
Exercises for
Chapter 18: Bulk SQL
The Labs below provide you with exercises and suggested answers with discussion related to how
those answers resulted. The most important thing to realize is whether your answer works. You should
figure out the implications of the answers here and what the effects are from any different answers you
may come up with.

By the Way
Note that there is no Exercise section for Lab 18.3 Binding Collections in SQL Statements.

Lab 18.1 FORALL Statement
In this exercise, you will modify script ch18_9a.sql created in this chapter. Throughout this lab you
will use various options available for the FORALL statement such as SAVE EXCEPTIONS,
INDICES OF, and VALUES OF.

Answer the following questions:

1. Modify the script ch18_9a.sql as follows. Select data from the ZIPCODE table for a different
state, i.e., ‘MA’. Modify the selected records so that they will cause various exceptions in the
FORALL statement. Modify the FORALL statement so that it does not fail when an exception
occurs. Finally, display detailed exception information.

Answer: The new version of the script should look similar to the following. Changes are
shown in bold.

For Example ch18_9b.sql

DECLARE

 -- Declare collection types

 TYPE string_type IS TABLE OF VARCHAR2(100) INDEX BY PLS_INTEGER;

 TYPE date_type IS TABLE OF DATE INDEX BY PLS_INTEGER;

 -- Declare collection variables to be used by the FORALL statement

 zip_tab string_type;

 city_tab string_type;

 state_tab string_type;

 cr_by_tab string_type;

 cr_date_tab date_type;

 mod_by_tab string_type;

 mod_date_tab date_type;

 v_counter PLS_INTEGER := 0;

 v_total INTEGER := 0;

 -- Define user-defined exception and associated Oracle error number with it

 errors EXCEPTION;

 PRAGMA EXCEPTION_INIT(errors, -24381);

BEGIN

 -- Populate individual collections

 SELECT *

 BULK COLLECT INTO zip_tab, city_tab, state_tab, cr_by_tab,

 cr_date_tab, mod_by_tab, mod_date_tab

 FROM zipcode

 WHERE state = 'MA';

 -- Modify individual collection records to produce various exceptions

 zip_tab(1) := NULL;

 city_tab(2) := RPAD(city_tab(2), 26, ' ');

 state_tab(3) := SYSDATE;

 cr_by_tab(4) := RPAD(cr_by_tab(4), 31, ' ');

 cr_date_tab(5) := NULL;

 -- Populate MY_ZIPCODE table

 FORALL i in 1..zip_tab.COUNT SAVE EXCEPTIONS

 INSERT INTO my_zipcode

 (zip, city, state, created_by, created_date, modified_by, modified_date)

 VALUES

 (zip_tab(i), city_tab(i), state_tab(i), cr_by_tab(i), cr_date_tab(i)

 ,mod_by_tab(i), mod_date_tab(i));

 COMMIT;

 -- Check how many records were added to MY_ZIPCODE table

 SELECT COUNT(*)

 INTO v_total

 FROM my_zipcode

 WHERE state = 'MA';

 DBMS_OUTPUT.PUT_LINE (v_total||' records were added to MY_ZIPCODE table');

EXCEPTION

 WHEN errors

 THEN

 -- Display total number of exceptions encountered

 DBMS_OUTPUT.PUT_LINE

 ('There were '||SQL%BULK_EXCEPTIONS.COUNT||' exceptions');

 -- Display detailed exception information

 FOR i in 1.. SQL%BULK_EXCEPTIONS.COUNT

 LOOP

 DBMS_OUTPUT.PUT_LINE ('Record '||

 SQL%BULK_EXCEPTIONS(i).error_index||' caused error '||i||

 ': '||SQL%BULK_EXCEPTIONS(i).ERROR_CODE||' '||

 SQLERRM(-SQL%BULK_EXCEPTIONS(i).ERROR_CODE));

 END LOOP;

 -- Commit records if any that were inserted successfully

 COMMIT;

END;

In the script above, you declare user-define exception and associate Oracle error number with it
via the EXCEPTION_INIT pragma. Next, you populate individual collections with the cursor
FOR LOOP against the ZIPCODE table, and then modify them so that they will cause
exceptions in the FORALL statement. For example, the first record of the zip_tab collection
is set to NULL. This will cause constraint violation as the ZIP column in MY_ZIPCODE table
has NOT NULL constraint defined against it. Then, you add SAVE EXCEPTIONS clause to
the FORALL statement, and an exception-handling section to the PL/SQL block. In this section,
you display total number of errors encountered along with detailed exception information. Note
the COMMIT statement in the exception-handling section. This statement is added so that
records that are inserted successfully by the FORALL statement are committed when the
control of the execution is passed to the exception-handling section of the block.

