
Exercises for
Chapter 9:
Exceptions
The Labs below provide you with exercises and suggested answers with discussion related to how
those answers resulted. The most important thing to realize is whether your answer works. You should
figure out the implications of the answers here and what the effects are from any different answers you
may come up with.

Lab 9.1 Exception Scope
In this exercise, you will determine whether a value of ZIP code provided at the run time is valid and
then display name of an instructor that resides in this particular ZIP code. You will use nested PL/SQL
blocks to achieve the desired results. The original PL/SQL script does not contain any exception
handlers. Therefore, you will be asked to identify run-time errors that may occur and define exception
handlers for them.

Create the following PL/SQL script:

For Example ch09_8a.sql

<<outer_block>>

DECLARE

 v_zip VARCHAR2(5) := '&sv_zip';

 v_name VARCHAR2(50);

BEGIN

 DBMS_OUTPUT.PUT_LINE ('Check if provided zipcode is valid');

 SELECT zip

 INTO v_zip

 FROM zipcode

 WHERE zip = v_zip;

 <<inner_block>>

 BEGIN

 SELECT first_name||' '||last_name

 INTO v_name

 FROM instructor

 WHERE zip = v_zip;

 DBMS_OUTPUT.PUT_LINE ('Instructor name is '||v_name);

 END;

END;

In order to test this script fully, execute it three times for the following ZIP code values: 10005,
10015, and 00914, and then answer the following questions:

a) What output was generated by the script (for all values of ZIP)?

Answer: The script generated these three outputs for the specified values of ZIP.

For value of ZIP code 10005 the output is as follows:
Check if provided zipcode is valid

Instructor name is Marilyn Frantzen

For value of ZIP code 10015 the output is as shown:
Check if provided zipcode is valid

ORA-01422: exact fetch returns more than requested number of rows

ORA-06512: at line 16

For the value of ZIP code 00914 the output is as follows:
Check if provided zipcode is valid

ORA-01403: no data found

ORA-06512: at line 16

b) Explain the output produced by the example for all three values of ZIP code.

Answer: For the first value of ZIP code 10005, the script is able to execute successfully. First,
the value of ZIP code provided at the run time is checked against the ZIPCODE table and the
message ‘Check if provided zipcode is valid’ is displayed in the Dbms Output window. Next,
instructor’s name is selected from the INSTRUCTOR table and displayed in the Dbms Output
window as well.

For the second value of ZIP code 10015, the script is not able to complete successfully.
Similarly, to the first run, the value of the ZIP code provided at the run time is evaluated and the
results are displayed in the Dbms Output window. However, when the instructor name is
selected from the INSTRUCTOR table, the error is encountered because there is more than one
instructor for this ZIP code. As a result, the error message ‘exact fetch returns…’ is displayed in
the script output window.

Finally, for the third value of ZIP code 00914, the script also fails to complete successfully
because there are no records in the INSTRUCTOR table corresponding to this value of ZIP code.
In this case, the error message ‘no data found’ is displayed in the script output window.

c) Based on the errors encountered above, what exception handlers must be added to the script?

Answer: The modified script should look similar to one of the following versions. Based on the
error messages encountered by the original script, TOO_MANY_ROWS and NO_DATA_FOUND
exceptions must be added to the script. Newly added exception section is shown in bold.

For Example ch09_8b.sql

<<outer_block>>

DECLARE

 v_zip VARCHAR2(5) := '&sv_zip';

 v_name VARCHAR2(50);

BEGIN

 DBMS_OUTPUT.PUT_LINE ('Check if provided zipcode is valid');

 SELECT zip

 INTO v_zip

 FROM zipcode

 WHERE zip = v_zip;

 <<inner_block>>

 BEGIN

 SELECT first_name||' '||last_name

 INTO v_name

 FROM instructor

 WHERE zip = v_zip;

 DBMS_OUTPUT.PUT_LINE ('Instructor name is '||v_name);

 EXCEPTION

 WHEN TOO_MANY_ROWS

 THEN

 DBMS_OUTPUT.PUT_LINE

 ('More than one instructor resides in this zip code');

 WHEN NO_DATA_FOUND

 THEN

 DBMS_OUTPUT.PUT_LINE

 ('There are no instructors residing in this zip code');

 END;

END;

For Example ch09_8c.sql

<<outer_block>>

DECLARE

 v_zip VARCHAR2(5) := '&sv_zip';

 v_name VARCHAR2(50);

BEGIN

 DBMS_OUTPUT.PUT_LINE ('Check if provided zipcode is valid');

