Exercises for
Chapter 7: Iterative
Control: Part |l

The Labs below provide you with exercises and suggested answers with discussion related to how
those answers resulted. The most important thing to realize is whether your answer works. You should
figure out the implications of the answers here and what the effects are from any different answers you
may come up with.

Lab 7.1 CONTINUE Statement

Answer the following questions:

Using CONTINUE Statement

The script for this exercise is based on the script ch06_7a.sql used in the previous chapter. The
original script uses the EXIT condition to terminate a simple loop, and a special variable,
v_counter, which keeps count of the loop iterations. With each iteration of the loop, the value of
v_counter is decremented and displayed on the screen.

The new version of the script used in this exercise adds the CONT INUE condition which affects the
output produced by the script.

Create the following PL/SQL script:

For Example ch07 Sa.sql

DECLARE
v_counter BINARY INTEGER := 5;
BEGIN
LOOP
-- decrement loop counter by one
v_counter := v_counter - 1;
DBMS OUTPUT.PUT LINE

('Before continue condition, v_counter = '||v_counter);

-- 1f CONTINUE condition yields TRUE pass control to the first
-- executable statement of the loop
IF v_counter > 3
THEN
CONTINUE;
END IF;

DBMS OUTPUT.PUT LINE

('After continue condition, v _counter = '||v_counter);

-- 1f EXIT condition yields TRUE exit the loop
IF v_counter = 0
THEN
EXIT;
END IF;

END LOOP;

-- control resumes here

DBMS OUTPUT.PUT LINE ('Done..');
END;

Execute the script, and then answer the following questions.

a) What output was generated by the script?

Answer: The output should look like the following:

Before continue condition, v_counter = 4
Before continue condition, v_counter = 3
After continue condition, v_counter = 3

Before continue condition, v_counter = 2
After continue condition, v_counter = 2

Before continue condition, v_counter = 1
After continue condition, v_counter =1

Before continue condition, v_counter = 0
After continue condition, v_counter = 0

Done...

b) Explain the output produced by the script?

Answer: For the first iteration of the loop, the value of the variable v_counter changes from
5 to 4, and the CONTINUE condition
IF v_counter > 3
THEN

CONTINUE;
END IF;
evaluates to TRUE. As a result, the control of the execution is passed back to the first executable
statement inside the body of the loop. Therefore, only first DBMS OUTPUT.PUT LINE
statement is executed as shown below

Before continue condition, v_counter = 4
In other words, for the first iteration of the loop, only part of the loop prior to the CONTINUE

statement is executed.
For the next four iterations of the loop, the CONT INUE condition evaluates to FALSE, and

the entire body of the loop is executed. This is further illustrated by the output below:

Before continue condition, v_counter = 3
After continue condition, v_counter = 3
Before continue condition, v_counter = 2
After continue condition, v_counter = 2
Before continue condition, v_counter = 1
After continue condition, v_counter =1

Before continue condition, v_counter = 0

c)

d)

After continue condition, v_counter = 0
In this case, both DBMS OUTPUT.PUT LINE statements are executed, and the values of the
v_counter variable before and after the CONTINUE condition are displayed in the Dbms
Output window.

Note that for the fifth and last iteration of the loop, the EXIT condition evaluates to TRUE
and the loop terminates, and the last DBMS OUTPUT.PUT_ LINE statement is executed as
well, so ‘Done...” is displayed in the Dbms Output window.

How many times was the loop executed?

Answer: The loop was executed five times as the number of the loop iterations is controlled by
the EXIT condition, and not by the CONT INUE condition.

Explain how each iteration of the loop will be affected if the CONTINUE condition is changed
to the

i) v_counter = 3?
ii) v_counter < 3?
Answer:

1) Changing the CONTINUE condition to the

IF v_counter = 3
THEN

CONTINUE;
END IF;

affects the third iteration of the loop only.

