

Virtualizing and Tuning
Large-Scale

Java Platforms

00_9780133491203_fm-pref.indd i 12/3/13 11:06 AM

VMware Press is the official publisher of VMware books and training materials, which pro-

vide guidance on the critical topics facing today’s technology professionals and students.

Enterprises, as well as small- and medium-sized organizations, adopt virtualization as

a more agile way of scaling IT to meet business needs. VMware Press provides proven,

technically accurate information that will help them meet their goals for customizing, build-

ing, and maintaining their virtual environment.

With books, certification and study guides, video training, and learning tools produced

by world-class architects and IT experts, VMware Press helps IT professionals master a

diverse range of topics on virtualization and cloud computing. It is the official source of

reference materials for preparing for the VMware Certified Professional Examination.

VMware Press is also pleased to have localization partners that can publish its products

into more than 42 languages, including Chinese (Simplified), Chinese (Traditional), French,

German, Greek, Hindi, Japanese, Korean, Polish, Russian, and Spanish.

For more information about VMware Press, please visit vmwarepress.com.

00_9780133491203_fm-pref.indd ii 12/3/13 11:06 AM

VMware® Press is a publishing alliance between Pearson and VMware,

and is the official publisher of VMware books and training materials

that provide guidance for the critical topics facing today’s technology

professionals and students.

With books, certification and study guides, video training, and learning

tools produced by world-class architects and IT experts, VMware Press

helps IT professionals master a diverse range of topics on virtualization

and cloud computing, and is the official source of reference materials

for completing the VMware certification exams.

pearsonitcertification.com/vmwarepress

Make sure to connect with us!
informit.com/socialconnect

Complete list of products • Podcasts • Articles • Newsletters

00_9780133491203_fm-pref.indd iii 12/3/13 11:06 AM

00_9780133491203_fm-pref.indd iv 12/3/13 11:06 AM

This page intentionally left blank

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Virtualizing and Tuning
Large-Scale

Java Platforms

Emad Benjamin

00_9780133491203_fm-pref.indd v 12/3/13 11:06 AM

Virtualizing and Tuning Large-Scale Java Platforms
Copyright © 2014 VMware, Inc.

Published by Pearson plc

Publishing as VMware Press
All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior
to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise.

Library of Congress Control Number: 2013920560

ISBN-13: 978-0-13-349120-3
ISBN-10: 0-13-349120-X

Text printed in the United States on recycled paper at RR Donnelly in
Crawfordsville, Indiana.

First Printing, December 2013

All terms mentioned in this book that are known to be trademarks or service marks
have been appropriately capitalized. The publisher cannot attest to the accuracy of
this information. Use of a term in this book should not be regarded as affecting the
validity of any trademark or service mark.

VMware terms are trademarks or registered trademarks of VMware in the United
States, other countries, or both.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as pos-
sible, but no warranty or fitness is implied. The information provided is on an “as
is” basis. The authors, VMware Press, VMware, and the publisher shall have neither
liability nor responsibility to any person or entity with respect to any loss or dam-
ages arising from the information contained in this book.

The opinions expressed in this book belong to the author and are not necessarily
those of VMware.

Corporate and Government Sales
VMware Press offers excellent discounts on this book when ordered in quantity
for bulk purchases or special sales, which may include electronic versions and/or
custom covers and content particular to your business, training goals, marketing
focus, and branding interests. For more information, please contact U.S. Corporate
and Government Sales, (800) 382-3419, corpsales@pearsontechgroup.com.
For sales outside the United States, please contact International Sales,
international@pearsoned.com.

ASSOCIATE PUBLISHER

David Dusthimer

ACQUISITIONS EDITOR

Joan Murray

VMWARE PRESS
PROGRAM MANAGER

Anand Sundaram

SENIOR DEVELOPMENT
EDITOR

Christopher Cleveland

MANAGING EDITOR

Sandra Schroeder

SENIOR PROJECT
EDITOR

Tonya Simpson

COPY EDITOR

Keith Cline

PROOFREADER

Debbie Williams

BOOK DESIGNER

Gary Adair

COVER DESIGNER

Chuti Prasertsith

COMPOSITOR

Bumpy Design

EDITORIAL ASSISTANT

Vanessa Evans

00_9780133491203_fm-pref.indd vi 12/3/13 11:06 AM

I dedicate this book to my beloved wife, Christine,
and our two beautiful boys, Anthony and Adrian.
They fi ll my life with plenty of joy and inspiration.

Thank you Lord for all your blessings.

00_9780133491203_fm-pref.indd vii 12/3/13 11:06 AM

00_9780133491203_fm-pref.indd iv 12/3/13 11:06 AM

This page intentionally left blank

Contents

Preface xv

Chapter 1 Introduction to Large-Scale Java Platforms 1

Large-Scale Java Platform Categories 1

Large-Scale Java Platform Trends and Requirements 2

Compute-Resource Consolidation 2

JVM Instance Consolidation 3

Elasticity and Flexibility 3

Performance 4

Large-Scale Java Platform Technical Considerations 4

Theoretical and Practical Limits of Java Platforms 4

NUMA 9

Most Common JVM Size Found in Production Environments 15

Horizontal Scaling Versus Vertical Scaling of JVMs and VMs 16

Summary 20

Chapter 2 Modern Scalable Data Platforms 21

SQLFire Topologies 24

Client/Server Topology 24

Peer-to-Peer Topology 27

Redundancy Zones 28

Global Multisite Topology 28

SQLFire Features 30

Server Groups 32

Partitioning 34

Redundancy 37

Colocation 38

Disk Persistence 39

Transactions 41

Cache Plug-In 46

Listeners 47

Writers 50

Asynchronous Listeners 52

DBSynchronizer 54

SQLF Commands and DDLUtils 57

Active-Active Architectures and Modern Data Platforms 57

Chapter Summary 61

00_9780133491203_fm-pref.indd ix 12/3/13 11:06 AM

x Contents

Chapter 3 Tuning Large-Scale Java Platforms 63

GC Tuning Approach 70

Step A: Young Generation Tuning 71

Step B: Old Generation Tuning 76

Step C: Survivor Spaces Tuning 78

Chapter Summary 78

Chapter 4 Designing and Sizing Large-Scale Java Platforms 79

Designing and Sizing a New Environment for a Virtualized Large-Scale Java Platform 79

Step1: Establishing Your Current Production Load Profi le 80

Step 2: Establish a Benchmark 82

Step 3: Size the Production Environment 95

Sizing vFabric SQLFire Java Platforms: Category 2 Workloads 96

Step A: Determine Entity Groups 97

Step B: Determine the Memory Size of the Data Fabric 100

Step C: Establish Building Block VM and JVM Size and How Many vFabric SQLFire
Members Are Needed 105

Understanding the Internal Memory Sections of HotSpot JVM 106

Understanding NUMA Implications on Sizing Large VMs and JVMs 108

vFabric SQLFire Sizing Example 112

Chapter Summary 119

Chapter 5 Performance Studies 121

SQLFire Versus RDBMS Performance Study 121

Performance Results 123

Summary of Findings 126

The Olio Workload on tc Server and vSphere Performance Study 127

Looking at the Results 127

SpringTrader Performance Study 131

Application and Data Tier vSphere Confi gurations 133

The SpringTrader Performance Study Results 137

Performance Differences Between ESXi 3, 4.1, and 5 139

CPU Scheduling Enhancements 140

Memory Enhancements 140

vSphere 5 Performance Enhancements 142

Chapter Summary 143

00_9780133491203_fm-pref.indd x 12/3/13 11:06 AM

xiContents

Chapter 6 Best Practices 145

Enterprise Java Applications on vSphere Best Practices (Category 1) 148

VM Sizing and Confi guration Best Practices 148

vCPU for VM Best Practices 149

VM Memory Size Best Practices 150

VM Timekeeping Best Practices 156

Vertical Scalability Best Practices 156

Horizontal Scalability, Clusters, and Pools Best Practices 158

Inter-Tier Confi guration Best Practices 160

High-Level vSphere Best Practices 165

SQLFire Best Practices and SQLFire on vSphere Best Practices
(Category 2 JVM Workload Best Practices) 166

SQLFire Best Practices 168

vFabric SQLFire Best Practices on vSphere 173

Category 3 Workloads Best Practices 181

IBM JVM and Oracle jRockit JVMs 181

GC Policy Selection 184

IBM GC Choices 186

Oracle jRockit GC Policies 187

Chapter Summary 187

Chapter 7 Monitoring and Troubleshooting Primer 189

Open a Support-Request Ticket 191

Collecting Metrics from vCenter 191

Troubleshooting Techniques for vSphere with esxtop 195

Java Troubleshooting Primer 198

Troubleshooting Java Memory Problems 202

Troubleshooting Java Thread Contentions 203

Chapter Summary 204

Appendix FAQs 205

Glossary 229

Index 233

00_9780133491203_fm-pref.indd xi 12/3/13 11:06 AM

xii Contents

Best Practices

Best Practice 1: Common Distributed Data Platform 24

Best Practice 2: Client/Server Topology 26

Best Practice 3: Peer-to-Peer Multihomed Machines 27

Best Practice 4: Multisite 29

Best Practice 5: Use Server Groups 33

Best Practice 6: Horizontal Partitioning 37

Best Practice 7: Redundancy 38

Best Practice 8: Colocation 38

Best Practice 9: Disk Persistence 40

Best Practice 10: Transactions 45

Best Practice 11: RowLoader 47

Best Practice 12: Listeners 49

Best Practice 13: Writers 51

Best Practice 14: Asynchronous Listeners 53

Best Practice 15: DBSynchronizer 55

Best Practice 16: VM Sizing and VM-to-JVM Ratio Through a Performance Load Test 149

Best Practice 17: VM vCPU CPU Overcommit 149

Best Practice 18: VM vCPU, Do Not Oversubscribe to CPU Cycles That
 You Don’t Really Need 150

Best Practice 19: VM Memory Sizing 152

 Best Practice 20: Set Memory Reservation for VM Memory Needs 154

Best Practice 21: Use of Large Pages 154

Best Practice 22: Use an NTP Source 156

Best Practice 23: Hot Add or Remove CPU/Memory 157

Best Practice 24: Use vSphere Host Clusters 158

Best Practice 25: Use Resource Pools 159

Best Practice 26: Use Affi nity Rules 159

Best Practice 27: Use vSphere-Aware Load Balancers 160

Best Practice 28: Establish Appropriate Thread Ratios That Prevents Bottlenecks
 (HTTP threads:Java threads:DB Connections Ratio) 160

Best Practice 29: Apache Web Server Sizing 161

Best Practice 30: Load-Balancer Algorithm Choice and VM Symmetry 164

Best Practice 31: vSphere 5.1 165

Best Practice 32: vSphere Networking 165

Best Practice 33: vSphere Storage 166

Best Practice 34: vSphere Host 166

Best Practice 35: JVM Version 168

Best Practice 36: Use Parallel and CMS GC Policy Combination 168

Best Practice 37: Set Initial Heap Equal to Maximum Heap 170

Best Practice 38: Disable Calls to System.gc() 171

00_9780133491203_fm-pref.indd xii 12/3/13 11:06 AM

xiiiContents

Best Practice 39: New Generation Size 171

Best Practice 40: Using 32-Bit Addressing in a 64-Bit JVM 171

Best Practice 41: Stack Size 172

Best Practice 42: Perm Size 172

Best Practice 43: Table Placements in a JVM 172

 Best Practice 44: Enable Hyperthreading and Do Not Overcommit CPU 173

Best Practice 45: CPU Cache Sharing 175

Best Practice 46: vFabric SQLFire Member Server, JVM and VM Ratio 175

Best Practice 47: VM Placement 175

Best Practice 48: Set VM Memory Reservation 175

Best Practice 49: vMotion, DRS Cluster, and vFabric SQLFire Server 176

Best Practice 50: VMware HA and vFabric SQLFire 177

Best Practice 51: Guest OS 177

Best Practice 52: Physical NIC 177

Best Practice 53: Virtual NIC 178

Best Practice 54: Troubleshooting SYN Cookies 179

Best Practice 55: Storage 181

00_9780133491203_fm-pref.indd xiii 12/3/13 11:06 AM

00_9780133491203_fm-pref.indd iv 12/3/13 11:06 AM

This page intentionally left blank

Preface

This book is the culmination of 9 years of experience in running Java on VMware
vSphere, both at VMware and at many of VMware’s customers. In fact, many VMware
customers run enterprise-critical Java applications on VMware vSphere and have achieved
better total cost of ownership (TCO) and service level agreements (SLAs). In my first
book, Enterprise Java Applications Architecture on VMware, the topic of Java virtualiza-
tion was covered well, both from a high-level architecture perspective and with in-depth
technical chapters on sizing and best practices. To keep that first book more affordable,
a decision was made to hold back some of the chapters for a second book, what you are
reading now. These two books are complementary in many ways. The first book has a few
high-level chapters for architects, engineers, and managers considering Java virtualization
for the first time and asking the high-level question “why.” This book is all about how and
what to tune for optimal performance.

