

Library of Congress Cataloging-in-Publication Data

Anderson, David J. (David James)
Agile management for software engineering / David Anderson

p. cm
Includes index
ISBN 0-13-142460-2.
1. Software engineering. 2. Computer software--Development--Management. I. Title

QA76.75 .A48 2003
005.1--dc22

2003017798

Editorial/production supervision: Carlisle Publishers Services
Cover art: Jan Voss
Cover design director: Jerry Votta
Art director: Gail Cocker-Bogusz
Interior design: Meg Van Arsdale
Manufacturing manager: Alexis R. Heydt-Long
Manufacturing buyer: Maura Zaldivar
Executive editor: Paul Petralia
Editorial assistant: Michelle Vincenti
Marketing manager: Chris Guzikowski
Full-service production manager: Anne R. Garcia

© 2004 by Pearson Education, Inc.
Publishing as Prentice Hall Professional Technical Reference
Upper Saddle River, New Jersey 07458

Prentice Hall PTR offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales. For more information, please contact: U.S. Corporate and Government Sales, 1-800-382-3419,
corpsales@pearsontechgroup.com. For sales outside of the U.S., please contact: International Sales,
1-317-581-3793, international@pearsontechgroup.com.

Company and product names mentioned herein are the trademarks or registered trademarks of their respective
owners.

All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission
in writing from the publisher.

Pearson Education LTD.
Pearson Education Australia PTY, Limited
Pearson Education Singapore, Pte. Ltd.
Pearson Education North Asia Ltd.
Pearson Education Canada, Ltd.
Pearson Educación de Mexico, S.A. de C.V.
Pearson Education–Japan
Pearson Education Malaysia, Pte. Ltd.

Printing10th September 2009

Text printed in the United States on recycled paper at Hamilton in Castleton, New York.

ISBN 0-13-142460-2

xxi

Foreword

It is so good to finally have a book targeted at the software industry that
challenges some of the basic business assumptions behind software engi-

neering, and particularly those behind managing software organizations. At
the time these words are written, the software business is facing huge diffi-
culties worldwide. I hope that these difficulties also generate a willingness to
look afresh at the business and to have the courage to contemplate changes.
Other industries, particularly in manufacturing, went through such conceptu-
al changes in their business processes during the 1980s and the 1990s. It is
certainly not easy, but as I’ve personally experienced, it is highly desirable.

In 1985 I managed my own software company in Israel and was quite proud
with my new package for certified public accountants. But, even though my pack-
age competed very nicely in the market, I noticed an on-going business prob-
lem: More and more development was needed to keep the package alive. In such
a case, how do I justify the on-going investment? Eventually, I was not sure that
a small software company, focused on a specific market niche, could be a good
business—even when the product itself was enthusiastically accepted by the
market. I felt that even though I already had my MBA, I needed a better per-
spective to understand the business.

Then I met Dr. Eli Goldratt.

I had heard a lot about Dr. Goldratt’s international software company,
Creative Output, Inc., which was seen as much more than just an excellent
and innovative software company. It challenged some of the most sacred
norms of business, such as the concept of product cost. I could not under-
stand how anyone could challenge the basic concept that a unit of a product
has a certain cost associated with it. I was intrigued enough to be open to an
offer: Join Creative Output in order to develop a video game for managers that
would deliver some new managerial ideas. At the time, computerized games
were focused on fast fingers and perfect coordination. They were certainly not
something of interest to adults. How could a computer game be readily
accepted by grown-up managers and deliver new managerial ideas?

This was the start of a mental voyage into a new management philoso-
phy that does not lose its grip on reality. I turned myself into a management
consultant with a focus on improving whatever is the particular goal of the
organization. Software became an important supporting tool, but not the
focus of the change efforts.

The relevance of the Theory of Constraints (TOC) to the software indus-
try is twofold:

1. Vastly improving the flow of new products to the market.

2. Determining the real value of a proposed project, or even just
a feature, to the final user. The underlying assumption is that
if we know the real value to the user, it is possible to develop
the right marketing and sales approach to materialize the
value to the user and to the software organization.

David Anderson focuses mainly on the first aspect in this book, which
includes looking at the business case and ensuring the ability to make it hap-
pen. Software organizations can definitely be improved with the help of the
new generic managerial insights that have already changed traditional west-
ern industries. David does a great job in bringing together the generic mana-
gerial ideas and rationale and combining them with software-focused
approaches to come up with a coherent approach on how to improve the
business.

Read this book carefully with the following objective: Learn how to make
more with less. Don’t accept every claim David raises just because he says it
is so. If you truly want to make more with less, you need to be able to inter-
nalize the claim. All I ask is you give it a chance. Dedicate time in order to
rethink your environment, and then see for yourself what to do. Overcoming
inertia is the biggest challenge of any really good manager in any organization.
Of course, rushing to implement new fads can be even worse. Keeping an open
mind and confronting new ideas that invalidate basic assumptions are what I
suggest you strive for. This book is for you to struggle with. It is not trivial, and
it is not a fad. If you like what you do now, it should be your responsibility to
check out new ideas that might yield huge improvements.

Here are some brief insights regarding the assessment of the value to a
potential customer of a new feature, particularly to a new software package.

A new Feature can bring value to the user only if it eliminates, or
vastly reduces, an existing limitation. The amount of the value depends on
the limitation removed—not on the sophistication of the feature itself. Let us
take a simple example. At a certain time in the history of word processors,
somebody had an idea: Why not add a spell checker to the package?

What is the value of the spell check we now have as a routine feature?
What limitation does it eliminate or reduce? For people with a very good
knowledge of the language, spelling mistakes are caused by writing too fast.
So, without a spell checker, those people need to read carefully what they just
wrote. People who are not in full command of the language (for example, me,
as an Israeli) need to look at the dictionary very often, which is quite time
consuming.

This need leads us to recognize two additional insights.

People developed some rules to help them overcome the limitation.
People who used word processors had to go over whatever they just wrote
before sending the document to others. People without good command of
the language needed to be supported by a dictionary.

Foreword

xxii

Once the limitation is vastly reduced, people should replace the old
rules with new ones that take full advantage of the removal of the limita-
tion. If this does not happen, then there is no added value to the Feature.

Now we can see whether adding a spell checker to an existing word
processor brings value. Suppose you have perfect command in the lan-
guage, would you now refrain from carefully reading your recent document
before sending it away? Spelling mistakes are hardly the main reason to go
over any document that I want other people to read. So, for people with
perfect knowledge, the spell checker offers no real value. But, for me as a
person in good command of Hebrew, but not good enough in English,
spelling mistakes in English are a nuisance. But, could I really avoid them
just by the use of a spell checker? As long as the spell checker does not
suggest how to write the word correctly—the limitation is only marginally
reduced and thus not much value is produced. This means that if we want
to generate significant value for the specific user group that has not mas-
tered the language, we need to add good suggestions of what should be
written instead.

In this simplified example, we already see the need to check the behav-
ior rules both before the limitation is eliminated and after. Is it always clear
what the new behavior rules should be? Assuming the user is well aware of
what the new rules should be is a very common trap for too many software
features.

Suppose that a new Feature is added to a sales-graph display module in
which the trends shown by the graph are analyzed for statistical significance.
The limitation is lack of knowledge on whether market demand is really up or
down or just part of the normal statistical fluctuations. The current behavior
of the management is: If sales are up, the sales agents are complimented and
get appropriate bonus; if sales are down, there are no bonuses and some hard
talk from management.

What should the new management rules be once management knows
whether the rise in sales is significant? I’m afraid that in the vast majority of
the cases the behavior will be exactly the same. Hence, the newly added
Feature will not add value to the customer, even though some customers
might ask for it and even exert a lot of pressure to have the Feature devel-
oped. Eventually, the value to the software company of developing the
Feature will be negative.

Of course, for a good managerial consultant assisting in the formation
of better decision processes, a specific Feature can bring immense value
both to the consultant and the client. In this case, a strategic partnership
between the consultant and the software company can be a win-win for all,
including the client.

Improving the flow of the Features that truly bring value to the customer
and also have a good chance of generating revenues for the software organi-
zation is what this unique book is all about. The Agile Manifesto principle of
“Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software” is fully in line with the Theory of Constraint’s
objectives. To be more precise, TOC strives to generate more of the organiza-
tion’s goal. But, in order to do so, the organization has to generate more value

Foreword

xxiii

to its customers. The means of early and continuous delivery of software that
truly generates value should assist both the software organization and its
clients in achieving more of their respective goals.

Please bear in mind that improvement has only one criterion: Achieving
more of the goal. The path to truly improving the performance of your soft-
ware organization may well start with this book.

Eli Schragenheim

Foreword

xxiv

Introduction

“Poor management can increase software costs more
rapidly than any other factor.”