When run, this version of the script produces the following output:
There were 5 exceptions

Record 1 caused error 1: 1400 ORA-01400: cannot insert NULL into ()

Record 2 caused error 2: 12899 ORA-12899: value too large for column (actual: ,

maximum:)

Record 3 caused error 3: 12899 ORA-12899: value too large for column (actual: ,

maximum:)

Record 4 caused error 4: 12899 ORA-12899: value too large for column (actual: ,

maximum:)

Record 5 caused error 5: 1400 ORA-01400: cannot insert NULL into ()

2. Modify the script ch18_9b.sql as follows. Do not modify records selected from the ZIPCODE

table so that there are no exceptions raised; instead, delete first 3 records from each collection so
that they become sparse. Then modify the FORALL statement accordingly.

Answer: This version of the script should look similar to the script below. Modified statements
are highlighted in bold.

For Example ch18_9c.sql

DECLARE

 -- Declare collection types

 TYPE string_type IS TABLE OF VARCHAR2(100) INDEX BY PLS_INTEGER;

 TYPE date_type IS TABLE OF DATE INDEX BY PLS_INTEGER;

 -- Declare collection variables to be used by the FORALL statement

 zip_tab string_type;

 city_tab string_type;

 state_tab string_type;

 cr_by_tab string_type;

 cr_date_tab date_type;

 mod_by_tab string_type;

 mod_date_tab date_type;

 v_counter PLS_INTEGER := 0;

 v_total INTEGER := 0;

 -- Define user-defined exception and associated Oracle error number with it

 errors EXCEPTION;

 PRAGMA EXCEPTION_INIT(errors, -24381);

BEGIN

 -- Populate individual collections

 SELECT *

 BULK COLLECT INTO zip_tab, city_tab, state_tab, cr_by_tab,

 cr_date_tab, mod_by_tab, mod_date_tab

 FROM zipcode

 WHERE state = 'MA';

 -- Delete first 3 records from each collection

 zip_tab.DELETE(1,3);

 city_tab.DELETE(1,3);

 state_tab.DELETE(1,3);

 cr_by_tab.DELETE(1,3);

 cr_date_tab.DELETE(1,3);

 mod_by_tab.DELETE(1,3);

 mod_date_tab.DELETE(1,3);

 -- Populate MY_ZIPCODE table

 FORALL i IN INDICES OF zip_tab SAVE EXCEPTIONS

 INSERT INTO my_zipcode

 (zip, city, state, created_by, created_date, modified_by, modified_date)

 VALUES

 (zip_tab(i), city_tab(i), state_tab(i), cr_by_tab(i), cr_date_tab(i)

 ,mod_by_tab(i), mod_date_tab(i));

 COMMIT;

 -- Check how many records were added to MY_ZIPCODE table

 SELECT COUNT(*)

 INTO v_total

 FROM my_zipcode

 WHERE state = 'MA';

 DBMS_OUTPUT.PUT_LINE (v_total||' records were added to MY_ZIPCODE table');

EXCEPTION

 WHEN errors

 THEN

 -- Display total number of exceptions encountered

 DBMS_OUTPUT.PUT_LINE

 ('There were '||SQL%BULK_EXCEPTIONS.COUNT||' exceptions');

 -- Display detailed exception information

 FOR i in 1.. SQL%BULK_EXCEPTIONS.COUNT LOOP

 DBMS_OUTPUT.PUT_LINE ('Record '||

 SQL%BULK_EXCEPTIONS(i).error_index||' caused error '||i||

 ': '||SQL%BULK_EXCEPTIONS(i).ERROR_CODE||' '||

 SQLERRM(-SQL%BULK_EXCEPTIONS(i).ERROR_CODE));

 END LOOP;

 -- Commit records if any that were inserted successfully

 COMMIT;

END;

This version of the script contains two modifications. First, you delete first three records from
each collection. Second, you modify the FORALL statement by replacing lower and upper
limits for the counter variable with the INDICES OF clause.

When run, the script produces the following output:
2 records were added to MY_ZIPCODE table

3. Modify second version of the script, ch18_9b.sql, as follows. Insert records that cause

exceptions in a different table called MY_ZIPCODE_EXC.

Answer: The MY_ZIPCODE_EXC table may be created as follows:
CREATE TABLE MY_ZIPCODE_EXC

 (ZIP VARCHAR2(100),

 CITY VARCHAR2(100),

 STATE VARCHAR2(100),

 CREATED_BY VARCHAR2(100),

 CREATED_DATE DATE,

 MODIFIED_BY VARCHAR2(100),

 MODIFIED_DATE DATE);

Note that even though this table has the same columns as the MY_ZIPCODE table, the column
sizes have been increased and all NOT NULL constraints removed. This ensures that records
which cause exceptions in the FORALL statement can be inserted in this table.