As long as the value of the variable v_counter is not equal to 3, the CONTINUE condition
will evaluate to FALSE. As a result, for the first, third, fourth, and fifth iterations of the loop,
all statements inside the body of the loop will be executed. For the second iteration of the loop
(highlighted in bold), the CONT INUE condition will evaluate to TRUE causing partial execution
of the loop. Thus, the control of the execution will be passed to the first statement inside the
body of the loop as illustrated by the output below:

Before continue condition, v_counter = 4

After continue condition, v_counter = 4

Before continue condition, v_counter = 3
2

Before continue condition, v_counter =

After continue condition, v_counter = 2
Before continue condition, v_counter = 1
After continue condition, v_counter =1
Before continue condition, v_counter = 0
After continue condition, v_counter = 0
Done...

ii) Changing the CONTINUE condition to the

IF v_counter < 3
THEN

CONTINUE;
END IF;

affects all iterations of the loop after the third iteration.
As long as the value of v_counter is less than or equal to 3, the CONTINUE condition will
evaluate to TRUE. As a result, for the first two iterations of the loop, all statements inside the

body of the loop will be executed. Starting with the third iteration of the loop, the CONTINUE
condition will evaluate to TRUE causing partial execution. Note that due to this partial
execution, the EXIT condition will never be reached causing this loop to become infinite.

How would you modify the script so that the CONTINUE condition v_counter < 3 does not
cause infinite loop.

Answer: The script should look similar to the following script. Changes are shown in bold.

For Example ch07 5b.sql

DECLARE
v_counter BINARY INTEGER := 5;
BEGIN
LOOP
-- decrement loop counter by one
v_counter := v_counter - 1;

-- if EXIT condition yields TRUE exit the loop
IF v_counter = 0
THEN
EXIT;
END IF;

DBMS OUTPUT.PUT_ LINE

('Before continue condition, v_counter = '||v_counter);

-- 1f CONTINUE condition yields TRUE pass control to the first
-- executable statement of the loop
IF v_counter < 3
THEN
CONTINUE;
END IF;

DBMS OUTPUT.PUT LINE
('After continue condition, v _counter = '||v_counter);
END LOOP;
-- control resumes here
DBMS OUTPUT.PUT LINE ('Done..');
END;

In this version of the script, the EXIT condition is moved to the top of the loop, and the
placement of the CONT INUE condition remains as is. Note that as long as the EXIT condition is
placed prior to the CONTINUE condition, the loop will terminate. In other words, the EXIT
condition can be placed anywhere in the loop as long as it is placed before the CONTINUE
condition. This version of the script produces the following output.

Before continue condition, v_counter = 4
After continue condition, v_counter = 4
Before continue condition, v_counter = 3
After continue condition, v_counter = 3
Before continue condition, v_counter = 2
Before continue condition, v_counter = 1

Done...

Using CONTINUE WHEN Statement

In this exercise, you will use the CONTINUE WHEN condition with the numeric FOR loop to calculate

to the sum of even integers between 1 and 10.
Create the following PL/SQL script:

For Example ch07 6a.sql

DECLARE
v_sum NUMBER := 0;
BEGIN
FOR v_counter in 1..10
LOOP
-- if v_counter is odd, pass control to the top of the loop
CONTINUE WHEN mod(v_counter, 2) != 0;
Vv_sum := v_sum + Vv_counter;
DBMS_OUTPUT.PUT LINE ('Current sum is: '||v_sum);
END LOOP;

-- control resumes here
DBMS OUTPUT.PUT LINE ('Final sum is: 'I'lv_sum);
END;

Execute the script, and then answer the following questions:

a) What output was generated by the script?

Answer: The output should look similar to the following:

Current sum is: 2
Current sum is: 6
Current sum is: 12
Current sum is: 20
Current sum is: 30

Final sum is: 30

For each iteration of the loop, the value of the variable v_counter is evaluated by the
CONTINUE WHEN statement. When the value of the variable v_counter is even, the
CONTINUE WHEN condition yields FALSE, and the current value of sum is calculated and

b)

c)

displayed in the Dbms Output window. When the value of the variable v_counter is odd, the
CONTINUE WHEN condition yields TRUE, and the control of the execution is passed to the top
of the loop causing partial execution of the loop. In this case, the statements following the WHEN
CONTINUE condition are not executed at all. After the loop has terminated, the final sum is
displayed in the Dbms Output window.

