
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780133410945
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780133410945
https://plusone.google.com/share?url=http://www.informit.com/title/9780133410945
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780133410945
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780133410945/Free-Sample-Chapter

iOS
UICollectionView:

The Complete
Guide

The Addison-Wesley Mobile Programming Series is a collection of digital-only
programming guides that explore key mobile programming features and topics

in-depth. The sample code in each title is downloadable and can be used in your
own projects. Each topic is covered in as much detail as possible with plenty of
visual examples, tips, and step-by-step instructions. When you complete one of
these titles, you’ll have all the information and code you will need to build that
feature into your own mobile application.

Visit informit.com/mobile for a complete list of available publications.

Addison-Wesley Mobile Programming Series

Make sure to connect with us!
informit.com/socialconnect

iOS
UICollectionView:

The Complete
Guide

Ash Furrow

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

iOS UICollectionView: The Complete Guide
Copyright © 2013 by Pearson Education, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the pub-
lisher was aware of a trademark claim, the designations have been printed with initial capi-
tal letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no ex-
pressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited re-
production, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use
material from this work, please submit a written request to Pearson Education, Inc., Per-
missions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you
may fax your request to (201) 236-3290.

ISBN-13: 978-0-13-341094-5
ISBN-10: 0-13-341094-3

Acquisitions
Editors
Trina MacDonald
Angie Doyle
Development
Editor
Sheri Cain
Managing Editor
Kristy Hart
Senior Project
Editor
Jovana Shirley
Copy Editor
The Wordsmithery
LLC
Proofreader
Sarah Kearns
Technical Editor
Richard Wardwell
Publishing
Coordinator
Olivia Basegio
Cover Designer
Chuti Prasertsith

Contents at a Glance
Preface

Chapter 1: Understanding Model-View-Controller on iOS
Basics of the Application Lifecycle
How to Use MVC
MVC and UICollectionView

Chapter 2: Displaying Content Using UICollectionView
Setting Up Using Code and Storyboards
UIScrollView: A Brief Overview
UICollectionViewCell Reuse: How and Why
Displaying Content to Users
Case Study: Evaluating Performance of UICollectionView

Chapter 3: Contextualizing Content
Supplementary Views
Providing Supplementary Views
Responding to User Interactions
Providing Cut/Copy/Paste Support

Chapter 4: Organizing Content with UICollectionViewFlowLayout
What Is a Layout?
Subclassing UICollectionViewFlowLayout
Laying Out Items with Custom Attributes
Going Beyond Grids
UITableView: UICollectionView’s Daddy

Chapter 5: Crafting Custom Layouts Using UICollectionViewLayout
Subclassing UICollectionViewLayout
Animating UICollectionViewLayout Changes
Stacking Layouts

Chapter 6: Adding Interactivity to UICollectionView
Basic Gesture Recognizer
Responding to Taps
Pinch and Pan Support

Acknowledgments
I want to thank Angie Doyle and Trina MacDonald at Pearson Education for contacting
me about writing this book. I was planning on writing an ebook about something, but
with their guidance and resources, I know this book is way more awesome than any-
thing I could have done on my own.

Rich Wardwell has been a wonderful technical editor, offering comprehensive ad-
vice concerning clarity of both my code and my prose.

I am a strong believer in the open-source community, and this book relies on some
open-source software. Some of it I wrote myself, but some I didn’t. I’d like to thank
Mark Pospesel for his contributions to GitHub
(https://github.com/mpospese/IntroducingCollectionViews) in “Introducing UICollec-
tionViews.” Mark specializes in mathematics, and while writing this book, it’s been
great to be able to rely on his expertise.

Speaking of the open-source community, no book discussing UICollectionView
would be complete without a tip of the hat to Peter Steinberger’s work on PSTCollec-
tionView (https://github.com/steipete/PSTCollectionView), a 100-percent API-
compatible replacement for UICollectionView that offers backward compatibility with
iOS 4.3+. Most of the techniques discussed in this book are directly applicable to
PSTCollectionView, and the project is advancing every day. If you need to support old-
er versions of iOS, use PSTCollectionView.

Finally, I could not have completed this book without the support of my wife. Her
constant prodding about deadlines made sure I was only a little late most of the time. I
am lucky to have such a supportive partner who understands and encourages my com-
pulsion to create and share.

https://github.com/mpospese/IntroducingCollectionViews
https://github.com/steipete/PSTCollectionView

About the Author
Ash Furrow has been developing iOS applications since 2009. He’s made several of
his own applications available in the App Store, and he headed the iOS team at 500px
to ship its critically acclaimed app. Now he creates amazing products with Teehan+Lax.