Next, the script is modified as follows. Changes are shown in bold.

For Example ch18_9d.sql

DECLARE

 -- Declare collection types

 TYPE string_type IS TABLE OF VARCHAR2(100) INDEX BY PLS_INTEGER;

 TYPE date_type IS TABLE OF DATE INDEX BY PLS_INTEGER;

 TYPE exc_ind_type IS TABLE OF PLS_INTEGER INDEX BY PLS_INTEGER;

 -- Declare collection variables to be used by the FORALL statement

 zip_tab string_type;

 city_tab string_type;

 state_tab string_type;

 cr_by_tab string_type;

 cr_date_tab date_type;

 mod_by_tab string_type;

 mod_date_tab date_type;

 exc_ind_tab exc_ind_type;

 v_counter PLS_INTEGER := 0;

 v_total INTEGER := 0;

 -- Define user-defined exception and associated Oracle error number with it

 errors EXCEPTION;

 PRAGMA EXCEPTION_INIT(errors, -24381);

BEGIN

 -- Populate individual collections

 SELECT *

 BULK COLLECT INTO zip_tab, city_tab, state_tab, cr_by_tab,

 cr_date_tab, mod_by_tab, mod_date_tab

 FROM zipcode

 WHERE state = 'MA';

 -- Modify individual collection records to produce various exceptions

 zip_tab(1) := NULL;

 city_tab(2) := RPAD(city_tab(2), 26, ' ');

 state_tab(3) := SYSDATE;

 cr_by_tab(4) := RPAD(cr_by_tab(4), 31, ' ');

 cr_date_tab(5) := NULL;

 -- Populate MY_ZIPCODE table

 FORALL i in 1..zip_tab.COUNT SAVE EXCEPTIONS

 INSERT INTO my_zipcode

 (zip, city, state, created_by, created_date, modified_by, modified_date)

 VALUES

 (zip_tab(i), city_tab(i), state_tab(i), cr_by_tab(i), cr_date_tab(i)

 ,mod_by_tab(i), mod_date_tab(i));

 COMMIT;

 -- Check how many records were added to MY_ZIPCODE table

 SELECT COUNT(*)

 INTO v_total

 FROM my_zipcode

 WHERE state = 'MA';

 DBMS_OUTPUT.PUT_LINE (v_total||' records were added to MY_ZIPCODE table');

EXCEPTION

 WHEN errors

 THEN

 -- Populate V_EXC_IND_TAB collection to be used in the VALUES OF clause

 FOR i in 1.. SQL%BULK_EXCEPTIONS.COUNT

 LOOP

 exc_ind_tab(i) := SQL%BULK_EXCEPTIONS(i).error_index;

 END LOOP;

 -- Insert records that caused exceptions in the MY_ZIPCODE_EXC table

 FORALL i in VALUES OF exc_ind_tab

 INSERT INTO my_zipcode_exc

 (zip, city, state, created_by, created_date, modified_by, modified_date)

 VALUES

 (zip_tab(i), city_tab(i), state_tab(i), cr_by_tab(i), cr_date_tab(i)

 ,mod_by_tab(i), mod_date_tab(i));

 COMMIT;

END;

In this version of the script, you modify exception-handling section so that records causing
exceptions in the FORALL statement are inserted in the MY_ZIPCODE_EXC table created
earlier. First, you populate collection exc_ind_tab with subscripts of records that caused

exceptions in the FORALL statement. Then, you loop through this collection and insert
erroneous records in the MY_ZIPCODE_EXC table. After execution of the script,
MY_ZIPCODE_EXC table contains records that caused exceptions.

Lab 18.2 BULK COLLECT Clause
In this exercise, you will create various scripts that will select and modify data in MY_INSTRUCTOR
table in bulk.

Create MY_INSTRUCTOR table as follows. Note that if this table already exists, drop it first and
then recreate it:

DROP TABLE my_instructor;

CREATE TABLE my_instructor AS

SELECT *

 FROM instructor;

Answer the following questions:

4. Create the following script: Select instructor ID, first and last names from the
MY_INSTRUCTOR table and display it on the screen. Note that the data should be fetched in
bulk.