How many times was the loop executed?

Answer: The loop was executed 10 times because the number of iterations was controlled by
the lower and upper limits of the loop which are 1 and 10 respectively.

How many iterations of the loop were partial iterations?

d)

Answer: Five iterations of the loop were partial iterations. This is because the CONTINUE
WHEN condition evaluates to TRUE for the odd values of the variable v_counter which are 1,
3,5,7,and 9. These values of the v_counter correspond to the iterations of the loop. In
other words, the first, third, fifth, seventh, and ninth iterations of the loop are partial iterations
because for these iterations the CONTINUE WHEN condition yields TRUE.

How would you change the script to calculate the sum of odd integers between 1 and 10?

Answer: The script should look similar to the following script. Changes are highlighted in bold.
Note that only CONTINUE WHEN condition is modified, the rest of script remains unchanged.

For Example ch07 6b.sql

DECLARE
v_sum NUMBER := 0;
BEGIN
FOR v_counter in 1..10
LOOP
-- if v_counter is even, pass control to the top of the loop
CONTINUE WHEN mod (v_counter, 2) = 0;

v_sum := v_sum + v_counter;
DBMS OUTPUT.PUT LINE ('Current sum is: '||[v_sum);
END LOOP;

-- control resumes here
DBMS OUTPUT.PUT LINE ('Final sum is: 'I'lv_sum);
END;

This version of the script produces the following the output:

Current sum is: 1

Current sum is: 4

Current sum is: 9

Current sum is: 16

Current sum is: 25

Final sum is: 25

In this version of the script, the CONTINUE WHEN condition yields FALSE for the odd values
of the variable v_counter causing the current value of the variable v_sum to be calculated
and displayed in the Dbms Output window. For the even values of the variable v_counter,
the CONTINUE WHEN condition evaluates to TRUE causing the control of the execution to be
passed to the top of the loop.

Lab 7.2 Nested Loops

In this exercise, you will use nested numeric FOR loops. Create the following PL/SQL script:

For Example ch07 7a.sql

DECLARE

v_test NUMBER := 0;

BEGIN

<<outer_loop>>

FOR i1 IN 1..3

LOOP
DBMS OUTPUT.PUT LINE ('Outer Loop');
DBMS OUTPUT.PUT LINE('i = '|[1i);
DBMS OUTPUT.PUT LINE('v_test = '||v_test);
v_test := v_test + 1;

<<inner_loop>>
FOR j IN 1..2
LOOP
DBMS OUTPUT.PUT LINE

Inner Loop');

(
DBMS OUTPUT.PUT LINE('j = "'[|[3);
DBMS OUTPUT.PUT LINE('i = '|[1i);
DBMS_OUTPUT.PUT_LINE ('v_test = '||v_test);

END LOOP inner loop;
END LOOP outer loop;
END;

Execute the script, and then answer the following questions:
a) What output was generated by the script?

Answer: The output should look like the following:

Outer Loop

i=1
v_test =0
Inner Loop
j =1
i=1
v_test =1
Inner Loop
j =2
i=1
v_test =1
Outer Loop
i=2
v_test =1
Inner Loop
j =1
i=2
v_test = 2
Inner Loop
j =2
i=2
v_test = 2
Outer Loop
i=3
v_test = 2
Inner Loop
j =1
i=3
v_test = 3

Inner Loop

b)

c)

d)

e)

j =2
i=3
v_test = 3
Every time the outer loop is run, the value of the loop counter, 1, is incremented by 1 implicitly
and displayed in the Dbms Output window. In addition, the value of the variable v_test is
displayed and then incremented by 1, as well. Next, the control of the execution is passed to the
inner loop.

