Exercises for
Chapter 23: Object
Types in Oracle

The Labs below provide you with exercises and suggested answers with discussion related to how
those answers resulted. The most important thing to realize is whether your answer works. You should
figure out the implications of the answers here and what the effects are from any different answers you
may come up with.

Lab 23.1 Object Types

Answer the following questions.

Creating Object Types

In this exercise, you will be creating and manipulating object types.
Answer the following questions:

a) Create object type ENROLLMENT OBJ TYPE that has the following attributes:

ATTRIBUTE NAME DATA TYPE PRECISION
student id NUMBER 8
first name VARCHAR2 25
last name VARCHAR?2 25
course no NUMBER 8
section_no NUMBER 3
enroll date DATE

final grade NUMBER 3

Answer: The creation script should look similar to the following:

For Example ch23 1la.sq!

CREATE OR REPLACE TYPE ENROLLMENT OBJ TYPE AS OBJECT

(student_id NUMBER (8)

,first name VARCHAR2 (25)

,last name VARCHAR2 (25)

,course no NUMBER (8)

,section_no NUMBER (3)

,enroll date DATE

,final grade NUMBER(3));

b) Script below uses newly created object type. Execute it and explain the output produced.

c)

d)

For Example ch23 12a.sql

DECLARE

v_enrollment obj enrollment obj type;

BEGIN
v_enrollment obj.student id := 102;
v_enrollment obj.first name := 'Fred';
v_enrollment obj.last name := 'Crocitto';
v_enrollment obj.course no := 25;

END;

Answer: The output of the script should look similar to the following:

ORA-06530: Reference to uninitialized composite

ORA-06512: at line 5

This version of the script causes ORA-06530 error because it references individual attributes of
the uninitialized object type instance. Before object attribute can be referenced the object must
be initialized with the help of the constructor method.

Modify the script created in the previous exercise (ch23 12a.sql) so that it does not produce
ORA-06530 error.

Answer: The script should be modified as follows. Affected statements are highlighted in bold.

For Example ch23 12b.sql

DECLARE

v_enrollment obj enrollment obj type;

BEGIN
v_enrollment obj :=
enrollment obj_type (102, 'Fred',6 'Crocitto', 25, null, null, null);
END;

Modify the script created in the previous exercise (ch23 12b.sql) so that all object attributes are
populated with corresponding values selected from the appropriate tables.

Answer: The modified script should look similar to one of the following scripts. All changes
are shown in bold.

The first version of the script employs the SELECT INTO statement along with the
constructor to initialize other attributes as well. Note that the SELECT INTO statement
specifies where criteria for the SECTION NO in addition to the criteria for the STUDENT ID
and COURSE_NO. This ensures that the SELECT INTO statement does not cause ‘ORA-01422:
exact fetch returns more than requested number of rows’ error.

For Example ch23 12c.sql

DECLARE

v_enrollment obj enrollment obj type;

BEGIN

SELECT
enrollment obj_type(st.student_id, st.first name, st.last name, c.course no
,se.section _no, e.enroll date, e.final grade)
INTO v_enrollment obj
FROM student st, course c, section se, enrollment e
WHERE st.student id = e.student id
AND c.course_no = se.course_no

AND se.section_id = e.section_id

AND st.student_id = 102
AND c.course_no = 25
AND se.section no = 2;

END;

The second version of the script uses cursor FOR LOOP. This approach eliminates the need for
additional criteria against the SECTION NO.

For Example ch23 12d.sql

DECLARE

v_enrollment obj enrollment obj type;

BEGIN
FOR REC IN (SELECT st.student_id, st.first name, st.last_name, c.course_no
,se.section _no, e.enroll date, e.final grade

FROM student st, course c, section se, enrollment e

WHERE st.student id = e.student id
AND c.course_no = se.course_no
AND se.section_id = e.section_id
AND st.student id 102
AND c.course _no = 25)

LOOP
v_enrollment obj :=
enrollment obj_type(rec.student id, rec.first name, rec.last_name
,rec.course no, rec.section_no, rec.enroll date
,rec.final grade) ;
END LOOP;
END;

Modify the script created in the previous exercise (use either versions of the script, ch23 2c.sql
or ch23 2d.sql) so that enrollment object attributes are displayed.

Answer: The modified script should look similar to the following. Newly added statements are
shown in bold.

For Example ch23 12e.sql

DECLARE

v_enrollment obj enrollment obj type;

BEGIN
FOR REC IN (SELECT st.student id, st.first name, st.last name, c.course no
,se.section no, e.enroll date, e.final grade

FROM student st, course c, section se, enrollment e

WHERE st.student id = e.student id
AND c.course no = se.course no
AND se.section id = e.section id
AND st.student id = 102
AND c.course no = 25)
LOOP
v_enrollment_obj :=
enrollment obj type(rec.student id, rec.first name, rec.last name
,rec.course no, rec.section no, rec.enroll date

,rec.final grade);