Answer: The newly created script should look similar to the following:

For Example ch18_14a.sql

DECLARE

 -- Define collection types and variables to be used by the BULK COLLECT clause

 TYPE instructor_id_type IS TABLE OF my_instructor.instructor_id%TYPE;

 TYPE first_name_type IS TABLE OF my_instructor.first_name%TYPE;

 TYPE last_name_type IS TABLE OF my_instructor.last_name%TYPE;

 instructor_id_tab instructor_id_type;

 first_name_tab first_name_type;

 last_name_tab last_name_type;

BEGIN

 -- Fetch all instructor data at once via BULK COLLECT clause

 SELECT instructor_id, first_name, last_name

 BULK COLLECT INTO instructor_id_tab, first_name_tab, last_name_tab

 FROM my_instructor;

 FOR i IN instructor_id_tab.FIRST..instructor_id_tab.LAST

 LOOP

 DBMS_OUTPUT.PUT_LINE ('instructor_id: '||instructor_id_tab(i));

 DBMS_OUTPUT.PUT_LINE ('first_name: '||first_name_tab(i));

 DBMS_OUTPUT.PUT_LINE ('last_name: '||last_name_tab(i));

 END LOOP;

END;

The declaration portion of this script contains definitions of three collection types and
variables. The executable portion of the script populates collection variables via the SELECT

statement with the BULK COLLECT clause. Finally, it displays data stored in the collection
variables by looping through them.

When run this script produces output as follows:
instructor_id: 101

first_name: Fernand

last_name: Hanks

instructor_id: 102

first_name: Tom

last_name: Wojick

instructor_id: 103

first_name: Nina

last_name: Schorin

instructor_id: 104

first_name: Gary

last_name: Pertez

instructor_id: 105

first_name: Anita

last_name: Morris

instructor_id: 106

first_name: Todd

last_name: Smythe

instructor_id: 107

first_name: Marilyn

last_name: Frantzen

instructor_id: 108

first_name: Charles

last_name: Lowry

instructor_id: 109

first_name: Rick

last_name: Chow

instructor_id: 110

first_name: Irene

last_name: Willig

As mentioned previously, the BULK COLLECT clause is similar to the cursor loop in that it
does not through NO_DATA_FOUND exception when no rows are returned by the SELECT
statement. Consider deleting all rows from the MY_INSTRUCTOR table and then executing
this script again. In this case the script produces error as follows:
ORA-06502: PL/SQL: numeric or value error

ORA-06512: at line 17

Note that the error in the script refers to line 17 which contains FOR LOOP that iterates through
the collections and displays the results. Note that the SELECT statement with the BULK
COLLECT clause did not cause any errors. To prevent this error from happening, the script can
be modified as follows. Changes are shown in bold letters.

For Example ch18_14b.sql

DECLARE

 -- Define collection types and variables to be used by the

 -- BULK COLLECT clause

 TYPE instructor_id_type IS TABLE OF my_instructor.instructor_id%TYPE;

 TYPE first_name_type IS TABLE OF my_instructor.first_name%TYPE;

 TYPE last_name_type IS TABLE OF my_instructor.last_name%TYPE;

 instructor_id_tab instructor_id_type;

 first_name_tab first_name_type;

 last_name_tab last_name_type;

BEGIN

 -- Fetch all instructor data at once via BULK COLLECT clause

 SELECT instructor_id, first_name, last_name

 BULK COLLECT INTO instructor_id_tab, first_name_tab, last_name_tab

 FROM my_instructor;

 IF instructor_id_tab.COUNT > 0

 THEN

 FOR i IN instructor_id_tab.FIRST..instructor_id_tab.LAST

 LOOP

 DBMS_OUTPUT.PUT_LINE ('instructor_id: '||instructor_id_tab(i));

 DBMS_OUTPUT.PUT_LINE ('first_name: '||first_name_tab(i));

 DBMS_OUTPUT.PUT_LINE ('last_name: '||last_name_tab(i));

 END LOOP;

 END IF;

END;

This version of the script contains IF-THEN statement that encloses the FOR loop. The IF-
THEN statement checks if one of the collections is non-empty; thus, preventing the ‘numeric or
value error’.

Watch Out!
If you have deleted records from the MY_INSTRUCTOR table, you need to roll back your changes or
populate it with the records from the INSTRUCTOR table again before proceeding with rest of the
exercises in this Lab.

5. Modify newly created script as follows: fetch no more than five rows at one time from
MY_INSTRUCTOR table.

Answer: The script should look similar to the following. Modifications are highlighted in bold.

For Example ch18_14c.sql

DECLARE

 CURSOR instructor_cur IS

 SELECT instructor_id, first_name, last_name

 FROM my_instructor;

 -- Define collection types and variables to be used by the BULK COLLECT clause

 TYPE instructor_id_type IS TABLE OF my_instructor.instructor_id%TYPE;

 TYPE first_name_type IS TABLE OF my_instructor.first_name%TYPE;

 TYPE last_name_type IS TABLE OF my_instructor.last_name%TYPE;

 instructor_id_tab instructor_id_type;

 first_name_tab first_name_type;

 last_name_tab last_name_type;

 v_limit PLS_INTEGER := 5;

BEGIN

 OPEN instructor_cur;