Limiting the scope of the first book was a good idea; the book was thus made available
quickly for those launching their first Java virtualization projects. It has been almost 2
years since the release date of that first book, and since then nearly 300 customer interac-
tions have helped to further analyze the guidance offered. Some of these interactions have
included large-scale Java platforms of significant scale and have significantly contributed
to the greater level of detail in this book. This book discusses in detail the sizing and
tuning of both small-scale and large-scale virtualized Java platforms—100 Java Virtual
Machines (JVMs) to 10,000 JVMs and a JVM heap range of 1 to 128GB. This recent
experience, combined with my 15 years of tuning Java platforms, is presented in this book
in such way to summarize what is most practical and immediately applicable to the vast
majority of Java workload types. You can retrofit the advice, deployment configuration,
and garbage collection (GC) tuning knowledge gained from this book to effectively com-
bat GC poor behavior or to design and size your Java platform overall. The best practices
highlighted throughout this book apply to physical environments, virtual environments,
or both.

Motivation for Writing This Book

I have spent the past 9 years at VMware in various capacities ensuring that all internal
enterprise Java applications were virtualized to showcase to VMware customers the ben-
efits of the approach. In that time, I came to believe that a lot of the best practices that we
learned from empirical evidence in production environments should be shared with the
VMware community. I received lots of feedback requesting that I document many of the
lessons learned and the various tips and tricks needed to successfully run enterprise Java
applications on VMware. This served as the motivation for the first book, Enterprise Java
Applications Architecture on VMware (https://www.createspace.com/3632131).

00_9780133491203_fm-pref.indd xv 12/3/13 11:06 AM

https://www.createspace.com/3632131

xvi Preface

Continuing on from the motivation of the first book, this book (the second book) focuses
on what to tune, how far you can tune it, and how large virtualized Java platforms can be.
In essence, the first book had a reasonable mix of the “why virtualize” and “what/how to
virtualize.” In contrast, this book examines “how large of a scale you can virtualize and
how far you can drive the platform tuning.”

It was quite exciting to write the first book, as we were trying to let the broader VMware
customer base know that Java virtualization absolutely works and provides significant
advantages. In this current book, we want to help those customers who are saying, “Now
help me take it to the next level of scale.” We have spent the past 2 years helping custom-
ers virtualize many large-scale JVM platforms, some as big as 10,000 JVMs, and others in
the big data platform space (with multiple terabytes of data kept in memory within a set
of clustered JVMs). Before you dive into this book, though, remember this: Although this
book presents many best practices, these practices represent optimal configuration guid-
ance; they are not mandatory requirements. In our experience, we have found that most
enterprise Java applications virtualize readily without having to worry about too many
specific configurations. In fact, of any enterprise-level production application, Java appli-
cations are prime “low-hanging fruit” candidates for virtualization. By sharing the lessons
we learned, we hope that you can avoid some of the pitfalls we encountered in our efforts
to virtualize large-scale Java platforms.

Wanting to cover how best to deploy Java platforms in virtual environments (while also
addressing misconceptions that the virtual platform is the problem), we built best prac-
tices that apply equally to both physical and virtual environments. By design, this book
contains sections that cover best practices for physical and virtualized Java platforms, so
as to enable customers to correct any problems on their physical Java platform before they
virtualize. Of course, this is not mandatory; customers may choose to keep the legacy
aspect of their physical Java deployment as they migrate to virtualization. However, at
least they have been made aware of the design and deployment deficiencies of their physi-
cal Java platform should they wish to correct it in the future.

This is an important exercise to go through, allowing us to highlight the problem was
actually customers’ own physical environments. Customers could thus understand the
cost of maintaining the legacy aspect of their physical Java platform. For example, we
often discover that many Java physical platforms were poorly architected with the wrong
deployment topology, many times with sprawling thousands of unnecessary JVMs.
When we speak with customers, we walk them through the best practices and ensure
that these environments are sized and tuned correctly, regardless of whether they leave
their Java applications on physical environments or migrate to virtual. Again, customers
can choose to ignore our prescriptions and deploy the legacy aspect of their Java physical

00_9780133491203_fm-pref.indd xvi 12/3/13 11:06 AM

xviiPreface

platform onto the virtual equivalent without much change or intrusion on the codebase
and platform. However, customers these days are pretty cognizant of the value of the best
practices we (and many others) have embraced to improve the Java deployment paradigm
while migrating to virtual platforms.

The lessons learned fall into the following general categories:

 Things will go wrong in production; it is just a matter of when. So, you want to
meticulously consider what could go wrong and have a roll-forward and a rollback
plan. The planning exercise helps to further solidify the QA test plan. Note that this
is not specific to a virtualized environment. In fact, it is an equally stringent require-
ment whether you are dealing with a physical or a virtual infrastructure. However,
the reality is that virtualization gives you the mechanisms to quickly deal with issues
(in contrast to a physical case in which you are restricted to the amount of flexibility
you have to move around your compute resources).

 Enterprise Java applications are the low-hanging fruit when it comes to
virtualization.

 Everyone operated in various silos at each of the Java tiers and did not necessarily
speak the same language in terms of technology and organizational logistics. This
was certainly the modus operandi under the old physical (nonvirtualized) paradigm,
with these technology and organizational silos having been formed over the past
decades. However, cross-team collaboration was a big part of virtualizing Java on
VMware; it drove a lot of the teams to talk to each other to facilitate a best-of-breed
design. Teams from both application development and operations came to the table
many times.

 Customers sometimes seek to rationalize the legacy aspects of their environment. As
a consequence, customers pay additional administrative cost associated with sprawl-
ing JVMs in the physical environment; if not remedied, these costs carry over into
the virtualized system. For example, do you really need those 1GB heap space 5000
JVMs? Couldn’t they be consolidated? Absolutely, they can be, and we show you
how you can save by reducing your licensing costs and improving administration
(because you will have fewer JVMs to manage).

 Performance issues. Customers often race to the conclusion that any problem must
be a virtualization issue or a GC issue. In reality, though, virtualization is not the
issue, but the GC may sometimes be an issue. If a GC issue exists, though, it is not
specific to virtualization, and in fact the issue is almost always equally present in the
physical deployment.

00_9780133491203_fm-pref.indd xvii 12/3/13 11:06 AM

xviii

 Big in-memory databases on physical Java platforms (1TB memory cluster, really!)?
Absolutely, if the prime objective is to service transactions at any cost, but at the
highest speed possible, this is the right architecture for you. I found that many cus-
tomers were skeptical about this. The fact that they attempted to size these types of
environments without regard for the underlying platform gave them a poor start.
You must pay attention to the server machine architecture when sizing these data
platforms (as discussed later). The other poor practice I found with some customers
is that they attempted to size these environments to have 30 or so JVMs. Well, that
is not the right approach, because maintaining chatter between that many JVMs at
a high rate can make latency worse overall. Quite simply, these are latency-sensitive
memory-bound workloads and perform better using a deployment paradigm of fewer
larger JVMs. If you were to compare the performance of an in-memory database sys-
tem that had 30 JVMs versus one with 8 much larger JVMs, the configuration with
8 larger JVMs would be better. Of course, the caveat here is that the larger JVMs
are sized correctly for NUMA optimization and the appropriate GC tuning has
been applied.

 Can big in-memory databases really perform when virtualized? Over the past couple
of years, I have seen an increase in customers virtualizing Java application servers.
Specifically, large-scale platforms with thousands of JVMs are being virtualized. One
unique category of workload is in-memory data management systems that require
terabytes of memory and are latency sensitive. With these in-memory data clusters,
we find that although there are fewer JVMs, they do tend to be of large heap space,
ranging in JVM size from 8 to 128GB (and usually fewer than 12 JVMs). Of course,
there is nothing magical about the number 12, it could be as low as 3, or as high as
30. However, the more JVMs you have, the more potential latency issues you risk
because of the additional network hops. Later in the book, you will learn how to size
and tune these workloads.

Many Java application developers know the development process well, know how to
write Java code, and know how to tune the JVM. However, too often that information
stays with developers and is not shared with (or translated for) application administra-
tors. Often, the skills needed to run Java platforms are split between Java developers and
administrators, without a single person understanding both purviews. This silo-ing of
understanding is changing, though, as more individuals begin to understand how to write
Java code, deploy it, tune the JVM, and recognize the full breadth of virtualization and
the intricacies of the server hardware architecture. So, another goal of this book is to
encourage readers to follow this career path as they develop this skill-set profile.

Preface

00_9780133491203_fm-pref.indd xviii 12/3/13 11:06 AM

xix

I sincerely hope this book helps those with backgrounds in Java development, operations
infrastructure, and virtualization. You can use this book both as a guide to combat day-
to-day situations and as an aid to help you compose a strategic architectural map of your
Java platform.

Prerequisites

This book assumes a high-level understanding of Java, JVM GC, server hardware
architecture, and virtualization technologies. The information herein relates to run-
ning large-scale Java platforms. Although you might want to brush up on virtualization
before delving into the material in this book, most senior Java specialists will quickly
learn enough about virtualization and virtualizing Java applications from this book alone.
In fact, by learning the answer to the following question, you will gain enough back-
ground on virtualization to continue through this book. This is the question asked on
day one by folks new to virtualizing Java: “Is Java both operating system and hypervisor
independent?”

This text assumes that the reader has some background in the Java language and specifi-
cally JVM architecture. The book does its best to summarize the JVM architecture, and
specific JVM tunings, but it is not a replacement for a book dedicated to Java tuning.
Suffice it to say, vSphere administrators who are new to JVM tuning should be able to
learn enough from this book to hold technical conversations with their Java counterparts.
In addition, vSphere and Java administrators can apply the tuning advice in this book and
modify it as it applies to their environment. The various chapters on JVM tuning advice
have been written in such a way that they are less overwhelming than those found in
other Java books, enabling vSphere and the Java administrators to have a quick and effec-
tive go-forward design and tuning strategy. Many VMware customers running Java have
applied the tuning parameters discussed in this book and have gained immediate perfor-
mance improvements.

What You Need to Know First

The fact that you are reading this book means that you are halfway to correcting your
Java platform. Perhaps you have already concluded that tuning Java platforms cannot be
ignored/minimized. However, even if you have just dabbled with VMware virtualiza-
tion and Java tuning to some degree on physical systems, you are ready for this book.
As a refresher (or an introduction for those new to the material), the following sections
briefly introduce important concepts related to virtualizing and tuning large-scale Java
platforms.

Preface

00_9780133491203_fm-pref.indd xix 12/3/13 11:06 AM

xx Preface

Is a 4GB Java Heap the New 1GB? Why?

In the past 2 years, I have conducted more than 290 customer calls and workshops where
it was evident that 40% of workloads running on Java platforms were deployed on JVMs
that were 1 to 4GB in size. I continue to see a huge number of less than 1GB JVMs,
approximately another 40% within the customer base I interact with. The remaining 20%
varies from 4 to 360GB. Yes, a 360GB JVM is due to a monitoring system that cannot
horizontally scale out and so the customer is forced to have a single JVM. Although this
might seem unbelievable, it is the reality of Java production platforms today. However,
the JVMs with 1GB of heap cause a sprawl of JVMs instances, and that becomes its own
management headache. For example, you might want to service 1TB of total heap space,
which would then mean thousands of JVM instances if you allow only a 1GB JVM heap.
How can that possibly make any sense? Couldn’t you get the 1TB serviced with 250 JVMs
of 4GB each? Of course you could, but because of your organization’s legacy rules from
the old 32-bit JVM days, you continue to spin JVMs that are less than 1GB. More realis-
tically, though, the notion that larger JVMs may have larger GC pauses is ill conceived.
That belief is not entirely true, but not completely false either. Yes, larger pauses will
occur, but with recent advancements in 64-bit JVM and concurrent mark-sweep (CMS)
GC, the days of larger and less-pause-sensitive JVMs have arrived. Not only has GC got-
ten a lot better, but also the underlying server hardware has gotten better to support 4GB
heap spaces. In fact, 4GB is a unique and magical number because JVMs these days auto-
matically treat the 4GB heap space as 32-bit address space within a 64-bit JVM to save on
memory usage. This is possible because a 32-bit address range is within 4GB. In fact, the
JVM using the -XX:+UseCompressedOops option can be applied to Java heap spaces of
up to 32GB.