DBMS_OUTPUT.PUT_ LINE ('student id: '||v_enrollment obj.student id);
DBMS_OUTPUT.PUT_LINE ('first name: '||v_enrollment obj.first name);
DBMS_OUTPUT.PUT_LINE ('last_name: '||v_enrollment obj.last name) ;
DBMS_OUTPUT.PUT_LINE ('course_no: '| |v_enrollment_obj.course no);
DBMS_OUTPUT.PUT_LINE ('section no: '||v_enrollment obj.section no);
DBMS_OUTPUT.PUT_LINE ('enroll date: '||v_enrollment_obj.enroll date);
DBMS_OUTPUT.PUT_LINE ('final grade: '||v_enrollment obj.final grade);
END LOOP;

END;

This version of the script produces output as shown:
student id: 102

first_name: Fred
last_name: Crocitto
course no: 25
section no: 2

enroll date: 01/30/2007 10:18
final grade:
student id: 102

first_name: Fred
last_name: Crocitto
course no: 25
section no: 5

enroll date: 01/30/2007 10:18
final grade: 92

Using Object Types with Collections

In this exercise, you will continue exploring object types and how these may be used with collections.
Answer the following questions:

a) Modify script ch23 12e.sql created in the previous exercise. In the new script, populate
associative array of objects. Use multiple student IDs for this exercise, i.e., student IDs 102,
103, and 104.

Answer: The script should look similar to the script below.

For Example ch23 13a.sql

DECLARE
TYPE enroll tab type IS TABLE OF enrollment obj type INDEX BY PLS INTEGER;

v_enrollment tab enroll tab type;

v_counter integer := 0;

BEGIN
FOR REC IN (SELECT st.student id, st.first name, st.last name, c.course no
,se.section no, e.enroll date, e.final grade
FROM student st, course c, section se, enrollment e
WHERE st.student id = e.student id
AND c.course no = se.course no
AND se.section id = e.section id
AND st.student id in (102, 103, 104))
LOOP
v_counter := v_counter + 1;
v_enrollment tab(v_counter) :=
enrollment obj type(rec.student id, rec.first name, rec.last name
,rec.course no, rec.section no, rec.enroll date

,rec.final grade);

DBMS OUTPUT.PUT LINE ('student id: '||
v_enrollment tab(v_counter).student id);
DBMS OUTPUT.PUT LINE ('first name: '||
v_enrollment_ tab(v_counter).first name);
DBMS OUTPUT.PUT LINE ('last name: "1
v_enrollment tab(v_counter).last name);
DBMS OUTPUT.PUT LINE ('course no: "1
v_enrollment tab(v_counter).course no);
DBMS OUTPUT.PUT LINE ('section no: '|]|
v_enrollment tab(v_counter).section no);
DBMS OUTPUT.PUT LINE ('enroll date: '|[|
v_enrollment tab(v_counter).enroll date);
DBMS OUTPUT.PUT LINE ('final grade: '||
v_enrollment tab (v_counter).final grade);
DBMS OUTPUT.PUT LINE ('-------—-—-—-—--—-- ')
END LOOP;
END;

The script above defines associative array of objects that is populated with the help of the cursor
FOR loop. Once a single row of the associative array has been initialized, it is displayed on the
screen.
Take a closer look at how each row of the associative array is initialized:
v_enrollment tab(v_counter) :=
enrollment obj type(rec.student id, rec.first name, rec.last name, rec.course no

,rec.section no, rec.enroll date, rec.final grade);

A row is referenced by a subscript which in this case is variable, v_counter. Since each row
represents an object instance, it is initialized by referencing the default constructor method
associated with the corresponding object type.

When run, the script produces output as shown:

student id: 102

first_name: Fred
last_name: Crocitto
course no: 25

section no: 2

enroll date: 01/30/2007 10:18

final grade:

student id: 102

first_name: Fred
last_name: Crocitto
course no: 25
section no: 5

enroll date: 01/30/2007 10:18
final grade: 92

student id: 103

first_name: J.
last name: Landry
course no: 20
section no: 2

enroll date: 01/30/2007 10:18

final grade:

student id: 104

first_name: Laetia
last name: Enison
course no: 20
section no: 2

enroll date: 01/30/2007 10:18

final grade:

Modify the script created above (ch23 13a.sql) so that table of objects is populated via the
BULK SELECT INTO statement.

Answer: The new version of the script should look similar to the following. Changes are
highlighted in bold.

For Example ch23 13b.sql

DECLARE
TYPE enroll tab type IS TABLE OF enrollment obj type INDEX BY PLS INTEGER;

v_enrollment tab enroll tab type;

BEGIN
SELECT
enrollment obj_type(st.student_id, st.first name, st.last name, c.course no
,se.section _no, e.enroll date, e.final grade)
BULK COLLECT INTO v_enrollment tab
FROM student st, course c, section se, enrollment e
WHERE st.student id = e.student id
AND c.course_no = se.course_no
AND se.section_id = e.section_id
AND st.student id in (102, 103, 104);

