
Exercises for
Chapter 16: Records
The Labs below provide you with exercises and suggested answers with discussion related to how
those answers resulted. The most important thing to realize is whether your answer works. You should
figure out the implications of the answers here and what the effects are from any different answers you
may come up with.

Lab 16.1 Record Types
Answer the following questions:

Table-Based and Cursor-Based Records
In this exercise, you will experiment with table-based and cursor-based records. Create the following
PL/SQL script:

For Example ch16_11a.sql

DECLARE

 zip_rec zipcode%ROWTYPE;

BEGIN

 SELECT *

 INTO zip_rec

 FROM zipcode

 WHERE rownum < 2;

END;

Answer the following questions:

a) Explain the script created above.

Answer: The declaration portion of the script contains a declaration of the table-based record,
zip_rec that has the same structure as a row from the ZIPCODE table. The executable portion
of the script populates the zip_rec record via the SELECT INTO statement with a row from
the ZIPCODE table. Notice that a restriction applied to the ROWNUM ensures that the SELECT
INTO statement always returns a random single row. As mentioned in Chapter 16, there is no
need to reference individual record fields when the SELECT INTO statement populates the
zip_rec record because zip_rec has a structure identical to a row of the ZIPCODE table.

b) Modify the script so that zip_rec data is displayed on the screen.

Answer: The script should look similar to the following. Newly added statements are shown in
bold.

For Example ch16_11b.sql

DECLARE

 zip_rec zipcode%ROWTYPE;

BEGIN

 SELECT *

 INTO zip_rec

 FROM zipcode

 WHERE rownum < 2;

 DBMS_OUTPUT.PUT_LINE ('Zip: '||zip_rec.zip);

 DBMS_OUTPUT.PUT_LINE ('City: '||zip_rec.city);

 DBMS_OUTPUT.PUT_LINE ('State: '||zip_rec.state);

 DBMS_OUTPUT.PUT_LINE ('Created By: '||zip_rec.created_by);

 DBMS_OUTPUT.PUT_LINE ('Created Date: '||zip_rec.created_date);

 DBMS_OUTPUT.PUT_LINE ('Modified By: '||zip_rec.modified_by);

 DBMS_OUTPUT.PUT_LINE ('Modified Date: '||zip_rec.modified_date);

END;

When run, this version of the script produces output as follows:
Zip: 12345

City: New York

State: NY

Created By: STUDENT

Created Date: 11/06/2014 13:08

Modified By: STUDENT

Modified Date: 11/06/2014 13:08

c) Modify the script created in the previous exercise (ch16_11b.sql) so that zip_rec is defined as

a cursor-based record.

Answer: The script should look similar to the following script. Changes are shown in bold.

For Example ch16_11c.sql

DECLARE

 CURSOR zip_cur IS

 SELECT *

 FROM zipcode

 WHERE rownum < 4;

 zip_rec zip_cur%ROWTYPE;

BEGIN

 OPEN zip_cur;

 LOOP

 FETCH zip_cur INTO zip_rec;

 EXIT WHEN zip_cur%NOTFOUND;

 DBMS_OUTPUT.PUT_LINE ('Zip: '||zip_rec.zip);

 DBMS_OUTPUT.PUT_LINE ('City: '||zip_rec.city);

 DBMS_OUTPUT.PUT_LINE ('State: '||zip_rec.state);

 DBMS_OUTPUT.PUT_LINE ('Created By: '||zip_rec.created_by);

 DBMS_OUTPUT.PUT_LINE ('Created Date: '||zip_rec.created_date);

 DBMS_OUTPUT.PUT_LINE ('Modified By: '||zip_rec.modified_by);

 DBMS_OUTPUT.PUT_LINE ('Modified Date: '||zip_rec.modified_date);

 END LOOP;

END;

The declaration portion of the script contains a definition of the zip_cur cursor that returns
three records from the ZIPCODE table. In this case, the number of records returned by the
cursor has been chosen for one reason only, so that the cursor loop iterates more than once.
Next, it contains the definition of the cursor-based record, zip_rec.

The executable portion of the script populates the zip_rec record and displays its data on
the screen via the simple cursor loop.