After reading this book, you will understand that alternatives and workloads suited for
larger JVMs exist. Clearly, I am not advocating larger JVMs for everyone, but a 4GB
JVM is really not that big anymore. Keep in mind that I am advocating a more reason-
able number of JVMs, even if that means increasing the heap size. And remember, if you
have a vendor that says that you will incur a performance cost when moving from 32-bit
to 64-bit JVMs, this is not entirely true. Our compression optimization experiences have
mostly disproved the notion that migrating from a 32-bit to a 64-bit JVM causes per-
formance degradation. Consider, for instance, servicing 1TB in 250 JVMs versus 1000
JVMs. Ask the vendor how much you save by not having to run 750 JVMs (because you
went from a 1GB JVM heap to a 4GB JVM heap). The cost savings would include some
of the 750 GC cycles that you no longer use in addition to the underlying CPU cores that
you free up. You also save because you do not have to pay for additional licenses.

The latter chapters in this book delve into various sizes of JVMs and when you would use
one versus the other.

00_9780133491203_fm-pref.indd xx 12/3/13 11:06 AM

xxiPreface

Why Should I Bother with Virtualization? What Are Some Key Benefits?

Perhaps 5 years ago, we still had some customers asking the “why virtualize” question. In
recent years, though, the benefits of virtualization have become widely understood as vir-
tualization has pretty much become the standard. This standard is based on VMware
virtualization technology, mostly because of it robustness and its fifth-generation
maturity.

Virtualization offers the following key benefits:

 Mature, proven, and comprehensive platform: VMware vSphere (http://
www.vmware.com/products/datacenter-virtualization/vsphere/overview.html)
is fifth-generation virtualization (many years ahead of any alternative). It delivers
higher reliability, more advanced capabilities, and greater performance than
competing solutions.

 High application availability: High-availability infrastructure remains complex and
expensive. But VMware integrates robust availability and fault tolerance right into
the platform to protect virtualized applications. Should a node or server ever fail, all
the VMs are automatically restarted on another machine.

 Wizard-based guides for ease of installation: VMware’s wizard-based guides take
the complexity out of setup and configuration. You can be up and running in one-
third the deployment time of other solutions.

 Simple, streamlined management: VMware lets you administer both your virtual
and physical environments from a “single pane of glass” console right on your web
browser. Time-saving features such as auto-deploy, dynamic patching, and live VM
migration reduce routine tasks from hours to minutes. Management becomes much
faster and easier, boosting productivity without adding to your headcount.

 Higher reliability and performance: Our platform blends CPU and memory innova-
tions with a compact, purpose-built hypervisor that eliminates the frequent patching,
maintenance, and I/O bottlenecks of other platforms. The net result is best-in-class
reliability and consistently higher performance (for heavy workloads, two-to-one and
three-to-one performance advantages over our nearest competitors).

 Superior security: VMware’s hypervisor is much thinner than any rival, consuming
just 144MB compared with others’ 3 to 10GB disk profile. Our small hypervisor
footprint presents a tiny, well-guarded attack surface to external threats, for airtight
security and much lower intrusion risk.

 Greater savings: VMware trumps other virtualization solutions by providing 50% to
70% higher VM density per host—elevating per-server utilization rates from 15%
to as high as 80%. You can run many more applications on much less hardware than
with other platforms, for significantly greater savings in capital and operating costs.

00_9780133491203_fm-pref.indd xxi 12/3/13 11:06 AM

http://www.vmware.com/products/datacenter-virtualization/vsphere/overview.html
http://www.vmware.com/products/datacenter-virtualization/vsphere/overview.html

xxii Preface

 Affordability: VMware is highest in capabilities, but not cost. Starting at $165 per
server, the small business packages consolidate more of your applications on fewer
servers, with greater performance—delivering the industry’s lowest total cost of own-
ership (TCO).

To quickly determine and compare the cost of deploying VMware virtualiza-
tion in your environment, use the VMware cost-per-application calculator at http://
www.vmware.com/go/costperappcalc.

Fundamentally, because Java is independent of the operating system, it is the perfect
candidate for virtualization because it does not have any hardware dependencies. Java
also benefits from the many virtualization features such as high availability (HA) and
VMotion (the ability to move VMs from one vSphere host to another without downtime).
This type of agility that virtualization adds to a Java platform is fairly critical for Java
platforms in general, but more specifically for large-scale Java. In large-scale Java, we
often find thousands of JVMs that require constant administration and management (for
instance, starting them, stopping them, and upgrading them without downtime). This
type of administration activity cannot be feasibly accommodated at such a large scale
without virtualization agility, such as VMotion and HA.

Enterprise Java application requirements for dynamic scalability, rapid provisioning, and
HA represent a growing concern for development and operations groups today. Achieving
these requirements with platforms that are completely based on conventional hardware
is complex and expensive. Virtualization is a breakthrough technology that alleviates the
pressures that common enterprise Java application requirements may impose on an orga-
nization. Features such as horizontal scalability, vertical scalability, rapid provisioning,
enhanced HA, and business continuance are some of the key attributes available with the
VMware vSphere suite. Chapter 1 examines three categories of large-scale Java platforms
so that you can further appreciate the complexities of such systems.

Now that you understand that large-scale Java platforms require agility features of vir-
tualization, and that Java operating system independence makes it a prime candidate for
workload virtualization, let’s take a closer look at this Java independence from the operat-
ing system and the hypervisor.

Should I Virtualize Java Platforms?

For those who don’t have time to read this entire section, I can simply answer, “Yes, you
should virtualize.” After all, Java is independent of the underlying hypervisor, such as
VMware’s bare-metal hypervisor, and the operating system. For those who want to delve
a little more into what this means, though, read on.

00_9780133491203_fm-pref.indd xxii 12/3/13 11:06 AM

http://www.vmware.com/go/costperappcalc
http://www.vmware.com/go/costperappcalc

xxiiiPreface

The main design tenets of Java are based on a cross-platform language that is operat-
ing system independent (as long as there is an operating-system-supported underlying
runtime). We know this runtime as the JVM, which has become a permanent fixture of
many enterprise application platforms. You could write a Java application and run it on
various JVMs on different operating systems (without having to recompile). Of course,
many VMware customers have one vendor-targeted JVM in production and so would not
have to worry about moving a Java application from one JVM implementation to another.
If they chose to do so, however, they could easily do it, primarily because of Java’s cross-
platform and operating system independence facilitated by a JVM.

So, you can reasonably conclude that the Java applications do not really care which JVM
is being targeted for them to run on and are independent of the specific JVM implemen-
tation and operating system.

Of course, you might ask, “What about all the different internal behaviors of one JVM
versus another?” At the end of the day, they all adhere to the JVM spec, and although
some JVM options (-XX, flags, and so on) have different names, they more or less behave
in a similar manner. The differences are not in the language, but in the way the Java pro-
cess can be optimized with various JVM options passed at the Java command line.

Now fast forward to the infrastructure side of things. VMware ESXi is a bare-metal
hypervisor that makes it possible to run multiple operating systems on a particular piece
of hardware. Infrastructure administrators no longer have to worry about installing one
kind of operating system for one piece of hardware versus another. VMware makes the
operating system run independently of the underlying hardware (bare metal) and creates
a degree of independence between the operating system and the bare metal/hardware.

Although the answer to whether Java is both OS and hypervisor independent is clearly
yes, it is due to two degrees of independence. The first degree is that of Java’s main tenet
of cross-platform and OS independence, and the second degree is that of VMware ESXi
hypervisor making the operating system independent of the hardware that it runs on.
In fact, when a Java application runs on an operating system that is in an ESXi-based
VM, ESXi has no notion of whether it is a Java workload running on the operating sys-
tem, making the ESX hypervisor completely independent of the workload running on
it. A further testament to this is that, because of this independence, no operating system
changes are needed when you deploy a Java application on a VM.

Conversely, the JVM doesn’t really know that it is running on a VM sitting on an
ESXi hypervisor, and to the JVM, the VM appears like any other server with compute
resources (CPUs, RAM, and so on) presented to it.

As long as the JVM you are using is supported on the operating system on which your
applications are running, there is no need for additional concern about or dependency on
support from the downstream VM and ESXi layers.

00_9780133491203_fm-pref.indd xxiii 12/3/13 11:06 AM

xxiv Preface

Figure I-1 illustrates all the layers discussed in this section.

Figure I-1 Enterprise Java Application Running on a VM Virtualized by VMware ESXi

Who Should Read This Book?

This book is targeted at IT professionals who are in search of implementation guidelines
for running enterprise Java applications on VMware vSphere in production and in
QA/test environments.

The first three chapters are beneficial to CIOs, VPs, directors, and enterprise architects
looking for key high-level business propositions for virtualizing enterprise Java applica-
tions. The remaining chapters are for developers and administrators looking for imple-
mentation details.

How to Use This Book

This book consists of seven chapters, an appendix, and a glossary:

 Chapter 1, “Introduction to Large-Scale Java Platforms”: This chapter introduces
various types of large-scale Java platforms and highlights the unique performance
enhancements they require based on their scale.

 Chapter 2, “Modern Scalable Data Platforms”: This chapter details how modern data
platforms are structured.

 Chapter 3, “Tuning Large-Scale Java Platforms”: This chapter highlights key con-
siderations and provides guidelines to IT architects who are in the process of sizing
their enterprise Java applications to run on VMware vSphere. This chapter explains
how to obtain the best sizing configuration for your Java applications running on
VMware vSphere. You are guided through the process of performance benchmark-
ing on an application and given pointers on what to measure, what is available to be
tuned, and how to best determine the optimal size for your Java application.

00_9780133491203_fm-pref.indd xxiv 12/3/13 11:06 AM

xxvPreface

 Chapter 4, “Designing and Sizing Large-Scale Java Platforms”: This chapter walks
the reader through various approaches in sizing modern virtual Java platforms. It
takes the reader through actual methodology of vertical and horizontal scalability as
it applies to large-scale Java platforms, while also showing actual sizing examples that
can be leveraged on production systems.

 Chapter 5, “Performance Studies”: This chapter summarizes some of the key high-
lights from published performance papers.

 Chapter 6, “Best Practices”: This chapter provides information about best practices
for deploying large-scale Java applications on VMware, including key best-practice
considerations for architecture, performance, designing and sizing, and high avail-
ability. This information is intended to help IT architects successfully deploy and
run Java environments on VMware vSphere.

 Chapter 7, “Monitoring and Troubleshooting Primer”: This chapter summarizes what
to do when you hit a bottleneck or a performance issue while virtualizing Java. It
provides a helpful summary for your use out in the field.

 Appendix, “FAQs”: This appendix is a collection of many questions from VMware
customers that the author has encountered over the years. It is always helpful to
quickly ramp up on any technology by reading FAQs.

 Glossary

00_9780133491203_fm-pref.indd xxv 12/3/13 11:06 AM

00_9780133491203_fm-pref.indd iv 12/3/13 11:06 AM

This page intentionally left blank

About the Author

Emad Benjamin has been in the IT industry for the past 20 years. He graduated with a
Bachelor of Electrical Engineering degree from the University of Wollongong. Early in
his career, he was a C++ software engineer. Then, in 1997, he took on his first major proj-
ect using Java and has focused on Java ever since. For the past 8 years, his main concentra-
tion has been Java on VMware vSphere. Emad is a featured speaker at VMworld, Spring-
One, UberConf, NFJS, and various other Java user groups around the world. Currently,
Emad is a principal architect in the Global Center of Excellence focused on VMware
virtualization, providing training and evangelism to various corners of the world.

00_9780133491203_fm-pref.indd xxvii 12/3/13 11:06 AM

About the Technical Reviewer

Michael Webster is a VMware Certified Design Expert (VCDX-066) on vSphere 4
and 5, vExpert 2012–2013, and the owner of IT Solutions 2000 Ltd., which delivers proj-
ect management, ITIL-based VMware operational readiness, and technical architecture
consulting services to enterprise and service provider clients around the world. He has
been using VMware products since 1998 and has been designing and deploying VMware
solutions since 2002. He specializes in the design and implementation of virtualization
solutions for Unix to Linux migrations, business-critical applications, disaster avoidance,
mergers and acquisitions, and public and private cloud. Michael has been in the IT indus-
try since 1995 and consulting since 2001. As of February 2012, IT Solutions 2000 Ltd.
was granted the VMware Virtualizing Business Critical Applications (VBCA) Compe-
tency, making it one of the first companies in the world to achieve this accreditation. IT
Solutions 2000 Ltd. is one of very few companies worldwide accredited to deliver projects
for all the business-critical applications covered by the VBCA program: SAP, Oracle, MS
SQL Server, MS Sharepoint, and MS Exchange. Michael is regularly called on to consult
and speak on all aspects of virtualizing business-critical applications at events and for
organizations all across the globe. Longwhiteclouds.com was recently voted one of the
top 25 virtualization blogs in the world as listed on vSphere-Land.com.