 SELECT zip

 INTO v_zip

 FROM zipcode

 WHERE zip = v_zip;

 <<inner_block>>

 BEGIN

 SELECT first_name||' '||last_name

 INTO v_name

 FROM instructor

 WHERE zip = v_zip;

 DBMS_OUTPUT.PUT_LINE ('Instructor name is '||v_name);

 END;

EXCEPTION

 WHEN TOO_MANY_ROWS

 THEN

 DBMS_OUTPUT.PUT_LINE

 ('More than one instructor resides in this zip code');

 WHEN NO_DATA_FOUND

 THEN

 DBMS_OUTPUT.PUT_LINE

 ('There are no instructors residing in this zip code');

END;

Note that both versions of the script have been expanded with the exception-handling section. In
the second version of the script (ch09_8b.sql), the exception handling section is added to the
inner block. Whereas, in the third version of script (ch09_8c.sql), the exception handling section
is added to the outer block. Both versions of the script are similar in their behavior of catching
the error and terminating successfully as illustrated by the output below:

For value of ZIP code 10015 the output is as shown:
Check if provided zipcode is valid

More than one instructor resides in this zip code

For the value of ZIP code 00914 the output is as follows:
Check if provided zipcode is valid

There are no instructors residing in this zip code

Lab 9.2 User-Defined Exceptions
In this exercise, you will define an exception that will allow you to raise an error if an instructor
teaches ten or more sections. Create the following PL/SQL script:

For Example ch09_9a.sql

DECLARE

 v_instructor_id NUMBER := &sv_instructor_id;

 v_tot_sections NUMBER;

 v_name VARCHAR2(30);

 e_too_many_sections EXCEPTION;

BEGIN

 SELECT RTRIM(first_name)||' '||RTRIM(last_name)

 INTO v_name

 FROM instructor

 WHERE instructor_id = v_instructor_id;

 SELECT COUNT(*)

 INTO v_tot_sections

 FROM section

 WHERE instructor_id = v_instructor_id;

 IF v_tot_sections >= 10

 THEN

 RAISE e_too_many_sections;

 ELSE

 DBMS_OUTPUT.PUT_LINE

 ('Instructor, '||v_name||', teaches '||v_tot_sections||' sections');

 END IF;

EXCEPTION

 WHEN NO_DATA_FOUND

 THEN

 DBMS_OUTPUT.PUT_LINE ('This is not a valid instructor');

 WHEN e_too_many_sections

 THEN

 DBMS_OUTPUT.PUT_LINE ('Instructor, '||v_name||', teaches too much');

END;

Execute the script twice providing 101 and 102 for the values of instructor ID, and then answer the
following questions:

a) What output was generated by the script these instructor IDs? Explain the difference in the
outputs produced.

Answer: The script generated these two outputs for the specified values of instructor ID.

For the value of instructor ID 101 the output is as follows:
Instructor, Fernand Hanks, teaches 9 sections

For the value of instructor ID 102 the output is as follows:
Instructor, Tom Wojick, teaches too much

The first output is produced when value 101 is provided for the instructor ID. Since the number
of sections taught by this instructor is less than 10, the ELSE part of the IF-THEN-ELSE
statement is executed, and the instructor’s name is displayed on the screen.

The second output is produced when value 102 is provided for the instructor ID. In this case,
number of sections taught by the instructor is 10. As a result, the IF part of the IF-THEN-
ELSE statement is executed, and user-defined exception is raised. Once the exception is raised,
the control of the execution is transferred to the exception-handling section of the block, and the
exception message is displayed in the Dbms Output window.

b) What is the condition that causes the user-defined exception to be raised?

Answer: The user-defined exception is raised if the condition
v_tot_sections >= 10

evaluates to TRUE. In other words, if an instructor teaches ten or more sections, the exception
e_too_many_sections is raised.

Lab 9.3 Exception Propagation
Answer the following questions.

Exception Propagation
In this exercise, you will use nested PL/SQL blocks to practice exception propagation. You will be
asked to experiment with the script via exceptions. Try to answer the questions before you run the
script. Once you have answered the questions, run the script and check your answers.