 LOOP

 -- Fetch partial instructor data at once via BULK COLLECT clause

 FETCH instructor_cur

 BULK COLLECT INTO instructor_id_tab, first_name_tab, last_name_tab

 LIMIT v_limit;

 EXIT WHEN instructor_id_tab.COUNT = 0;

 FOR i IN instructor_id_tab.FIRST..instructor_id_tab.LAST

 LOOP

 DBMS_OUTPUT.PUT_LINE ('instructor_id: '||instructor_id_tab(i));

 DBMS_OUTPUT.PUT_LINE ('first_name: '||first_name_tab(i));

 DBMS_OUTPUT.PUT_LINE ('last_name: '||last_name_tab(i));

 END LOOP;

 END LOOP;

 CLOSE instructor_cur;

END;

In this version of the script, you declare a cursor against the MY_INSTRUCTOR table. This
enables you to do partial fetch from the MY_INSTRUCTOR table. You process this cursor by
fetching 5 records at time via BULK COLLECT clause with the LIMIT option. It ensures that
the collection variables contain no more than 5 records in them for each iteration of the cursor
loop. Finally, in order to display all results, you move the FOR LOOP inside the cursor FOR
LOOP. This version of the script produces output identical to the first version of the script.

6. Modify newly created script as follows: Instead of fetching data from MY_INSTRUCTOR table
into individual collections fetch it into a single collection.

Answer: In order to accomplish this task, the new record type must be declared so that a single
collection type can be based on this record type. This is shown below. Changes are shown in
bold.

For Example ch18_14d.sql

DECLARE

 CURSOR instructor_cur IS

 SELECT instructor_id, first_name, last_name

 FROM my_instructor;

 -- Define record type

 TYPE instructor_rec IS RECORD

 (instructor_id my_instructor.instructor_id%TYPE,

 first_name my_instructor.first_name%TYPE,

 last_name my_instructor.last_name%TYPE);

 -- Define collection type and variable to be used by the BULK COLLECT clause

 TYPE instructor_type IS TABLE OF instructor_rec;

 instructor_tab instructor_type;

 v_limit PLS_INTEGER := 5;

BEGIN

 OPEN instructor_cur;

 LOOP

 -- Fetch partial instructor data at once via BULK COLLECT clause

 FETCH instructor_cur

 BULK COLLECT INTO instructor_tab

 LIMIT v_limit;

 EXIT WHEN instructor_tab.COUNT = 0;

 FOR i IN instructor_tab.FIRST..instructor_tab.LAST

 LOOP

 DBMS_OUTPUT.PUT_LINE ('instructor_id: '||instructor_tab(i).instructor_id);

 DBMS_OUTPUT.PUT_LINE ('first_name: '||instructor_tab(i).first_name);

 DBMS_OUTPUT.PUT_LINE ('last_name: '||instructor_tab(i).last_name);

 END LOOP;

 END LOOP;

 CLOSE instructor_cur;

END;

In this version of the script, you declare user-defined record type with three fields. Next, you
declare a single collection type based on this record type. Then, you fetch the results of the
cursor into to collection of records which you then display on the screen.

Next, consider another version that also creates collection of records. In this version, the
collection type is based on the row type record returned by the cursor as shown:

For Example ch18_14e.sql

DECLARE

 CURSOR instructor_cur IS

 SELECT instructor_id, first_name, last_name

 FROM my_instructor;

 -- Define collection type and variable to be used by the BULK COLLECT clause

 TYPE instructor_type IS TABLE OF instructor_cur%ROWTYPE;

 instructor_tab instructor_type;

 v_limit PLS_INTEGER := 5;

BEGIN

 OPEN instructor_cur;

 LOOP

 -- Fetch partial instructor data at once via BULK COLLECT clause

 FETCH instructor_cur

 BULK COLLECT INTO instructor_tab

 LIMIT v_limit;

 EXIT WHEN instructor_tab.COUNT = 0;

 FOR i IN instructor_tab.FIRST..instructor_tab.LAST

 LOOP

 DBMS_OUTPUT.PUT_LINE ('instructor_id: '||instructor_tab(i).instructor_id);

 DBMS_OUTPUT.PUT_LINE ('first_name: '||instructor_tab(i).first_name);

 DBMS_OUTPUT.PUT_LINE ('last_name: '||instructor_tab(i).last_name);

 END LOOP;

 END LOOP;

 CLOSE instructor_cur;

END;

7. Create the following script: Delete records from MY_INSTRUCTOR table and display deleted
records on the screen.

Answer: The newly created script should look similar to the following script.