Every time the inner loop is run, the value of the inner loop counter, J, is incremented by 1
and displayed in the Dbms Output window, along with the value of the outer loop counter, 1,
and the variable v_test.

How many times was the outer loop executed?

Answer: The outer loop was executed three times, according to the range specified by the lower
limit and the upper limit of the loop. In this example, the lower limit is equal to 1, and the upper
limit is equal to 3.

How many times was the inner loop executed?

Answer: The inner loop was executed six times. For each iteration of the outer loop, the inner
loop was executed twice. However, the outer loop was executed three times. Overall, the inner
loop was executed six times.

What are the values of the loop counters, i and j, after both loops terminate?

Answer: After both loops terminate, both loop counters are undefined and can hold no values.
As mentioned earlier, the loop counter ceases to exist once the numeric FOR loop is terminated.

Rewrite this script using the REVERSE option for both loops. How many times will each loop
be executed in this case?

Answer: The script should be similar to the script below. Changes are shown in bold.
The outer loop will execute three times, and the inner loop will execute six times.

For Example ch07 7b.sql

DECLARE

v_test NUMBER := 0;
BEGIN

<<outer_loop>>

FOR i IN REVERSE 1..3

LOOP
DBMS OUTPUT.PUT LINE ('Outer Loop');
DBMS OUTPUT.PUT LINE('i = '|[1i);
DBMS OUTPUT.PUT LINE('v_test = '||v_test);
v_test := v_test + 1;

<<inner_loop>>
FOR j IN REVERSE 1..2

LOOP
DBMS OUTPUT.PUT LINE ('Inner Loop');
DBMS_OUTPUT.PUT_LINE('j = "[[]J);

DBMS OUTPUT.PUT LINE('i = '|[1i);

DBMS OUTPUT.PUT LINE('v_test = '||v_test);
END LOOP inner loop;
END LOOP outer loop;
END;

This version of the script produces output as follows:

Outer Loop

i=3
v_test =0
Inner Loop
j =2
i=3
v_test =1

Inner Loop

j =1
i=3
v_test =1
Outer Loop
i=2
v_test =1
Inner Loop
j =2
i=2
v_test = 2

Inner Loop

j =1
i=2
v_test = 2
Outer Loop
i=1
v_test = 2
Inner Loop
j =2
i=1
v_test = 3
Inner Loop
j =1
i=1
v_test = 3

Notice that the output produced by this version of the script has changed significantly from the
output produced by the previous version. The values of the loop counters are decremented
because the REVERSE option is used. However, the value of the variable v_test was not
affected by using the REVERSE option.

Try It Yourself

The projects in this section are meant to have you use all of the skills that you have acquired
throughout this chapter. Here are some exercises that will help you test the depth of your
understanding.

1) Rewrite script ch06 10a.sql to calculate factorial of even integers only between 1 and 10. The
script should use CONTINUE or CONTINUE WHEN statement.

2)

Answer: Recall the script ch06_10a.sql:

For Example ch06 10a.sql

DECLARE
v_factorial NUMBER := 1;
BEGIN
FOR v_counter IN 1..10
LOOP
v_factorial := v_factorial * v_counter;

END LOOP;
-— control resumes here

DBMS OUTPUT.PUT LINE ('Factorial of ten is: '||v_factorial);
END;

Next, consider a new version of the script that uses a CONTINUE WHEN statement. Newly
added statements are shown in bold.

For Example ch07 8a.sql

DECLARE
v_factorial NUMBER := 1;
BEGIN
FOR v_counter IN 1..10
LOOP
CONTINUE WHEN MOD (v_counter, 2) !'= 0;
v_factorial := v_factorial * v_counter;
END LOOP;

-— control resumes here
DBMS OUTPUT.PUT_ LINE
('Factorial of even numbers between 1 and 10 is: '||v_factorial);
END;

In this version of the script, a CONTINUE WHEN statement passes control to the top of the loop
if the current value of the loop counter v_counter is not an even number. The rest of the
script remains unchanged. Note that you could specify the CONTINUE condition using an IF-
THEN statement as well:
IF MOD(v_counter, 2) != 0
THEN

CONTINUE;
END IF;
When run, this example shows the following output:

Factorial of even numbers between 1 and 10 is: 3840

Rewrite script ch07 7a.sql using a simple loop instead of the outer FOR loop, and a WHILE
loop for the inner FOR loop. Make sure that the output produced by this script does not differ
from the output produced by the original script.