FOR i IN 1..v_enrollment_tab.COUNT

LOOP

DBMS_OUTPUT.PUT_LINE ('student id: '| |v_enrollment_ tab(i).student_id);
DBMS_OUTPUT.PUT_LINE ('first name: '||v_enrollment_ tab (i) .first_name) ;
DBMS_OUTPUT.PUT_LINE ('last_name: '| |v_enrollment tab(i).last name);
DBMS_OUTPUT.PUT_LINE ('course_no: '| |v_enrollment tab(i).course_no);
DBMS_OUTPUT.PUT_LINE ('section no: '| |v_enrollment_ tab (i) .section_no) ;
DBMS_OUTPUT.PUT_LINE ('enroll date: '||v_enrollment tab(i).enroll date) ;
DBMS_OUTPUT.PUT_LINE ('final grade: '||v_enrollment tab(i).final grade) ;
DBMS_OUTPUT.PUT LINE ('------------------ 'Y
END LOOP;

END;

In the version of the script, the cursor FOR LOOP has been replaced by the BULK SELECT
INTO statement. As a result, the cursor FOR LOOP is replaced by the numeric FOR LOOP to
display data on the screen. These changes eliminated the need for the variable v_counter that
was used to reference individual rows of the associative array.

When run, this version of the script produces output that is identical to the previous version.

Modify the script created above (ch23 13b.sql) so that data stored in the table of objects is
retrieved via the SELECT INTO statement before it is displayed.

Answer: As mentioned in Chapter 23, in order to select data from a table of objects, the
underlying table type must be either a nested table or a varray that is created and stored in the
database schema. This is accomplished by the following statement:

CREATE OR REPLACE TYPE enroll tab type AS TABLE OF enrollment obj type;

Once nested table type is created, the script is modified as follows. Changes are shown in bold
letters.

For Example ch23 13c.sql

DECLARE
v_enrollment tab enroll tab type;

BEGIN
SELECT
enrollment obj type(st.student id, st.first name, st.last name, c.course_no
,se.section no, e.enroll date, e.final grade)
BULK COLLECT INTO v_enrollment tab
FROM student st, course c, section se, enrollment e
WHERE st.student id = e.student id
AND c.course no = se.course no
AND se.section id = e.section id
AND st.student id in (102, 103, 104);

FOR rec IN (SELECT *
FROM TABLE (CAST(v_enrollment tab AS enroll tab type)))

LOOP
DBMS_OUTPUT.PUT_LINE ('student id: '| |rec.student_id);
DBMS_OUTPUT.PUT_LINE ('first name: '||rec.first name) ;
DBMS_OUTPUT.PUT_LINE ('last_name: '| |rec.last_name) ;
DBMS_OUTPUT.PUT_LINE ('course_no: '| |rec.course no) ;
DBMS_OUTPUT.PUT_LINE ('section no: '| |rec.section_no);

DBMS_OUTPUT.PUT_LINE ('enroll date: '||rec.enroll date);

DBMS_OUTPUT.PUT_LINE ('final grade: '||rec.final grade);
DBMS_OUTPUT.PUT_LINE ('---------—=-—--—-- ")
END LOOP;
END;

Note that in this version of the script, the numeric FOR LOOP is replaced by the cursor FOR
LOOP against the nested table of objects. Note that the DBMS OUTPUT.PUT LINE statements
are also changed so that they reference records returned by the cursor.

Lab 23.2 Object Type Methods

In this exercise, you will create various methods for the
enrollment obj type created in the previous Lab.

Watch Out!

Before proceeding with this exercise you need to drop nested table type created in the previous Lab as
follows:

DROP TYPE enroll tab type;

Recall that enrollment obj type was created as follows:

CREATE OR REPLACE TYPE ENROLLMENT OBJ TYPE AS OBJECT

(student id NUMBER(8)

,first name VARCHAR2 (25)

,last name VARCHAR2 (25)

,course no NUMBER (8)

,section no NUMBER(3)

,enroll date DATE

,final grade NUMBER(3));

Create the following methods for the enrollment obj type:

a) Create user-defined constructor method that populates object type attributes by selecting data
from the corresponding tables based on the incoming values for student ID, course and section
numbers.

Answer: The script should look similar to the following:

For Example ch23 14a.sql

CREATE OR REPLACE TYPE enrollment obj type AS OBJECT

(student id NUMBER(8),

first name VARCHAR2 (25),

last_name VARCHARZ2 (25),

course no NUMBER (8) ,

section no NUMBER(3),

enroll date DATE,

final grade NUMBER(3),

CONSTRUCTOR FUNCTION enrollment obj type (SELF IN OUT NOCOPY enrollment obj type
,in_student_id NUMBER
,in_course_no NUMBER
,in_section_no NUMBER)

RETURN SELF AS RESULT) ;

CREATE OR REPLACE TYPE BODY enrollment obj type AS

CONSTRUCTOR FUNCTION enrollment obj type (SELF IN OUT NOCOPY enrollment obj type
,in_student_id NUMBER
,in_course_no NUMBER
,in_section_no NUMBER)

RETURN SELF AS RESULT

IS
BEGIN
SELECT st.student id, st.first name, st.last name, c.course no,
se.section no, e.enroll date, e.final grade
INTO SELF.student id, SELF.first name, SELF.last name,
SELF.course no, SELF.section no, SELF.enroll date,
SELF.final grade
FROM student st, course c, section se, enrollment e
WHERE st.student id = e.student id
AND c.course no = se.course no
AND se.section id = e.section id
AND st.student id = in student id
AND c.course no = in course no
AND se.section no = in section no;
RETURN;
EXCEPTION
WHEN NO_ DATA FOUND
THEN
RETURN;
END;
END;
/