00_9780133491203_fm-pref.indd xxviii 12/3/13 11:06 AM

Acknowledgments

I first want to thank my wife, Christine, and our boys, Anthony and Adrian, for their
understanding about not spending enough time with them while I was writing this book.
Christine, you have been my pillar of strength, always understanding and accommodating.

I also want to thank my parents for sacrificing so much of their life to help me pursue my
education and career, and to thank my brothers and sisters for their encouragement. I also
want to thank Christine’s family for their love and support.

I want to also thank my dear friend, His Grace Mar Awa Royel, Bishop of the Assyrian
Church of the East, for his blessings.

I want to extend special thanks to Matt Stepanski, VP of GTS and Steve Beck, Sr. Direc-
tor of GCOE, for their continuous support and encouragement with the publication of
this book.

I want to extend sincere gratitude for Michael Webster’s efforts in thoroughly review-
ing the book. I greatly appreciate his enthusiasm and ability to promptly review the book,
pointing out some key changes.

I would also like to thank my colleagues at VMware who helped make this book a reality:
Lyndon Adams, Mark Achtemichuk, John Arrasjid, Scott Bajtos, Stephen Beck, Channing
Benson, Jeff Buell, Dino Cicciarelli, Blake Connell, Ben Corrie, Melissa Cotton, Bhavesh
Davda, Scott Deeg, Carl Eschenbach, Duncan Epping, Jonathan Fullam, Alex Fontana,
Filip Hanik, Bob Goldsand, Jason Karnes, Jeremy Kuhnash, Ross Knippel, Gideon
Low, Catherine Johnson, Mark Johnson, Kannan Mani, Sudhir Menon, Justin Murray,
Vas Mitra, Avinash Nayak, Mahesh Rajani, Jags Ramnarayan, Raj Ramanujam, Harold
Rosenberg, Dan Smoot, Randy Snyder, Lise Storc, Matt Stepanski, Mike Stolz, Guillermo
Tantachuco, Don Sullivan, Abdul Wajid, Sumedh Wale, Yvonne Wassenaar, Michael
Webster, Mark Wencek, James Williams, and Matthew Wood.

00_9780133491203_fm-pref.indd xxix 12/3/13 11:06 AM

00_9780133491203_fm-pref.indd iv 12/3/13 11:06 AM

This page intentionally left blank

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass
our way.

We welcome your comments. You can email or write us directly to let us know what you
did or didn’t like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your
name, email address, and phone number. We will carefully review your comments and
share them with the author and editors who worked on the book.

Email: VMwarePress@vmware.com

Mail: VMware Press
 ATTN: Reader Feedback
 800 East 96th Street
 Indianapolis, IN 46240 USA

Reader Services
Visit our website at www.informit.com/title/9780133491203 and register this book
for convenient access to any updates, downloads, or errata that might be available for
this book.

00_9780133491203_fm-pref.indd xxxi 12/3/13 11:06 AM

http://www.informit.com/title/9780133491203

00_9780133491203_fm-pref.indd iv 12/3/13 11:06 AM

This page intentionally left blank

Chapter 1

Introduction to Large-Scale
Java Platforms

 This chapter defines three categories of large-scale Java platforms:

 Category 1: Large number of Java Virtual Machines (JVMs) (100s–1000s of JVMs)

 Category 2: Smaller number of JVMs with large heap sizes

 Category 3: A combination of category 1 consuming data from category 2

In addition, the chapter discusses various trends and outlines technical considerations to
help you understand the range of technical issues associated with designing large-scale Java
platforms.

Large-Scale Java Platform Categories
Based on field interactions with customers, large-scale Java platforms typically fall into
three main categories, as follows:

 Category 1: This category is distinguished by its large number of Java Virtual
Machines (JVMs). In this category, hundreds to thousands of JVMs are deployed on
the Java platform, and these are typically JVMs that function within a system that
might be servicing millions of users. I have seen some customers with as many as
15,000 JVMs. Whenever you are dealing with thousands of JVM instances, you must
consider the manageability cost and whether opportunities exist to consolidate the
JVM instances.

01_9780133491203_ch01.indd 1 12/3/13 11:07 AM

CHAPTER 1 Introduction to Large-Scale Java Platforms

 Category 2: This category is distinguished by a smaller number of JVMs (usually 1
to 20) but with large heap size (8GB to 256GB or higher). These JVMs usually have
in-memory databases deployed on them. In this category, garbage collection (GC)
tuning becomes critical, as discussed in later chapters.

 Category 3: The third category is a combination of the first two categories, where
perhaps thousands of JVMs run enterprise applications that are consuming data from
category 2 types of large JVMs in the back end.

With regard to virtualizing and tuning large-scale Java platforms, four key requirement
trends hold true across these three categories:

 Compute-resource consolidation

 JVM consolidation

 Elasticity and flexibility

 Performance

Let’s look at each one of these trends in more detail.

Large-Scale Java Platform Trends and Requirements
Compute resource consolidation, JVM instance consolidation, elasticity and flexibility,
and performance are some of the major trends that exist within large-scale Java platform
migration projects. The following subsections examine each of these in more detail.

Compute-Resource Consolidation
Many VMware customers find that their middleware deployments have proliferated and
are becoming an administrative challenge with increasing costs. Customers, therefore, are
looking to virtualization as a way of reducing the number of server instances. At the same
time, customers are taking the consolidation opportunity to rationalize the number of
middleware components needed to service a particular load. Middleware components most
commonly run within a JVM with an observed scale of hundreds to thousands of JVM
instances and provide many opportunities for JVM instance consolidation. Hence, middle-
ware virtualization provides an opportunity to consolidate twice—once to consolidate
server instances and then to consolidate JVM instances. This trend is widespread; after all,
every IT shop on the planet is considering the cost savings of consolidation.

One customer in the hospitality sector went through the process of consolidating their
server footprint and at the same time consolidated many smaller JVMs with a heap smaller

2

01_9780133491203_ch01.indd 2 12/3/13 11:07 AM

3Large-Scale Java Platform Trends and Requirements

than 1GB. They consolidated many of these smaller 1GB JVMs into two categories: those
that were 4GB and others that were 6GB. They performed the consolidation in such a
manner that the net total amount of RAM available to the application was equal to the
original amount of RAM, but with fewer JVM instances. They did all of this while improv-
ing performance and maintaining good service level agreements (SLAs). They also reduced
the cost of administration considerably by reducing the number of JVM instances they had
to originally manage; this refined environment helped them easily maintain SLAs.

Another customer, in the insurance industry, achieved the same result, but was also able to
overcommit CPU in development and QA environments to save on third-party software
license costs.

JVM Instance Consolidation
Sometimes we come across customers that have a legitimate business requirement to main-
tain one JVM for an application and/or one JVM per a line of business. In these cases, you
cannot really consolidate the JVM instances because doing so would cause intermixing of
the lifecycle of one application from one line of business with another. However, although
such customers do not benefit from eliminating additional JVM instances through JVM
consolidation, they do benefit from more fully utilizing the available compute resources on
the server hardware, resources that otherwise would have been underutilized in a nonvirtu-
alized environment

Elasticity and Flexibility
It is increasingly common to find applications with seasonal demands. For example, many
of our customers run various marketing campaigns that drive seasonal traffic toward their
application. With VMware, you can handle this kind of traffic burst by automatically pro-
visioning new virtual machines (VMs) and middleware components when needed; you can
then automatically tear down these VMs when the load subsides.

The ability to change updating/patching hardware without causing outage is paramount
for middleware that supports the cloud era scale and uptime. VMware VMotion enables
you to move VMs around without needing to stop applications or the VM. This flex-
ibility alone makes virtualization of middleware worthwhile when managing large-scale
middleware deployments. One customer in the financial space, handling millions of trans-
actions per day, used VMotion quite often, without any downtime, to schedule their hard-
ware upgrades; a process that otherwise would be costly to their business because of the
required scheduled downtime.

01_9780133491203_ch01.indd 3 12/3/13 11:07 AM

4 CHAPTER 1 Introduction to Large-Scale Java Platforms

Performance
Customers often report improved middleware platform performance when virtualizing.
Performance improvements are partly due to the updated hardware that customers will
typically refresh during a virtualization project. Some performance improvement occurs,
too, due to the robust VMware hypervisor. The VMware hypervisor has improved con-
siderably in the past few years, and Chapter 5, “Performance Studies,” discusses a few
performance studies done to showcase some of the heavy workloads that were tested in a
virtualized environment.

Large-Scale Java Platform Technical Considerations
When designing large-scale Java platforms, many technical considerations come into play.
For example, a good understanding of Java garbage collection (GC) and of JVM archi-
tecture, hardware, and hypervisor architectures is essential to building good large-scale
Java platforms. At a high level, GC, Non-Uniform Memory Architecture (NUMA), and
theoretical versus practical memory limits are discussed. Later chapters provide a more
detailed description, but it is imperative to start at a high-level understanding of the issues
surrounding large-scale Java platform designs.

Theoretical and Practical Limits of Java Platforms
Figure 1-1 depicts the theoretical and practical sizing limits of Java workloads, critical
 limits to remember when sizing JVM workloads.

 It is important to highlight that the JVM theoretical limit is 16 exabytes; however, no
practical system can provide this amount of memory. So, we capture this as the first
theoretical limit.

 The second limit is the amount of memory a guest operating system can support; in
most practical cases, this is several terabytes (TB) and depends on the operating sys-
tem being used.

 The third limit is the ESXi5 1TB RAM per VM, which is ample for any workload
that we have encountered with our customers.

 The fourth limit (really the first practical limit) is the amount of RAM that is cost-
effective on typical ESX servers. We find that, on average, vSphere hosts have
128GB to 144GB, and at the top end 196GB to 256GB. Certainly from a feasibility
standpoint, the hard limit is probably around 256GB. There are, of course, larger
RAM-based vSphere hosts, such as 384GB to 1TB; however, these are probably
more suited for category 2 types of in-memory database workloads and more likely

01_9780133491203_ch01.indd 4 12/3/13 11:07 AM

5Large-Scale Java Platform Technical Considerations

suited for traditional relational database management systems (RDBMS) that would
utilize such vast compute resources. The primary reason these systems need such
large vSphere hosts is because most (with some minor exceptions, such as Oracle
RAC) traditional RDBMS do not scale out and mainly scale up. In the case of cate-
gory 1 and category 2, a scale-out approach is available and so the potential selection
of a more cost-effective vSphere host configuration is afforded. In category 1 types
of Java workloads, you should consider vSphere hosts with a more reasonable RAM
range of less than 128GB.

 The fifth limit is the total amount of RAM across the server and how this is divided
into a number of NUMA nodes, where each processor socket will have one NUMA
node worth of NUMA-local memory. The NUMA-local memory can be calculated
as the total amount of RAM within the server divided by the number of processor
sockets. We know that for optimal performance you should always size a VM within
the NUMA node memory boundaries; no doubt, ESX has many NUMA optimiza-
tions that come into play, but it is always best to stay NUMA local.

If the ESX host, for example, has 256GB of RAM across two processor sockets
(that is, it has two NUMA nodes with 128GB (256GB/2) of RAM across each
NUMA node), this implies that when you are sizing a VM it should not exceed
the 128GB limit for it to be NUMA local.

Figure 1-1 Theoretical and Practical Limits of Java Platforms

01_9780133491203_ch01.indd 5 12/3/13 11:07 AM

6 CHAPTER 1 Introduction to Large-Scale Java Platforms

The limits outlined in Figure 1-1 and the list will help drive your design and sizing deci-
sion as to how practical and feasible it is to size large JVMs. However, other considerations
come with sizing very large JVMs, such as GC tuning complexity and knowledge needed
to maintain large JVMs. In fact, most JVMs within our customer base are in the vicinity
of 4GB of RAM for the typical enterprise web application, or what has been referred to
in this book as category 1 workloads. However, larger JVMs exist, and we have customers
that run large-scale monitoring systems and large distributed data platforms (in-memory
databases) on JVMs ranging from 4GB to 128GB. This is also true for in-memory data-
bases such as vFabric GemFire and SQLFire, where individual JVM members within a
cluster can be as big as 128GB and total cluster size can be 1 to 3TB. With such large
JVMs comes the need to have a better knowledge of GC tuning. At VMware, we have
helped many of our customers with their GC tuning activities over the years, even though
GC tuning on physical is no different from on virtual. The reason being is that we have
uniquely integrated the vFabric Java and vSphere expertise into one spectrum, which has
helped our customers optimally run many Java workloads on vSphere. When faced with
the decision of whether to vertically scale the size of the JVM and VM, always first con-
sider a horizontal scale-out approach; we have found that our customers get better scalabil-
ity with a horizontally scaled-out platform. If horizontal scalability is not feasible, consider
increasing the size of the JVM memory and hence VM memory. When opting to increase
the size of the JVM by increasing the heap space/memory, the next point of consideration
is GC tuning and the in-house knowledge you have to handle large JVMs.