Barry Boehmi

A s Barry Boehm points out, bad management costs money [1981]. These
days it also costs jobs. Senior executives, perplexed by the spiraling

costs of software development and depressed by poor results, poor quality,
poor service, and lack of transparency are simply shrugging their shoulders
and saying, “if the only way this can be done is badly, then let me do it badly
at a fraction of the cost.” The result is a switch to offshore development and
layoffs. With the state of the economy in 2003, what was a trickle has
become a positive trend. If the trend isn’t to become a flood, management
in the information technology business needs to get better. Software devel-
opment has to cost less and produce better results—more reliably, with
better customer service, and more transparency. This book will teach the
Agile manager how to achieve that.

Building software costs a lot of money because it is labor intensive knowl-
edge work.

Software engineers and their colleagues in project management and
related functions are very well paid. It’s a basic supply versus demand prob-
lem. Throughout most of my life, demand for IT workers has exceeded supply.
The rates of pay have risen accordingly. Most software engineers under the
age of 40 earn more than their peers who entered traditional professions such
as medicine, law or accountancy. In many American firms, software engineer-
ing pays better than marketing.

Recently, with the global economic downturn, large corporations and many
smaller ones are focused on trimming costs to improve profits or reduce losses.
The high dollar line item for IT is under pressure. CIOs are having their budgets
cut. The result is that jobs are moving offshore to outsource firms in Asia,
Australia, and Eastern Europe. Knowledge work is moving out of rich countries
and into poorer countries. Typically, an Indian outsource supplier can offer a
labor rate of 25% of the rate for an equivalent U.S. software developer.

xxv

Why Agile
Management?

The Economic
Imperative

i[Boehm 1981] Software Engineering Economics

If software knowledge work is to remain in the rich, developed countries
of the world and software engineers in America, Europe, and Japan are to
maintain the high standard of living to which they have become accustomed,
they must improve their competitiveness. There is a global market for soft-
ware development, and the rise of communications systems such as the
Internet, have made it all too easy to shrink the time and distance between a
customer in North America and a vendor in India or China.

Jobs are at stake! Just as western manufacturing was threatened by the
rise of Asia in the latter half of the 20th century, so too is the knowledge work-
er industry threatened by the rise of a well-educated, eager workforce who can
do the same work for between one tenth and one quarter of the cost.

The answer isn’t that software developers must work harder if they want
to keep their jobs. Software engineers aren’t the problem. The answer is that
management techniques must improve and working practices must change in
order to deliver more value, more often, in order to improve competitiveness.

This is a book about software engineering management. It is also a book
about business. It is a book about managing software engineering for the pur-
pose of being successful at business. It will offer proof that Agile software
development methods are better for business.

The information technology industry hasn’t been good at managing soft-
ware engineering and hasn’t shown an aptitude for management and process
control. As a result, information technology businesses are often run by seat-
of-the-pants intuition and rough approximations. It is common, to the point
of being accepted as industry standard practice, for information technology
projects rarely to follow the plan, to be late and over budget and fail to deliv-
er what was promised.

Software engineering management is traditionally a poorly practiced pro-
fession. This may be because it is poorly (or rarely) taught. Only recently has
my local college, the University of Washington, begun offering an MBA pro-
gram in high technology management. Such programs are rare. As a result,
there is little management expertise in the industry.

However, many techniques do exist that can improve the competitive-
ness of software development businesses. These techniques have been
proven in other industries. The challenge has been figuring out how to apply
them to software development. Techniques such as the Theory of Constraints
[Goldratt 1990a], Lean Production [Womack 1991], Systems Thinking [Senge
1990], and new ideas evolving out of the recent science of Complex Adaptive
Systems are providing insights that unleash the latent ability of knowledge
worker talent.

The secret to economically viable software engineering is new working
practices based on new management science. The Agile manager must con-
struct an Agile learning organization of empowered knowledge workers. When
this is achieved the results will be dramatic. Improvements of 4 times are eas-
ily achieved. 10 times is definitely possible. Imagine if your software engi-
neering organization could do 5 times as much work in half the time it
currently takes. What would it mean for you, your job, and your organization?

The Thesis
for Agile

Management

Introduction

xxvi

Knowledge work isn’t like manufacturing. Stamping out car bodies can be
performed with a high degree of certainty. It is dependable to within a very
low tolerance. Failures and errors are rare. The time to stamp two car bodies
is almost precisely twice the time to stamp a single car body. The time to
stamp 100 bodies is probably precisely derived from the time to stamp a sin-
gle car body multiplied by 100. Manufacturing is in many ways predictable,
linear, and, in the case of chemical processes, defined by scientific rules.

Knowledge work is neither linear nor defined. So it isn’t like manufactur-
ing. The assumption has been that because it isn’t like manufacturing and
isn’t predictable and linear, it just can’t be managed the same way. In fact,
attempts to bring traditional management to software engineering processes
have tended to fail. Software projects rarely if ever run to plan, and estimat-
ing is generally a black art with the resultant estimates often a complete fic-
tion. Software development, from the perspective of the boardroom, has been
out of control.

This book will show that dismissing software engineering as an uncon-
trollable process is wrong. It can be managed like other parts of a business.
The secret is to manage the right things and to do so with transparency. Just
because software engineering has greater uncertainty associated with it than
manufacturing production does not mean that management methods are
invalid. It simply means that those methods must accommodate greater
uncertainty. The Theory of Constraints teaches managers how to buffer for
uncertainty and this book will explain how to apply that technique to software
development. It is important that value chain partners, management, and
shareholders understand the correct model for managing software develop-
ment, a model that accommodates uncertainty, and learn to trust the tech-
niques of the Agile manager.

The Agile manager’s new work becomes a study in setting the governing
rules for controlling the system of software production. The Agile manager
needs to learn what to track, how to track it, how to interpret the results, and
what to report to senior management. This book explains what, why, and how
to do this.

Some high technology workers on the west coast of the United States are giv-
ing up the profession and changing careers. All around the world, high tech
workers are disillusioned. They are beginning to realize that a job in high
technology is not worth sacrificing family life, social life, or health. They are
realizing that their hourly rate doesn’t look so good, considering all the
unpaid overtime they are expected to work. They are realizing that there must
be more to life.

One former colleague, from my time in Singapore, recently trained as an
artist and photographer. Another, with whom I worked in Kansas City, quit the
business and moved to Paris, France, where he works in the non-profit sector.
Another colleague recently resigned in order to start an auto-tuning business.
Yet other colleagues, who work as contractors, are only prepared to work part
time. One prefers to work in a shoe store, and another does flower arranging.
I hear similar anecdotes from people I meet all over the industry. What is
happening?

Accept
Uncertainty,
Manage with
Transparency

A Trend of
Frustration

Introduction

xxvii

IT workers turn up for work for four reasons: the cause (the vision and
leadership of the organization), the love of technology (usually a specific
choice in which an almost religious fervor is aroused), the money (and it is
usually pretty good), and the boss (people really do work for people). Let’s
consider these in turn.

The cause and the technology can often be grouped together. They
include the mission of the business, the vision of the future, the technology
being used, and the industry into which all of this is being deployed. There
are IT workers who will simply never work in the defense business, for exam-
ple. Creating a great cause that will draw people to it is a matter for great
leadership. There has been much written about leadership in recent years.
Perhaps there is a yet-to-be-written great book about IT industry leadership
but teaching leadership is not within the scope of this book.

The money is important. IT workers are in demand. Demand exceeds sup-
ply. Even in hard times, demand for IT workers remains strong. Often a reces-
sion strengthens demand because automated systems can replace other
workers and reduce cost. Consider the recent trend in automated machines
for airline check-in, for example.

The boss is very much the scope of this book. If the boss doesn’t get it, the
staff will get disillusioned and leave. High staff turnover in IT businesses is usu-
ally an indication that the management “doesn’t get it.” Management is impor-
tant. People like to work in well managed, properly organized environments.
They like to have clear objectives and an environment in which to do great work.

This book will give IT industry bosses a new set of tools for managing. It
will show them how to assess the IT parts of their businesses, as they would
any other part of the business. It will show how to demonstrate whether or
not IT delivers true value-add and produces a suitable return on investment.

Running software engineering as a proper business actually produces effects
that result in more optimal use of resources, more efficient production of code,
and a better creative and professional environment for the staff. When the boss
really “gets it,” the staff knows it and like it. The key to low staff turnover and high
performance from a software development organization is better management.

Recently, there has been a rebellion in the industry against the growing tide
of poor performances, long lead times, poor quality, disappointed customers,
and frustrated developers. It is a rebellion against poor management. A pas-
sionate body of software developers has declared that there must be a better
way—delivering software should be more predictable. These passionate peo-
ple espouse a number of new software development methods, which they
claim will enable faster, cheaper, better software development with on-time,
on-budget delivery of the agreed scope. These new methods are known col-
lectively as Agile methods.

The word “agile” implies that something is flexible and responsive and in
a Darwinian sense has an innate ability to cope with change. An agile species
is said to be “genetically fit.” By implication, Agile software development
methods should be able to survive in an atmosphere of constant change and
emerge with success.