Take a closer look at the SELECT INTO statement of the constructor method above. This
statement is very similar to the SELECT INTO statement used in the previous Lab:

SELECT
enrollment obj type(st.student id, st.first name, st.last name, c.course no
,se.section no, e.enroll date, e.final grade)
INTO v_enrollment_obj
FROM student st, course c, section se, enrollment e
WHERE st.student id = e.student id
AND c.course no = se.course no
AND se.section id = e.section id
AND st.student id = 102
AND c.course no = 25

AND se.section no = 2;

Note that the SELECT INTO statement in the constructor body does not reference system-
defined default constructor. Instead, it uses built-in SELF parameter to reference individual
attributes of the current object instance.

Newly added constructor method may be tested as follows:

For Example ch23 15a.sql

DECLARE

v_enrollment obj enrollment obj type;

BEGIN

v_enrollment obj := enrollment obj type (102, 25, 2);

DBMS OUTPUT.PUT LINE ('student id: '||v_enrollment obj.student id);
DBMS_OUTPUT.PUT LINE ('first name: '||v_enrollment obj.first name);
DBMS OUTPUT.PUT LINE ('last name: '||v_enrollment obj.last name);
DBMS OUTPUT.PUT LINE ('course no: '||v_enrollment obj.course no);
DBMS OUTPUT.PUT LINE ('section no: '||v_enrollment obj.section no);
DBMS OUTPUT.PUT LINE ('enroll date: '||v_enrollment obj.enroll date);
DBMS_OUTPUT.PUT LINE ('final grade: '||v_enrollment obj.final grade);

END;

The test script produces output as shown:

student id: 102

first_name: Fred
last_name: Crocitto
course no: 25
section no: 2

enroll date: 01/30/2007 10:18

final grade:

Add member procedure method GET ENROLLMENT INFO that returns attribute values.

Answer: The member procedure method should look similar to the following. Newly added
method is shown in bold.

For Example ch23 14b.sql

CREATE OR REPLACE TYPE enrollment obj type AS OBJECT

(student id NUMBER(8),

first name VARCHAR2 (25),

last_name VARCHARZ2 (25),

course no NUMBER (8) ,

section no NUMBER(3),

enroll date DATE,

final grade NUMBER(3),

CONSTRUCTOR FUNCTION enrollment obj type (SELF IN OUT NOCOPY enrollment obj type
,in_student_id NUMBER
,in_course_no NUMBER
,in_section_no NUMBER)

RETURN SELF AS RESULT,

MEMBER PROCEDURE get enrollment_info (out student_id OUT NUMBER
,out_first name OUT VARCHAR2
,out_last name OUT VARCHAR2
,out_course_no OUT NUMBER
,out_section no OUT NUMBER
,out_enroll date OUT DATE

,out_final grade OUT NUMBER)) ;

CREATE OR REPLACE TYPE BODY enrollment obj type AS

CONSTRUCTOR FUNCTION enrollment obj type (SELF IN OUT NOCOPY enrollment obj type
,in_student_id NUMBER
,in_course_no NUMBER
,in_section_no NUMBER)
RETURN SELF AS RESULT
IS
BEGIN
SELECT st.student id, st.first name, st.last name, c.course no,
se.section no, e.enroll date, e.final grade
INTO SELF.student id, SELF.first name, SELF.last name,
SELF.course no, SELF.section no, SELF.enroll date,
SELF.final grade
FROM student st, course c, section se, enrollment e
WHERE st.student id = e.student id
AND c.course no = se.course no
AND se.section id = e.section id
AND st.student id = in student id
AND c.course no = in course no

AND se.section no = in section no;

RETURN;
EXCEPTION
WHEN NO_ DATA FOUND
THEN
RETURN;
END;

MEMBER PROCEDURE get enrollment_info (out student_id OUT NUMBER
,out_first name OUT VARCHAR2
,out_last name OUT VARCHAR2
,out_course_no OUT NUMBER
,out_section no OUT NUMBER
,out_enroll date OUT DATE
,out_final grade OUT NUMBER)

Is

BEGIN
out_student _id := student id;
out_first name := first name;
out_last_name := last_name;
out_course_no := course_no;
out_section no := section no;
out_enroll date := enroll date;
out_final grade := final grade;

END;

END;

/

c) Add static method to the enrollment obj type object type that displays values of
individual attributes.

Answer: The script should look similar to the following script. Changes are shown in bold.

