS_OUTPUT.PUT_LINE ('This instructor needs a vacation');

 ELSE

 DBMS_OUTPUT.PUT_LINE ('This instructor teaches '||v_total||' sections');

 END IF;

 -- control resumes here

END;

Next, consider modified version script:

For Example ch05_12a.sql

DECLARE

 v_instructor_id NUMBER := &sv_instructor_id;

 v_total NUMBER;

BEGIN

 SELECT COUNT(*)

 INTO v_total

 FROM section

 WHERE instructor_id = v_instructor_id;

 -- check if instructor teaches 3 or more sections

 CASE

 WHEN v_total >= 3

 THEN

 DBMS_OUTPUT.PUT_LINE ('This instructor needs a vacation');

 ELSE

 DBMS_OUTPUT.PUT_LINE ('This instructor teaches '||v_total||' sections');

 END CASE;

 -- control resumes here

END;

Note that this version of the script employs searched CASE statement and has minimal
changes. Next, consider yet another version of the script that uses CASE statement. The
changes in this version are more significant.

For Example ch05_12b.sql

DECLARE

 v_instructor_id NUMBER := &sv_instructor_id;

 v_total NUMBER;

BEGIN

 SELECT COUNT(*)

 INTO v_total

 FROM section

 WHERE instructor_id = v_instructor_id;

 -- check if instructor teaches 3 or more sections

 CASE SIGN(v_total – 3)

 WHEN -1

 THEN

 DBMS_OUTPUT.PUT_LINE ('This instructor teaches '||v_total||' sections');

 ELSE

 DBMS_OUTPUT.PUT_LINE ('This instructor needs a vacation');

 END CASE;

 -- control resumes here

END;

This version of the script employs the SIGN function as the CASE statement requires a selector
value that determines which WHEN clause should be executed. The result of the SIGN function
is such a selector as it returns –1 if v_total is less than 3, 0 if v_total equals to 3, and 1 if
v_total is greater than 3. In this case, as long as the SIGN function returns –1, the message
‘This instructor teaches…’ is displayed in the Dbms Output window. In all other cases, the
message ‘This instructor needs a vacation’ is displayed in the Dbms Output window.

2) Execute the following two SELECT statements and explain why they produce different output:

SELECT e.student_id, e.section_id, g.numeric_grade, e.final_grade,

 COALESCE(g.numeric_grade, e.final_grade) grade

 FROM enrollment e, grade g

 WHERE e.student_id = g.student_id

 AND e.section_id = g.section_id

 AND e.student_id = 102

 AND g.grade_type_code = 'FI';

SELECT e.student_id, e.section_id, g.numeric_grade, e.final_grade,

 NULLIF(g.numeric_grade, e.final_grade) grade

 FROM enrollment e, grade g

 WHERE e.student_id = g.student_id

 AND e.section_id = g.section_id

 AND e.student_id = 102

 AND g.grade_type_code = 'FI';

Answer: Consider outputs produced by the following SELECT statements:
STUDENT_ID SECTION_ID NUMERIC_GRADE FINAL_GRADE GRADE

---------- ---------- ------------- ----------- ---------

 102 86 85 85

 102 89 92 92 92

STUDENT_ID SECTION_ID NUMERIC_GRADE FINAL_GRADE GRADE

---------- ---------- ------------- ----------- ----------

 102 86 85 85

 102 89 92 92

Take a closer look at the output returned by the first SELECT statement. This statement uses
the COALESCE function to derive the value of the GRADE column. Recall that the COALESCE
function compares each expression to NULL from the list of expressions and returns the value
of the first non-null expression. This list of expressions consists of two columns,
NUMERIC_GRADE and FINAL_GRADE, and in both rows, the NUMERIC_GRADE column
contains non-null values, so the value of GRADE column always equals to the value of the
NUMERIC_GRADE column.

Next, take a closer look at the second SELECT statement. This statement uses the NULLIF
function to derive the value of the GRADE column. Recall that the NULLIF function compares
two expressions. If they are equal, then the function returns NULL; otherwise, it returns the value
of the first expression. In this case, the NULLIF function is comparing NUMERIC_GRADE and
FINAL_GRADE columns. Since in the first row, the FINAL_GRADE column is NULL, the
NULLIF function returns the value of the NUMERIC_GRADE column. In the second row, both
NUMERIC_GRADE and FINAL_GRADE columns contain the same value, thus, the NULLIF
function return value of NULL for the derived GRADE column.