This version of the script produces the following output:
Zip: 12345

City: New York

State: NY

Created By: STUDENT

Created Date: 11/06/2014 13:08

Modified By: STUDENT

Modified Date: 11/06/2014 13:08

Zip: 00914

City: Santurce

State: PR

Created By: AMORRISO

Created Date: 08/03/2007 00:00

Modified By: ARISCHER

Modified Date: 11/24/2007 00:00

Zip: 01247

City: North Adams

State: MA

Created By: AMORRISO

Created Date: 08/03/2007 00:00

Modified By: ARISCHER

Modified Date: 11/24/2007 00:00

d) Modify the script created in the previous exercise (ch16_11c.sql). Change the structure of the

zip_rec record so that it contains total number of students in a given city, state, and ZIP code.
Do not include audit columns such as CREATED_BY and CREATED_DATE in the record
structure.

Answer: This version of the script should look similar to the following script. All changes are
shown in bold.

For Example ch16_11d.sql

DECLARE

 CURSOR zip_cur IS

 SELECT city, state, z.zip, COUNT(*) students

 FROM zipcode z, student s

 WHERE z.zip = s.zip

 GROUP BY city, state, z.zip;

 zip_rec zip_cur%ROWTYPE;

BEGIN

 OPEN zip_cur;

 LOOP

 FETCH zip_cur INTO zip_rec;

 EXIT WHEN zip_cur%NOTFOUND;

 DBMS_OUTPUT.PUT_LINE ('Zip: '||zip_rec.zip);

 DBMS_OUTPUT.PUT_LINE ('City: '||zip_rec.city);

 DBMS_OUTPUT.PUT_LINE ('State: '||zip_rec.state);

 DBMS_OUTPUT.PUT_LINE ('Students: '||zip_rec.students);

 END LOOP;
END;

In this example, the cursor SELECT statement has been modified so that it returns total number
of students for a given city, state, and zip code. Notice that the ROWNUM restriction has been
removed so that the total number of students is calculated correctly.

Note that if you run this script in SQL*Plus, you may need to increase the buffer size so that
the script does not cause a buffer overflow error.

Consider the partial output retuned by this example:
Zip: 06483

City: Oxford

State: CT

Students: 1

Zip: 06902

City: Stamford

State: CT

Students: 1

Zip: 07055

City: Passaic

State: NJ

Students: 2

…

Next, assume that just like in the previous version of the script (ch16_11c.sql), you would like
to display only four records on the screen. This can be achieved as follows:

For Example ch16_11e.sql

DECLARE

 CURSOR zip_cur IS

 SELECT city, state, z.zip, COUNT(*) students

 FROM zipcode z, student s

 WHERE z.zip = s.zip

 GROUP BY city, state, z.zip;

 zip_rec zip_cur%ROWTYPE;

 v_counter INTEGER := 0;

BEGIN

 OPEN zip_cur;

 LOOP

 FETCH zip_cur INTO zip_rec;

 EXIT WHEN zip_cur%NOTFOUND;

 v_counter := v_counter + 1;

 IF v_counter <= 4

 THEN

 DBMS_OUTPUT.PUT_LINE ('Zip: '||zip_rec.zip);

 DBMS_OUTPUT.PUT_LINE ('City: '||zip_rec.city);

 DBMS_OUTPUT.PUT_LINE ('State: '||zip_rec.state);

 DBMS_OUTPUT.PUT_LINE ('Students: '||zip_rec.students);

 END IF;

 END LOOP;

END;

User-Defined Records
In this exercise, you will investigate user-defined records. Create the following PL/SQL script:

For Example ch16_12a.sql

DECLARE

 CURSOR zip_cur IS

 SELECT zip, COUNT(*) students

 FROM student

 GROUP BY zip;

 TYPE zip_info_type IS RECORD

 (zip_code VARCHAR2(5)

 ,students INTEGER);

 zip_info_rec zip_info_type;

BEGIN

 FOR zip_rec IN zip_cur

 LOOP

 zip_info_rec.zip_code := zip_rec.zip;

 zip_info_rec.students := zip_rec.students;

 END LOOP;

END;

Answer the following questions:

a) Explain the script ch16_12a.sql.

Answer: The declaration portion of the script contains zip_cur cursor, which returns total
number of students corresponding to a particular ZIP code. Next, it contains the declaration of
the user-defined record type, zip_info_type, which has two fields, and the actual user-
defined record, zip_info_rec. The executable portion of the script populates the
zip_info_rec record via the cursor FOR LOOP. As mentioned earlier, because
zip_info_rec is a user-defined record, each record field is assigned a value individually.

b) Modify the script so that zip_info_rec data is displayed on the screen only for the first five

records returned by the zip_cur cursor.