For Example ch23 14c.sql

CREATE OR REPLACE TYPE enrollment obj type AS OBJECT

(student id NUMBER(8),

first name VARCHAR2 (25),

last_name VARCHARZ2 (25),

course no NUMBER (8) ,

section no NUMBER(3),

enroll date DATE,

final grade NUMBER(3),

CONSTRUCTOR FUNCTION enrollment obj type (SELF IN OUT NOCOPY enrollment obj type
,in_student_id NUMBER
,in_course_no NUMBER
,in_section_no NUMBER)

RETURN SELF AS RESULT,

MEMBER PROCEDURE get enrollment info (out student id OUT NUMBER
,out first name OUT VARCHAR2
;out_last name OUT VARCHAR2
,out _course no OUT NUMBER
,out section no OUT NUMBER
;out_enroll date OUT DATE
,out final grade OUT NUMBER),

STATIC PROCEDURE display enrollment_info (enrollment obj enrollment obj_type));

CREATE OR REPLACE TYPE BODY enrollment obj type AS

CONSTRUCTOR FUNCTION enrollment obj type (SELF IN OUT NOCOPY enrollment obj type
,in_student_id NUMBER
,in_course_no NUMBER
,in_section_no NUMBER)
RETURN SELF AS RESULT
IS
BEGIN
SELECT st.student id, st.first name, st.last name, c.course no,
se.section no, e.enroll date, e.final grade
INTO SELF.student id, SELF.first name, SELF.last name,
SELF.course no, SELF.section no, SELF.enroll date,
SELF.final grade
FROM student st, course c, section se, enrollment e
WHERE st.student id = e.student id
AND c.course no = se.course no
AND se.section id = e.section id
AND st.student id = in student id
AND c.course no = in course no

AND se.section no = in section no;

RETURN;

EXCEPTION

WHEN NO_ DATA FOUND

THEN
RETURN;

END;

MEMBER PROCEDURE get enrollment info (out student id OUT NUMBER
,out first name OUT VARCHAR2
,;out _last name OUT VARCHAR2
,out _course no OUT NUMBER
,out _section no OUT NUMBER
,;out_enroll date OUT DATE
,out final grade OUT NUMBER)
IS
BEGIN
out student id student id;
out first name first name;
out last name last name;
out_course_no course_noj;
out_section no section no;
out enroll date enroll date;
out final grade final grade;
END;

STATIC PROCEDURE display enrollment info (enrollment obj enrollment obj_type)

Is

BEGIN
DBMS_OUTPUT.PUT_ LINE ('student id: '||enrollment obj.student_id);
DBMS_OUTPUT.PUT_LINE ('first name: '| |lenrollment obj.first_name) ;
DBMS_OUTPUT.PUT_LINE ('last_name: '| |lenrollment obj.last_name) ;
DBMS_OUTPUT.PUT_LINE ('course_no: '| |lenrollment obj.course_no) ;
DBMS_OUTPUT.PUT_ LINE ('section no: '||enrollment obj.section_no) ;
DBMS_OUTPUT.PUT_LINE ('enroll date: '||enrollment obj.enroll date);
DBMS_OUTPUT.PUT_LINE ('final grade: '||enrollment obj.final grade);

END;

END;

/

Recall that static methods are created for actions that do not need to access data associated with
a particular object instance, and as such may not reference default parameter SELF. Then, in
order to display attribute data associated with some object instance, the instance itself is passed
in to the method.

The newly created method may be tested as follows:

For Example ch23 15b.sql

DECLARE

v_enrollment obj enrollment obj type;
BEGIN

v_enrollment obj := 25,

enrollment obj type (102, 2);

d)

enrollment obj type.display enrollment info (v_enrollment obj);
END;

Note the invocation call to the static method. The call to the static method is qualified with
object type name and not with object type instance name.
The test script produces output as shown:

student id: 102

first_name: Fred
last_name: Crocitto
course no: 25
section no: 2

enroll date: 01/30/2007 10:18

final grade:

Add method to the object type entollment obj type so that its instances may be

compared and/or sorted. The object instances should be compared based on the values of
course no, section no,and student id attributes.

Answer: Recall that in order to compare and sort object instances their corresponding type must
have either map or order methods. For the purpose of this exercise, map method is added to the
type definition as follows. Newly added method is shown in bold.

For Example ch23 14d.sql

CREATE OR REPLACE TYPE enrollment obj type AS OBJECT

(student id NUMBER(8),

first name VARCHAR2 (25),

last_name VARCHARZ2 (25),

course no NUMBER (8) ,

section no NUMBER(3),

enroll date DATE,

final grade NUMBER(3),

CONSTRUCTOR FUNCTION enrollment obj type (SELF IN OUT NOCOPY enrollment obj type
,in_student_id NUMBER
,in_course_no NUMBER
,in_section_no NUMBER)

RETURN SELF AS RESULT,

MEMBER PROCEDURE get enrollment info (out student id OUT NUMBER
,out first name OUT VARCHAR2
;out_last name OUT VARCHAR2
,out _course no OUT NUMBER
,out section no OUT NUMBER
;out_enroll date OUT DATE
,out final grade OUT NUMBER),

STATIC PROCEDURE display enrollment info (enrollment obj enrollment obj type),

MAP MEMBER FUNCTION enrollment RETURN NUMBER) ;

CREATE OR REPLACE TYPE BODY enrollment obj type AS
CONSTRUCTOR FUNCTION enrollment obj type (SELF IN OUT NOCOPY enrollment obj type
,in_student_id NUMBER

,in_course_no NUMBER

,in_section_no NUMBER)