The Agile
Manifesto

Introduction

xxviii

The accepted definition of Agile methods was outlined in February 2001
at a summit meeting of software process methodologists which resulted in the
Manifesto for Agile Software Development.ii It was created by a group of 17
professionals who were noted for what, at the time, were referred to as “light-
weight” methods. Lightweight methods started with Rapid Application
Development (RAD). The RAD approach sought to time-box software releases
to strict delivery dates, subordinating everything else in the project, including
budget, scope, and staffing levels to achieve the delivery date. The term “rapid”
came from the suggested nature of the time-boxes—much more frequent than
traditional software development, that is, 2 weeks to 3 months.

Agile methods are mostly derived from the lightweight approach of RAD.
They add extra dimensions, primarily the recognition that software develop-
ment is a human activity and must be managed as such.

Manifesto for Agile Software Development

We are uncovering better ways of developing
software by doing it and helping others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation

Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

Kent Beck, James Grenning, Robert C. Martin, Mike Beedle, Jim
Highsmith, Steve Mellor, Arie Van Bennekum, Andrew Hunt, Ken
Schwaber, Alistair Cockburn, Ron Jeffries, Jeff Sutherland, Ward

Cunningham, John Kern, Dave Thomas, Martin Fowler and Brian Marick

© 2001, the above authors
this declaration may be freely copied in any form,

but only in its entirety through this notice.

The Agile Manifesto, as it has become known, is a very simple and con-
cise declaration that seeks to turn the traditional view of software develop-
ment on its head. The manifesto is based on 12 principlesiii:

Our highest priority is to satisfy the customer through early and continuous delivery of

valuable software.

iihttp://www.agilemanifesto.org/.
iiihttp://www.agilemanifesto.org/principles.html. Kent Beck, James Grenning, Robert C.
Martin, Mike Beedle, Jim Highsmith, Steve Mellor, Arie Van Bennekum, Andrew Hunt, Ken
Schwaber, Alistair Cockburn, Ron Jeffries, Jeff Sutherland, Ward Cunningham, John Kern,
Dave Thomas, Martin Fowler, and Brian Marick.

Introduction

xxix

http://www.agilemanifesto.org/
http://www.agilemanifesto.org/principles.html

Welcome changing requirements, even late in development. Agile processes harness change

for the customer’s competitive advantage.

Deliver working software frequently, from a couple of weeks to a couple of months, with a

preference to the shorter timescale.

Business people and developers must work together daily throughout the project.

Build projects around motivated individuals. Give them the environment and support they

need, and trust them to get the job done.

The most efficient and effective method of conveying information to and within a develop-

ment team is face-to-face conversation.

Working software is the primary measure of progress.

Agile processes promote sustainable development. The sponsors, developers, and users

should be able to maintain a constant pace indefinitely.

Continuous attention to technical excellence and good design enhances agility.

Simplicity—the art of maximizing the amount of work not done—is essential.

The best architectures, requirements, and designs emerge from self-organizing teams.

At regular intervals, the team reflects on how to become more effective, then tunes and

adjusts its behavior accordingly.

There are a number of Agile methods. In Section 2, this book looks
closely at three of them—Extreme Programming (XP), Feature Driven
Development (FDD), and Scrum. Though other Agile methods are not
explored, the book will provide the basic guidelines and metrics for mak-
ing an appropriate assessment of each in comparison to more traditional
software development methods.

Agile methods propose some unusual working practices. Extreme Programming,
as its name suggests, has some of the more radical. They often go by names that
sound as if they belong in the skateboard park or amongst the off-piste snow-
boarding community. The strange language and the strange practices scare
management in large companies. Are they ready to stake their careers, reputa-
tions and fat bonuses on pair programming and stacks of filing cards?

Agile methods introduce scary counter intuitive working practices. If
managerial fears are to be overcome, it is necessary to provide management
methods that allay those fears. This requires methods that report believable
and familiar statistics and have meaning to the business. It is necessary to
demonstrate the economic advantages and focus on real business benefits.
Software development is about making more profit, not about making great
code. By leading with the financial arguments, senior managers in large com-
panies can gain confidence that the expensive knowledge workers understand
the true goal. This book will show how to mature a software engineering
organization to the point where it can report believable financial metrics. It
will also show what those metrics should be and how to calculate them.

The Problem
with Agile

Methods

Introduction

xxx

Agile methods promise a lot, but where is the proof? Agile methodologists
will reply that, “the proof is in the pudding.” In other words, give it a try and
find out for yourself. These claims have been heard before. Who can recall
4GL (so-called “fourth generation languages”) that promised to eliminate
developers and allow ordinary workers to create labor saving tools for them-
selves? Or perhaps you were sucked into the world of visual software assem-
bly from components? Did the arrival of Visual Basic really eliminate
developers? The IT world has been full of promises. Why should Agile meth-
ods be any different?

Are Agile methods a genuine trend in changing working practices or are
they just another fad that lets software people “goof off” at work? This book
will show that Agile methods echo the techniques of Lean Production and the
Theory of Constraints which revolutionized manufacturing industry.

Agile software development is really about a change in working practices
and a change in management style. Agile methods understand what man-
agement truly is. They understand that management is more than economics
and engineering, that it is very much about people. “Rightly understood,
management is a liberal art, drawing freely from the disciplines that help us
make sense of ourselves and our world. That’s ultimately why it is worth
doing” [Magretta 2002, p.3]. Because of this basis in existing experience, I
firmly believe that the Agile approach is a genuine trend, a change in working
practices and paradigm shift in how software is produced. It is not a fad.

In order to adopt Agile methods in a large corporation, it is not enough to go
before the board and say, “Gee, people say this works. Why don’t we give it a
try?” The CIO is likely to be a pragmatist, not prone to early adoption or risk
taking. It will be necessary to argue a business case based on hard numbers
indicating better profitability and higher return on investment. Doing so is
the only way to make Agile methods look attractive and to fight against the
short-term thinking that is driving decisions to outsource software engineer-
ing offshore.

This book will arm the Agile manager with the material to make a busi-
ness case for agility. Agile methods can be justified on improved value-added
and ROI. This book will teach the Agile manager to manage up and lead with
a financial argument.

A framework for scientifically measuring and assessing Agile methods is
presented. The metrics involved are used to determine the level of added value
and the received return on investment. Much of the work that made this possi-
ble was developed by Eli Goldratt and his colleagues. It is a body of knowledge
known as Throughput Accounting [Corbett 1997]. Throughput Accounting,
based on the applications of the Theory of Constraints to manufacturing pro-
duction, is used as the basis for the financial arguments presented.

Agile
Methods—
A Fad or a
Trend?

The Business
Benefit

Introduction

xxxi

While the West during the 1970s and 1980s was focused on increased
automation through the use of robots on the assembly line, the Japanese pro-
duced far better results through management techniques that changed work-
ing practices. These working practices originated at Toyota and are known as
the Toyota Production System or Kanban Approach.

The technology industry has for the last 30 years, like western manufac-
turing, also been focused on technology solutions. There have been third and
fourth generation languages, modeling and abstraction tools, automated
integrated development environments, and automated testing tools. To some
extent, the Agile community rejects this ever increasing technology approach
and instead embraces new management techniques and changes to working
practices. In this respect, Agile methods resemble the principles first advo-
cated by Toyota and now known in the West as Lean Production.

The techniques of Lean Production created an economic improvement of
twenty to fifty fold during the second half of the 20th century. For example,
Womack and colleagues [Womack 1991] report that in one recent year Toyota
built half as many cars as General Motors using less than 5% of the people.
In other words, Lean Production at Toyota had produced a ten fold improve-
ment over its American mass production competitor. Some Agilists are
reporting four fold economic improvements [Highsmith 2002; Schwaber
2002]. This is equivalent to the improvements made in automobile manufac-
turing in Japan in the earlier part of that half century—for example, those at
Mazda between the 1960s and 1980 when productivity was improved by four
fold. During the most recent twenty years, some of these manufacturers have
gone on to make improvements of five times or greater. This produced a
cumulative economic improvement of twenty times or more. It is precisely
these types of gains that created the Asian economic miracle of the latter
20th century and provided vast wealth across the globe.

If Agile software development can provide a four fold improvement with-
in 9 months, why would a company outsource to an Indian supplier that
promises a four fold cost reduction over 3 to 4 years?

The software industry now employs over 30 million people worldwideiv

and can list the world’s richest company, Microsoft, amongst its number.
What if it were possible to create another economic miracle? What if software
development resembled the manufacturing efficiency of 1925? It is just pos-
sible that Agile methods represent the beginning of an understanding of how
to build software better, faster, and cheaper. Is it just possible that there is a
latent economic improvement in the order of 95% waiting to be unleashed?
Agile methods are a step down the road to a leaner knowledge worker indus-
try. They really do produce financial benefits, and this book will demonstrate
how to calculate them.