Answer: The script should look similar to the following script. Newly added statements are
shown in bold.

For Example ch16_12b.sql

DECLARE

 CURSOR zip_cur IS

 SELECT zip, COUNT(*) students

 FROM student

 GROUP BY zip;

 TYPE zip_info_type IS RECORD

 (zip_code VARCHAR2(5)

 ,students INTEGER);

 zip_info_rec zip_info_type;

 v_counter INTEGER := 0;

BEGIN

 FOR zip_rec IN zip_cur

 LOOP

 zip_info_rec.zip_code := zip_rec.zip;

 zip_info_rec.students := zip_rec.students;

 v_counter := v_counter + 1;

 IF v_counter <= 5

 THEN

 DBMS_OUTPUT.PUT_LINE ('Zip Code: '||zip_info_rec.zip_code);

 DBMS_OUTPUT.PUT_LINE ('Students: '||zip_info_rec.students);

 DBMS_OUTPUT.PUT_LINE ('--------------------');

 END IF;

 END LOOP;

END;

In order to display information for the first five records returned by the zip_cur cursor, a new
variable, v_counter, is declared. For each iteration of the loop, the value of this variable is
incremented by one. As long as the value of the variable v_counter is less than or equal to
five, the data of the zip_info_rec record is displayed on the screen.

When run, this script produces the following output:
Zip Code: 01247

Students: 1

Zip Code: 02124

Students: 1

Zip Code: 02155

Students: 1

Zip Code: 02189

Students: 1

Zip Code: 02563

Students: 1

c) Modify the script created in the previous exercise (ch16_12b.sql). Change the structure of the
zip_info_rec record so that it also contains total number of instructors for a given zip code.
Populate this new record and display its data on the screen for the first five records returned by
the zip_cur cursor.

Answer: The script should look similar to the following script. Changes are shown in bold.

For Example ch16_12c.sql

DECLARE

 CURSOR zip_cur IS

 SELECT zip

 FROM zipcode

 WHERE ROWNUM <= 5;

 TYPE zip_info_type IS RECORD

 (zip_code VARCHAR2(5)

 ,students INTEGER

 ,instructors INTEGER);

 zip_info_rec zip_info_type;

BEGIN

 FOR zip_rec IN zip_cur

 LOOP

 zip_info_rec.zip_code := zip_rec.zip;

 SELECT COUNT(*)

 INTO zip_info_rec.students

 FROM student

 WHERE zip = zip_info_rec.zip_code;

 SELECT COUNT(*)

 INTO zip_info_rec.instructors

 FROM instructor

 WHERE zip = zip_info_rec.zip_code;

 DBMS_OUTPUT.PUT_LINE ('Zip Code: '||zip_info_rec.zip_code);

 DBMS_OUTPUT.PUT_LINE ('Students: '||zip_info_rec.students);

 DBMS_OUTPUT.PUT_LINE ('Instructors: '||zip_info_rec.instructors);

 DBMS_OUTPUT.PUT_LINE ('--------------------');

 END LOOP;

END;

Consider the changes applied to this version of the script. In the declaration portion of the script,
the cursor SELECT statement has changed so that records are retrieved from the ZIPCODE
table rather than the STUDENT table. This change allows you to see accurately the total number
of students and instructors in a particular ZIP code. In addition, because the cursor SELECT
statement does not have group function, the ROWNUM restriction is listed in the WHERE clause so
that only the first five records are returned. The structure of the user-defined record type,
zip_info_type, has changed so that total number of instructors for a given ZIP code is
stored in the instructors field.

In the executable portion of the script, there are two SELECT INTO statements that populate
zip_info_rec.students and zip_info_rec.instructors fields, respectively.

When run, this example produces the following output:
Zip Code: 00914

Students: 0

Instructors: 0

Zip Code: 01247

Students: 1

Instructors: 0

Zip Code: 02124

Students: 1

Instructors: 0

Zip Code: 02155

Students: 1

Instructors: 0

Zip Code: 02189

Students: 1

Instructors: 0

Consider another version of the same script. Here, instead of using two SELECT INTO
statements to calculate the total number of students and instructors in a particular ZIP code, the
cursor SELECT statement contains outer joins.