RETURN SELF AS RESULT

IS
BEGIN
SELECT st.student id, st.first name, st.last name, c.course no,
se.section no, e.enroll date, e.final grade
INTO SELF.student id, SELF.first name, SELF.last name,
SELF.course no, SELF.section no, SELF.enroll date,
SELF.final grade
FROM student st, course c, section se, enrollment e
WHERE st.student id = e.student id
AND c.course no = se.course no
AND se.section id = e.section id
AND st.student id = in student id
AND c.course no = in course no
AND se.section no = in section no;
RETURN;
EXCEPTION
WHEN NO_ DATA FOUND
THEN
RETURN;
END;

MEMBER PROCEDURE get enrollment info (out student id OUT NUMBER
,out first name OUT VARCHAR2
;out_last name OUT VARCHAR2
,out_course no OUT NUMBER
,out section no OUT NUMBER
;out_enroll date OUT DATE
,out final grade OUT NUMBER)

IS

BEGIN

out_student id :=

out_first_name
out_last_name
out_course no
out_section_no
out enroll date

out final grade

student id;
first name;
last name;
course_noj;
section no;
enroll date;

final grade;

END;

STATIC PROCEDURE display enrollment info
IS
BEGIN
DBMS OUTPUT.PUT LINE
DBMS OUTPUT.PUT LINE

('student id:

('"first name:

(enrollment obj

'|lenrollment obj

'|lenrollment obj

enrollment obj type)

.student _id);

.first name);

DBMS OUTPUT.PUT LINE last name: '|lenrollment obj.last name);

(
DBMS OUTPUT.PUT LINE ('course no: '| lenrollment obj.course no);
DBMS OUTPUT.PUT LINE ('section no: '||enrollment obj.section no);
DBMS OUTPUT.PUT LINE ('enroll date: '||enrollment obj.enroll date);
DBMS_OUTPUT.PUT LINE ('final grade: '||enrollment obj.final grade);

END;

MAP MEMBER FUNCTION enrollment RETURN NUMBER
Is
BEGIN
RETURN (course no + section_no + student_id);
END;

END;
/

The newly added function adds values stored in the course no, section no, and
student id attributes. The resulting value may now be used to compare different object
instances as illustrated below:

For Example ch23 15c.sql

DECLARE
v_enrollment objl enrollment obj type;

v_enrollment obj2 enrollment obj type;

BEGIN
v_enrollment objl := enrollment obj type (102, 25, 2);
v_enrollment obj2 := enrollment obj type (104, 20, 2);

enrollment obj type.display enrollment info (v_enrollment objl);
DBMS_OUTPUT.PUT LINE ('-----——-——-————————- ") ;

enrollment obj type.display enrollment info (v_enrollment obj2);

IF v_enrollment objl > v_enrollment obj2

THEN

DBMS OUTPUT.PUT LINE ('Instance 1 is greater than instance 2');
ELSE

DBMS OUTPUT.PUT LINE ('Instance 1 is not greater than instance 2');
END IF;

END;

When run, the test script produces the following output:

student id: 102

first_name: Fred
last_name: Crocitto
course no: 25
section no: 2

enroll date: 01/30/2007 10:18

final grade:

student id: 104

first_name: Laetia

last name: Enison

course no: 20

section no: 2

enroll date: 01/30/2007 10:18
final grade:

Instance 1 is greater than instance 2

Try It Yourself

The projects in this section are meant to have you use all of the skills that you have acquired
throughout this chapter. Here are some exercises that will help you test the depth of your
understanding.

1) Create object type student obj type with attributes derived from the STUDENT table.
Answer: The object type should look similar to the following:

For Example ch23 16a.sq!

CREATE OR REPLACE TYPE student obj type AS OBJECT

(student_id NUMBER (8) ,
salutation VARCHARZ2 (5) ,
first name VARCHAR2 (25),
last_name VARCHAR2 (25) ,
street address VARCHARZ2 (50),
zip VARCHAR2 (5) ,
phone VARCHAR2 (15),
employer VARCHARZ2 (50),
registration date DATE,

created by VARCHAR2 (30),
created date DATE,
modified by VARCHARZ2 (30),
modified date DATE) ;

Once this object type is created it can be used as follows:

For Example ch23 17a.5q!

DECLARE
v_student obj student obj type;
BEGIN
-- Use default contructor method to initialize student object
SELECT
student obj type(student id, salutation, first name, last name
,street address, zip, phone, employer, registration date
,null, null, null, null)
INTO v_student_obj
FROM student
WHERE student id = 103;

DBMS OUTPUT.PUT LINE ('Student ID: ' | |v_student obj.student id);
DBMS OUTPUT.PUT LINE ('Salutation: ' | |v_student obj.salutation);

DBMS OUTPUT.PUT LINE
DBMS OUTPUT.PUT LINE

First Name: | |v_student obj.first name);

'Last Name: ' | |v_student obj.last name);

('
(
DBMS OUTPUT.PUT LINE ('Street Address: ' | |v_student obj.street address);
DBMS_OUTPUT.PUT LINE ('Zip: ' | |v_student_obj. zip);
DBMS OUTPUT.PUT LINE ('Phone: ' | |v_student obj.phone);
DBMS OUTPUT.PUT LINE ('Employer: ' | |v_student obj.employer);
DBMS OUTPUT.PUT LINE ('Registration Date: '||v_student obj.registration date);

END;

When run, the test script produces the following output:

Student ID: 103

Salutation: Ms.