When he’s not busy writing books or blog posts (http://ashfurrow.com/), Ash enjoys
photography and roasting his own coffee.

http://ashfurrow.com/

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator. We val-
ue your opinion and want to know what we’re doing right, what we could do better,
what areas you’d like to see us publish in, and any other words of wisdom you’re will-
ing to pass our way.

You can email or write me directly to let me know what you did or didn’t like about
this book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this
book, and that due to the high volume of mail I receive, I might not be able to reply to
every message.

When you write, please be sure to include this book’s title and author as well as your
name and phone or email address. I will carefully review your comments and share
them with the author and editors who worked on the book.

Email: trina.macdonald@pearson.com
Mail: Reader Feedback
 Addison-Wesley’s Developer’s Library
 800 East 96th Street
 Indianapolis, IN 46240 USA

Preface

At WWDC 2012, Apple unveiled UICollectionView, enabling a new way for
apps to render content to users. Collection views are a content- and layout-
agnostic tool for developers to display content in apps. User interfaces created
with collection views are some of the most immersive, distinctive interfaces in
iOS applications.

However, the power afforded to developers by collection views is balanced
by the complexity of using them. As the saying goes, Cocoa makes common
things easy and uncommon things possible. UICollectionView embodies this sen-
timent.

I said earlier that collection views are layout-agnostic, and that’s true: De-
velopers write their own layouts for collection views to use to organize their
content on the screen. Luckily, Apple included a sample layout that displays
grids, a common request among developers.

How to Use This Book
This book is meant to tell a story; each chapter builds upon the last one to guide
readers through every nook and cranny of UICollectionView. I strongly encour-
age readers to read each chapter in sequence and follow along with the code
samples.

The first chapter makes sure that readers have a common vocabulary when
discussing the organization of code in iOS applications. Even if you’re a sea-
soned developer, it’s worth a look just to make sure you’re on the same page as I
am.

The code provided with this book is as valuable as the explanations in the
chapters of why the code is written the way it is.

All of the code that appears in this book can be downloaded at
http://ashfurrow.com/uicollectionview-the-complete-guide/.

http://ashfurrow.com/uicollectionview-the-complete-guide/

Who This Book Is For
This book is for intermediate to advanced iOS developers who want to take full
advantage of UICollectionView. If you’re trying to write your first-ever iOS ap-
plication, this book probably isn’t for you. I've written this book with the as-
sumption that you understand the concepts of objects and view hierarchies, as
well as basic Objective-C syntax.

Organization of This Book
This book is organized into six chapters to guide readers through a comprehen-
sive description of every aspect of collection views:

▪ Chapter 1, “Understanding Model-View-Controller on iOS,” briefly introduces
the MVC paradigm of application architecture that’s used throughout the remainder
of the book.

▪ Chapter 2, “Displaying Content Using UICollectionView,” introduces readers to
UICollectionView with some basic examples using .xib files and storyboards, as
well as view setup using only code. This chapter ends with a case study on
application performance tuning.

▪ Chapter 3, “Contextualizing Content,” builds on the basics of cell use from
Chapter 2 to explain how to contextualize content for users by using supplementary
views. The chapter explores the UICollectionViewDataSource and
UICollectionViewDelegate protocols as well.

▪ Chapter 4, “Organizing Content with UICollectionViewFlowLayout,” introduces
readers to the idea of creating their own custom layouts while relying on existing
logic in UICollectionViewFlowLayout. The sample code from Chapter 3 is
augmented with decoration views, and custom collection view attributes are used to
customize cell layout. The chapter ends with a look at a Cover Flow-esque layout.

▪ Chapter 5, “Crafting Custom Layouts Using UICollectionViewLayout,” explains
to readers who understand subclassing flow layouts that they can subclass
UICollectionViewLayout directly for incredibly custom layouts. The chapter also
covers changing layouts with animation support, as well as provides some further
examples on how to use supplementary views and decoration views with completely
custom layouts.

▪ Chapter 6, “Adding Interactivity to UICollectionView,” is the crown jewel of
this book. It looks back at all the previous chapters’ code samples to augment them
with interactivity, mostly using gesture recognizers.