Toward a
Software

Economic
Miracle

ivEstimates taken from figures by Gartner Group and IBC suggest that there are around 15 mil-
lion software developers. It is reasonable to assume that those employed in other related func-
tions, such as project, program, and product management, will account for 15 million more.

Introduction

xxxii

“Most management books are only for managers. This one is for everyone—
for the simple reason that, today, all of us live in a world of management’s
making. Whether we realize it or not, every one of us stakes our well-being on
the performance of management,”v said Joan Magretta introducing her book
“What Management Is” [2002, p.2]. As Tom DeMarco observed in his book
“Slack,”vi the Dilbertsvii of the world have abdicated responsibility. It suits
them to blame the manager. Dilbert fails to see it as his duty to help his man-
ager be more effective. Management is a task that concerns everyone involved
in a business from the stockholders to the most junior of employees. Hence,
this book is intended for a wide audience—an audience of anyone who cares
whether or not a software business is well run.

The text is intended for anyone who is interested in changing the working
practices of software development to make them more effective and more com-
petitive. The book is primarily aimed at all levels of management in all software-
related disciplines and those who aspire to senior individual contributor or line
manager positions in the foreseeable future. It should also appeal to Masters
degree and MBA students looking for a management career in a software-related
industry. Every CEO, CFO, COO, and CIO who runs a business with significant
expenditures on software development activity needs to understand the new
paradigm and theory presented in Section 1. Lou Gerstner, writing in his IBM
memoir pointed out that cultural change must be led from the top if it is to be
effective [Gerstner 2002]. If change is to be led from the top, the boss must
adopt the correct mental model of Agile development practices in order to frame
decisions and understand the counterintuitive activity happening beneath.

This book defines 4 basic management roles and describes a set of practices
for each role. Those roles are development manager, program manager, proj-
ect manager, and product manager. Each is described in Chapter 8, “The Agile
Manager’s New Work.” Specific details for the development manager’s role are
defined in Chapters 5 and 9. The program manager’s role is defined in
Chapter 10. The project manager’s role is defined in Chapter 7. The product
manager’s role is defined in Chapter 16.

The thesis of the book is that the development manager is responsible for
running an on-going system of software production. This must be managed with
metrics based on fine grained units of production activity. However, programs
and projects must be measured at a coarse grained level that reduces the uncer-
tainty through aggregation of fine grained tasks. How to buffer against variabil-
ity is explained in Chapter 4. The product manager must define the groupings of
fine grained functionality which have meaning as valuable deliverables, that is,
the coarse grained items to be tracked by the program and project manager.

Together, all 4 roles interact to define a 2-tiered management system
that sets the governing rules for the system, but allows highly delegated,

v[Magretta 2002] What Management Is, page 2.
vi[Demarco 2001] Slack
viiDilbert is a registered trademark of United Feature Syndicate. Dilbert, a cartoon character
created by Scott Adams, suffers under a pointy haired boss who just doesn’t get it!

Who Should
Read This
Book

A Thesis
for New
Management
Practices

Introduction

xxxiii

self-organization within. Successful Agile management requires a highly del-
egated system of empowered knowledge workers. The essence of Agile man-
agement is self-organizing production, framed within the planned assembly
of valuable components, and delivered frequently to generate a the required
ROI for the business.

Chapter 11 introduces the notion that Agile methods can mature in an organ-
ization as it learns to use them better. This book leads with the financial met-
rics. It focuses on the true goals of a business and then examines how
management must organize and report the day-to-day workings of the soft-
ware production system in order to deliver the desired financial results. This
approach has been taken to demonstrate the compelling reason for switching
to Agile software development.

In practice, the approach to delivering a failure-tolerant, agile, learning
organization will happen inside-out. The working practices will come first,
then the traceability, then the metrics, then learning, and eventually the finan-
cial metrics and results. The Agile Maturity Model describes this progression.

Section 1 is intended as general reading for anyone interested in running a soft-
ware development business for better results. It is suitable reading for all lev-
els of management from team lead developers to CIOs, CEOs, CFOs, and GMs.
Section 1 explains Agile management, its practices and theory. It explains how
to apply the Theory of Constraints and Lean Production methods to software
engineering as a general practice. For many readers Section 1 will be sufficient.

Section 2 is intended for readers who need to manage the change to Agile
software development in their organization and for those who need to under-
stand why they are making a change and how to implement what they are
changing to. Chapters 19 and 20 give an outline of traditional software devel-
opment methods and will help an agile manager explain the current reality
and create a baseline from which to measure improvement. The remainder of
Section 2 surveys a subset of Agile software development methods. This sur-
vey is not meant to be exhaustive. It shows, by example, how to relate specif-
ic Agile methods to the theory presented in Section 1. Chapters 21 through 30
lay out possible future realities for an Agile software development organiza-
tion and demonstrate how to measure them to show an economic improve-
ment. FDD, XP, Scrum, and RAD are compared against the theory from Section
1. The emphasis is on explaining these methods rather than comparing them
against each other. Relative comparisons are left for Section 3.

Section 3 is for those who need to choose one method over another and
those who seek to understand Agile methods and develop the future of Agile
software development management. It seeks to understand the similarities
and differences and the varying foci of currently available Agile methods. The
applicability of these methods is considered against their appropriateness for
different types, sizes, and scales of software projects. Section 3 is intended
primarily for Agile methodologists and those who wish to further the debate
about the future of Agile software development.

An Agile
Maturity

Model

How to Read
This Book

Introduction

xxxiv

TOC in Software Production

The Theory of Constraints can be explained with a simple five-step process
that needs little explanation.

1. Identify the System Constraint.

2. Decide how best to exploit the System Constraint.

3. Subordinate everything else to the decision in step 2.

4. Elevate the Constraint.

5. If steps 1 through 4 have created a new constraint, return to step 2.

TOC is founded on the notion that a value chain is only as strong as its
weakest link. The conjecture is that there is only one weakest link at any given
time. This weakest link is known as the constraint. In a process or system that
takes input and produces output under some control mechanism, the con-
straint is described as the capacity constrained resource (CCR).1 In other
words, the value chain is a chain of processes or systems that add value to a
raw material and turn it into a finished product. The rate of production of the
finished product is constrained by the rate of production of the slowest (or
weakest) element in the value chain.

If TOC is to be used to improve a system, constraints must be identified, one
by one. Physical constraints are also known as bottlenecks. Hence, identify-
ing bottlenecks is a good place to start looking for the current constraint. It is
generally assumed that there is only one global system constraint at any
given time. There may be several bottlenecks, but only one will be constrain-
ing the overall Throughput.

Figure 3–1 shows a software production system that is constrained by the
capacity of System Test, which is only capable of processing 30 units of produc-
tion per month. The capacity of Acceptance Test at 80 units per month is irrele-
vant. At most, only 30 units will be passed to Acceptance Test every month.

Once the constraint has been identified, a decision must be made on
how to minimize its constraining ability on the system. The utilization or

29

chapter

TOC’s Five
Basic Steps

Identify and
Exploit
Constraints

1The term CCR is an abstraction. Constraints can take many forms.

Agile Management
for Software
Engineering

30

capacity of the constraint must be maximized. The CCR must be fully uti-
lized. It must never be idle. Every unit of production (Q) lost on the con-
straint is a unit of Q lost to the whole system. The constraint can be
protected from idleness by providing a buffer (or queue) of work for it to per-
form. As a generalization, constraints are protected by buffers—a queue is
just a type of buffer, a physical buffer of inventory. Protecting a constraint
is a necessary part of exploiting a constraint to the full. Achieving maxi-
mum exploitation of a resource means that whatever can be done should
be done to utilize the CCR optimally. This is best explained with a couple
of examples.

Consider a manufacturing machine that cuts silicon wafers into individ-
ual chips. Assume that this is the CCR for a chip fabrication plant. How can
the wafer cutter be protected and exploited as a CCR?

It can be protected from starvation by provision of a buffer of completed
wafers. It can be protected from power outage with a provision of uninter-
ruptible power and a backup generator. It can be exploited fully by running
three shifts and utilizing the machine up to 24 hours per day. It can be exploited
by performing a prior quality control check on wafers to insure that only good
quality wafers are processed through the cutting machine.

Exploiting the Software Developer as a Capacity
Constrained Resource

Consider a software development constraint. A software developer is
paid to work 8 hours per day. Strictly speaking, 8 hours per day is the con-
straint. Of course, software developers tend to be flexible in their working
hours, so it might be more accurate to state that the constraint is the period
of time during which the developer shows up in the office. How can the soft-
ware developer as a resource be protected and exploited?