First Name: J.

Last Name: Landry

Street Address: 7435 Boulevard East #45
Zip: 07047

Phone: 201-555-5555

Employer: Albert Hildegard Co.
Registration Date: 01/22/2007 00:00

Add user-defined constructor function, member procedure, static procedure, and order function
methods. You should determine on your own how these methods should be structured.

Answer: Newly modified student object should be similar to the following:

For Example ch23 16b.sql

CREATE OR REPLACE TYPE student obj type AS OBJECT

(student_id NUMBER (8) ,
salutation VARCHARZ2 (5) ,
first name VARCHARZ2 (25),
last_name VARCHAR2 (25) ,
street address VARCHARZ2 (50),
zip VARCHAR2 (5) ,
phone VARCHARZ2 (15),
employer VARCHARZ2 (50) ,
registration date DATE,

created by VARCHARZ2 (30),
created date DATE,
modified by VARCHARZ2 (30),
modified date DATE,

CONSTRUCTOR FUNCTION student obj type
(SELF IN OUT NOCOPY STUDENT OBJ TYPE
,in_student id IN NUMBER, in salutation IN VARCHAR2
,in _first name IN VARCHAR2, in last name 1IN VARCHAR2

,in _street addr IN VARCHAR2, in zip IN VARCHAR2
,in_phone IN VARCHAR2, in employer IN VARCHARZ2
,in_reg date IN DATE, in cr by IN VARCHARZ2
,in_cr date IN DATE, in mod by IN VARCHAR2
,in_mod_date IN DATE)

RETURN SELF AS RESULT,

CONSTRUCTOR FUNCTION student obj type (SELF IN OUT NOCOPY STUDENT OBJ TYPE
,in_student_id IN NUMBER)
RETURN SELF AS RESULT,

MEMBER PROCEDURE getistudentiinfo
(student id OUT NUMBER, salutation OUT VARCHAR2
,first name OUT VARCHAR2, last name OUT VARCHAR2

,street addr OUT VARCHARZ2, zip OUT VARCHAR2
,phone OUT VARCHAR2, employer OUT VARCHAR2
,reg_date OUT DATE, cr_by OUT VARCHAR2
,cr_date OUT DATE, mod_ by OUT VARCHAR2
,mod_date OUT DATE),

STATIC PROCEDURE display student info (student obj IN STUDENT OBJ TYPE),

ORDER MEMBER FUNCTION student (student obj STUDENT OBJ TYPE)
RETURN INTEGER) ;

CREATE OR REPLACE TYPE BODY student obj type AS

CONSTRUCTOR FUNCTION student obj type
(SELF IN OUT NOCOPY STUDENT OBJ TYPE
,in_student id IN NUMBER, in salutation IN VARCHAR2
,in first name IN VARCHAR2, in last name 1IN VARCHAR2

,in _street addr IN VARCHAR2, in zip IN VARCHAR2
,in_phone IN VARCHAR2, in employer IN VARCHARZ2
,in_reg date IN DATE, in cr by IN VARCHARZ2
,in_cr date IN DATE, in mod by IN VARCHARZ2
,in_mod_date IN DATE)

RETURN SELF AS RESULT

IS

BEGIN
-- Validate incoming value of =zip
SELECT zip

INTO SELF.zip
FROM zipcode
WHERE zip = in zip;

-- Check incoming value of student ID
-- If it is not populated, get it from the sequence
IF in student id IS NULL

THEN

student id := STUDENT ID SEQ.NEXTVAL;
ELSE

student id := in student id;
END IF;
salutation := in_salutation;
first name := in first name;
last_name := in_last_name;
street address := in street addr;

phone := in phone;

employer := in employer;

registration date := in reg date;

IF in_cr_by IS NULL THEN created_by := USER;
ELSE created by := in cr by;
END IF;
IF in cr date IS NULL THEN created date := SYSDATE;
ELSE created date := in cr date;
END IF;
IF in mod by IS NULL THEN modified by := USER;
ELSE modified by := in mod by;
END IF;
IF in mod date IS NULL THEN modified date := SYSDATE;
ELSE modified date := in mod date;
END IF;
RETURN;
EXCEPTION
WHEN NO_ DATA FOUND
THEN
RETURN;
END;

CONSTRUCTOR FUNCTION student obj type (SELF IN OUT NOCOPY STUDENT OBJ TYPE
;in_student_id IN NUMBER)
RETURN SELF AS RESULT
IS
BEGIN
SELECT student id, salutation, first name, last name, street address, zip
,phone, employer, registration date, created by, created date
,modified by, modified date
INTO SELF.student id, SELF.salutation, SELF.first name,
SELF.last name, SELF.street address, SELF.zip,
SELF.phone, SELF.employer, SELF.registration date,
SELF.created by, SELF.created date,
SELF.modified by, SELF.modified date
FROM student
WHERE student id = in student id;

RETURN;
EXCEPTION
WHEN NO_ DATA FOUND
THEN
RETURN;
END;

MEMBER PROCEDURE get student info
(student id OUT NUMBER, salutation OUT VARCHAR2
,first name OUT VARCHAR2, last name OUT VARCHAR2
,street addr OUT VARCHARZ2, zip OUT VARCHAR2
,phone OUT VARCHAR2, employer OUT VARCHAR2