For Example ch16_12d.sql

DECLARE

 CURSOR zip_cur IS

 SELECT z.zip, COUNT(student_id) students, COUNT(instructor_id) instructors

 FROM zipcode z, student s, instructor i

 WHERE z.zip = s.zip (+)

 AND z.zip = i.zip (+)

 GROUP BY z.zip;

 TYPE zip_info_type IS RECORD

 (zip_code VARCHAR2(5)

 ,students INTEGER

 ,instructors INTEGER);

 zip_info_rec zip_info_type;

 v_counter INTEGER := 0;

BEGIN

 FOR zip_rec IN zip_cur

 LOOP

 zip_info_rec.zip_code := zip_rec.zip;

 zip_info_rec.students := zip_rec.students;

 zip_info_rec.instructors := zip_rec.instructors;

 v_counter := v_counter + 1;

 IF v_counter <= 5

 THEN

 DBMS_OUTPUT.PUT_LINE ('Zip Code: '||zip_info_rec.zip_code);

 DBMS_OUTPUT.PUT_LINE ('Students: '||zip_info_rec.students);

 DBMS_OUTPUT.PUT_LINE ('Instructors: '||zip_info_rec.instructors);

 DBMS_OUTPUT.PUT_LINE ('--------------------');

 END IF;

 END LOOP;

END;

Lab 16.2 Nested Records
In this exercise, you will experiment with nested records. Create the following PL/SQL script:

For Example ch16_13a.sql

DECLARE

 TYPE last_name_type IS TABLE OF student.last_name%TYPE INDEX BY PLS_INTEGER;

 TYPE zip_info_type IS RECORD

 (zip VARCHAR2(5)

 ,last_name_tab last_name_type);

 CURSOR name_cur (p_zip VARCHAR2) IS

 SELECT last_name

 FROM student

 WHERE zip = p_zip;

 zip_info_rec zip_info_type;

 v_zip VARCHAR2(5) := '&sv_zip';

 v_counter INTEGER := 0;

BEGIN

 zip_info_rec.zip := v_zip;

 FOR name_rec IN name_cur (v_zip)

 LOOP

 v_counter := v_counter + 1;

 zip_info_rec.last_name_tab(v_counter) := name_rec.last_name;

 END LOOP;

END;

Answer the following questions:

a) Explain the script ch16_13a.sql.

Answer: The declaration portion of the script contains associative array (index-by table) type,
last_name_type, record type, zip_info_type, and nested-user-defined record,
zip_info_rec, declarations. The field, last_name_tab, of the zip_info_rec is an
associative array that is populated with the help of the cursor, name_cur. In addition, the
declaration portion also contains two variables, v_zip and v_counter. The variable v_zip
is used to store incoming value of the ZIP code provided at runtime. The variable v_counter
is used to populate the associative array, last_name_tab.

The executable portion of the script assigns values to the individual record fields, zip and
last_name_tab. As mentioned previously, the last_name_tab is an associative array,
and it is populated via cursor FOR LOOP.

b) Modify the script so that zip_info_rec data is displayed on the screen. Make sure that a
value of the ZIP code is displayed only once. Provide the value of ‘11368’ when running the
script.

Answer: The new version of the script should look similar to the following. Newly added
statements are highlighted in bold.

For Example ch16_13b.sql

DECLARE

 TYPE last_name_type IS TABLE OF student.last_name%TYPE INDEX BY PLS_INTEGER;

 TYPE zip_info_type IS RECORD

 (zip VARCHAR2(5)

 ,last_name_tab last_name_type);

 CURSOR name_cur (p_zip VARCHAR2) IS

 SELECT last_name

 FROM student

 WHERE zip = p_zip;

 zip_info_rec zip_info_type;

 v_zip VARCHAR2(5) := '&sv_zip';

 v_counter INTEGER := 0;

BEGIN

 zip_info_rec.zip := v_zip;

 DBMS_OUTPUT.PUT_LINE ('Zip: '||zip_info_rec.zip);

 FOR name_rec IN name_cur (v_zip)

 LOOP

 v_counter := v_counter + 1;

 zip_info_rec.last_name_tab(v_counter) := name_rec.last_name;

 DBMS_OUTPUT.PUT_LINE ('Names('||v_counter||'): '||

 zip_info_rec.last_name_tab(v_counter));

 END LOOP;

END;

In order to display the value of the zip code only once, the DBMS_OUTPUT.PUT_LINE
statement
DBMS_OUTPUT.PUT_LINE ('Zip: '||zip_info_rec.zip);

is placed outside the loop.
When run, this script produces the following output:

Zip: 11368

Names(1): Lasseter

Names(2): Miller

Names(3): Boyd

Names(4): Griffen

Names(5): Hutheesing

Names(6): Chatman

c) Modify the script created in the previous exercise (ch16_13b.sql). Instead of providing a value
for a ZIP code at runtime, populate it via the cursor FOR LOOP. The SELECT statement
associated with the new cursor should return ZIP codes that have more than one student in them.