Special Thanks

I want to thank Mark Pospesel for his work in the open-source community, specifically his con-
tributions to “Introducing UICollectionViews” available on GitHub:
https://github.com/mpospese/IntroducingCollectionViews. A lot of the math in the later chap-
ters is taken from Mark’s code. This book would not be as awesome if it weren’t for Mark's open
source contributions.

https://github.com/mpospese/IntroducingCollectionViews

This page intentionally left blank

1
Understanding

Model-View-Controller
on iOS

Before you dive into UICollectionView, you should get familiar with some of the
conventions and terms used in this book. The book starts with the basics of the iOS
application lifecycle and then discusses the Model-View-Controller (MVC) paradigm. Even
if you’re an experienced iOS developer already familiar with these topics, I encourage you
to read this chapter to make sure that you're on the same page (or screen, so to speak) that I
am while you’re reading the rest of this book.

Basics of the Application Lifecycle
The iOS application lifecycle is a little different from typical native applications on other
platforms (although recent changes to OS X show Apple is interested in making the iOS
lifecycle the norm). Developers no longer have hard-and-fast rules for when their
applications are terminated, suspended, and so on. Let’s start with a simple scenario to
describe a typical application lifecycle.

The user has just turned on his phone and no applications are running except for those that
belong to the operating system. Your application is not running. After the user taps your
app’s icon, Springboard—the part of the OS that operates the Home screen of iOS—
launches your app. Your app, and the shared libraries it needs to execute, are loaded into
memory while Springboard animates your Default.png on the screen. Eventually, your
app begins execution, and your application delegate receives the appropriate notification.
When your application is running and in the foreground, it is in the active state.

On iOS, users tend to only use any given application for a few seconds before returning
their phones to their pockets. After the user has put away your app by pressing the Home

button on her iPhone or iPad, your application enters the background state. Typically,
apps have 10 seconds to complete any database saves or other long-running tasks (though
applications can request additional time from the OS). When all the background processing
is complete, the application finally becomes suspended. While suspended, applications
remain in memory but may not execute code. The state of your application is persisted. If
the user opens your application while it is suspended, it begins execution exactly where it
left off. If memory becomes low, the OS can kill your app while it is in the suspended state.
The user can also manually terminate your app from the multitasking tray. Once terminated,
applications return to their initial state of not running.

But wait, it gets more complicated! If the user receives a calendar alert, opens the
multitasking tray, or gets a phone call, your application can be put into the inactive state.
Your application is still running, but it is no longer the foremost thing the user interacts
with. For example, games pause themselves. As an application developer, you need to be
aware of this and use it as an indication that the user might leave your application soon.

The user can open your application without tapping its icon on the Home screen. If your
application receives local or push notifications, or if it is registered for custom URL scheme
handling, the user can open it in any number of ways.

The application lifecycle is important to understand for all iOS developers who want to
make enriched, immersive experiences. These types of applications are exactly what
UICollectionView is great for, so no comprehensive discussion of UICollectionView
would be complete without a summary of the application lifecycle.

If your app enters the inactive state, stop updating your interface. It would be disconcerting
for a user to see your collection-view contents move about while he’s deciding whether to
view the details of an appointment that has popped up over your application. Likewise,
don’t update your app’s interface while the application is in the background. The state of
the user interface should remain fixed between the switch from active to background and
back to active.

How to Use MVC
MVC is not a difficult concept, but there are two main reasons for emphasizing its
importance in iOS:

▪ MVC is used by CocoaTouch (and Cocoa on OS X). If you adhere to the same
paradigm as the frameworks used for writing all iOS applications, your code will
flow well and not clash with the built-in classes, including UICollectionView.

▪ MVC is generally a good framework, and using it will help you make well-written,
maintainable apps.

Now that you know why MVC is important, it's time to look at what MVC is. Figure 1.1
shows the basics of MVC; strong relationships are represented with solid lines, and weak
relationships are represented by dashed ones. Strong and weak relationships indicate to the

compiler how to manage memory and are important to avoid memory leaks, which would
eventually lead to the app being terminated.

Figure 1.1 Basics of MVC

At the heart of MVC is the controller object. The controller is a View Controller—as in
UIViewController—and it controls the view. It maintains a strong relationship to this
view, which is what is presented to the user on the screen. The controller also maintains a
strong relationship to the model. The model represents data that is represented in the view.
If your view ever has a reference to your model, or vice versa, you’re doing it wrong. This
book uses MVC and you should, too.