She can be protected from idleness by always having a pool of devel-
opment tasks ready to be done. She can be protected from interruptions by
providing a communication structure that minimizes the lines of commu-
nication.2 She can be protected from distraction by providing a quiet envi-

Idea Analysis Design Code

Unit
Test

System
Test

Acceptance
Test

Working
Code

ErrorErrorError
100100 8080 5050 5050

8080 3030 5050

Figure 3–1
Software production
system showing rates
of production.

2Harlan Mills wrote about the “Surgical Team” in 1971 as an example of a structure designed
to minimize lines of communication and maximize the Throughput of software developers.

ronment for working. She can be further exploited by providing her with
the best software development tools available. She can be exploited by
providing support staff for nonproductive activities, such as progress
reporting and time-tracking, or tools to automate such nonvalue-added
work. Nonvalue-added work is waste. She can be exploited by providing
adequate training in the technologies being used. She can be exploited by
providing a team of colleagues to support her and help resolve difficulties.
She can be exploited by ensuring that the requirements she is given are of
good quality. This represents just a short list of possible protection and
exploitation mechanisms to maximize the completed working code pro-
duced by a software developer.

Subordinating to the Exploitation of a Constraint
Step 3 in TOC requires subordination of all other things to a decision to

protect or exploit a constraint. Step 3 has profound implications for any busi-
ness. The effect of step 3 can produce results that are counterintuitive and go
against the existing management policies.

To continue with the fabrication plant example, assume that the capaci-
ty of the wafer cutting tool has been determined. It has also been determined
that the Throughput of the whole plant is constrained by the capacity of the
wafer cutter. A decision is made to protect and exploit the wafer cutter to its
maximum capacity. In order to subordinate all else to this decision, there
must be agreement to regulate the flow of inventory from the factory gate to
the wafer cutter at the same speed as the wafer cutter can process it. This is
the Drum-Buffer-Rope application of TOC. The rate of the cutter is the drum.
The inventory from the factory gate to the cutter is the rope and a buffer in
front of the cutter to prevent it becoming idle is the buffer. A similar process
in Lean Production (or TPS) is known as “balancing” and results in the deter-
mination of Takt time. Takt time plays the same role as the drum in Drum-
Buffer-Rope. What this can mean in practice is that other machines earlier in
the process may lay idle. Part of the manufacturing plant may be idle because
it would produce too much inventory were it to run 24 hours per day. Other
parts of the system must only produce as much as can be consumed by the
wafer cutting machine.

The psychological effect of this subordination approach when first intro-
duced can be overpowering. If the business is run using traditional cost
accounting methods, then the idle machines appear to be very inefficient
because efficiency is measured locally as the number of units processed per
day/hour/minute. However, if the machines are not permitted to be idle, if
there is no subordination of the rest of the plant to the decision to feed
inventory at the speed the wafer cutter can cope with it, then inventory will
be stockpiled in front of the wafer cutter. The result will be that total inven-
tory will grow and so will investment. Consequently, operating expense will
grow, too. The business will become less profitable and return less on the
invested capital. Leaving machines idle can be good for business, but it is
counterintuitive.

TOC in Software
Production

31

Producing and holding too much inventory is much worse in software because
of the perishable nature of the inventory—requirements can go stale because
of changes in the market or the fickle nature of the customer. There is a time
value to requirements, and they depreciate with time, just like fresh produce,
that is, requirements have a time to market value. As time goes by, the poten-
tial Throughput from the transformation of the requirement into working code
decreases. Increasingly often requirements become obsolete, and they are
replaced by change requests for new requirements with a current market value.

Staleness is a very profound problem in software development. Although
a requirement (unit of V) may be written down, there is an implicit body of
knowledge on how to interpret it. If it isn’t being actively processed, that
knowledge atrophies—people forget things! Even worse, people leave proj-
ects or companies and take the knowledge with them.

For proof of this, ask a developer to explain how some code written 12
months ago actually works, and see whether he can recall from memory or a
brief analysis of the source code. Vital details never get captured, and people
forget. Loss of memory and loss of detail incur extra costs. Such extra costs
can be classified as waste.

Requirements that become stale are pure waste. Such requirements have
a $0 potential Throughput value. When this happens, the cost of acquiring
the requirement must be written off as operating expense.

It ought to be possible to measure the average Production Rate (R), of a
developer for any given week, or month, or quarter. For a team of developers,
it should be possible to guess approximately how many requirements can be
processed for a given time period. If they are to be fully exploited, developers
should not be loaded with any more than they can reasonably handle. So the
rest of the system of software production must be subordinated to this
notion. Requirements should be fed into development at the same pace as
the developers can process them into completed code.

Again, the psychological effect of this decision when first introduced
could be devastating. If the requirements are generated by analysts who inter-
view subject matter experts and business owners, management must realize
that those analysts no longer need to work flat out producing requirements. If
development is the constraint, then by implication, analysis must not be the
constraint. It could be that the analysts will spend time idle. They are not
required to create requirements constantly. In TOC language, this stop-go
effect is often called “Road Runner Behavior” after the Warner Bros. cartoon
character who only has 2 speeds—full speed and stop. Road Runner behavior
may be bad for morale amongst the analysts. Hence, the Agile manager must
be aware that the subordination step in TOC is dangerous and needs careful
management attention during introduction.

Probably the best way to deal with this is to ensure that everyone under-
stands the Drum-Buffer-Rope principles and that they are aware of the cur-
rent system constraint. If they know that they do not work in the CCR, they
should be comfortable with their new role being only partially loaded. This
technique of sharing an understanding of the system process and gaining
buy-in to changes has been called “Fair Process” [Kim 1997].

Agile Management
for Software
Engineering

32

Perishable
Requirements

Idleness
Might Breed

Contempt

Step 4 requires the elevation of the constraint. In plain English, this means
that the constraint must be improved to the point where it is no longer the
system constraint. This is best explained by example.

If the wafer cutting machine is the constraint in the fabrication plant,
everything has been done to protect and exploit that machine, and everything
else in the system has been subordinated to those decisions, but still there
is insufficient Throughput from the plant, the constraint must be elevated.
With a machine, elevation is simple—buy and commission another machine.
With the introduction of the second machine, the wafer cutter may no longer
be the constraint. The constraint within the system may have moved else-
where. Management must now move to step 5 and identify the new con-
straint. If the constraint has moved outside the system, then (arguably) they
are done.3 For example, if the plant can now produce more than the compa-
ny can sell, the constraint has moved to sales. Managers at the fabrication
plant no longer control the constraint. Hence, there is nothing they can do to
improve the Throughput of the business. If, however, the fabrication plant
still has an internal constraint, then the managers must return to step 1 and
start again.

Elevating the Software Developers Capacity Constraint
How is the developer elevated from a constraint? The most obvious

method of elevation used in the software industry is unpaid overtime. The
developer is asked to work longer hours. The constraint is stretched.
Weekend work may also be requested. Again, the constraint is being
stretched. The manager could also choose to hire more developers or to
introduce shift working. Another very powerful method is to use a better
developer.

It has been known for over 30 years [Weinberg 1971/1998] that some soft-
ware developers produce much more output than others. Performance differ-
ences between the average and the best of 10 to 20 times have been
documented [Sackman 1968]. The difference between poor and best is possi-
bly fifty fold. Hence, one way to truly elevate a software development organi-
zation is to hire better people.

Good people are hard to find. In a large organization, management must
accept that over the statistical sample, the engineering team will tend to be
average. Hence, it is important that managers identify top performers, reward
and keep them, and apply them judiciously to projects where development is
the constraint. By using a top performer on a capacity constrained develop-
ment project, management elevates the constraint and moves it elsewhere in
the value chain.

TOC in Software
Production

33

Elevating a
Constraint

3Lepore & Cohen merged the Theory of Constraints with Edwards Deming’s Theory of
Profound Knowledge and devised a 10-point scheme they call “The Decalogue” [Lepore,
1999]. Stage 9 involves “bringing the constraint inside.”

Increasing Throughput by Elevating the Constraint
In Figure 3–1, the System Test process is a bottleneck. It is constraining

the Throughput of the system to only 30 units per month. The equations in
Chapter 1 demonstrated the best way to be more profitable is to increase
Throughput. Figure 3–1 shows that it would be possible to raise the
Throughput to 50 units per month if the System Test process was elevated. At
50 units per month, System Test ceases to be the constraint. At that point,
Design, Coding, Unit Test, and System Test are all joint constraints. Raising
production higher than 50 units per month would require investment to ele-
vate all four of them. The business question to be answered is how much is it
worth to increase the capacity of System Test from 30 to 50 units per month?

If TOC was to be summarized in a single word, it would be focus. TOC teaches
managers where to focus investment. Whether it is investment of time,
resources, or money, the largest ROI will be gained from investing in the cur-
rently identified system constraint.

The financial equations for cost justification are simple. The existing
equation for ROI is:

If the current constraint is eliminated through an Investment (dI), then
Throughput will increase by an amount (dT). The equation post-investment
would look like

If ROIPost-Investment is greater than ROIPre-Investment the investment to remove
the constraint is worth doing. In fact, the officers of the company, being aware
of the option to invest and elevate the constraint, are legally obliged to the
shareholders to make the investment—assuming funds are available.