Answer: The script should look similar to the following script. Changes are shown in bold.

For Example ch16_13c.sql

DECLARE

 TYPE last_name_type IS TABLE OF student.last_name%TYPE INDEX BY PLS_INTEGER;

 TYPE zip_info_type IS RECORD

 (zip VARCHAR2(5)

 ,last_name_tab last_name_type);

 CURSOR zip_cur IS

 SELECT zip, COUNT(*)

 FROM student

 GROUP BY zip

 HAVING COUNT(*) > 1;

 CURSOR name_cur (p_zip VARCHAR2) IS

 SELECT last_name

 FROM student

 WHERE zip = p_zip;

 zip_info_rec zip_info_type;

 v_counter INTEGER;

BEGIN

 FOR zip_rec IN zip_cur

 LOOP

 zip_info_rec.zip := zip_rec.zip;

 DBMS_OUTPUT.PUT_LINE ('Zip: '||zip_info_rec.zip);

 v_counter := 0;

 FOR name_rec IN name_cur (zip_info_rec.zip)

 LOOP

 v_counter := v_counter + 1;

 zip_info_rec.last_name_tab(v_counter) := name_rec.last_name;

 DBMS_OUTPUT.PUT_LINE ('Names('||v_counter||'): '||

 zip_info_rec.last_name_tab(v_counter));

 END LOOP;

 DBMS_OUTPUT.PUT_LINE ('----------');

 END LOOP;

END;

In the preceding script, you declared a new cursor called zip_cur. This cursor returns ZIP
codes that have more than one student in them. Next, in the body of the script, you use nested
cursors to populate the last_name_tab associative array for each value of ZIP code. First,
the outer cursor FOR LOOP populates the zip field of the zip_info_rec and displays its
value on the screen. Then it passes the zip field as a parameter to the inner cursor FOR LOOP
that populates last_name_tab table with last names of corresponding students.

Consider the partial output of the preceding example:
Zip: 06820

Names(1): Scrittorale

Names(2): Padel

Names(3): Kiraly

Zip: 06830

Names(1): Dennis

Names(2): Meshaj

Names(3): Dalvi

Zip: 06880

Names(1): Cheevens

Names(2): Miller

…

Lab 16.3 Collections of Records
In this exercise, you will investigate collections of records. Answer the following questions:

a) Modify the script ch16_9a.sql used in Chapter 16. Instead of using associative array, use a
varray.

Answer: The newly created script should look similar to the following. All changes are
highlighted in bold.

For Example ch16_9c.sql

DECLARE

 CURSOR name_cur IS

 SELECT first_name, last_name

 FROM student

 WHERE ROWNUM <= 4;

 TYPE name_type IS VARRAY(4) OF name_cur%ROWTYPE;

 name_tab name_type := name_type();

 v_index INTEGER := 0;

BEGIN

 FOR name_rec IN name_cur

 LOOP

 v_index := v_index + 1;

 name_tab.EXTEND;

 name_tab(v_index).first_name := name_rec.first_name;

 name_tab(v_index).last_name := name_rec.last_name;

 DBMS_OUTPUT.PUT_LINE('First Name('||v_index ||'): '||

 name_tab(v_index).first_name);

 DBMS_OUTPUT.PUT_LINE('Last Name('||v_index ||'): '||

 name_tab(v_index).last_name);

 END LOOP;

END;

In this version of the script, the name_tab collection variable is declared as a varray with four
elements. Note that in this version, the collection is initialized and its size is incremented before
it is populated with the new record.

This version of the script produces the output identical to the original example:
First Name(1): George

Last Name(1): Kocka

First Name(2): Janet

Last Name(2): Jung

First Name(3): Kathleen

Last Name(3): Mulroy

First Name(4): Joel

Last Name(4): Brendler

b) Modify the script created in the previous exercise (ch16_9c.sql). Replace cursor-based record

with user-defined record.

Answer: The version of the script should look similar to the following script. Modifications are
shown in bold.