Most of the code in any given application resides in the controller; controllers mediate the
interactions between views and models, which is why the code in controllers is often
referred to as “glue code.”

What sort of interactions does a controller mediate? Well, if the view contains a button,
then the view controller is notified when the user taps that button. Typically, user
interactions trigger actions to modify, create, or delete models belonging to the controller.
The controller receives the user interaction from the view, updates the model, and then
updates the view to reflect the changes made to the model.

Sometimes, the model changes without user interaction. For example, consider a view that
displays a large JPEG, which is being downloaded. When the download completes, the
controller should be notified so it can update the view. On iOS, you have a few different
choices for how to notify the controller. My favorite is Key-Value Observation (KVO).
Controllers can register themselves as observers on model objects so they are notified
whenever the model’s properties are changed. Other ways for models to interact with
controllers on iOS include NSNotificationCenter, delegation, and
NSFetchedResultsController. I would eschew NSNotificationCenter for model-
controller interaction in favor of NSFetchedResultsController or KVO. Although this
book doesn’t discuss Core Data, UICollectionView works very well with
NSFetchedResultsController in a similar way to UITableViewController.

This last example demonstrates a gaping hole in MVC: Where does the network code go?
As a responsible iOS developer, you should keep the view controller to only mediating the
interactions between the view and the model. If that’s the case, then it shouldn’t be used to
house the network access code. As discussed in Chapter 6, "Adding Interactivity to
UICollectionView," the network code should be placed outside of the typical MVC
pyramid. Network access should not involve the view whatsoever, but it can sometimes
involve the model.

Well, that’s mostly true. In fact, a common paradigm for fetching details about a model
from an application programming interface (API) involves Grand Central Dispatch blocks.
A block lets developers treat anonymous functions as first-class Objective-C objects. These
blocks can be invoked later. Controllers can start a network request and pass the network-
fetching object a callback block that updates the view. Technically, the network code has an
indirect reference to the view, but you ignore it lest you find yourself falling down a rabbit
hole of pedantry.

If you are experienced in iOS development, all of this should sound familiar.
UICollectionView and UICollectionViewController don’t exist in silos; they are
used within applications with models and with the rest of CocoaTouch. It would be
irresponsible to present them in any other context than that of MVC.

MVC and UICollectionView
Now that you've read about the MVC paradigm, look at its application in the context of
writing UICollectionView code.

The view component of MVC with UICollectionView is unsurprisingly the
UICollectionView itself; the controller is either a subclass of
UICollectionViewController or a subclass of UIViewController that conforms to
the UICollectionViewDataSource and UICollectionViewDelegate protocols; the
model can be anything.

Like with UITableView, your controller can either subclass UIViewController and
conform to the two protocols for the collection view data source and delegate, or it can
subclass UICollectionViewController itself. If you look in the header file of
UICollectionViewController, you see that it’s very sparse. The controller inherits
from UIViewController—conforming to UICollectionViewDataSource and
UICollectionViewDelegate—and has a convenience initializer to programmatically
create an instance of it using a collection view with a specific layout. It contains a property
to access the collection view and another property to specify whether the selection in a
collection view becomes cleared when it (re)appears.

When using a UICollectionViewController subclass, the view property of
UIViewController points to the same object as the collectionView property of
UICollectionViewController. The view is the collection view. If you plan to use only
UICollectionView to display data to your user, I strongly recommend subclassing this

prebuilt controller. In my experience, you run into fewer “gotchas” using these special
controllers from Apple.

In some circumstances, subclassing UIViewController is preferable. For example, if
your view contains a collection view, but also contains other views, it’s easier to have the
collection view as a subview of the controller’s view. The distinction is minor, but
important.

Figures 1.2 and 1.3 demonstrate the differences in the two approaches to using collection
views. UICollectionViewController is far simpler; it should be the approach you take
first. If you find you can’t solve your problem with it, switch to using the second approach.
It’s usually easy to switch from using the first method to the second.

Figure 1.2 Example of MVC using UICollectionViewController

Figure 1.3 Example of MVC using UICollectionView’s protocols

This book uses the first approach unless there is a good reason not to. Even though the
view property of UICollectionViewController is the same as its collectionView
property, the code used in this book carefully distinguishes between the two.