For Example ch18_15a.sql

DECLARE

 -- Define collection types and variables to be used by the BULK COLLECT clause

 TYPE instructor_id_type IS TABLE OF my_instructor.instructor_id%TYPE;

 TYPE first_name_type IS TABLE OF my_instructor.first_name%TYPE;

 TYPE last_name_type IS TABLE OF my_instructor.last_name%TYPE;

 instructor_id_tab instructor_id_type;

 first_name_tab first_name_type;

 last_name_tab last_name_type;

BEGIN

 DELETE FROM MY_INSTRUCTOR

 RETURNING instructor_id, first_name, last_name

 BULK COLLECT INTO instructor_id_tab, first_name_tab, last_name_tab;

 DBMS_OUTPUT.PUT_LINE ('Deleted '||SQL%ROWCOUNT||' rows ');

 IF instructor_id_tab.COUNT > 0

 THEN

 FOR i IN instructor_id_tab.FIRST..instructor_id_tab.LAST

 LOOP

 DBMS_OUTPUT.PUT_LINE ('instructor_id: '||instructor_id_tab(i));

 DBMS_OUTPUT.PUT_LINE ('first_name: '||first_name_tab(i));

 DBMS_OUTPUT.PUT_LINE ('last_name: '||last_name_tab(i));

 END LOOP;

 END IF;

 COMMIT;

END;

In this script, you store instructor ID, first and last names in the collections by using
RETURNING option with the BULK COLLECT clause. When run, this script produces the
following output:
Deleted 10 rows

instructor_id: 101

first_name: Fernand

last_name: Hanks

instructor_id: 102

first_name: Tom

last_name: Wojick

instructor_id: 103

first_name: Nina

last_name: Schorin

instructor_id: 104

first_name: Gary

last_name: Pertez

instructor_id: 105

first_name: Anita

last_name: Morris

instructor_id: 106

first_name: Todd

last_name: Smythe

instructor_id: 107

first_name: Marilyn

last_name: Frantzen

instructor_id: 108

first_name: Charles

last_name: Lowry

instructor_id: 109

first_name: Rick

last_name: Chow

instructor_id: 110

first_name: Irene

last_name: Willig

Try It Yourself
The projects in this section are meant to have you use all of the skills that you have acquired
throughout this chapter. Here are some exercises that will help you test the depth of your
understanding.

Prior to beginning these exercise create MY_SECTION table based on the SECTION table. This
table should be created empty as follows:

CREATE TABLE my_section AS

SELECT *

 FROM section

 WHERE 1 = 2;

1) Create the following script. Populate MY_SECTION table via the FORALL statement with
SAVE EXCEPTIONS clause. Once MY_SECTION is populated, display how many records
were inserted.

Answer: The script should look similar to the following:

For Example ch18_16a.sql

DECLARE

 -- Declare collection types

 TYPE number_type IS TABLE of NUMBER INDEX BY PLS_INTEGER;

 TYPE string_type IS TABLE OF VARCHAR2(100) INDEX BY PLS_INTEGER;

 TYPE date_type IS TABLE OF DATE INDEX BY PLS_INTEGER;

 -- Declare collection variables to be used by the FORALL statement

 section_id_tab number_type;

 course_no_tab number_type;

 section_no_tab number_type;

 start_date_time_tab date_type;

 location_tab string_type;

 instructor_id_tab number_type;

 capacity_tab number_type;

 cr_by_tab string_type;

 cr_date_tab date_type;

 mod_by_tab string_type;

 mod_date_tab date_type;

 v_counter PLS_INTEGER := 0;

 v_total INTEGER := 0;

 -- Define user-defined exception and associated Oracle error number with it

 errors EXCEPTION;

 PRAGMA EXCEPTION_INIT(errors, -24381);

BEGIN

 -- Populate individual collections

 SELECT *

 BULK COLLECT INTO section_id_tab, course_no_tab, section_no_tab

 ,start_date_time_tab, location_tab, instructor_id_tab

 ,capacity_tab, cr_by_tab, cr_date_tab, mod_by_tab

 ,mod_date_tab

 FROM section;

 -- Populate MY_SECTION table

 FORALL i in 1..section_id_tab.COUNT SAVE EXCEPTIONS

 INSERT INTO my_section

 (section_id, course_no, section_no, start_date_time,

 location, instructor_id, capacity, created_by,

 created_date, modified_by, modified_date)

 VALUES

 (section_id_tab(i), course_no_tab(i), section_no_tab(i),

 start_date_time_tab(i), location_tab(i),

 instructor_id_tab(i), capacity_tab(i), cr_by_tab(i),

 cr_date_tab(i), mod_by_tab(i), mod_date_tab(i));

 COMMIT;

 -- Check how many records were added to MY_SECTION table

 SELECT COUNT(*)

 INTO v_total

 FROM my_section;

 DBMS_OUTPUT.PUT_LINE (v_total||' records were added to MY_SECTION table');