For Example ch16_9d.sql

DECLARE

 CURSOR name_cur IS

 SELECT first_name, last_name

 FROM student

 WHERE ROWNUM <= 4;

 TYPE name_rec_type IS RECORD

 (first_name VARCHAR2(15)

 ,last_name VARCHAR2(30));

 TYPE name_type IS VARRAY(4) OF name_rec_type;

 name_rec name_rec_type;

 name_tab name_type := name_type();

 v_index INTEGER := 0;

BEGIN

 FOR rec IN name_cur

 LOOP

 name_rec := rec;

 v_index := v_index + 1;

 name_tab.EXTEND;

 name_tab(v_index).first_name := name_rec.first_name;

 name_tab(v_index).last_name := name_rec.last_name;

 DBMS_OUTPUT.PUT_LINE('First Name('||v_index ||'): '||

 name_tab(v_index).first_name);

 DBMS_OUTPUT.PUT_LINE('Last Name('||v_index ||'): '||

 name_tab(v_index).last_name);

 END LOOP;

END;

This version of the script contains a new record type, name_rec_type, and the corresponding
user-defined record variable, name_rec. As a result, a cursor record, rec, implicitly defined
by the cursor FOR LOOP is assigned to the user-defined record, name_rec, Note that the rest
of the script remains unchanged.

When run, this script produces output identical to the previous versions:
First Name(1): George

Last Name(1): Kocka

First Name(2): Janet

Last Name(2): Jung

First Name(3): Kathleen

Last Name(3): Mulroy

First Name(4): Joel

Last Name(4): Brendler

Next, consider slightly modified version of the script that does not have user-defined record
variable, name_rec. Affected statements are shown in bold.

For Example ch16_9d.sql

DECLARE

 CURSOR name_cur IS

 SELECT first_name, last_name

 FROM student

 WHERE ROWNUM <= 4;

 TYPE name_rec_type IS RECORD

 (first_name VARCHAR2(15)

 ,last_name VARCHAR2(30));

 TYPE name_type IS VARRAY(4) OF name_rec_type;

 name_tab name_type := name_type();

 v_index INTEGER := 0;

BEGIN

 FOR rec IN name_cur

 LOOP

 v_index := v_index + 1;

 name_tab.EXTEND;

 name_tab(v_index).first_name := rec.first_name;

 name_tab(v_index).last_name := rec.last_name;

 DBMS_OUTPUT.PUT_LINE('First Name('||v_index ||'): '||

 name_tab(v_index).first_name);

 DBMS_OUTPUT.PUT_LINE('Last Name('||v_index ||'): '||

 name_tab(v_index).last_name);

 END LOOP;

END;

Try It Yourself
The projects in this section are meant to have you use all of the skills that you have acquired
throughout this chapter. Here are some exercises that will help you test the depth of your
understanding.

1) Create an associative array with the element type of a user-defined record. This record should
contain first name, last name, and the total number of courses that a particular instructor
teaches. Display the records of the associative array on the screen.

Answer: The script should look similar to the following:

For Example ch16_14a.sql

DECLARE

 CURSOR instructor_cur IS

 SELECT first_name, last_name, COUNT(UNIQUE s.course_no) courses

 FROM instructor i

 LEFT OUTER JOIN section s

 ON (s.instructor_id = i.instructor_id)

 GROUP BY first_name, last_name;

 TYPE rec_type IS RECORD

 (first_name INSTRUCTOR.FIRST_NAME%TYPE

 ,last_name INSTRUCTOR.LAST_NAME%TYPE

 ,courses_taught NUMBER);

 TYPE instructor_type IS TABLE OF REC_TYPE INDEX BY PLS_INTEGER;

 instructor_tab instructor_type;

 v_index INTEGER := 0;

BEGIN

 FOR instructor_rec IN instructor_cur

 LOOP

 v_index := v_index + 1;

 -- Populate associative array of records

 instructor_tab(v_index).first_name := instructor_rec.first_name;

 instructor_tab(v_index).last_name := instructor_rec.last_name;

 instructor_tab(v_index).courses_taught := instructor_rec.courses;

 DBMS_OUTPUT.PUT_LINE ('Instructor, '||

 instructor_tab(v_index).first_name||' '||

 instructor_tab(v_index).last_name||', teaches '||

 instructor_tab(v_index).courses_taught||' courses.');

 END LOOP;

END;

In this script, you define a cursor against the INSTRUCTOR and SECTION tables that is used
to populate the associative array of records, instructor_tab. Each row of this table is a
user-defined record of three elements. You populate the associative array via the cursor FOR
LOOP. Consider the notation used to reference each record element of the associative array:

instructor_tab(v_counter).first_name

instructor_tab(v_counter).last_name

instructor_tab(v_counter).courses_taught

To reference each row of the associative array, you use the counter variable. However, because
each row of this table is a record, you must also reference individual fields of the underlying
record. When run, this script produces the following output:
Instructor, Fernand Hanks, teaches 9 courses.