,reg_date OUT DATE, cr_by OUT VARCHAR2

,cr_date OUT DATE, mod_ by OUT VARCHAR2
,mod_date OUT DATE)
IS
BEGIN
student id := SELF.student id;
salutation := SELF.salutation;
first name := SELF.first name;
last_name := SELF.last_name;
street_addr := SELF.street_address;
zip := SELF.zip;
phone := SELF.phone;
employer := SELF.employer;
reg_date := SELF.registration_date;
cr_by := SELF.created_by;
cr_date := SELF.created_date;
mod_by := SELF.modified by;
mod_date := SELF.modified date;
END;

STATIC PROCEDURE display student info (student obj IN STUDENT OBJ TYPE)
IS
BEGIN

DBMS OUTPUT.PUT LINE ('Student ID: ' | |student obj.student id);
DBMS OUTPUT.PUT LINE ('Salutation: ' | |student obj.salutation);
DBMS OUTPUT.PUT LINE ('First Name: ' | |student obj.first name);
DBMS OUTPUT.PUT LINE ('Last Name: ' | |student obj.last name);

(
(
(
(
DBMS OUTPUT.PUT LINE ('Street Address: ' | |student obj.street address);
(
(
(
(

DBMS OUTPUT.PUT LINE ('Zip: ' | |student _obj.zip);

DBMS OUTPUT.PUT LINE ('Phone: ' | |student obj.phone);

DBMS OUTPUT.PUT LINE ('Employer: ' | |student obj.employer);

DBMS OUTPUT.PUT LINE ('Registration Date: '||student obj.registration date);

END;

ORDER MEMBER FUNCTION student (student obj STUDENT OBJ TYPE)

RETURN INTEGER

IS

BEGIN
IF student id < student obj.student id THEN RETURN -1;
ELSIF student id = student obj.student id THEN RETURN O0;
ELSIF student_id > student_obj.student_id THEN RETURN 1;
END IF;

END;

END;
/

The student object type created above has two overloaded constructor functions, member
procedure, static procedure, and order function methods.

Both constructor functions have the same name as the object type. The first constructor
function evaluates incoming values of student ID, ZIP code, created and modified users and
dates. Specifically, it checks if incoming student ID is null then it populates it from the
STUDENT ID SEQ ifitis. It also validates that the incoming value of ZIP exists in the

ZIPCODE table. Finally, it checks if incoming values of created and modified user and date are

null. If any of these incoming values are null, the constructor function populates corresponding
attributes with the default values based on system functions USER and SYSDATE. The second
constructor function initialize object instance based on the incoming value of student ID via the
SELECT INTO statement.

The member procedure GET STUDENT INFO populates out parameters with corresponding
values of object attributes. The static procedure DISPLAY STUDENT INFO displays values
of the incoming student object. Recall that static methods do not have access to the data
associated with a particular object type instance, and as a result, they may not reference default
parameter SELF. The order member function compares two instances of the student object

type based on values of the student 1id attribute.
The newly created object type may be tested as follows:

For Example ch23 17b.sql

DECLARE
v_student objl student obj type;
v_student obj2 student obj type;

v_result integer;

BEGIN

-- Populate student objects via user-defined constructor methods

v_student objl := student obj type (in_student id => NULL
,in_salutation => 'Mr.'
,in first name => 'John'
,in_last name => 'Smith'
,in_street_addr => '123 Main Street'
,in zip => '00914"
,in_phone => '555-555-5555"
,in_employer => 'ABC Company'
,in_reg_date => TRUNC (sysdate)
,in_cr_by => NULL
,in_cr_date => NULL
,in_mod by => NULL
,in_mod date => NULL) ;

v_student obj2 := student obj type(103);

-- Display student information for both objects
student obj type.display student info (v_student objl);
DBMS OUTPUT.PUT LINE (' ')

student obj type.display student info (v_student obj2);
DBMS OUTPUT.PUT LINE (' ")

-- Compare student objects
v_result := v_student objl.student(v_student obj2);
DBMS OUTPUT.PUT LINE ('The result of comparison is '||v_result);

IF v_result =1
THEN
DBMS OUTPUT.PUT LINE ('v_student objl is greater than v_student obj2');

ELSIF v_result = 0
THEN

DBMS OUTPUT.PUT LINE ('v_student objl is equal to v_student obj2');

ELSIF v_result = -1
THEN

DBMS OUTPUT.PUT LINE ('v_student objl is less than v_student obj2');
END IF;

END;

The test script produces output as follows:

Student ID: 414

Salutation: Mr.

First Name: John

Last Name: Smith

Street Address: 123 Main Street
Zip: 00914

Phone: 555-555-5555

Employer: ABC Company

Registration Date: 11/20/2014 00:00

Student ID: 103

Salutation: Ms.

First Name: J.

Last Name: Landry

Street Address: 7435 Boulevard East #45
Zip: 07047

Phone: 201-555-5555

Employer: Albert Hildegard Co.
Registration Date: 01/22/2007 00:00

The result of comparison is 1

v_student_objl is greater than v_student_obj2