EXCEPTION

 WHEN errors

 THEN

 -- Display total number of exceptions encountered

 DBMS_OUTPUT.PUT_LINE

 ('There were '||SQL%BULK_EXCEPTIONS.COUNT||' exceptions');

 -- Display detailed exception information

 FOR i in 1.. SQL%BULK_EXCEPTIONS.COUNT

 LOOP

 DBMS_OUTPUT.PUT_LINE ('Record '||

 SQL%BULK_EXCEPTIONS(i).error_index||' caused error '||i||

 ': '||SQL%BULK_EXCEPTIONS(i).ERROR_CODE||' '||

 SQLERRM(-SQL%BULK_EXCEPTIONS(i).ERROR_CODE));

 END LOOP;

 -- Commit records if any that were inserted successfully

 COMMIT;

END;

This script populates MY_SECTION table with records selected from the SECTION table. To
enable use of the FORALL statement, it employs 11 collections. Note that there are only 3
collection types associated with these collections. This is because the individual collections
store only 3 data types, NUMBER, VARCHAR2, and DATE.

The script uses cursor SELECT statement with the BULK COLLECT INTO clause to
populate the individual collections, and then uses them with the FORALL statement with the
SAVE EXCEPTIONS option to populate MY_SECTION table. To enable the SAVE
EXCEPTIONS option, this script declares user-defined exception and associates Oracle error
number with it. This script also contains exception-handling section where user-defined
exception is processed. This section displays how many exceptions were encountered by the
FORALL statement as well as detailed exception information. Note the COMMIT statement in
the exception-handling section. This statement is added so that records that are inserted
successfully by the FORALL statement are committed when the control of the execution is
passed to the exception-handling section of the block.

When run, this script produces output as shown:
78 records were added to MY_SECTION table

2) Modify the script created in the previous exercise (step 1 above). In addition to displaying total

number of records inserted in the MY_SECTION table, display how many records were
inserted for each course. Use BULK COLLECT statement to accomplish this step.

Watch Out!
In order to get the correct results you should delete all rows from MY_SECTION table prior to
executing this version of the script.

Answer: New version of the script should look similar to the following. All changes are shown
in bold.

For Example ch18_16b.sql

DECLARE

 -- Declare collection types

 TYPE number_type IS TABLE of NUMBER INDEX BY PLS_INTEGER;

 TYPE string_type IS TABLE OF VARCHAR2(100) INDEX BY PLS_INTEGER;

 TYPE date_type IS TABLE OF DATE INDEX BY PLS_INTEGER;

 -- Declare collection variables to be used by the FORALL statement

 section_id_tab number_type;

 course_no_tab number_type;

 section_no_tab number_type;

 start_date_time_tab date_type;

 location_tab string_type;

 instructor_id_tab number_type;

 capacity_tab number_type;

 cr_by_tab string_type;

 cr_date_tab date_type;

 mod_by_tab string_type;

 mod_date_tab date_type;

 total_recs_tab number_type;

 v_counter PLS_INTEGER := 0;

 v_total INTEGER := 0;

 -- Define user-defined exception and associated Oracle error number with it

 errors EXCEPTION;

 PRAGMA EXCEPTION_INIT(errors, -24381);

BEGIN

 -- Populate individual collections

 SELECT *

 BULK COLLECT INTO section_id_tab, course_no_tab, section_no_tab

 ,start_date_time_tab, location_tab, instructor_id_tab

 ,capacity_tab, cr_by_tab, cr_date_tab, mod_by_tab

 ,mod_date_tab

 FROM section;

 -- Populate MY_SECTION table

 FORALL i in 1..section_id_tab.COUNT SAVE EXCEPTIONS

 INSERT INTO my_section

 (section_id, course_no, section_no, start_date_time,

 location, instructor_id, capacity, created_by,

 created_date, modified_by, modified_date)

 VALUES

 (section_id_tab(i), course_no_tab(i), section_no_tab(i),

 start_date_time_tab(i), location_tab(i),

 instructor_id_tab(i), capacity_tab(i), cr_by_tab(i),

 cr_date_tab(i), mod_by_tab(i), mod_date_tab(i));

 COMMIT;

 -- Check how many records were added to MY_SECTION table

 SELECT COUNT(*)

 INTO v_total

 FROM my_section;

 DBMS_OUTPUT.PUT_LINE

 (v_total||' records were added to MY_SECTION table');

 -- Check how many records were inserted for each course

 -- and display this information

 -- Fetch data from MY_SECTION table via BULK COLLECT clause

 SELECT course_no, COUNT(*)

 BULK COLLECT INTO course_no_tab, total_recs_tab

 FROM my_section

 GROUP BY course_no;

 IF course_no_tab.COUNT > 0 THEN

 FOR i IN course_no_tab.FIRST..course_no_tab.LAST

 LOOP

 DBMS_OUTPUT.PUT_LINE

 ('course_no: '||course_no_tab(i)||

 ', total sections: '||total_recs_tab(i));