NOTE

With regard to the third limit, as of this writing, ESXi 5.1 is the GA released official version;
however, by the time this book is published, some of these maximum vSphere limits might
change. Double-check official VMware product documentation for the latest maximums.
Note, as well, that at these VM limits no cost-effective hardware would need such a large
number of vCPUs; however, it is still assuring for those who might need it.

As mentioned earlier in this chapter, in the enterprise today large-scale Java platforms
fall into one of three categories. Figure 1-2 shows the various workload types and relative
scale. A common trend is that as the size of the JVM increases so, too, does the required
JVM GC tuning knowledge.

01_9780133491203_ch01.indd 6 12/3/13 11:07 AM

7Large-Scale Java Platform Technical Considerations

Figure 1-2 GC Tuning Knowledge Requirements Increase with Larger JVMs

It is important to keep the following in mind (from left to right in the figure):

 JVMs with a less than 4GB heap size are the most common among workloads today.
The 4GB is a special case because it has the default advantage of using 32-bit address
pointers within a 64-bit JVM space (and so has a very efficient memory footprint).
These require some tuning, but not a substantial amount. This workload type falls
into the realm of category 1 as defined earlier in this chapter. The default GC algo-
rithm on server class machines is adequate. The only time you need to tune these is if
the response time measurements do not suffice. In such cases, you want to follow the
guidance on GC tuning in Chapter 3, “Tuning Large-Scale Java Platforms,” and in
Chapter 6, “Best Practices.”

 The second workload case is still within category 1, but it is probably a serious user
base internal to the organization. In this workload, we typically see heavily used
(1,000 to 10,000 users) enterprise Java web applications. In these types of environ-
ments, GC tuning and slightly larger than 4GB JVMs are the norm. The DevOps
team almost always has decent GC tuning knowledge and has configured the JVM
away from the default GC throughput collector. Here we start to see the use of the
concurrent mark and sweep (CMS) GC algorithms for these types of workloads to
deliver decent response times to the user base. The CMS GC algorithm is offered

01_9780133491203_ch01.indd 7 12/3/13 11:07 AM

8 CHAPTER 1 Introduction to Large-Scale Java Platforms

by the Oracle JVM (formerly Sun JVM). For further details and information about
other GC algorithms within the Oracle JVM or IBM JVM, see Chapter 3 and
 Chapter 6.

 The third workload type could fall into category 2, but it is a unique case within cat-
egory 2 because sometimes the larger JVMs are used because the application cannot
scale out horizontally. Generic category 2 workloads are usually in-memory data-
bases, as mentioned earlier in the chapter. In this category, a deep knowledge of JVM
GC tuning is required. Your DevOps team must be able to articulate all the different
GC collectors and select those most suited for improved throughput (throughput
collectors) (in contrast to latency-sensitive workloads that need CMS GC to deliver
better response times).

 The fourth workload type falls into both category 2 and 3. Here there could be a
large distributed system, where the client enterprise Java applications are consuming
data from the back-end data fabric where a handful or more of in-memory database
JVM nodes are running. Tuning GC at expert level is required here.

Other than having to maintain a very large JVM, you must know the workload choices.
After all, customers often scale the JVM vertically because they believe it is an easy deploy-
ment and that it is best to just leave the existing JVM process intact. Let’s consider some
JVM deployment and usage scenarios (perhaps something in your current environment or
something you have encountered at some point):

 A customer has one JVM process deployed initially. As demand for more applications
to be deployed increases, the customer does not horizontally scale out by creating a
second JVM and VM. Instead, the customer takes a vertical scale-up approach. As a
consequence, the existing JVM is forced to vertically scale and carry many different
types of workloads with varied requirements.

 Some workloads, such as a job scheduler, require high throughput, whereas a
public-facing web application requires fast response time. So, stacking these types
of applications on top of each other, within one JVM, complicates the GC cycle tun-
ing opportunity. When tuning GC for higher throughput, it is usually at the cost of
decreased response time, and vice versa.

 You can achieve both higher throughput and better response time with GC tuning,
but it certainly extends the GC tuning activity unnecessarily. When faced with this
deployment choice, it is always best to split out the types of Java workloads into their
own JVMs. One approach is to run the job scheduler type of workload in its own
JVM and VM (and do the same for the web-based Java application).

 In Figure 1-3, JVM-1 is deployed on a VM that has mixed application workload
types, which complicates GC tuning and scalability when attempting to scale up

01_9780133491203_ch01.indd 8 12/3/13 11:07 AM

9Large-Scale Java Platform Technical Considerations

this application mix in JVM-2. A better approach is to split the web application into
JVM-3 and the job scheduler application into JVM-4 (that is, horizontally scaled
out and with the flexibility to vertically scale if needed). If you compare the vertical
scalability of JVM-3 and JVM-4 versus the vertical scalability of JVM-2 you will find
JVM-3 and JVM-4 always scale better and are easier to tune.

Figure 1-3 Avoiding Mixed Workload Types in the Same JVM

NUMA
Non-Uniform Memory Architecture (NUMA) is a computer memory design used in mul-
tiprocessors, where the memory access time depends on the memory location relative to a
processor. Under NUMA, a processor can access its own local memory faster than nonlocal
memory (that is, memory local to another processor or memory shared between processors).

Understanding NUMA boundaries is critical to sizing VM and JVMs. Ideally, the VM
size should be confined to the NUMA boundaries. Figure 1-4 shows a vSphere host made
of two sockets, and hence two NUMA nodes. The workload shown is that of two vFabric
SQLFire VMs, each VM sized to fit within the NUMA node boundaries for memory and
CPU. If a VM is sized to exceed the NUMA boundaries, it might possibly interleave with
the other NUMA node to fulfill the request for additional memory that otherwise cannot
be fulfilled by the local NUMA node. The figure depicts memory interleaving by the red
arrows (dashed curved arrows show the interleaving), highlighting that this type of mem-
ory interleaving should be avoided because it may severely impact performance.

01_9780133491203_ch01.indd 9 12/3/13 11:07 AM

10 CHAPTER 1 Introduction to Large-Scale Java Platforms

Figure 1-4 Two-Socket Eight-Core vSphere Host with Two NUMA Nodes and One VM on Each
NUMA Node

To calculate the amount of RAM available in each NUMA node, apply the equation in
Formula 1-1.

Formula 1-1 Per-NUMA Node RAM Size (NUMA Local Memory)

For example, if a server has 128GB of RAM configured on it and has two sockets (as
shown in Figure 1-4), this implies that the per-NUMA RAM is 128/2, which equals 64GB.
This is not entirely true, however, because ESX overhead needs to be accounted for. So,
a more accurate approximation results from the equation shown in Formula 1-2. The for-
mula accounts for the ESXi memory overhead (1GB as a constant, regardless of the size of
the server) and a 1% VM memory overhead as 1% of the available memory. The formula
is a conservative approximation, and every VM and workload will vary slightly, but the
approximation should be pretty close to the worst-case scenario.

01_9780133491203_ch01.indd 10 12/3/13 11:07 AM

11Large-Scale Java Platform Technical Considerations

Formula 1-2 Per-NUMA Node RAM (NUMA Local Memory) with ESXi Overhead Adjustment

The following explains the different parts of the formula:

 NUMA Local Memory: The local NUMA memory for best memory throughput and
locality, with VM and ESXi overhead already accounted for

 Total RAM on Host: The amount of physical RAM configured on the physical server

 nVMs: The number of VMs you plan to deploy on the vSphere host

 1GB: The overhead needed to run ESXi

 Number of Sockets: The number of sockets available on the physical server, 2 socket
or 4 socket

NOTE

Formula 1-2 assumes the most pessimistic end of the overhead range, especially as you
increase the number of VMs—clearly, as you add more VMs you will have more overhead.
Despite a lower number of VMs, the approximation of Formula 1-2 is pretty fair and
accurate. Also, this assumes a non-overcommitted memory situation. This formula is bene-
ficial for sizing large VMs, which is when NUMA considerations are most pertinent. When
sizing large VMs, typically you are trying to maintain fewer than a handful of configured
VMs, so this overhead formula accurately applies. In fact, the most optimal configuration for
larger VMs that have memory-bound workloads is one VM per NUMA node. If you try to
apply this formula to a deployment that has more than six VMs configured, say 10 VMs, the
formula can overestimate the amount of overhead needed. More accurately, you can use the
6% rule, which maintains that regardless of the number of VMs, always assume that 6% of
memory overhead is ample, whether you have 10 VMs or 20.

If you don’t have time to crunch through the formula and want to quickly start configur-
ing, assume about 6% of overhead due to memory. There are many times when not all of
this is being used. For example:

Example 1—Using 6% approximation approach: This would imply that if you have a
server which has 128GB of physical RAM (two socket hosts, eight cores on each socket)
and you choose the 6% overhead approach while configuring two VMs on the host, the
total NUMA local memory would be => ((128 * 0.94) – 1) / 2 => 59.7GB per VM avail-
able for memory. Because there are two VMs, the total memory offered to the two VMs is
approximately 59.7 * 2 => 119.32GB.

01_9780133491203_ch01.indd 11 12/3/13 11:07 AM

12 CHAPTER 1 Introduction to Large-Scale Java Platforms

You also can apply the approach in Formula 1-2 as shown in Example 2 that follows:

Example 2—Using Formula 1-2 to calculate NUMA local available memory: Again,
assuming a 128GB host with two sockets (eight cores on each socket) and two VMs to be
configured on it, NUMA local memory = (128 – (128 * 2 * 0.01) - 1) / 2 => 124.44GB.
Note that this is for two VMs. If you decide instead to configure 16 VMs of 1vCPU
(1vCPU = 1 core), then the NUMA local memory per VM would be NUMA local
memory = (128 – (128 * 16 * 0.01) - 1) / 2 => 53.26GB. This probably is overly conserva-
tive, and a more accurate representation would be around the 6% overhead calculation
approach.

For best guidance, the best approximation of overhead is the 6% of total physical RAM
(plus 1GB for ESXi) approach shown in Example 1.

In the preceding example, showing a calculation based on a server having 128GB of RAM,
the true local memory would be ((128 * 0.99) – 1GB)/2 => 62.86GB, which is the maxi-
mum VM size that can be configured. In this case, you can safely configure two VMs of
62.68GB of RAM and eight vCPUs each, because each of the VMs would be deployed on
one NUMA node. Alternatively, you can deploy four VMs if you want to deploy smaller
VMs of 62.86GB / 2 => 31.43GB of RAM and four vCPUs each, and the NUMA schedul-
ing algorithm would still localize the VMs to the local NUMA node.

NOTE

On hyperthreaded systems, VMs with a number of vCPUs greater than the number of
physical cores in a NUMA node but lower than the number of logical processors (logical
processors are usually shown as 2.x of physical cores, but more practically, logical processors
are 1.25x of physical cores) in each physical NUMA node might benefit from using logical
processors with local memory instead of full cores with remote memory. You can configure
this behavior for a specific VM with the numa.vcpu.preferHT flag. For further details,
see http://www.vmware.com/pdf/Perf_Best_Practices_vSphere5.1.pdf and the KB article
kb.vmware.com/kb/2003582.

It is always advisable to start with vCPUs equal to the number of physical cores and
then adjust vCPUs upward when needed, but less than approximately 1.25x of available
physical cores.

To further elaborate on the ESXi NUMA scheduling algorithm, Figure 1-5 shows an
example of two sockets and six cores on each socket of the server.