Instructor, Charles Lowry, teaches 9 courses.

Instructor, Rick Chow, teaches 0 courses.

Instructor, Nina Schorin, teaches 10 courses.

Instructor, Gary Pertez, teaches 10 courses.

Instructor, Anita Morris, teaches 10 courses.

Instructor, Marilyn Frantzen, teaches 9 courses.

Instructor, Irene Willig, teaches 0 courses.

Instructor, Tom Wojick, teaches 10 courses.

Instructor, Todd Smythe, teaches 10 courses.

2) Modify the script created in previous exercise (exercise 1 above). Instead of using an
associative array, use a nested table.

Answer: The script should look similar to the following. All changes are highlighted in bold.

For Example ch16_14b.sql

DECLARE

 CURSOR instructor_cur IS

 SELECT first_name, last_name, COUNT(UNIQUE s.course_no) courses

 FROM instructor i

 LEFT OUTER JOIN section s

 ON (s.instructor_id = i.instructor_id)

 GROUP BY first_name, last_name;

 TYPE rec_type IS RECORD

 (first_name INSTRUCTOR.FIRST_NAME%TYPE

 ,last_name INSTRUCTOR.LAST_NAME%TYPE

 ,courses_taught NUMBER);

 TYPE instructor_type IS TABLE OF REC_TYPE;

 instructor_tab instructor_type := instructor_type();

 v_index INTEGER := 0;

BEGIN

 FOR instructor_rec IN instructor_cur

 LOOP

 v_index := v_index + 1;

 instructor_tab.EXTEND;

 -- Populate nested table of records

 instructor_tab(v_index).first_name := instructor_rec.first_name;

 instructor_tab(v_index).last_name := instructor_rec.last_name;

 instructor_tab(v_index).courses_taught := instructor_rec.courses;

 DBMS_OUTPUT.PUT_LINE ('Instructor, '||

 instructor_tab(v_index).first_name||' '||

 instructor_tab(v_index).last_name||', teaches '||

 instructor_tab(v_index).courses_taught||' courses.');

 END LOOP;

END;

Notice that the instructor_tab must be initialized and extended before its individual
elements can be referenced.

3) Modify the script created in previous exercise (exercise 2 above). Instead of using a nested

table, use a varray.

Answer: The version of the script should look similar to the following. Affected statements are
highlighted in bold.

For Example ch16_14c.sql

DECLARE

 CURSOR instructor_cur IS

 SELECT first_name, last_name, COUNT(UNIQUE s.course_no) courses

 FROM instructor i

 LEFT OUTER JOIN section s

 ON (s.instructor_id = i.instructor_id)

 GROUP BY first_name, last_name;

 TYPE rec_type IS RECORD

 (first_name INSTRUCTOR.FIRST_NAME%TYPE

 ,last_name INSTRUCTOR.LAST_NAME%TYPE

 ,courses_taught NUMBER);

 TYPE instructor_type IS VARRAY(10) OF REC_TYPE;

 instructor_tab instructor_type := instructor_type();

 v_index INTEGER := 0;

BEGIN

 FOR instructor_rec IN instructor_cur

 LOOP

 v_index := v_index + 1;

 instructor_tab.EXTEND;

 -- Populate varray of records

 instructor_tab(v_index).first_name := instructor_rec.first_name;

 instructor_tab(v_index).last_name := instructor_rec.last_name;

 instructor_tab(v_index).courses_taught := instructor_rec.courses;

 DBMS_OUTPUT.PUT_LINE ('Instructor, '||

 instructor_tab(v_index).first_name||' '||

 instructor_tab(v_index).last_name||', teaches '||

 instructor_tab(v_index).courses_taught||' courses.');

 END LOOP;

END;

This version of the script is almost identical to the previous version. Instead of using a nested
table, you are using a varray of 10 elements.

4) Create a user-defined record with four fields: course_no, description, cost, and
prerequisite_rec. The last field, prerequisite_rec, should be a user-defined
record with three fields: prereq_no, prereq_desc, and prereq_cost. For any ten
courses that have a prerequisite course, populate the user-defined record with all corresponding
data and display its information on the screen.