Answer: Consider the original version of the script:

For Example ch07 7a.sql

DECLARE

v_test NUMBER := 0;
BEGIN

<<outer_loop>>

FOR 1 IN 1..3

LOOP
DBMS OUTPUT.PUT LINE ('Outer Loop');
DBMS OUTPUT.PUT LINE('i = '|[1i);
DBMS OUTPUT.PUT LINE('v_test = '||v_test);
v_test := v_test + 1;

<<inner_loop>>
FOR j IN 1..2
LOOP
DBMS OUTPUT.PUT LINE

Inner Loop');

(
DBMS OUTPUT.PUT LINE('j = "[[3);
DBMS OUTPUT.PUT LINE('i = '|[1i);
DBMS_OUTPUT.PUT_LINE ('v_test = '||v_test);

END LOOP inner loop;
END LOOP outer loop;
END;

Next, consider a modified version of the script that uses simple and WHILE loops. All changes
are highlighted in bold.

For Example c/h07 9a.sql

DECLARE
i BINARY INTEGER := 1;
3j BINARY INTEGER := 1;
v_test NUMBER := 0;
BEGIN
<<outer_loop>>
LOOP
DBMS OUTPUT.PUT LINE ('Outer Loop');
DBMS OUTPUT.PUT LINE ('i = '[[1i);
DBMS OUTPUT.PUT LINE ('v_test = '||v_test);
v_test := v _test + 1;
-- reset inner loop counter
j :=1;

<<inner_loop>>
WHILE j <= 2
LOOP
DBMS OUTPUT.PUT LINE

Inner Loop'):;

(
DBMS OUTPUT.PUT LINE ('j = '[[J);
DBMS OUTPUT.PUT LINE ('i = '[[i);
DBMS_OUTPUT.PUT_LINE ('v_test = '||v_test);

j =3+ 1;
END LOOP inner loop;

i:=1i+1;
-- EXIT condition of the outer loop
EXIT WHEN i > 3;

END LOOP outer loop;

END;

Note that this version of the script contains changes that are important due to the nature of the
loops that are used:

First, both counters, for outer and inner loops, must be declared and initialized. Moreover, the
counter for the inner loop must be initialized to 1 prior to each execution of the inner loop,
and not just in the declaration section of this script. In other words, the inner loop executes
three times. It is important not to confuse the term execution of the loop with the term
iteration. Each execution of the WHILE loop causes the statements inside this loop to iterate
twice. Before each execution, the loop counter j must reset to 1 again. This step is necessary
because the WHILE loop does not initialize its counter implicitly like numeric FOR loop. As a
result, after the first execution of the WHILE loop is complete, the value of counter j remains
3. If this value is not reset to 1 again, the WHILE loop will not execute second time.

Second, both loop counters must be incremented so that simple and WHILE loops do not
become infinite.

Third, the EXIT condition must be specified for the outer loop, and the test condition must be
specified for the inner loop.

When run, the version of the script produces output as indicated below:

Outer Loop

i

vf

=1
test = 0

Inner Loop

]
i

vf

]
i

vf

i

=1

=1

test =1
Inner Loop

=2

=1

test =1
Outer Loop

=2

test =1

vf

Inner Loop

]
i

vf

]
i

vf

i

=1

=2

test = 2
Inner Loop

=2

=2

test = 2
Outer Loop

=3

test = 2

vf

Inner Loop

]
i

vf

=1
=3
test = 3

Inner Loop
j =2
i=3
v_test = 3