01_9780133491203_ch01.indd 12 12/3/13 11:07 AM

http://www.vmware.com/pdf/Perf_Best_Practices_vSphere5.1.pdf and the KB articlekb.vmware.com/kb/2003582
http://www.vmware.com/pdf/Perf_Best_Practices_vSphere5.1.pdf and the KB articlekb.vmware.com/kb/2003582

13Large-Scale Java Platform Technical Considerations

Figure 1-5 ESXi NUMA Scheduling on a Two-Socket Six-Core Server

In this figure, there are initially four VMs of two vCPUs and approximately 20GB RAM
on each. The initial ESXi scheduling algorithm will follow a round-robin fashion. First,
step 1 occurs (as shown by the black circle with the number 1), and then the next two
vCPU VMs are scheduled on the next available empty NUMA node, and then so on
(steps 3 and 4) for scheduling the third and fourth VMs. At the point where all four of the
2vCPU 20GB VMs have been scheduled, and as a result of this scheduling, the four VMs
will occupy the four cores on each of the sockets, as shown by red pins in this figure (red
pins are the pins the four 2 vCPU VMs were initially scheduled ESXi). Moments later,
a fifth VM made of four vCPUs and 40GB RAM is deployed, and now ESXi attempts to
schedule this VM across one NUMA node. This is because the VM is 4vCPU and is not
considered a NUMA-wide VM, so all four of its vCPUs will be scheduled on one NUMA
node, even though only two vCPUs are available. What will likely happen in terms of the
NUMA balancing awareness algorithm is that the ESXi scheduler will eventually force one
of the two vCPU VMs to migrate to the other NUMA node in favor of trying to fit the
fifth 4vCPU VM into one NUMA node. The ESXi scheduler behaves like this because it
uses a concept of NUMA client and schedules VMs per NUMA client, where the default
size of the NUMA client is the size of the physical NUMA node. In this case, the default
is 6, so any VM that is 6vCPU and less will be scheduled on one NUMA node because it
fits into one NUMA client. If you want to change this behavior, you would have to force

01_9780133491203_ch01.indd 13 12/3/13 11:07 AM

14 CHAPTER 1 Introduction to Large-Scale Java Platforms

the NUMA client calculation to something more granular. The NUMA client calculation
is controlled by numa.vcpu.maxPerClient, which can be set as Advanced Host Attributes ->
Advanced Virtual NUMA Attributes, and if you were to change this to 2, then effectively
every socket in our example will have three NUMA clients, so each 2vCPU VM will be
scheduled into one NUMA client, and the fifth 4vCPU VM will be scheduled across two
NUMA clients, and potentially across two sockets if need be. You seldom need get to this
level of tuning, but this example illustrates the power of the NUMA algorithm within
vSphere, which far exceeds any nonvirtualized Java platforms.

In general, when a virtual machine is powered on, ESXi assigns it a home node as part of
its initial placement algorithm. A virtual machine runs only on processors within its home
node, and its newly allocated memory comes from the home node as well. Unless a vir-
tual machine’s home node changes, it uses only local memory, avoiding the performance
penalties associated with remote memory accesses to other NUMA nodes. When a virtual
machine is powered on, it is assigned an initial home node so that the overall CPU and
memory load among NUMA nodes remains balanced. Because internode latencies in a
large NUMA system can vary greatly, ESXi determines these internode latencies at boot
time and uses the information when initially placing virtual machines that are wider than
a single NUMA node. These wide virtual machines are placed on NUMA nodes that are
close to each other for lowest memory access latencies. Initial placement-only approaches
are usually sufficient for systems that run only a single workload, such as a benchmark-
ing configuration that remains unchanged as long as the system is running. However, this
approach cannot guarantee good performance and fairness for a datacenter-class system
that supports changing workloads. Therefore, in addition to initial placement, ESXi 5.0
does dynamic migration of virtual CPUs and memory between NUMA nodes for improv-
ing CPU balance and increasing memory locality. ESXi combines the traditional initial
placement approach with a dynamic rebalancing algorithm. Periodically (every two seconds
by default), the system examines the loads of the various nodes and determines whether it
should rebalance the load by moving a virtual machine from one node to another.

This calculation takes into account the resource settings for virtual machines and resource
pools to improve performance without violating fairness or resource entitlements. The
rebalancer selects an appropriate virtual machine and changes its home node to the least
loaded node. When it can, the rebalancer moves a virtual machine that already has some
memory on the destination node. From that point on, the virtual machine allocates mem-
ory on its new home node and runs only on processors in the new home node. Rebalancing
is an effective solution to maintain fairness and ensure that all nodes are fully used. The
rebalancer might need to move a virtual machine to a node on which it has allocated little
or no memory. In this case, the virtual machine incurs a performance penalty associated
with a large number of remote memory accesses. ESXi can eliminate this penalty by trans-
parently migrating memory from the virtual machine’s original node to its new home node.

01_9780133491203_ch01.indd 14 12/3/13 11:07 AM

15Large-Scale Java Platform Technical Considerations

NOTE

In vSphere 4.1/ESXi 4.1, the underlying physical NUMA architecture is not exposed by the
hypervisor to the operating system, and therefore application workloads running on such
VMs cannot take specific advantage of additional NUMA hooks that they may provide.
However, in vSphere5, the concept of vNUMA was introduced, where through configu-
ration you can expose the underlying NUMA architecture to the operating system, and so
NUMA-aware applications can take advantage of it. In Java, the -XX:+UseNUMA JVM
option is available; however, it is compatible only with the throughput GC and not the
CMS GC. Paradoxically, in most memory-intensive cases where NUMA is a huge factor,
latency sensitivity is a big consideration, and therefore the CMS collector is more suitable.
This implies that you cannot use CMS and the -XX:+UseNUMA option together. The
good news is that vSphere NUMA algorithms are usually good enough to provide locality,
especially if you have followed good NUMA sizing best practices—such as sizing VMs to fit
within NUMA boundaries for memory and vCPU perspective.

Most Common JVM Size Found in Production Environments
Having discussed thus far the various JVM sizes that you can deploy (in some cases, very
large JVMs), it is important to keep in mind that the most common JVMs found in data
centers are of 4GB heap size. This may be a fairly busy JVM with 100 to 250 concurrent
threads (actual thread count will vary because it depends on the nature of the workload),
4GB of heap, approximately 4.5GB for the JVM process, 0.5GB for the guest operating
system, and so a total recommended memory reservation for the VM of 5GB with two
vCPUs and one JVM process, as shown in Figure 1-6.

Figure 1-6 Most Common JVM Si ze Found in Production Environments

01_9780133491203_ch01.indd 15 12/3/13 11:07 AM

16 CHAPTER 1 Introduction to Large-Scale Java Platforms

Horizontal Scaling Versus Vertical Scaling of JVMs and VMs
When considering horizontal scaling versus vertical scaling, you have three options, as
Figure 1-7 shows.

Figure 1-7 Horizontal Versus Vertical JVM Scalability Choices

The sections that follow detail the pros and cons of these three options.

Option 1

With Option 1, JVMs are introduced into the Java platform by creating a new VM and
deploying a new JVM on it (hence, a scale-out VM and JVM model).

Option 1 Pros

This option provides the best scalability because the VM and the JVM are scheduled out
as one unit by the ESXi scheduler. It is really the VM that is scheduled by the ESXi, but
because there is only one JVM on this VM, the net effect is that the VM and the JVM are
scheduled as one unit.

This option also offers the best flexibility to shut down any VM and JVM in isolation
without impacting the rest of the Java platform. This is no doubt in relative terms, how-
ever, because most Java platforms are horizontally scalable, and in most cases there are
enough instances to service traffic, even though JVM instances are being shut down. The
relative comparison in terms of more instances having better scalability is based on having
100 JVMs and VMs versus having 150 JVMs and VMs for the exact same system, if for a

01_9780133491203_ch01.indd 16 12/3/13 11:07 AM

17Large-Scale Java Platform Technical Considerations

specific instance you where comparing and contrasting platform design and were trying to
choose between 100 JVM systems versus 150 JVMs, with both cases of 100 and 150 JVMs
having the same net RAM. Clearly, the system with 150 JVMs will have the better flex-
ibility and scalability. In the 150 JVM scenario, because you have more JVMs, it is likely
that the size of the JVM is smaller compared to a system that has 100 JVMs. In this case,
if a JVM from the 150 JVM platform encounters a problem, likely the impact is smaller
because the JVM holds less data than in the 100 JVM scenario. So, the scale-out robust-
ness of the 150 JVMs will prove to be more prudent.

If the system has been refined, the horizontal scalability advantages assumed previously
apply. Refined here means that VM and JVM best practices have been applied based on a
64-bit JVM architecture having a reasonable-size JVM with an approximate minimum of
4GB heap space, and not fragmented around a legacy 32-bit JVM limit of 1GB heap space.
(Some legacy 32-bit JVMs could withstand greater than 1GB, but for practical use, 32-bit
JVMs have a legacy 1GB limit.)

Option 1 Cons

This option is expensive because it leads to having more operating system copies, and
licensing becomes expensive quite quickly. Administering such a system is more expensive
because there are more VMs and JVMs to keep track of.

No technical reason requires you to place one JVM on one VM. The only exception is
in the case of systems that are in-memory databases (like category 2) that require high
throughput memory from the local NUMA node. In those cases, the VMs are sized to fit
within the NUMA node and will have only one JVM on them. Also note that the JVMs in
in-memory databases tend to be quite large, sometimes as big as 128GB, as opposed to cat-
egory 1 JVM sizes (typically 1 to 4GB heap size). In cases such as option 1, however, which
are essentially in category 1 (as defined earlier in this chapter), you have many opportuni-
ties to consolidate the JVMs and eliminate wasteful JVMs and VM instances.

This is a common pattern among legacy 32-bit JVMs, where the 1GB limit of the 32-bit
JVM would have forced Java platform engineers to install more JVM instances to deal with
increases in traffic. The downside here is that you are paying for additional CPU/licenses.
If you consolidate JVMs by migrating to 64-bit JVMs and increasing the heap at the same
time, you will save by having fewer JVMs servicing the same amount of traffic. Of course,
the JVM size will likely increase from, for example, 1GB to 4GB.

Option 2

Option 2 involves scaling up the JVM heap size by consolidating fragmented smaller JVMs
and also as a result consolidate VMs.

01_9780133491203_ch01.indd 17 12/3/13 11:07 AM

18 CHAPTER 1 Introduction to Large-Scale Java Platforms

Option 2 Pros

The pros for using Option 2 are as follows:

 Reduced administration cost due to the lower number of JVMs and VMs

 Reduced licensing cost due to fewer operating system copies

 Improved response times as more transactions are (most likely) now executed within
the same heap spaces, as opposed to requiring marshaling across the network to
other JVMs

 Reduced hardware cost

NOTE

If you look at option 2 in Figure 1-7, it shows that two JVMs (JVM-1A and JVM-2A) were
consolidated from the four JVMs (JVM-1, 2, 3, and 4) of option 1. In this process, the four
VMs were also consolidated into two VMs, as shown in the figure. For example, if JVM-1,
2, 3, and 4 were all of 2GB heap size, each running on VMs of 2vCPU, this implies the total
RAM serviced to the heap, and in turn to the application, is 8GB across all the JVMs. The
total vCPUs across all the VMs is eight vCPUs. Now when consolidating down to two VMs
and two JVMs, the JVMs in option 2 (JVM-1A and JVM-2A) are each of 4GB heap, for a
total of 8GB, and the VMs are two vCPUs each. This implies a total of four vCPUs across
both VMs, a savings of four vCPUs, because originally in option 1 there were four VMs of
two vCPUs each.

It is possible to scale down vCPUs while still maintaining an equal amount of RAM (Java
heap space) because with larger JVM heap spaces, GC can scale vertically fairly well without
having to excessively consume CPU. This is largely workload behavior dependent, and some
workloads may indeed exhibit increased CPU usage when JVMs are scaled up. However,
most category 1 workloads have exhibited a behavior of releasing the unneeded vCPU when
consolidated into a larger JVM heap. 64-bit JVMs are highly capable runtime containers,
and although there is an initial cost of launching one, they do enable you to crunch through
a massive number of transactions that are within much larger heap spaces. When you are
thinking about creating a new JVM, you want to ask the same questions as if you were about
to create a new VM. If someone needs a new VM, a vSphere administrator always asks why
it is needed. Because the JVM is a highly capable machine (just as the VM is a highly capable
compute resource), vSphere administrators and DevOps engineers should always scrutinize
whether the creation of a new JVM is necessary (as opposed to leveraging existing JVM
instances and perhaps increasing the heap space, within reason, to facilitate more traffic).

01_9780133491203_ch01.indd 18 12/3/13 11:07 AM

19Large-Scale Java Platform Technical Considerations

Option 2 Cons

The cons for using Option 2 are as follows:

 Because of the larger-size JVMs, you risk losing more data (when compared with the
case of smaller JVMs in option 1) if a JVM crashes without proper redundancy or
persistence of transactions in place.

 Due to consolidation, you might have fewer high-availability (HA) JVM instances.

 Consolidation is limited to line of business. You do not want to mix applications
from different lines of business into the same JVM; a crash of the JVM would impact
both lines of business if you were to mix two into one JVM.

 Larger JVMs may require some more GC tuning.