It seems attractive to decide that there will be only one CCR in the system and
that it will be the working day. To simply assume that 8 hours is a constraint
and that all personnel are constrained by it seems to provide a convenient
option for managers—they don’t have to look for other constraints.

Goldratt argues that the 8-hour work day is not a useful constraint because
it is not a bottleneck [1994, chs. 30 & 31]. Rather, he would call this an insuffi-
ciently buffered resource, that is, demand may outstrip supply. However, in the
system of software production, a bottleneck would be a capacity constrained
resource (CCR) in front of which a stockpile of inventory is apt to accumulate
and beyond which resources may starve for input. This definition of a constraint
satisfies the definition required for the Critical Chain [1997].

The capacity constrained resources (CCRs) that are most likely to repre-
sent the bottlenecks are not generalist developers and testers but the spe-
cialists such as UI designers, architects, data modelers, DBAs (performance

ROIPost-Investment =
(T + dT) - OE

I + dI

ROIPre-Investment =
Throughput (T) - Operating Expense (OE)

Investment (I)

Agile Management
for Software
Engineering

34

Focus of
Investment

Is the 8-Hour
Day the Best

Choice of
System

Constraint?

tuning wizards), visiting consultants, and maybe even subject matter experts
(SMEs). Resources related to expert skills such as usability laboratories, stag-
ing environments for performance tuning, prototyping laboratories, and test-
ing labs can also be bottlenecks. Such resources are likely to be shared in
large organizations and require scheduling. Sharing a resource and schedul-
ing a date for its use introduces uncertainty into project management.

Bottlenecks in software production are identified by measuring the trend in
inventory at each step in the process. The trend in inventory is affected by the
production rate (or capacity) of each process step.

The overall production of the system should be balanced against the
capacity of the bottleneck. The bottleneck should be protected and exploited
in order to maximize its Throughput.

Management may choose to invest in the bottleneck in order to increase
its capacity and hence increase the overall production of code through the
whole system. The cost of the investment can be considered against the value
of the increased production that will be achieved. The use of TOC provides a
focus for management, who may choose to employ Lean Thinking in order to
elevate constraints and create improvement.

TOC in Software
Production

35

Summary

305

Index

A
Accounting for change, 180, 224, 245
Accounting for rework, 224, 245–246
Activity Based Costing (ABC), 26
Adaptive behavior, emergence of, 109
Agile management theory and roles, 109, 185
Agile Manifesto principle, 12
Agile methods

agility, defining, 293
applicability of, 291
business benefit of, 155–159
expedite, as ability to, 293–294
maturity progression, 297
problem domain verus process map, 291
process space, division of, 291–293
scale versus ability to expedite, 294–295
statistical process control, and, 295–296
transferable quality improvement, 297–300

Agile software production metrics, 49
Analysis maturity continuum, 280–282
Anticipated ROI, use of, 111
Archetypes, 181
Artisan skills, 298, 299
Attributing value to a release, 152–153
Average Cost per Function (ACPF), 23, 54
Average Investment per Function (AIPF), 75
Average Investment per Function Point (AIPFP), 178
Average Revenue per User per Month (ARPU), 150

B
Batch size, role of, 88–89, 204
Blocked inventory, 68
Bottleneck

addition of staff to a, 119–120
failure at unit test, 82
in Feature Driven Development, 210
identification of, 79–81
at system test, 83–84

Brooks’ Law, 38, 274–275
Budget buffers, 209
Budget constraints, 41–42, 209
Buffers, role of, 66–68, 98–99, 197–198, 207–209,

217–218

C
Capacity constrained resource (CCR), 34, 146
Cash cost per user per month (CCPU), 150
Chaos theory, 10–11, 44, 278, 280
Chief Programmer Work Packages (CPWP),

191–192, 197, 203–204
Classification phase, 7
Code inspections, effect of, 86
Code reuse, 271
Coding process time, 165–166
Collective ownership approach, 239
“Common cause” variation, 43

Complex Adaptive Systems, 11
Conceptual learning, 297–300
Continuous improvement, role of, 113
Control charts, 5, 278
Control states, 277–280
Convergent versus divergent processes, 10
Correlation phase, 7–8
Cost accounting approach, 25–26, 141
Cost benefit of quality, 87
Cost control, 25
Cost efficiency, 25
Cost of change curve, 246–249
Critical chain representations, 70, 196, 208
Critical path, 64–65, 70, 216–217
Cumulative delays, role of, 218
Cumulative flow

bottleneck, use in identification of, 79–80
in Extreme Programing (XP), 227
in Feature Driven Development (FDD), 194
monitoring, 90–93
tracking inventory with, 53, 60–61

D
Data management, 184
Defined versus empirical processes, 9–10
Delivery date, protection of, 63, 68
Design by feature set (step 4), 183
Design process time, 165
Developer resource constraint, 202
Development manager, 73–74, 77
Divergent versus convergent processes, 10
Domain Neutral Component (DNC), 181, 211–212,

279, 283
Drum beat, role of the, 95
Drum-Buffer-Rope, 4, 68, 95

E
Early finish, failure to report, 218
Early start, 65, 66
EBITDA equation, 150–151
Edge of Chaos state, 278, 280
Effect-cause-effect phase, 8
Effort-based metrics, 50
Effort tracking, 56–57
Emergence, 11–12
Empirical versus defined processes, 9–10, 277–278
End-to-end traceability, 113
Enterprise Resource Planning (ERP). See

Manufacturing Resource Planning (MRP)

Epics, 226
Estimated cost of project delivery (D), 23
Evaporating clouds diagram, 272–273
Expected return on investment, calculation of, 24
Expediting requirements, effect of, 99–101
Exploitation considerations and implications,

30–31, 201
Extreme Programming (XP)

accounting for charge, in, 245
accounting for rework, 245–246
collective ownership approach, 239
continuous integration, use of, 235
cost of change curve, 246–249
cumulative flow diagram, 227
epics, 226
expediting, and, 294
financial metrics, 243–249
goals of, 225
integration testing, use of, 235–236
inventory, 225–226, 243
inventory cap, 229
inventory tracking, 227–228
investment, 229, 243–244
lead time, 228, 284
net profit equation in, 244
on-site customer, role of the, 240
operating expense in, 244
option theory, 234
pair programming, use of, 236–237
pipelining, 229
planning game, 234
prioritization of stories, 234
process step time, 228
production metrics, 225–231, 288
production rate, 227
quality, focus on, 284
raw material, 225
refactoring, use of, 230, 239, 245–246
regular work week, use of, 240
return on investment in, 245
risk philosophy, 229
S-Curve, 248–249
senior management, for, 230–231
specialists, elimination of, 240
stand-up meeting, use of the, 238
statistical process control, and, 295–296
story points, 225
system representation, 226
tasks, 226
test driven development (TDD), 238
testing, 229

Index

306

theory of constraints, denial of, 241
throughput, 227, 244
transferable quality improvement, 298–300
unit testing, 238
user stories, assessment of, 233–234

F
Failure

at integration test, 82, 83, 86
at product test, 84, 85
at system test, 87
on system test, 86
at unit test, 81–82
at user acceptance test, 84–85

Failure tolerant organization, role of the, 114
“Fair Process,” 32
Feature definition, 184–185
Feature Driven Development (FDD)

accounting for change, 224
accounting for rework, 224
adaptation mechanisms, 189
agile management theory, and, 185
batch size, role of, 204
bottleneck, test, 210
budget buffers and constraints, 209
buffers, role of, 197–198, 207–209, 209, 217–218
build batches, 191–192
build by chief programmer work package (Step

5), 183
Chief Programmer Work Packages (CPWP),

191–192, 197, 203–204
critical chain representation, 196, 208
critical path, maintaining the, 216–217
cumulative delays, role of, 218
cumulative flow diagram, 194
data management (DM), 184
dependencies, role of, 218
design by feature set (step 4), 183
developer resource constraint, 202
domain neutral component, 211–212
early finish, failure to report, 218
estimates versus agreed function, 194–195
executive management metrics, 200
exploitation of engineering resources, 201
feature definition, 184–185
feature lifecycle, 193
feature list (Step 2), 182
feature process steps, 196
feature sets, 191–192
feature team, use of, 202–203

file/class access constraint, 202
financial metrics, 221–224
five-point scale, 187–188
formulae, 188–189
inventory, 212–213, 221, 283–284
inventory cap, role of, 209
investment, 221–222
knowledge management system, use of, 199
lead time, 185
level of effort (LOE), estimation of, 186–188
local safety problem, 219
modeling and analysis phase, 210–212
modeling rule of thumb, 186
morning roll call, use of, 213–215
multitasking, role of, 218
operating expense, 186, 222–223
overview feature, 181–182
peer reviews, use of, 210
PERT charts, 195–196
plan by subject area (Step 3), 183
prioritized feature lists, use of, 204–206
problem domain (business logic), 184
process control, 193–194
process steps, 185
process time, 185
production metrics, 182–189, 287–288
project parking lot, 198
quality, focus on, 283–284
queue time, 185
return on investment, 224
safety constraints, 217–218
scheduling subject areas and feature sets,