Now that you’ve seen how collection views fit within the MVC paradigm of iOS apps, look
at the following simple example. Don’t worry; you experiment a lot with collection views
in Chapter 2, "Displaying Content Using UICollectionView."

In the following example, you create a simple iPhone app that displays a bunch of cells
with random colors. To get started, create a new application with the Single View template.
Make sure that Use Storyboards is unchecked—this book focuses on collection views, and I
don’t want to have to diverge to discuss the peculiarities of storyboards. Delete everything
in the view controller header file and replace it with the code in Listing 1.1.

Listing 1.1 Basic UICollectionViewController Header File

@interface AFViewController : UICollectionViewController

@end

Replace AFViewController with the name of your view controller. My initials are “AF,”
so I prefix my class names with them to avoid namespace collisions.

Next, head over to your .xib file and delete the view. Drag a collection view onto the blank
canvas and connect the collection view’s delegate and dataSource outlets to the File’s
Owner, the view controller. It should look like Figure 1.4 when you’re done.

Figure 1.4 Basic UICollectionView setup using a .xib

Now comes the fun part: the code! UICollectionViewDataSource has two required
methods. One returns the number of items in a section, and another configures a cell for a
given index path.

If you’re not familiar with these terms, don’t worry. Chapter 2 explains everything in great
detail. This quick example just gets your feet wet.

Following MVC, you need a model. Use a basic array that you'll populate with a bunch of
randomly generated colors. The top of your implementation file should look something like
Listing 1.2.

Listing 1.2 Setting Up the Model

static NSString *kCellIdentifier = @"Cell Identifier";

@implementation AFViewController
{

 NSArray *colorArray;
}

- (void)viewDidLoad
{
 [super viewDidLoad];

 [self.collectionView registerClass:[UICollectionViewCell class] for-
CellWithReuseIdentifier:kCellIdentifier];

 const NSInteger numberOfColors = 100;

 NSMutableArray *tempArray = [NSMutableArray arrayWithCapac-
ity:numberOfColors];

 for (NSInteger i = 0; i < numberOfColors; i++)
 {
 CGFloat redValue = (arc4random() % 255) / 255.0f;
 CGFloat blueValue = (arc4random() % 255) / 255.0f;
 CGFloat greenValue = (arc4random() % 255) / 255.0f;

 [tempArray addObject:[UIColor colorWithRed:redValue
green:greenValue blue:blueValue alpha:1.0f]];
 }

 colorArray = [NSArray arrayWithArray:tempArray];
}

The kCellIdentifier string is used to register a plain UICollectionViewCell as the
cell for the collection view to use, so don’t pay much attention to it. The part that involves
the model is the instance variable called colorArray. In viewDidLoad, you use a for
loop to populate this array with random colors.

Now that you have the model set up, you need to configure your view to represent it. For
this, use the two UICollectionViewDataSource methods mentioned earlier (see Listing
1.3).

Listing 1.3 Configuring the View

-(NSInteger)collectionView:(UICollectionView *)collectionView
numberOfItemsInSection:(NSInteger)section

{
 return colorArray.count;
}

- (UICollectionViewCell *)collectionView:(UICollectionView
*)collectionView cellForItemAtIndexPath:(NSIndexPath *)indexPath
{
 UICollectionViewCell *cell = [collectionView dequeueReusableCell-
WithReuseIdentifier:kCellIdentifier forIndexPath:indexPath]; //Discussed
in Chapter 2 - pay no attention

 cell.backgroundColor = colorArray[indexPath.item];

 return cell;
}

The first method—collectionView:numberOfItemsInSection:—lets the collection
view know how many cells it’s going to display. You rely on the model to let the controller
know what number to return. Next, you have
collectionView:cellForItemAtIndexPath:, which returns a cell that you are
responsible for configuring in a way that represents your model. To do this, you grab the
model at the given index and use that color as the background color for the cell. If you run
the app, you get something like what you see in Figure 1.5. Because the colors are
randomly generated, of course, your app will look different.

So, this simple example demonstrates how a model can represent a view and how you can
configure a view to represent that model without either being aware of the other. This
example demonstrates the platonic ideal of what you should strive for: clear separation
between model, view, and controller.

Figure 1.5 First run of the basic app

	Contents
	Preface
	Chapter 1: Understanding Model-View-Controller on iOS
	Basics of the Application Lifecycle
	How to Use MVC
	MVC and UICollectionView