 END LOOP;

 END IF;

EXCEPTION

 WHEN errors

 THEN

 -- Display total number of exceptions encountered

 DBMS_OUTPUT.PUT_LINE

 ('There were '||SQL%BULK_EXCEPTIONS.COUNT||' exceptions');

 -- Display detailed exception information

 FOR i in 1.. SQL%BULK_EXCEPTIONS.COUNT

 LOOP

 DBMS_OUTPUT.PUT_LINE ('Record '||

 SQL%BULK_EXCEPTIONS(i).error_index||' caused error '||i||

 ': '||SQL%BULK_EXCEPTIONS(i).ERROR_CODE||' '||

 SQLERRM(-SQL%BULK_EXCEPTIONS(i).ERROR_CODE));

 END LOOP;

 -- Commit records if any that were inserted successfully

 COMMIT;

END;

In this version of the script, you define one more collection total_recs_tab in the
declaration portion of the PL/SQL block. This collection is used to store total number of
sections for each course. In the executable portion of the PL/SQL block, you add a SELECT
statement with BULK COLLECT clause that repopulates course_no_tab and initializes the
total_recs_tab. Next, if the course_no_tab collection contains data, you display
course numbers and total number of sections for each course on the screen.

When run, this version of the script produces output as follows:
78 records were added to MY_SECTION table

course_no: 25, total sections: 9

course_no: 310, total sections: 1

course_no: 100, total sections: 5

course_no: 147, total sections: 1

course_no: 330, total sections: 1

course_no: 450, total sections: 1

course_no: 134, total sections: 3

course_no: 144, total sections: 1

course_no: 120, total sections: 6

course_no: 20, total sections: 4

course_no: 210, total sections: 1

course_no: 220, total sections: 1

course_no: 132, total sections: 2

course_no: 230, total sections: 2

course_no: 240, total sections: 2

course_no: 350, total sections: 3

course_no: 135, total sections: 4

course_no: 125, total sections: 5

course_no: 130, total sections: 4

course_no: 140, total sections: 3

course_no: 146, total sections: 2

course_no: 420, total sections: 1

course_no: 142, total sections: 3

course_no: 145, total sections: 2

course_no: 124, total sections: 4

course_no: 10, total sections: 1

course_no: 204, total sections: 1

course_no: 122, total sections: 5

3) Create the following script. Delete all records from the MY_SECTION table and display how

many records were deleted for each course. Use BULK COLLECT with the RETURNING
option.

Answer: This script should look similar to the following:

For Example ch18_17a.sql

DECLARE

 -- Define collection types and variables to be used by the BULK COLLECT clause

 TYPE section_id_type IS TABLE OF my_section.section_id%TYPE;

 section_id_tab section_id_type;

BEGIN

 FOR rec IN (SELECT UNIQUE course_no

 FROM my_section)

 LOOP

 DELETE FROM MY_SECTION

 WHERE course_no = rec.course_no

 RETURNING section_id

 BULK COLLECT INTO section_id_tab;

 DBMS_OUTPUT.PUT_LINE ('Deleted '||SQL%ROWCOUNT||

 ' rows for course '||rec.course_no);

 IF section_id_tab.COUNT > 0

 THEN

 FOR i IN section_id_tab.FIRST..section_id_tab.LAST

 LOOP

 DBMS_OUTPUT.PUT_LINE ('section_id: '||section_id_tab(i));

 END LOOP;

 DBMS_OUTPUT.PUT_LINE ('===============================');

 END IF;

 COMMIT;

 END LOOP;

END;

In this script you declare a single collection section_id_tab. Note that there is no need to
declare a collection to store course numbers. This is because the records from MY_SECTION
table are deleted for each course number instead of all at once. To accomplish this, you
introduce cursor FOR LOOP that selects unique course numbers from MY_SECTION table.
Next, for each course number you delete records from MY_SECTION table returning
corresponding section IDs and collecting them in the section_id_tab. Next, you display
how many records were deleted for a given course number along with individual section IDs
for this course.

Note that even though the collection section_id_tab is repopulated for each iteration of
the cursor loop, there is no need to reinitialize it (in other words empty it out). This is because
the DELETE statement does it implicitly.
Consider the partial output produced by this script:
Deleted 9 rows for course 25

section_id: 85

section_id: 86

section_id: 87

section_id: 88

section_id: 89

section_id: 90

section_id: 91

section_id: 92

section_id: 93

===============================

Deleted 1 rows for course 310

section_id: 103

===============================

Deleted 5 rows for course 100

section_id: 141

section_id: 142

section_id: 143

section_id: 144

section_id: 145

===============================

…