195–197
scope constraint, 204–205
S-Curve effect, and, 215–216
self-organizing construction within planned

assembly, 191
setup time, 185, 203
shape modeling, 182, 216
“student syndrome,” 217–218
subject areas, 193
surgical team, use of, 202–203
system representation, 182–183
systems interfaces (SI), 184
ten percent (10%) rule, 219–220
Threshold state, and, 279–280
throughput, 223
time constraints, 207–209, 216–217
time-modified prioritized feature lists, use of,

205–206
transferable quality improvement, 298–300

Index

307

user interface feature sets, 192
user interface (UI), 184
value-added, 223
variance, focus on, 283
visual control, 199
wait time, 185
workflow, 197–198

Feature lifecycle, 193
Feature sets, 191–192
Feature team, use of, 202–203
Feedback, role of, 11
Feeding buffers, 66
File/class access constraint, 202
Financial metrics

in Extreme Programing (XP), 243–249
in Feature Driven Development (FDD), 221–224
for general business systems, 21
for software development systems, 22
for software services, 149–154

Fire fighting, 298, 299
Five-point scale, 187–188
Flow, identification of, 77–78
Foreseen uncertainty, 43
Framework, development of, 24–25
Functional priority, 40
Function Point (FP), 164, 177, 289

G
General Accepted Accounting Practices (GAAP), 27
General business systems, 21
Governing rules

adaptive behavior, emergence of, 109
anticipated ROI, use of, 111
continuous improvement, role of, 113
end-to-end traceability, 113
engineers, for, 115
failure tolerant organization, role of the, 114
management roles and rules, 109, 112
maturity increases, as, 111–112
process improvement problem, 110
production metrics, 111, 113
Reinersten’s Three Tiers of Control, 109–110
skills gap education, 113
team measurements, 115

“Green” status, 68
Group inventory for convenient testing, 64

I
Ideal State, 278, 279
Idleness, role of, 32–33
Input, value of, 58

Integration testing, 79, 86, 87, 235–236
Intellectual efficiency, 88, 166
Inventory

in Extreme Programing (XP), 225–226, 243
in Feature Driven Development (FDD), 221,

283–284
group inventory for convenient testing, 64
importance of, 27
logical collections of, 63–64
in Scrum, 252–253
in Software Development Lifecycle (SDLC), 164
tracking the flow of, 60–61
in traditional methods, 177
unified development process (UDP), 172

Inventory cap
in Extreme Programing (XP), 229
in Feature Driven Development (FDD), 209
in Scrum, 255
in Software Development Lifecycle (SDLC), 165
in Unified Development Process (UDP), 173

Inventory tracking, 227–228, 254
Investment

in Extreme Programing (XP), 229, 243–244
in Feature Driven Development (FDD), 221–222
reductions in, 134
in Scrum, 255
in Software Development Lifecycle (SDLC), 164
in traditional methods, 177–178
in Unified Development Process (UDP), 172

Investment value, throughput accounting tracking
of, 58–59

ISO-9000, 5
Issue log, 68
IT department, agile management in the

budget basis for IT assessment, calculation of,
133

budget basis for measuring the IT organization,
131–132

investment, reductions in, 134
lead time, reduction of, 135
operating expenses, reductions in, 135
throughput, improvements in, 134
true basis, calculation of, 132–133
value-added by a bank lending system,

potential definitions for, 132
value-added contribution, corporate IT’s, 131–132

Iterative incremental process, 173, 174

J
J-Curve effect, 38, 274–276
JIT. See Just-in-Time Inventory
Just Enough Design Initially (JEDI), 6, 283

Index

308

K
Kanban Approach, 4, 6
Knowledge Management System (KMS), use of,

93, 199
Koskela & Howell’s three-dimensional model for

project management, 57

L
Labor, implications of adding additional, 274–276
Late start, 65–66
“Late” status, 68
Lead time (LT)

estimation of, 63
in Extreme Programing (XP), 228
in Feature Driven Development (FDD), 185
reduction of, 135
in Scrum, 254, 285
in Software Development Lifecycle (SDLC), 164
and software production metrics, 53
in Unified Development Process (UDP), 173

Lean production, 5–6, 284
Learning Organization Maturity Model

goals of, 105
Stage 0-Analysis Ability, 105
Stage 4- Anticipated ROI and the Failure

Tolerant Organization, 107
Stage 1-End-to-End Traceability, 106
Stage 2-Stabilize System Metrics, 106
Stage 3- Systems Thinking and a Learning

Organization, 106–107
Level-of-effort (LOE) estimate, 50, 186–188
Lifecycle methods, software engineering, 18
Lifetime revenue per subscriber (LRPS), 150
Line of code (LOC), 50
Little’s Law, 53
Local safety considerations, 44–46, 219

M
Management accounting for systems

complex development systems, 18–20
emergent properties, 14
operating expenses (OE), 15
systems thinking, and, 14–15
throughput accounting, and, 15–17
value added, and, 16

Management roles and rules, 73–76, 109, 112
Manufacturing Resource Planning (MRP), 95
Marketing Requirement Document (MRD), 171
Maturity progression, 297
Morning roll call, use of, 213–215
Multitasking, role of, 218

N
Net profit, 21–22, 24, 179, 244
Net profit for services (NPBITDA), calculation of,

152

O
Object Oriented Analysis, 8
Object Oriented Software Engineering (OOSE),

289
Offshore development and process maturity,

121–122
One-dimensional model of project management,

57
On-going investment, role of, 142
On-site customer, role of the, 240
“On Time” status, 68
Operating expense (OE)

in Extreme Programing (XP), 244
factors of, 146
in Feature Driven Development (FDD), 222–223
importance of, 27
operating expense for services (OEBIDA),

calculation of, 151
reductions in, 135
in traditional methods, 178–179

Operational learning, 297–300
Operationally validated theories, 298
Operations review

attendees, 123
financial information, presentation of, 124–125
information, presentation of, 124–128
minute taking, 128
production metrics, presentation of, 125–126
program management metrics, presentation of,

127
project management metrics, presentation of,

127
purpose of, 123
timing, 124

Option theory, 234
Outsourcing decisions, 120–122
Overtime, effectiveness of, 81

P
Pair programming, use of, 236–237
Parallel paths, definition and identification of,

64–65
Peer reviews, use of, 210
People constraint, protecting the, 37–38
Perishable requirements, 32

Index

309

PERT charts, 64, 69, 195–196
Pipelining, 229, 256
Plan by subject area (Step 3), 183
Planning game, 234
PMI models for project management, 55
Predictions of profitability, 23–24
Prioritized feature lists, use of, 204–206
Problem domain, 184, 291
Process improvement, role of, 110, 138
Process lead time, elements of, 88
Process map, problem domain versus, 291
Process maturity, improvements in, 282–283, 285
Product backlog, 251, 259
Production efficiency, 26
Production metrics

in Extreme Programing (XP), 225–231
in Feature Driven Development (FDD), 182–189,

287–288
governing rules, 113
in Scrum, 251–2562, 288–289

Production quantity, measuring, 52
Production rate (R)

in Extreme Programing (XP), 227
governing rules, 111
representation, 79
in Scrum, 253
in Software Development Lifecycle (SDLC), 165
in Unified Development Process (UDP), 173

Product line strategy, 74
Product management, agile

cost accounting for Software Product
Development, 141

management accounting, 138
on-going investment, role of, 142
operating expense, factors of, 146
process improvement, role of, 138
product mix, role of, 142–148
sales and throughput, calculation of, 137–138
scope constraint, management of, 143–144
throughput accounting approach, 138–142
time-based throughput model, appropriateness

of the, 140
traditional cost accounting approach, 138

Product manager, 74–75
Product mix

constraints, and, 146–148
effect on investment, and, 146
revenue is the goal, when, 144–145
role of, 142–143, 154

Profitability, predictions of, 24

Profit by service release, calculation of, 153
Program manager, 74
Project buffer, 63, 119–120
Project delivery date, protection of, 63
Project manager’s new work, development of, 59–60
Project parking lot, 198
“Project” status, 68

“late” status, 68
“on time” status, 68
“red” status, 68
“watch” status, 68
“yellow” status, 68

Q
QA. See Quality assurance, importance of
Quality assurance, importance of, 5, 6, 81, 86–88,

277
Queue growth, 79
Queue time, 88, 175, 185

R
Rapid Application Development (RAD)

inventory cap in, 265
lead time in, 266
limitations of, 266–267
operating expense in, 266
principles of, 265