Option 3

If option 1 and option 2 are not possible, consider option 3. In this case, you are placing
multiple JVMs on a larger VM. Now JVM-1B and JVM-2B could be JVMs that are consol-
idated copies, like the ones in option 2, or nonconsolidated copies like in option 1. In either
case, you can stack these JVMs on a larger VM, or multiple large VMs for that matter.

Option 3 Pros

The pros for using Option 3 are as follows:

 If the current platform is similar to that in option 1, it might be an advantage,
because of logistical reasons, to keep the current number of JVMs intact in the
deployment, but then consider building larger VMs with multiple JVMs stacked
on them.

 Reduced number of operating system licenses.

 Reduced number of VM instances.

 Reduced administration cost due to having fewer VMs.

 You can have dedicated JVMs for each line of business but can also deploy JVMs
from multiple lines of business on the same VM. You should do this only if the
cost of VM consolidation outweighs the danger of having multiple lines of business
impacted during a VM crash.

 Large VMs makes it possible to have more vCPUs for JVMs. If a VM has two large
JVMs on it from different lines of business, for example, and they peak at different
times, it is likely that all the vCPUs are available to the busy JVM, and then similarly
for the next JVM when its peak arrives.

01_9780133491203_ch01.indd 19 12/3/13 11:07 AM

20 CHAPTER 1 Introduction to Large-Scale Java Platforms

Option 3 Cons

Larger VMs will most likely be required. Scheduling larger VMs may require more tuning
than smaller VMs.

NOTE

Various performance studies have shown that the sweet-spot VM size is two vCPUs to four
vCPUs for category 1 workloads. Category 2 workloads require more than four vCPUs; at
a minimum, four vCPUs may be needed. Remember, though, that scheduling opportunity
from an HA perspective may be diminished. However, category 2 workloads, as in-memory
databases, are mostly fault tolerant, redundant, and disk persistent, and therefore might not
rely as much on VMware HA or automatic Distributed Resource Scheduler (DRS).

Because this option is about trying to consolidate VMs, it is highly likely that JVMs
from different lines of business may be deployed on the same VM. You must manage
this correctly because inadvertent restart of a VM may potentially impact multiple lines
of business.

You can attempt to consolidate JVMs in this case and also stack them up on the same VM;
however, this forces the JVMs to be much larger to fully utilize the underlying memory.
If you configure fewer larger VMs, it literally means that you have VMs with a lot more
RAM from the underlying hardware, and to fully consume this you might need larger JVM
heap spaces. Because of the larger-size JVMs, you risk losing more data if a JVM crashes
without proper redundancy or persistence of transactions in place.

This option might require large vSphere hosts, and larger servers cost more.

Summary
This chapter introduced the concept of large-scale Java platforms and described how they
generally fall into one of three categories:

 Category 1: Large number of JVMs

 Category 2: Smaller number of JVMs with large heap sizes

 Category 3: A combination of category 1 and 2

The chapter also examined the various theoretical and practical limits that exists within
the JVM and outlined various workload types and commonly encountered JVM sizes. The
chapter also discussed the NUMA and the various pros and cons of horizontal scalability,
vertical scalability, JVM consolidation, and VM consolidation.

01_9780133491203_ch01.indd 20 12/3/13 11:07 AM

Index

A
accessing, performance charts, 195
active-active architectures (SQLFire), 57, 60
active memory counter (vCenter), 192
adjusting young generation internal cycle, 72-74
after-events, 47
AlwaysPreTouch JVM confi guration option, 69
AMQP (Advanced Messaging Queuing Protocol),

216
Apache Derby project, 22
application servers

IBM WebLogic, virtualizing, 212
IBM WebSphere Application, 221
ratio of server threads to database, 95
recommendations for vSphere, 219

asynchronous listeners (SQLFire), 32, 52-54
available RAM per NUMA node, calculating, 10-12

B
benchmarks

environment, sizing, 91, 95
establishing for horizontal scalability test, 86-91
establishing for vertical scalability test, 82-83, 86

best practices
category 1

high-level vSphere, 165-166
horizontal scalability, 158-160
inter-tier confi guration, 160-164
vCPU for VM, 149-150
vertical scalability, 156-157
VM memory size, 150-155
VM sizing and confi guration, 148
VM timekeeping, 156

category 2, 166-167
SQLFire, 168-172
SQLFire on vSphere, 173-181

category 3, IBM JVM and Oracle Rockit JVMs,
181-183

global multisite topology (SQLFire), 29-30
peer-to-peer topology (SQLFire), 27
server groups (SQLFire), 34
SQLFire client/server topology, 26

building block VM, 83, 105-106, 148

C
calculating

available RAM per NUMA node, 10-12
number of vFabric SQLFire members, 105-106
VM memory requirements, 84-86

category 1 workloads, 145
best practices

high-level vSphere, 165-166
horizontal scalability, 158-160
inter-tier, 160-164
vCPU for VM, 149-150
vertical scalability, 156-157
VM memory size, 150-155
VM sizing and, 148
VM timekeeping, 156

category 2 workloads, 27, 145
best practices, 166-167

SQLFire, 168-172
SQLFire on vSphere, 173-181

sizing SQLFire Java platforms
entities, 97-100
memory, 100, 104-105
number, 105-106

category 3 workloads, 145
best practices, IBM JVM and Oracle, 181-183
client/server topology (SQLFire), 25

client/server topology (SQLFire), 24
best practices, 26
client tier, 25
server tier, 25

client tier (SQLFire client/server topology), 25
clusters, 147-148, 158-160
CMS (concurrent mark sweep), JVM confi guration

options, 64-66
CMSInitiatingOccupancyFraction=75 JVM

confi guration option, 67
collecting metrics from vCenter, 191-193
colocation (SQLFire), 38-39
comparing SQLFire performance versus RDBMS,

121-123
CPU utilization, 125
response time, 124
scalability, 124

10_9780133491203_index.indd 233 12/3/13 11:08 AM

234 compute-resource consolidation

F
FAQs, 206-228
fast data, 112
features of SQLFire, 22

asynchronous listeners, 52-54
colocation, 38-39
DBSynchronizer, 54-56
DDLUtils, 57
disk persistence, 39-41
listeners, 47-49
partitioning, 31, 34-37
redundancy, 31-32, 37-38
RowLoader, 46-47
server groups, 30-34
transactions, 41-46
writers, 50-51

fl exibility in large-scale Java platforms, 3

G
GC (garbage collection)

CMS/parallel GC confi guration options, 64-66
AlwaysPreTouch JVM confi guration option,

69
CMSInitiatingOccupancyFraction=75 JVM

confi guration option, 67
DisableExplicitGC JVM confi guration

option, 69
MaxTenuringThreshold=15 JVM

confi guration option, 68
OptimizeStringConcat JVM confi guration

option, 69
ParallelGCThreads JVM confi guration

option, 68-69
ScavengeBeforeFullGC JVM confi guration

option, 67
SurvivorRatio JVM confi guration option, 67
TargetSurvivorRatio=80 JVM confi guration

option, 67
UseBiasedLocking JVM confi guration option,

67
UseCMSInitiatingOccupancyOnly JVM

confi guration option, 67
UseCompressedOops JVM confi guration

option, 69
UseCompressedStrings JVM confi guration

option, 69
UseConcMarkSweepGC JVM confi guration

option, 66
UseNUMA JVM confi guration option, 69
UseParNewGC JVM confi guration option, 67
UseStringCache JVM confi guration option,

69
-Xmn21g JVM confi guration option, 66

compute-resource consolidation, 2-3
consolidation, 208
consumed memory counter (vCenter), 192
cookies, troubleshooting SYN cookies, 179
CPU

HT, 83, 224
thread ratios, establishing, 93
utilization on SQLFire, comparing with RDBMS,

125
vCenter performance charts, 193
vCPU for VM best practices, 149-150

D
daily transactional data, selecting, 97
data fabric, identifying data size for category 2

workloads, 100, 104-105
DB server tier, 190
DBSynchronizer, 32
DBSynchronizer (SQLFire), 54-57
DDUtils, 32
deploying new environments

benchmark, establishing, 82-91
production environment, sizing, 95
workload profi le, establishing, 80-81

DisableExplicitGC JVM confi guration option, 69
disk charts (vCenter), 194
disk persistence (SQLFire), 39-41
downloading Sprint Travel, 122
DRS (VMware Distributed Resource Scheduler), 218

E
EJBs (Enterprise JavaBeans), 205
elasticity in large-scale Java platforms, 3
entity groups, 97

identifying for category 2 workloads, 97-100
establishing

benchmarks
for horizontal scalability test, 86-91
for vertical scalability test, 82-83, 86

building block VM, 105-106
thread ratios, 93
workload profi le, 80-81

ESXi 3, comparing performance with ESXi 4.1 and
ESXi 5, 139-141

ESXi 4.1, comparing performance with ESXi 3 and
ESXi 5, 139-141

ESXi 5, 6
comparing performance with ESXi 3 and ESXi

4, 139-141
NUMA scheduling algorithm, 13-14

esxtop, troubleshooting techniques, 195, 198
example of SQLFire sizing, 112, 115-119

10_9780133491203_index.indd 234 12/3/13 11:08 AM

235JVMs (Java virtual machines)

features, 22, 32
global multisite topology, 28-30
listeners, 47-49
low-end volume, 24
partitioning, 31, 34-37
peer-to-peer topology, 27
redundancy, 31, 37-38
redundancy zones, 28
RowLoader, 46-47
server groups, 30-34
share-nothing persistence mechanism, 22
transactions, 41-46
writers, 50-51

inspecting thread dumps, 204
internal memory sections of HotSpot JVM, 106
inter-tier confi guration best practices, 160-164

J-K
Java application server tier, 190
Java platforms

coding practices on vSphere, 217
compute-resource consolidation, 2-3
elasticity, 3
fl exibility, 3
JVM instance consolidation, 3
memory, troubleshooting, 202-203
NUMA, 9, 12
technical considerations, 4
theoretical and practical limits of, 4-6
thread contentions, troubleshooting, 203-204
troubleshooting, 198, 201
tuning knowledge requirements, 7-9

JConsole, troubleshooting Java, 198-201
JVM Perm Size, 107
JVMs (Java virtual machines)

compute-resource consolidation, 2-3
confi guration options

AlwaysPreTouch, 69
CMSInitiatingOccupancyFraction=75, 67
DisableExplicitGC, 69
MaxTenuringThreshold=15, 68
OptimizeStringConcat, 69
ParallelGCThreads, 68-69
ScavengeBeforeFullGC, 67
SurvivorRatio, 67
TargetSurvivorRatio=80, 67
UseBiasedLocking, 67
UseCMSInitiatingOccupancyOnly, 67
UseCompressedOops, 69
UseCompressedStrings, 69
UseConcMarkSweepGC, 66
UseNUMA, 69
UseParNewGC, 67

policy selection, 184
for IBM JVM, 186
for Oracle HotSpot JVM, 184-185
for Oracle jRockit, 187

throughput GC, 63-64
tuning

old generation tuning, 76
survivor spaces tuning, 78
young generation tuning, 71-74

GemFire, 22
global multisite topology (SQLFire), 28

best practices, 29-30
granted memory counter (vCenter), 192

H
HA (high availability), 218
heap, off-heap section, 84, 107
high-level vSphere best practices, 165-166
horizontal scalability

benchmark for testing, establishing, 86-91
best practices, 158-160
of JVMs and VMs, 16-20
vSphere features, 218

host clusters, best practices, 158-160
host CPU utilization, 224
HotSpot, GC policy selection, 184-185
HotSpot JVM, internal memory sections, 106
HT (hyperthreading), 12, 83, 224

I
IBM JVM

best practices, 181-183
GC policy selection, 186

IBM WebLogic application servers, virtualizing, 212
IBM WebSphere

customer references, 222
licensing, 221
support for, 221

identifying
entity groups for category 2 workloads, 97-100
memory size of data fabric for category 2, 100,

104-105
number of required SQLFire members, 105-106

in-memory data management systems, SQLFire, 22
active-active architectures, 57, 60
Apache Derby project, 23
asynchronous listeners, 52-54
client/server topology, 24-26
colocation, 38-39
DBSynchronizer, 54-56
DDLUtils, 57
disk persistence, 39-41
enterprise data fabric system, 24

10_9780133491203_index.indd 235 12/3/13 11:08 AM

236 JVMs (Java virtual machines)

N
network performance charts (vCenter), 194
new environments, deploying

benchmark, establishing, 82-83, 86-91
production environment, sizing, 95
workload profi le, establishing, 80-81

NUMA (Non-Uniform Memory Architecture), 9, 12,
139-140

available RAM per node, calculating, 10-12
ESXi NUMA scheduling algorithm, 13-14
large VMs and JVMs, sizing, 108-111
vNUMA, 15, 110