Create the following PL/SQL script:

For Example ch09_10a.sql

DECLARE

 v_my_name VARCHAR2(15) := 'THIS IS A REALLY LONG NAME';

BEGIN

 DBMS_OUTPUT.PUT_LINE ('My name is '||v_my_name);

 DECLARE

 v_your_name VARCHAR2(15);

 BEGIN

 v_your_name := '&sv_your_name';

 DBMS_OUTPUT.PUT_LINE ('Your name is '||v_your_name);

 EXCEPTION

 WHEN VALUE_ERROR

 THEN

 DBMS_OUTPUT.PUT_LINE ('Error in the inner block');

 DBMS_OUTPUT.PUT_LINE ('This name is too long');

 END;

EXCEPTION

 WHEN VALUE_ERROR

 THEN

 DBMS_OUTPUT.PUT_LINE ('Error in the outer block');

 DBMS_OUTPUT.PUT_LINE ('This name is too long');

END;

Answer the following questions first, and then execute the script:

a) What exception is raised by the assignment statement in the declaration section of the outer
block?

Answer: The exception VALUE_ERROR is raised by the assignment statement of the outer
block. The variable v_my_name is declared as VARCHAR2(15). However, the value that is
assigned to this variable contains 26 characters. As a result, the assignment statement causes a
run time error.

b) Once this exception (based on the previous question) is raised, will the program be able to
terminate successfully? Explain why or why not.

Answer: When that exception VALUE_ERROR is raised, the script is not able to complete
successfully because the error occurs in the declaration section of the outer block. Since the
outer block is not enclosed by any other block, control is transferred to the host environment. As
a result, an error message is generated when this example is run.

c) How would you change this script so that the exception section in the outer block is able to
handle an error caused by the assignment statement in the outer block?

Answer: In order for the exception section of the outer block to be able to handle the error
generated by the assignment statement, the assignment statement must be moved to the
executable section of this block. All changes are shown in bold.

For Example ch09_10b.sql

DECLARE

 v_my_name VARCHAR2(15);

BEGIN

 v_my_name := 'THIS IS A REALLY LONG NAME';

 DBMS_OUTPUT.PUT_LINE ('My name is '||v_my_name);

 DECLARE

 v_your_name VARCHAR2(15);

 BEGIN

 v_your_name := '&sv_your_name';

 DBMS_OUTPUT.PUT_LINE ('Your name is '||v_your_name);

 EXCEPTION

 WHEN VALUE_ERROR

 THEN

 DBMS_OUTPUT.PUT_LINE ('Error in the inner block');

 DBMS_OUTPUT.PUT_LINE ('This name is too long');

 END;

EXCEPTION

 WHEN VALUE_ERROR

 THEN

 DBMS_OUTPUT.PUT_LINE ('Error in the outer block');

 DBMS_OUTPUT.PUT_LINE ('This name is too long');

END;

The new version of this script produces the following output:
Error in the outer block

This name is too long

d) Change the value of the variable from ‘THIS IS A REALLY LONG NAME’ to ‘MY NAME’.

Then change the script so that if there is an error caused by the assignment statement of the
inner block, it is handled by the exception-handling section of the outer block.

Answer: The script should look similar to the script below. All changes are highlighted in bold.

For Example ch09_10c.sql

DECLARE

 v_my_name VARCHAR2(15) := 'MY NAME';

BEGIN

 DBMS_OUTPUT.PUT_LINE ('My name is '||v_my_name);

 DECLARE

 v_your_name VARCHAR2(15) := '&sv_your_name';

 BEGIN

 DBMS_OUTPUT.PUT_LINE ('Your name is '||v_your_name);

 EXCEPTION

 WHEN VALUE_ERROR

 THEN

 DBMS_OUTPUT.PUT_LINE ('Error in the inner block');

 DBMS_OUTPUT.PUT_LINE ('This name is too long');

 END;

EXCEPTION

 WHEN VALUE_ERROR

 THEN

 DBMS_OUTPUT.PUT_LINE ('Error in the outer block');

 DBMS_OUTPUT.PUT_LINE ('This name is too long');

END;

In this version of the example, the assignment statement was moved from the executable section
of the inner block to the declaration section of the same block. As a result, if an exception is
raised by this assignment statement, control of the execution is transferred to the exception
section of the outer block.

Next, consider another option where the exception caused by the assignment statement of the
inner block is caught by the exception section of the inner block and then re-raised in the outer
block.

For Example ch09_10d.sql

DECLARE

 v_my_name VARCHAR2(15) := 'MY NAME';

BEGIN

 DBMS_OUTPUT.PUT_LINE ('My name is '||v_my_name);

 DECLARE

 v_your_name VARCHAR2(15);

 BEGIN

 v_your_name := '&sv_your_name';

 DBMS_OUTPUT.PUT_LINE ('Your name is '||v_your_name);

 EXCEPTION

 WHEN VALUE_ERROR

 THEN

 RAISE;

 END;

EXCEPTION

 WHEN VALUE_ERROR

 THEN

 DBMS_OUTPUT.PUT_LINE ('Error in the outer block');

 DBMS_OUTPUT.PUT_LINE ('This name is too long');

END;

In this version of the example, the RAISE statement was used in the exception-handling section
of the inner block. As a result, the exception is re-raised in the outer block.