Raw material
in Extreme Programing (XP), 225
in Scrum, 252
in Unified Development Process (UDP), 171

Recovery and stretch of software production
constraints, 81

“Red” status, 68
Refactoring, 93, 230, 239, 245–246, 257
Regression effects, 85
Reinersten’s Three Tiers of Control, 109–110
Release, 260–261
Release backlog, 251, 259
Release manager, 74
Resource constraints, 42–43, 68–70
Return on Investment, 4, 21, 24, 152–153, 179, 224,

245
Rigorous Software Methodologies (RSM), 292,

296, 299
Risk philosophy, 229, 256
ROI. See Return on Investment
Roles versus functions, agile management, 76

Index

310

S
Safety constraints, 217–218
Sales and throughput, calculation of, 137–138
Scheduling subject areas and feature sets,

195–197
Scientific development, phases of, 7–9
Scientific management paradigm, 56
Scope constraint, 40–41, 143–144, 204–205
Scrum

cumulative flow, 253
engineering practices, 263
expediting policy, 255, 260, 285, 294
goal commitment, 261
goals of, 251
inventory, 252–254
inventory cap, 255
investment, 255
lead time, 254, 285
meeting, daily, 261
pipelining, 256
process step time, 255
product backlog, 251, 259
production metrics, 251–257, 288–289
production rate, 253
products, 251
raw material, 252
refactoring, 257
release, 251, 260–261
release backlog, 251, 259
review process, 263
risk philosophy, 256
Scrum Master, 259
senior management metrics, 257
sprint backlog, 251, 259
sprint planning and project management, 254
sprints, 251
statistical process control, and, 295–296
system representation, 252
team size and composition, 261–262
testing, 256
thirty day sprint, 260
throughput, 253
transferable quality improvement, 298–300
working environment, 262–263

S-Curve, 90–93, 215–216, 248–249
SEI Software Capability Model, 105
Self-organizing construction within planned

assembly, 191
Service business economics, 150

Setup time, 88, 175, 185, 203
Shape modeling, 182, 216
Six Sigma, 6
Skills gap education, 113
Software Development Lifecycle (SDLC)

analysis process time, 165
coding process time, 165–166
design process time, 165
Function Point (FP) metric, 164
idleness, efficiency, and growing inventory

levels, 170
inventory, 164, 166–167
inventory cap, 165
investment, 164
lead time, 164
process step time, 165–166
production rate, 165
raw material, functional specification for, 163
slack, lack of, 170
specialists and high inventory levels, 169–170
testing process time, 166
throughput, 164–165
uncertainty, role of, 168
variance reduction and waste, 168–169
waste and long lead times, 167

Software production metrics
agile software production metrics, 49
Average Cost Per Function (ACPF), 54
effort-based metrics, 50
expressions of inventory, 52
inventory-based metrics, 49
lead time (LT), and, 53
level-of-effort estimate, 50
measurement of inventory, 51–52
nonfunctional requirements, 51
OE per unit, 54
production quantity, measuring, 52
selection of, 49
tracking inventory, 53
traditional software production metrics, 50

Software Resource Planning
buffers, role of, 98–99
drum beat, role of the, 95
expediting requirements, effect of, 99–101
goals of, 95
release of requirements into the systems,

planning, 96
starving a process, effect of, 97–98
subordination of the CCR, 95
swamping a process, effects of, 96–97

Index

311

Theory of Constraints, and, 95
waste, cost and causes of, 101–103

Software services, financial metrics for
attributing value to a release, 152–153
average revenue per user per month (ARPU),

150
cash cost per user per month (CCPU), 150
definition of software service, 149
EBITDA equation, 150–151
lifetime revenue per subscriber (LRPS), 150
net profit for services (NPBITDA), calculation of,

152
operating expense for services (OEBIDA),

calculation of, 151
product mix, role of, 154
profit by service release, calculation of, 153
return on investment for services, calculation

of, 152
ROI by service release, calculation of, 153
service business economics, 150
throughput for service, calculation of, 150–151
uncertainty, role of, 154

SPC theory. See Statistical Process Control theory
Specialists

availability of, 69
elimination of, 240
versus generalists, use of, 272–274
high inventory levels, and, 169–170

Sprint backlog, 251, 259
Sprint planning and project management, 254
Sprints, 251
Staffing decisions

bottleneck, addition of staff to a, 119–120
conventional view of turnover costs, 117
full-time engineer, cost of replacing a, 118
loss of throughput on a constraint, 118–119
offshore development and process maturity,

121–122
outsourcing decisions, 120–122
project buffer, impact on, 119–120
temporary engineer, cost of replacing a, 118–119
throughput accounting view of turnover costs,

117
turnover, role of, 117

Stand-up meeting, use of the, 238
Starving a process, effect of, 97–98
Statistical Process Control Theory, 5, 277, 295–296
Story points, 225
“Student syndrome,” 217–218
Subject areas, 193
Subject matter expert (SME), 221

Subordination, 31, 95
Surgical team, use of, 202–203
Swamping a process, effects of, 96–97
System Goal, 20
Systems interfaces (SI), 184
Systems thinking and learning organizations, 11

detail complexity, 15
general systems, 13–17
inherent complexity, 15

System testing, 79, 83–84, 86, 87

T
Task planning, 56–57
Tasks, 226
Taylorism, 169

Taylor, Frederick Winslow, 169
scientific management, 56

Team measurements, 115
Team size and composition, 261–262
Ten percent (10%) rule, 219–220
Test driven development (TDD), 238
Theoretical comparison, 6–7
Theory of Constraints, 3–4, 6, 11, 29–34, 95, 241
Theory of Scientific Management, 25
Thirty day sprint, 260
Three-dimensional model for project

management, 57
Threshold state, 278, 279–280
Throughput

in Extreme Programing (XP), 227, 244
in Feature Driven Development (FDD), 223
importance of, 27
improvements in, 134
increasing, 34
in Scrum, 253
in Software Development Lifecycle (SDLC),

164–165
in traditional methods, 179
in Unified Development Process (UDP), 173

Throughput accounting, 19–20, 21, 25–26, 117,
139–140, 141–142

Tick-IT, 5
Time-based throughput model, appropriateness

of the, 140
Time constraints, 38–40, 207–209, 216–217
Time-modified prioritized feature lists, use of,

205–206
Total Quality Management, 5, 6
Toyota Production System, 4, 6
TQM. See Total Quality Management

Index

312

Tracking metrics, agile project, 67–68
Traditional cost accounting approach, 138
Traditional metrics versus agile principles, 271, 289
Traditional project management, 55–56
Traditional software production metrics, 50
Transferable quality improvement, 297–300,

298–300
Transformation, stages of, 18–19
True basis, calculation of, 132–133
Trust, goal of establishing, 41
Turnover, role of, 117

U
Uncertainty

aggregation of sequential and parallel
processes, 46–47

budget constraint, protecting the, 41–42
chaos, 44
classification of, 43–44
foreseen uncertainty, 43
local safety considerations, 44–46
people constraint, protecting the, 37–38
principle of, 11, 37
resource constraints, protecting the, 42–43
role of, 154, 168
scope constraint, protecting the, 40–41
time constraint, protecting the, 38–40
unforseen uncertainty, 44
variation, 43

Unforseen uncertainty, 44
Unified Development Process (UDP)

agility, lack of, 175–176
artifacts, 174
documentation, 174
inventory, 172
inventory cap, 173
investment phase, 172
iterative incremental process, 173, 174
lead time, 173
process step time, 175
process time, 175
production rate, 173
project management, 175
queue time, 175
raw material, 171
setup time, 175
throughput, 173
use cases, 172
vision document, 171
wait time, 175

Unit testing, 82, 238
Unvalidated theories, 298, 299
Use cases, 172, 289–290
User interface feature sets, 192
User interface (UI), 184
User stories, assessment of, 233–234

V
Value-added

by a bank lending system, potential definitions
for, 132

contribution to corporate IT’s, 131–132
cost accounting tracking of, 57–58
in Feature Driven Development (FDD), 223

Value chain, software production in the, 25
Value efficiency, 26
Variance, 43, 168–169, 283
Vision document, 171
Visual control, 93–94, 199

W
Wait time, 89, 175, 185
Waste, 101–103, 167
“Watch” status, 68
“Waterfall” model for software production, 56, 161,

166–168. See also Software Development
Lifecycle (SDLC)

Wheeler’s four states of control, 278, 295–296
Working capital requirements, determination of,

23–24
Working code (Q), 23
Work-in-process (WIP) inventory, 65, 166

Y
“Yellow” status, 68

Index

313

	Contents
	Foreword
	Introduction
	Chapter 3 TOC in Software Production
	TOC’s Five Basic Steps
	Identify and Exploit Constraints
	Perishable Requirements
	Idleness Might Breed Contempt
	Elevating a Constraint
	Focus of Investment
	Is the 8-Hour Day the Best Choice of System Constraint?
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