NUMA node interleave, 105

O
off-heap section, 84
off-the-heap area, 107
old generation tuning (GC), 76
Olio performance study, 127, 131
opening support-request tickets, 191
OptimizeStringConcat JVM confi guration option,

69
Oracle Hotspot JVM, GC policy selection, 184-185
Oracle jRockit JVMs

best practices, 181-183
GC policy selection, 187

Oracle WebLogic. See WebLogic
OutOfMemory error (Java), troubleshooting, 202

P
parallel GC

AlwaysPreTouch JVM confi guration option, 69
CMSInitiatingOccupancyFraction=75 JVM

confi guration option, 67
DisableExplicitGC JVM confi guration option, 69
MaxTenuringThreshold=15 JVM confi guration

option, 68
OptimizeStringConcat JVM confi guration

option, 69
ParallelGCThreads JVM confi guration option,

68-69
ScavengeBeforeFullGC JVM confi guration

option, 67
SurvivorRatio JVM confi guration option, 67
TargetSurvivorRatio=80 JVM confi guration

option, 67
UseBiasedLocking JVM confi guration option, 67
UseCMSInitiatingOccupancyOnly JVM

confi guration option, 67
UseCompressedOops JVM confi guration option,

69
UseCompressedStrings JVM confi guration

option, 69

UseStringCache, 69
-Xmn21g, 66

horizontal versus vertical scaling, 16-20
HotSpot JVMs, internal memory sections, 106
IBM

best practices, 181-183
GC policy selection, 186
policy selection, 186

instance consolidation, 3
most common size in production environments,

15
Oracle HotSpot, GC policy selection, 184-185
Oracle Rockit, best practices, 181-183
sizing, 108-111, 227-228
stacking, 83

L
large JVMs, NUMA implications for sizing, 108-111
licensing, 221
listeners (SQLFire), 47-49
load balancer tier, 190
load profi le

establishing, 80-81
properties, 80-81

loaders, RowLoader, 46
logical processors on hyperthreaded systems, 12

M
MaxTenuringThreshold=15 JVM confi guration

option, 68
memory

HotSpot JVM, internal memory sections, 106
interleaving, 10
Java, troubleshooting Java, 202-203
memory size of data fabric, determining for

category, 100, 104-105
NUMA, 9, 12

available RAM per node, calculating, 10-12
ESXi NUMA scheduling, 13-14
large VMs and JVMs, sizing, 108-111
vNUMA, 15, 110

off-the-heap area, 107
VM memory size best practices, 150-155
VM requirements, calculating, 84-86

memory counters (vCenter), 192
metrics

collecting from vCenter, 191-193
esxtop, 195, 198

migration
phases for tiers, 220
SMA, 205-207

monitoring system, tuning, 225-226
multipass collector, 64

10_9780133491203_index.indd 236 12/3/13 11:08 AM

237SpringTrader performance study

Rockit, best practices, 181-183
Rosenberg, Harold, 127
RowLoader (SQLFire), 46-47

S
scalability

benchmarking environment, sizing, 91, 95
horizontal scalability

best practices, 158-160
testing, 86-91
vSphere features, 218

JVMs and VMs, 16-20
production environment, sizing, 95
SQLFire

comparing with RDBMS, 124
sizing example, 112, 115-119

vertical scalability
best practices, 156-157
testing, 82-83, 86
vSphere features, 218

ScavengeBeforeFullGC JVM confi guration option,
67

selecting
daily transactional data, 97
GC policies, 184

IBM JVM, 186
Oracle HotSpot JVM, 184-185
Oracle jRockit, 187

server groups (SQLFire), 30-34
server tier, SQLFire client/server topology, 25
shared-nothing persistence mechanism (SQLFire), 22
sizing

benchmarking environment, 91, 95
category 1 workloads, VM sizing and

confi guration, 148
JVM, 227-228
large VMs and JVMs, NUMA implications,

108-111
production environment, 95
SQLFire Java platforms

category 2 workloads, 97-100, 104-106
sizing example, 112, 115-119

SMA (Spring Migration Analyzer), 205-207
Spring Framework, 214
Spring Integration, 215
Spring Tools Suite, 213
Spring Travel

comparing SQLFire performance versus
RDBMS, 121-125

downloading, 122
SpringTrader performance study, 131-132

application and data tier, 133-137
results of, 137

UseConcMarkSweepGC JVM confi guration
option, 66

UseNUMA JVM confi guration option, 69
UseParNewGC JVM confi guration option, 67
UseStringCache JVM confi guration option, 69
-Xmn21g JVM confi guration option, 66

ParallelGCThreads JVM confi guration option,
68-69

partitioning (SQLFire), 31, 34-37, 99
peer-to-peer topology (SQLFire), 27
performance

ESXi 3, comparing with ESXi 4.1 and ESXi 5,
139-141

GC tuning
old generation tuning, 76
survivor spaces tuning, 78
young generation tuning, 71-74

Java applications on vSphere, 207
large-scale Java platforms, 4, 7-9
NUMA node interleave, 105
Olio performance study, 127, 131
SpringTrader performance study, 131-132

application and, 133-137
results of, 137

SQLFire, comparing with RDBMS, 121-125
vFabric Reference Architecture, 210-211
vSphere 5, enhancements to, 142-143

policies (GC), selecting, 184
IBM JVM, 186
Oracle HotSpot JVM, 184-185
Oracle jRockit JVM, 187

pools, best practices, 158-160
practical sizing limits of Java platforms, 4-6
production environment, sizing, 95
properties of load profi le, 80-81

Q-R
queries, entity groups, 97

RAM
available RAM per NUMA node, calculating,

10-12
theoretical and practical sizing limits of Java, 5

RDBMS performance, comparing to SQLFire,
121-123

CPU utilization, 125
response time, 124
scalability, 124

redundancy (SQLFire), 31, 37-38
redundancy zones (SQLFire), 28
resource pools, best practices, 158-160
response time of SQLFire, comparing with RDBMS,

124
resxtop vCLI reference, 198

10_9780133491203_index.indd 237 12/3/13 11:08 AM

238 SQL queries, entity groups

thread contentions, troubleshooting Java, 203-204
thread dumps, inspecting, 204
thread ratios, establishing, 93

throughput GC, 63-64
tiers

inter-tier confi guration, best practices, 160-164
migration phases, 220
virtualizing, 220

timekeeping, VM timekeeping best practices, 156
topologies (SQLFire)

client/server topology, 24
best practices, 26
client tier, 25
server tier, 25

global multisite topology, 28-30
peer-to-peer topology, 27
redundancy zones, 28

transactions (SQLFire), 41-46
troubleshooting

collecting metrics from vCenter, 191-193
CPUvCenter performance charts, 193
esxtop, 195, 198
Java, 198, 201

memory, 202-203
thread contentions, 203-204

performance charts, accessing, 195
support-request tickets, opening, 191
vCenter

disk usage charts, 194
network performance charts, 194

tuning
GC

old generation tuning, 76
survivor spaces tuning, 78
young generation tuning, 71-74

knowledge requirements for large-scale Java
platforms, 7-9

monitoring system, 225-226

U
UseBiasedLocking JVM confi guration option, 67
UseCMSInitiatingOccupancyOnly JVM

confi guration option, 67
UseCompressedOops JVM confi guration option, 69
UseCompressedStrings JVM confi guration option,

69
UseConcMarkSweepGC JVM confi guration option,

66
UseNUMA JVM confi guration option, 69
UseParNewGC JVM confi guration option, 67
UseStringCache JVM confi guration option, 69

SQL queries, entity groups, 97
SQLFire, 22, 209-211, 216

active-active architectures, 57, 60
Apache Derby project, 23
asynchronous listeners, 52-54
best practices, 166-172
client/server topology, 24

best practices, 26
client tier, 25
server tier, 25

colocation, 38-39
DBSynchronizer, 54-56
DDLUtils, 57
disk persistence, 39-41
enterprise data fabric system, 24
features, 22, 32
global multisite topology, 28-30
listeners, 47-49
low-end volume, 24
number of members, calculating, 105-106
on vSphere best practices, 173-181
partitioning, 31, 34-37
peer-to-peer topology, 27
performance, comparing with RDBMS, 121-125
redundancy, 31, 37-38
redundancy zones, 28
RowLoader, 46-47
server groups, 30-34
shared-nothing persistence mechanism, 22
sizing Java platforms, category 2 workloads,

97-100, 104-106
transactions, 41-46
writers, 50-51

stacking, JVM stacking, 83
statistics, viewing performance in vCenter, 195
support for IBM WebSphere Application Server, 221
support for VMware, 209
support for WebLogic, 221
support-request tickets, opening, 191
survivor spaces tuning (GC), 78
SurvivorRatio JVM confi guration option, 67
SYN cookies, troubleshooting, 179

T
TargetSurvivorRatio=80 JVM confi guration option,

67
technical considerations, large-scale Java platforms, 4
technology tiers, 189-190
theoretical sizing limits of Java platforms, 4-6
threading

HT, 83, 224

10_9780133491203_index.indd 238 12/3/13 11:08 AM

239young generation tuning (GC)

VMware vCenter Site Recovery Manager, 220
vNUMA, 15, 110
vSphere

application servers, recommendations for, 219
high-level vSphere, best practices, 165-166
Java applications

horizontal scalability, 218
performance, 207
vertical scalability, 218

Java coding practices, 217
licensing, 221
performance, 209
troubleshooting with esxtop, 195, 198
WebLogic, running, 219

vSphere 5, performance enhancements, 142-143

W
web server tier, 190
WebLogic, 219

licensing, 221
support for, 221
VMware customer references, 222

workloads
category 1, 145

high-level vSphere best practices, 165-166
horizontal scalability best practices, 158-160
inter-tier confi guration best practices, 160-164
vCPU for VM best practices, 149-150
vertical scalability best practices, 156-157
VM memory size best practices, 150-155
VM sizing and confi guration best practices,

148
VM timekeeping best practices, 156

category 2, 27, 145, 166-167
sizing SQLFire Java platforms, 97-100,

104-106
SQLFire best practices, 166-172
SQLFire on vSphere best practices, 173-181

category 3, 145
client/server topology (SQLFire), 25
IBM JVM and Oracle Rockit JVM, 181-183

Olio performance study, 127, 131
profi le, establishing, 80-81
properties, 80-81
SpringTrader performance study, 131-137

writers (SQLFire), 32, 50-51

X-Y-Z
-Xmn, adjusting young generation internal cycle,

72-74
-Xmn21g JVM confi guration option, 66

young generation tuning (GC), 71-74

V
vCenter

CPU performance charts, 193
disk usage charts, 194
memory counters, 192
metrics, collecting, 191-193
network performance charts, 194

vCPU for VM best practices, 149-150
vertical scalability

best practices, 156-157
JVMs and VMs, 16-20
tests, establishing benchmark for, 82-83, 86
vSphere features, 218

vFabric
Application Director, 217
Data Director, 217
RabbitMQ, 216
Spring Framework, 214
Spring Integration, 215
Spring Tools Suite, 213
SQLFire. See SQLFire
tc Server, 215
vPostgres, 216
Web Server, 215

vFabric EM4J (Elastic Memory for Java), 215
vFabric Reference Architecture, 110, 210-211
viewing performance statistics, 195
virtualizing WebLogic application servers, 212
VisualVM, 201
vMA (vSphere Management Assistant), 198
VMotion, 142
VMs (virtual machines), 3

building block VM, 83
category 1 workloads

high-level vSphere best practices, 165-166
horizontal scalability best practices, 158-160
inter-tier confi guration, 160-164
sizing and confi guration, 148
vCPU for VM best practices, 149-150
vertical scalability best practices, 156-157
VM memory size best practices, 150-155
VM timekeeping best practices, 156

category 2 Java workloads, 27, 145
best practices, 166-181
sizing SQLFire Java platforms, 97-100,

104-106
category 3 workloads, 145, 181-183
client/server topology (SQLFire), 25
memory requirements, calculating, 84-86
number of JVMs for, calculating, 223
scaling, 223
sizing, NUMA implications, 108-111

VMware support, 209

10_9780133491203_index.indd 239 12/3/13 11:08 AM

	Contents
	Preface
	Chapter 1 Introduction to Large-Scale Java Platforms
	Large-Scale Java Platform Categories
	Large-Scale Java Platform Trends and Requirements
	Compute-Resource Consolidation
	JVM Instance Consolidation
	Elasticity and Flexibility
	Performance

	Large-Scale Java Platform Technical Considerations
	Theoretical and Practical Limits of Java Platforms
	NUMA
	Most Common JVM Size Found in Production Environments
	Horizontal Scaling Versus Vertical Scaling of JVMs and VMs

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W
	X-Y-Z