Both versions of this example produce output as shown below:
My name is MY NAME

Error in the outer block

This name is too long

Re-raising Exceptions
In this exercise, you will check the number of sections for a given course. If a course does not have a
section associated with it, you will raise a user-defined exception, e_no_sections. Again, try to
answer the questions before you run the script. Once you have answered the questions, run the script
and check your answers.

Create the following PL/SQL script:

For Example ch09_11a.sql

DECLARE

 v_course_no NUMBER := 430;

 v_total NUMBER;

 e_no_sections EXCEPTION;

BEGIN

 BEGIN

 SELECT COUNT(*)

 INTO v_total

 FROM section

 WHERE course_no = v_course_no;

 IF v_total = 0

 THEN

 RAISE e_no_sections;

 ELSE

 DBMS_OUTPUT.PUT_LINE ('Course, '||v_course_no||' has '||v_total||' sections');

 END IF;

 EXCEPTION

 WHEN e_no_sections

 THEN

 DBMS_OUTPUT.PUT_LINE ('There are no sections for course '||v_course_no);

 END;

END;

Answer the following questions first, and then execute the script:

a) What exception will be raised if there are no sections for a given course number?

Answer: If there are no sections for a given course number, the exception e_no_sections is
raised.

b) If the exception e_no_sections is raised, how will the control of the execution flow?
Explain your answer.

Answer: If the exception e_no_sections is raised, the control of the execution will be
passed from the inner block to the exception-handling section of that inner block. This is
possible because the inner block has exception-handling section, in which the exception is
raised and handled.

c) Change this script so that the exception e_no_sections is re-raised in the outer block.

Answer: Your script should look similar to the following. All changes are highlighted in bold.

For Example ch09_11b.sql

DECLARE

 v_course_no NUMBER := 430;

 v_total NUMBER;

 e_no_sections EXCEPTION;

BEGIN

 BEGIN

 SELECT COUNT(*)

 INTO v_total

 FROM section

 WHERE course_no = v_course_no;

 IF v_total = 0

 THEN

 RAISE e_no_sections;

 ELSE

 DBMS_OUTPUT.PUT_LINE ('Course, '||v_course_no||' has '||v_total||'

sections');

 END IF;

 EXCEPTION

 WHEN e_no_sections

 THEN

 RAISE;

 END;

EXCEPTION

 WHEN e_no_sections

 THEN

 DBMS_OUTPUT.PUT_LINE ('There are no sections for course '||v_course_no);

END;

In this version of the example, the exception-handling section of the inner block was modified.
The DBMS_OUTPUT.PUT_LINE statement has been replaced by the RAISE statement. In
addition, the exception-handling section was included in the outer block.

Try It Yourself
The projects in this section are meant to have you use all of the skills that you have acquired
throughout this chapter. Here are some exercises that will help you test the depth of your
understanding.

1) Create the following script. For a course section provided at a run time determine the number
of students registered. If this number is equal to or greater than 10, raise the user-defined
exception e_too_many_students and display the error message. Otherwise, display how
many students are in this section.

Answer: The script should look similar to the following:

For Example ch09_12a.sql

DECLARE

 v_section_id NUMBER := &sv_section_id;

 v_total_students NUMBER;

 e_too_many_students EXCEPTION;

BEGIN

 -- Calculate number of students enrolled

 SELECT COUNT(*)

 INTO v_total_students

 FROM enrollment

 WHERE section_id = v_section_id;

 IF v_total_students >= 10

 THEN

 RAISE e_too_many_students;

 ELSE

 DBMS_OUTPUT.PUT_LINE

 ('There are '||v_total_students||' students in section '||v_section_id);

 END IF;

EXCEPTION

 WHEN e_too_many_students

 THEN

 DBMS_OUTPUT.PUT_LINE

 ('There are too many students in section '||v_section_id);

END;

The script above declares two variables, v_section_id and v_total_students, to
store section ID provided by a user and total number of students enrolled in that section
respectively. It also declares a user-defined exception e_too_many_students.