Answer: The script should look similar to the following:

For Example ch16_15a.sql

DECLARE

 CURSOR c_cur IS

 SELECT course_no, description, cost, prerequisite

 FROM course

 WHERE prerequisite IS NOT NULL

 AND rownum <= 10;

 TYPE prerequisite_type IS RECORD

 (prereq_no NUMBER

 ,prereq_desc VARCHAR(50)

 ,prereq_cost NUMBER);

 TYPE course_type IS RECORD

 (course_no NUMBER

 ,description VARCHAR2(50)

 ,cost NUMBER

 ,prerequisite_rec PREREQUISITE_TYPE);

 course_rec COURSE_TYPE;

BEGIN

 FOR c_rec in c_cur

 LOOP

 course_rec.course_no := c_rec.course_no;

 course_rec.description := c_rec.description;

 course_rec.cost := c_rec.cost;

 SELECT course_no, description, cost

 INTO course_rec.prerequisite_rec.prereq_no,

 course_rec.prerequisite_rec.prereq_desc,

 course_rec.prerequisite_rec.prereq_cost

 FROM course

 WHERE course_no = c_rec.prerequisite;

 DBMS_OUTPUT.PUT_LINE ('Course: '||

 course_rec.course_no||' – '||course_rec.description);

 DBMS_OUTPUT.PUT_LINE ('Cost: '|| course_rec.cost);

 DBMS_OUTPUT.PUT_LINE ('Prerequisite: '||

 course_rec.prerequisite_rec. prereq_no||' – '||

 course_rec.prerequisite_rec.prereq_desc);

 DBMS_OUTPUT.PUT_LINE ('Prerequisite Cost: '||

 course_rec.prerequisite_rec.prereq_cost);

 DBMS_OUTPUT.PUT_LINE ('==');

 END LOOP;

END;

In the declaration portion of the script, you define a cursor against the COURSE table; two user-
defined record types, prerequisite_type and course_type; and user-defined record,
course_rec. It is important to note the order in which the record types are declared. The
prerequsite_type must be declared first because one of the course_type elements is
of the prerequisite_type.

In the executable portion of the script, you populate course_rec via the cursor FOR LOOP.
First, you assign values to the course_rec.course_no, course_rec.description,
and course_rec.cost. Next, you populate the nested record, prerequsite_rec, via the
SELECT INTO statement against the COURSE table.

Consider the notation used to reference individual elements of the nested record:
course_rec.prerequisite_rec.prereq_no

course_rec.prerequisite_rec.prereq_desc

course_rec.prerequisite_rec.prereq_cost

You specify the name of the outer record followed by the name of the inner (nested) record
followed by the name of the element. Finally, you display record information on the screen.
Note that this script does not contain a NO_DATA_FOUND exception handler even though there
is a SELECT INTO statement. Why do you think this is the case?

When run, the script produces the following output:
Course: 230 – Intro to the Internet

Cost: 1095

Prerequisite: 10 – Technology Concepts

Prerequisite Cost: 1195

==

Course: 100 – Hands-On Windows

Cost: 1195

Prerequisite: 20 – Intro to Information Systems

Prerequisite Cost: 1195

==

Course: 140 – Systems Analysis

Cost: 1195

Prerequisite: 20 – Intro to Information Systems

Prerequisite Cost: 1195

==

Course: 142 – Project Management

Cost: 1195

Prerequisite: 20 – Intro to Information Systems

Prerequisite Cost: 1195

==

Course: 147 – GUI Design Lab

Cost: 1195

Prerequisite: 20 – Intro to Information Systems

Prerequisite Cost: 1195

==

Course: 204 – Intro to SQL

Cost: 1195

Prerequisite: 20 – Intro to Information Systems

Prerequisite Cost: 1195

==

Course: 240 – Intro to the BASIC Language

Cost: 1095

Prerequisite: 25 – Intro to Programming

Prerequisite Cost: 1195

==

Course: 420 – Database System Principles

Cost: 1195

Prerequisite: 25 – Intro to Programming

Prerequisite Cost: 1195

==

Course: 120 – Intro to Java Programming

Cost: 1195

Prerequisite: 80 – Programming Techniques

Prerequisite Cost: 1595

==

Course: 220 – PL/SQL Programming

Cost: 1195

Prerequisite: 80 – Programming Techniques

Prerequisite Cost: 1595

==