The executable portion of the script checks how many students are enrolled in a given section
and raises the exception e_too_many_students via the IF-THEN statement if the value
returned by the COUNT function equals to or exceeds 10, or displays the message specifying
how many students are enrolled in a given section.

To test this script fully, consider running it for three values of section ID. When 101 is
provided for the section ID (this section has more than 10 students), this script produces output
as follows:
There are too many students in section 101

When 116 is provided for the section ID (this section has less than 10 students), this script
produces different output:
There are 8 students in section 116

Next, consider running this script for non-existent section ID as follows:
There are 0 students in section 999

Note the script did not produce any errors. Instead it stated that section 999 has 0 students in it.
How would you modify this script to ensure that when there is no corresponding section ID in
the ENROLLMENT table, a message “This section does not exist” is displayed on the screen?

2) Restructure the script you created in the previous exercise so that it has nested PL/SQL blocks.

Once the exception e_too_many_students has been raised in the inner block, re-raise it
in the outer block.

Answer: The new version of the script should look similar to the following. Affected
statements are shown in bold.

For Example ch09_12b.sql

DECLARE

 v_section_id NUMBER := &sv_section_id;

 v_total_students NUMBER;

 e_too_many_students EXCEPTION;

BEGIN

 -- Add inner block

 BEGIN

 -- Calculate number of students enrolled

 SELECT COUNT(*)

 INTO v_total_students

 FROM enrollment

 WHERE section_id = v_section_id;

 IF v_total_students >= 10

 THEN

 RAISE e_too_many_students;

 ELSE

 DBMS_OUTPUT.PUT_LINE

 ('There are '||v_total_students||' students in section '||

 v_section_id);

 END IF;

 -- Re-raise exception

 EXCEPTION

 WHEN e_too_many_students

 THEN

 RAISE;

 END;

EXCEPTION

 WHEN e_too_many_students

 THEN

 DBMS_OUTPUT.PUT_LINE

 ('There are too many students in section '||v_section_id);

END;

This version of the script, contains inner block where e_too_many_students exception is
raised first and then propagated to the outer block. This version of the script produces output
identical to the original script.

Next, consider a different version where the original PL/SQL block (PL/SQL block from the
original script) has been enclosed by another block as shown:

For Example ch09_12c.sql

-- Outer PL/SQL block

BEGIN

 -- This block became inner PL/SQL block

 DECLARE

 v_section_id NUMBER := &sv_section_id;

 v_total_students NUMBER;

 e_too_many_students EXCEPTION;

 BEGIN

 -- Calculate number of students enrolled

 SELECT COUNT(*)

 INTO v_total_students

 FROM enrollment

 WHERE section_id = v_section_id;

 IF v_total_students >= 10

 THEN

 RAISE e_too_many_students;

 ELSE

 DBMS_OUTPUT.PUT_LINE

 ('There are '||v_total_students||' students in section '||

 v_section_id);

 END IF;

 EXCEPTION

 WHEN e_too_many_students

 THEN

 RAISE;

 END;

EXCEPTION

 WHEN e_too_many_students

 THEN

 DBMS_OUTPUT.PUT_LINE

 ('There are too many students in section '||v_section_id);

END;

This version of the script causes the following error message:
ORA-06550: line 28, column 9:

PLS-00201: identifier 'E_TOO_MANY_STUDENTS' must be declared

This occurs because the exception e_too_many_students is declared in the inner block
and as a result is not visible to the outer block. In addition, the v_section_id variable used
by the exception-handling section of the outer block is declared in the inner block as well, and
as a result, is not accessible in the outer block.

To correct these errors, this version script can be modified as follows:

For Example ch09_12d.sql

-- Outer PL/SQL block

DECLARE

 v_section_id NUMBER := &sv_section_id;

 e_too_many_students EXCEPTION;

BEGIN

 -- This block became inner PL/SQL block

 DECLARE

 v_total_students NUMBER;

 BEGIN

 -- Calculate number of students enrolled

 SELECT COUNT(*)

 INTO v_total_students

 FROM enrollment

 WHERE section_id = v_section_id;

 IF v_total_students >= 10

 THEN

 RAISE e_too_many_students;

 ELSE

 DBMS_OUTPUT.PUT_LINE

 ('There are '||v_total_students||' students in section '||

 v_section_id);

 END IF;

 EXCEPTION

 WHEN e_too_many_students

 THEN

 RAISE;

 END;

EXCEPTION

 WHEN e_too_many_students

 THEN

 DBMS_OUTPUT.PUT_LINE

 ('There are too many students for section '||v_section_id);

END;

